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We analyze the formation of squeezed states in a condensate of ultracold bosonic atoms confined
by a double-well potential. The emphasis is set on the dynamical formation of such states from
initially coherent many-body quantum states. Two cases are described: the squeezing formation in
the evolution of the system around the stable point, and in the short time evolution in the vicinity
of an unstable point. The latter is shown to produce highly squeezed states on very short times.
On the basis of a semiclassical approximation to the Bose-Hubbard Hamiltonian, we are able to
predict the amount of squeezing, its scaling with N and the speed of coherent spin formation with
simple analytical formulas which successfully describe the numerical Bose-Hubbard results. This
new method of producing highly squeezed spin states in systems of ultracold atoms is compared to
other standard methods in the literature.

I. INTRODUCTION

Condensates of ultracold atoms provide an exceptional
tool to understand and control a number of phenomena
in the fields of condensed matter, many-body quantum
mechanics and quantum information/computation [1, 2].
Condensates are bosonic many-body quantum systems
whose Hamiltonian can be tuned via Feshbach resonance
techniques or by varying the trapping conditions.
In particular we shall be interested here in conden-

sates of ultracold bosonic atoms trapped in an external
double-well potential, thus giving rise to the so-called
external Josephson dynamics [3–7]. The case of atoms
with two internal states trapped in a common harmonic
potential is similar. In this case the Josephson dynam-
ics takes place between the two internal states [9]. A
first relevant observation for these systems was that of
the predicted self-trapped regime [10, 11], which appears
already in the semiclassical description of the two-site
Bose-Hubbard Hamiltonian. Later, the emphasis has
been set on producing strongly correlated quantum states
with appealing quantum properties such as entangled
states [6, 12, 13], or squeezed states with possible ap-
plication in quantum metrology [7, 8, 14, 15]. Recently,
the limits imposed by finite temperature on the maximal
attainable spin squeezing have been discussed in Ref. [16].
Most of the studies have concentrated on quantum

many-body properties present in the ground state. No-
tably studying the possibility of having cat-like many-
body ground states [17–19, 21, 22] or largely squeezed
states [6]. In this paper we focus on the dynamical gen-
eration of squeezed states, that is, we consider a con-
densate initially prepared in a coherent state which is
left to evolve in a suitable Hamiltonian so as to give rise
to entangled many-body states during the time evolu-
tion. Our aim is thus to build those particular states
from initial states that can be constructed with present
experimental techniques. We will use the Bose-Hubbard
Hamiltonian to study numerically the time evolution by

solving the corresponding time dependent Schrödinger
equation (TDSE). Alternatively, we apply a semiclassi-
cal approximation (based on a perturbative expansion
in 1/N , N the number of atoms) to obtain simple and
yet accurate expressions describing the dynamics of the
relevant expectation values. Similar methods have been
used in recent years to study the thermodynamic limit
of the Lipkin-Meshkov-Glick model [23], which can be
mapped into the usual two-site Bose-Hubbard, finding
exact expressions for the ground state in the thermody-
namic limit [24] and characterizing entanglement prop-
erties of the ground state in the same limit [25].
The article is organized as follows, first we introduce

the Bose-Hubbard (BH) Hamiltonian in Sect. II, and give
a short reminder of the semiclassical approximation in
Sect. III. In Sects. IV and V, we propose an experimen-
tally feasible setup for producing dynamically a new kind
of squeezed states and study their properties. A compar-
ison with the adiabatic and diabatic one-axis squeezing
is presented in Sec. VI. In Sect. VII we outline our con-
clusions.

II. TWO SITE BOSE-HUBBARD
HAMILTONIAN AND SQUEEZING

Let us consider a many-body system of bosons de-
scribed by a two-site Bose-Hubbard Hamiltonian of the
form h̄HBH with

HBH = −J(a†1a2+a†2a1)+
U

2
(n̂1(n̂1 − 1) + n̂2(n̂2 − 1)) ,

(1)

where n̂i = a†iai, and [ai, a
†
j ] = δi,j . J is the hopping

strength, taken positive, and U is the non-linear coupling
strength. U > 0 and U < 0 correspond to repulsive and
attractive interactions, respectively. To remain close to
ongoing experimental realizations we will concentrate on
the case of repulsive interactions among the atoms. The

http://arxiv.org/abs/1205.6756v2


2

time dependent Schrödinger equation is written as,

ı∂t|Ψ〉 = HBH|Ψ〉 . (2)

An appropriate many-body basis for this bosonic system
is the Fock basis [26], {|N1, N2〉}, with N1 + N2 = N .
Since the total number of atoms, N , is taken to be con-
stant it will be more convenient to introduce a different
notation: N1 = k, N2 = N − k. A general many-body
state, |Ψ〉, can then be written in this basis as,

|Ψ〉 =
N
∑

k=0

ck|k,N − k〉 . (3)

The low energy stationary states of the system are char-
acterized by values of ck that vary smoothly with k and
that take vanishingly small values when k → 0 or to
→ N , which corresponds to negligible probabilities for
finding almost all the atoms on one of the two sites.
It is customary to define three operators Ĵ ≡

(Ĵx, Ĵy, Ĵz) [26, 27]

Ĵx =
1

2
(a†1a2 + a†2a1)

Ĵy =
1

2i
(a†1a2 − a†2a1)

Ĵz =
1

2
(a†1a1 − a†2a2) . (4)

In terms of these, the Hamiltonian reads

HBH = −2JĴx + UĴ2
z + U

(

N̂2

4
− N̂

2

)

. (5)

