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Structure Formation in a Quenched Antiferromagnetic Spinor Bose-Einstein
Condensate

In this thesis, we study the structure formation following a quench of the detuning
of spin exchange. For this, we employ an effective spin-1 87Rb Bose-Einstein condensate
in a one-dimensional situation. Bogoliubov theory predicts unstable momentum modes for
specific regimes of the detuning. These are populated by spin-changing collisions and the
emerging structure can be observed in the transversal spin directions.
We present our experimental system and discuss the relevant parameters. After introduc-

ing two analysis methods, the spin Fourier spectrum and the spatial correlation function,
we compare the homogeneous Bogoliubov theory to the experimentally obtained results for
short evolution times. The characteristic structure size follows the theoretical predictions.
Further, we discuss longer evolution times where the Bogoliubov approximation becomes
invalid. The observed behaviour can be partially understood by an altered interaction
strength due to the depletion of the condensed mode. We see first indications for emerging
structures that cannot be explained by Bogoliubov theory.

Strukturbildung in einem antiferromagnetischen Spinor Bose-Einstein Kon-
densat nach schneller Parameteränderung

In dieser Arbeit untersuchen wir Strukturbildung nach einer schnellen Änderung der
Verstimmung der Spinaustauschwechselwirkung. Dafür verwenden wir ein effektives Spin-1
87Rb Bose-Einstein Kondensat in einer eindimensionalen Fallengeometrie. In bestimmten
Regimen sagt Bogoliubovtheorie instabile Impulsmoden vorher. Diese werden durch
spinaustauschende Stöße besetzt und die entstehende Struktur kann in transversaler
Spinrichtung beobachtet werden.
Wir stellen unser experimentelles System vor und diskutieren die Parameter. Mit

Hilfe zweier Analysemethoden, den Fourier Spektren des Spins und der räumlichen Ko-
rrelationsfunktion, vergleichen wir die experimentellen Resultate mit der homogenen
Bogliubovtheorie für kurze Evolutionszeiten. Die charakteristische Strukturgröße folgt den
theoretischen Vorhersagen. Weiterhin diskutieren wir längere Evolutionszeiten, zu denen
die Bogoliubovapproximation nicht mehr gültig ist. Das beobachtete Verhalten kann zum
Teil durch eine veränderte Wechselwirkungsstärke, welche durch die Verminderung der
kondensierten Mode bedingt ist, verstanden werden. Wir sehen erste Indikationen für
entstehende Strukturen, die nicht mit Hilfe von Bogoliubovtheorie erklärt werden können.
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1 Introduction

Ultracold atoms offer a high degree of experimental control and a large variety of techniques
for their manipulation and probing. With this, they are ideal candidates for studying
complex many-body physics, which is not easily accessible by classical computational
simulations [1]. As the samples are cold and dilute, they offer a clean realization of the
idealistic Hamiltonian and the isolation from the environment gives access to long coherent
evolution times.
Theoretically, it is interesting whether and how such a system evolves to a new ground

state after a quench of the Hamiltonian parameters [2, 3], in different regions of the
related parameter space, such that the initial state gets unstable. To get a more intuitive
feeling, imagine a potential of the form V (x) = ax2 + bx4. For positive a and b this is
an anharmonic oscillator and x = 0 is the ground state. However, quenching to negative
a we end up with the paradigmatic double well potential. Neglecting fluctuations, the
system prepared at x = 0 is in a quasi-steady state. Even for T = 0 the system is unstable
in this situation due to quantum fluctuations around its mean value 〈x〉. In a classical
picture this corresponds to small displacements, which are amplified by the instability.
As for the inverted pendulum, we will not find harmonic but hyperbolic solutions which
lead to exponential acceleration away from x = 0. If there are processes allowing for the
dissipation of energy it may reach the new ground state which is located in the minima of
the double well.
In our experimental system such an instability can be introduced by spin-changing

collisions [4]. For a Bose-Einstein condensate (BEC) prepared in a single hyperfine state
|F = 2,mF = 0〉 the total magnetization is a conserved quantity. However, processes
populating mF = ±1 in a correlated fashion are still possible but energetically suppressed
by a detuning introduced by the second-order Zeeman shift in a magnetic field. In a
one-dimensional confinement, we have not only the spin but also a spatial degree of freedom.
Depending on the detuning specific spatial modes get unstable and grow exponentially.
This leads to transient structure formation in the transversal spin [5].

This thesis is structured as follows: In chapter 2 we introduce the theoretical concepts .
We discuss the related mean-field phase diagram and elucidate the calculations to obtain
a dispersion relation in the Bogoliubov approximation. This is followed by a detailed
description of the experimental system in chapter 3, where we discuss the control of the
relevant experimental parameters. In chapter 4 we present the results obtained in the
longitudinal spin direction. We show how we can map amplitudes in the Fourier spectra
to occupation numbers. In chapter 5 we quantitatively compare the experimental results
of the transversal spin to the theoretical predictions. We conclude with an outlook on
future improvements and how we want to pursue.
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2 Theoretical Concepts

In this first part, we want to have a look at the underlying theoretical concepts. We will
start with some spin algebra to elucidate the connection between spin-1 and spin-2 systems
in our situation. Second, we will look at the Hamiltonian describing a spinor BEC. The
non-interacting and the interacting part will be described in detail and we will discuss
the accessible phase diagram. In the experimental sequence, we quench a parameter of
the Hamiltonian in different regimes. To understand the dynamics we can expand our
Hamiltonian in the fluctuations for short times around a highly occupied state and will
end up with the well-known Bogoliubov theory [6]. It predicts unstable modes which are
expected to grow exponentially for short times.

2.1 Spin Rotations

In 87Rb we can choose between a spin-1 and a spin-2 system depending on the choice of
the hyperfine manifold. All experiments described in this thesis are done in the F = 2
manifold, i.e. we are dealing with a spin-2 system. As we will see later the mF = ±2 states
are far detuned for spin-mixing processes and the population in these states will therefore
be negligible. Thus, we would like to map the spin-2 to an effective spin-1 system, which
makes the calculations much easier.
For spin-1 we can write the spin matrices as [7]

Fx =
1√
2

0 1 0
1 0 1
0 1 0

 Fy =
i√
2

0 −1 0
1 0 −1
0 1 0

 Fz =

1 0 0
0 0 0
0 0 −1

 . (1)

We now want to calculate the expectation value 〈Ψ|Fi |Ψ〉 of the spin matrices for a

general spinor Ψ =
(
Ψ+1, Ψ0, Ψ−1

)T
, where Ψ0,±1 are complex numbers. We end up

with

〈Fx〉 =
1√
2

[(
Ψ∗

1 +Ψ∗
−1

)
Ψ0 +Ψ∗

0 (Ψ1 +Ψ−1)
]

(2)

〈Fy〉 =
i√
2

[(
Ψ∗

−1 −Ψ∗
1

)
Ψ0 +Ψ∗

0 (Ψ1 −Ψ−1)
]

(3)

〈Fz〉 = |Ψ1|2 − |Ψ−1|2 (4)

To compare these results to the expectation value for the spin-2 case we will use the
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same spinor but extended to five states. Again we can write the spin matrices as

Fx =



0 1 0 0 0

1 0
√

3
2

0 0

0
√

3
2

0
√

3
2

0

0 0
√

3
2

0 1

0 0 0 1 0


Fy =



0 −i 0 0 0

i 0 −i
√

3
2

0 0

0 i
√

3
2

0 −i
√

3
2

0

0 0 i
√

3
2

0 −i

0 0 0 i 0


(5)

Fz =


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

 .

Assuming that there is no population in the mF = ±2 states we can write the spin-2

spinor as Ψ =
(
0, Ψ+1, Ψ0, Ψ−1, 0

)T
. As a first example, we calculate the expectation

value of the Fz matrix with 〈〉F=f being the expectation value of the spin-f matrix for the
spin-f spinor

〈Fz〉F=2 = |Ψ1|2 − |Ψ−1|2 ∝ 〈Fz〉F=1 . (6)

So we see that the expectation value of the spin-2 system is the spin-1 expectation.
Experimentally this expectation value is well accessible as the population of the two spin
states is directly measured by absorption imaging . However, for calculating the Fx or Fy

spin we need the complex wavefunction or have to image in another direction relative to
the magnetic field. Instead, we rotate the spin by radio frequency magnetic fields by a
π/2 rotation, such that the spin component is mapped on to the the z- direction, i. e. our
imaging direction.We do only one pulse, so the rotation axis is not defined because only
relative phases are defined. Our initial state has no distinct direction and we have a
rotational symmetry around the z-axis such that we can choose Fx as our rotation axis.

