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Spin dynamics and active atom interferometry with Bose-Einstein condensates:

In this thesis the dynamics caused by spin-changing collisions (SCC) and the realisation of an active non-
linear interferometer in a spinor Bose-Einstein condensate of 87Rb are studied.
We show the population growth of initially empty spin states (sidemodes) by pairwise scattering of atoms
from a single spin mode in the course of an SCC-evolution. Numerical simulations of the dynamics are
compared with experimental results showing good qualitative agreement. We demonstrate conservation
of magnetisation despite large fluctuations in the atom numbers inside the magnetic sub states in the
experiment.
An interferometer with active beam splitters is realised by two subsequent periods of SCC with interme-
diate phase evolution. Depending on the accumulated phase these are enhanced or reversed. A theory
valid in the limit of a small side mode population (non-depleted regime) and based on the SU(1,1)-Lie-
group is discussed. We observe the amplification and partial reversibility of the SCC as well as the
qualitative behaviour of the phase sensitivity in the experiment. We find indications that the realised
interferometer surpasses the standard-quantum-limit (SQL), as predicted by the theory.
Numerical simulations show that the interferometer theoretically surpasses the SQL even in the depleted
regime.

Spindynamik und aktive Atominterferometrie mit Bose-Einstein Kondensaten:

In dieser Arbeit werden die Dynamik aufgrund von spinändernden Stößen und die Umsetzung eines ak-
tiven nichtlinearen Interferometers in einem Spinor Bose-Einstein Kondensat aus 87Rb untersucht.
Wir zeigen die Populationszunahme von anfänglich leeren Spinzuständen (Seitenmoden) durch paar-
weise Streuung von Atomen aus einer einzelnen Mode im Verlauf einer SCC-Evolution. Numerische
Simulationen der Dynamik werden mit experimentellen Ergebnissen verglichen und zeigen eine gute
qualitative Übereinstimmung. Wir demonstrieren die Erhaltung der Magnetisierung bei gleichzeitig gro-
ßen Fluktuationen in der Atomzahl der magnetischen Unterzustände im Experiment.
Ein Interferometer mit aktiven Strahlteilern wird durch zwei aufeinander folgende Perioden spinändern-
der Stöße realisiert, welche sich abhängig von der dazwischen akkumulierten Phase verstärken oder um-
kehren. Eine im Grenzfall schwach besetzter Seitenmoden gültigeTheorie auf Grundlage der SU(1,1)-Lie-
Gruppe wird behandelt. Wir beobachten experimentell die Verstärkung und teilweise Reversibilität der
spinändernden-Stöße sowie den qualitativen Verlauf der Phasensensitivität. Wir finden Indizien dafür,
dass das realisierte Interferometer das Standard-Quanten-Limit (SQL) übertrifft, wie von derTheorie vor-
her gesagt.
Numerische Simulationen zeigen, dass das Interferometer auch in dem Regime stark besetzter Seitenmo-
den das SQL theoretisch übertrifft.
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Introduction

Interferometers are among the most precise measurement devices available and used in a variety
of applications such as gravimetry, detection of gravitational waves, atomic clocks and precise
rotation measurements [1, 2, 3, 4, 5].
A prime example in optics is the Mach-Zehnder [6] interferometer. Light passing through a

beam splitter is separated into two beams, each experiencing a phase evolution. They are then
recombined by a second beam splitter. The emerging interference pattern depends on the rel-
ative phase between the two beams. The precision of measuring the accrued differential phase
of this interferometer is characterised by the phase sensitivity whose classical limit is called the
standard-quantum-limit (SQL).The SQL can be beaten enablingmore precisemeasurements. One
way of doing this is to feed entangled states into the input ports of the interferometer [7, 8].
An alternative approach is the exchange of the passive beam splitters by active ones. These ac-
tive beam splitters feature a non-linear response on the incoming light known as parametric
down conversion. This new kind of interferometer was theoretically discussed by [9, 10] in the
framework of the SU(1,1)-Lie group and is hence denoted as SU(1,1)-interferometer. An optical
non-linear SU(1,1)-interferometer has already been experimentally realised by [11].

In this thesis, we will discuss the implementation of such an interferometer in a Bose-Einstein-
condensate (BEC) of 87Rb. The experimental realisation of BECs [12, 13] was a major break-
through in the field of atom optics. Using optical confinement for a BEC [14] enables experi-
ments within the hyperfine states and opens up the route to observe the rich dynamics in the
spin degree of freedom induced by interactions between the atoms.
In so called spin-changing collisions (SCC) two atoms scatter and change their internal spin
state. During this process the energy as well as the sum of the magnetic quantum numbers are
conserved. In an ultracold and strongly confined BEC there is only one spatial mode yielding
restrictions of the possible scattering channels. A lot of theoretical [15, 16, 17, 18] and experi-
mental [19, 20, 21, 22, 23, 24] research has been done on this subject. The SCC lead to coherent
population transfer between the magnetic sub states and are the atomic counterpart to the opti-
cal process of parametric down conversion [25].
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Introduction

We use spin-changing collisions to realise an atomic SU(1,1)-interferometer. Our experiments
are performed in the electronic ground state 52S 1

2
of 87Rb where the F = 1 hyperfine spin man-

ifold forms a three level system with the magnetic sub states |F = 1, mF = −1, 0, +1⟩.

The subjects of this thesis are the dynamics of spin-changing-collisions and the realisation of
an active interferometer with these. The content is organised as follows.
In the first chapter we will treat the underlying theory of the SCC, including discussions of the
effect of magnetic fields and microwave radiation. The outcome of numerical calculations will
be shown and compared to experimental results.
The second chapter is dedicated to the interferometer. We will discuss the underlying theory for
the non-depletion regime in the framework of the SU(1,1)-group and develop a visualisation in
analogue to thewell-knownBloch sphere used for the SU(2)-group of rotations. The experimental
implementation and latest results of the phase sensitivity in our interferometric measurements
will be addressed.
We finish with numerical simulations in the depleted regime where the former theory fails, which
indicate sensitivity improvement even beyond the SU(1,1) regime.
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I. Spin changing collisions

In this chapter we cover the process of spin-changing collisions. We begin with general consid-
erations about the scattering of two atoms with total spinF = 1 and the three magnetic substates
with mF = −1, 0, +1 as sketched in Fig.I.0.1a. Two particles in the incoming states |F, 𝜇⟩, |F, 𝜈⟩
scatter into the outgoing modes |F, 𝛼⟩, |F, 𝛽⟩ via an intermediate two particle state |ℱ, Mℱ⟩.
The collisional process we are interested in is shown in Fig.I.0.1b; two atoms in |1, 0⟩ collide and
change their magnetic substates to |1, −1⟩ and |1, +1⟩ or vice versa whereby the total magneti-
sation is conserved.
We start with a the theoretical description of our system. After introducing the Hamiltonian

covering the SCC we discuss the hyperfine splitting in the electric ground state of 87Rb due
to a magnetic field – the well known Zeeman effect. The effect of microwave radiation and its
important role for the control over the spin changing collisions will be addressed.
Having tackled the underlying theory, a short overview of the current setup used for the ex-

perimental implementation is given. At the end of the first chapter, we will present experimental
results and a comparison to the theoretical approach.
We will see that the SCC lead to coherent population transfer between the magnetic substates.

As pointed out by [25, 22] they are the atomic counterpart to the optical process of parametric
down conversion.

(a) Scattering via inter-
mediate two particle
state

(b) Spin changing colli-
sions

Fig. I.0.1. Schematic scattering process between two atoms. a) Two incoming atoms in the states |F, u�⟩,
|F, u�⟩ are scattered into the outgoing states |F, u�⟩, |F, u�⟩ via an intermediate two particle state
|ℱ, Mℱ⟩. b) In the process of spin changing collisions two atoms in the |1, 0⟩ mode collide and go
into the |1, −1⟩ and |1, +1⟩ mode or vice versa.
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I. Spin changing collisions

Note that related experimental work has been performed in other experiments [21, 25, 26, 23,
24].

I.1. Theory

In the first part of this chapter we present a theoretical description of the spin changing collisions
of a BEC of 87Rb atoms in the F = 1 ground state. We start with the Hamiltonian in second
quantized form and derive a more suitable form following [16, 19]. Afterwards the effect of
magnetic fields and microwave radiation will be discussed.

I.1.1. The SCC Hamiltonian

The following process is considered: two incoming atoms in the states |F, 𝜇⟩, |F, 𝜈⟩ are scattered
into the outgoing states |F, 𝛼⟩, |F, 𝛽⟩ via an intermediate two particle state |ℱ, Mℱ⟩ (Fig.I.0.1a).
We denote the strength of a particular scattering channel by Ωu�,u�,u�,u�. The indices 𝜇, 𝜈 stand for
the initial modes, 𝛼, 𝛽 for final modes of the two particles involved in the collision. Let Ψ̂u� (Ψ̂†

u�)
be the atomic field annihilation (creation) operator for the hyperfine mode 𝜅 = 𝑚F = −1, 0, +1.
The Hamiltonian in second quantized form then reads [16]

Ĥ = ∑
u�

∫ d3𝑥Ψ̂†
u� (T̂ + 𝑉u� ) Ψ̂u�

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
kinetic and potential energy

+ ∑
u�,u�,u�,u�

Ωu�,u�,u�,u� ∫ d3𝑥Ψ̂†
u�Ψ̂†

u�Ψ̂u�Ψ̂u�
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

interaction energy

. (I.1.1)

The sums run over all magnetic substates 𝜅 in integer steps. The first term is the sum of the kinetic
(T̂) and potential (𝑉u� ) energy of all magnetic sublevels. The second term gives the interaction
energy of the system. Since we have a dilute gas of ultracold atoms, we assume the dominant
process to be s-wave scattering.
The coefficientsΩu�,u�,u�,u� are calculated using a two-body interaction model with a 𝛿 potential

widely used in one component dilute BEC [16, 19]

U( ⃗𝑥1, ⃗𝑥2) = 𝛿( ⃗𝑥1 − ⃗𝑥2)
2

∑
ℱ=0

gℱ

ℱ
∑

Mℱ=−ℱ
̂ρℱ,Mℱ

(I.1.2)

with gℱ = 4πℏ2aℱ
M

and ̂𝜌ℱ,Mℱ
= |ℱ, 𝑀ℱ⟩ ⟨ℱ, 𝑀ℱ| .
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I.1. Theory

̂𝜌ℱ,u�ℱ
is the projection operator onto the intermediate state with total spin ℱ and magnetic

quantum number Mℱ formed by the two atoms involved in the collisions, each with spin F = 1.
M is the atomic mass and 𝑎ℱ the s-wave scattering length in the respective channel.
The calculation Equ.I.1.2 is done by expanding the total spin state |ℱ, 𝑀ℱ⟩ in terms of the

single atom basis vectors |1, −1⟩, |1, 0⟩ and |1, +1⟩. Using the notation

|𝜇, 𝜈⟩ = |F = 1, 𝑚F = 𝜇⟩ ⊗ |F = 1, 𝑚F = 𝜈⟩

⟨𝛼, 𝛽| = ⟨F = 1, 𝑚F = 𝛼| ⊗ ⟨F = 1, 𝑚F = 𝛽|

one finds
|ℱ = 0, 𝑀ℱ = 0⟩ = 1√

3
(| − 1, +1⟩ − |0, 0⟩ + | + 1, −1⟩) (I.1.3)

and similar expressions for |ℱ = 1, 𝑀ℱ = −1, 0, +1⟩ and |ℱ = 2, 𝑀ℱ = −2, ..., +2⟩.
The |ℱ = 1, 𝑀ℱ = −1, 0, +1⟩ spin wave function is antisymmetric under particle exchange
whilst the other two are symmetric. Therefore the |ℱ = 1, 𝑀ℱ = −1, 0, +1⟩ channel is for-
bidden since the in- and outgoing states in s-wave scattering have a symmetric spatial wave
function and the particles are bosons, meaning that the total wave function has to be symmetric.
Another way to write Equ.I.1.2 is then [15, 27]

U( ⃗𝑥1, ⃗𝑥2) = 𝛿( ⃗𝑥1 − ⃗𝑥2) (𝑐0 + 𝑐2F⃗1F⃗2) (I.1.4)

with c0 = g0 + 2g2
3

c2 = g2 − g0
3

,

where the ⃗Fi are the spin operators of the two participating particles1 and the expression for the
interaction coefficients reads

Ωu�,u�,u�,u� = ⟨𝛼, 𝛽| ⊗ ⟨𝜙u�, 𝜙u�∣ 𝑈( ⃗𝑥1, ⃗𝑥2) ∣𝜙u�, 𝜙u�⟩ ⊗ |𝜇, 𝜈⟩ . (I.1.5)

With the assumption that throughout the whole scattering process the atoms neither can leave
the trap nor be excited to an higher spatial mode, the spatial state |𝜙⟩ of the single particles
remains the same and therefore |𝜙u�⟩ = ∣𝜙u�⟩ and ∣𝜙u�⟩ = |𝜙u�⟩. The spatial integral over the
𝛿-potential yields ∫ d3𝑥|𝜙u�( ⃗𝑥)|2|𝜙u�( ⃗𝑥)|2. With this, Equ.I.1.5 simplifies to

Ωu�,u�,u�,u� =
2

∑
ℱ=0

𝑔ℱ

ℱ
∑

u�ℱ=−ℱ
⟨𝛼, 𝛽| ̂𝜌ℱ,u�ℱ

|𝜇, 𝜈⟩ ⋅ ∫ d3𝑥|𝜙u�( ⃗𝑥)|2|𝜙u�( ⃗𝑥)|2. (I.1.6)

1A similar expression for the f = 2 hyperfine manifold can be found in [28].
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I. Spin changing collisions

The expression ⟨𝛼, 𝛽| ̂𝜌ℱ,u�ℱ
|𝜇, 𝜈⟩ shows the connection of the initial (|𝜇, 𝜈⟩) and final (|𝛼, 𝛽⟩)

sates via the intermediate two particle state |ℱ, 𝑀ℱ⟩. Ωu�,u�,u�,u� is then given by the sum over
all possible scattering channels, i. e. all possible intermediate states |ℱ, 𝑀ℱ⟩ multiplied with
the factor 𝑔ℱ which characterises the strength of the respective channel.
With this the Hamiltonian in Equ.I.1.1 can be split into two parts [16]

Ĥ = ĤS + ĤN. (I.1.7)

The first term, Ĥu�, is symmetric and remains unchanged for any interchange of the spin compo-
nent while the second term, Ĥu� , is non-symmetric. The two parts read [16]

ĤS = ∑
u�

∫ d3𝑥Ψ̂†
u� (T̂ + V̂u� ) Ψ̂u� + c0

2
∑
u�,u�

∫ d3𝑥Ψ̂†
u�Ψ̂†

u�Ψ̂u�Ψ̂u� (I.1.8)

and

ĤN = c2
2

∫ d3𝑥 (Ψ̂†
+Ψ̂†

+Ψ̂+Ψ̂+ + Ψ̂†
−Ψ̂†

−Ψ̂−Ψ̂−

+ 2Ψ̂†
+Ψ̂†

0Ψ̂+Ψ̂0 + 2Ψ̂†
−Ψ̂†

0Ψ̂−Ψ̂0

+ 2Ψ̂†
0Ψ̂†

0Ψ̂+Ψ̂− + 2Ψ̂†
+Ψ̂†

−Ψ̂0Ψ̂0

−2Ψ̂†
+Ψ̂†

−Ψ̂+Ψ̂−) .

(I.1.9)

Approximation of the spatial wave function

For approximately equal scattering lengths of the two entering channels one has |c0| ≫ |c2|.
This holds for the F = 1 state in 87Rb as can be seen in [29] (a0 ≈ 101.8 aB and a2 ≈ 100.4 aB,
aB being the Bohr radius) . Therefore the symmetric part Ĥu� of the Hamiltonian is dominating
and the spatial wave function of the individual spin components are similar, i. e.

Φu�( ⃗𝑥) ≈ Φ( ⃗𝑥) 𝜅 = 0, ±1. (I.1.10)

With the usual creation and annihilation operators satisfying the bosonic commutation relation

[ ̂aκ, ̂aγ] = 0 [ ̂aκ, ̂a†
γ] = 𝛿u�u� (I.1.11)

the field operators are approximated by

Ψ̂u� ≈ ̂au�Φ( ⃗𝑥) 𝜅 = 0, ±1. (I.1.12)
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I.1. Theory

One method to find an estimate for Φ( ⃗𝑥) is to use the Gross-Pitaevskii equation (GPE). It is an
ansatz to get the spatial wave function of one single particle in a dilute gas of weakly inter-
acting particles where the interactions are assumed to arise from the background of the other
particles [30].

( T̂ + V̂⏟
kinetic and potential energy

+ c0N|Φ|2⏟
interaction term

)Φ = 𝜇Φ. (I.1.13)

The interactions are described by the product of c0 (since ĤS is the dominating part in Equ.I.1.7)
and the density N|Φ|2 of the atomic cloud. Thus the GPE is a mean field approach and 𝜇 is called
the mean field energy or the chemical potential.
With the total atom number operator

N̂ = ̂a†
− ̂a− + ̂a†

0 ̂a0 + ̂a†
+ ̂a+, (I.1.14)

we can now rewrite the symmetric Hamiltonian Equ.I.1.8 into

ĤS = ∑
u�

∫ d3𝑥Ψ̂†
u�[ (T̂ + V̂u� ) + c0

2
∑

u�
Ψ̂†

u�Ψ̂u�
⏟⏟⏟⏟⏟
=|Φ(u⃗�)|2N̂

]Ψ̂u� = 𝜇N̂ − 𝜆SN̂(N̂ − 1), (I.1.15)

where we used the GPE in the last step. The non-symmetric part of Equ.I.1.7 becomes

ĤN = 𝜆N ( ̂a†
+ ̂a†

+ ̂a+ ̂a+ + ̂a†
− ̂a†

− ̂a− ̂a−

+ 2 ̂a†
+ ̂a†

0 ̂a+ ̂a0 + 2 ̂a†
− ̂a†

0 ̂a− ̂a0

+ 2 ̂a†
0 ̂a†

0 ̂a+ ̂a− + 2 ̂a†
+ ̂a†

− ̂a0 ̂a0

−2 ̂a†
+ ̂a†

− ̂a+ ̂a−) .