An important consequence of the form of this Hamilto-
nian is the existence of squeezed spin eigenstates in the
Fock representation [12]. This pseudo-spin is the one de-
fined in Eq. (4). These states are of special importance
as they incorporate correlations which are beyond mean-
field.
Here instead we will study the dynamical generation of

squeezing: we assume that at t = 0 the system is initially
prepared in a coherent state characterized by (θ, φ) [27]:

|Ψθ,φ〉 =
∑

k

(

N
k

)1/2

(cos θ/2)k(eıφ sin θ/2)N−k|k,N−k〉 ,

(6)
which corresponds to a state in which all atoms populate
the same single particle state, cos(θ/2)|1〉+eiφ sin(θ/2)|2〉
where |1〉 = a†1|vac〉 and |2〉 = a†2|vac〉. Such states have
been recently engineered, producing and characterizing
them in a wide range of values of (θ, φ) [9].
Moreover, coherent states have simple expectation val-

ues of Ĵx, Ĵy, and Ĵz [27],

〈Ψθ,φ|Ĵx|Ψθ,φ〉 =
N

2
sin θ cosφ ,

〈Ψθ,φ|Ĵy|Ψθ,φ〉 =
N

2
sin θ sinφ ,

〈Ψθ,φ|Ĵz|Ψθ,φ〉 =
N

2
cos θ , (7)

(a)

Jz

Jx Jy

 0
 0.2
 0.4
 0.6
 0.8
 1

(b)

Jz

Jx

Jy

FIG. 1. (color online) Husimi distribution, ρH(θ, φ) of the
state Ψπ/2,0, (a), and Ψπ/2,π, (b). N = 200.

which allow to represent them on the surface of a sphere
of radius N/2. They can be used to define a Husimi
distribution of any given many-body state |Φ〉, [19]

ρH(θ, φ) = |〈Ψθ,φ|Φ〉|2 . (8)

As an example it is useful to note that the Husimi dis-
tribution of a coherent state characterized by (θ′, φ′) is
given by,

ρH(θ, φ) = 2−N [1 + cos(θ) cos(θ′)

+ cos(φ′ − φ) sin(θ) sin(θ′)]
N
, (9)

which has a maximum of 1 for (θ, φ) = (θ′, φ′).
In our study we will consider as initial states two dif-

ferent coherent states:

|Ψπ/2,0〉 = N0

(

â†1 + â†2

)N

|vac〉 ,

|Ψπ/2,π〉 = Nπ

(

â†1 − â†2

)N

|vac〉 , (10)

withN0,π, normalization constants. The coefficients |ck|2
obey in both cases a binomial distribution

|ck|2 =
1

2N

(

N

k

)

, (11)

and their Husimi distributions are,

ρH(θ, φ) =

(

1± cos(φ) sin(θ)

2

)N

(12)

where the + and − sign corresponds to the (π/2, 0) and
(π/2, π), respectively. For large N , the equiprobability
lines correspond to circles around (θ, φ) = (π/2, 0) and
(π/2, π), respectively. The distributions are presented in
Fig. 1.
Both initial states are especially interesting for two rea-

sons: 1) they correspond to two relevant limiting cases
which can be prepared in the laboratory. And 2) they
give rise to different dynamical evolutions for Λ 6= 0.
Starting from the (π/2, 0) state, the system evolves in the
vicinity of a stable point in the semiclassical limit, pro-
ducing in a natural way periodic dynamics. In contrast,
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a system initially prepared in the (π/2, π) state evolves in
the vicinity of an unstable point [20], in the semiclassical
picture. That difference causes the very different maxi-
mal coherent squeezing found in the two cases. This will
be discussed in greater detail in the next sections.

A. Squeezing parameters

As customary, [6], the number squeezing parameter is
defined as,

ξ2N (t) =
∆Ĵ2

z

(∆Ĵ2
z )bin

, (13)

where ∆Ĵ2
z ≡ 〈Ĵ2

z 〉 − 〈Ĵz〉2 and (∆Ĵ2
z )bin = N/4 in the

binomial case (11). The many-body state is said to be
squeezed if ξN < 1. A second parameter which takes
into account the coherence of the state is the so-called
coherent spin-squeezing parameter defined as [14] 1

ξ2S =
2J(∆Ĵ2

z )

〈Ĵx〉2
=
ξ2N
α2
, (14)

where the phase coherence is given by

α(t) = 〈Ψ(t)|α̂|Ψ(t)〉 , α̂ = 2
Ĵx
N
. (15)

The two initial states we are considering have α(0) = 1
and −1 corresponding to (π/2, 0) and (π/2, π), respec-
tively.
If a state exhibits ξS < 1 it can be employed in a Ram-

sey type atom interferometer with an increased phase
precision compared to the coherent spin state. This gain
in precision can be directly related to entanglement in
the system [28].

B. Angle of maximal squeezing

Number squeezing of a many-body state can occur
along an axis different from the z axis considered above.
In that case one can generalize the squeezing parameter
for an arbitrary direction u ≡ (ux, uy, uz) (u

2 = 1), as

ξ2N ;u =
∆(u · Ĵ)2
N/4

, (16)

where the denominator is again the fluctuation of the
binomial distribution. The squeezing along any direction
in the (y, z) plane only requires to calculate 〈(u · J)2〉 as

1 In the cases we will consider, during the time evolution the wave

packet remains at 〈Ĵz,y〉 = 0 at all times.

〈(u · J)〉 = 0. The corresponding generalization of the
coherent spin squeezing parameter of Eq. (14) reads,

ξ2S;û =
ξ2N ;u

α2
. (17)

As the wave packet evolves in time, there is a certain
direction, z′, in which the spin squeezing is maximal. In
a frame rotated an angle β around the x axis we have,

Ĵy′ = cosβĴy + sinβĴz

Ĵz′ = − sinβĴy + cosβĴz . (18)

And since

〈Ĵ2
z′〉 = sin2 β〈Ĵ2

y 〉+ cos2 β〈Ĵ2
z 〉 − sinβ cosβ〈{Ĵy, Ĵz}〉 ,

(19)

requiring that d〈Ĵ2
z′〉/dβ = 0 gives the angle of maximal

squeezing:

tan 2βM =
〈{Ĵy, Ĵz}〉
〈Ĵ2

y 〉 − 〈Ĵ2
z 〉
. (20)

We will use the notation ξ2S;βM
and ξ2N ;βM

for the maxi-
mal coherent spin squeezing and number squeezing.
It is worth noting the role played by 〈{Ĵy, Ĵz}〉. If

this term is zero, the maximal squeezing is always found
either along Jy or Jz. A non-zero value of 〈{Ĵy, Ĵz}〉
implies that the best squeezing will be found along a
some other axis.
Eq. (20) will allow us to compute at any time during

the evolution the direction along which the squeezing is
maximal. This will be of especial relevance for the case
where the initial state is |Ψπ/2,π〉. As will be shown in
Section V, in this case the maximal squeezing gets quite
sizable in the short time evolution of the system.
Using the Bose-Hubbard Hamiltonian, in Sections IV

and V we will compute 〈Ĵ2
i 〉(t) and the associated squeez-

ing parameters for varying ratios of the tunneling v.s.
atom-atom interaction strength, and present evidence
for spin squeezing during the time evolution of the sys-
tem. To better interpret these numerical results, we will
first develop approximate expressions using a semiclassi-
cal model.