Spin-1 Sphere

To get a more intuitive feeling for these rotations, we introduce at this point the spin-1
sphere. It is a sphere of radius 1 where the axes are given by the expectation values of the
three spin matrices. A single spin of length 1 can be decomposed into two spin-1/2. As
we want to have a spin with spin length one, we look at the symmetric superposition as
basis vectors. The spin triplet is given as1

0
0

 = |↑↑〉

0
0
1

 = |↓↓〉

0
1
0

 =
1√
2
(|↑↓〉+ |↓↑〉) . (7)

We now want to look at uncertainties of the state |Ψ〉polar =
(
0, 1, 0

)T
, which we

will call polar state. The uncertainties are calculated with the earlier introduced spin-1
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Fz

Fy

Fx

Fz

Fy

Fx

spin rotation

Figure 1: N particle spin-1 sphere Here the spin-1 sphere for 10 particles is shown.
The blue disc represents a polar coherent state. After a π/2 rotation around the
Fx axis the disc is rotated into the x-y-plane and potentially contained structure
can be imaged by imaging the Fz spin. The black arrow is for better orientation
in the three dimensional plot and represents an arbitrary spin direction.
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matrices as

〈∆F 2
x 〉polar = 〈Ψ|F 2

x |Ψ〉polar − 〈Ψ|Fx |Ψ〉2polar = 1 (8)

〈∆F 2
y 〉polar = 1

〈∆F 2
z 〉polar = 0.

For a general spin direction Fφ = cosφFx + sinφFy we find

〈∆Fφ〉polar = 1.

So the single spin in this state can be represented in the spin-1 sphere as a disc in the
x-y-plane with radius

√
1.

This is generalized to N spin-1 particles that we can represent as a single spin with
length N if we add up all spins symmetrically. As all particles are identical, we can write

|Ψ〉polar −→

0
1
0

⊗N

and Fi −→ F⊗N
i ,

then variances add up linearly and we end up with

〈∆F 2
x 〉 = 〈∆F 2

y 〉 = N (9)

〈∆F 2
z 〉 = 0.

So the initial state of all experiments carried out in this thesis is a disc with width
√
N in

the x-y-plane.

The Fi matrices are the generators of a rotation in spin space, where a generic rota-
tion is given by

RFi
τ = e−iFiτ . (10)

In the experiment we choose τ = π/2. The rotation matrix is

RFx
π
2

=


1
4

− i
2

√
6
4

i
2

1
4

− i
2

1
2

0 −1
2

i
2

−
√
6
4

0 −1
2

0 −
√
6
4

i
2

−1
2

0 −1
2

− i
2

1
4

i
2

√
6
4

−i
2

1
4

 . (11)
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The rotated state is

Ψrot = RFx
π
2
Ψ =


− i

2
Ψ1 +

√
6
4
Ψ0 +

i
2
Ψ−1

−1
2
(Ψ1 −Ψ−1)
−1

2
Ψ0

−1
2
(Ψ1 −Ψ−1)

i
2
Ψ1 +

√
6
4
Ψ0 − i

2
Ψ−1

 . (12)

Experimentally we can only detect densities. However the expectation value of Fz can
now easily calculated from the densities, see eq. (6), as being

〈Ψrot|Fz |Ψrot〉F=2 = i

√
6

2

[(
Ψ∗

−1 −Ψ∗
1

)
Ψ0 +Ψ∗

0 (Ψ1 −Ψ−1)
]
∝ 〈Fx〉F=1 . (13)

The calculation is done similarly for any other spin direction lying in the x-y-plane.
We are here dealing with a spin-2 system with negligible population of the mF = ±2,

do a spin rotation including all 5 states and calculate the true spin-2 spin in z-direction.
However, we have shown with this calculation, that we can describe the system as effectively
being spin-1. This simplifies the Hamiltonian significantly.
Now we are going on by introducing the Hamiltonian of the spin-1 system to describe

the mean field phase diagram and the dynamics out of equilibrium. By comparing to
the full spin-2 theory we will find out how to modify the interaction constants. However,
we want to mention here, that also experiments using the full spin length of 2 [8, 9] and
exploring spin-2 distinct nematic phases [10] have been carried out.

2.2 Hamiltonian

In this part, we will introduce the non-interacting and the interacting part of the Hamil-
tonian and discuss all terms in detail. For the description we use field operators ψ̂m (~r),
with m= ±1, 0, which obey the standard bosonic commutation relation.

Non-interacting Part

The non-interacting part can be divided into three parts. The kinetic energy and the trap-
ping potential, as well as the shift introduced by the magnetic field. In second quantized
form we can write the Hamiltonian as

Ĥ0 =

∫
d~r

f∑
m,m’=−f

ψ̂†
m (~r)

[
−~∇2

2m
+ Utrap (~r)− p(Fz)mm’ + q(F 2

z )mm’

]
ψ̂m′ (~r) . (14)

(Fz)mm’ are the entries of the Fz spin matrix. The term proportional to p represents the
linear Zeeman shift. As the interaction is on the order of Hz we cannot neglect the second
order Zeeman shift. The constant q can be calculated with the Breit-Rabi formula [11] as

q =
(gµB)

2

∆Ehfs

≈ 72
Hz

G2B
2,
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with µB being the Bohr magneton and g = 1/2 the g-factor and B the magnetic field
strength. The hyperfine splitting is ∆Ehfs ≈ 6.8GHz for the ground state of 87Rb. Later
we will introduce microwave dressing as a tool to tune the energy mismatch.

Interacting Part

The interaction part is given by collisional interactions between the different states
that can change the spin state of the colliding particles. As we are here dealing with a
dilute sample of particles we are only considering binary collisions. The many body wave
function changes by a factor of (−1)F+L under the exchange of to identical particles. For
temperature well below the condensation temperature we can restrict ourselves to s-wave
scattering, i. e. L = 0. Therefore, the total spin of the two colliding particles F has to be
even, which allows for spin-1 the scattering channels F = 0, 2.
The full derivation of the interaction Hamiltonian can be found here [7]. For our purposes

we just define it as

V̂ =
1

2

∫
d~r

[
c0 : n̂

2 : + c1 : F̂2 :
]
. (15)

which we can divide [12] in the symmetric part proportional to c0 and the anti-symmetric
part proportional to c1 and :: indicates normal ordering. The interaction strengths for F
= 2 are given by

c0 =
4g2 + 3g4

7
c1 =

g4 − g2
7

, (16)

where gi =
4π~2ai

m
with ai being the scattering length of the spin channel i. The symmetric

part does not change the spin states of the involved particles.
To see the action of the anti-symmetric term we explicitly factorize it,

c1 : F̂2 := c1 :

[(
ψ̂†F̂xψ̂

)2

+
(
ψ̂†F̂yψ̂

)2

+
(
ψ̂†F̂zψ̂

)2
]
: . (17)

and ψ =
(
ψ+1, ψ0, ψ−1

)T
the spinor of the field operators.

Ĥas = 2c1

(
ψ†
+1ψ

†
−1ψ0ψ0 + h.c.

)
+ 2c1N̂0

(
N̂+1 + N̂−1

)
+ c1

(
N̂+1 − N̂−1

)2

(18)

where we have neglected constant shifts proportional to the total atom number and we
introduced N̂i = ψ̂†

i ψ̂i. The first term gives rise to spin-changing collisions (SCC) [4]. Two
atoms in mF = 0 (pump mode) are annihilated and each one atom in mF = ±1 (side modes)
is created. The interaction strength is characterised by the scattering length difference
c1 and the detuning of the process is given by the second order Zeeman shift, i. e. by the
magnetic field. The process leads to squeezing of the side mode population difference and
is similar to parametric down conversion in optics, which leads to the two-mode squeezed
vacuum state [13]. The second term causes an energy shift of the states proportional to
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their population. The last term leads to the formation of spin domains for negative c1, so
in F=1 for 87Rb. Local population imbalance, i. e the generation of spin makes this term
grow.
Knowing the general structure of the Hamiltonian we can go on with discussing the

mean field ground states. These can easily be found by looking at the energy functional.

2.3 Mean-Field Ground State Diagram

As we are interested in non-equilibrium dynamics we are first interested in the ground state
of our system. Knowing that, we can prepare a certain state we can quench a parameter
of the Hamiltonian, in our case the detuning of the SCC q. This will lead to an unstable
system and exponentially growing occupation numbers for certain modes as we will see in
the next chapter about Bogoliubov theory.
We can find the mean field ground state by looking at the energy per particle. It is

obtained by the expectation value of the Hamiltonian as described in [7], while neglecting
the kinetic energy

ε =
∑
m

qm2|ξm|2 +
1

2
c0n+

1

2
c1n|f |2, (19)

where ξm (m = 0,± 1) is a normalized spinor and n the number density. f is the spin
expectation value per particle. Furthermore, we neglect the term ∝ pFz as we prepare a
state with no mean magnetization and the magnetization is conserved by the Hamiltonian.
Here we only discuss the case c1 > 0 as this is the case for F = 2 in 87Rb what is subject

of this thesis. For q > 0 the polar state
(
0, 1, 0

)T
is the ground state, as the spin

length equal to zero minimizes the mean field energy. For q < 0 the ground state has also
no mean spin length but we can lower the energy by populating the mF = ±1 states. We
are in the the transverse polar phase and the ground state is a π/2 rotation around

Fx of the polar state ψtp = 1√
2

(
1, 0, 1

)T
. In Fig. 2 the situation is schematically shown.

