
Department of Physics and Astronomy

University of Heidelberg

Master thesis
in Physics

submitted by
Maxime Joos
born in Paris

2013



2



Phase contrast imaging of

mesoscopic Bose-Einstein condensates

This master thesis has been carried out by Joos Maxime at the

Kirchhoff-Institute for Physics

under the supervision of
Prof. M. K. Oberthaler



4



Danksagung

Ich bedanke mich herzlich bei allen Teilnehmern an den Experimenten ATTA, NaLi,
AEgIS, BEC und ACE für die einzigartige Stimmung, die auf subtile Weise zwischen
Physik- und Witzleidenschaft oszilliert.
Ein besonderer Dank geht an Markus Oberthaler, nicht nur, weil er diese Arbeit

überhaupt ermöglicht hat, sondern auch, weil er sie mit Begeisterung begleitet hat.
Mein Projekt wurde von David B. Hume initiiert und angetrieben. Es war ein

Vergnügen mit seiner Unterstützung und seinen Hinweisen vorwärts zu kommen
und dafür möchte ich mich herzlich bei ihm bedanken. Ich bedanke mich herzlich
für die freundliche Unterstützung von Ion Stroescu, der auf experimenteller, sowie
theoretischer Ebene zu dieser Arbeit beigetragen hat.
Ich hatte die Ehre, entscheidende Hilfe von Helmut Strobel, Wolfgang Müssel,

Eike Nicklas, Jiří Tomkovič und Daniel Linnemann bekommen zu haben und ich
bedanke mich dafür.
Besten Dank an Matthias Weidemüller dafür, dass er enthusiastisch akzeptiert

hat, Zweitkorrektor zu sein.
Je remercie tendrement mes parents Scholy et André Joos, qui œuvrent depuis

plus d’un quart de siècle au bonheur et à l’épanouissement de leurs deux fils.

5



Phasenkontrastabbildung mesoskopischer Bose-Einstein-Kondensate

Wir untersuchen theoretisch und experimentell die Eigenschaften des Phasenkon-
trastverfahren für die Beobachtung mesoskopischer Bose-Einstein-Kondensate
aus 87Rb Atome. Wir betrachten insbesondere einen unerforschten Bereich, in
dem der Abbildungsstrahl nah-resonant ist und den atomaren Übergang sättigt.
Für den geschlossenen Übergang der D2 Linie finden wir theoretisch, dass das
nah-resonante Phasenkontrastverfahren ein besseres Signal-zu-Rausch-Verhältnis
als das Absorptionsverfahren liefert. Wir berichten über die Entwurf und den Auf-
bau des Phasenkontrastsystems. Um die genaue Atomzahl in einer mesoskopis-
chen Wolke zu bestimmen, wurde eine Kalibrierung des Phasenkontrastsystems
durchgeführt und diskutiert. Eine erste Abschätzung der Empfindlichkeit des
Phasenkontrastsystem deutet darauf hin, dass dieses auch für dünne Wolken mit
dem Absorptionsverfahren konkurrieren kann.

Phase contrast imaging of mesoscopic Bose-Einstein condensates

We theoretically and experimentally investigate the performance of phase con-
trast imaging for the observation of mesoscopic Bose-Einstein condensates of
87Rb. We especially consider a new regime of phase contrast imaging by tuning
the saturated probe beam only a few linewidths away from resonance. Theoreti-
cally, near-resonant phase contrast imaging is found to deliver a better signal-to-
noise ratio than saturation absorption imaging for the cycling transition of the
D2 line. We then report on the design and implementation of a phase contrast
system. Finally, the latest achievements concerning the calibration of this phase
contrast system in order to precisely deduce the number of atoms in a meso-
scopic BEC is presented and discussed. A first estimation of the atom number
sensitivity given by near-resonant phase contrast imaging suggests performance
competitive with absorption imaging.
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1 Introduction

The best technique to probe cold atoms in a vacuum chamber depends strongly on
the particular experiment to be performed, the type of atoms, the trapping method,
the density etc. Certainly, a good way to probe cold atoms has to be an optical
imaging technique since the only information about atoms that comes out of a
vacuum chamber takes the form of light.
Shining light on atoms gives rise to three main phenomena: first, atoms can

absorb a fraction of the light, second, they can re-emit the absorbed light in an other
arbitrary direction. In this way, atoms become visible because they first produce a
shadow and then act as secondary light sources. Absorption imaging corresponds to
the interaction of the first kind, i.e. the recording of the light shadow. Fluorescence
imaging, on the other hand, involves the recording of the re-emitted light, called
fluorescence. The third atom-light interaction phenomenon arises even if the atoms
are transparent. In this case, atoms still act on light by introducing a phase shift to
the optical wave. Dispersive techniques such as phase contrast imaging rely on this
special interaction.
Fluorescence imaging is the most sensitive imaging technique, mainly because it

is background-free. Absorption imaging is less sensitive than fluorescence imaging
because of the noise carried by the probe beam, which forms the background of the
image. Still, absorption imaging recently succeeded in observing a single trapped
ion (Streed et al. [1]). Phase contrast imaging is not reputed for its sensitivity but
has clear advantages as a non-destructive imaging technique.
Our group commonly performs absorption imaging for the observation of meso-

scopic Bose-Einstein condensates (BEC). The sensitivity of the technique is a crucial
parameter for the study of quantum dynamics. For example, the observation of in-
terferometric precision below the classical limit strongly relies on the sensitivity of
the atom counting technique (Gross et al. [2]). Furthermore, improving the sensi-
tivity to the single-atom level enables the observation of new phenomena such as
odd-even effects. In this context, our group would like to achieve better atom res-
olution. Fluorescence imaging is a good candidate to reach the desired sensitivity
and we recently demonstrated single atom sensitivity for clouds containing hundreds
of atoms with fluorescence imaging. However, the implementation of fluorescence
imaging to the existing BEC experiment is complicated for practical reasons. An
alternative route, which has the advantage of being more easily implementable to
the existing setup, is phase contrast imaging.
The aim of this thesis is to investigate the possible advantages of phase contrast

imaging over absorption imaging in the observation of ultra cold atomic clouds.
In the first chapter, we begin with a self-consistent presentation of the theory of
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imaging. Fourier optics is developed and applied to absorption and phase contrast
imaging. In the second chapter, we compare both imaging techniques on a theo-
retical basis. For this purpose, we introduce an innovative way to perform phase
contrast imaging. In contrast to other implementations, phase contrast is performed
near-resonant and then becomes a destructive technique. In the last chapter, we re-
port on the implementation of this technique in the existing BEC setup.
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2 Theory of imaging

2.1 Fourier Optics
In the field of atomic physics, a satisfying treatment of the interaction of light and
matter often requires at least a semiclassical theory with a quantized atom and a
classical field. In instrumental optics however, a scalar wave theory is sufficient
because we are mostly interested in the propagation of light through simple isotrope
and transparent media. In this section, we present a sophisticated development
of the scalar wave theory: Fourier optics. This theory will greatly facilitate the
description of optical systems and especially the phase contrast method which is
nothing but a spatial filtering. Fourier optics describes the propagation of waves
in optical systems by means of simple successive Fourier transform and convolution
operations. Numerical simulations of optical systems will then be greatly facilitate
because Fourier transform and convolutions are easier to numerically implement
than the Huygens-Fresnel principle for example.
Fourier optics is not an independent, well defined branch of optics with its own

postulate and theorem. Instead, Fourier analysis appears naturally in instrumental
optics and its association with linear system theory becomes a powerful tool to
investigate optical systems.
We first begin with a short recall of the postulates and definition of wave optics.

We then introduce the main results of the Fourier analysis and the linear system
theory. Finally we exploit this knowledge to formulate the most important results
of Fourier optics: a description of the propagation of light in free space, diffraction
theory and the emergence of the Fourier transform in instrumental optics.
Because, in practice, we deal exclusively with coherent sources as lasers, we restrict

our treatment to temporally and spatially correlated waves. This special treatment
is often called coherent imaging.
This condensed presentation of Fourier optics strongly relies on the impressive

books by Saleh and Teich [3] and Goodman [4] where illuminating illustrations and
details can be found.

2.1.1 Reminder : Wave optics and Fourier analysis

Wave optics

Wave optics is the theory that describes light as being the manifestation of the
propagation of waves. Waves are real functions u(r, t) of space and time that satisfies
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the wave equation,

∇2u− 1
c2
∂2u

∂t2
= 0, (2.1)

with∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and c the speed of light in the medium. Wave optics is then
a scalar theory of light as opposed to the more general theory of electromagnetic
optics where waves are vectors.
For visible light, our instruments (the eye or a photodiode for example) are not

directly sensitive to the wavefunction u(r, t) but rather to the amount of energy
carried by the waves. The wavefunctions defined above turn out to be the underlying
quantity responsible for our energetic sensitivity to light

I(r, t) = 2
〈
u2(r, t)

〉
, (2.2)

where I is the intensity in units of Joule per second per square meter in SI units
and 〈 〉 denotes a time average. Equations (2.1) and (2.2) are the main postulates
of wave optics and carry an important knowledge about light: the relevant quantity
for describing light is not the measurable intensity but a rather more sophisticated
quantity, the wavefunction.
It is convenient (as will be seen with the Fourier analysis) to formulate wave optics

by means of complex scalar wavefunctions U(r, t) so that u(r, t) is its real part and
that also satisfies the wave equation

∇2U(r, t)− 1
c2
∂2U(r, t)
∂t2

= 0. (2.3)

An important solution of (2.3) is the complex wavefunction, which describes a
monochromatic wave

U(r, t) = U(r)e−2iπνt, (2.4)

where U(r) = A(r)eiφ(r) is called the complex amplitude, A(r) ∈ C and φ(r) ∈ R
are the amplitude and phase of the wave.
From the previous considerations, it can be shown that postulate (2.1) reduces,

in the case of monochromatic waves, to the Helmholtz equation

∇2U + k2U = 0, (2.5)

where k = 2πν
c

is the wavenumber. Postulate (2.2) reduces to

I(r) = |U(r)|2 . (2.6)

Up to now and for the rest of this chapter, the monochromatic wave optics that
follow from (2.5) and (2.6) is the underlying theory, so that we will always suppose
the monochromaticity of waves. The simplest (monochromatic) wave of this theory
is the plane wave U(r) = Aeik·r, where A ∈ C and k is the wave vector pointing in
the propagation direction with absolute value k = 2π

λ
. The plane wave is of great

importance for two reasons:
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• It is a useful idealized first approximation for most of the beams we are manip-
ulating in the laboratory (collimated beams, Gaussian beams near the waist,
waves out of a point like source at great distance), and its propagation through
optical systems is straightforward.