III. 1/N APPROXIMATION TO THE
BOSE-HUBBARD MODEL

The appearance of spin squeezing in the evolution of
the system can be studied numerically by solving the
TDSE, Eq. (2). It is however desirable to find suitable
approximations which can expose the physics underneath
the process of spin squeezing. In this Section we develop
such approximate model and show that the time evolu-
tion of the system can be successfully mapped into the
physics of a single fictitious particle evolving on a confin-
ing or non-confining parabolic potential for the (π/2, 0)
or (π/2, π) states, respectively.
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FIG. 2. Comparison between the ground state properties ob-
tained through expressions (A7), solid lines, and the Bose-
Hubbard computation for N = 200, dashed lines, as function
of Λ = NU/(2J).

Following [21], we introduce first an auxiliary Hamil-
tonian defined as:

HS = − 2

N
Ĵx +

U

NJ
Ĵ2
z = −2hĴx + 2Λh2Ĵ2

z (21)

with h = 1/N , and Λ = NU/(2J). It differs from HBH

in Eq. (5) in the suppression of the additive constants
and in a factor NJ which makes it dimensionless. In
the considered regime, the expectation values of the two
terms in Eq. (21) are of similar magnitude, so that the
factors h compensate the different N dependence of the
expectation values of the two spin operators.
In Refs. [21, 29] a semiclassical approximation to the

TDSE has been derived. It uses a systematic expan-
sion in 1/N . Here we will build on this method and
extend it to the expectation values of the quantities re-
quired to compute the spin squeezing and the coher-
ence, Eqs. (13,15). Earlier versions of the same ex-
pansion can be found also in Refs. [19, 31]. As ex-
plained in detail in Appendix A, the expectation val-
ues of Jx and J2

z can be computed from the continu-
ous extension of the ck’s. To deal with states close to
the |Ψ(π/2, 0)〉 state, Eq. (10), one assumes that the
states of interest are such that their ck, vary smoothly:
ck ∼ ck±1 and that the number of atoms is always large,
h = 1/N << 1. This allows to introduce a continuous
variable , x, and a continuous function, ψ(x) such that

ψ(x = k/N) =
√
N ck [21, 29, 31, 32]. Next a new vari-

able z ≡ 2x − 1 is defined, and ψ(z) (−1 ≤ z ≤ 1),

renormalized to
∫ 1

−1 dz|ψ(z)|2 = 1. The expressions for
the expectation values are,

h〈ψ|Ĵx|ψ〉 ≃
∫ 1

−1

dz ψ∗(z)

[(

h2
(

−1− z2
)

4 (1− z2)3/2

+
h

2
√
1− z2

+

√
1− z2

2

)

ψ(z)

− h2z√
1− z2

ψ′(z) + h2
√

1− z2ψ′′(z)

]

h2〈ψ|Ĵ2
z |ψ〉 =

∫ 1

−1

dz |ψ(z)|2 z
2

4
. (22)

As in many other semiclassical expansions, the power
series in h is asymptotic, and one can see above that de-
pending on the behavior of the chosen ψ(z) as z → ±1,
divergent contributions will appear already at order h2.
As usual for asymptotic series the strategy that we will
follow is to truncate those terms that degrade the conver-
gence. We will detail later how this is done. The validity
of this 1/N expansion can be seen in Fig. 2 where we
show a comparison between our expressions and the exact
Bose-Hubbard calculation of the ground state properties
of the system.
Let us now go back to the Hamiltonian, HS in Eq. (21).

Using the above results, its semiclassical expectation
value is

〈ψ|HS |ψ〉 = −2h〈ψ|Ĵx|ψ〉+ 2Λh2〈ψ|Ĵ2
z |ψ〉 , (23)

When we look for the stationary points of 〈ψ|HS |ψ〉 −
E(s)〈ψ|ψ〉 we arrive at,

HN (z)ψ(z) ≡ −2h2
(

√

1− z2ψ′′ − z√
1− z2

ψ′

)

(24)

+

(

1

2
Λz2 −

√

1− z2 + δV
)

ψ(z)

≡ −2h2∂z
√

1− z2∂zψ + V(z)ψ = E(s)ψ(z) ,

which is a pseudo-Schrödinger equation similar to the one
reported in Ref. [21] except for the additional term, δV :

δV = − h√
1− z2

+ h2
(1 + z2)

(1− z2)3/2
(25)

which was neglected in Ref. [21].
Eq. (24) can be regarded as a Schrödinger-like equation

defined on a compact interval, z ∈ [−1, 1]. It is expected
to provide accurate results provided ψ(z) vanishes at the
boundaries. The equation provides an important insight
into the problem, essentially builds on the semi-classical
Hamiltonian, which is equal to V(z), and quantizes it,

through the effective mass form, −2h2∂z
√
1− z2∂z.

In line with the present approximation, the time evo-
lution will then be described via

ıh∂tψ(z, t) = HNψ(z, t) , (26)

where now t is the time measured in units of 1/J . The
so-called “Rabi”time of the system is tRabi = π/J .
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FIG. 3. (color online) Depiction of V(z) and its parabolic
approximation used in Sec. IV (left) and Sec. V (right).

IV. DYNAMICAL SQUEEZING AROUND A
FIXED STABLE POINT: Ψπ/2,0 STATE

We consider now the dynamical situation where the
condensate is initially prepared in the coherent state
Ψ(π/2, 0), and study the squeezing and coherence of the
system as a function of time as it evolves under the action
of HN .