(I.1.16)

In Equ.I.1.15 and Equ.I.1.16 we used the new defined coupling parameters

𝜆S/N =
c0/2

2
∫ d3𝑥|Φ( ⃗𝑥)|4. (I.1.17)

The symmetric part of the Hamiltonian depends only on the total number of atoms. Under the as-
sumption that there are no losses during the whole experimental sequence the total atom number
is conserved and the spin dynamics are fully determined by the non-symmetric part ĤN. There-
fore we will focus on ĤN in the following.
For a detailed discussion of the calculation of 𝜆N see [31]. Here we only want to state that 𝜆N

7



I. Spin changing collisions

decreases with increasing total atom number.

New quantum numbers for the Hamiltonian

A possible set of quantum numbers is (n+, n0, n−) which are the population numbers in the
three submodes. For the further proceeding we adopt the notation from [32] and introduce an
alternative set of quantum numbers (η, M, N) and their respective operators. The two sets are
connected via

η̂ = n̂− + n̂+ ⇒ 𝜂 = n− + n+ (I.1.18)

M̂ = n̂− − n̂+ ⇒ M = n− − n+ (I.1.19)

N̂ = n̂− + n̂0 + n̂+ ⇒ N = n− + n0 + n+ (I.1.20)

with n̂i = ̂a†
i ̂ai .

𝜂 is the sum of the side mode populations, M the magnetization and N the total atom number in
the system. These are eigenoperators of a state |𝜂, M, N⟩ with the respective quantum numbers.
Additionally we define the operators

η̂+ = ̂a0 ̂a0 ̂a†
+ ̂a†

− η̂− = ̂a†
0 ̂a†

0 ̂a+ ̂a−, (I.1.21)

which represent the scattering of two atoms in the zero mode into two atoms in the side modes
(η̂+) and vice versa (η̂−). The actions of these on a state |𝜂, M, N⟩ are

η̂+ |𝜂, M, N⟩ = 1
2

√(N − η − 1)(N − η) ((η + 2)2 − M2) |η + 2, M, N⟩ (I.1.22)

η̂− |𝜂, M, N⟩ = 1
2

√(N − η + 2)(N − η + 1) ((η2 + M2) |η − 2, M, N⟩. (I.1.23)

With these new operators ĤN can be expressed as follows

ĤN = 𝜆 [M̂
2

+ (2N̂ − 2η̂ − 1) η̂ + 2 (η̂+ + η̂−)] (I.1.24)

where we used 𝜆 = 𝜆N.

So far we introduced the system and derived a convenient form of the important part of the
Hamiltonian. In the following two sections we will approach our actual experimental situation
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I.1. Theory

and have a closer look at the additional terms in the Hamiltonian which arise from magnetic
fields and microwave radiation. These will allow us to control the spin changing collisions.

I.1.2. Magnetic fields

Wewill now discuss the effect of an external magnetic field on the electronic ground state of 87Rb
and look at its consequences for the SCC. The informations given follow mainly the derivation
in [33].
Without any excitation 87Rb has one single electron in the outermost s shell. The total electron

spin is S = 1
2 and the orbital angular momentum L = 0, resulting in an angular momentum

of J = 1
2 . Thus the electronic ground state is 52S 1

2
. Due to the nuclear spin of I = 3

2 the
ground state has two hyperfine levels with total angular momentum F = 1 and F = 2 which
have a degeneracy of 2F + 1 in the absence of external fields. The nuclear magnetic moment is
μ⃗I = −μB

ℏ
⃗I with the nuclear Bohr magneton 𝜇B. Thus the two hyperfine levels are energetically

separated to first order by

Ĥhfs = −μ⃗IB⃗J ≈ Ahfs
⃗I ⃗J (I.1.25)

= 1
2

Ahfs [F(F + 1) − I(I + 1) − J(J + 1)]. (I.1.26)

B⃗J is the magnetic field experienced by the nucleus due to the angular momentum ⃗J of the outer
electron and Ahfs ≈ 3.417GHz the magnetic dipole constant of the 52S 1

2
state of 87Rb. This

results in an energy splitting of the two hyperfine states of

ΔEF=2,F=1 ≈ 6.8GHz. (I.1.27)

Figure I.1.1 shows the hyperfine structure of the electronic ground state schematically. For a
general introduction to fine and hyperfine structure see [34]. For specific details about 87Rb and
a table of constants see [33].
By applying an external magnetic field B⃗ext one gets additional energy shifts since the mag-

netic moment couples with B⃗ext. These are given by ΔE = − ⃗𝜇FB⃗ext. As long as ΔE is small
compared to the hyperfine splitting, the angular momentum ⃗J and the nuclear spin ⃗I do not de-
couple and F remains a good quantum number. The degeneracy is broken and the two hyperfine
levels split into the |F = 1, mF = −1, 0, +1⟩ and |F = 2, mF = −2, ..., +2⟩ magnetic substates
respectively. This is the well known Zeeman effect and schematically shown in Fig.I.1.1. For
large external magnetic fields ⃗J and ⃗I decouple and the hyperfine splitting can be treated as
small perturbation to the strong field eingenstates |J, mJ; I, mI⟩.

9



I. Spin changing collisions

F=2

F=1

Fig. I.1.1. Electronic ground state of 87Rb and its hyperfine levels in an external magnetic field. The
nuclear spin of 87Rb is I = 3

2 and its electronic ground state 52u� 1
2
resulting in two hyperfine levels

separated by ≈ 6.83GHz. Applying an external magnetic field breaks the degeneracy of each hyper-
fine level by shifting the energy of the magnetic substates by ΔE = −u⃗�B⃗ resulting in 3 + 5 distinct
levels.

Here we are interested in an intermediate regime where the energy is given by the Breit-Rabi
formula which can be used on the 52S 1

2
level. It reads

EF,mF
= − ΔEhfs

2(2I + 1)
+ gIμBmFB ± ΔEhfs

2
(1 + 4

2I + 1
mF + x2)

1
2

(I.1.28)

with mF = −|mI ± mJ|, ..., +|mI ± mJ|

x = (gJ − gI)μBB
ΔEhfs

ΔEhfs = Ahfs (I + 1
2

).

The gJ/I are the Landé factors of the angular momentum and the nuclear spin. Choosing the
positive sign yieldsmF = −2, … , +2 corresponding to theF = 2manifold whereas the negative
sign gives the result for the F = 1 manifold. After Taylor expansion up to second order in the
magnetic field B one gets the following expression

10



I.1. Theory

EF,mF
= −ΔEhfs

8
±ΔEhfs

2
± pmF

B ± qmF
B2 + 𝒪(B3) (I.1.29)

with pmF
= μB [1

4
(gJ − gI) ± gI] mF

qmF
= (gJ − gI)2

4ΔEhfs
μ2

B [1 − (mF
2

)
2
].

With the same conditions for the ± as in Equ.I.1.28. The first two terms give the energy shifts
due to the hyperfine splitting relative to the 52S 1

2
state in the absence of any external magnetic

field for the F = 1 and F = 2 hyperfine state respectively.
The third term is linear in the magnetic field and is called the linear Zeeman effect. It is important
to note that the direction of the energy shift depends on the sign of themagnetic quantumnumber
in the mF substate. Hence the two different F manifolds experience opposing shifts in their
corresponding mF substates.
The fourth term is quadratic in the magnetic field and called the quadratic Zeeman effect. The
direction of the energy shift depends only on the hyperfine level. It is positive for F = 2 and
negative for F = 1 levels. However, the strength of the shift in each magnetic substate depends
on the absolute value of the magnetic quantum number. To shorten the equation we introduce
the two factors pmF

and qmF
.

With values in [33] one gets for pmF
and qmF

pmF
=

⎧{
⎨{⎩

699.58 kHzG−1 ⋅ mF F = 2

702.37 kHzG−1 ⋅ mF F = 1
qmF

=

⎧{{
⎨{{⎩

287.57Hz/G2 ⋅ 1 |mF| = 0

287.57Hz/G2 ⋅ 3
4 |mF| = 1

0 |mF| = 2
(I.1.30)

In Fig.I.1.2 the contributions of the linear and the quadratic Zeeman effect to the overall energy
shift are shown.
Let us now consider the influence of the external magnetic field on the process of spin changing

collisions in the F = 1 manifold. We look at the collision of two atoms each in the |1, 0⟩ state.
Due to conservation of the total magnetization either both atoms remain in |1, 0⟩ or one atom
ends in |1, +1⟩ state whilst the other goes into |1, −1⟩. Since the first process does not change
the spin states it is not of any interest here and we will focus on the second one.
We begin with the linear Zeeman effect. The energy gained by the atom going in the |1, +1⟩

state is taken by the other atom to reach the energetically higher |1, −1⟩ state, which is shifted by

11



I. Spin changing collisions

(a) linear Zeeman effect (b) quadratic Zeeman effect

Fig. I.1.2. Linear and quadratic Zeeman effect in F = 1. a) The direction of the energy shift due to the
linear Zeeman effect depends on the sign of the magnetic quantum number mF. The two magnetic
substates |1, −1⟩ and |1, +1⟩ are shifted by the same amount pm ≈ 702.37 kHzG−1 ⋅ B but in
opposite direction whilst the energy of |1, 0⟩ remains unchanged. During the spin changing collisions
the energy gained by the atom going from |1, 0⟩ to |1, +1⟩ is used to raise the other atom to the
|1, −1⟩ state. The total energy is conserved and the linear Zeeman effect does not hinder the SCC.
b) The quadratic Zeeman effect leads to a shift downwards in the energy of all levels resulting in a
net energy difference of qz ≈ 71.89Hz/G2 ⋅ B2 between |1, 0⟩ and |1, +1⟩, |1, −1⟩. In this case
for the spin changing collisions process to work, both atoms have to gain energy to reach the higher
states. Therefore the spin changing collisions are suppressed by the quadratic Zeeman effect due to
the consequential violation of energy conservation.

the same amount, but in opposite direction as the |1, +1⟩ state (Fig.I.1.2a). If only the linear zee-
man effect were present we had therefore conservation of magnetization as well as conservation
of energy.

This is no longer the case if we take into account the quadratic Zeeman effect. All sublevels in
the F=1 manifold shift in the same direction such that the |1, ±1⟩ states are equal in energy but
lie above the |1, 0⟩ state (neglecting the linear Zeeman effect since it plays no role for the process,
Fig.I.1.2b). Two atoms initially in |1, 0⟩ would need to gain energy to reach the sublevels in the
F=1 manifold and therefore the quadratic Zeeman effect hinders the process of spin changing
collisions due to violation of energy conservation. The energy difference between two atoms in
the sublevels and two atoms in |1, 0⟩ is

ΔE = 2 ⋅ (qmF=0 − qmF=1)B2 = 2 ⋅ 71.89Hz/G2B2 = 2 ⋅ qzB2 (I.1.31)

where we defined qz ≔ 71.89Hz/G2. We want to finish this section with the extension of the
Hamiltonian Equ.I.1.24 by two new terms due an external magnetic field. The linear Zeeman
effect changes the energy proportional to the total magnetization M̂ = n̂− − n̂+ whereas the
quadratic Zeeman effect contributes with a term proportional to the sum of the atoms in the
substates, η̂ = n̂− + n̂+, if we assume the |1, 0⟩ state to lie at the zero energy level. With these
the Hamiltonian Equ.I.1.24 reads

12



I.1. Theory

ĤN = 𝜆 [M̂
2

+ (2N̂ − 2η̂ − 1) η̂ + 2 (η̂+ + η̂−)] + pmF=1
B M̂ + qzB2 η̂ (I.1.32)

In the next section we will look at level shifts caused by microwave radiation and see how it can
be used to overcome the lack of energy due to the quadratic Zeeman effect.

I.1.3. Microwave dressing

In this section we want to introduce the effect of microwave radiation on the atoms. We will
follow mainly [35, 36] and a comprehensive treatment of the theory can be found there.
Let us start with a general discussion of an atomic two level system under the influence of

electromagnetic radiation. In the dipole approximation the interaction between atomic system
and radiation field can be described by

Ĥint = − ⃗dE⃗ (I.1.33)

where ⃗d is the atomic dipole operator and E⃗ the electric field, which we assume to be single mode
in the frequency.
We consider the ground state together with n+1 photons of the microwave field, |𝑔, 𝑛 + 1⟩,

and the excited state with one photon less, |𝑒, 𝑛⟩ (Fig.I.1.3). The difference in energy of these
newly introduced states depends on the detuning 𝛿 = 𝜔 − 𝜔0 of the radiation with frequency
𝜔 relative to the resonance frequency 𝜔0 = (E|e⟩ − E|g⟩)/ℏ of the original two level system. A

(a) atomic two level system (b) atomic states in the rotating
frame of the incident mi-
crowave radiation

Fig. I.1.3. Atomic two level system with incident microwave radiation. a) In the bare state picture
the excited state lies energetically above the ground state and the incident microwave radiation (u�L)
and atomic system are treated separately. The energy difference between the two atomic states is the
resonance frequency u�0. b) In the dressed state picture the atomic levels and microwave photons are
coupled to the states |u�, u�⟩ and |u�, u� + 1⟩, building a ladder of state pairs for the different photon
numbers n. In the rotating frame of the incident microwave the energy difference of the states in one
specific n-manifold is given by the detuning u� = u�L − u�0. Shown here is the case for blue detuning
where u� > 0.
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I. Spin changing collisions

positive value of 𝛿 is also referred to as blue detuned since the wavelength of the photons of the
radiation field is smaller then the two level resonance wavelength. The opposite case is called red
detuned. Applying the rotating wave approximation [35] the Hamiltonian of this system reads

Ĥ = 𝜔 ̂a† ̂a + 1
2

𝜔0𝜎u� + g (𝜎+ ̂a + ̂a†𝜎−) (I.1.34)

where ̂a and ̂a† are the annihilation and creation operator for photons of the electromagnetic
field and 𝜎±,u� act on the atomic states as follows

σ+ = |e⟩ ⟨g| σ− = |g⟩ ⟨e| σz = |e⟩ ⟨e| − |g⟩ ⟨g|. (I.1.35)

The coupling constant g can be calculated with

g = ⟨e, n| Ĥint |g, n + 1⟩√
n + 1

= ⟨g, n + 1| Ĥint |e, n⟩√
n + 1

. (I.1.36)

We choose the basis

|g, n + 1⟩ ↦ (
1
0
) |e, n⟩ ↦ (

0
1
) (I.1.37)

with which the Hamiltonian in the specific n photon manifold can be written in the form

Ĥ = 1
2

(
𝛿 Ω
Ω −𝛿

) + 𝜔(n + 1
2

)𝟙 (I.1.38)

whereΩ = g
√

n + 1 = ⟨e, n| Ĥint |g, n + 1⟩ is the resonant Rabi frequency. We see that for large
photon numbers n the Rabi frequency Ω is proportional to the square root of the photon number,
i. e. proportional to the square root of the intensity of the radiation field. The eigenenergies are
calculated to be

𝜖n,± = 𝜔 (n + 1
2

) ± 1
2

√𝛿2 + Ω2 (I.1.39)

and the corresponding eigenstates are

|+⟩ = sin(θ) |g, n + 1⟩ + cos(θ) |e, n⟩ (I.1.40)

|−⟩ = cos(θ) |g, n + 1⟩ − sin(θ) |e, n⟩ (I.1.41)

with tan (2𝜃) = −Ω
𝛿

.
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0

-4 -2 0 -2 4

Fig. I.1.4 The energies of dressed states (|±⟩,
solid lines) depend on the detuning u� be-
tween microwave and resonance frequency.
Whereas the bare states are energetically de-
generate for u� = 0, the dressed states have
an energy difference of Ω0 and approach
the bare states (dotted lines) for large detun-
ing[27]. Shown here are the energies for a
dressed state with n photons.

These are the so called dressed states1 and they have to be used for a correct description of
the two level system together with the radiation field. A comparison of the energies between
dressed and bare states is shown in Fig.I.1.4. We are interested in large values of the detuning
and find for |𝛿| ≫ Ω

|+⟩ ≈
⎧{
⎨{⎩

|e, n⟩ 𝛿 ≪ 0

|g, n + 1⟩ 𝛿 ≫ 0
and |−⟩ ≈

⎧{
⎨{⎩

|g, n + 1⟩ 𝛿 ≪ 0

|e, n⟩ 𝛿 ≫ 0
. (I.1.42)

If the detuning 𝛿 is large compared to the resonant Rabi frequencyΩwe can do a Taylor expansion
of the eigenenergies Equ.I.1.39 and get

𝜖± ≈ ± (𝛿
2

+ Ω2

4𝛿
) ⇒ Δ𝐸± ≈ 𝛿 + Ω2

2𝛿
. (I.1.43)

From this we see that for large positive (blue) detuning the dressed state |+⟩ is shifted energeti-
cally upwards with respect to the undressed bare ground state |g, n + 1⟩ by

ΔEshift = + Ω
4δ

(I.1.44)

whilst the |−⟩ is shifted downwards with respect to the undressed bare excited state |e, n⟩ by the
same amount and vice versa for negative detuning.