• It is the physical counterpart of the harmonic functions of the Fourier analysis
that we are going to introduce in the next section.

Fourier analysis

If f : R2 → C is a piecewise smooth function and
∫∫∞
−∞ |f(x, y)| dx dy exists, i.e. if

f(x, y) is integrable, then f can be written as the weighted superposition integral
of harmonic functions

f(x, y) =
∫∫ +∞

−∞
W (fx, fy)︸ ︷︷ ︸

weight

e2iπ(xfx+yfy)︸ ︷︷ ︸
harmonic functions

dfx dfy. (2.7)

The continuous weight function W (fx, fy) is called the Fourier transform of f
and reads

W (fx, fy) =
∫∫ +∞

−∞
f(x, y) e−2iπ(fxx+fyy) dx dy. (2.8)

We will use the notation F [f ](fx, fy) or simply F [f ] to denote the Fourier transform
of f . F [f ] is itself a complex function with the same amount of information as in
f . Equation (2.7) shows that it is possible to transform F [f ] back into its original
form f . Thus, we define the inverse Fourier transform of a function W (fx, fy):

F−1[W ](x, y) =
∫∫ +∞

−∞
W (fx, fy) e2iπ(xfx+yfy) dfx dfy. (2.9)

We will assume that physical functions (complex amplitude in a plane) that we
are going to Fourier transform always satisfy the existence conditions, namely that
functions are smooth and integrable.
Nevertheless, in the course of our discussion it will be convenient to deal with

functions that do not satisfy the existence conditions but still have a Fourier trans-
form. Two examples are the Dirac delta1 δ(x− x0, y− y0) and exp(i 2π(νxx+ νyy))

1We define the delta function by the equations{
δ(x− x0) = 0, when x 6= x0,∫ +∞
−∞ δ(x− x0)dx = 1.

We will make use of the property∫ +∞

−∞
δ(x− x0)f(x)dx = f(x0).
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with νx, νy ∈ R. Using the property of the Dirac function given in the footnote of
page 14 as well as the definition of the Fourier transform, one finds

F [δ(x− x0, y − y0)] = e−2iπ(fxx0+fyy0), (2.10)

F [exp(i2π(νxx+ νyy))] = δ(fx − νx, fy − νy). (2.11)

Another remarkable property of the Dirac delta is that it acts as unity under the
convolution product operation. The convolution product is an operation on two
functions f(x, y) and g(x, y) that produce a third function written (f ∗ g)(ξ, η) or
simply f ∗ g using the following integral transform

(f ∗ g)(ξ, η) =
∫∫ +∞

−∞
f(x, y) g(ξ − x, η − y)dx dy. (2.12)

The convolution is commutative, associative, distributive2 and, as mentioned above,
has the Dirac delta as identity:

f ∗ δ = f. (2.13)

The name and properties of the convolution product suggests some resemblance
with the usual scalar multiplication. The convolution theorem links the convo-
lution product and the scalar multiplication using Fourier transforms

F [f ∗ g] = F [f ] · F [g], (2.14)

and

F [f · g] = F [f ] ∗ F [g]. (2.15)

2.1.2 Linear invariant system theory
We call a system a physical device that performs a mapping of a set of input phe-
nomena into a set of output phenomena. The mathematical representation of the
system is an operator S that for each input function f(x, y) associates an output
function g(x, y),

g(x, y) = S[f(x, y)]. (2.16)
2

Commutativity: f ∗ g = g ∗ f,
Associativity: (f ∗ g) ∗ h = f ∗ (g∗),
Distributivity: f ∗ (g + h) = f ∗ g + f ∗ h.
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Let us now rewrite the input function using (2.13) as a weighted superposition
integral of δ functions,

f(x, y) = f ∗ δ =
∫∫ +∞

−∞
f(x′, y′) δ(x− x′, y − y′) dx′ dy′. (2.17)

Substitution of (2.17) into (2.16) gives

g(x, y) = S
[∫∫ +∞

−∞
f(x′, y′) δ(x− x′, y − y′) dx′ dy′

]
. (2.18)

If S is a linear operator 3, the system is called linear and relation (2.18) becomes

g(x, y) =
∫∫ +∞

−∞
f(x′, y′) S[δ(x− x′, y − y′)] dx′ dy′. (2.19)

From the definition of the operator S and the physical interpretation of the Dirac
δ, S[δ(x−x′, y− y′)] is the response of the system to an input impulse phenomenon
(point light source in optics) located at (x′, y′) in the input plane. It is therefore
called Impulse Response or point spread function (PSF) in optics.
The PSF of a system is generally a function of the image plane variables (x, y) and

two object plane parameters (x′, y′). However, it is often possible to find a regime (a
spatial region in optics) where the shape of the PSF is not sensitive to the absolute
position of the input impulse phenomenon in (x′, y′). In this region, PSF(x, y;x′, y′)
is just a shifted version of PSF(x, y; 0, 0) = PSF(x, y) and can be expressed as a
function of two variables 4,

PSF(x, y;x′, y′) = PSF(x− x′, y − y′). (2.20)

A system is then called invariant and in this case (2.19) reduces to

g(x, y) =
∫∫ +∞

−∞
f(x′, y′) PSF(x− x′, y − y′) dx′ dy′. (2.21)

For linear invariant systems, the input-output relation is a convolution product,

f = g ∗ PSF. (2.22)

The interpretation of the convolution relation is the following: The output signal
is a blurred replica of the input where the blurring results from the spatial extent

3

Linearity: S[af1 + bf2] = aS[f1] + bS[f2].

4In order for the operation xo−x and y0− y to make sense, x and y should be scaled-normalized
compared to x0 and y0. For an optical system with magnification M, it would require the
transformation x, y →Mx,My (See chapter 9.5 of Born and Wolf [5]).
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of the PSF. In the limit of infinitely narrow PSF, PSF = δ, the output is a perfect
replica of the input.
Applying the convolution theorem (2.14) to the above convolution (2.22) leads to

the relation:

F [g] = F [f ] · F [PSF] (2.23)

and

g = F−1[F [f ] · F [PSF]]. (2.24)

The Fourier transform of the PSF, F [PSF](fx, fy), is called the transfer function
of the system and is denoted by TF. The interpretation of the relation (2.23) is the
following: The frequency spectrum of the output is a low-pass filtered version of
the input spectrum. The transfer function states how well the input frequencies are
transmitted in the system.
The general theory of linear invariant systems that we just introduced is well suited

to describe optical systems if one considers the input and output function as being
the complex amplitude in the object and image plane respectively. The linearity
of such an optical system follows from the linearity of the Helmholtz equation. As
mentioned earlier, for an optical system to be invariant (described by a 2D PSF), the
shape of the PSF should be independent of the absolute location of the point source.
For real optical systems, this can only be true within a region where aberrations are
well corrected, because aberrations are position-dependent and tends to distort the
PSF. A linear invariant optical system needs to be diffraction limited.
In the last section, we introduced the most important mathematical and physical

tools to describe optical systems: complex amplitude, Fourier transform, the convo-
lution product and the convolution theorem. We showed that a diffraction limited
optical system can be equivalently characterized by its PSF or transfer function. In
the space domain, the image is a convolution of the object with the PSF. In the fre-
quency domain, the image (spectrum) is a product of the object (spectrum) with the
transfer function. The Fourier transform enables to go from one domain to another
without loss of information. In the next section, we are going to see that the Fourier
transform emerges in different, independent manner giving its name to this branch
of optics.

2.1.3 Fourier optics main results
In most cases, the complex amplitude underlying light phenomena is not known for
every point in space. Rather than that, one has a partial knowledge of this complex
amplitude, for example the complex amplitude can be known within a cavity, in
a plane directly after a diaphragm or at the output of a laser. From this partial
information, the propagation law of waves enables one to infer the complex ampli-
tude in every other point in space. The propagation of previously spatially confined
waves is usually called diffraction. In this section, we are going to summarize some
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important results of diffraction theory, using Fourier analysis and optical system
theory 5.

Spectral analysis of the complex Amplitude

Consider a plane wave U(x, y, z) = Aei(kxx+kyy+kzz). If the wavelength λ is also
known (which is the case in practice), the wave is over determined and actually, it
is sufficient to know the complex amplitude in an arbitrary plane, say orthogonal to
z. For example, in z = 0, the complex amplitude U(x, y, 0) = U(x, y) = Aei(kxx+kyy)

fully determines the wave (A and k are known) since kz can be deduced via the
relation(2π

λ

)2
= k2

x + k2
y + k2

z .

It is therefore equivalent to describe a plane wave by the full 3D complex amplitude
or just by a 2D harmonic function U(x, y) = Aei2π(fxx+fyy) plus the wavelength, where
fx,y = kx,y

2π . If we now consider an arbitrary monochromatic wave (not necessarily a
plane wave) with complex amplitude U(x, y) = A(x, y)eiϕ(x,y) in the plane defined
by z = 0, this wave can be Fourier analysed in an integral superposition of harmonic
functions

U(x, y) =
∫∫ +∞

−∞
F [U ](fx, fy) ei2π(xfx+yfy)︸ ︷︷ ︸

harmonic functions

dfx dfy. (2.25)

To each harmonic function corresponds a plane wave ei2π(xfx+yfy)eikzz so that the
overall wave can be written as follows

U(x, y, z) =
∫∫ +∞

−∞
F [U ](fx, fy) ei2π(xfx+yfy)eikzz︸ ︷︷ ︸

Plane wave

dfx dfy, (2.26)

where kz = 2π
√
λ−2 − fx − fy. An arbitrary wave can then be seen as the superpo-

sition of plane waves6.

Free space propagation

The plane wave superposition relation (2.26) can be used to describe the free space
propagation. Indeed, if U(x, y, 0) is known, the complex amplitude in every other
plane z can be determined. Let us consider the propagation of the wave from the

5The most popular way to build the scalar diffraction theory is to start from the Huygens-
Fresnel principle as depicted for example in Goodman [4]. We present here an alternative
way following Saleh and Teich [3], where Fourier analysis is of much importance.