For q > 0 the SCC are tuned out of resonance. Preparing the polar state and quenching
to q < 0 we are not in the ground state any more. In the next section we are going to
explore the structure contained in the, as grey shaded boxes depicted, side modes.

2.4 Bogoliubov Theory

For a one-component BEC we can expand the interacting Hamiltonian around the highly
occupied Bose condensed k = 0 state. Expanding up to second order in the fluctuations
we can find a transformation which diagonalizes the Hamiltonian, the Bogoliubov transfor-
mation [14]. These corresponding quasi-particles give us a phonon dispersion relation up
to the healing length momentum and the quantum depletion [15].
We now want to do the same for the spin-1 Hamiltonian to find the excitations in the

different q regimes. Expanding around the polar state we find a stable BEC for q > 0 with
only phononic excitation. However, for q the BEC gets unstable as the dispersion relation
becomes imaginary and we get exponentially growing occupation numbers. This is due to
the fact, that we quench into a region with a different mean-field ground state.

8



q

c1
longitudinal polartransverse polar

Figure 2: Phase diagram for the spin-1 BEC In the phase diagram we use as param-
eters the interaction strength c1 and the second order Zeeman shift q. For F = 2
c1 is positive. We have two different phases for the different signs of q, which
are separated by a first order phase transition. The sketch in the lower half is
depicting the single particle energy levels. For q < 0 the pump mode (black) is
energetically higher than the side modes (grey boxes) and spin-changing collisions
are tuned into resonance.

We will describe the steps to get the simplified Hamiltonian for the spin-changing part
of the interaction. We can only completely solve this analytically for V (~r) = const. , i. e. a
spatially homogeneous situation. In the following we will write operators without using a
hat. We write

H(2)
int = c1

∫
dx

[
2ψ†

0ψ0

(
ψ†
1ψ1 + ψ†

−1ψ−1

)
+ 2

(
ψ†
1ψ

†
−1ψ0ψ0 + h.c.

)]
. (20)

We then expand the field operator in plane waves

ψi =
1√
V

∑
k

ak,ie
ikx (21)

with ak,i being the annihilation operator of an particle in the state i = mF = ±1 with
momentum k and insert equation (21) in (20) and end up with:

9



H(2)
int =

2c1
V 2

∫
dx

∑
k,p,q,m

[(
a†p,0a

†
m,1ak,0aq,1 + a†p,0a

†
m,−1ak,0aq,−1

)
e−ix(p+m−k−q)

+
(
a†p,1a

†
m,−1ak,0aq,0 + h.c.

)
e−ix(q+m−k−p)

]
(22)

Obeying momentum conservation by using an identity for the delta distribution

δkk′ =
1

V

∫
dx eix(k−k′)

we can eliminate the summation over m and restrict ourselves to processes of the form

k + q → p + p2

with p2 = (−p+ k + q).
We get

H(2)
int =

2c1
V

∑
k,q,p

[(
a†p,0a

†
p2,1

ak,0aq,1 + a†p,0a
†
p2,−1ak,0aq,−1

)
+
(
a†p,1a

†
p2,−1ak,0aq,0 + h.c.

)]
(23)
We initially prepare a BEC in the mF = 0 state, therefore we are dealing with a highly

occupied momentum k = 0 in this state. In the limit that the depletion due to the
dynamics is negligible compared to the initial size we write the operators a

(†)
0,0 as complex

numbers by writing
a
(†)
0,0 =

√
N (24)

with N being the total number of particles. Expanding the Hamiltonian in eq. 20 up to
second order in the other annihilation and creation operators we get the final form

H(2)
int = 2nc1

∑
k

[(
a†k,1ak,1 + a†k,−1ak,−1

)
+
(
a†k,1a

†
−k,−1 + h.c.

)
+O(a4)

]
(25)

with n = N
V

being the particle density.
We proceed with the other two parts of the Hamiltonian in the same way, this is not

shown here but can be calculated in the same way as the example showed here. For the
second part of the interaction Hamiltonian we get

H(1)
int = c0

∫
dx : n2 := 2nc0

∑
k

(
a†k,1ak,1 + a†k,0ak,0 + a†k,−1ak,−1

)
+ 2nc0N +O(a4). (26)

Finally the non-interacting part can be written as

H(0) =
∑
k

∑
mF

(
εk +m2

F q
)
a†k,mF

ak,mF
. (27)

10



The resulting Hamiltonian is not diagonal in the original annihilation (creation) operators.
The goal is to find a new basis diagonalizing the Hamiltonian and simultaneously revealing
the dispersion relation for the quasi particle modes. We make the following ansatz

bk,i = uk,iak,i − v∗k,ib
†
−k,i (28)

with b
(†)
k,i being the quasi particle annihilation (creation) operators and uk,i the mode

functions. b
(†)
k,i should obey the normal commutation relation

[
bk,i, b

†
q,j

]
= δkqδij and so we

get a condition for the mode functions

|uk,i|2 − |vk,i|2 = 1

which shows us that the transformation has to be symplectic. The transformation is called
Bogoliubov transformation [6] and we end up with a Hamiltonian of the form

H =
∑
i

~ωk,ib
†
k,ibk,i + const. (29)

For the mF = 0 state we get the typical density excitations giving the phonon dispersion
realtion for low k like in a single component BEC:

ωk,0 =
√
εk (εk + 2nc0) (30)

bk,0 =

√
εk + nc0 + Ek,0

2Ek,0

ak,o +

√
εk + nc0 − Ek,0

2Ek,0

a†k,o (31)

The meaning of this will be discussed in a few lines. First we want to have a look at the
excitation in the side modes

ωk,±1 =
√

(εk + q) (εk + q + 2nc1) (32)

bk,±1 =

√
εk + q + nc1 + Ek,±1

2Ek,±1

ak,±1 +

√
εk + q + nc1 − Ek,±1

2Ek,±1

a†k,±1 (33)

We have seen in eq. 2 and 3 that we can write the spin in x(y)-direction as the (anti)sym-
metric superposition of the side mode operators. In our case, the two Bogoliubov modes
for mF = ±1 are degenerated. Thus, every linear superposition is again an eigenvector of
the corresponding Bogoliubov-de Gennes equations. So let us introduce two new modes as

bk,Fx ∝ bk,1 + bk,−1 (34)

bk,Fy ∝ i (bk,1 − bk,−1) (35)

These correspond to excitations in the transversal spin direction. They can experimen-
tally be revealed by the explained spin rotations and are used in the following.
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Figure 3: Dispersion relation of the modes found by Bogoliubov transforma-
tion The colored solid lines show the squared dispersion relation of the spin
fluctuation modes, eq. 34 and 35. For q > 0 the dispersion relation is gapped
with a gap

√
q(q + nc1). For q < 0 some k modes are unstable as the squared

dispersion becomes negative which lead to an exponential growth of the occupa-
tion. We identify three different regime. For −nc1 < q < 0 the most unstable
mode is k = 0 and the growth rate is growing up to q = −nc1. A finite k is
most unstable for q < −nc1 and the growth rate is constant nc1. In the regime
q < −2nc1 the k = 0 is not unstable anymore.
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Now let us discuss the currently introduced dispersion relations. In Fig. 3 the dispersion
relation of the density (black dashed line) as well as the spin fluctuations (color lines) are
shown. The density fluctuations have a linear dispersion relation up to the inverse healing
length ξ−1 =

√
2mc0n/~, corresponding to phononic excitations [15]. Above ξ−1 we have

particle excitations and a quadratic dispersion relation.
The dispersion relation of the spin fluctuations is depending on the SCC detuning q.

For q > 0 we have a gapped dispersion relation with a gap
√
q(q + nc1). For q < 0 we get

k modes with negative ω2, i. e. the modes become unstable. This we can see by looking at
the phase evolution ∝ e−iωt, which gives an exponential growth for a non-zero imaginary
part of ω. In the unstable regime the made approximation is only valid for short times, as
due to the exponential growth the approximation of the non depleted zero mode is not
valid any more eventually. Now let us look at the most unstable mode, i. e. the mode with
the largest imaginary part. In the regime −nc1 < q < 0 the most unstable mode is k = 0
with growth rate up to q = nc1 where the growth rate is nc1. In the regime q < −nc1 the
most unstable mode is given by

kmu =

√
−2m

h
(q + nc1), (36)

where k is given as an inverse wavelength 1/λ and q and nc1 in Hz. The growth rate is
constant and equal to nc1. A third regime is defined by q < −2nc1, as from here on the
lowest k modes are stable. In the last part of this theses we compare these expectations
to the experimental results.
As a last point we have to discuss how we have to adjust the interaction strength c1 to

account for our approximation of a spin-1 system. In a spin-2 system we would also have
to introduce a further interaction

c2 =
7g0 − 10g2 + 3a4

35

allowing for processes 0, 0 → +2,−2. Doing the full Bogoliubov theory leads to the similar
modes introduced in equation (30) and (32) for mF = ±1, but the dispersion relation is
modified due to interactions described by c2

ωk,±1 =
√

(εk + q) (εk + q + 2n(3c1 − c2/5)). (37)

Thus we have to adjust the interaction appearing in the dispersion relation as follows

c1 → 3c1 − c2/5. (38)

This leads to an about three times larger interaction as expected from the simple spin-1
approximation.
We now have everything at hand to understand the following discussion about the

dynamics happening in the experiment and will now go on with a discussion of the
experimental setup.
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3 Experimental Manipulation Techniques

In the first chapter we described the Hamiltonian of a spinor BEC. We now want to
look at the experimental implementation and the readout of the final state after the time
evolution. First, we describe the spatial confinement and the typical energy scales. We
characterize the magnetic field and the microwave dressing used to change the parameter
q, describing the energy mismatch between the pump and the side modes. In the end, we
discuss how to access the growing modes of the transversal spin experimentally.