In the limit of large N , small h, the binomial distribu-
tion |ck|2 corresponding to the state, Ψπ/2,0, see Eq. (11),
approaches the Gaussian distribution, in the continuous
z variable

ψ0(z) =

(

1

πb20

)1/4

e−z2/(2b20) , (27)

with b20 = 2h = 2/N . During the time evolution,
|ψ(z, t)|2 will be confined to a fairly narrow region in

z of size ≃
√
2h. For this range of values of z we will

approximate
√
1− z2 ≃ 1 in the kinetic energy term of

HN , and make a parabolic approximation to V(z):

V(z) ≃ −1− h+
1

2

1

4
ω2z2 , (28)

with effective mass equal to 1/4 and frequency given by
ω = 2

√
1 + Λ− h. Thus, the evolution of the Ψπ/2,0

state is mapped into the evolution of a centered Gaussian
wave packet inside a confining harmonic oscillator poten-
tial. The system will oscillate around the classical stable
point, periodically building a certain amount of coher-
ent spin squeezing that we will quantify in the following.
The parabolic approximation is extremely accurate for
our purposes. This is because the initial extent of the
packet,

√

〈z2(0)〉 =
√
2h ≪ 1, is always the maximum

value attainable during the time evolution.

Under the parabolic approximation for the potential,
see Fig. 3, the initial Gaussian wave packet, Eq. (27),
remains Gaussian as it evolves in time. The exact wave
function reads,

ψΛ(z, t) =
1

(πb2)1/4
eiκ e−z2/(2b2) eiz

2φ/(2b2) , (29)

1-h

1-h/2

1

4h
2 <

J x2 >

h

2h

3h

4 
h2  <

J y2 >

0

h/2

h 

4h
2  <

J z2 >

0 0.25 0.5 0.75 1

t/t
Rabi

-h

-h/2

0
h/2

h

4h
2  <

{J
y,J

z}>

Λ=1.2

Λ=1.4

Λ=2

FIG. 4. (color online) Comparison between the Bose-Hubbard
results, dashed lines, and the expressions in Eq. (31), solid
lines, for different values of Λ = 1.2, 1.4 and 2. The number
of particles is N = 200 = 1/h. The initial state is Ψπ/2,0.

where,

b2(t) = h

(

1 +
4

ω2
+

(

1− 4

ω2

)

cos 2ωt

)

φ(t) =
ω

4

(

4

ω2
− 1

)

sin 2ωt (30)

κ(t) =
1 + h

h
t+

1

4
arctan

( ω

2 tanωt

)

− π

8
− π

4

[

ωt

π

]

,

where in the last equation [x] means integer part of x.
Now we insert the exact, ψΛ(z, t) in the semiclassical ex-
pressions for the expectation values of the spin compo-
nents, Eqs. (22) and (A7), and replace the denominators

by their approximations for small z, i.e. 1/
√
1− z2 ≃

1+ z2/2 or 1 depending on the size of their contribution.
And finally, we retain terms up to linear in h (note that
b2 is proportional to h),

2h〈Ĵx〉 ≃ 1 +
h

4

Λ2

1 + Λ
(cos 2ωt− 1)

4h2〈Ĵ2
x〉 ≃ 1 +

h

2

Λ2

1 + Λ
(cos 2ωt− 1)

4h2〈Ĵ2
y 〉 ≃

h

2
(2 + Λ− Λ cos 2ωt)

4h2〈Ĵ2
z 〉 ≃

h

2(1 + Λ)
(2 + Λ + Λ cos 2ωt)
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FIG. 5. (color online) Snapshots of the Husimi distribution,
ρH(θ, φ). Panels (a,b,c) and (d,e,f) correspond to an initial
state Ψπ/2,0 and Ψπ/2,π, respectively. (a,d) are computed at
t = 0.1tRabi, (b,e) at t = 0.2tRabi, and (c,f) at t = 0.3tRabi.
N = 200 and Λ = 2.

4h2〈{Ĵy, Ĵz}〉 ≃ h
Λ√
1 + Λ

sin 2ωt . (31)

Within the same approximation, the angle of maximal
squeezing, Eq. (20), can be written as,

tan 2βM ≃ 2
√
1 + Λ

2 + Λ

1

tanωt
. (32)

These approximate expressions turn out to be very ac-
curate for a broad set of parameters. In Fig. 4 we com-
pare the exact Bose-Hubbard results and those obtained
from Eqs. (31). The initial state is |Ψπ/2,0〉 and is left to
evolve in a Hamiltonian with repulsive atom-atom inter-
actions of Λ = 1.2, 1.4 and 2. The expectation value of
Ĵ2
i is presented, i = x, y, z together with the expectation

value of {Ĵy, Ĵz}. As can be seen, BH predicts periodic

oscillations for all the quantities. 〈Ĵ2
x〉 is seen to be essen-

tially 1 during the time evolution. The small departure
from full coherence is well captured by the term ∝ h in
the semiclassical expression. 〈Ĵ2

z 〉 and 〈Ĵ2
y 〉 are found to

evolve in phase, as predicted in (31). 〈{Ĵy, Ĵz}〉 is small
but non-zero during the evolution, implying the existence
of a direction along which the squeezing is maximal.
According to Eqs. (31) the wave packet will squeeze

periodically along the z direction with a frequency, 2ω.

0 0.2 0.4
t/t

Rabi

-2π

-π

0

β M
 (

ra
d.

)

Λ=2

Λ=5

Λ=10

Λ=20

FIG. 6. (color online) Angle of maximal squeezing, Eq. (20)
computed from the Bose-Hubbard calculation, dashed lines,
and using equation (32), solid lines. N = 400.