The two level system is useful to gain insight into the principle of microwave dressing. How-

1There is a pair of dressed states in each n-photon manifold.
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I. Spin changing collisions

ever, the actual experimental situation is more complicated. We saw in the previous chapter
that the two hyperfine manifolds form a system with 3 + 5 substates if an external magnetic
field is applied (Fig.I.1.1). This leads to a variety of possible transitions with different polarisa-
tions [31]. The geometry of our microwave antenna generates a mixture of all polarizations with
different radiation powers. In principle, none of the bare states remains unchanged and we get
a set of dressed states with altered energy levels. From Equ.I.1.42 and Equ.I.1.44 we see that for
sufficiently large detuning the dressed states are basically the bare states. We use the transition
|1, 0⟩ ↔ |2, 0⟩ and shine in with blue detuned microwaves to get an upward shift in the energy
of the |1, 0⟩ state. For a given magnetic field strength the detuning has to be chosen in such a
way that all other transitions are far detuned and the other produced dressed states do not differ
from the original bare states.
As a side remark, the concept of dressed states can also be used to explain the principle of

optical dipole traps. Equation I.1.44 shows that the energy of the dressed states depends not only
on the detuning, but also on the resonant Rabi-frequency which itself depends on the intensity
of the used radiation. As a direct consequence, the atoms will experience a so called dipole force
if the intensity varies spatially.
A red detuned laser beam can be used to trap atoms in the |+⟩ state while a blue detuned beam

traps the atoms in the |−⟩ state. This concept can also be extended to standing light waves, where
for a red detuned laser the intensity maxima trap the |+⟩ state, while the intensity nodes repel
it, and vice versa for the |−⟩ state.

I.1.4. Effective Hamiltonian for the SCC

So far we looked at the spinor dynamics in the F=1 hyperfine manifold of a BEC consisting of
87Rb. The starting point of the discussion was the Hamiltonian Equ.I.1.1 which can be brought
into a more convenient form by introducing the quantum numbers (η, M, N), where 𝜂 is the
sum of the populations in the side modes, M the magnetisation and N the total atom number in
the system. We discussed the effect of magnetic fields and found that the linear Zeeman effect
cancels out while the quadratic Zeeman effect hinders the process of spin changing collisions
due to violation of energy conservation.
By shining in suitablemicrowave radiation, the energy of the |1, 0⟩ state can be shifted upwards

by ΔE = +Ω2

4δ . For suitable Rabi-frequency Ω, which can be adjusted by the microwave power,
and detuning 𝛿 the dressing compensates for the energy shift due to the quadratic Zeeman effect
(Fig.I.1.5). The overall relative energy shift between the |1, ±1⟩ and |1, 0⟩ states is then given by

ΔE = 71.89Hz/G2 ⋅ B2 − Ω2

4δ
≔ q. (I.1.45)
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Fig. I.1.5. Relevant energy shifts for SCC in F = 1. The quadratic Zeeman effect suppresses the SCC
since both atoms in the initial state (|1, 0⟩) need to gain energy to reach the upper levels (|1, −1⟩,
|1, +1⟩). The energy of the |1, 0⟩ mode is shifted upwards by dressing with blue detuned microwaves
using the transition |2, 0⟩ ↔ |1, 0⟩. Control over the microwave radiation and its detuning allows to
match the energy and thereby switch the spin changing collisions on and off. The |2, 0⟩ state is not
shown here.

This means that we are able to switch the spin changing collisions on and off by control of the
microwave radiation and magnetic field. The energy shift due to the dressing adds a new term
to the Hamiltonian Equ.I.1.32, which becomes

ĤN = 𝜆 [M̂
2

+ (2N̂ − 2η̂ − 1) η̂ + 2 (η̂+ + η̂−)] + pM̂ + qη̂ (I.1.46)

with p = pmF=1
B = 702.37MHzG−1 B.

We separate now the evolution due to the magnetisation M and the evolution due to the SCC
and 𝜂 and write

ĤN = ĤM + ĤSCC. (I.1.47)

(In the absence of loss) the time evolution due to the term ĤM = 𝜆M̂
2

+pM̂ gives just an overall
phase factor since the total magnetisation is conserved. Therefore the complete dynamics are
determined by the effective Hamiltonian
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I. Spin changing collisions

ĤSCC = 𝜆 [(2N̂ − 2η̂ − 1) η̂ + 2 (η̂+ + η̂−)] + qη̂ (I.1.48)

with q = 71.89Hz/G2B2 − Ω2

4𝛿

𝜆 = c2
2

∫ d3𝑥|Φ( ⃗𝑥)|4 c2 = 4𝜋ℏ2

M
a2 − a0

3

as long as M is constant 1. We will use this result frequently throughout the rest of this work.
All numerical calculations presented in the further chapters were performed by implementing
Equ.I.1.48 – or further simplifications of it – for a number state basis given by |η, M, N⟩. Rear-
ranging gives the Hamiltonian

ĤSCC = 𝜆2 (η̂+ + η̂−) + 𝜆 (2n̂0 − 1 + q
𝜆

) η̂. (I.1.49)

Thefirst term describes the processwhich produces the atom pairs in the sidemodes. This process
is analogue to the optical parametric down conversion [25, 37] in parametric amplifiers. We will
use this in Ch.II to realise the non-linear interferometer.
The second term gives a dephasing, increasing in speed with 𝜂, which leads to a slowing down
of the pair production. One can optimise the pair production using spin changing collisions by
adjusting q in such a way that the dephasing term remains small as long as possible, that is

2n0 − 1 + q
𝜆

≈ 0. (I.1.50)

Since 𝜆 < 0 is fixed and n0 decreases with ongoing SCC (depletion of the |1, 0⟩ state) we need
to choose

qoptimal ≳ 0 (I.1.51)

such that the term 2n0 − 1 + q
u� sweeps over 0 with decreasing n0.

Figure I.1.6 shows how the relative population of the side modes evolves in time for different
values of the ratio q

u� (coloured lines) and for different initial conditions (a to d). The numerical
simulations were performed with a total number of atoms N = 500 and 𝜆 = −0.0015Hz.
The SCC-evolution with initially empty side modes (𝜂0 = 0, M0 = 0) is shown in Fig.I.1.6a.
As expected from Equ.I.1.50 the pair production in the side modes is enhanced for q

u� < 0. For

1This condition is no longer satisfied if there are atom losses in the system or with Rabi-coupling between the
different modes.
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(a) u�0 = 0, M0 = 0 (b) u�0 = 1, M0 = 1

(c) u�0 = 2, M0 = 0 (d) u�0 = 2, M0 = 2

Fig. I.1.6. Theoretical evolution of the relative population of the side modes for various parameters. The
numerical calculations were performed with a total of N = 500 atoms and u� = −0.0015Hz.
a) SCC-evolution without initial seed of the side modes u�0 = 0, M0 = 0. b) asymmetric initial seed
with u�0 = 1, M0 = 1. c) symmetric initial seed with u�0 = 2, M0 = 0. d) asymmetric initial seed
with u�0 = 2, M0 = 2.
The time evolution for q

u� = −30 (green) has a larger maximal occupation than those for q
u� = +30

(red) and q
u� = 0 (blue). With initially seeded side modes the spin changing collisions are faster. The

shape of the curves depends strongly on the initial distribution and number of atoms in the side modes
(c), d)). All graphs show the non-linear growth of the side mode population for suitable values of q

u� .

q
u� = 0 the evolution shows a plateau after the first peak, while q

u� > 0 gives oscillations with a
small amplitude.
In the case of initially seeded side modes (b, c, d) the SCC occur faster and the shape of the
evolution changes. Asymmetric seed leads to a general increase in the maxima for all three
values of q

u� (Fig.I.1.6b with 𝜂0 = 1, M0 = 1 and Fig.I.1.6b with 𝜂0 = 2, M0 = 2). Symmetric
seed increases the maximum for q

u� = 0 and q
u� = +30 but lowers it for q

u� = −30.
The shapes of the curves in the asymmetric cases are more similar to the unseeded ones than the
curves with symmetric initial seed. A qualitative explanation could be that for 𝜂0 ≠ 0, M0 = 0
the atoms in |1, +1⟩ and |1, −1⟩ can initiate the scattering back into |1, 0⟩ and therefore the first
maximum has to be decreased. This can not happen if only one of the side modes is populated at
the beginning since the total magnetisation has to be conserved.
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(a) u�0 = 0, M0 = 0 (b) u�0 = 2, M0 = 0

Fig. I.1.7. Theoretical evolution of variance of side mode population during SCC for the same initial
conditions as in Fig.I.1.6a (u�0 = 0, M0 = 0) and Fig.I.1.6c (u�0 = 2, M0 = 0). For q

u� = 0 (blue) and
q
u� = +30 (red) the variance shows a similar behaviour as the mean value of u� indicating that (Δu�)2

increases with increasing u�. In the case of q
u� = −30 (green) the variance also increases initially but

shows a local minimum at the position of the first maximum of u�. Hence, the fluctuations in the side
mode population decrease again when u� approaches the local maximum.

We want to emphasize that the shown graphs are calculated for initially 0, 1 and 2 atoms in
the side modes with a total number of N = 500 atoms and we see that already a small seed has
a huge effect on the SCC-evolution. However, all graphs show the non-linear growth of the side
mode population for suitable values of q

u� .

As mentioned before the magnetisation M = n− − n+ is conserved and therefore the variance
of the side mode population difference vanishes. In contrast to this shows the sum of the side
mode populations 𝜂 = n− + n+ huge fluctuations which evolve in time. The variance (Δ𝜂)2 for
the initial cases 𝜂0 = 0, M0 = 0 and 𝜂0 = 2, M0 = 0 is plotted in Fig.I.1.7. The corresponding
evolution of 𝜂 are shown in Fig.I.1.6a and Fig.I.1.6c. Note that in the case of q

u� = −30 (green)
the variance (Δ𝜂)2 initially increases with increasing 𝜂 but has a local minimum at the first
maximum of 𝜂. Hence, the fluctuations in the side mode population decrease again when 𝜂
approaches the local maximum.
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I.2. Experiment

Our experiments are performed in the ground state hyperfine manifold 52S1/2 of 87Rb with
total spin F = 1 and F = 2. Before the experimental sequence for spin dynamics, we prepare an
array of Bose-Einstein condensates roughly explained below. For more details see [38, 39].
We use the D2 line (52S1/2 ⇒ 52P1/2) at ≈ 780 nm and its cycling transition [33] to initially

capture atoms in a three dimensional magneto-optical trap (MOT). The atoms are then cooled
further via evaporative cooling in a magnetic time-orbiting potential (TOP) trap [40] close to
the critical temperature for Bose-Einstein condensation. We pump all atoms in the |1, −1⟩ state,
which is a low-field seeker and can be magnetically trapped. The atomic cloud is transferred into
a far-detuned optical dipole trap, where Bose-Einstein condensation is reached through further
evaporative cooling. Finally, a 1D lattice is ramped up. The lattice is formed by two laser beams
at ≈ 820 nm crossed under an angle of ≈ 9°. The radial confinement is ensured by a dipole trap
at ≈ 1030 nm in direction of the standing wave lattice.
This procedure yields approximately 30 independent 87Rb-BECs in the |1, −1⟩ state separated

by ≈ 5.5 µm. The preparation leads to atom numbers of about 500 in the central wells which
are decreasing to the edges of the lattice. A homogeneous magnetic offset field ensures that the
magnetic substates are not degenerate and the atoms remain in |1, −1⟩.
The actual experimental sequences for spinor experiments, which are employing resonant mi-

crowave or radio frequency radiation, will be explained in the corresponding section. Each mea-
surement has to be repeated several times in order to obtain enough statistics. The data from the

Fig. I.2.1. Example of an experimental image, showing the wells in the 1D lattice with a spatial
distance of about 5.5 µm. Each lattice site contains an independent BEC. The separation of
the atoms in the |1, +1⟩ (top), |1, 0⟩ (middle) and |1, −1⟩ (bottom) states is due to the final
Stern-Gerlach-pulse. The image was taken via absorption imaging after an SCC-evolution
in F = 1 for 260ms. The total atom number in each of the central wells is approximately
500. In a specific well the same number of atoms in the states |1, +1⟩ and |1, −1⟩ is found
revealing the pair production and conservation of magnetisation during the SCC. The side
mode population fluctuates from well to well confirming the theoretical expectation of a
large variance in u�. The black lines represent the lattice.
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different lattice sites can in principle be averaged since they are independent from each other.
However, the gradient of the microwave power over the spatial extent of the lattice and the

varying atom number lead to different experimental conditions in the single wells. As men-
tioned before the value of 𝜆 depends on the total atom number N. This has a direct effect on the
speed of the SCC.The microwave power influences the Rabi-frequency affecting the energy shift
(Equ.I.1.45). This has to be taken into account in the analysis of the data by proper post selection
on a subset of lattice sites and atom number.
After the actual experimental sequence amagnetic Stern-Gerlach-pulse separates the magnetic

substates spatially for detection which is implemented via resonant absorption imaging. For
further details on the detection scheme and the extraction of the atom numbers from the images
see [41]. An example of an experimental image can be seen in Fig.I.2.1.

I.2.1. Atom number distribution in the course of SCC

In order to perform the spin changing collision experiments, the atoms are at first transferred
from the |1, −1⟩ to the |1, 0⟩ state with a resonant radio frequency 𝜋-pulse. To ensure an efficient
transfer to the state |1, 0⟩, this is done at a magnetic field of B = 9Gwhere the quadratic Zeeman
effect leads to a detuning of the transition |1, 0⟩ ↔ |1, +1⟩. Afterwards the magnetic field is
ramped down to the final value used in the experiment and a Stern-Gerlach pulse perpendicular
to the lattice axis is applied to remove the remaining atoms in the magnetic sensitive substates
|1, −1⟩ and |1, +1⟩.
As discussed in Sec.I.1.4, the finite value of the magnetic field suppresses the SCC due to the

quadratic Zeeman effect. For obtaining spin-changing collisions, we switch on the microwave
radiation for a certain time as described before and subsequently detect the atom numbers in the
three substates.

The figures I.2.2 a) - d) show the experimental probability distributions of the atom numbers
in the side modes in the course of an SCC-evolution for four different hold times. Figure I.2.2e
shows the complete time evolution of the experimental probability distribution. The red line
represents the mean atom number in the side modes.
At 𝑡 = 0ms the side modes are empty and the distribution has a peak at 𝜂 = n+ + n− = 0.

The broadening and the detection of negative atom numbers is due to finite detection noise of
our absorption imaging. The mean population of the side modes grows with increasing evolu-
tion time until 𝑡 ≈ 400ms. Also, the probability distribution changes significantly. It resembles
the one of a thermal state [17] with Gaussian detection noise for small evolution times (b)) and
broadens at the maximum (c)). Further increase of the evolution time leads to a back oscillation
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I.2. Experiment

(a) u� = 0ms. (b) u� = 240ms.

(c) u� = 360ms. (d) u� = 560ms.

(e) Histograms for all evolution times measured in this experimental run.

Fig. I.2.2. Atom number distribution in side modes during SCC-evolution. a)The side modes are initially
empty and the distribution has a peak at u� = n+ +n− = 0 which is broadened due to detection noise.
b), c) the probability “flows” to larger u� and the distribution broadens leading to fluctuations of the
side mode population. d) after the first maximum in the evolution the SCC are partially reversed
and a minimum in u� occurs again. The probability distribution narrows again. e) Histograms for all
evolution times measured in this experimental run. The colour codes the experimental probability
and the red line shows the expectation value of u�. One observes oscillating behaviour in the shape of
the distribution leading to increase and decrease of the variance (Δu�)2.
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I. Spin changing collisions

of the mean population and the probability distribution narrows again.

The oscillations of 𝜂 are in qualitative agreement with the theoretical expectations (Fig.I.1.6).
Since the total atom number in the experiment was about Ntot ≈ 450 the first maximum shows
a transfer to the side modes of less than 50% which is inconsistent with the theoretical curves
shown. This might be caused by the averaging over different wells and total atom numbers.
Nevertheless this has to be done in order to have enough statistics for the histograms. Other
reasons of the discrepancy may be the atom loss during the evolution or technical fluctuations,
leading to dephasing.
The measurements were performed at B = 0.91G. The Rabi frequency of the microwave

transition used for the dressing was Ω ≈ 5.5 kHz and the microwave detuning 𝛿 ≈ 197 kHz.
Varying the SCC-evolution time from 𝑡 = 0...800ms in steps of Δ𝑡 = 40ms and post selecting
the eight central wells gave a about 460 data points at each evolution time.

I.2.2. Conservation of magnetisation during spin changing collisions

The spin changing collisions produce correlated atom pairs. For this pairwise production, the
same number of atoms is expected in both states. The consequence is that the magnetisation
M = n− − n+ is conserved and its variance vanishes.
The red data points in Fig.I.2.3 show the variance of the magnetisation versus the mean popu-

lation produced in the side modes (⟨𝜂⟩ = ⟨n+ + n−⟩) for an experimental time evolution of spin
changing collisions similar to that discussed in the previous section. The red line is a linear fit
with a slope of 0.1 ± 0.1 and an intersection with the y-axis at 63 ± 7. This offset is due to detec-
tion noise. The constant value of the variance reveals its strong squeezing despite the broadening
in the distribution of the side mode population (Fig.I.2.2). This indicates that the atoms in the
side modes are produced in pairs.
Up to the first maximum a larger value of ⟨𝜂⟩ corresponds to a longer evolution time. How-

ever, with increasing evolution time atom loss corrupts the conservation of magnetisation and
therefore the variance increases. To account for this, the evolution time was post selected to be
below 300ms in the data shown.