3.1 Experimental System

We routinely produce a 87Rb condensates confined in a weakly focussed far off-resonant
laser beam, which realizes a dipole trap with a high aspect ratio with trap frequencies of
ω‖ = 2π × 2.6Hz in the longitudinal direction and ω⊥ = 2π × 260Hz in the transversal
direction. In the Thomas-Fermi approximation [15] the kinetic energy of the condensate is
neglected and we get a formula for the density profile of the cloud

n (x) =
µ− V (x)

g
, (39)

where V (x) = 1/2mω2x2 is the trapping potential. For 87Rb in F = 2 the density
interaction constant is c0 = 95.9aB [4]. With µ we introduced the chemical potential,
which corresponds to the interaction energy per particle of the BEC. The big aspect ratio
of the trap of ∼ 1/100 creates a quasi one-dimensional situation. The typical energy scales
set by the chemical potential and the temperature, ∼ 10 nK, should not be much larger
than the excitation energy in transversal direction. From eq. 39 we immediately get the
chemical potential by

µ = gn(0).

So it is given by the density in the center of the trap and the scattering interaction constant.
We can, however, only measure linear densities in the longitudinal direction and therefore

we have to adjust g → g/ (2πa2⊥) with the harmonic oscillator length a⊥ =
√

~
mω⊥

, to take

into account the extension in transversal direction. Experimentally, n(0) is determined by
taking the mean linear density in the center of the trap. For this the sample is imaged
after negligible evolution time. We find

µ ≈ 2π × 500Hz

So the chemical potential is around twice the trapping frequency in longitudinal direction.
However, we can compare the transversal extension a⊥ = 0.6µm to the spin healing length
ξ = ~/

√
2mgn [16], where we take ng = 2π × 17.7Hz and m ist the atomic mass of Rb.

The spin interaction strength is in the last part determined from the excitation spectrum.
The spin healing length gives the minimum size of possible spin excitations in the system,
i. e. they are suppressed in transversal direction.
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Figure 4: Trapping and imaging a spinor BEC The spinor BEC is trapped in a weakly
focused dipole trap. The resonant imaging light is applied perpendicular to the
magnetic field. A magnetic field gradient is applied after switching off the dipole
trap to spatially separate the different magnetic sub-levels. The right panel
shows an image of the rotated initial state.
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Figure 5: Exemplary spatial cross correlation function of the mF = ±1 compo-
nent after π/2− rf-rotation For two equally centred profiles the maximum
should be at ∆x = 0. The shift of around 0.5µm is probably due to a relative
angle between magnetic field and the Stern-Gerlach direction. Compared to the
typical domain size of > 10µm this shift does not affect the measured structure
size on the level of the experimental accuracy.
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3.2 Imaging a Spinor Bose-Einstein Condensate

To access the spin dynamics we have to access different spin components. For this, the gas
is released from the trap after the experimental sequence and after a Stern-Gerlach pulse,
a strong magnetic field gradient, following a short time of flight all five mF-components
are imaged by absorption imaging (see Fig. 4) [17] with a resolution of ∼ 1µm. If the
gradient separating the atoms is not perfectly parallel to the magnetic field axis the mF -
components are shifted relative to each other. This could cause differences in the observed
structure size. In 2.1 we have seen that the mF = ±1 components should be perfectly
symmetric after doing a π/2 rotation of a spin-2 state with no population in mF = ±2
around Fx. Therefore, we can check the misalignment of the Stern-Gerlach by calculating
the spatial cross correlation between mF = ±1. In Fig. 5 we can see that the shift is about
0.5µm. This results in a shift smaller than 2µm for the mF = ±2 components, while the
typical domain sizes are much larger. Thus it has no strong influence on the structure size
on the level of the experimental detection accuracy.
Bogoliubov theory is predicting excitations in the x- and y- component of the spin. For

imaging these we have to do a spin rotation. This is done by a radio frequency magnetic
field coupling all five levels of the F = 2 manifold. The Hamiltonian describing this process
is H ∝ ΩFφ, with Ω being the Rabi frequency of the coupling. The coupling rotates a spin
vector around a random axis in the x-y-plane in the generalized spin-1 sphere introduced
earlier. Thus, experimentally we average over all angles φ ∈ [0, 2π]. Exemplary, imaging
the gas after a π/2 spin rotation around Fx, we map the Fy - component of the spin on
the z-axis. As the Hamiltonian is rotationally symmetric and further the spin excitation
in the x- and y-direction are degenerate the structure size emerging does not depend on
the direction of the rotation.

3.3 Magnetic Field Control

3.3.1 Magnetic Offset Field

Well controlled magnetic fields in the experimental chamber are important, since the
Hamiltonian describing the dynamics contains terms depending on the magnetic field.
The magnetic field results in an energy shift ∆E ∝ mFpB of the magnetic sublevels,

with p ≈ 700 kHz/G, the linear Zeeman effect. The spin-changing collision process has no
detuning due to the linear Zeeman effect and we therefore go into a rotating frame with
Larmor frequency ωL = 2π × pB . The energy eigenvalues for small magnetic field are
well described by the linear and the second-order Zeeman shift. The Breit-Rabi formula
[11] captures this effect. For the ground state in 87Rb, we have ∆EB = ±(4 −m2

F)qB
2

with q = 72Hz/G2. In the F = 1 manifold the pump mode is effectively shifted to a lower
energy as the side modes, which we call positive detuning, and in F = 2 vice versa. The
level scheme including the second order shift for F = 2 can be seen in Fig. 6.

3.3.2 Microwave Dressing

To quench in the different regimes of the phase diagram, we want to have experimental
control over the detuning qB = qB2. Holding the offset field fixed, this can be done by
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Figure 6: Energy shift of the hyperfine levels due to the magnetic field. Left:
The linear Zeeman effect shifts the level according to ∆E = mFpB with p ≈
700 kHz/G. Right: Second order Zeeman shift for the F = 2 manifold. The
mF = 0 state has an effective detuning of ∆EB = qB2 with q ≈ 72 Hz

G2 with
respect to the mF = ±1 states. As the mF = ±2 have no second order Zeeman
shift, Spin-changing collisions processes, which directly couple to mF = ±2 are
tuned out of resonance and we can treat it as an effective spin-1 system, as
discussed in chapter 2.
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Figure 7: Hyperfine groundstate manifold of 87Rb with energy splitting due to the linear
Zeeman effect. The microwave dressing has a detuning ∆ � Ω relative to the
|1, 0〉 → |2, 0〉 transition and shifts the mF = 0 state by ∆E = Ω2/4δ. With
this the parameter qeff can be changed just by changing the detuning of the
microwave radiation while the Rabi frequency is kept fixed. However, all other
shifts coming from coupling to mF = ±1 can be neglected as they are far too
off-resonant.

state-selective off-resonant microwave dressing [18] between F = 1 and F = 2. For this the
atoms are subjected to microwave magnetic fields with Rabi frequency Ω and detuning ∆
from the atomic resonance. The effect can be described by the Hamiltonian [19]

H =
1

2
(Ωσx −∆σz), (40)

where σi are the spin-1/2 Pauli matrices [20]. This Hamiltonian can be diagonalized and
in the eigenbasis, the so-called dressed states, the energy shift is given by:

∆EMW = −δ
2
+
√
Ω2 + δ2

Ω�δ
=

Ω2

4δ
(41)

Applying the radiation close to the resonance to the |F = 1,mF = 0〉 → |2, 0〉 transition,
we can shift the pump mode and the dressing can effectively be seen as a magnetic field
shift, resulting in:

qeff = ∆EB +
Ω2

4δ
(42)
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3.3.3 Spatial Gradients