6The complex amplitude ei2π(xfx+yfy)eikzz with kz = 2π
√
λ−2 − fx − fy describes a propagating

plane wave only if kz ∈ R. If λ−2 − fx − fy < 0, kz becomes imaginary and the wave turns out
to be evanescent.
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plane z = 0 with complex amplitude f(x, y) = U(x, y, 0) to the plane z = d with
complex amplitude g(x, y) = U(x, y, d), (2.26) becomes

g(x, y) =
∫∫ +∞

−∞
F [f(x, y)] TFfs ei2π(xfx+yfy) dfx dfy, (2.27)

where TFfs = ei2πd
√
λ−2−fx−fy . Relation (2.27) is the inverse Fourier transform of the

product of two function, F [f ] and TFfs. Identifying (2.27) with (2.24), TFfs appears
to be the transfer function of a system with input f(x, y) and output g(x, y),

TFfs(fx, fy) = ei2πd
√
λ−2−fx−fy . (2.28)

This system is the most simple one: It is a free space interval of length d. The
integral (2.27) is not analytically solvable, and historically an approximation for
small spatial frequencies compared to λ−1 is of great importance because it leads to
analytical results7. This is the Fresnel approximation and the transfer function
of free space reduces to

TFFresnel = eikde−iπλd(f2
x+f2

y ), (2.29)

with k = 2π
λ
. The PSF of free space is the inverse Fourier transform of the transfer

function

PSFFresnel(x, y) = F−1[TFFresnel] = − i
λd

eikd eik x
2+y2
2d . (2.30)

Gaussian beam

The Gaussian beam is a wave (solution of Helmholtz equation) of great interest
because it can nicely approximate beams coming out of a single mode fibre or laser
for example. Theoretically speaking, it is a non-trivial solution of the Helmholtz
equation,

U(x, y, z) = A

1 + iz/zR
exp

[
− x2 + y2

w2
0(1 + z2/z2

R)

]
exp

[
ik
(
z + x2 + y2

2(z + z2
r/z)

)]
(2.31)

where zr ∈ R is the Rayleigh range and w0 the waist of the beam.
We now briefly argue why this particular wave arises in the context of single mode

lasers and fibres:
• In a laser cavity, the boundary conditions imposed by the spherical mirrors con-

strain the wave to be a Hermite-Gaussian beam (see Chapter 3.3 of Saleh and
Teich [3]) because Hermite-Gaussian beams can exist self-consistently within
a pair of spherical mirrors. Finally, the circular and finite aperture of the
mirrors favours the Gaussian beam among the other beams because it has the
smallest radial extension and hence minimize the resonator losses (see Chapter
10.2 of Saleh and Teich [3]).

7In the Taylor expansion of the square root
√

1− λ2f2
x − λ2f2

y = 1 − λ2f2
x−λ

2f2
y

2 + ..., just the
quadratic terms are taken into account.
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• The reason for the light coming out of a single mode fibre being almost a Gaus-
sian beam is different and related to Fourier optics. The mode propagating in
a single mode fibre has a bell radial distribution similar to a Gaussian profile
(see Chapter 9.2 of Saleh and Teich [3]). Furthermore, it can be shown that
the wave propagating out of an aperture with Gaussian amplitude profile is
exactly the Gaussian beam (2.31). Since the complex amplitude profile at the
output of a single mode fibre is nearly Gaussian, the outgoing beam is also
nearly Gaussian.

We now summarize the principal properties of the Gaussian beam:
• The intensity profile I = |U |2 is a Gaussian function in the transversal plane
z = d,

I(x, y, d) = I0

1 +
(
d
zr

)2 exp
[
−2(x2 + y2)

w(d)2

]
, (2.32)

where w(d) = w0

√
1 +

(
d
zr

)2
is the beam width at coordinate z = d and

I0 = |A|2 is the peak intensity.

• The beam width is the distance from the optical axis where intensity decreased
by a factor 1/e2 and the amplitude by a factor 1/e. The beam width at the
origin is the waist w0.

• Two parameters suffice to fully determined a Gaussian beam. For example,
the waist w0 and the wavelength λ gives the divergence angle 2θ0 = 2λ

πw0
and

the depth of focus 2zr = 2πw2
0

λ
.

• Focusing a Gaussian beam (w0,zr) with a lens gives rise to another Gaussian
beam with different waist w′0. In the case where the depth of focus zr is much
longer than the focal length of the lens f , the new waist of the focused beam
is

w′0 = λf

πw0
, (2.33)

located at a distance f from the lens (in the geometrical focus).

Fraunhofer diffraction

The Fresnel diffraction theory that follows from equations (2.29) or (2.30) is valid
when the input amplitude f(x, y) contains only small spatial frequencies. The am-
plitude in the output plane g(x, y) is the convolution product

g(x, y) = f(x, y) ∗ PSFFresnel(x, y)

∝
∫∫ +∞

−∞
f(x′, y′) eiπ x

′2+y′2
λd e−2iπ( x

λd
x′+ y

λd
y′) dx′ dy′, (2.34)
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which is the Fourier transform of f(x, y) eiπ x
′2+y′2
λd , the input amplitude multiplied

by a quadratic phase factor. If we assume further that the input amplitude is
non-zero only within a small area compared to the free-space distance d, the phase
factor eiπ x

′2+y′2
λd contributes to the integral only for small (x′, y′), where it almost

equals unity: eiπ x
′2+y′2
λd ≈ 1. This approximation leads to a simple Fourier transform

relation between the output and input amplitudes8,

g(x, y) = f(x, y) ∗ PSFFresnel(x, y),

∝
∫∫ +∞

−∞
U(x′, y′, 0) e−2iπ( x

λd
x′+ y

λd
y′) dx′ dy′,

∝ F [f(x, y)]
(
x

λd
,
y

λd

)
,

(2.35)

where d is the distance between the input plane and the output plane. The complex
proportionality factor is − i

λd
eikd eik x

2+y2
2d . This approximation is called the Fraun-

hofer approximation or the far field approximation. Typical observation distances
of the Fraunhofer diffraction pattern originating from a circular aperture of diameter
1mm are at least a few meters.

Fourier transform property of a converging system

We can understand qualitatively the emergence of the optical Fourier transform
in the following way: we defined the Fourier transform of a function f(x, y) as the
continuous weight of the harmonic functions (plane waves) that, once superimposed,
equal the function f(x, y) (as defined in Equation 2.7). Performing an optical Fourier
transformation is nothing but having access to the amplitude of each plane waves
that composes the input function.
A practical method to separate the plane waves and record their amplitudes is to

use a converging optical system. In the back focal plane of a diffraction limited con-
verging system, the different plane waves focus onto a point (x,y) with coordinates
proportional to the plane wave associated spatial frequency (x ∝ fx, y ∝ fy).
Following this reasoning leads to the Fourier transform property of a converging

system: The amplitude in the front (f(x, y)) and back focal plane (g(x, y)) of a
converging system forms a Fourier transform pair,

g(x, y) = −i
λf

e2ikf
∫∫ +∞

−∞
f(x′, y′) e−2iπ( x

λf
x′+ y

λf
y′) dx′ dy′,

= −i
λf

e2ikf F [f ]
(
x

λf
,
y

λf

)
,

(2.36)

where f is the focal length of the diffraction limited converging system.

8The conditions of validity of the Fraunhofer approximation can be found in Saleh and Teich [3].
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PSF of an optical system

In the last sections, we showed that the imaging of a diffraction limited system
can be fully described by its point spread function. We now aim to discuss how to
efficiently determine this function knowing the optical system properties.
One way to do this would be to calculate how a (spherical) wave emitted by a

single point source in the object plane propagates through the system and ends up
in the image plane. This method is correct but would require a lot of calculations,
especially if the system has multiple optical elements.
The computation of the PSF is considerably simplified by a theorem that relates

the PSF of an optical system with the Fourier transform of the exit pupil9 function,

PSF (x, y) = 1
λ2d2

∫∫ +∞

−∞
P (x′, y′) e−2iπ(xx′+yy′) dx′ dy′,

= 1
λ2d2 F [P ] (x, y) ,

(2.37)

where P is the exit pupil function, defined as unity inside the exit pupil and zero
otherwise. d is the distance between the exit pupil and the image plane.

2.2 Imaging dense clouds of atoms
2.2.1 The light - atomic cloud interaction
The atomic cloud model

The experimental atomic transition of interest is a 5s-5p dipole transition in the
alkali atom, 87Rb. For a two-level atom interacting with a near resonant electro-
magnetic field, the semiclassical theory predicts a charge density oscillation at the
generalized Rabi frequency (see chapter 3 of Meystre and III [6]). This quantum
mechanical result shares some analogy with the Lorentz oscillator model 10

where a harmonically bound charge (the outer electron of 87Rb) oscillates at the op-
tical radiation frequency around the positive core. This motivates the model of the
atomic cloud as a dielectric, linear and dispersive medium so that the (complex
amplitude) dipole moment p of one atom is proportional to the (complex amplitude)
electric field E,

p(ν) = α(ν)E (2.38)

where α(ν) is the frequency dependent complex polarisability. As will be shown in
the next sections, the complex polarisability enables the treatment of both dispersion

9The exit pupil is the image, seen from the image space, of the most limiting aperture of the
optical system. For more details, see Born and Wolf [5]. In the case of a two lens imaging
system, the limiting aperture is the smallest lens.

10See Saleh and Teich [3] and Grimm et al. [7].
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and absorption of the cloud. A more general treatment that takes into account the
ground and excited state manifold, the anisotropy of the atom as well as the light
polarisation can be found in Meppelink et al. [8].