The blue points show the same analysis for a coherent state. In this measurement the atoms
where initially kept in the |1, −1⟩ state and no Stern-Gerlach cleaning pulse was applied. A
first resonant microwave u�

2 -pulse between |1, −1⟩ ↔ |2, 0⟩ and a subsequent resonant 𝜋-pulse
between |2, 0⟩ ↔ |1, +1⟩ produced a coherent state in the two level system formed by the states
|1, −1⟩ and |1, +1⟩. A theoretical calculation for this coherent state gives

24



I.2. Experiment

Fig. I.2.3. Suppression of relative fluctuations with spin-changing collisions. The red data
points show the variance of the side mode population difference versus the mean of its sum
for states produced by spin-changing collisions. The fitted line has a slope of 0.1 ± 0.1,
revealing the strong squeezing in the variance of the magnetisation despite the observed
broadening in the distribution of the side mode population (Fig.I.2.2). The offset (63±7) is
mainly due to photon shot noise in our detection system.
The blue data points show the same for a coherent state in the two level system formed by
|1, −1⟩ and |1, +1⟩ produced by linear coupling. The fitted line has a slope of 1.1 ± 0.1,
which is in good agreement with the expected theoretical value of 1. The red data points
show the same for spin changing collisions.

(Δ(n− − n+))2 = ⟨n− + n+⟩ = ⟨𝜂⟩. (I.2.1)

The linear fit to the experimental data has a slope of 1.1±0.1 which is in good agreement with
the theory. Its offset of 64 ± 6 coincides with the one of the SCC measurement as expected.

In both cases the errors of the variances were estimated by resampling the data sets (Jackknife
method, [42]). For this resampling analysis the data sets for each atom number were divided into
sub ensembles. In each sub ensemble another data point was omitted yielding n samples each
with n − 1 data points. Let (ΔMSi

)
2
be the variance of the magnetisation for the ith sample Si.

The variance of (ΔM)2 for the entire data set was estimated with the formula

𝑣𝑎𝑟 ((ΔM)2) = n − 1
n

n
∑
i=1

((ΔMSi
)

2
− (ΔM)2)

2
(I.2.2)

The errors were then calculated via
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I. Spin changing collisions

Δ ((ΔM)2) = √𝑣𝑎𝑟 ((ΔM)2)
n − 1

(I.2.3)

This procedure was used in the entire thesis to calculate the errors of the variances.

I.2.3. SCC-evolution in F=2

The SCC-evolution in the F = 2 hyperfine manifold is comparable to the one in F = 1, but addi-
tional scattering channels have to be considered in the theoretical treatment and the scattering
lengths are different. A detailed discussion of the theory can be found in [28]. To perform the ex-
periment in F = 2, the atoms condensed in |1, −1⟩ were transferred via a resonant MW-𝜋-pulse
to the state |2, 0⟩. The same microwave transition as for the SCC in F = 1 was used for the
dressing.
The following measurement parameters were used:

• magnetic field: B = 1.45G

• Rabi-frequency: Ω ≈ 5.4 kHz

• detuning 𝛿: 32.5 kHz… 40.6 kHz in steps of Δ𝛿 = 0.3 kHz

• SCC-evolution time t: 1ms… 116ms in steps of Δ𝑡 = 5ms

The total atom number was post selected in the range Ntot = 200 … 600. Figure I.2.4a shows
the mean atom number in the side modes depending on the microwave detuning 𝛿 and the evo-
lution time t. Comparing the time scales of the SCC-evolution in F = 1 (Fig.I.2.2e) and F = 2
directly reveals the greater speed of the latter one, due to the larger coupling constant.

We observe three different detuning regions. For 𝛿 ≲ 33 kHz the side modes remain almost
empty throughout the whole evolution. In the range of 33 kHz ≲ 𝛿 ≲ 34 kHz the side mode
population reaches a maximum and levels out at a nearly constant value. For greater detuning 𝛿
the side mode population performs damped oscillations. Increasing 𝛿 leads to a decrease of the
maxima observed.
The three cases correspond to the red ( q

u� > 0), blue ( q
u� ≈ 0) and green ( q

u� < 0) curves in
Fig.I.1.6, respectively.
The outcome of a numerical simulation with the same magnetic field and an atom number of

N = 400 is shown in Fig.I.2.4b for the same detuning range. The parameters 𝜆 and Ω are adjusted
to fit to the experimental data. This results in 𝜆 ≈ 40mHz which is comparable to the value
found in [31]. However, the obtained theoretical Ω ≈ 4.45 kHz does not agree with independent
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I.2. Experiment

(a) SCC evolution depending on microwave de-
tuning, experiment in F = 2.

(b) SCC evolution depending on microwave de-
tuning, theory.

Fig. I.2.4. SCC evolution depending onmicrowave detuning inF = 2. The colour codes the total popula-
tion in the side modes. a) Shown is the dependence of the SCC-evolution on the microwave detuning
u�. For each detuning an SCC-evolution was measured with time steps of Δu� = 5ms. The two blue
horizontal lines are due to a programming mistake in the measurement script. b) For the theoretical
picture a total atom number of N = N̄exp = 400 and the experimental values of the magnetic field,
evolution time and detuning u� were used. The values for the Rabi frequency Ω (≈ 4.45 kHz) and
u� (≈ 40mHz) were adjusted to be consistent with the experimental result.

measurements on Ω by resonant Rabi flopping. The different values of Ω are probably due to
dressing of the |2, −1⟩ and |2, +1⟩ states instead of only the |2, 0⟩ state as assumed in the theory1.
The discrepancy between experiment (Fig.I.2.4a) and theory (Fig.I.2.4b) is due to similar reasons
as in the F = 1 case such as atom loss and dephasing (Sec.I.2.1). Due to dipole relaxation the
atom loss is larger in F = 2 and has therefore a stronger effect. The measured 1/e lifetime of the
total atom number in F = 2 (≈ 200ms) is significantly shorter than the one in F = 1 (≈ 15 s).
As previously mentioned, 𝜆 depends on the total atom number which changes in time. There-

fore the speed of the SCC changes during the progress. This is not taken into account in the
theory.

1See the discussion about the different polarisations of the microwave radiation in Sec.I.1.3.
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II. SU(1,1)-interferometer

Interferometry is the basis for precisionmeasurements of all kind such as gravimetry, detection of
gravitational waves, atomic clocks and precise rotation measurements [1, 43, 3, 4]. The underly-
ing principle is to use the phenomena of constructive and destructive interference of overlapping
waves.
A well known example is the Mach-Zehnder interferometer which is schematically shown in

Fig.II.0.1. In an optical interferometer of this kind an incoming light beam is split into two arms
by a first beam splitter BS1. After following through the different paths, both light beams are
overlapped again by a second beam splitter BS2 and the outcoming light beams are analysed.
The signals after BS2 show a sinusoidal dependence on the phase difference 𝜙 accumulated by
the light beams in the two different arms inside the interferometer.
The same principle is used in atom optics to realise interferometers. The counterpart to the

optical beam splitter is realised by a pulse of resonant electromagnetic radiation (Rabi-coupling)
acting on an atomic two level system. This leads to the redistribution of the atom number popula-
tion between the levels. The energy difference causes an evolution of the relative phase between
the two states analogue to the optical paths mentioned above. A second pulse corresponds to the
second beam splitter. The final atom number distribution between the two levels depends on the
relative phase. Due to the analogue concept we will further refer to the pulses as beam splitters.
The phase sensitivityΔ𝜙 is the parameter which characterises the quality of an interferometer.

For classical interferometers the best attainable limit of the phase sensitivity is called the standard
quantum limit (SQL)[9, 8] and reads

Δ𝜙SQL = 1√
N

(II.0.1)

where N is the number of particles inside the interferometer. By using quantum resources one
can surpass the SQL and approach the Heisenberg limit

Δ𝜙HL = 1
N

. (II.0.2)

One way of doing this is by feeding entangled quantum states into the input ports of the first
beam splitter [7, 9, 8, 44, 43].
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Fig. II.0.1. Mach-Zehnder interferometer. In the standard scheme one incoming beam (| ↑⟩in)
passes a first beam splitter BS1. After some phase evolution (u�↑, u�↓) the two paths are re-
combined by a second beam splitter BS2. The difference between the two outgoing signals
shows a sinusoidal dependence on the phase difference. In atomic optics the beam splitters
are realised by resonant Rabi coupling between the modes of an atomic two level system.
The well known Ramsey sequence [45] is realised in such a system.

In the following we will have a look at a different interferometric concept with three instead of
two atomic states. The former passive beam splitters will be replaced by parametric amplifiers.

In optics this is done with non linear crystals and has been realised recently by [11]. By shining
a strong laser beam of frequency fLaser into such a non linear crystal one can produce two beams
of entangled photon pairs with half the frequency of the laser fphoton = flaser/2 by a process
called parametric down conversion. The strong incoming laser beam is named the pump mode,
the two produced beams are the signal and idler mode. For this process to happen one has to
satisfy the phase matching condition between pump mode and crystal.

The process of spin changing collisions discussed in Ch.I is the atomic equivalent to the optical
parametric down conversion and we can use the SCC to build such an interferometer in atomic
optics.

In this chapter we will give a short revision of the theoretical description of the Mach Zehnder
interferometer in the framework of the rotation group SU(2). Afterwards, the introduction of
the SU(1,1)-group allows us to follow a quite similar approach to the new kind of interferometer
which uses the process of parametric down conversion. The insight gained so far will make it
possible to discuss experimental results in the non depletion regime. We then extend the theory
to the depleted regime and introduce the concept of the Fisher information 𝐹u� for analysing the
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II. SU(1,1)-interferometer

phase sensitivity Δ𝜙.

II.1. Mach-Zehnder interferometer in SU(2)-group
representation

Let us begin this chapter with a short look at the underlying theory of a Mach-Zehnder interfer-
ometer. Although this is widely known, we will shortly repeat the main aspects since we will use
a quite similar approach to the interferometer with the SCC later on. A more detailed treatment
can be found in [9, 46].
We consider a Mach-Zehnder interferometer as sketched in Fig.II.0.1. The two incoming ports

| ↑⟩ and | ↓⟩ form a two level system for each particle entering the interferometer. A general
state of this system can be characterised by a complex number 𝛼u�,u� and written in the form

∣𝛼u�,u�⟩ = cos 𝜃
2

| ↑⟩ + eu�u� sin 𝜃
2

| ↓⟩. (II.1.1)

Here cos2 u�
2 and sin2 u�

2 are the probabilities to find one particle in the | ↑⟩ respectively | ↓⟩ state.
That is, if in totalN = n↑ + n↓ particles enter the interferometer we will find a mean difference of
the population between the two levels of n↑ − n↓ = N cos θ before the first beam splitter. It has
to be mentioned that this is only true as long as the single particles are completely uncorrelated
and the N-particle state can be written as a product of the N single-particle states Equ.II.1.1.
The whole N-particle system can be expressed on the surface of a so called generalised Bloch
sphere[47] with radius N/2, where 𝜃 is the polar and 𝜙 the azimuthal angle (Fig.II.1.1a).
The states ∣𝛼u�,u�⟩ are called coherent spin states (CSS).They form a basis but are not orthogonal

to each other [48].
We now connect the action of the two beam splitters and the phase evolution in between with

the SU(2)-group of rotations. The SU(2)-group is defined by its commutation relations

[ ̂Jx, ̂Jy] = i ̂Jz , [ ̂Jy, ̂Jz] = i ̂Jx, [ ̂Jz , ̂Jx] = i ̂Jy (II.1.2)

which are fulfilled by the angular momentum operators

̂Jx = 1
2

( ̂a†
↑ ̂a↓ + ̂a†

↓ ̂a↑ ) , ̂Jy = − 𝑖
2

( ̂a†
↑ ̂a↓ − ̂a†

↓ ̂a↑ ) , ̂Jz = 1
2

( ̂a†
↑ ̂a↑ − ̂a†

↓ ̂a↓ ) (II.1.3)

with the creation and annihilation operators for the | ↑⟩ and | ↓⟩ states ̂a↑ , ̂a↓ , ̂a†
↑ and ̂a†

↓ satisfying
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II.1. Mach-Zehnder interferometer in SU(2)-group representation

the bosonic commutation relations. The operator

N̂ = ̂a†
↑ ̂a↑ + ̂a†

↓ ̂a↓ (II.1.4)

is the sum of the particles in the | ↑⟩ and | ↓⟩ state which commutes with all operators in Equ.II.1.3
and therefore it is constant in time for Hamiltonians build out of such angular momentum oper-
ators.

Lastly we introduce the raising and lowering operator

̂J+ = ̂Jx + i ̂Jy = ̂a†
↑ ̂a↓ , ̂J− = ̂Jx − i ̂Jy = ̂a†

↓ ̂a↑ (II.1.5)

which can be used to construct any coherent spin state with 𝛼 = −u�
2e−iu� via the displacement

operator [27, 49]

∣𝛼u�,u�⟩ = eu�Ĵ+−u�∗Ĵ−⏟⏟⏟⏟⏟
displacement operator

| ↑⟩. (II.1.6)

As mentioned before the state ∣𝛼u�,u�⟩ can be represented on a generalised Bloch sphere. The
coordinates of its expectation value are calculated with the newly defined operators and read

⃗𝛼u�,u� =
⎛⎜⎜⎜⎜
⎝

⟨𝛼| ̂Jx |𝛼⟩
⟨𝛼| ̂Jy |𝛼⟩
⟨𝛼| ̂Jz |𝛼⟩

⎞⎟⎟⎟⎟
⎠

= 𝑁
2

⎛⎜⎜⎜
⎝

sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

⎞⎟⎟⎟
⎠

. (II.1.7)

Note that 2⟨ ̂Jz⟩ is the population difference previously mentioned. This is the experimentally
accessible quantity since it can be attained from counting the number of particles in the two
modes.

Lets consider a general state described by the density matrix ̂𝜌. The Husimi or Q distribution
measures the overlap of this state with a coherent state ∣𝛼u�,u�⟩[27]. It is calculated by

𝑄(𝛼u�,u�) = ⟨𝛼u�,u�∣ ̂𝜌 ∣𝛼u�,u�⟩ (II.1.8)

and can be used to visualise the probability contributions of all coherent states to the particular
state described by 𝜌. Figure II.1.1 shows the distributions of a CSS and a number state plotted
on generalised Bloch sphere. Although the width of the number state in z-direction is zero, we
see it with a finite width. The reason is that 𝑄(𝛼u�,u�) ≥ 0 and does not reveal any kind of phase
factor in front of the contributing CSS.
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II. SU(1,1)-interferometer

(a) SU(2)-coherent state (b) Number state

Fig. II.1.1. a) SU(2)-coherent state and b) number state for N = 400 atoms in Husimi representation on
a generalised Bloch sphere. The colour shows the overlap with the coherent states at the respective
positions on the Bloch sphere. The coherent state ∣u�u�,u�⟩ has a narrow distribution in the relative
phase peaked at the coordinates (u�, u�). In contrast to this, the phase of the number state is com-
pletely undetermined. However, one has to keep in mind that a number state has no fluctuations
in z-direction, which is masked in the Husimi representation due to the convolution with coherent
states. Increasing N leads to a narrowing of the distributions [50].

We are interested in how the expectation values ⟨ ̂Jκ⟩, with 𝜅 = x, y, z, change under the
transformation

⎛⎜⎜⎜⎜
⎝

̂Jx
̂Jy
̂Jz

⎞⎟⎟⎟⎟
⎠out

= Û
†
κ

⎛⎜⎜⎜⎜
⎝

̂Jx
̂Jy
̂Jz

⎞⎟⎟⎟⎟
⎠in

Ûκ with Ûκ = e−iĴκu�. (II.1.9)

To see this we look at first at the transformations of the ̂a↑ and ̂a↓ which can be expressed in
matrix notation in the following way

(
̂a↑

̂a↓
)

out

= Sκ (
̂a↑

̂a↓
)

in

. (II.1.10)

To obtain the matrices Sκ one calculates ̂a out = Û
†
κ ̂a inÛκ and compares the result to ( ̂a↑ , ̂a↓ )in.

The matrices read
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II.1. Mach-Zehnder interferometer in SU(2)-group representation

Sx(𝛾) = (
cos (u�

2 ) −i sin (u�
2 )

−i sin (u�
2 ) cos (u�

2 )
) Sy(𝛾) = (

cos (u�
2 ) sin (u�

2 )
sin (u�

2 ) cos (u�
2 )

)

Sz(𝛾) = (
e−i u�

2 0
0 ei u�

2
) .

(II.1.11)

With theses one can calculate the transformed ̂Jκ,out (Equ.II.1.9) and their expectation values.

As an example we look at the effect of Ûx and get

⎛⎜⎜⎜⎜
⎝

⟨ ̂Jx⟩
⟨ ̂Jy⟩
⟨ ̂Jz⟩

⎞⎟⎟⎟⎟
⎠ out

=
⎛⎜⎜⎜
⎝

1 0 0
0 cos(𝛾) − sin(𝛾)
0 sin(𝛾) cos(𝛾)

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

⟨ ̂Jx⟩
⟨ ̂Jy⟩
⟨ ̂Jz⟩

⎞⎟⎟⎟⎟
⎠in

⟺
⎛⎜⎜⎜⎜
⎝

̂Jx
̂Jy
̂Jz

⎞⎟⎟⎟⎟
⎠ out

= eiĴxu�
⎛⎜⎜⎜⎜
⎝

̂Jx
̂Jy
̂Jz

⎞⎟⎟⎟⎟
⎠in

e−iĴxu�

(II.1.12)

which is just a rotation about the axis defined by ⟨Jx⟩. Analogues expressions are found for the
other two operators and we see that the ̂Jκ rotate the state around the corresponding 𝜅-axis in
the Bloch sphere picture.