Magnetic field gradients can lead to spin domains even in the ground state of a spinor
BEC [21]. We want to study the size of spin structure emerging after introducing an
instability. Therefore, we want to have magnetic field gradients which are small compared
to the SCC interaction strength.
For cancelling out magnetic field gradients, we drive a small coil with 5 windings as close

as possible to the experimental chamber, with a laser diode current driver. The residual
magnetic field gradient is measured with a Ramsey sequence on the |F = 1,mF = 1〉 →
|1,−1〉 transition with 100ms interrogation time, by means of microwave coupling and
intermediate coherent state swapping between |2, 0〉 and |1,−1〉 (Fig. 8 a). We can only
give an upper bound on the gradient, as the measurement is not reliably working for small
gradients. A possible reason for this is spin dynamics happening in the waiting time, as
this cannot be fully excluded at 0.8825G. Fig. 8 shows the result of this measurement for
a small gradient, where the fitting procedure is still working. Although there should be no
mean field shift between the two levels the wavelength seems to change with position. A
possible explanation is a small gradient of the gradient, which gets visible compensating
the real gradient and both becoming on the same order. This setting sets the limits of the
magnetic field gradient, but it can be compensated better. When we write the magnetic
field as B = B0 +B′x+B′′x2, we can make a fit to imbalance profile of the form

I(x) = A sin
(
2πtint(pB

′x+ pB′′x2) + φ
)

with tint = 100ms the interrogation time. The fit results in:

B′ < 9
µG

120µm
(43)

B′ < 2.5
µG

(120µm)2
(44)

The energy mismatch qeff is adjusted with microwave dressing. Inhomogeneous microwave
radiation can generate a further gradient in the effective detuning of the SCC qeff. For
determining the strength of the gradient we evaluate the spatial profile after 100ms of
resonant Rabi flopping. We find a gradient of 0.037Hz/µm which amounts to 0.1%.
As a result we can neglect the dressing gradient as it is strongly suppressed. In the case

of the magnetic field we have to take a closer look on the dynamics as the energy scale for
the magnetic field is dominantly given by the linear Zeeman shift. This results in a shift
on the order of Hz and its influence is yet not understood and under investigation.

3.4 Experimental Sequence

After a first stage of evaporative cooling in a magnetic TOP trap [22] in the |1,−1〉 - state,
the atoms are loaded in a crossed optical dipole trap. After a second stage of evaporative
cooling below the transition temperature [23] by reducing the laser power adiabatically, we
are left with around 25000 Bose condensed atoms. The second beam of the crossed dipole
trap is slowly switched off and the atoms are released in the elongated trap described in
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x [µm]

a) b)

Figure 8: a) Ramsey sequence: Starting in |1, 1〉 half of the population is transferred into
|2, 0〉. To avoid a mean-field shifted signal the atoms are transferred to |1,−1〉
and then hold for 100ms. In the reverse way the phase evolution is read out.
b) Spatial profile of |1, 1〉 and |1,−1〉 after phase evolution and read out. A
sinus with varying spatial frequency according to a slowly varying magnetic field
gradient is fitted to the population imbalance. As a result, the gradient for this
setting is smaller than 9µG/120µm.

x [µm]

Figure 9: Population in |1, 0〉 and |2, 0〉 after a 100ms resonant Rabi pulse coupling the
two levels. The variation with x is sinusoidal, indicating a linear power gradient
along x. For a Rabi frequency Ω = 4.04 kHz the relative error from edge to edge
is 0.1% and is therefore strongly suppressed.
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section 3.1.
With a microwave π - pulse the atoms are transferred to the |2, 0〉 - state and spurious

atoms in other states are removed from the trap by a Stern-Gerlach magnetic field gradient.
To initiate the dynamics the microwave dressing is switched to the final value of qeff at a
magnetic field of 0.8825G. After an evolution time of tevo the atoms are either directly
imaged as described in section 3.2 or the spin is rotated by a π/2 rf-rotation before
imaging.
After 50 experimental realizations the magnetic field is controlled by doing Ramsey

spectroscopy and readjusted if necessary to avoid drifts of the magnetic field on long time
scales.

3.5 Experimental Observables for Detecting Spin Structures

The excitations predicted by Bogoliubov theory are excitations of the spin lying in the x-
and y- plane. As already discussed, this spin directions can be mapped onto the population
imbalance. After the rotation all five components of the F = 2 manifold are occupied.
Thus we have to calculate the spatial spin profile as the expectation value of the real spin-2
Fz matrix, given as:

〈Fz〉 ∝ 2N+2 +N+1 − N−1 − 2N−2 (45)

For analysis of spin excitations with a wavelength much smaller than the cloud size, the
spin profile is normalized to the local total atomnumber per pixel. Furthermore the mean
spin offset per shot is subtracted and three pixels are binned to suppress effects coming
from the imaging resolution of 1µm.
The theorem of Wiener and Khinchin [24, 25] states that the Fourier transformation,

or the power spectrum, and the spatial correlation function are connected by a Fourier
transformation. So, in principal both should give the same information about the system.
A peak in the Fourier spectra in the regime of kmu can be much better extracted as the
period of the correlation function. In the regime where only small k are unstable, however,
the strucutre size cannot be reconstructed from the Fourier spectra and the correlation
function gives easily access by the first minimum as described later.
The Fourier transform is calculated with a discrete Fourier transformation, where the

Fourier component is given as the overlap of the spin profile with the phase factor e−i2πkx

calculated with a discrete sum. The spatial frequencies are given as k = 1/λ, where λ is
the wavelength of the spatial excitations, missing the 2π factor of a real momentum, thus
the spatial frequency can directly be converted into a structure size.
Structures appearing nearly periodically can be identified by calculating correlation

functions. The correlation function of an observable A is calculated as follows:

G (∆x) =
∑
x

A (x)A (x+∆x) (46)

This process gives rise to a better signal-to-noise ratio as the Fourier transform, because
every point is an average over the whole profile. With this inherent averaging process
technical fluctuations are suppressed [26].
Intuitively, for a fixed distance ∆x, it is given as the overlap of the profile with the same
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profile shifted by ∆x. As the mean is subtracted, G(0) gives directly the variance of the
spin fluctuations in the single shot [27].
For both methods the calculation is done for every single realization and then the mean

is taken over at least 30 realizations with the same setting of parameters. The stability of
emerging structures is investigated by comparing single realizations.
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4 Spin Exchange Dynamics and Growth Rate

In this chapter, we examine spin changing collision dynamics in the Fz-direction. A typical
evolution of the side mode population is shown. Furthermore, we show how the mode
population and the Fourier transform of the spatial profile are connected. With this we
can determine the growth rates for different spatial frequencies and compare them to
Bogoliubov theory.

4.1 Time Evolution

First, we determine the side mode population as a function of time while population
transfer due to spin changing collisions is tuned into resonance, i.e. the system is unstable.
For this we prepare around 22000 atoms in the |2, 0〉 state as described in chapter 3.
After switching on the microwave dressing the side modes get populated. In Fig. 10 the
fractional population is shown. The points are the mean value of ≈ 100 experimental
realizations and the errorbars are given by one standard deviation of the mean. We see a
fast growth of the population up to 110ms. After that it oscillates back into the mF = 0
state which is a signature of the coherence of the process [28].
We see a dependence of the growth rate on the detuning qeff as expected by Bogoliubov

theory. Thus we look at the growth of the momenta close to the most unstable Bogoliubov
mode in the Fourier spectrum. Its behavior is expected to be exponential with the growth
rate given by twice the imaginary part of the eigenenergy.

4.2 Calibrating the Fourier Transform

The Wiener-Khinchin theorem helps us finding a relation between the Fourier transform
of the spatial profile and the population of the momentum modes. As the power spectrum
is given by the squared Fourier transform, the population is directly proportional to the
squared Fourier amplitude. So we just have to sum up the squared Fourier amplitudes
and can plot them versus the side mode population. A linear fit gives the proportionality
constant.
We post process the spatial profile in the same way as the spin. We fit a parabolic

function and subtract it to get rid of the spatial profile have a profile centred around
zero [26]. The squared mean Fourier transform is plotted versus the spatial frequency
k = 1/λ in Fig. 11 (left panel). The dashed line is taken after negligible evolution time,
i.e. it shows the initial condition. The black dashed line is taken after 48ms of evolution
time. A substantial growth of the population can be directly seen. The grey line shows
the unstable momentum sector predicted by Bogoliubov theory. This is in qualitative
agreement. A quantitative comparison will be given in sect. 5.2.
Summing up over all momentum modes we get the total population. The mean side

mode population is plotted versus the summed Fourier amplitudes in Fig. 11 (right
panel). It is consistent with the expected linear behaviour. A linear fit gives (3600 ±
800) atoms/amplitude unit for the mF = +1 state. The fit gives a small negative offset,
which is due to the background noise level of the FFT giving a signal although there are
no atoms scattered into the side modes.
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Figure 10: Total side mode population versus evolution time. Around 22000 atoms
are prepared in the |2, 0〉 state and spin-changing collisions are tuned into
resonance for qeff = 2π ×−5Hz. In the right panel the total atom number is
plotted and in the left panel the fractional atom number normalized to the total
atom number is shown. One can see a substantial growth of the population up to
100ms. The oscillation back into the pump mode after ∼ 110ms demonstrates
the coherence of the scattering process.