The complex polarisability

Equation (2.38) is our definition of the complex polarisability. We will now make use
of the Lorentz oscillator model in order to derive the polarisability of an atom in the
cloud. The equation of motion of a driven, damped harmonic oscillator describing
the motion of the bound external electron in the radiation field is

ẍ+ σẋ+ w0x
2 = −eE(t)

me

, (2.39)

where σ is the damping rate (in units of s−1) due to radiation energy loss, w0
the optical resonance angular frequency, −e and me are the charge and mass of
the electron and E(t) is the real electric field. The damping rate (defined as the
prefactor of the ẋ term) can be evaluated from Larmor’s formula (see chapter 14 of
Jackson [9]) for the power radiated by an accelerated charge,

P = e2ẍ2

6πε0c3 , (2.40)

where ε0 is the vacuum permittivity and c is the speed of light. Assuming that the
damping is much smaller than the optical frequency, the Abraham-Lorentz force
Frad (also called radiative reaction force. See chapter 17 of Jackson [9]) reduces to
a frictional force,

Frad = e2w2ẋ

6πε0c3 , (2.41)

where w is the electric field angular frequency. The damping rate of the equation of
motion finally reads,

σ = e2w2

6πε0mec3 . (2.42)

Multiplying both sides of the equation of motion (2.39) by −e reveals an equation
for the dipole moment,

p̈ + σṗ + w0p2 = e2E(t)
me

. (2.43)

Substitution of E(t) = <{E exp(−iwt)} and p(t) = <{p exp(−iwt)} into (2.43)
leads to the wanted linear relation between p and E,

p = e2

me

1
w2

0 − w2 − iwσ
E, (2.44)
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from which we identify the complex polarisability,

α = e2

me

1
w2

0 − w2 − iwσ
,

= 6πε0c3 Γ/w2
0

w2
0 − w2 − i(w3/w2

0)Γ ,
(2.45)

where we introduced the on-resonance damping rate Γ = (w0/w)2σ. In typical
imaging conditions, the probe light detuning |w − w0| is much smaller than the
resonance angular frequency w0 so that the so-called rotating wave approximation is
well justified and w/w0 ≈ 1 and w2

0 − w2 = (w0 + w)(w0 − w) ≈ 2w0(w0 − w). The
expression of the polarisability becomes

α = 3
(2π)2 ε0λ

3 Γ
2(w0 − w)− iΓ . (2.46)

Index of refraction and absorption of an atomic cloud

In phase contrast imaging, we are mainly interested in the phase shift introduced by
the cloud in contrast to absorption imaging where absorption is of much importance.
It is possible to handle both phenomena with the unique complex polarisability. The
real part of the polarisability is related to the index of refraction of the cloud and
the imaginary part to the absorption, as can be seen in chapter 5 of Saleh and Teich
[3].
In the case of a dilute media (such as a cold atomic cloud, thermal or BEC, in

vacuum), the index of refraction nref and the absorption coefficient αAbs (in the
sense of the Beer-Lambert law) are given by

nref = 1 + n

2ε0
Re {α} and

αAbs = 2πn
λε0

Im {α} ,
(2.47)

where n is the position-dependent cloud density. The real and imaginary part of the
polarisability in the rotating wave approximation are

Re {α} = −3
(2π)2 ε0λ

3 δ

1 + δ2 and

Im {α} = 3
(2π)2 ε0λ

3 1
1 + δ2 ,

(2.48)

where δ = w−w0
Γ/2 is the detuning in half linewidths. Finally, the index of refraction

and the absorption read

nref = 1− nσ0λ

4π
δ

1 + δ2

αAbs = nσ0
1

1 + δ2 ,

(2.49)
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where we introduced the resonant cross section σ0 = 3λ2/(2π). It is now possible
to determine the most important parameters for phase contrast and absorption
imaging, namely the phase shift and the transmission coefficient.
Assuming probe light propagating in the z direction through an inhomogeneous

cloud, the accumulated phase is given by

φ(x, y) = 2π
λ

∫ +∞

−∞
[nref (x, y, z)− 1] dz. (2.50)

Substitution of (2.47) into (2.50) leads to the phase shift of Ketterle et al. [10],

φ(x, y) = −σ0

2
δ

1 + δ2nc, (2.51)

where we introduced the column density nc =
∫+∞
−∞ ndz.

The transmission coefficient(defined as the ratio of amplitudes
√
If/
√
I0 after and

before the cloud) follows from the Beer-Lambert law

dI = −αabsIdz. (2.52)

The square of the transmission coefficient is the ratio of intensities,

t2 = If
Ii

= e−
∫ zf
zi

αabs dz
. (2.53)

Substitution of (2.47) into (2.53) leads to the transmission coefficient

t = e−
σ0
2

1
1+δ2 nc . (2.54)

The most critical approximations done up to now are the two-level approximation
and the classical derivation of the damping rate that neglects saturations effects.
The polarisability in the case of saturation of the dipole transition can be derived
from the optical Bloch equations (see Chapter 2 of Loudon [11]) and reads for the
cycling transition of 87Rb,

α = σ0ε0
k

1
1 + δ2 + I/Isat

[−δ + i] , (2.55)

where Isat is the saturation intensity and k = 2π/λ the wave number.

Scattering rate

Some aspects of imaging such as the fluorescence or the radiative pressure are easier
to handle within the photon picture. From this point of view, the opacity of an
atomic cloud with respect to resonant light is due to scattering of probe photons
by the atoms: the absorption of photons and their isotropic re-emission.
Furthermore, in the semi-classical theory, the damping rate Γ corresponds to the

decay rate 1/τ , where τ is the lifetime of the excited state. The scattering rate Γsc
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Figure 2.1: Absorption imaging setup with a two-lens optical system.

is then given by Γρee, where ρee is the population of the excited state. A steady
state solution of the optical Bloch equations (see Steck [12]) yields the excited state
population and therefore

Γsc = Γ
2

I/Isat
1 + δ2 + I/Isat

, (2.56)

where Isat is the saturation intensity, δ the detuning in half linewidths. Note that
when the transition is saturated, the excited state population settles to 1/2 and the
scattering rate to Γ/2 which is around 18× 106 s−1 for the 52S1/2 → 52P3/2 transition
of 87Rb (see Steck [12]).

2.2.2 Absorption imaging
When a collimated probe beam shines on an opaque object, it projects a shadow.
Absorption imaging is nothing but the recording of this shadow. Because typical
atomic clouds are small, and light is diffracted on them, the geometrical shadow
vanishes within a few millimetres. Practically, it is not possible to place a photosen-
sitive detector behind the atoms on the path of the probe beam. Rather than that,
an imaging system images the shadow onto a CCD camera as seen in Figure 2.1.
In the last section, we related the transmission of light through the clouds to the

column density so that an image represents a column density profile. As shown
in Ketterle et al. [10], the maximum signal is obtained for resonant probe light
(δ = 0) so that the atoms introduce no phase shift at all (see Equation (2.51)). In
this case, and in the low saturation limit, the transmission given by Equation (2.54)
reduces to

t = e−
σ0
2 nc . (2.57)

By definition, the transmission coefficient is the ratio t = Ef/E0 where E0 and
Ef are the amplitudes right before and right after the cloud, respectively. The
amplitude right after the cloud is

Ef = tE0, (2.58)
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where t = t(x, y) is position-dependant. Assume an imaging system with unit
magnification that images the amplitude Ef onto a CCD camera placed in the
image plane. The camera records

If = |Ef |2 = |tE0|2 ,
= t2I0.

(2.59)

where I0 is the position dependant probe light intensity11. Thus, the recorded in-
tensity is a function of the cloud column density,

If = I0e−σ0nc , (2.60)

and inversion of (2.60) results in

nc = − 1
σ0

ln
(
If
I0

)
, (2.61)

where If and I0 are the intensities measured with and without atoms, respectively.
A more general treatment taking into account a non-unity magnification as well as

diffraction effects can be found in Appendix A. A general version of Equation (2.61),
considering saturation, can be found in Reinaudi et al. [13] and will be discussed in
the next chapter.

2.2.3 Phase contrast imaging
Phase contrast imaging is a slightly more subtle way to access to the column density
profile. As seen before, the column density does not just appear in the transmission
coefficient, but also into the phase shift (2.51). An alternative to absorption imaging
is to record the phase shift instead of the shadow of the atoms. This implies two
changes:

1. The probe light has to be detuned from resonance in order for the atoms
to introduce a detectable phase shift.

2. The optical system has to be upgraded to a homodyne detection system.

Among homodyne techniques, phase contrast imaging has the advantage over
interferometers to be less bulky and to be more easily adaptable to a standard
imaging system.
In phase contrast imaging the reference radiation is the probe beam itself, phase

shifted in order to interfere with the diffracted wave from the atoms.
As before, E0 and Ef refer to the probe beam amplitude before and right after

the atomic cloud; they are related by an amplitude and a phase factor12

Ef = E0teiφ, (2.62)
11We neglect here, for simplicity, the diffraction by the imaging system.
12Relation (2.62) as well as (2.58) are valid if the thickness of the cloud is small compared to the

collimated probe beam diameter.
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where φ is the phase shift caused by the atoms13.
We now, in anticipation of what follows, make use of the liberty to write Ef as a

superposition of two waves Ef = E0 + Ea where

Ea = E0(teiφ − 1). (2.64)

Because Ea is non-zero only in the presence of atom, we can consider Ea as the wave
emitted by the atoms.
We choose these waves because they propagates in distinct ways through the

imaging system. The collimated probe wave E0 will be brought to focus in the back
focal plane of the objective. In contrast, the diffracted wave Ea will not focus, but
instead will be spread out on a large area in the back focal plane of the objective.
This can be understood as a consequence of the Fourier transform property of the
objective: E0 is a low spatial frequency wave focusing in the focal point of the
objective; Ea carries higher spatial frequencies and will then cross the back focal
plane occupying a large area.
As recognised by Zernike [14], phase fluctuations (caused by the atomic cloud) will

remain invisible as long the two waves E0 and Ef present the same phase relation
in the object and image plane. Indeed, the amplitude in the image plane, being an
exact replica of the field in the object plane, the intensity measured in the image
plane is the same as for absorption imaging,

∣∣∣E0 + E0(teiφ − 1)
∣∣∣2 =

∣∣∣E0teiφ
∣∣∣2 ,

= t2I0,
(2.65)

which presents no phase dependence.
Zernike idea is to phase shift the probe wave14 by −π

2 compared to the atomic
wave Ea. This is done by the mean of a particular phase plate shown in Figure 2.2.
The resulting interferences between E0 and Ea lead to an intensity pattern in the
image plane that is dependent on the atomic phase shift.
In the presence of this phase plate, the amplitude in the image plane of a unitary

magnifying optical system is

ECCD = E0e−iπ2 + Ea. (2.66)

13Note that the phase of Equation (2.62) is defined to within a constant ϕ,

Ef = E0tei(φ+ϕ), (2.63)

without practical consequences. However, for the simplicity of the following derivation, we
require φ+ ϕ to have zero mean and will continue to call this phase φ.

14A negative phase shift occurs with a phase plate that advances the phase of the unscattered
wave E0 compared to Ea.
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Figure 2.2: Phase contrast imaging setup with a two-lens optical system.

Substitution of (2.64) into (2.66) leads to the intensity seen by the camera,

ICCD =
∣∣∣−iE0 + E0(teiφ − 1)

∣∣∣2 ,
= |E0|2

∣∣∣−i+ teiφ − 1
∣∣∣2 ,

= I0
[
2 + t2 − 2t(cosφ+ sinφ)

]
.