The maximal attainable number squeezing takes place
when 2ωt = nπ, and is,

ξ2N,max =
1

1 + Λ
. (33)

Similarly we find that the coherence at maximal squeez-
ing is given by,

〈α̂〉ma sq = 1− h
Λ2

2(1 + Λ)
. (34)

The semiclassical predictions break down when the ex-
tent of the wave packet,

√

〈z2〉, is of the order of h. Us-
ing Eqs. (31) at the maximum number squeezing yields
the condition, Λ <∼ 1/h = N .
As explained in the previous section a non-zero value

of the anticommutator 〈{Ĵy, Ĵz}〉, as in Fig. 4, implies
that the maximal squeezing is found along an axis z′,
defined by an angle βM , see Eq. (20). This also reflects
in the Husimi distributions depicted in Fig. 5. In the
figure we present three snapshots of the Husimi distribu-
tions at different times, 0.1, 0.2 and 0.3 tRabi computed
for Λ = 2. The Husimi distribution is initially symmetric,
see Fig. 1, as corresponds to a coherent state. As time
evolves, panels (a,b,c) of Fig. 5, the distribution is seen to
be ellipsoidal but non-canonical, i.e. the symmetry axes
of the ellipses are not y and z. The angle of maximal
squeezing is plotted in Fig. 6. The angle varies almost
linearly with time, implying that the distribution rotates
around the x direction at an almost constant velocity.
This behavior is captured by equation (32).

V. EARLY SQUEEZING AROUND AN
UNSTABLE POINT: Ψπ/2,π STATE

When considering the dynamics around the (π/2, π)
state in order to make use of the semiclassical model one
has to assume that it is the (−)kck that vary smoothly.
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FIG. 7. (color online) Comparison between the exact Bose-
Hubbard (BH) result, dashed lines, and the analytic expres-
sions in Eq. (40), solid lines, for Λ = 4. The number of
particles is N = 200. The initial state is Ψπ/2,π. The dotted
line marks the breaking of the parabolic approximation and
is given by Eq. (43).

And thus introduce a continuous function ψ(x = k/N) =√
N(−1)kck [21, 29, 32]. As explained in Ref. [21], see

also the expressions in our Appendix A, the dynamical
equation in this case reads, including only the lowest or-
der in h terms:

ıh∂tψ(z, t) =

(

2h2∂z
√

1− z2∂z

+
1

2
Λz2 +

√

1− z2
)

ψ(z, t) , (35)

with a negative effective mass. For convenience we choose
to multiply by −1 both sides of the equation and perform
complex conjugation, so that

ıh∂tψ
∗(z, t) =

(

− 2h2∂z
√

1− z2∂z + V−(z)

)

ψ∗(z, t) ,

(36)

and the evolution of ψ∗(z, t) is that of an initial wave
packet, again of the form of Eq. (27), inside the potential,

V−(z) = −(1/2)Λz2 −
√
1− z2. When Λ > 1, this is a

double-well potential in the z-space, see Fig. 3 (right),
and has a central barrier. Including terms of order h, we
approximate it as

V−(z) ≃ −1− h− 1

2

1

4
ω̄2z2 (37)

0 0.1 0.2 0.3 0.4 0.5
t/t

Rabi

π/8

π/4

3π/8

β M
 (

ra
d.

)

Λ=4

Λ=2

Λ=1.4

FIG. 8. (color online) Angle for maximal squeezing obtained
from the Bose-Hubbard simulation, dashed lines, and the ex-
pression (20) with the ones in Eq. (40), solid lines. The dot-
ted lines mark the breaking of the parabolic approximation
for each Λ, Eq. (43). The number of particles is N = 200.

.

where ω̄ = 2
√
Λ− 1 + h. Although this parabolic po-

tential is non confining, we still find that the solution of
Eq. (36) with V−(z) as in Eq. (37) is formally identical
to Eq. (29), so that (up to a phase depending only on t),

ψ∗
Λ(z, t) =

1

[πb2]1/4
e
− z2

2b2(t) e
iφ(t)z2

2b2(t) . (38)

However, inserting this ψΛ in Eq. (36) with the parabolic
approximation for V−(z) one now finds:

b2(t) = h

[

1− 4

ω̄2
+

(

1 +
4

ω̄2

)

cosh 2ω̄t

]

φ(t) =
ω̄

4

(

4

ω̄2
+ 1

)

sinh 2ω̄t , (39)

and correspondingly

2h〈Ĵx〉 ≃ −1 +
h

4

Λ2

Λ− 1
(cosh 2ω̄t− 1)

4h2〈Ĵ2
x〉 ≃ 1− h

2

Λ2

Λ− 1
(cosh 2ω̄t− 1)

4h2〈Ĵ2
y 〉 ≃

h

2
(2− Λ + Λcosh 2ω̄t)

4h2〈Ĵ2
z 〉 ≃

h

2(Λ− 1)
[Λ(cosh 2ω̄t+ 1)− 2]

4h2〈{Ĵy, Ĵz}〉 ≃ −h Λ√
Λ− 1

sinh 2ω̄t . (40)

Fig. 7 shows that these expressions provide an accu-
rate account of the short time dynamics of the system:
Eqs. (40) predict a fast exponential growth of 〈Ĵ2

y,z〉,
while the system remains mostly coherent, which agrees
well with the full Bose-Hubbard calculation. The re-
sults suggest that the evolution of this state will pro-
duce much larger squeezing, as we will quantify in the
following, than in the case of the (π/2, 0) state, where

4h2〈Ĵ2
y,z〉 ∼ h. In fact, it will be during this short time
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FIG. 9. (Color online) (Left) Coherent spin squeezing parameter, ξ2S;βM
, computed in the direction of maximal squeezing as

a function of time. The dotted lines mark the breaking of the parabolic approximation, Eq. (43). (Right) Number squeezing
parameter, ξ2N;βM

, computed in the direction of maximal squeezing as a function of the spin coherence, α2. The upper and
lower panels correspond to the initial states Ψπ/2,0 and Ψπ/2,π, respectively. Dashed lines are Bose-Hubbard calculations, while
the solid lines are obtained using Eqs. (31) and (40).

evolution that the system will build its maximum co-
herent squeezing. Therefore the simple analytical pre-
dictions provide a powerful tool to characterize the way
squeezing is produced in the system.
In contrast with the (π/2, 0) case, now |ψΛ(z, t)|2 gets

broader in z−space during the time evolution. Thus,
the simplified model should break down whenever the
extent of the wave packet is comparable to the size of the
allowed range for z:

√

〈z2〉 ≃ 1, or when the momentum,
p̂z = −ıh∂z, is larger than the maximum possible, due to
the underlying discretization,

√

〈p̂2z〉 ≡
√

〈(−h2∂z2)〉 ≃ 1/2 . (41)

A good estimate of the time when the parabolic approx-
imation breaks down is obtained from,

φ2(tmax) ≃ 1/h, (42)

and thus,

tmax ≃ 1

4ω̄
log

(

8N

Λ

)

. (43)

This time predicts correctly why the parabolic approxi-
mation breaks down at earlier times as Λ is increased.
The evolution of the many-body state is presented in

three snapshots of its Husimi distribution in Fig. 5 (d,e,f)
for Λ = 2. As seen in Fig. 5 a very different behavior is
found in comparison with the evolution of the (π/2, 0)
state. In this case the distribution becomes ellipsoidal,
as expected from the non-zero values of 〈{Ĵy, Ĵz}〉, but
does not rotate with time.

Squeezing in the initial evolution

As discussed above, in this case there is an exponential
growth of 〈Ĵ2

y,z〉 for t <∼ tmax . This feature makes this
configuration very relevant for the purpose of producing
highly squeezed states along a specific direction.
Inserting the semiclassical expressions given in

Eq. (31), we get,

tan 2βM ≃ −2

√
Λ− 1

Λ− 2
coth(ω̄t) (44)

which for t <∼ tmax reproduces the angle obtained with
the full Bose-Hubbard calculation, as seen in Fig. 8. The
angle at which the squeezing is maximal is initially π/4
regardless of the interaction at which the evolution is
performed. Different values of Λ produce evolutions in
which either the angle grows or decreases at short times.
From, Eq. (44), retaining contributions linear in t we get,

βM =
π

4
− 1

2
(2− Λ)t . (45)

Two important features seen in Fig. 8 are well captured
by these expressions; a) Eq. (45) predicts the angle to
grow (decrease) with time for Λ < (>)2, b) the value
Λ = 2 is predicted to have an almost constant angle of
maximal squeezing for 1/4 of the Rabi time, also con-
firmed in the Bose-Hubbard calculation.
The usefulness of the squeezing for the improvement of

interferometric measurements is characterized by the two
squeezing parameters introduced in Eqs. (13) and (14)
and their generalizations in Eqs. (16) and (17). In Fig. 9
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we depict both ξ2N ;βM
and ξ2S;βM

computed along the di-

rection of best squeezing defined in Eq. (44). We com-
pare the results obtained with either initial conditions
considered in the article, Ψπ/2,0, and Ψπ/2,π. As can
be seen in the figure, starting from the Ψπ/2,π the dy-
namically attainable coherent spin squeezing parameter
is much smaller than the attainable one from the Ψπ/2,0

state. ξ2S remains smaller than one for up to 0.4 tRabi for
Λ = 2. The speed of coherent spin squeezing, ∂ξ2S;βM

/∂t
at the angle of best squeezing is seen to be equal when
starting from any of the two states,

∂ξ2S;βM

∂t
= −2Λ . (46)

The maximal coherent squeezing obtained for the
(π/2, π) case is obtained at the time when the parabolic
approximation breaks down, as seen clearly in Fig. 9. At
this time scale, we have, tan 2βM ≃ −2

√
Λ− 1/(Λ − 2)

and

ξ2S,βM
(tmax) = 2

√

2

NΛ
. (47)

VI. COMPARISON TO STANDARD
SQUEEZING PROCEDURES

In sections IV and V, we have presented two methods
of producing spin squeezed states. The first builds on
the evolution of the initial state in the vicinity of a semi-
classical stable point. The second one profits from the
presence of a bifurcation in the semiclassical description.
In both cases we have presented simple formulas which
quantify how the coherent spin squeezing evolves with
time. In this section we will compare these two meth-
ods to standard ones: adiabatic squeezing and diabatic
Kitagawa-Ueda[12] one-axis twisting.

A. Adiabatic spin squeezing

This is the maximum spin squeezing that can be ob-
tained in the ground states by adiabatically varying the
parameters of the Bose-Hubbard Hamiltonian. Exper-
imentally one is limited in the variation of the atom-
atom interaction but can vary the linear coupling be-
tween the two wells by ramping the potential barrier [6].
In our model, the ground states are determined by the
Schrödinger equation in Eq. (24). And for the range of
values of Λ to be considered, the parabolic approxima-
tion is again sufficient, so that for a given Λ the ground
state is,

ψGS(z) =
1

[πb2GS]
1/4

e−z2/(2b2GS) (48)

with b2GS = 4h/ω = (2h)/
√
1 + Λ− h. Retaining terms

linear in h,

α ≃ 1 + h− h

2
√
1 + Λ

ξ2N ;GS ≃ 1√
1 + Λ

(49)

and thus

ξ2S,GS(Λ) =
1√

1 + Λ

[

1− 2h+
h√
1 + Λ

]

. (50)

B. One-axis twisting ( OAT )

One-axis twisting was proposed by Kitagawa and
Ueda [12]. Their Hamiltonian is HKU = h̄χĴ2

z . Com-
pared to Bose-Hubbard, this implies that their J = 0,
and χ = U . They worked with time, tKU , in “time
units”, whereas here we express time, t, in units of
1/J . To have more compact expressions they introduced
µ ≡ 2χtKU : in our notation

µ = 2UtKU = 2U
1

J
t =

4

N
Λt . (51)

Since we are here studying squeezings for times of the
order of the Rabi time, and N >> 1, this means that in
our applications µ will always be small.
The initial state considered was Ψ(π/2, 0) (similar re-

sults are obtained for the Ψ(π/2, π)) so that the spin

remains aligned along the x axis: 〈Ĵy〉 = 〈Ĵz〉 = 0, while

〈Ĵx〉 = N/2 cosN−1(µ/2) . (52)