How this is connected to the interferometer will be discussed in the following. A beam splitter
redistributes the particles between the two levels. This can be written in the form

ĤBS = Ω
2

(e−u�u� ̂a†
↑ ̂a↓ + eu�u� ̂a†

↓ ̂a↑ ) = Ω
2

(e−iu� ̂J+ + eiu� ̂J−)

= Ω (cos (𝜑) ̂Jx + sin (𝜑) ̂Jy)
(II.1.13)

and the time evolution operator for the beam splitter is Û = e−iĤBSu�. The operators ̂a↑ and ̂a↓

transform like

(
̂a↑

̂a↓
)

out

= (
cos(u�

2 ) −ie−iu� sin(u�
2 )

−ieiu� sin(u�
2 ) cos(u�

2 )
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
TBS

(
̂a↑

̂a↓
)

in

(II.1.14)

with 𝛾 = Ω𝑡. The matrix can be factorized into
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II. SU(1,1)-interferometer

TBS = (
e−i u�

2 0
0 e+i u�

2
) (

cos (u�
2 ) −i sin (u�

2 )
−i sin (u�

2 ) cos (u�
2 )

) (
e+i u�

2 0
0 e−i u�

2
) (II.1.15)

which is a sequence of three rotations. The first one is around the z-axis by an angle−𝜑, followed
by a rotation around the x-axis by an angle 𝛾 and the last one around the z-axis again but with the
angle +𝜑. Therefore a beam splitter performs rotations of the state on the Bloch sphere around
an axis which is defined by 𝜑 and lies in the x-y-plane. The time evolution operator becomes Ûx

for 𝜑 = 0 and Ûy for 𝜑 = u�
2 .

A comparison of Equ.II.1.13 and Equ.II.1.6 shows that Û = e−iĤBSu� generates the coherent
spin state ∣𝛼u�,u�⟩ when acting on ∣𝛼0,0⟩ = | ↑⟩ with 𝜃 = Ω𝑡, 𝜙 = 𝜑 − u�

2 . This is a CSS achieved
from the state | ↑⟩ by a rotation with the angle 𝜃 around an axis in the x-y-plane.
Let 𝜔0 = 𝜔↑ − 𝜔↓ be the energy difference between the two states during the phase evolution.

The Hamiltonian reads

Ĥϕ = 𝜔↑ ̂a†
↑ ̂a↑ + 𝜔↓ ̂a†

↓ ̂a↓ = 𝜔0
2

( ̂a†
↑ ̂a↑ − ̂a†

↓ ̂a↓ ) = 𝜔0
̂Jz (II.1.16)

and we see that the phase evolution corresponds to a rotation around the z-axis.
As was mentioned before the total particle number operator N̂ commutes with the ̂Jκ and

its expectation value is not altered by the time evolution operators build with the Hamiltonians
ĤBS and Ĥϕ. Therefore the total particle number is conserved which is of course expected for
the Mach-Zehnder interferometer.

A standard interferometric sequence is shown on the Bloch sphere in Fig.II.1.2 and reads

|𝛼⟩final = e−iĴx
u�
2 e−iĴzu� e−iĴx

u�
2 ∣𝛼0,0⟩

initial
. (II.1.17)

We start with all N particles in the ∣𝛼0,0⟩ = | ↑⟩ statewhich is the same as saying that all particles
enter the interferometer through one port. The first beam splitter rotates the state around the
x-axis by u�

2 into an equal superposition of | ↑⟩ and | ↓⟩ which corresponds to ∣𝛼 u�
2 ,0⟩. During

the phase evolution the state is rotated around the z-axis by 𝜙 and becomes ∣𝛼 u�
2 ,u�⟩. The second

beam splitter rotates it again by u�
2 around the x-axis 1. The final state depends on the phase 𝜙.

For 𝜙 = 0 it is ∣𝛼u�,0⟩ = | ↓⟩, for 𝜙 = 𝜋 the initial state ∣𝛼0,0⟩ = | ↑⟩ is recovered. The operator
̂Jz transforms as [9]

1This is equivalent to the statement that the phase evolution does not affect the state but leads to a phase factor
e± u�

2 in front of the â↑ and â↓ . In this picture the rotation axis of the second beam splitter changes, which yields the
same result
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II.1. Mach-Zehnder interferometer in SU(2)-group representation

(a) Initial state (b) First rotation/beam splitter BS1

(c) Phase evolution (d) Second rotation/beam splitterBS2 and final
state

Fig. II.1.2. Mach-Zehnder interferometer sequence on the Bloch sphere. Starting with all atoms in | ↑⟩
(a) the first rotation around the x-axis by u� = − u�

2 brings the system in an equal superposition of | ↑⟩
and | ↓⟩ (b). After a phase evolution (here u� = − u�

4 , c) a second rotation around the x-axis is done
and the projection on the z-axis (half of the population imbalance between | ↑⟩ and | ↓⟩) is measured.
The red line shows the evolution of (⟨Ĵx⟩, ⟨Ĵy⟩, ⟨Ĵz⟩) during the sequence.
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II. SU(1,1)-interferometer

̂Jz,out = sin(𝜙) ̂Jx,in − cos(𝜙) ̂Jz,in (II.1.18)

With this we can calculate ⟨ ̂Jz⟩ and its variance (Δ⟨ ̂Jz⟩)
2

= ⟨ ̂J
2
u�⟩ − ⟨ ̂Jz⟩2 between the two

modes at the output of the interferometer. They read

⟨ ̂Jz⟩(𝜙) = −N
2

cos(𝜙) (Δ⟨ ̂Jz⟩)
2

= N
4

sin2(𝜙). (II.1.19)

Using error propagation the equation for the phase sensitivity is

(Δ𝜙)2 =
(Δ⟨ ̂Jz⟩)

2

(u�⟨Ĵz⟩
u�u� )

2 = 1
N

(II.1.20)

which is the standard quantum or shot noise limit. It can be surpassed by feeding entangled
states into the input ports or additional operations inside the interferometer as long as external
perturbations and detection noise are small.

In this section we introduced the group representation of a Mach-Zehnder interferometer and
had a look at how the beam splitter and phase evolution can be visualized on the Bloch sphere.

II.2. Introduction to SU(1,1)

As we have seen the Mach-Zehnder interferometer can be described by using the SU(2)-group. If
we replace the passive beam splitter by parametric amplifiers (active beam splitter), this descrip-
tion is no longer valid and we obtain an active SU(1,1)-interferometer [9].
It is described by a three mode system with the modes |0⟩, | ↑⟩ and | ↓⟩. They are called the
pump, signal and idler mode respectively. A parametric amplifier redistributes the particles from
the |0⟩ to | ↑⟩ and | ↓⟩ and vice versa. As described in Ch.I the SCC lead to a redistribution of the
atoms between the |1, 0⟩ state and the side modes |1, −1⟩, |1, +1⟩ with a non-linear growth of
the side mode population. Thus the SCC correspond to a parametric amplifier in the atom optics
and we identify the |1, 0⟩, |1, −1⟩ and |1, +1⟩ with the pump, signal and idler mode respectively.

In this section we introduce the SU(1,1)-group, its operators and a possible way to visualize
them. We follow [9, 51], but the SU(1,1)-group and its representation is widely discussed, for
instance in [52, 53].

One way to write the defining commutation relations of the SU(1,1)-group is
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II.2. Introduction to SU(1,1)

[K̂x, K̂y] = −iK̂z [K̂y, K̂z] = iK̂x [K̂z , K̂x] = iK̂y (II.2.1)

with the operators

K̂x = 1
2

( ̂a†
↑ ̂a†

↓ + ̂a↑ ̂a↓ ) K̂y = − 𝑖
2

( ̂a†
↑ ̂a†

↓ − ̂a↑ ̂a↓ ) K̂z = 1
2

( ̂a†
↑ ̂a↑ + ̂a↓ ̂a†

↓ ) (II.2.2)

where the ̂a↑ and ̂a↓ fulfil the bosonic commutation relations and represent the signal and idler
modes of the SU(1,1)-interferometer. We further define in analogy to Ch.I the operators

η̂ = ̂a†
↑ ̂a↑ + ̂a†

↓ ̂a↓ M̂ = ̂a†
↑ ̂a↑ − ̂a†

↓ ̂a↓ (II.2.3)

which are the sum and difference of the population in the | ↑⟩ and | ↓⟩ states. As in Equ.I.1.18
we call M̂ the magnetisation. The K̂z operator can be written in the form

K̂z = 1
2

( ̂a†
↑ ̂a↑ + ̂a†

↓ ̂a↓ + 1
2

) = 1
2

(η̂ + 1
2

) (II.2.4)

and since it does not commutewith the other two operators K̂x and K̂y, neither does 𝜂. Therefore
the sum of the population in the two modes is not conserved for Hamiltonians build out of these
operators. However, the particle number difference M̂ does commute with these operators and
is a conserved quantity. This is contrary to the case of the SU(2)-group where it is just the other
way around.

Further we define the raising and lowering operators

K̂+ = K̂x + iK̂y = ̂a†
↑ ̂a†

↓ K̂− = K̂x − iK̂y = ̂a↑ ̂a↓ (II.2.5)

which act on the number states |𝑀, 𝜂⟩ in the following way

K̂+ |𝑀, 𝜂⟩ = √(𝜂
2

+ 1)
2

− (𝑀
2

)
2

|𝑀, 𝜂 + 2⟩

K̂− |𝑀, 𝜂⟩ = √(𝜂
2

)
2

− (𝑀
2

)
2

|𝑀, 𝜂 − 2⟩ .

(II.2.6)

Note that the number states are eigenstates of the operators ̂Jz and K̂z with
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II. SU(1,1)-interferometer

̂Jz |𝑀, 𝜂⟩ = 𝑀
2

|𝑀, 𝜂⟩

K̂z |𝑀, 𝜂⟩ = 1
2

(𝜂 + 1) |𝑀, 𝜂⟩ .
(II.2.7)

II.2.1. Action of Kx, Ky, Kz

In the same way as we used the ̂Jκ for the SU(2)-Mach-Zehnder interferometer we will describe
the single components of the ideal SU(1,1)-interferometer in terms of the previously introduced
operators K̂κ. Analogue to the procedure before we are interested in the transformation of the
K̂κ operators and their expectation values

⎛⎜⎜⎜⎜
⎝

K̂x

K̂y

K̂z

⎞⎟⎟⎟⎟
⎠out

= Û
†
κ

⎛⎜⎜⎜⎜
⎝

K̂x

K̂y

K̂z

⎞⎟⎟⎟⎟
⎠in

Ûκ with Ûκ = e−iK̂κu�. (II.2.8)

The transformation of the bosonic operators ̂a↑ and ̂a↓ reads in matrix form

(
̂a↑

̂a†
↓
)

out

= Tu� (
̂a↑

̂a†
↓
)

in

(II.2.9)

and we find for Ûx = e−iK̂xu� and Ûy = e−iK̂yu� the matrices

Tx = (
cosh (u�

2 ) −i sinh (u�
2 )

i sinh (u�
2 ) cosh (u�

2 )
) , Ty = (

cosh (u�
2 ) − sinh (u�

2 )
− sinh (u�

2 ) cosh (u�
2 )

) (II.2.10)

and for Ûz = e−iK̂zu�

Tz = (
e−i u�

2 0
0 ei u�

2
) . (II.2.11)

As expected, these differ from the transformation matrices for the SU(2)-group in Equ.II.1.11. The
outgoing operators ̂a↑ and ̂a†

↓ are now composed from the corresponding lowering and raising
operators. The trigonometric functions are replaced by their hyperbolic counterparts. Alsoworth
mentioning is that the transformation by Ûz leads to a negative (positive) sign in the phase factor
for both lowering (raising) operators. With these results the outgoing expectation values for a
transformation with Ûx read [9]
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II.2. Introduction to SU(1,1)

⎛⎜⎜⎜⎜
⎝

⟨K̂x⟩
⟨K̂y⟩
⟨K̂z⟩

⎞⎟⎟⎟⎟
⎠ out

=
⎛⎜⎜⎜
⎝

1 0 0
0 cosh(𝛽) sinh(𝛽)
0 sinh(𝛽) cosh(𝛽)

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

⟨K̂x⟩
⟨K̂y⟩
⟨K̂z⟩

⎞⎟⎟⎟⎟
⎠in

⟺
⎛⎜⎜⎜⎜
⎝

K̂x

K̂y

K̂z

⎞⎟⎟⎟⎟
⎠ out

= eiK̂xu�
⎛⎜⎜⎜⎜
⎝

K̂x

K̂y

K̂z

⎞⎟⎟⎟⎟
⎠in

e−iK̂xu�.

(II.2.12)

This is equivalent to a Lorentz boost along the y-axis. The Ûy results in a similar expression

whilst the Ûz gives a rotation around the z-axis.

⎛⎜⎜⎜⎜
⎝

⟨K̂x⟩
⟨K̂y⟩
⟨K̂z⟩

⎞⎟⎟⎟⎟
⎠ out

=
⎛⎜⎜⎜
⎝

cos(𝜙) − sin(𝜙) 0
sin(𝜙) cos(𝜙) 0

0 0 0

⎞⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

⟨K̂x⟩
⟨K̂y⟩
⟨K̂z⟩

⎞⎟⎟⎟⎟
⎠in

⟺
⎛⎜⎜⎜⎜
⎝

K̂x

K̂y

K̂z

⎞⎟⎟⎟⎟
⎠out

= eiK̂zu�
⎛⎜⎜⎜⎜
⎝

K̂x

K̂y

K̂z

⎞⎟⎟⎟⎟
⎠in

e−iK̂zu�

(II.2.13)

A boost along any direction in the x-y-plane is achieved in a similar way as rotations around
any axis were realised for the SU(2)-group (Equ.II.1.15). The matrix reads

Tboost = (
e−i u�

2 0
0 e+i u�

2
) (

cosh (u�
2 ) −i sinh (u�

2 )
i sinh (u�

2 ) cosh (u�
2 )

) (
e+i u�

2 0
0 e−i u�

2
)

= (
cosh (u�

2 ) −ie−iu� sinh (u�
2 )

ieiu� sinh (u�
2 ) cosh (u�

2 )
)

(II.2.14)

The Hamiltonian which leads to this transformation matrix is

Ĥboost (𝜆, 𝜑) = 𝜆
2

(e−iu� ̂a†
↑ ̂a†

↓ + eiu� ̂a↑ ̂a↓ ) = 𝜆
2

(e−iu�K̂+ + eiu�K̂−)

= 𝜆 (cos (𝜑) K̂x + sin (𝜑) K̂y)
(II.2.15)
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II. SU(1,1)-interferometer

with 𝛽 = 𝜆𝑡 and Ûboost = e−iĤboostu�.

II.2.2. Coherent states of SU(1,1)-group and visualisation on an hyperbolic
surface

The Bloch sphere provides a nice representation of the SU(2)-Mach-Zehnder interferometer in
terms of rotations of coherent spin states on the sphere. In this section we want to look at the
coherent states of the SU(1,1)-group and introduce a similar way to visualise the boosts and
rotations of the SU(1,1)-group.
The minimal value for 𝜂 is |M|. We define ∣𝛼u�,u�⟩ to be the final state after a boost along the

x-axis with strength 𝛽 and a subsequent rotation around the z-axis by an angle 𝜙 for an initial
number state |M, η = |M|⟩. That is

∣𝛼u�,u�⟩
M

= e−iK̂zu� e−iK̂yu� |M, η = |M|⟩ (II.2.16)

= e−iĤboost(u�,u�)u� |M, η = |M|⟩ (II.2.17)

where we used the Hamiltonian Ĥboost from Equ.II.2.15 with 𝜙 = 𝜑 − u�
2 and 𝛽 = 𝜆𝑡. For a

state |M, η = |M|⟩ the expectation value of K̂z is |M|+1
2 while those for K̂x and K̂y vanish. The

expectation values after a time evolution given by Ûboost = e−iĤboost(u�,u�)u� are

⃗𝛼u�,u� =
⎛⎜⎜⎜⎜
⎝

⟨K̂x⟩
⟨K̂y⟩
⟨K̂z⟩

⎞⎟⎟⎟⎟
⎠out

= ⟨K̂z⟩in
⎛⎜⎜⎜
⎝

sinh (𝛽) cos (𝜙)
sinh (𝛽) sin (𝜙)

cosh (𝛽)

⎞⎟⎟⎟
⎠

⟺
⎛⎜⎜⎜⎜
⎝

K̂x

K̂y

K̂z

⎞⎟⎟⎟⎟
⎠out

= eiĤboost(u�,u�)u�
⎛⎜⎜⎜
⎝

0
0

K̂z

⎞⎟⎟⎟
⎠in

e−iĤboost(u�,u�)u�.

(II.2.18)

These vectors are the coordinates for points on an hyperbolic surface. The exponent in Equ.II.2.17
reads

−i𝜆𝑡
2

(e−iu�K̂+ + eiu�K̂−) = −𝛽
2

e−iu�K̂+ + 𝛽
2

eiu�K̂−

= 𝜉K̂+ − 𝜉∗K̂−

(II.2.19)
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with 𝜙 = 𝜑 − u�
2 and 𝜉 = −u�

2 e−iu�. Using this Equ.II.2.17 becomes

∣𝛼u�,u�⟩
M

= eu�K̂+−u�∗K̂− |M, η = |M|⟩ . (II.2.20)

which is the analogue to Equ.II.1.6 and we see that the ∣𝛼u�,u�⟩ are the coherent states of the
SU(1,1)-group ([51, 54]) which are not orthogonal but form a basis. We set k = |M|+1

2 and
μ = k + n ⇒ η = 2μ − 1 where n is an integer number equal or larger zero. The number states
can then be written in the form

|M, η⟩ ⟶ |k, μ⟩ = |k, k + n⟩. (II.2.21)

The previous equation becomes [49]

∣𝛼u�,u�⟩
M

= |𝜁⟩ = eu�K̂+−u�∗K̂− |k, k⟩ = (1 − |ζ|2)k eζK̂+ |k, k⟩

= (1 − |ζ|2)k
∞
∑
n=0

√Γ (n + 2k)
n! Γ (2k)

ζn |k, k + n⟩
(II.2.22)

with 𝜁 = − tanh (u�
2 ) e−iu� and Γ being the gamma function. Analogue to the Husimi dis-

tribution (Equ.II.1.8) calculated with the CSS on the Bloch sphere for the SU(2), we can know
use the coherent states of the SU(1,1)-group to visualise their contributions to a particular state
described by the density matrix ̂𝜌 on the hyperbolic surface via

𝑄(𝛼u�,u�) = ⟨𝛼u�,u�∣ ̂𝜌 ∣𝛼u�,u�⟩ . (II.2.23)

Figure II.2.1 and II.2.2 show this for coherent and number states with differing 𝜂.
In this section we introduced the SU(1,1)-group and their defining operators K̂x, K̂y and K̂z .