(2.67)

If we assume small phase shifts from the atoms so that cosφ ≈ 1 and sinφ ≈ φ, the
intensity measured by the camera reduces to

ICCD = I0(2 + t2 − 2t− 2tφ). (2.68)

The phase shift is then a linear function of the normalised intensity difference,

φ = − 1
2t
ICCD − I0

I0
+ (t− 1)2

2t . (2.69)

If we now substitute (2.51) into (2.69), we find the column density to be

nc = 1 + δ2

tσ0δ

[
ICCD − I0

I0
− (t− 1)2

]
, (2.70)

where ICCD is the intensity measured in the presence of atoms, I0 the intensity
measured without atoms, σ0 is the resonant cross section and δ the detuning in half
linewidths.
In appendix A, we generalise the treatment of phase contrast imaging considering

the absorption of the phase plate and the magnification of the system. We also
discuss the effect of the phase dip size.
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3 Comparison of absorption and phase
contrast imaging

Phase contrast imaging in the non-destructive regime (high detuning) has been
applied with success and is well documented (see for example Meppelink et al. [8]).
It offers clear advantages compared to absorption imaging in the observation of large
Bose-Einstein condensates and for in-situ measurements (see Ketterle et al. [10]).
For low optical densities (ncσ0 < 1), phase contrast presents no advantages.
In this chapter, we compare both techniques for the observation of clouds in ballis-

tic expansion with moderate optical densities (ncσ0 ≈ 10). This requires absorption
imaging to be performed with highly saturated probe light and phase contrast to be
performed near resonant.

3.1 Signal-to-noise comparison
Quantitative imaging requires the best possible signal sensitivity for a sufficient den-
sity dynamic range. Here we theoretically investigate the performance of absorption
imaging and phase contrast imaging for the observation of small atomic clouds. The
typical column density range of such clouds is between 0 and 40 atoms per square
micrometer (or optical densities ncσ0 between 0 and 10). This is one order of mag-
nitude more dilute than a condensed BEC but still two orders of magnitude denser
than a cloud in a magneto-optical trap. For the sake of simplicity, we keep the
light-atom interaction theory at a simple level neglecting polarisation effects and
the multilevel structure of the atom. We assume the imaging transition to be the
cycling transition of 87Rb, so that we can use the polarisability (2.55). Phase con-
trast imaging is implicitly performed in the positive optimal regime where atoms
appear brighter than the background (−π/2 phase plate and blue-detuned light).

3.1.1 Saturation absorption imaging
As described by Ketterle et al. [10], the best imaging sensitivity is obtained – in
the low intensity regime – with absorption imaging. Phase contrast imaging has
a factor 2 lower sensitivity in optimal conditions (±π/2 phase plate and at the
detuning δ = 1 in half linewidths.). Standard absorption imaging is, however, not
suitable for relatively dense clouds, because of the rapid saturation of the signal
(standard absorption imaging can probe optical densities up to approximately 2
before saturation of the signal). The absorption imaging dynamic range can be
increased, at the price of the sensitivity, by probing the cloud with highly saturated
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Figure 3.1: Absorption imaging signal, |Ia − I0| /I0, as a function of the optical den-
sity (ncσ0), for different saturation parameters s0.

intensity as explained in Reinaudi et al. [13]. The column density nc can be extracted
from intensity measurements as

nc = − 1
σ0

[
ln
(
Ia
I0

)
+ Ia − I0

Isat

]
, (3.1)

where σ0 is the resonant cross section, Ia the intensity measured in the presence of
atoms, I0 the intensity without atoms and Isat the saturation intensity. Analytical
inversion of Equation (3.1) is in general not possible in order to express the nor-
malised signal |Ia−I0|

I0
as a function of the optical density OD = ncσ0. Numerical

solutions are shown for standard and saturation absorption imaging in Figure 3.1.
For small optical densities, the normalised signal SAbs can be expressed as a linear
function of the optical density,

SAbs ≈
ncσ0

s0 + 1 = OD
s0 + 1 , (3.2)

where s0 = I/Isat is the saturation parameter. Compared to standard absorption
imaging (I � Isat), saturation of the probe intensity reduces the signal of the method
by a factor s0 + 1 as can be seen in Figure 3.1. Thus, this permits an increasing of
the optical density dynamics, approximately by a the same factor s0 + 1 as can be
seen in Figure 3.1.

3.1.2 Near-resonant phase contrast imaging
Saturation of the probe beam tends also to reduce the sensitivity of phase contrast
imaging, but to a lesser extent than for absorption imaging. In the high saturation
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regime, the phase contrast signal SPCI = |Ia−I0|
I0

that follows from Equation (2.67)
is given by

SPCI = t2 + 1− 2t(cosφ+ sinφ), (3.3)

where φ is the phase shift caused by the atoms and t is the transmission coefficient of
the cloud in the high intensity regime. Note that there is no analytical expression for
t and φ in this regime. The transmission coefficient of the cloud is t =

√
If
I0
, where

If is the intensity after the cloud and I0 before. It can be numerically computed
using the results of the last section that leads to the modified Beer-Lambert law,

dI = − nσ0

1 + δ2 + I/Isat
Idz, (3.4)

where n is the position-dependent density of the atomic cloud and I is the position-
dependent intensity of the imaging beam. Relation (3.1) can be generalised to

nc = − 1
σ0

[
(1 + δ2) ln

(
t2
)

+ If − I0

Isat

]
, (3.5)

from which the transmission coefficient t can be numerically extracted.
The phase shift caused by the atoms follows from Equation (2.50),

φ = −σ0δ

2

∫ +∞

−∞

n

1 + δ2 + I/Isat
dz. (3.6)

Integration of (3.4) and insertion of (3.6) leads to the atom phase shift,

φ = δ

2 ln t2. (3.7)

Again, we show in Figure 3.2 the effect of saturation on the phase contrast signal
where we choose the optimal detuning for each saturation parameter. For small
optical densities (|φ| � 1 and t ≈ 1), Equation (3.3) can be linearised,

SPCI ≈ −2φ = ncσ0
δ

1 + δ2 + s0
, (3.8)

where δ is the detuning in half linewidths. The maximal sensitivity is obtained
when the derivative of Equation (3.8) with respect to δ is zero. The detuning that
maximises the sensitivity of the signal in the linear regime is found to be

δ =
√
s0 + 1. (3.9)

The dependence of the normalised signal with respect to the detuning is plotted in
Figure 3.3. Substitution of (3.9) into (3.8) leads to the maximal sensitivity signal
for phase contrast imaging,

SPCI = OD
2
√
s0 + 1 . (3.10)
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Figure 3.2: Phase contrast imaging signal for different saturation parameters s0 and
for the optimal detuning.
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Figure 3.4: Normalised intensity (Ia/I0) as a function of the optical density for dif-
ferent probe techniques. Phase contrast is performed with a −π/2 phase
plate and s0 = 10.

3.1.3 Comparison of the dynamic range
The dynamic range is the density range before the signal saturates. For saturation
absorption imaging (s0 � 1), we showed that the dynamic in optical densities is
roughly equal to s0 + 1. For example, with a saturation parameter around s0 = 10,
it is possible to probe clouds up to OD ≈ 11. Beyond that density, the cloud is
opaque.
Figure 3.4 shows the normalised intensity (Ia/I0) as a function of the optical

density for different probe techniques:
• optimal phase contrast imaging,

• phase contrast imaging with −π/2 phase plate and red detuned light,

• saturation absorption imaging.
The dynamic of the phase contrast technique is larger – for equivalent saturation–
even if one does not considers the periodicity of the signal but just the domain
before the first extremum of the signal. This statement is valid only if phase contrast
imaging is performed in optimal conditions, for example with a −π/2 phase plate
and blue detuned light.

3.1.4 Comparison of the normalised signal
As already mentioned, phase contrast has a larger dynamic range for any saturation
regime because of the periodicity of the signal. We will now show that the sensitivity
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Figure 3.5: Normalised signal |Ia−I0|
I0

as a function of the optical density ncσ0 for
both imaging techniques and for a typical saturation of s0 = 10.

of phase contrast surpasses the one of absorption imaging for high probe intensities.
Comparing the signals obtained with both techniques in the linear regime, the gain
of near-resonant phase contrast versus absorption imaging can be expressed by the
ratio

SPCI
SAbs

=
√
s0 + 1

2 , (3.11)

where we choose the detuning that maximises the sensitivity δ =
√
s0 + 1. This

shows that optimal phase contrast imaging has a better sensitivity than absorption
imaging for saturation parameters above s0 = 3. For a typical experimental probe
intensity of I = 10Isat, phase contrast imaging presents a signal stronger by at least
a factor

√
11/2 ≈ 1.7 as can be seen in Figure 3.5.

3.1.5 Signal-to-heating ratio
The quality of cold atoms images not only depends on the strength of the signal,
but also on the noise present. Because the shot-noise-limited signal-to-noise ratio
goes with the square root of the exposure time τ , long exposures are preferable.
In probing cold atoms optically, however, the energy of the probe photons is not
negligible compare to the kinetic energy of the atoms so that imaging free atoms is
a destructive process, limiting the exposure time. The amount of signal collected
per scattered photon or signal-to-heating ratio is then of great interest. We now
show that phase contrast imaging is a less destructive technique than absorption
imaging for a given exposure time.
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For resonant absorption imaging, the scattering rate (2.56) reduces to

ΓAbs = Γ
2

s0

1 + s0
, (3.12)

where Γ is the decay rate. For high saturation parameters, the scattering rate settles
approximately to Γ/2. The scattering rate for the detuned light of optimal phase
contrast imaging is less by a factor two due to the detuning (chosen to maximise
the signal as seen in section 3.1.2),

ΓPCI = Γ
4

s0

1 + s0
. (3.13)

Near-resonant phase contrast imaging, being less destructive than absorption imag-
ing, enables longer exposures as will be seen in the following Section 3.2. If we
normalise the scattering rate to Γ/2 in order to deal with unitless quantities, ΓAbs
and ΓPCI become

Γ′Abs = s0

1 + s0
,

Γ′PCI = s0

2(1 + s0) .
(3.14)

The signal-to-heating ratio S/Γ′ defined as the ratio between the normalised signal
and the normalised scattering rate is given for absorption and phase contrast imaging
by

SAbs/Γ′Abs = OD
s0

,

SPCI/Γ′PCI = OD
√
s0 + 1
s0

.