For small times this simplifies to

α = 2h〈Ĵx〉 ≃ 1− 2hΛ2t2 , (53)

which is the same result found when we expand the semi-
classical approximation to 〈Ĵx〉 given in Eq. (31). For
longer times, in OAT, the angle for maximal squeez-
ing was found to be [12] βM,OAT = 1

2 arctan(B/A) with

A = 1 − (cosµ)N−2 and, B = 4 sin µ
2

(

cos µ
2

)N−2
. The

minimum variance in the (y, z) plane is given by,

V− =
N

4

{[

1 +
1

4
(N − 1)A

]

− 1

4
(N − 1)

√

A2 +B2

}

(54)
so that

ξ2S,OAT =
(4/N)V−

cos2(N−1)(µ/2)
. (55)

The comparison with the OAT is especially relevant as
it corresponds to the limit U ≫ J of the BH Hamilto-
nian (1).
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FIG. 10. (Color online) Maximum attainable coherent spin
squeezing (upper panel) and the time when this maximum
value is obtained (lower panel) as a function of the number of
atoms N . We compare the methods described in Sections IV
and V with the adiabatic squeezing, Eq. (50) (dot-dashed)
and the one-axis twisting of Ref. [12] by means of Eqs. (55),
and (51) (solid lines). The exact Bose-Hubbard calculations
corresponding to the initial states (π/2, 0) and (π/2, π) are
plotted as triangles and squares, respectively. Analytic for-
mulas obtained for the (π/2, π), Eqs. (47) and Eq. (43), are
plotted in dotted lines. Analytic expressions for the (π/2, 0)
case, the ratio of Eq. (33) and (34) and the relation above
Eq. (33) which defines the corresponding time, are plotted as
dashed lines. Note that the plots are made for a fixed value
Λ = 20.

C. Maximal squeezing and scaling properties

In Fig. 10 we compare the maximum attainable coher-
ent spin squeezings according to the different methods,
considering a fixed value of Λ. First, we note that the
N scaling of the maximum attainable squeezing starting
from the Ψ(π/2, 0) state saturates to ξ2S ≃ 1/(1+Λ), with
small 1/N corrections as predicted in Eq. (33). This is
similar to the adiabatic case, which also saturates, albeit
to a higher value ξ2S ≃ 1/

√
1 + Λ.

The large N behavior of the coherent spin squeez-
ing achieved from the Ψ(π/2, π) state is however differ-
ent. The large N scaling of the maximum coherent spin
squeezing in this case is closer to the one obtained from
the one-axis twisting method, ξ2S ∼ N−2/3, as seen in
Fig. 10 for Λ = 20. In this case, the fall-off predicted by
Eq. (47) is ξ2S ∝ (NΛ)−1/2, in good agreement with the
BH results. Two important differences appear however.
The first one is that these large squeezings are achieved

at very early times in the evolution of the system, see
lower panel of Fig. 10. Secondly, as shown in eq. (46),
the parameter Λ provides control on the speed of coherent
spin squeezing in the system. As seen in Fig. 10 the time
for maximal squeezing obtained from the BH calculation
is well reproduced by Eq. (43), showing that the source
of coherent squeezing in the systems is essentially the
inflationary parabolic evolution described in Section V.
Finally let us note that the present results for the time

evolution of the (π/2, 0) and (π/2, π) initial states are
for moderate Λ = NU/(2J) values, i.e. with J 6= 0.
In the Λ ≫ 1 limit the dynamics is the same in both
cases, and, as expected, agrees with that of the OAT.
Thus, our results are relevant as they quantify the effects
of the linear coupling J on the maximum coherent spin
squeezing achievable with the considered states.

VII. SUMMARY AND CONCLUSIONS

We have studied the formation of squeezed states in the
quenched evolution of coherent initial states of ultracold
atoms trapped in double-well potentials. The system is
initially prepared in either the (π/2, 0) or (π/2, π) coher-
ent states, which in turn correspond to the ground state
of the non-interacting system or its highest excited state,
respectively.
Simple analytical formulas have been derived which

correctly describe; a) the dynamics of the system for a
broad range of repulsive interactions, and, b) the for-
mation of squeezed states in the initial time evolution.
Expressions are given for the angle of maximal squeezing
and the magnitude of the squeezing. The semiclassical
model provides a mapping relating the dynamical evolu-
tion of the many-body states considered, to the dynamics
of a particle evolving on a parabolic potential in the Fock-
space. Within this picture, the evolution of the Ψ(π/2,0)

state corresponds to that of a Gaussian wave packet in
the presence of a confining parabolic potential, and sim-
ple periodic formulas describe the time evolution of the
relevant magnitudes. The evolution of the Ψ(π/2,π) state
is mapped, for short times, onto the motion of a wave
packet in a repulsive parabolic potential. In the second
case, we have shown that the squeezing of the many-body
state can be much larger than the maximum squeezing
obtained in the first case, thus providing a promising ex-
perimental resource for coherent spin squeezing. We have
compared the maximum attainable squeezing to the ad-
abatic and to Kitagawa-Ueda’s OAT. We find that the
large N scaling of the maximum coherent squeezing in
the Ψ(π/2,π) case is similar to OAT, but with the ad-
vantage that the linear coupling Λ, allows to control the
speed at which the squeezing develops in the system. In
the experimentally relevant situation where one is limited
by the nonlinearity in the system, this allows to acceler-
ate the generation of squeezing in the system.
The two initial conditions considered are within

reach experimentally in internal bosonic Josephson junc-
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tions [9]. We therefore expect that the findings reported
here will be checked against new experiments soon.
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Appendix A: Expectation values of Ĵi and Ĵ2
i

First note that the action of the spin operators Ĵi and
Ĵ2
i on the general state, |Ψ〉, of Eq. (3) gives

〈k,N − k|Ĵx |Ψ〉 = 1

2

[

bk ck+1 + bk−1 ck−1

]

〈k,N − k|Ĵy |Ψ〉 = i

2

[

bk−1 ck−1 − bk ck+1

]

〈k,N − k|Ĵz|Ψ〉 = 1

2
[2k −N ] ck (A1)

and

〈k,N − k|Ĵ2
x |Ψ〉 = 1

4

[

bkbk+1 ck+2 + [b2k + b2k−1] ck

+bk−1bk−2 ck−2

]