The transformation of their expectation values for evolution operators of the kind Ûκ = e−iK̂κu�

was discussed and we found that the coherent states ∣𝛼u�,u�⟩ of the SU(1,1)-group are created by
a Lorentz-boost of strength 𝛽 along the x-axis and a subsequent rotation around the z-axis by an
angle 𝜙. Theses states can be represented on an hyperbolic surface which is the SU(1,1) analogue
to the Bloch sphere.
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II. SU(1,1)-interferometer

(a) SU(1,1)-coherent state with ⟨u�⟩ = 2 (b) Number state with ⟨u�⟩ = 2

Fig. II.2.1. a) SU(1,1)-coherent and b) number state both with ⟨u�⟩ = 2 in Husimi representation on the
hyperbolic surface. The colour codes the overlap with the SU(1,1)-coherent states at the respective
positions on the hyperbolic surface and the projection onto the x-y-plane. In contrast to the Bloch
sphere the z-axis is a measure for the population sum u� since ⟨K̂z⟩ = 1

2 (⟨u�⟩ + 1).
a) Analogue to the SU(2) case the coherent state ∣u�u�,u�⟩ has an angle u� relative to the x-axis. The
z-component is given by a Lorentz-boost with strength u�. The intersection of the horizontal line at
u� = 1.5 with the surface shows the position (⟨K̂x⟩, ⟨K̂y⟩, ⟨K̂z⟩) of the ∣u�u�,u�⟩ state. In contrast to
the coherent state of the SU(2)-group on the Bloch sphere the Husimi distribution is no longer radially
symmetric but stretches out far beyond the actual expectation value of K̂z . For comparison the same
colour scale as in Fig.II.1.1a was chosen.
b) Number state on the hyperbolic surface with ⟨u�⟩ = 2. The x-y-projection shows that the phase is
again completely undetermined. It shall be emphasized again that a number state has no fluctuations
in the z-direction.
The respective insets have the same colour scale and show the full extent of the Husimi distributions.
The numerical calculations were performed in the M = 0 manifold and u� was chosen such that
⟨u�⟩ = 2, that is ⟨K̂z⟩ = 1.5.
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(a) SU(1,1)-coherent state with ⟨u�⟩ = 8 (b) Number state with ⟨u�⟩ = 8

Fig. II.2.2. SU(1,1)-coherent (a) and number state (b) with ⟨u�⟩ = 8 in Husimi representation on the hy-
perbolic surface. The figures show the same as in Fig.II.2.1 but with ⟨u�⟩ = 8. Note that the distribution
of the coherent state stretches now further up but is narrower in the u�-direction.

II.3. The ideal SU(1,1)-interferometer

In this section we consider the SU(1,1)-interferometer within the framework of the previously
introduced SU(1,1)-group. As mentioned before the beam splitters in the Mach-Zehnder inter-
ferometer are replaced with parametric amplifiers (PA) which are realised by spin changing colli-
sions in atom optics. We followmainly [10]. Figure II.3.1 shows the interferometer schematically.
The |0⟩ state is called the pumpmode, | ↑⟩ and | ↓⟩ the signal and idlermode respectively (Sec.II.2).

A constant magnetic field is applied in the experiment and the resulting energy difference
between the |0⟩ and the two side modes hinders the SCC (Sec.I.1.4). The pump beam “passing
through” the parametric amplifier corresponds to shining in suitable microwave radiation and
thereby shifting the energy of the |0⟩ state to the same level as the two side modes. Now the SCC
are energetically allowed and two atoms in the |0⟩ state can scatter into the | ↑⟩ and | ↓⟩ state
and - if the side modes are already populated - vice versa.

II.3.1. Interferometric sequence

Let us start with the theoretical description of the interferometer. As we have seen in Ch.I the
SCC are described by the Hamiltonian Equ.I.1.49. To get an analytic expression for the phase
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II. SU(1,1)-interferometer

Fig. II.3.1. SU(1,1) interferometer. In the sequence employed in the experiment, the incoming
signal and idler modes (| ↑⟩in, | ↓⟩in) are empty. When the pump (|0⟩in) passes through
the first parametric amplifier correlated particle pairs are produced in the side modes. After
mode-dependent phase evolution the three beams pass a second parametric amplifier. The
particle sum in | ↑⟩out and | ↓⟩out shows a sinusoidal dependence on the relative phases
between the pump, signal and idler modes [9, 55].
In our experiments the three modes are the magnetic substates in the internal spin degree
of freedom in the F = 1 hyperfine level of the electronic ground state of 87Rb. The beams
“passing through” a parametric amplifier corresponds to matching the energies of the |0⟩,
| ↑⟩ and | ↓⟩ states with microwave dressing.

sensitivityΔ𝜙 we assume to stay in the non-depletion limit throughout the whole interferometric
sequence. This holds for large atom numbers, a suitable chosen q and short evolution times for
the SCC such that n0 ≈ Ntot and 2n̂0 − 1 + q

u� ≈ 0.
With this we can approximate the Hamiltonian by

ĤPA = 2𝜆 ( ̂a0 ̂a0 ̂a†
↑ ̂a†

↓ + ̂a†
0 ̂a†

0 ̂a↑ ̂a↓ ) ≈ 2𝜆n0 ( ̂a†
↑ ̂a†

↓ + ̂a↑ ̂a↓ )

= 4𝜆n0K̂x

(II.3.1)

where we replaced ̂a0 ≈ √n0e−iu�0 and ̂a†
0 ≈ √n0eiu�0 [56] and set the initial phase of the pump

mode 𝜙0 = 0. If we set the |0⟩ mode at zero energy and use 𝜔 = 𝜔↑ = 𝜔↓ since both side modes
have the same energy, the Hamiltonian during the phase evolution reads

Ĥϕ = 𝜔↑ ̂a†
↑ ̂a↑ + 𝜔0 ̂a†

0 ̂a0 + 𝜔↓ ̂a†
↓ ̂a↓

u�0=0
= 𝜔 ( ̂a†

↑ ̂a↑ + ̂a†
↓ ̂a↓ )

= 2𝜔K̂z .
(II.3.2)
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Comparing this with Equ.II.2.15 we see that the S(1,1)-interferometer is a sequence of two boosts
along the y-axis with strength 𝛽 and an intermediate rotation around the z-axis by an angle 𝜙.
The interferometer is shown in Fig.II.3.1 and the corresponding sequence reads

|𝛼⟩final = e−iK̂xu� e−iK̂zu� e−iK̂xu� ∣𝛼0,0⟩
initial

(II.3.3)

with 𝛽 = 4𝜆n0𝑡SCC ⋅ 2𝜋

𝜙 = 2𝜔𝑡phase.

Figure II.3.2 shows the interferometric sequence as boosts and rotation on the hyperbolic surface.
The atom number in the pump mode n0 is close to the total atom number since we are in the
non-depletion limit. The parameter 𝜆 is determined by the trap geometry and n0. Since these
are supposed to be constants, the boost strength 𝛽 depends only on the time 𝑡 for which the
microwave dressing is applied. 𝜔 is two times the energy difference between pump mode and
side modes and also constant during the sequence. Therefore the phase 𝜙 depends only on the
time 𝑡phase between the two boosts. It is scanned by changing the time 𝑡phase between the two
periods of spin changing collisions, lasting for time 𝑡.

Note that in contrast to the Mach-Zehnder interferometer the rotation angle here is given by
the sum of the phases of the two side modes assuming 𝜙0 = 0. Using Equ.II.2.10 and Equ.II.2.11
the transformation of the ̂a↑ and ̂a†

↓ reads

(
̂a↑

̂a†
↓
)

final

= Tx ⋅ Tz ⋅ Tx⏟⏟⏟⏟⏟
TSU(1,1)

(
̂a↑

̂a†
↓
)

initial

(II.3.4)

with the transformation matrix

TSU(1,1) = (
𝜇2e−i u�

2 + 𝜈2ei u�
2 −i2𝜇𝜈 cos (u�

2 )
i2𝜇𝜈 cos (u�

2 ) 𝜇2ei u�
2 + 𝜈2e−i u�

2
) (II.3.5)

where we used 𝜇 = cosh (u�
2 ) and 𝜈 = sinh (u�

2 ). We want to know how the atom number in
| ↑⟩ and | ↓⟩ at the output of the interferometer depends on the phase 𝜙. Adopting the notation
from Ch.I we will call the side mode population at the input, inside and at the output of the
interferometer 𝜂in, n and 𝜂 respectively.

We know from Equ.II.2.18 that for an input state ∣𝛼0,0⟩ (𝜂in = |M|) the expectation value of

K̂z after the first boost is 1
2 (𝜂in + 1) cosh 𝛽 and therefore the atom number in the side modes

inside the interferometer is
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II. SU(1,1)-interferometer

(a) Initial state (b) First boost/parametric amplifier PA1

(c) Phase evolution (d) Second boost/parametric amplifier PA2
and final state

Fig. II.3.2. The SU(1,1) interferometer on the hyperbolic surface. The colour code is the same as in-
Fig.II.2.1a. a)The initial state has no atoms in the side modes and ⟨K̂z⟩ = 1

2 . Note that this is number
state and it has no fluctuations in the z-direction. As mentioned before this can not be revealed in the
Husimi representation. b) A first boost with strength u� is performed along the y-axis. c) The phase
evolution corresponds to a rotation around the z-axis by an angle u�. d ) Finally, the state is boosted in
the same direction and with the same strength as before. The readout is the sum of the atom numbers
in the side modes and thus related to the z component of the pseudospin vector. Its expectation value
is given by 2⟨K̂z⟩ − 1.
Any boost with u� ≠ u� that does not reverse the initial Lorentz boost will lead to a mean population
of the side modes with fluctuations, both depending on the phase and the strength of the boosts. u�
was chosen such that ⟨u�⟩ = 8 after the first boost as in Fig.II.2.2a and the shown phase evolution has
u� = 0.95u�.
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II.3. The ideal SU(1,1)-interferometer

Fig. II.3.3. u�out and (Δu�out)2 for n = 2 inside the interferometer. In the ideal case without
any additional noise contribution (Δu�out)2 flattens faster then u�out and the best phase
sensitivity is reached at u� = u� (blue curve Fig.II.3.4a).

n = 𝜂in + nSCC = (𝜂in + 1) cosh (𝛽) − 1

⇔ nSCC = (𝜂in + 1) (cosh (𝛽) − 1) .
(II.3.6)

One sees that the number of atoms scattered into the side modes (nSCC) increases with increas-
ing initial population 𝜂in (seed) for constant boost strength 𝛽. If the side modes are initially
empty this becomes

n = cosh (𝛽) − 1 = 2 sinh2 (𝛽
2

) = 2𝜈2. (II.3.7)

Using Equ.II.3.5 the outcome 𝜂 = n↑ + n↓ of the interferometer is then calculated to be

η = n (n + 2) (1 + cos (ϕ)). (II.3.8)

For 𝜙 = 180° the second boost reverses the effect of the first one and the side modes are empty
again. The variance at the output reads

(Δη)2 = 2n (n + 2) (1 + cos (ϕ)) + [n (n + 2) (1 + cos (ϕ))]2 (II.3.9)

and vanishes for 𝜙 = 180°. Figure II.3.3 shows a comparison between 𝜂 and (Δ𝜂)2.
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II. SU(1,1)-interferometer

II.3.2. Phase sensitivity

Via error propagation the phase sensitivity is calculated to be

(Δ𝜙)2 = (Δ𝜂)2

( u�u�
u�u�)

2 = 1
1 − cos (𝜙)

[ 2
n (n + 2)

+ (1 + cos (𝜙))] . (II.3.10)

The results of Equ.II.3.7 to Equ.II.3.10 can be found in [10]. There it is assumed that the second
boost is opposed to the first one giving a phase difference of 180° compared to our results. The
phase sensitivity surpasses the SQL of the classical interferometer (Equ.II.1.20) and shows a 1

n2

scaling. This is due to the non-linear production of entangled atom pairs in the side modes by
the SCC. This purely quantum mechanical effect allows to beat the classical limit. However, this
is only the case under certain conditions. The second term has to be small compared to the first
one. This means that for a phase 𝜙 we only find quantum advantage if

n ≲ √3 + cos (𝜙)
1 + cos (𝜙)

− 1. (II.3.11)

The best phase sensitivity is reached at 𝜙 = 180°. There we get

(Δ𝜙)2
u�=u� = 1

n (n + 2)
. (II.3.12)

For other values of 𝜙 the second term does not vanish anymore and the phase region where the
SQL is surpassed is given by

(Δ𝜙)2 ≤ 1
n

⇔ cos(𝜙) ≤ − n
n + 2

. (II.3.13)

However, these results are only valid as long as Equ.II.3.9 is the only contribution to the overall
variance. At 𝜙 = 180° the value for 𝜂 and its first derivative with respect to 𝜙 as well as (Δ𝜂)2

vanish, leading to a division of zero by zero. The (Δ𝜙)2 does not diverge there because Equ.II.3.9
contains a term quadratic in cos(𝜙) and therefore it decreases faster then 𝜂. Additional noise adds
a constant term 𝜎2

add to the variance. Taking this into account the reachable phase sensitivity
reads

(Δ𝜙)2
noise = (Δ𝜙)2 + 𝜎2

add

[n(n + 2) sin(𝜙)]2
(II.3.14)

which diverges at the former optimal phase 𝜙 = 180°. Figure II.3.4a shows (Δ𝜙)2 with and
without detection noise. The SQL can still be surpassed but the region where this is the case is
split and narrows down (Fig.II.3.4b).
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II.3. The ideal SU(1,1)-interferometer

(a) Phase sensitivity squared ((Δu�)2 ) for a
mean atom number of n = 2 inside the in-
terferometer. The three curves are the re-
sults for different values of Gaussian noise
on the detected atom number variance with
u�add = 0, 1, 3. The corresponding stan-
dard quantum limit is indicated as a dashed
line.

(b) Phase regions (grey) where the ideal SU(1,1)
interferometer surpasses the SQL depend-
ing on the mean side mode occupation
inside the interferometer. The different
shades of grey correspond to different val-
ues of additional Gaussian noise.

Fig. II.3.4. Phase sensitivity of the ideal SU(1,1) interferometer. a) Without any additional noise
(u�add = 0) the best phase sensitivity is reached at u� = 180° since the variance (Δu�out)2 ap-
proaches the zero faster then the mean u�out (Fig.II.3.3). The SQL is surpassed in a phase region
around u� = 180°. Adding constant noise u�add, e.g. due to detection noise, in Equ.II.3.14 leads to the
divergence at the former best point.
b) The phase regions (grey) in which the SQL is surpassed depends on the mean atom number n inside
the interferometer. With increasing n the region narrows down. The different shades of grey show
the behaviour for additional Gaussian noise.
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II. SU(1,1)-interferometer

II.4. Experimental results of the SU(1,1)-interferometer in the
non-depleted regime

We will now discuss the experimental results in the non-depleted regime. Initially, all the atoms
(Ntot ≈ 500) are in the |1, 0⟩ state which serves as the pump mode |0⟩. The side modes, |1, −1⟩
and |1, +1⟩, are the corresponding signal (| ↑⟩) and idler (| ↓⟩) and remain empty. A constant
magnetic field ensures that the three magnetic sub states are not mixed.
The standard sequence of the SU(1,1)-interferometer is realised by two equal periods of MW-

dressing with a varied waiting time (wt) in between. No dressing is applied during the waiting
time. According to Equ.I.1.45 the relevant energy difference between the pump and the side
modes during the waiting time is given by

Δ𝐸 = 71.89Hz/G2 ⋅ 𝐵2 (II.4.1)

which results in a phase of (Equ.II.3.3)

𝜙 = 2𝜔wt. (II.4.2)

Therefore we expect an oscillation of the side mode population 𝜂 at the output of the interfer-
ometer versus hold time with a frequency of

f = 2𝜔wt
2𝜋

= 2 ⋅ 71.89Hz/G2 ⋅ B2. (II.4.3)

II.4.1. Interferometric fringes

The output of the interferometer is sensitive to various parameters. Some of them have to be
adjusted in the experiment (B-field, dressing and waiting times) while others are post selected in
the data analysis (analysed well, total atom number).
Three different parameters were changed in the data analysis for the examples in Fig.II.4.1. These
parameters are: dressing time (DT), the selected subset of lattice sites (well) and total atom num-
ber Ntot.