(3.15)

For the same number of scattered photon, phase contrast delivers approximately√
s0 + 1 more signal.

3.1.6 Signal-to-Noise ratio
For small optical densities (OD ' 0), both techniques give about the same noise per
unit time and the gain in SNR provided by phase contrast imaging with a longer
exposure time τPCI > τAbs is

GainSNR = SPCI
SAbs

√
τPCI
τAbs

=
√
s0 + 1

2

√
τPCI
τAbs

,

(3.16)

where τPCI and τAbs are exposure times for phase contrast and absorption imaging,
respectively. Because atoms imaged with the phase contrast technique1 appear

1With a −π/2 phase plate and blue detuned light.
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Figure 3.6: Gain on the SNR: SNRPCI/SNRAbs procured by phase contrast com-
pared to absorption imaging with τPCI = 1.4 τAbs (see section 3.2.3).

brighter than the background, the shot noise associated to this signal is bigger than
the shot noise associated to the absorption signal. In other words, phase contrast
gives more signal than absorption imaging (3.16), but induces also more shot-noise.
For increasing optical densities, it turns out that the gain in the SNR obtained by
phase contrast decreases first, reaches a minimum and grows again, but never falls
below unity as can be seen on the numerical calculation of Figure 3.6.

3.2 Imaging an expanding cloud
In the last section, we showed that the scattering rate during optimal phase contrast
imaging is half that of absorption imaging and, therefore, phase contrast enables
longer exposure. How much longer? In practice, the exposure time is chosen as long
as possible such that no significant image degradation is observed. In this section,
we want to investigate the possible sources of blurring that affect the image in order
to understand what actually limits the exposure time.

3.2.1 Expansion of the cloud
During a typical exposure of 15 µs with saturated probe intensity, an atom undergoes
hundreds of scattering event. The interaction of an atomic cloud with the probe
beam can be divided in two processes that both tend to degrade the image quality2:

2Since atoms are initially ultra cold, we will neglect their initial thermal velocity compare to the
velocity they acquire during the imaging. In order to facilitate the description of the cloud
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Figure 3.7: Schematic picture of the expanding cloud at regular time interval. The
centre of mass of the cloud is pushed along the optical axis toward the
objective and the cloud diffuses isotropically.

1. radiation pressure of the probe beam pushes the centre of mass of the cloud in
the beam direction. Pushing the atoms out of focus introduces blurring and
loss of signal.

2. the random re-emission of photons induces an isotropic diffusion of the cloud
around the centre of mass. If the cloud’s spatial extent exceeds the optical
resolution limit, images may appear blurred.

Figure 3.7 shows schematically the expansion (axial displacement and isotropic
diffusion) of an initially point like cloud during imaging.

Radiation pressure

Atoms pushed by the radiation pressure acquire, after a time ∆t, an average velocity
of vrecΓsc∆t along the probe beam propagation direction, where vrec is the recoil
velocity, Γsc is the scattering rate. After an exposure time of τ , the center of mass
of the cloud has moved by the distance

∆z = vrecΓsc
τ 2

2 . (3.17)

Typical displacement of the cloud during a 15 µs long exposure and with a saturated
probe beam is around 13 µm for absorption and 6 µm for phase contrast imaging.
The axial displacement effects can be reduced when the imaging system is set so

expansion, we assume an initially point like cloud.
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that, at the beginning, atoms are slightly out of focus and travel through the front
focal plane of the objective (Muessel et al. [15]).
Note that, in practice, the probe beam is not perfectly aligned with respect to the

optical axis but slightly tilted (by approximately 4◦ in our imaging setup) so that
the atoms are additionally shifted laterally when observed from the objective. This
lateral shift is approximately 1 µm under typical absorption imaging conditions.

Isotropic diffusion

The spontaneous re-emission of photons by the atoms leads to a spatial Gaussian
diffusion of the cloud. The standard deviation σcloud of the Gaussian profile can be
derived from the atom’s random walk in velocity space (Joffe et al. [16]),

σcloud = vrec
3

√
Γscτ 3/2. (3.18)

Typical radial extents of the cloud are 2σ = 0.6 µm for absorption and 2σ = 0.4 µm
for phase contrast imaging after an exposure of 15 µs.

3.2.2 Imaging an expanding cloud: the “Cloud Spread Function”
(CSF)

In the last section, we saw that during the imaging process, the atomic cloud is
pushed towards the objective and diffuses slightly. These effects can be substantial
for the image quality if the objective has a shorter depth of field than the axial
displacement of the cloud and a diffraction limited resolution comparable to the
spatial diffusion of the cloud and the lateral shift. In this section, we develop a
model to describe, in a simple way, the imaging of such an expanding cloud.
The image of a moving scene is an integration of the time-dependent intensity

falling on the CCD during the exposure time:

Image ∝
∫ τ

0
I(t)dt (3.19)

where the image can be express in photon/m2 or in counts/pixel. We now make
an approximation (that is reasonable considering the particular object we want to
image) by describing the imaging process using incoherent imaging theory rather
than the coherent theory. In contrast to coherent imaging, incoherent imaging is a
linear mapping of intensity so that the intensity in the image plane of an optical
system is given by

Iim ∝ |PSF |2 ∗ Iobj, (3.20)

where Iim and Iobj are the intensities in image and object plane respectively, PSF
is the point spread function of the system and ∗ denotes the two-dimensional con-
volution product. In our case, the incoherent imaging theory is expected to give
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satisfying result because we image an array of well separated, microscopic, bell
shaped clouds. Furthermore, incoherent imaging enables a more concise and intu-
itive description of the imaging of moving objects. Inserting Equation (3.20) into
(3.19) leads to

Image ∝
∫ τ

0
|PSF (t)|2 ∗ Iobj(t)dt, (3.21)

where Iobj(t) is the intensity in the plane orthogonal to the optical axis and con-
taining the centre of mass of the cloud, this plane is called the defocused plane.
Iobj(t) carries information on the isotropic diffusion of the cloud. PSF (t) is the
point spread function associated to the defocused plane; it includes diffraction of
the optical system and blurring due to defocusing of the centre of mass. Therefore,
PSF (t) is the response of the system to a defocused point source in object space and
will now be denoted DPSF (t) for Defocused Point Spread Function(see Chapter 6
of Goodman [4]). The intensity in the defocused plane Iobj(t) can be written as a
convolution product: Iobj(t) = Iobj(0) ∗ G(t) where G(t) is a Gaussian function de-
scribing the transversal spatial diffusion of the cloud and Iobj(0) = Iobj(t = 0) is the
initial intensity profile of the cloud. Using the linearity of the convolution product,
the image delivered by the camera can be written as a convolution product,

Image ∝ Iobj(0) ∗
∫ τ

0
|DPSF (t)|2 ∗G(t)dt︸ ︷︷ ︸
Cloud Spread Function

. (3.22)

The time integral of Equation (3.22) is a real function of the exposure time τ , that
once convolved with the initial intensity profile gives the actual image delivered by
the camera. We call this theCloud Spread Function (CSF), because it generalises
the concept of point spread function for an expanding cloud. The intuitive meaning
of the CSF is the following: it is the response to the imaging system to a point like
expanding cloud. The peak value of the CSF is proportional to the amount of signal
collected by the camera. The spatial spread of the CSF provides information about
the total blurring affecting the images. The four main sources of blurring are the
defocussing of the centre of mass due to radiative pressure, the diffraction of the
system, the lateral shift due to the tilt of the probe beam, and finally the Gaussian
transversal diffusion.
The actual image delivered by the camera is, in full analogy to the incoherent

imaging theory, a convolution of the ideal intensity profile with an impulse response,
the CSF,

Image ∝ Iobj(0) ∗ CSF (τ). (3.23)

3.2.3 Limitation of the exposure time
Because the atoms are moving during imaging, the exposure time has to be limited
so that no significant blurring affects the images. We will now make use of the Cloud
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Figure 3.8: Cut of the cloud spread function for growing exposure time τ . The case
considered here is absorption imaging with s0 = 10 and an initial defocus
of 5 µm. The spatial coordinate is scaled with respect to the object space
and has to be compared with the optical resolution limit of 1.1 µm and
the interwell distance of 5.7 µm.

Spread Function in order to understand what actually limits the exposure time for
absorption and phase contrast imaging.
The CSF is plotted in the case of absorption imaging, for a saturation parameter

of s0 = 10 and for an initial defocus of 5 µm in Figure 3.8.
The cloud spread function increases monotonically with the exposure time. How-

ever, the peak value of the CSF saturates after approximately 14 µs meaning that
no useful signal is collected after this time. The width of the CSF, which is directly
related to the spatial resolution, is near the diffraction limit of 1.1 µm. Thus, there
is no considerable loss of resolution because of the expanding cloud. The reason
why the exposure time has to be smaller than a certain value around 14 µs is that
no significant signal is collected beyond that, but the noise increases. This phe-
nomenon results from the atomic cloud escaping rapidly from the region of sharp
imaging (within the depth of field) and being imaged in the form of a diffuse, weak
halo contributing to the local background (the wings of the CSF). This can be seen
by analysing the DPSF in Figure 3.9, which is the main contributor to the CSF.
Note furthermore that, as expected from the tilted probe beam, the CSF travels
laterally by a fraction of a micrometre.
Because we start the image acquisition with atoms slightly out of focus, the DPSF

grows in the first 10 µs until atoms cross the front focal plane of the objective. After
approximately 14 µs, atoms are beyond the depth of field and are imaged in the form
of a diffused halo (red lower curve in Figure 3.9).
Phase contrast imaging offers the possibility to expose longer because of the lower

scattering rate. The same analysis can be performed for near-resonant phase contrast

41



−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[µm]

N
or

m
al

is
ed

 D
P

S
F

 

 

tau=2 µs
tau=8 µs
tau=10 µs
tau=12 µs
tau=14 µs
tau=16 µs

Figure 3.9: Cut of the DPSF for different exposure time τ in object space coordinate.
The case considered here is absorption imaging with s0 = 10 and an
initial defocus of 5 µm. The DPSF grows when approaching the front
focal plane reaches its maximum there after 10 µs and vanish rapidly
after 16 µs.

imaging. We find out that the saturation of the CSF appears later so that the
maximal exposure time is around 20 µs as can be seen in Figures 3.10 and 3.11.
Near-resonant phase contrast imaging enables approximately 40% longer exposure

than absorption imaging.