We now can convert the Fourier transform into occupation numbers for the Fz imaging.
After the rotation this is not possible as in this case we are detecting spin excitations and
have no reference for calibrating the amplitudes. Though, we still know that the squared
amplitudes are proportional to an occupation number.

4.3 Measuring the Growth Rate

With the calibration of the Fourier amplitudes it is possible to measure the growth rate
of the occupation of the spatial frequencies and compare it with Bogoliubov theory. The
occupation in one side mode is predicted to be given by [7]

nk,i = 〈b†k,ibk,i〉 = sinh2 (γkt) (47)

with γk = Im (ωk,i) and i = ±1. In Fig. 12 a) we plot the time evolution of the squared
Fourier amplitude. We extract the growth rate by fitting the slope afit after 30ms of
evolution time. The constant population of ∼ 10 is due to an constant noise background.
From the slope we get the growth rate

γk =
afit
2

(48)
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Figure 11: Typical Fourier spectrum and calibration of the population In the
left panel a typical Fourier spectrum of the |1,−1〉 state after 48ms of spin
changing collisions at qeff = 2π × −12Hz (grey dashed line) is shown. Here
the squared absolute values are plotted versus the spatial frequency k = 1/λ.
The black solid line shows the initial state. The grey line shows the unstable
section of the Bogoliubov dispersion relation. In the right panel the side
mode population of mF = ±1 (black, gray diamonds) is plotted versus the
squared Fourier amplitudes summed over all spatial frequencies. A linear fit
gives the calibration factor from FFT amplitude to occupation number. For
mF = +1 we get (3600± 800) atoms/amplitude unit and for mF = −1 we get
(3590± 830) atoms/amplitude unit.
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Figure 12: Growth rate measurement In a) we plot the Fourier amplitudes converted
into occupation numbers versus the evolution time exemplarily for qeff =
2π ×−12Hz and k = 0.05µm−1. We fit the slope of the exponential increase
after 30ms of evolution time and extract the growth rate (main text). The
growth rate is plotted (b) for four values of qeff versus the spatial frequency
k. The growth rate predicted by Bogoliubov theory (black line) is plotted for
nc1 = 2π × 17.7Hz. We see smaller growth rates than theoretically expected.

The 1/2 comes from the squared hyperbolic sine in eq. 47. The growth rate extracted
for different spatial frequencies in the unstable regime are plotted in Fig. 12 b). The
theoretical prediction (black solid line) is plotted for

ωk,i =
√
(εk + qeff) (εk + qeff + 2nc1)

with nc1 = 2π × 17.7Hz, as determined in chapter 5.
For qeff = 2π×−5Hz the measured growth rate coincides with the theoretical expectation.

However, for qeff < 2π×−5Hz the experimental determined growth rates are smaller than
predicted. The deviations will be further investigated by comparing the experimental data
to simulations solving the coupled Gross-Pitaevski equations in a harmonic trap using the
truncated Wigner approximation. With this we can evaluate, whether these deviations are
due to the spatial confinement not included in our Bogoliubov theory up to now.
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5 Structure Formation in a Spin-1 BEC

In the first chapter, we introduced methods to analyse structure formation while evolving
a spin-1 BEC under an instability. In general, these predictions are only true for very short
evolution times, i.e. for a small occupation of the unstable modes. Later the Bogoliubov
approximation made in the derivation should break down due to the large occupation
numbers in the side modes. Thus, we first compare the experimental results for short
times with Bogoliubov theory. As the theory is done in a homogeneous system without a
trap we identify differences between experiment and theory. For longer times, we see a
shifting of the most dominant Fourier component. This can be explained by shifts of the
interaction constant nc1 due to depletion of the pump mode. However, the structure sizes
are well described by our initial theory with changed interaction.

5.1 Short Time Evolution of the Fourier Spectra

Linearisation of the equation of motion around a mean field ground state is only possible
as long as the population of the non-condensed modes is negligible. Thus, we have to go
into an experimental regime where the population of the mF = ±1 components is small
compared to the mF = 0 component. Without spin-rotation this regime is close to the
detection limit and the signal-to-noise ratio is therefore very bad. Hence, we rotate the
spin after the evolution time and evaluate the transversal spin. Here, we find a much
better signal-to-noise ratio and the structure size can be determined even for short times.
For a qualitative comparison of experiment and theory we want to make use of the

Fourier spectra. As we will see later, the autocorrelation function is better suited for a
quantitative comparison. In the preceding chapter we showed that the squared amplitudes
of the Fourier spectra are proportional to the occupation number of the side modes. So
they should in this case give the occupation number of the spin modes. In Fig. 13 an
exemplary Fourier spectrum is shown. The black dashed line is the Fourier spectrum after
negligible evolution time and represents the initial state. It defines the noise background
on top of which we are looking for structure. The grey diamonds are the experimental
data after 55ms of evolution time and for qeff = 2π ×−22Hz and the errorbars are given
by the statistical error of the mean. The black solid line gives the unstable momentum
region predicted by Bogoliubov theory for nc1 = 2π × 18Hz. We see a good qualitative
agreement especially in the cut off frequency beyond which no exponential growth due to
unstable modes is expected. We see that in this regime of qeff a broad range of modes is
able to grow with nearly the same instability rate. The stable regime can be well identified
by comparing to the initial state.

5.1.1 What Are Short Times?

For extraction of the structure sizes we want to maximise the signal-to-noise ratio. For this,
we will have a look at the time evolution of the Fourier spectrum of the transversal spin
profile. As long as the qualitative form is not changing but the amplitudes in the unstable
region are just growing by an equal amount, we can use the time as comparison for the
short time theory. After 40ms of evolution time we can definitely speak of a signal showing
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Figure 13: Exemplary plot of the squared Fourier amplitudes of the transversal
spin profile and qeff is set to 2π ×−22Hz. The dashed grey line represents the
initial condition. The diamonds are the experimental results after 55ms and
the errorbars are given by the statistical error of the mean. The data shows
qualitative agreement with the region of unstable modes for nc1 = 2π × 18Hz,
plotted as grey solid line.
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Figure 14: Short time evolution of transversal spin Fourier spectra. We plot
squared FFT amplitudes against the spatial frequency k in a double-logarithmic
plot and see growing population with rising evolution time for qeff = 2π×−20Hz
(left panel) and qeff = 2π×−18Hz (right panel). The region of unstable modes
is plotted for nc1 = 2π × 18Hz (grey solid line). After 60ms the qualitative
shape changes and thus we use only times ≤ 60ms for short time comparison.

up in the spectra. In Fig. 14 the spectra are shown for 4 different evolution times and two
different detuning. We see that the population is growing from 40 up to 60ms and the
region of unstable modes does not change. However, after 60ms we see first indications of a
changing Fourier spectra which will be discussed later. This is accompanied by more than
10% side mode population as we can see in Fig. 10. For this population the Bogoliubov
approximation should slowly break down. Thus we can state, evolution times up to 60ms
can be used to compare the experimental data to the Bogoliubov theory expanding the
Hamiltonian around the polar state.

5.2 The Cut-Off Frequency

The comparison with the least assumptions we have to made is to determine the cut off
frequency, i.e. the smallest spatial frequency which does not get exponentially populated.
This frequency is easily calculated from the dispersion relation and is depending on qeff.

The dispersion relation for the spin fluctuations in the x-y-plane is given by

ω2
k = (εk + qeff) (εk + qeff + 2nc1) . (49)

Setting equation (49) to zero we can find the boundaries of the unstable region. For
0 > qeff > −2nc1 all modes up to a cut off kco are unstable. So the root we are looking for
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is given by (εk + qeff) = 0 and the cut off frequency kco is

kco =

√
−2M

h
qeff. (50)

In Fig. 15 the q value that we can associate with the cut off frequency by equation (50) is
plotted against the detuning adjusted experimentally. The homogeneous theory predicts a
line with slope 1 which is shown as grey straight line. The experimental data is shown
as grey diamonds. In the inset the determination process is shown. The squared FFT
amplitudes are plotted semi-logarithmically against the spatial frequency k. The cut off
frequency is roughly guessed and for the next view points with larger k a mean value is
calculated giving the niveau of the stable population. The crossing between experimental
data and mean gives the cut off frequency.
To quantify the deviations we make a linear fit resulting in:

qco = (0.9± 0.10) qeff + (0.7± 0.4)Hz (51)

Here we see the first indications for deviations from the homogeneous theory. The slope
is within the errorbars consistent with 1. We find an offset which is not predicted by the
homogeneous Bogoliubov theory. However, we cannot fully explain it up to now and it
is within 2σ consistent with zero. Thus, we will not take it into account in the following
discussion.