The two fringes shown in Fig.II.4.1a result from the dataset post selected for the same wells
(10, 11, 12) and Ntot = 500 … 600 but different dressing times in the interferometric sequence.
The amplitude of the fringe is larger for a longer dressing time. This is expected since the boost
strength 𝛽 increases with the dressing time (Equ.II.3.3).
However, the theory predicts completely empty side modes at the minima of the fringes inde-
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II.4. Experimental results of the SU(1,1)-interferometer in the non-depleted regime

(a) two different dressing times
Wells: 10, 11, 12; Ntot = 500...600
blue:
n = 4.0 ± 0.2, f = (383 ± 9)Hz,
u� = 3.9° ± 7.2°, c = 20.0 ± 1.1
red:
n = 1.8 ± 0.1, f = (385 ± 9)Hz,
u� = 13° ± 7.0°, c = 9.1 ± 0.3

(b) different wells
DT: 140ms; Ntot = 450...550
blue:
n = 3.3 ± 0.1, f = (393 ± 9)Hz,
u� = −12.7° ± 7.4°, c = 12.5 ± 0.8
red:
n = 2.4 ± 0.1, f = (393 ± 10)Hz,
u� = 37.6° ± 8.2°, c = 15.8 ± 0.7

(c) different atom numbers
Wells: 10, 11, 12; DT: 140ms
blue:
n = 3.6 ± 0.2, f = (388 ± 10)Hz,
u� = 5.5° ± 8.2°, c = 18.2 ± 1.0
red:
n = 3.0 ± 0.2, f = (358 ± 11)Hz„
u� = 30.2° ± 8.7°, c = 13.3 ± 1.1

Fig. II.4.1. Experimental fringes in the SU(1,1)-interferometer. The output of the interferometer is
sensitive to various parameters. The two fringes in each plot show the result if one parameter is
changed while the others remain constant. The lines are fits of Equ.II.3.8 with an additive constant c
and an additional phase u�. a) The offset and amplitude of the fringe increase with a longer dressing
time due to a larger boost strength u�. The increase in the amplitude is expected whereas perfect
reversal is expected also for stronger boosts. b) Choosing different wells results in different values of
u� due to different q. It also has an impact on the amplitude and the constant offset. This is due to
inhomogeneities (e. g. MW-power gradient, varying Ntot) over the lattice. c) Post selection of an
higher total atom number Ntot increases the amplitude due to a larger boost strength u�. The atom
number enters also in the additional phase term (n0 ≈ Ntot) and influences the mean field shift
leading to different phase offsets.
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II. SU(1,1)-interferometer

pendent of the dressing time, whereas we observe a finite minimal value. Possible reasons will
be discussed below.

Figure II.4.1b shows fringes with equal dressing time DT = 140ms and Ntot = 450 … 550.
Choosing distinct wells results in different values of the initial phase 𝜑.
These can be explainedwith the additional phase term 𝜆 (2n̂0 − 1 + q

u�) (Equ.I.1.50) not captured
by the non-depletion theory. The MW-power gradient mentioned in Sec.I.2 leads to different
values of the Rabi frequencey – and hence q (Equ.I.1.48) – in different wells during the dressing
periods which causes the additional phase offsets.
The difference in the Rabi frequency between two adjacent lattice sites was determined to be
ΔΩ ≈ 3.9Hz at the measured Ω ≈ 7.5 kHz [57]. The change in q due to this is

Δq = (Ω + ΔΩ)2

4𝛿
− Ω2

4𝛿
≈ Ω

2𝛿
ΔΩ. (II.4.4)

The dephasing term is negligible for small evolution times, but its influence increases for longer
times. Therefore the phase offset observed is mainly due to the second dressing time. With the
used detuning 𝛿 = 98 kHz it is estimated to Δq ⋅ 140ms ≈ 8° per lattice site. This yields 𝜑 ≈ 56°
between seven wells which agrees with the observed phase difference in II.4.1b.
Also, the different total atom numbers of different lattice sites due to the trapping potential lead
to different values for 𝜆, leading to changes in the effective boost strengths in the interferometer
and therefore the amplitude.
This can be seen in Fig.II.4.1c, where the data is post selected for the same dressing time DT =
140ms and wells (10, 11, 12). The two fringes differ in the range of the total atom number causing
different amplitudes. The atom number enters also in the additional phase term (n0 ≈ Ntot) and
influences the mean field shift leading to different phase offsets.

During the measurement the constant magnetic field was 1.64G so that equation II.4.3 gives
an expected frequency of 387Hz. All fit results are close to this value.

The fact that we cannot perfectly reverse the first period of spin changing collisions can par-
tially be explained by an additional characterisation of the absorption imaging in the absence of
signal. We characterize this by performing additional measurements with empty side modes and
analysing the detected atom number distributions in every well and both sidemodes. Figure II.4.2
shows an atom number distribution for such a measurement in the |1, −1⟩ state in one of the
central wells. Themean value is 𝜇 = 3.6. The width of 𝜎 = 4.8 characterises our detection noise.

The detected 𝜇 depends on the particular well and state whereas the detection noise varies
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Fig. II.4.2. Measured atom number distribution of regions without atoms. The in Fig.II.4.1
detected offsets can (partially) be explained by analysing data of a measurement without
atoms in the side modes. The histogram shows the detected atom number distribution and
a Gaussian fit from one well for such a measurement. The analysed region would normally
contain atoms in the |1, −1⟩ state. The fit gives a mean offset of u� = 3.6 and width of
u� = 4.8 which is a measure for the detection noise (mainly photon shot noise) in our
system. The detection noise is almost constant whereas the offset depends on the well due
to imperfections of the absorption imaging.

only slightly. The sum of the distribution means of both states contributes to the offset of the
fringes in Fig.II.4.1b.
However, the previous observations cannot explain the entire offset of the fringes. A reason for
the imperfect reversal might be atom loss during time evolution if the dressing times are too
long. Another assumption is phase jitter due to fluctuations in microwave and B field during the
measurement which causes the value of the fringe minimum to increase by averaging over the
data.

II.4.2. Phase sensitivity

Having obtained a phase dependent fringe at the output of the interferometer, we now turn to
the analysis of the sensitivity of the interferometer. In this measurement, a short dressing time
of 90ms was chosen in order to remain in the non-depleted regime and justify the application of
the SU(1,1) theory. Since the phase sensitivity is symmetric with respect to 𝜙 = 180° we focused
on the first half of the fringe to be able to acquire more data in the relevant phase region. The
phase sensitivity is obtained according to Equ.II.3.10 and depends on the slope of the fringe for
the mean atom number in the side modes as well as on the variance of the side mode population.
A fit of Equ.II.3.8 gives the frequency and phase offset which allow the transformation of the
experimental waiting time into a phase. It also yields a value n for the atoms in the side modes
inside the interferometer and the slope u�u�

u�u� of the measured fringe. This value of n is used to
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II. SU(1,1)-interferometer

calculate the applicable standard quantum limit for comparison.
The variance (Δ𝜂)2 of the output side mode population 𝜂 is calculated and corrected by sub-
tracting the detection noise obtained from interleaved measurements with empty side modes. A
resampling method as discussed in Sec.I.2.2 is used to calculate the errors of the variances.
The corrected variance is divided by the squared slope of the fringe to obtain the phase sensitivity.

Figure II.4.3a and II.4.3b show examples for fringes (blue) and variances (red). The curves are
fits of the corresponding equations (Equ.II.3.8, Equ.II.3.9) yielding values for n and the slope u�u�

u�u� .
Figure II.4.3c and II.4.3d show the inferred phase sensitivity corresponding to a) and b) re-
spectively. The blue lines are fits of the equation for the phase sensitivity Δ𝜙 (square root of
Equ.II.3.10) to the data. The red dotted lines are the theoretical results for Δ𝜙 calculated with the
n resulting from the fit to the fringes in a) and b) and the horizontal line depicts the SQL for the
same n.
The data points around 𝜙 = 120° (Δ𝜙 ≈ (0.6 ± 0.4) at 𝜙 ≈ 135°) indicate that the SQL can be
surpassed with our experimental setup. The comparison of c) and d) shows the significance of a
correct post selection of the data on the result.

Differences in the atom numbers affect the additional phase term resulting in different phase
offsets. We see that the data points in Fig.II.4.3b and II.4.3d (smaller Ntot than in a and b) are at
phase values up to≈ 170°. In this phase region the former discussed problem of the “zero by zero”
division starts to play a role since the measured variance does not entirely vanish (Equ.II.3.14).

Extraction of 𝜆 from experimental observations

In the following sections we want to use the theory of Ch.I for comparison with experimental
results and further theoretical predictions. For that reason the parameter 𝜆will be extracted with
help of the ideal SU(1,1)-theory valid only in the non-depletion regime.

Equation II.3.7 gives the connection between the boost strength 𝛽 and the atom number n in
the side modes inside the interferometer. The parameter 𝜆 can be calculated from of 𝛽 from
Equ.II.3.3 in the following way

𝜆 = cosh−1 (n + 1)
4n0𝑡SCC ⋅ 2𝜋

. (II.4.5)

Using n = 1.3 ± 0.1 from the fit in Fig.II.4.3a, n0 ≈ N̄tot = 470 and the duration time of the
initial SCC (𝑡SCC = 90ms) we get |𝜆| ≈ (1.4 ± 0.1)mHz.
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(a) Fringe (blue) and variance (red);
Ntot = 435...505.
Fit results: fringe: n = 1.3 ± 0.1,
variance: n = 1.3 ± 0.1

(b) Fringe (blue) and variance (red);
Ntot = 405...475.
Fit results: fringe: n = 1.1 ± 0.1,
variance: n = 1.2 ± 0.1

(c) Phase sensitivity of the data
shown in a)
Fit result: n = 1.4 ± 0.3

(d) Phase sensitivity of the data
shown in b)
Fit result: n = 0.4 ± 0.1

Fig. II.4.3. Fringe, variance and phase sensitivity of the SU(1,1)-interferometer.
a), b) Fringe (blue) of mean and variance (red). During the measurement we collected data analogue
to those shown in Fig.II.4.2. The offset u� was subtracted from the fringe and the photon shot noise
u�2 from the variance. Equation II.3.8 (Equ.II.3.9) was fitted to the fringe (variance) yielding a value
for the atom number n inside the interferometer.
a) shows the fringes for a larger post-selected atom number Ntot than b).
c), d) Inferred phase sensitivity for a) and b), respectively. The blue line is a fit of the square root of
Equ.II.3.10 to the inferred data points. The red line is the theoretical result, the black line the SQL.
Both are calculated using the value of n resulting from the fit to the fringes in a and b.
The comparison of c) and d) shows the significance of a correct post selection of the data on the result.
Already minor changes in the selected Ntot affect the phase offset such that the former discussed
problem of the “zero by zero” division starts to play a role since the measured variance does not
entirely vanish (Equ.II.3.14).
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(a) Fringe (b) Variance

Fig. II.4.4. Fringe of mean occupancy and variance for fixed dressing time (DT1 = 90ms) in the
first beam splitter and varied second dressing time (DT2). a) Fringes of mean side mode occupancy.
Without any second dressing time the atom number in the side modes is constant for different wait
times as expected (blue line). A second dressing leads to the appearance of the known sinusoidal
shape with the minima falling below the blue line. The plot also shows the non-linear amplification
of the atom number in the side modes depending on the wait time. b) The corresponding variances
(logarithmic scale) show the same behaviour.
This demonstrates that the second dressing partially reverses the initial SCC at u� = u�. The fact that
the minimum for DT1 ≠ DT2 = 45ms is below the minimum for DT1 = DT2 = 90ms shows
that the reversal is not perfect as predicted by the SU(1,1) theory for the latter case (Fig.II.3.3).

II.4.3. Varying the second dressing time in the SU(1,1)-interferometer

Thepreviouslymentioned offset of the interferometry fringes raises the question of the reversibil-
ity of the ideal process in the case of a phase shift of 𝜋 during phase evolution. To check this
we performed measurements where the first dressing time (DT1) was kept constant at 90ms and
the second dressing time (DT2) was varied. For each dressing time, a number of data points with
different wait times corresponding to one period of a fringe was recorded.

Figure II.4.4a shows the result of such a measurement for three different DT2. The constant
offset due to the detection (Fig.II.4.2) is subtracted.
The blue points correspond to data collected without a second dressing period. As expected, the
outcome does not depend on the waiting time. These data points give the atom number in the
side modes measured after one SCC-evolution for 90ms. The blue line marks the mean value.
The green and red data show the outcome for two different second dressing times DT2 = 45ms
(green) and DT2 = 90ms (red). The lines are fits of Equ.II.3.9 with an additive constant yielding
the frequencies f = (115 ± 6)Hz and f = (111 ± 4)Hz for DT2 = 45ms and DT2 = 90ms
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respectively. Evidently, the frequency is independent of the second dressing time. It is also in
good agreement with the theoretical value of f = 119Hz at the experimental magnetic field
B = 0.91G (Equ.II.4.3).

The ideal theory predicts perfect reversal at the fringe minimum for two equal periods (DT1
= DT2) spin-changing collisions (Fig.II.3.3). It is observable from the graph that the first SCC
are partially reversed since the minima are considerably below the blue data points. However,
contrary to expectation the reversal is better for DT2 < DT1 and the minimal value is not zero.
Figure II.4.4b shows the significant reduction of the corresponding variances at the minima of

the fringe.

Figure II.4.5a depicts the described fringes in a different manner and with more different DT2,
Fig.II.4.5b shows a corresponding numerical calculation with the same values for B = 0.91G,
Ω = 5.41 kHz and N̄tot = 600 as in the experiment. The detuning 𝛿 = 125 kHz (𝛿exp = 197 kHz)
and 𝜆 = −1.8mHz were adjusted to resemble the experimental result. The found 𝜆 differs from
the previously determined and the two values should be understood as a rough estimation.

(a) Experiment (b)Theory

Fig. II.4.5. Experimental and theoretical atom number in the side modes for fixed first dressing time
depending on wait and second dressing time. a) Shown is the outcome of a measurement analogues
to Fig.II.4.4a, but in colour code and with more intermediate time steps for DT2. b) The result of a
numerical calculation using the theory of Ch.I qualitatively reproduces the experimental observations.
The theoretical result shows perfect reversal of the SCC which is not observed in the experiment.
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II.5. SU(1,1)-interferometer in the depletion regime

The theory used so far is only valid in the non-depletion regime (nd), meaning the pump mode
|0⟩ holds much more atoms than the side modes | ↑⟩ and | ↓⟩ at all times. The complete SCC
theory (ct) from Ch.I was approximated by Equ.II.3.1.
In this section we want to enter the depletion regime and therefore have to use the com-

plete SCC theory. Figure II.5.1 illustrates the increasing difference between the two theories for
growing dressing times. The blue curves emerge from numerical calculations employing the full
Hamiltonian. The dotted red lines are fits to this using the ideal non-depletion regime theory.
We see that the theories coincide well for 𝜏 = 90ms, which is the dressing time mostly used in
our experiments. Increasing 𝜏 leads to deviations of the ct-curves from the sinusoidal form of the
nd-theory and the development of a slight asymmetry. This is due to the fact that the number of
atoms in the pump mode (n0) decreases while 𝜂 increases with ongoing SCC. Therefore the term
𝜆 (2n̂0 − 1 + q

u�) η̂ can not be neglected anymore. This causes an additional phase evolution
which develops faster the further the pump is depleted. Note that even for a long dressing time
(𝜏 = 240ms) the SCC cancel and yield a fringe minimum at 𝜂 ≈ 0. Therefore the second SCC
can theoretically still reverse the first.
The numerical calculations were performed using the sequence

|𝜓⟩ (𝑡wt, 𝜏) = e−iĤonu�e−iĤoffu�wte−iĤonu� |𝜓⟩0 (II.5.1)

with the Hamiltonians

Ĥon = 𝜆2 (η̂+ + η̂−) + 𝜆 (2n̂0 − 1 + qon
𝜆

) η̂ (II.5.2)

Ĥoff = 𝜆2 (η̂+ + η̂−) + 𝜆 (2n̂0 − 1 + qoff
𝜆

) η̂ (II.5.3)

and

qon = 71.89Hz/G2B2 − Ω2

4𝛿
(II.5.4)

qoff = 71.89Hz/G2B2. (II.5.5)

The parameter 𝜏 denotes the dressing time, 𝑡wt the waiting time in the interferometer. The values
for B, Ω and Ntot coincide with the experimental parameters and the previously determined 𝜆
was used (Sec.II.4.2); 𝛿 was adjusted such that the numerically calculated fringes resemble the
experimental results for small dressing times 𝜏 .

58



II.5. SU(1,1)-interferometer in the depletion regime

(a) u� = 90ms
For short dressing times the complete (ct) and
the non-depleted theory (nd) coincide. In both
cases the atom number inside the interferometer
is nct = nnd = 1.3

(b) u� = 180ms
Increasing the dressing times u� leads to deviation
of the ideal non-depleted theory (nnd = 6.6)
from the numerical fringe (nct = 8.2).

(c) u� = 240ms
For larger values of u� the ideal non-depleted the-
ory breaks down (nnd = 10.5) and the numeri-
cal fringe (nct = 21.9) shows strong deviations
from the primary sinusoidal shape.
Note that the minimum is still close to u� = 0.
Even in the far depleted regime the SCC are re-
versed at u� = 180°.