3.3 Imaging simulations
After having compared the ideal cases of absorption and phase contrast imaging in
Section 3.1, we considered in Section 3.2 the mechanical effect of the probe beam
on the atoms. In the following section, we investigate further practical issues of
imaging. For this purpose, we developed a code that accurately simulates the optical
system in the lab which is a two component optical system. The first component
is a high numerical aperture objective that collimates the object wave. The second
component is an achromatic doublet with 1m focal length. The overall system has
a magnification of −31.

3.3.1 Simulation scheme of a two-lens imaging system
Phase contrast and absorption imaging optical systems differ only by the presence or
absence of a phase plate in the Fourier plane of the setup. It is therefore possible to
simulate both techniques with the same simulation scheme as depicted in Figure 3.12.
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Figure 3.10: Cut of the Cloud spread function for growing exposure time τ in object
space coordinate. The case considered here is phase contrast imaging
with s0 = 10, a detuning of δ = 3.3 and an initial defocus of 5 µm. The
CSF saturates after 20 µs.

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[µm]

N
or

m
al

is
ed

 D
P

S
F

 

 
tau = 4 µs
tau = 8 µs
tau = 12 µs
tau = 16 µs
tau = 20 µs

Figure 3.11: Cut of the DPSF in object space for different exposure time τ . The case
considered here is phase contrast imaging with s0 = 10, a detuning
of δ = 3.3 and an initial defocus of 5 µm. The DPSF grows when
approaching the front focal plane, reaches its maximum there after
approximately 16 µs and vanishes rapidly after 20 µs.
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Figure 3.12: Simulation scheme of a two-lens optical system. The amplitude in the
image plane is obtained by means of successive transmission coefficient
multiplication and two Fourier transformations.

The main steps of the imaging simulation are the following:

1. We first define the probe beam properties: amplitude E0(x, y), wavelength λ,
detuning δ. In practice, E0 has a Gaussian profile.

2. The amplitude after the object is determined from the transmission coefficient
and phase shift of the object so that: Ea = E0teiφ.

3. The objective performs a Fourier transformation computed with the Fast
Fourier Transform algorithm (FFT) so that the amplitude in the focal plane
of the objective is FFT [Ea].

4. The effect of the Zernike phase plate is implemented by multiplying the previ-
ous amplitude with the complex transmission coefficient of the Zernike phase
plate tz (see Appendix A). After the phase plate, the amplitude is tz ·FFT [Ea].
In the case of absorption imaging, the Zernike phase plate is absent so that tz
is set to unity.

5. We now a posteriori take into account the finite extents of the lenses and
define the aperture stop right after the phase plate3. The amplitude after the
aperture stop is tz ·FFT [Ea] multiplied by the stop function AP which is unity
inside the (circular) aperture and 0 outside.

6. The amplitude on the camera is obtained by means of a second Fourier trans-
form. The amplitude on the camera is then FFT [AP · tz · FFT [Ea]] from
which we can infer the intensity.

3Because the object beam is collimated after the objective we have the freedom to position the
aperture stop where ever we want between the objective and the imaging lens.
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Figure 3.13: Imaging simulations for both techniques. Each well contains approxi-
mately 600 atoms. s0 = 18. The detuning for phase contrast imaging
is 4.4 half linewidths.

We show in Figure 3.13 results of simulations for phase contrast and absorption
imaging under typical experimental conditions. As an object, we use a real column
density profile measured in the lab. Absorption imaging records the shadow of the
atoms such that atoms appear darker than the background. In contrast, phase
contrast imaging performed with blue detuned light and a negative phase shift (−π

2 )
delivers a positive signal.

3.3.2 Diffraction effects

The implementation of phase contrast imaging on the existing optical setup will
imply, as will be seen in Chapter 4, a smaller aperture stop. We now want to
investigate the effect of a reduced aperture stop on the quality of clouds images.

We then simulated phase contrast imaging for varying size of aperture stop and
results are shown in Figure 3.14. The individual clouds look well separated for
aperture stops greater than approximately 10mm. A significant overlap of the clouds
is observed for apertures smaller than 9mm. Interference features such as the fringes
superimposed with the clouds shown in Figure 3.14(e) can not be understood in the
framework of incoherent imaging. They result from interferences between adjacent
clouds.
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Figure 3.14: Simulation of phase contrast pictures of atoms for different aperture
stop diameters.
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3.3.3 Defocus effects

Diffraction and interference effects have to be suppressed, not only because they
limit the resolution, but also because they complicate the density profile extraction
by adding features to the image that do not exist in the real density profile.

These effects are more pronounced in the presence of defocussing (we mean here
an average defocussing over the exposure time). For this reason, we investigate
here the effect of defocussing on the atom pictures. It is possible to implement
defocussing in the simulation scheme of Figure 3.12 by letting the object wave Ea
expand in free space before performing the first FFT. We used here the results of
Section 2.1.3.

Talbot Effect

Defocussing enables the observation of an interesting phenomenon, called the Talbot
effect, that occurs in the near field of a diffraction grating. It consists of the repro-
duction of the grating structure after a certain distance called the Talbot length:
2p2

λ
(78 µm in our case) where p is the period of the grating (5.5 µm in our case).

At half the Talbot length (39 µm defocus), the grating structure is also reproduced,
but inverted, as can be seen in Figure 3.15.

3.3.4 Defocus effect for other objects

The effect of the defocussing depends strongly on the particular object of observa-
tion. Indeed, objects that exhibits sharp edges are more likely to exhibits interfer-
ences effects due to defocussing. We now want to investigate how different object
structures (a Gaussian profile, a parabolic and a square profile) appear in image
space with a slight defocussing of the objective. We start our simulations with an
elongated cloud as an object, that exhibits the desired profile in the vertical direction
(i.e. square, parabolic or Gaussian). The widths of these profiles are comparable to
the typical clouds created in the lab (around 3 µm). Results are presented in the
form of cuts in the vertical direction, instead of as full two dimensional images, for
a better visibility. Results are shown in Figure 3.16.

47



[mm]

[m
m

]

 

 

0 1 2 3 4 5 6

0.2

0.4

0.6

[mW/cm2]

0.02

0.04

0.06

(a) On focus

[mm]

[m
m

]

 

 

0 1 2 3 4 5 6

0.2

0.4

0.6

[mW/cm2]

0.02

0.025

0.03

0.035

(b) 10 µm defocus.

[mm]

[m
m

]

 

 

0 1 2 3 4 5 6

0.2

0.4

0.6

[mW/cm2]

0.02

0.03

0.04

0.05

(c) 20 µm defocus.

[mm]

[m
m

]

 

 

0 1 2 3 4 5 6

0.2

0.4

0.6

[mW/cm2]

0.02

0.03

0.04

0.05

(d) 30 µm defocus.

[mm]

[m
m

]

 

 

0 1 2 3 4 5 6

0.2

0.4

0.6

[mW/cm2]

0.02

0.03

0.04

(e) 40 µm defocus.

Figure 3.15: Simulation of phase contrast pictures of atoms for increasing defocus.
For a defocussing equivalent to half the Talbot length (around 40 µm),
the atomic density profile is reproduced and inversed (atoms are seen
where they are absent in fact).
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(b) Square profile 4 µm defo-
cused.
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(c) Square profile 8 µm defo-
cused.
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(d) Parabolic profile in focus.
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(e) Parabolic profile 4 µm de-
focused.

−0.4 −0.2 0 0.2 0.4 0.6
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

[mm]

[m
w

/c
m

2 ]

(f) Parabolic profile 8 µm de-
focused.

−0.4 −0.2 0 0.2 0.4 0.6
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

[mm]

[m
w

/c
m

2 ]

(g) Gaussian profile in focus.
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(h) Gaussian profile 4 µm de-
focused.
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(i) Gaussian profile 8 µm defo-
cused.

Figure 3.16: Effect of a slight defocus on absorption images for different object struc-
ture. The first row corresponds to a square object profile, the second
row to a parabolic object profile, and the third to a Gaussian profile.
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Defocus tends to amplify the typical interference fringe pattern at the edge of the
structures. Structures that present sharp edges (square profile) are strongly altered
in the presence of a slight defocus. In contrast, for an equivalent width, the Gaussian
profile, that has smooth edges, is less altered by defocussing.
It is possible that, because defocus affects the parabolic profile more than the

Gaussian profile, it can be used to get information on the interaction regime of a
Bose-Einstein condensate even if the cloud is not optically resolved. Indeed, in the
non-interacting regime and at zero temperature, the density profile of a BEC in an
harmonic trap is Gaussian. In the Thomas-Fermi limit, the density profile is an
inverted parabola (see chapter 10 and 11 of Pitaevskii and Stringari [17]).
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4 Implementation of phase contrast imaging

In the last section, we showed that phase contrast imaging, when performed near-
resonant, could present some advantages over absorption imaging for the observation
of mesoscopic BECs. In the following section, we first report on the design of the
phase contrast system, beginning with the most crucial component: the phase plate.
We then present how we managed to implement phase contrast as a flexible tool in
the existing absorption imaging system. Finally, we present our first phase contrast
images and report on a first attempt to calibrate the system.

4.1 The phase plate

4.1.1 Phase plate specifications

Phase plate structure

The maximum phase contrast sensitivity can be obtained with a phase plate that
either advances (−π/2 phase shift) or retards (+π/2 phase shift) the unscattered
light by π/2 compared to the object wave. The maximal dynamics before the signal
reaches his first maximum and rolls over is obtained either with a retarding phase
plate and red-detuned light or with a phase plate that advances the phase and
blue-detuned light.
There is no obvious advantage of one option over the other except practical man-

ufacturing considerations. A retarding phase plate is achieved by having a small
bump onto the substrate. In contrast, an advancing phase plate requires a small dip
in the substrate as presented in Figure 4.1. As will be reported in section 4.1.2, we
investigated both possibilities but since the later design 4.1(b) was finally preferred,
we assume up to now that we deal with an advancing phase plate.

(a) Retarding phase plate. (b) Advancing phase plate.

Figure 4.1: Schematical representation of the two possible phase plate design.
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Dip depth. Introducing a phase shift ∆ϕ requires a dip with depth e given by

e = λ

2π(1− n)∆ϕ, (4.1)

where λ is the probe beam wavelength and n is the refractive index of the substrate.
For a negative phase shift of −π/2, the depth is

e = λ

4(n− 1) , (4.2)

which is around 430 nm for silica glass and for the probe beam wavelength of 780 nm.