5.3 Extracting Structure Sizes

For comparing the theoretical predictions with the experimental data, we want to have a
reproducible and robust method to extract the dominant structure size. In the regime
−nc1 ≤ qeff ≤ 0 the most unstable mode is given by k = 0 followed by many modes with
nearly equal instability rate. This broad window of modes leads to a flat occupation up to
the cut off frequency. Thus the structure size of the spatial profile cannot be well extracted.
In this part, we want to introduce the correlation function as a robust tool to identify the
structure size.
When we want to extract the structure size of a spin profile with structures with slightly

changing sizes and nearly periodic distance the Fourier transform is not the optimal method.
First of all, the limited window size gives only few periods of the signal. Further, the
changing size washes out the expected peak in the Fourier transform. A better result can be
obtained by using the spatial correlation function introduced in chapter 3. Intuitively, the
correlation function is positive (negative) for (anti)correlated signals. Fully uncorrelated
signals give a zero correlation function. Here, we use the auto correlation of the rotated
spin profile. For zero lag the correlation is maximal and the first minimum gives the mean
distance of two neighbouring structures. We extract the structure size ξ as

ξ = 2∆xmin. (52)

We checked the validity of this method by comparing to the peak in the Fourier spectra.
In Fig. 16 different experimental realizations of the auto-correlation function of the

spin profile are shown. In the regime −2nc1 ≤ qeff ≤ −nc1 (left panel) the most unstable
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Figure 15: Cut-off frequency in units of the detuning qeff plotted against the
experimental adjusted detuning. The grey diamonds show the experimen-
tal results and the errorbar is given by the read-off accuracy. The cut-off
frequency is determined after 60ms of evolution time and rf-rotation. An
exemplary Fourier spectrum is shown in the inset. The intersection between the
amplitudes and a mean level is taken as the cut-off and the Fourier spectra are
obtained as previously described. The expectation of the homogeneous theory
is plotted as grey solid line. We find a slope which is within the errorbars
consistent with 1.
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Figure 16: Auto correlation function of rotated spin profile Here the auto correla-
tion is plotted against the distance x − x′ for qeff = 2π × −26Hz (left) and
qeff = 2π ×−6Hz (right) for evolution time 60ms (grey diamonds). In the left
panel qeff is in the regime where the most unstable mode in not equal to zero
and short range correlation can be seen in more than 3 periodic oscillations.
On the right side we are in a regime where theoretically k = 0 is most unstable.
However, the structure size is bounded from above by the window size of the
camera image (120µm). The error bars are given by the error of the mean and
the initial condition is plotted as grey dashed line.
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mode is predicted to be non zero, i.e. on would expect structures on the order of 1/kmu

and oscillations in the correlation function, what clearly can be seen. The damping of the
oscillation is due to not perfect regularly patterns as well as the biased calculation of the
correlation function. This algorithm always normalises to the length of the full sample
which causes damping in system without periodic boundary conditions.

The regime −nc1 ≤ qeff ≤ 0 should yield deviation from the homogeneous Bogoliubov
theory. Theoretically the k = 0 mode should be most unstable but experimentally we are
limited by the lowest trap levels. Comparing to Fig. 13 we see in this regime a broad
plateau of grown modes, which makes it impossible to extract a mean structure size.
However, the correlation function in Fig. 16 shows a clear minimum around 40µm and we
are able to extract a structure size out of it.
With the correlation function as a tool to extract the dominating structure size we are

now able to make quantitative comparisons between experiment and theory.

5.4 Comparing Short Times to Bogoliubov Theory

With the dispersion relation deduced in chapter 2 we can make predictions about the
unstable spatial frequencies growing for a certain qeff. We want to compare this to the
experimental results by extracting the structure size as explained before.
Let us first have a look at the dispersion relation

ωk =
√

(εk + qeff) (εk + qeff + 2nc1). (53)

We find the most unstable mode by looking for the minimum of ω2
k as

kmu =

√
−2M

h
(qeff + nc1) (54)

for qeff < −nc1 and 0 for −nc1 < qeff < 0.
We extract the structure size as described in the previous section by fitting a parabolic

function around the minimum as shown in Fig. 17. Plotting the data in two different
ways allows us to have a closer look in two different regimes. The structure size directly
determined from the correlation function shows the behaviour for qeff going to zero. In the
regime −nc1 ≤ qeff ≤ 0, k = 0 is the most unstable mode in the homogeneous theory and
the size of the window of unstable modes is also going to zero. Therefore the structure
size should grow.
By calculating an associated k2 from the structure size we can closer investigate the

transition at qeff = −nc1 and also the further evolution for smaller qeff. The theoretical
prediction should be recovered for smaller qeff as there the spectra are dominated by the
most unstable mode which is not equal to zero.
First, let us have a look at the squared spatial frequency in the upper part of Fig. 18,

where the experimental data is plotted for an evolution time of 60ms. Up to 2π×−10Hz, it
stays nearly constant followed by a smooth rising. For qeff ≤ 2π×−20Hz the experimental
data follows the prediction by Bogoliubov theory for the most unstable mode (gray dashed
line). To find nc1 we fit the experimental data to equation 54 between 2π ×−30Hz and
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Figure 17: Extraction of structure size from the correlation function For the
extraction we manually set the upper and the lower bound of fit regions and fit
a parabolic function to the correlation function around the minimum. From the
fitted minimum we extract the structure size as ξ = 2∆xmin. In the left panel,
the situation is exemplary shown for qeff = 2π ×−22Hz. For this regime the
structure size can be well extracted. In the regime qeff > 2π×−10Hz, however,
the structure size is large, what causes a broad minimum. Additionally the
minimum is flattened by the normalization of the correlation function.
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Figure 18: Comparison of Bogoliubov theory and extracted structure size We
plot the extracted structure size in two ways: The associated k2 and the structure
size. In the upper plot we show k2 versus qeff and see agreement between theory
(black dashed line) and experiment (grey diamonds) for qeff < 2π × −23Hz.
To determine the interaction strength nc1 we fit in this region the theoretical
prediction yielding nc1 = 2π× (17.7 ± 0.9) Hz. In the lower plot the structure
size is shown. For qeff = −nc1 the prediction for the most unstable mode
diverges. We see, however, finite structure sizes which are limited by the finite
window size of 120µm. The experimental data is in agreement with a simple
theoretical model (grey solid line) obtained by superimposing all unstable trap
modes (main text).
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2π ×−20Hz. From this we find

nc1 = 2π × (17.7 ± 0.9) Hz. (55)

For plotting the theoretical data the determined nc1 is used.
Now let us have a closer look what happens for qeff going to zero. In our situation,

having spatial confinement, we have to keep in mind that no real k = 0 exists, but we
are limited by low lying excitations of the harmonic trap. We can estimate the biggest
spatial excitation using the Thomas-Fermi radius. Assuming that the trap is filled by the
BEC up to the chemical potential and we look for single particle excitations on top of
this effective box potential, the largest excitations should be on the order of 2 times the
Thomas-Fermi radius:

k0 =
1

2rTF

≈ 1

240µm

Further the theoretical line is deduced from the most unstable mode, but also non-zero
k-modes are unstable, so we expect finite structure size for finite qeff.
For qeff going to zero the structure size is smoothly saturating at 120µm. We find that

the structure size is limited just by the size of the window we are evaluating. From the
taken image, we cut out 120µm to have the density as homogeneous as possible.
To get a prediction for the finite structure size from Bogoliubov theory, we make a

simple estimation: We take the lowest trap levels according to a box potential [29] with
the size of twice the Thomas-Fermi radius. They are populated according to the growth
rate predicted by the Bogoliubov dispersion relation. After superimposing them with
random phases we evaluate the arising pattern in the same manner as the experimental
data, i. e. by finding the structure size by means of the correlation function. For this, we
take the mean over 1000 realizations, as we want to average over different random phases.
Leaving the theory evolution time as a free parameter, we find quantitative agreement
especially in the regime from 2π ×−30Hz to 2π ×−10Hz. The theoretical evolution time
to reconstruct the observed structure size is ∼ 125ms what is approximately twice the
experimental evolution time. This does not match with our observation of the growth
rates in section 4.3, where we found that the experimental growth rates are in general
smaller than theoretical predicted.