Fig. II.5.1. Theoretical fringes of the SU(1,1)-interferometer for different dressing times. The blue lines
are the results of numerical calculations using the complete time evolution in Equ.II.5.1 for the cases
a) u� = 90ms, b) u� = 180ms and c) u� = 240ms. The used total atom number was Ntot = 470 and
u� = 1.4mHz as obtained in Sec.II.4.2. The fringes in a) resemble the experimentally obtained fringe
in Fig.II.4.3a. The resulting atom number in the interferometer is denoted as nct.
The red lines correspond to fits applying the ideal non-depleted theory (Equ.II.3.8), which also gives
a value for the atom number inside the interferometer labeled with “nd”.
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II. SU(1,1)-interferometer

II.5.1. Fisher information

With the break down of the non-depletion regime theory the former used method employing
standard error propagation to extract the phase sensitivity is no longer valid, since the slope of
the fringe cannot be obtained as before by a fit of Equ.II.3.8. A more general way to get Δ𝜙 is by
means of the Fisher information FI. This method will be discussed theoretically with regard to
the phase sensitivity in the course of this section. A general discussion can be found in [8, 58].
The Cramér-Rao bound [59] gives a lower limit for the square of the phase sensitivity Δ𝜙 which
reads

(Δ𝜙)2 ≥ 1
FI(𝜙)

(II.5.6)

where FI(𝜙) is the Fisher information with respect to the estimation of 𝜙 given for a certain
input state and phase estimation scenario. With P(𝜂|𝜙) being the probability to find the side
mode population 𝜂 at the phase value 𝜙, FI(𝜙) is defined as

FI(𝜙) = ∑
u�

1
P(𝜂)|𝜙)

(𝜕P(𝜂|𝜙)
𝜕𝜙

)
2

= ⟨( 𝜕
𝜕𝜙

log (P(𝜂|𝜙)))
2
⟩ . (II.5.7)

The definition is based on the derivatives of probability amplitudes which can only be calculated
exactly if the functional dependence of the probability P(𝜂|𝜙) on 𝜙 is known. This makes it
experimentally hard to obtain a value for FI(𝜙) since a great amount of data has to be collected
in order to have sufficient statistics.
However, an approximate value of FI(ϕ) can be obtained with the squared Hellinger distance
dH2 which is a measure of the statistical distance [60, 61] between two probability distributions
P(𝜂|𝜙) and P(𝜂|𝜙 + Δ). It is defined as

dH2
u�,u�+Δ = 1

2
∑

u�
[√P(𝜂|𝜙) − √P(𝜂|𝜙 + Δ)]

2
. (II.5.8)

The zeroth and first order of the Taylor expansion of dH2 vanish for small Δ, resulting in

dH2
u�,u�+Δ ≈ 1

8
∑

u�
[P(𝜂|𝜙) ⋅ ( 1

P(𝜂)|𝜙)
𝜕P(𝜂|𝜙)

𝜕𝜙
)

2

] ⋅ Δ2 + 𝒪(Δ3)

≈ 1
8

FI(𝜙) ⋅ Δ2.

(II.5.9)

This yields the connection between the squared Hellinger distance and the Fisher information:
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II.5. SU(1,1)-interferometer in the depletion regime

FI(𝜙) ≈ 8
dH2

u�,u�+Δ

Δ2 . (II.5.10)

The calculation of the theoretical FI is done in the following way.
A constant dressing time 𝜏 and waiting times 𝑡wt varied in small steps are used in a numerical

equivalent of Equ.II.5.1 to calculate |𝜓⟩ (𝑡wt, 𝜏). The waiting time 𝑡wt is transferred to a phase 𝜙
giving |𝜓⟩ (𝜙). The time steps of 𝑡wt lead to small changes Δ in the interferometric phase. The
probability distributions for the side mode population are then given by

P(𝜂|𝜙) = (⟨𝜂 |𝜓⟩ (𝜙))2 . (II.5.11)

The squared Hellinger distance for every pair of two adjacent probability distributions is calcu-
lated according to Equ.II.5.8. The result is used to calculateFI with Equ.II.5.10 and the consequent
phase sensitivity Δ𝜙 = 1

√FI
.

The Figures II.5.2, II.5.3 and II.5.4 show examples for the probability distributions, Fisher in-
formation and the resulting phase sensitivities for different dressing times 𝜏 . The shown results
correspond to the three examples in Fig.II.5.1. The probability distributions were convoluted with
a Gaussian function of width 𝜎 =

√
2 4.8 to account for the detection noise of both side modes

in our experiment. For comparison, the red curves represent the phase sensitivity obtained from
the non-depleted theory via error propagation with identical noise (Equ.II.3.14) and the same side
mode population nct inside the interferometer.
In the non-depletion regime (Fig.II.5.2) the numerically calculated phase sensitivity does not

beat the SQL.This is due to the effect of detection noise, which cannot be removed in this method
for detection of the Fisher information. The divergence occurring at 𝜙 = 180° is reproduced in
the non-depleted theory with noise (Fig.II.3.4a).
Increasing the dressing time 𝜏 to 180ms (Fig.II.5.3) causes the minimum of Δ𝜙 to surpass the
SQL despite of the noise. In contrast to the non-depletion theory the phase sensitivity calculated
with the Fisher information is no longer symmetric around 𝜙 = 180°.
An even longer dressing time of 𝜏 = 240ms (Fig.II.5.4) leads to a further increase in the phase
sensitivity. The important difference to the non-depleted theory with detection noise is that the
range in which the Δ𝜙 surpasses the SQL is broadened.
The probability distributionsP(𝜂|𝜙) for the entire fringes and the three different dressing times

𝜏 = 90ms, 𝜏 = 180ms and 𝜏 = 240ms are shown in Fig.II.5.5. The red line corresponds to the
mean value of 𝜂 in the course of the phase. These plots show the development of an asymmetry
of the distribution with increasing dressing time, which explains the asymmetric behaviour of
the interferometer at longer evolution times.
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II. SU(1,1)-interferometer

(a) Probability distributions of the side mode popu-
lation u� at the output of the interferometer for
u� = 180° (top) and u� = 135° (middle) and
the difference of their square roots (bottom). The
histograms were chosen as examples to illustrate
their different shape and the difference of their
square roots. The actual phase step for the calcu-
lation of the Hellinger distance was Δ = 0.6°.

(b) Fisher information including detection noise

(c) Phase sensitivity Δu� calculated with the Fisher
information FI (blue) and the ideal non-depleted
theory (red). In both cases the detection noise of
u� = 7 is included.

Fig. II.5.2. Probability distributions and phase sensitivity in the non-depleted regime (u� =
90ms, corresponds to Fig.II.5.1a including detection noise). a) The histograms were ob-
tained using Equ.II.5.1 and convoluted with a Gaussian of width u� = 7 to include our
detection noise. b) To calculate the Fisher information FI Equ.II.5.8 and II.5.10 were used.
c) The blue line represents the phase sensitivity calculated with FI, the red line the ideal
non-depleted theory (Equ.II.3.14) with the same detection noise and mean atom number in
the side modes inside the interferometer nct = 1.3. The respective SQL is depicted by the
black line.
The numerical results show that a sensitivity beyond the SQL is not attainable with our
current detection noise for small values of n.
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II.5. SU(1,1)-interferometer in the depletion regime

(a) Probability distributions of the side mode popu-
lation u� at the output of the interferometer for
u� = 180° (top) and u� = 135° (middle) and
the difference of their square roots (bottom). The
histograms were chosen as examples to illustrate
their different shape and the difference of their
square roots. The actual phase step for the calcu-
lation of the Hellinger distance was Δ = 0.6°.

(b) Fisher information including detection noise

(c) Phase sensitivity Δu� calculated with the Fisher
information FI (blue) and the ideal non-depleted
theory (red). In both cases a detection noise of
u� = 7 is included.

Fig. II.5.3. Probability distributions and phase sensitivity in the crossover between non-
depleted and depleted regime (u� = 180ms, corresponds to Fig.II.5.1b including detection
noise). The procedure and all the parameters, except for u� , are identical to the ones in
Fig.II.5.2. Due to the increased u� the mean atom number in the side modes inside the inter-
ferometer is nct = 8.2 (Fig.II.5.1b).
The maximal Fisher information increases and the corresponding phase sensitivity sur-
passes the SQL. This results from an increased value of n leading to a smaller influence of
the detection noise. The observed asymmetry is due to the increased effect of the additional
phase term neglected in the ideal non-depleted theory.
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II. SU(1,1)-interferometer

(a) Probability distributions of the side mode popu-
lation u� at the output of the interferometer for
u� = 180° (top) and u� = 135° (middle) and
the difference of their square roots (bottom). The
histograms were chosen as examples to illustrate
their different shape and the difference of their
square roots. The actual phase step for the calcu-
lation of the Hellinger distance was Δ = 0.6°.

(b) Fisher information including detection noise

(c) Phase sensitivity Δu� calculated with the Fisher
information FI (blue) and the ideal non-depleted
theory (red). In both cases a detection noise of
u� = 7 is included.

Fig. II.5.4. Probability distributions and phase sensitivity deep in the depleted regime (u� =
240ms, corresponds to Fig.II.5.1c including detection noise). The procedure and all the
parameters, except for u� , are identical to the ones in Fig.II.5.2. Due to the increased u� the
mean atom number in the side modes inside the interferometer is nct = 21.9 (Fig.II.5.1b).
In comparison to Fig.II.5.3 the maximal Fisher information increases further and the region
where the corresponding phase sensitivity surpasses the SQL broadens. The asymmetry of
the fringe is reflected strongly onto the shape of the Fisher information and phase sensitiv-
ity.
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II.5. SU(1,1)-interferometer in the depletion regime

(a) Non-depleted regime
Dressing time u� = 90ms

(b) Crossover between non-depleted
and depleted regime
Dressing time u� = 180ms

(c) Depleted regime
Dressing time u� = 240ms

Fig. II.5.5. Probability distributions of the side mode population u� at the output of the interferometer
for different dressing times and Ntot = 470 in the range u� = 0°… 360°. The numerical calculations
were done using the complete theory. The histograms shown in Fig.II.5.2, II.5.3 and II.5.4 are equivalent
with these data sets. The red lines show the expectation value of the complete theory (blue lines in
Fig.II.5.1). The colour codes the probability and the y-axes were adjusted for better visibility to the
relevant range of u�.
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II. SU(1,1)-interferometer

II.5.2. Experimental results

To obtain an experimental result for the phase sensitivity with help of the Fisher information FI,
the probability distributions of 𝜂 in the course of an interferometric fringe have to be determined.
According to Equ.II.5.10 the Fisher information FI(𝜙) at the phase value 𝜙 can be calculated

from the squared Hellinger-distance dH2 between two probability distributions, separated by an
infinitesimal Δ. Two distributions cannot be distinguished with certainty for arbitrarily small Δ
in the experiment since the exact probabilities can only be approximated due to finite statistics
within a reasonable measurement time.
A workaround is given by Equ.II.5.9. In a small region Δ around a reference phase 𝜙ref the
Hellinger distance is described by a parabola with curvature FI/8.
The probability distributions for several closely separated points on the fringe are measured

in the experiment. One of them is chosen as the reference. The squared Hellinger distances
from this point to the neighbouring phases are calculated with Equ.II.5.8 and plotted versus the
corresponding phase distance to the reference Δ = 𝜙ref −𝜙i (Fig.II.5.6b). A fit of Equ.II.5.9 gives
the curvature of the resulting parabola. Out of this the Fisher information is calculated.
The data obtained in ameasurement with 𝜏 = 90ms (in the depletion regime) with a post selected
total atom number of Ntot = 460 … 490 is used to illustrate the procedure. Figure II.5.6a depicts
the probability distributions for 𝜙 = 136° and 𝜙 = 90° and the difference of their square roots.
The histogram for 𝜙 = 136° is used as reference to determine the squared Hellinger distances
shown in Fig.II.5.6b. A fit of the equation

dH2 = a (b − Δ)2 + 𝑐 (II.5.12)

yields the curvature used to calculate the value for the Fisher information (red data points in
Fig.II.5.6c). The other points represent the FI determined in an analogue way but with a different
choice of the reference histograms for the respective phase 𝜙ref.

The best experimentally extracted Fisher information of FI = 0.36 ± 0.06 is in good agree-
ment with the theoretical prediction of FI = 0.32. This demonstrates the validity of the Fisher
information method in this situation.
The corresponding phase sensitivity is Δ𝜙 = 1/√FI = 1.7 ± 0.1. The side mode population
inside the interferometer is n = 1.3±0.1 yielding an SQL of 1/

√
n ≈ 0.9. The phase sensitivity

determined with the Fisher information does not surpass the SQL. However, this is not expected
in the non-depletion regime with small n since the effect of detection noise cannot be removed
in this method.
Determining the phase sensitivity analogue to the procedure in Sec.II.4.2 yields the better value
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II.5. SU(1,1)-interferometer in the depletion regime

(a) Experimental probability distributions at u� =
136° (top), u� = 90° (middle) and the difference
of their square roots (bottom). The histogram at
u� = 136° is used as reference in b).

(b) Hellinger-distance squared for u�ref = 136° and
quadratic fit (Equ.II.5.12). The errorbars are ob-
tained with a resampling method.

(c) Fisher information determined from the ex-
tracted experimental Hellinger distance squared
for different choices of reference angle u�ref. Red
marked is FI = 0.36±0.06 at u�ref = 136° cal-
culated from the fit in b). The other points result
from similar fits with the reference histograms
at the corresponding phase and agree within the
errorbars. Note that all data points are using the
same data set and are thus not statistically inde-
pendent.

Fig. II.5.6. Experimental probability distribution, Hellinger distance squared and Fisher in-
formation in the non-depleted regime. The data was measured with a dressing time of
u� = 90ms. The total atom number was post-selected to Ntot = 460...490. The best
experimentally extracted Fisher information of FI = 0.36 ± 0.06 is in agreement with
the best theoretical result of FI = 0.32 in Fig.II.5.2. This demonstrates the validity of the
Fisher information method in this situation.
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II. SU(1,1)-interferometer

Δ𝜙 ≈ 1.0 ± 0.2 at the same 𝜙ref. The reason for this is the correction of the variance by sub-
tracting the detection noise.

The numerical results show that the interferometric sensitivity can be further improved for
larger side mode population when the SU(1,1) theory breaks down. In the depleted regime, the
region where the SQL is surpassed is broader compared to the result of the SU(1,1) theory with
the same n and detection noise. This may allow an easier experimental detection of the phase
sensitivity below the SQL. However, the numerical results predict a reversal of the SCC at the
fringe minimum that is more effective than the one observed in the experiment. This has to be
overcome before we can extend the analysis via Hellinger distance and Fisher information to the
depleted regime.
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Summary

In this thesis the dynamics of the internal spin degree of freedom of atoms and the realisation of
a non-linear interferometer were studied in a spinor Bose-Einstein condensate of 87Rb.

The first chapter was dedicated to the mentioned dynamics emerging from the process of spin-
changing collisions.
We discussed the underlying theory and the effect of magnetic fields which inhibit the process
at larger magnetic fields due to the second order Zeeman splitting. Microwave dressing was in-
troduced as a tool to overcome the inhibition of the SCC due to the quadratic Zeeman effect and
gain control over them. Numerical calculations with the derived Hamiltonian were performed
to analyse the SCC-evolution dependent on the initial conditions.
We found a good qualitative agreement between the experimentally measured SCC-evolution
and theory. We observed significant changes in the atom number distribution in the side modes,
which resembles the one of a thermal state for small evolution times. In the further course of the
evolution broadening and narrowing of the distribution occurs.
We experimentally demonstrated that the magnetisation is conserved during an SCC-evolution
by the strong squeezing of its variance, indicating that the atoms in the side modes are always
produced in pairs. The first chapter was concluded with a discussion about the dependence of
the SCC-evolution on the detuning of the microwave employed for dressing of the atomic levels.

In the second chapter we discussed the realisation of an active non-linear interferometer in the
non-depleted regime by two subsequent equal periods of SCC-evolutions. In this interferometer,
the relative phase between the pump and side modes is observed as an amplification or reduction
of the side mode population by the second SCC.
The theory was approached by the introduction of the SU(1,1)-group. We saw that the SU(1,1)-
interferometer can be visualised by Lorentz boosts and rotations on an hyperbolic surface in
conceptual analogue to the rotations on a Bloch sphere in the SU(2)-group description of the
Mach-Zehnder interferometer. The phase sensitivity Δ𝜙 with and without additional noise was
discussed theoretically using error propagation.
The experimental results for Δ𝜙 indicate that the SU(1,1)-interferometer realised with our setup
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might allow to surpass the SQL. A measurement revealed that the first SCC are not entirely re-
versed as expected from the ideal non-depleted theory. Reasons for this may be atom loss and
dephasing of the three modes during the experiment. The reduction of the detection noise is
planned in order to improve the accuracy of the phase sensitivity. To achieve this, preparations
to include precise atom number counting detection [62] in our current experimental setup are in
progress.
In the last part we used numerical calculations under the consideration of experimentally compa-
rable detection noise to analyse the interferometric fringes and resulting phase sensitivities in the
depleted regime. The concept of the Hellinger-distance and Fisher information was introduced
for the analysis. The simulations show that an enhanced performance of the interferometer in
the depleted regime is achievable despite of our current detection noise. A first analysis of ex-
perimental data in the non-depleted regime via the Hellinger-distance yielded good agreement
with the numerical determined Fisher information.
However, we observed a less effective reversion of the first SCC for longer dressing times in the
experiment. This has to be overcome to extend the analysis via Hellinger-distance and Fisher
information to the depleted regime.

We demonstrated the first realisation of an active non-linear interferometer with atoms. The
strong amplification by the parametric process allows the detection of signals even for small
side mode populations n inside the interferometer. Hence, already small atom numbers n can be
used to extract the phase sensitivity and possibly show Heisenberg scaling (Δ𝜙 ∝ 1/n) if the
performance of the interferometer is further increased. Due to the different magnetic sensitivity
of the pump and side modes the interferometer can be used for magnetometry.
The presented experimental results for the SU(1,1)-interferometer were obtained in the F = 1

manifold. Currently we are investigating the performance of the interferometer in the F = 2
manifold where the side mode population due to the SCC grows faster. Therefore the whole
interferometric sequence is shorter (≈ 30ms instead of ≈ 200ms) and dephasing might have
less effect with an increased atom loss as a trade-off.
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