(A2)

〈k,N − k|Ĵ2
y |Ψ〉 = −1

4

[

bkbk+1 ck+2 − [b2k + b2k−1] ck

+bk−1bk−2 ck−2

]

〈k,N − k|Ĵ2
z |Ψ〉 = 1

4
(2k −N)2ck

〈k,N − k|ĴyĴz + Ĵz Ĵy|Ψ〉 (A3)

=ı

(

2k −N − 1

2
bk ck+1 −

2k −N + 1

2
bk−1 ck−1

)

where bk =
√

(k + 1)(N − k). We will assume that the
states, Ψ, are such that either their ck vary smoothly
(when the initial state is Ψπ/2,0), or it is their (−)kck that
vary smoothly (when the initial state is Ψπ/2,π.) Also we
assume that the number of atoms is large, h = 1/N ≪ 1.
This allows to introduce a continuous variable , x, and
a continuous function, ψ(x) such that ψ(x = k/N) =√
Nck or

√
N(−)kck [21, 29, 31, 32]. The factor

√
N

guarantees that
∑N

0 |ck|2 = 1 becomes
∫ 1

0 dx|ψ(x)|2 = 1
in the large N limit. With these notations and using
b(x) =

√

(x+ h)(1 − x):

c∗k〈k,N − k|Ĵx |Ψ〉 = ±1

2
ψ∗(x)

[

b(x)ψ(x + h) + b(x− h)ψ(x− h)〉
]

c∗k〈k,N − k|Ĵy |Ψ〉 = ± ı

2
ψ∗(x)

[

b(x− h)ψ(x− h)− b(x)ψ(x + h)

]

c∗k〈k,N − k|Ĵz|Ψ〉 = 1

2
ψ∗(x)(2x − 1)ψ(x) (A4)

c∗k〈k,N − k|Ĵ2
x |Ψ〉 = N

4
ψ∗(x)

[

b(x)b(x + h)ψ(x+ 2h) + [b(x)2 + b(x− h)2]ψ(x) + b(x− h)b(x− 2h)ψ(x− 2h)
]

c∗k〈k,N − k|Ĵ2
y |Ψ〉 = −N

4
ψ∗(x)

[

b(x)b(x+ h)ψ(x+ 2h)− [b(x)2 + b(x− h)2]ψ(x) + b(x− h)b(x− 2h)ψ(x− 2h)
]

c∗k〈k,N − k|Ĵ2
z |Ψ〉 = N

4
ψ∗(x)(2x− 1)2ψ(x) (A5)

c∗k〈k,N − k|ĴyĴz + ĴzĴy|Ψ〉 = ± ı N
2
ψ∗(x) [(2x− h− 1)b(x)ψ(x+ h)− (2x+ h− 1)b(x− h)ψ(x− h) , ]

(A6)

where the sign is + (−) for states close to Ψπ/2,0 (Ψπ/2,π).
No approximation has yet been made. Now, we expand
these expressions in powers of h = 1/N up to order h2,

introduce the variable z = 2x − 1 and change ψ(x) →√
2 ψ(z) to fulfill:

∫ 1

−1
dz|ψ(z)|2 = 1. In the large N

limit, replacing the sum over k by an integration over z
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times N/2 one finds:

h〈Ψ|Ĵx|Ψ〉 ≃ ±
∫ 1

−1

dz ψ∗(z)

[(

h2
(

−1− z2
)

4 (1− z2)3/2
+

h

2
√
1− z2

+

√
1− z2

2

)

ψ(z)− h2z√
1− z2

ψ′(z) + h2
√

1− z2ψ′′(z)

]

h〈Ψ|Ĵy|Ψ〉 ≃ ±
∫ 1

−1

dz ψ∗(z)

[

(

ıh2z

2 (1− z2)
3/2

− ıhz

2
√
1− z2

)

ψ(z)− 2

(

− ıh2

2
√
1− z2

+
ıh
(

−1 + z2
)

2
√
1− z2

)

ψ′(z)

]

h〈Ψ|Ĵz|Ψ〉 =
∫ 1

−1

dz ψ∗(z) zψ(z)

h2〈Ψ|Ĵ2
x |Ψ〉 ≃

∫ 1

−1

dz ψ∗(z)

[(

h

2
+

1

4

(

1− z2
)

+
2h2

(

−2 + z2
)

8− 8z2

)

ψ(z)− 2h2zψ′(z) + h2
(

1− z2
)

ψ′′(z)

]

h2〈Ψ|Ĵ2
y |Ψ〉 ≃

∫ 1

−1

dzψ∗(z)

[

h2
(

−2 + z2
)

4 (−1 + z2)
ψ(z) + 2h2zψ′(z) + h2

(

−1 + z2
)

ψ′′(z)

]

h2〈Ψ|Ĵ2
z |Ψ〉 =

∫ 1

−1

dz |ψ(z)|2 z
2

4
(A7)

h2〈Ψ|{Ĵy, Ĵz}|Ψ〉 ≃ ±
∫ 1

−1

dz ψ∗(z)

[(

ıh

2
√
1− z2

− ıh2
(

−1 + 2z2
)

2 (1− z2)
3/2

)

ψ(z)− 2

(

ıh2z

2
√
1− z2

+
1

2
ıhz
√

1− z2
)

ψ′(z)

]

.

Note that this approximation still fulfills,

〈Ψ|Ĵ2
x + Ĵ2

y + Ĵ2
z |Ψ〉 = N

2

(

N

2
+ 1

)

. (A8)
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[19] M. Jääskeläinen, and P. Meystre, Phys. Rev. A 71,
043603 (2005); Phys. Rev. A 73, 013602 (2006).

[20] J. R. Anglin, and, A. Vardi, Phys. Rev. A 64, 013605
(2001); A. Vardi, and J. R. Anglin, Phys. Rev. Lett. 86,
568 (2001).

[21] V. S. Shchesnovich, and M. Trippenbach, Phys. Rev. A
78, 023611, (2008).
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