5.5 Beyond the Short Time Approximation

In the last section we showed that the predictions made by Bogoliubov theory can be
mapped on the experimental data for short evolution times. In general the Bogoliubov
approximation is only valid for very short evolution times as we have expanded around
the polar state, i. e. no population in the sidemodes. We neglected terms in more than
second order in the fluctuations and treated the zero momentum mode of the pump as a
complex number. For 80ms of evolution time, however, more than 30% of the population
is in the sidemodes and we expect the approximation to break down. In this section, we
want to take a closer look at the further evolution of the Fourier spectra, as well as the
structure size.
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We have already seen in Fig. 14 that the qualitative form of the Fourier spectra changes
even for short times. In Fig. 19 the time evolution of the Fourier spectra up to 140ms is
shown. We see agreement between the Bogoliubov dispersion (black dashed line) and the
experimental data for 60ms (green line). Evolving the system further, the most unstable
mode shifts to higher spatial frequencies, i. e. to higher energies. After 120ms there is no
shift any more, what coincides with the maximum of the side mode population in Fig.
10. Furthermore, the population amplitude of the peak is growing until this time. For
k ≈ 0.1µm−1 a second peak is growing after 100ms. However, the cut-off frequency is
not shifting and the peaks are well separated, what excludes a broadening of the unstable
mode regime up to this value. This is a first indication for processes not predicted by
Bogoliubov theory. Between 120ms and 140ms the amplitude of the first peak is going
down while the second peak is the dominating after 140ms.
The cut-off frequency setting the edge of the exponentially growing regime of the first

peak seems to stay constant over the whole time evolution. As we have shown, the cut-off
frequency is determined solely by the parameter qeff. The most unstable mode, however,
is also depending on the interaction strength nc1 as

kmu ∝
√
−(qeff + nc1). (56)

For lower nc1 the most unstable frequency is shifted to higher energies as the detuning
is negative and nc1 positive. Thus, a dynamically changing nc1 can qualitatively explain
the experimental observed changes.
To compare this intuitive explanation with the experimental results we first have a look

at the mean maximum density in the center of the trap. In equation (12) we saw that we
can get information about the population in the mF = 0 state after the rotation around
Fx. The atom number in the mF = 0 is just a quarter of the initial population. To avoid
changing atom numbers due to sloshing of the BEC in the trap, we make a quadratic
fit and calculate the linear density over 20 pixel symmetrically around the center. In
Fig. 20 b) we see the density in mF = 0 and the total density normalized to the density
at 60ms versus time. Both densities are decreasing as the evolution time rises. For the
total density this is due to particle loss due to the excited state manifold F = 2. The
pump mode is additionally depleted due to the spin changing collision process, where the
maximum population transfer happens at 120ms. For comparison, we look at the most
unstable mode versus time for qeff = 2π × −22Hz as shown in Fig. 19. Setting qeff fix
we can calculate the interaction strength from the spatial frequency of the most unstable
mode with equation (56). Additionally, we extract the structure size from the correlation
function and calculate an associate spatial frequency and with this nc1. Looking at Fig.
20 we see that the extracted interaction strength is decreasing with evolution time and
both methods give similar results.
Knowing the time evolution of both quantities, we can check how the interaction strength

changes with the linear density. For mF = 0 the interaction strength is growing with
growing density. For the total density, however, the interaction is changing while the
density stays nearly constant in the regime of 0.8 fractional density. We conclude that the
shifting of the maximum peak in the Fourier spectra is due to changes of the linear density
of the mF = 0 state. The effect is not dominated by the loss effects what can be seen by
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Figure 19: Fourier spectra for different evolution times Here we show the squared
Fourier amplitudes semi logarithmically versus the spatial frequency k for
qeff = 2π ×−22Hz. The regime of unstable momentum modes (black dashed
line) is shown for comparison. We see agreement between experiment and
theory in the region of unstable modes for an evolution time of 60ms. Between
60ms and 120ms the amplitude of the peak of the most unstable is growing
and its position is shifting towards higher spatial frequencies. Separated by
the cut-off frequency a second peak is growing after 100ms. Its position is
also shifting in time. A broadening of the unstable momentum region up to
0.15µm−1 can be excluded by the minimum between the two peaks. The cut-off
frequency seems not to change what leaves the possibility for a changing nc1 in
time.
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Figure 20: Dependence of the interaction strength on the linear density In a) we
show the experimental determined interaction strength versus the evolution
time. The interaction is extracted from the maximum of the Fourier spectra
and from the structure size by evaluating the minimum of the correlation
function. With rising evolution time the interaction strength decreases. As
the interaction strength is determined by evaluating a single qeff the differences
of both extraction methods can be understood from Fig. 18. In b) the linear
density is determined by calculating the linear density of 20 pixels symmetrically
around the center of the population profile, where the error bar is given by
one standard deviation of the mean. We find a decreasing total density, due to
losses. The mF = 0 population is affected by the losses but mainly due to the
population transfer by the spin-changing collision dynamics. In c) we show the
dependence of the interaction strength on the fractional density. As expected,
with decreasing density the interaction decreases as well. Thus, we find that
the changes of the interaction are dominantly due to population transfer by
the SCC process and increased by the particle loss in the system.
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looking at the changes of the interaction strength with the total density. The depletion of
mF = 0 due to spin-changing collision causes lower density and therefore decreases nc1. So
we see that the experimental observation fits to the intuitive explanation we gave before.

In 5.4 we have seen that we can describe the experimentally determined structure size
with Bogoliubov theory according to an interaction strength of nc1 = 2π × 17.7Hz over a
broad range of qeff. In the last part, however, we showed that the most unstable mode
in the Fourier spectra changes with increasing evolution time. We can explain this by
effectively changing the interaction strength which is caused by lowering the density of
the pump mode. Thus we can describe the system further with Bogoliubov theory with
changing interaction and find the limits of this description in time.
Therefore we fit the predicted most unstable mode by Bogoliubov theory to the experi-

mental data in the regime 2π×−30Hz < qeff < 2π×−20Hz with nc1 as a free parameter.
From this we calculate the predicted structure size over the whole regime by superposition
of the unstable modes as described earlier. In Fig. 21 we see the extracted data for three
different evolution times > 60ms. For 80ms we find

nc1 = 2π × (14.8± 0.8)Hz

what is 3Hz less than the initially determined value. However, the system is over the
whole range of measured qeff well described by the predictions made by Bogoliubov theory.
For longer evolution time, however, we find differences. Fitting the prediction for 100ms
we find

nc1 = 2π × (12.6± 0.4)Hz.

For qeff going to zero the structure size is smaller than theoretically predicted while in the
regime qeff < −nc1 the theory fits well. Finally, the system cannot be described over the
whole range by Bogoliubov theory with a single nc1 after 140ms any more. We can argue
that we are out of the regime in that the initial Bogoliubov theory is true. Further, the
dynamics differ in speed for different qeff, which prevents a constant nc11. We have seen
in Fig. 19 that there are additional excitations in the Fourier spectra for times > 120ms
and so the structure size is changed or even dominated by these excitations.
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Figure 21: Comparison of Bogoliubov theory and experimental data with chang-
ing interaction strength Here we show the experimental structure size versus
qeff. The data is extracted and plotted as in Fig. 18. For every evolution
time the interaction strength nc1 is fitted. We find nc1 = 2π × (14.8± 0.8)Hz
for 80ms and nc1 = 2π × (12.6 ± 0.4)Hz for 100ms. For 120ms we plot the
theoretical prediction for comparison with nc1 = 2π × 11Hz.
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6 Conclusion and Outlook

In this thesis, we have presented a comparison of Bogoliubov theory and experimental
observation of structure formation in a 87Rb BEC. We showed the controllability of the
experimental parameters and the understanding of the short time dynamics.
We drive the system out of equilibrium by quenching the detuning qeff in regimes where

the initial state is not stable any more. With this, we tune spin-changing collisions in
resonance and occupation numbers in the side modes grow exponentially. Introducing two
different methods, the Fourier spectrum of the spin profile and the correlation function,
we identified the unstable spatial frequencies and compared them to the prediction made
by Bogoliubov theory. We find good agreement for short times up to 60ms between
experiment and theory in the predicted structure sizes. This can be further investigated
by comparison to simulations using the truncated Wigner approximation including spatial
confinement.
For longer times up to 120ms the most unstable mode shifts to higher spatial frequencies

corresponding to higher energies. This can be explained by an effectively changing
interaction strength nc1 and justified by a comparison of the extracted temporal interaction
strength and the time evolution of the linear density. Due to depletion of the pump mode
the interaction is dynamically lowered. However, the scaling of the characteristic structure
size with qeff can be described by Bogoliubov theory with changed interaction up to
∼ 100ms.
Of future interest is the further time evolution. For non-equilibrium dynamics after

quenches interesting quasi steady states as prethermalised states [30] or non-thermal fixed
points [31] are predicted. We have already seen in this thesis (Fig. 19) that a second
excitation not predicted by Bogoliubov theory appears in the course of the dynamics in
the regime of initially stable modes. These could be due to higher order processes, which
are triggered by the exponential occupation of the unstable momentum modes [32].
Experimentally it is interesting to investigate how the magnetic field gradient effects

the dynamics. Thus, we want to examine the influence by applying different gradients
in a controlled fashion. The interaction strength nc1 is a function of the linear density
and variations can lead to changes in the observed structure size. Our spatial confinement
leads to inhomogeneous density. Thus, an implementation of a homogeneous potential
would give the advantage of a constant interaction nc1 along the trap.
As mentioned in the beginning, in 87Rb not only F = 2 but also F = 1 is accessible.

As the interaction constant c1 is negative in this case, we are dealing with ferromagnetic
interactions. This leads to a second order phase transition on the boundary of the polar and
ferromagnetic ground state [33]. The short time dynamics [34], structure formation [5] and
the equilibrium dispersion relation [35] have been extensively studied in a two-dimensional
situation. However, for long evolution times scaling in time of the spatial correlation
function due to coarsening dynamics is predicted for a two-dimensional situation [36]. It
will be interesting to see how the different signs of the interaction affect the long time
evolution.
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