Dip diameter. Because we want to phase shift only the unscattered light without
disturbing the object wave, the dip size has to be as small as possible. Nevertheless,
the minimal dip diameter is limited by the size of the focused probe beam which
has to fit entirely in the dip. Additionally, it is preferable to allow for some space in
order to facilitate optical adjustments. For a typical focused probe beam diameter
around 20 µm, a dip diameter of 100 µm seamed to be a good compromise.

Phase plate substrate.

The substrate has to be carefully chosen so that the phase plate does not introduce
significant distortion to the object wavefronts.

Substrate diameter. The clear aperture of the phase plate has to be equal or
superior to the collimated object wave with diameter 28mm. This enables to exploit
the full numerical aperture of the objective and the best resolution.

Surface flatness. According to Maréchal’s criterion (See chapter 9 of Born and
Wolf [5]), an optical system is well corrected if the RMS wavefront distortion is less
than λ/14. We then charge the phase plate to fulfil Maréchal’s criterion.

Substrate. We found a standard optical window of Newport (Model: FSW16)
that meets quite well the substrate requirements. Details of the Newport uncoated
window are listed in table 4.1.
The complete specifications sent to the manufacturer HOLOEYE can be con-

sulted in appendix B. After agreement on the contract we sent a substrate to Holoeye
that manufactured the phase plate within five weeks. At the reception, we only had
to deplore a slight 1mm long scratch on one surface, without practical consequences.
The dip appears with bear eyes as a dust point.
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Material Fused silica
Refractive index 1.45 at 780 nm
Diameter 30mm
Clear aperture 24mm
Wavefront distortion λ/12 at 780 nm
Thickness 4mm
Parallelism < 5′′

Table 4.1: FSW16 specifications.

4.1.2 Alternative phase plates
Manufacturing an advancing phase plate is commonly done by etching the dip in
the substrate. It is clear that etching is more suited for manufacturing advancing
phase plates 4.1(b) than retarding phase plates because there is less matter to dig
off. This technique is well established although expensive and already successfully
produced phase plates with comparable specifications (Meppelink et al. [8], Sadler
[18]).
Retarding phase plates of the type 4.1(a) can be manufactured by the deposition

of a thin film of dielectric onto the substrate previously prepared and covered with
a drilled mask. This sputtering technique was used by Haljan [19] to produce cheap
home-made phase plates.
We also note that phase contrast imaging can be advantageously performed with

an absorbing phase dip/bump in order two lower the back ground level and thus
increase the contrast as already mentioned by Zernike [20]. In the appendix A we
show that the signal to noise ratio is not affected by the absorbing phase plate. This
particular phase plate could be of interest in the in-situ far detuned phase contrast
regime where saturation of the camera is the limiting factor.

4.1.3 Characterisation
We would like to test if the phase plate manufactured by HOLOEYE fulfils our main
specifications. We present here the technique used in order to quantitatively check
the phase shift and the size of the dip as well as to qualitatively evaluate the overall
surface finish and dip structure.
Measuring the depth of the dip e and knowing the index of refraction n of the

substrate leads with Equation (4.1) directly to the phase-shift ∆ϕ at any given
wavelength λ,

∆ϕ = 2π
λ
e(1− n). (4.3)

Microscopes with nanometre depth resolution and micrometer lateral resolution such
as an atomic force microscope or a confocal microscope would have done the job
perfectly. A more economical alternative is a home build interferometer. We chose
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the typical Mach-Zehnder configuration where we implemented an optical system to
image the phase plate on a CCD camera as seen in Figure 4.2.
Advantageously, the interferometric methods give directly the phase shift for a

given wavelength without calling on Equation (4.3).
Let Upp be the complex amplitude just after the phase plate and U0 be the complex

amplitude on the reference beam. If we build the imaging system so that the planes
containing Upp and U0 are conjugated with the CCD chip, the camera records the
interferences between U0 and Upp:

ICCD ∝ |U0 + Upp|2

and enable the phase shift determination1.

Dip diameter measurement

If the two interferometer beams are well superposed2 on the second beam splitter,
we are in the flat field configuration and the phase dip appears as a homogeneous
patch as seen in Figure 4.3.
Considering the magnification of the imaging system of 2.5 and the pixel size of

8.6 µm× 8.3 µm, we found the diameter of the dip to be 103(3) µm, which is in good
agreement with the specifications (100 µm).

Phase-shift measurement

A slight misalignment3 of the two interfering beams causes rectilinear fringes to
appear, as seen in Figure 4.4. The fringes gives a direct information about the depth
profile of the phase plate using the equivalence: 2π phase shift⇔ 1 fringe period.
In order to accurately determine the phase shift, we implemented a numerical

routine to analyse interferograms:

1Note that in principle, interferences are also seen without imaging system. But in this case, we
observe the interference of the two fields located directly on the second beam splitter and not
the field of interest located just after the phase plate. In our case, the strong diffraction on the
small circular phase dip causes the complex amplitude to lose its precious phase information
before reaching the beam splitter. An imaging system enables to address any plane (complex
amplitude) of interest within the interferometer.

2Superpose means here that the wavefronts of the two interfering waves emerges parallel to each
other and that the beams are overlapped.

3Misalignment means here that the wavefronts of the two interfering waves do not emerge parallel
anymore. We would like to give here an experimental tip: misalignment can be introduced
at three different locations in the interferometer: at each mirror and at the second beam
splitter. Introducing misalignment with the beam splitter is the best option because it keeps
the interferometer configuration untouched for different misalignment, i.e. for different fringe
configuration. Contrariwise, introducing the misalignment with the mirror of the phase plate
arm causes the probe beam not to fall perpendicularly on the phase plate and introduces shadow
effects near the dip edges (see the interferogram of Figure 4.4).
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Figure 4.2: Phase plate characterisation using the Mach Zehnder interferometer.
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Figure 4.3: Flat field interferogram of the phase plate.

• In the external region around the dip, we fit the signal with a two dimensional
sinusoid. Among the multiple fitting parameters, we record the phase of the
external sine function.

• We do the same for the internal region within the Dip and record the phase
of the internal sine function.

• We calculate the phase difference of the two sine function which is also the
wanted phase shift4.

The average measured phase shift for various fringe inclination is −1.63(8) rad at a
wavelength of 780.24 nm which is fully consistent with our specifications (−1.57(10) rad).

4Assuming a flat surface and an homogeneous illumination in each region, the fit function for the
fringes pattern is:

fext/int(x, y) = A sin
[
2π(fxx+ fyy) + ϕext/int

]
+ C

where A is the amplitude of the fringes, fx and fy are the spatial frequencies, ϕext/int the
phase at the origin for the external/internal region and C is the overall offset. The phase shift
is simply : ∆ϕ = |ϕext − ϕint|. The accuracy of the phase determination increases with the
spatial frequency of the fringes but is limited by the finite pixel size, i.e. pixel resolution. With
our camera, a good compromise is a period comprised between 50 and 100 µm. Note that the
phase shift is wavelength dependant: ∆ϕ(λ) = λm

λ ∆ϕm where λm refers to the wavelength
used for the phase shift determination ∆ϕm.
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Figure 4.4: Fringe interferogram of the phase plate.

Surface finish and overall dip structure

As seen from the flat field interferogram of Figure 4.3, the dip shows a smooth
surface, well pronounced edges5 as well as the wanted circular geometry.

4.2 Optical and optomechanical system

4.2.1 Existing optical system
We aim to implement phase contrast imaging to the existing absorption imaging
setup shown in Figure 4.5. The final system should enable both imaging techniques
to run independently. Because the back focal plane of the objective lies within the
objective mount (see Figure 4.6), access is limited for building in a phase plate. We
overcame this issue by using a 1:1 relay telescope6 in order to transfer the Fourier
plane to an accessible place. The system consisting of the telescope and the phase
plate should be able to be moved freely in and out of the existing setup to performed

5The slight concentric ring pattern around and inside the dip as well as the inhomogeneous
field illumination come from residual diffraction on the dip. This can shown experimentally
by slightly moving the phase plate and observing that this pattern is not following the plate
surface.

6A one to one telescope has the advantage of giving the same magnification for both imaging
techniques.
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200 mm

Figure 4.5: Optical system for performing absorption imaging. The objective is a
three lens system designed by Zeiss with numerical aperture NA=0.45
and 31.23mm focal length. The imaging lens is a standard doublet of
1m focal length. The effective magnification is −31.

Glass cell

Atoms

Back focal 
plane

Figure 4.6: Objective of the BEC experiment. Details on the objective can be found
in the thesis of Ottenstein [21].

the desired imaging.

4.2.2 Relay system
Considering the space constraints between the objective mount and the imaging
doublet, the biggest 1:1 telescope that fits in is made of two lenses with 100mm
focal length. We avoid using shorter focal length because, for a given diameter,
fast lenses introduce more aberrations. Ideally, we would like to use lenses with
diameter larger than the image-forming pencil emerging out of the objective (28mm)
in order to exploit the full resolution of the system. Optical simulations with Oslo
showed, however, that large standard doublets with diameter greater than 28mm
lead to a resolution that is worse than for 25mm standard doublets. This is because
larger lenses are more subject to aberrations. We finally decided in favour of two
achromatic doublets from Newport with 25mm aperture (and 23mm clear aperture)
and 100mm focal length (Model PAC12AR.16). The PCI optical setup is shown
in Figure 4.7 considering the object rays and in Figure 4.8 considering the probe
beam. It consists of the original absorption imaging system with the inserted relay
telescope and the phase plate. Note that the probe beam is tilted by approximately
4◦ with respect to the optical axis in order to prevent interference fringes from the
glass cell.
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100 mmObjective Relay Telescope
Phase
plate

Figure 4.7: Phase contrast optical system consisting of the combination of the ex-
isting setup, the relay telescope and the phase plate.

100 mmObjective Relay Telescope
Phase
plate

Figure 4.8: Propagation of the probe beam in the phase contrast imaging setup.
Note the inclination of the probe beam by 4◦.

4.2.3 Optical performance
Because the telescope reduces the size of the aperture stop of the system (23mm
instead of 28mm) and introduces slight aberrations, the resolution of the system
is going to be affected. We used the optics software Oslo to evaluate the loss of
resolution due to the telescope.
The original absorption imaging setup is a diffraction limited system (in the sense

that aberrations effects are small compared to diffractions effects) as can be seen in
the spot diagram in Figure 4.9(a). The telescope introduces no significant aberra-
tions as can be seen in the spot diagram in Figure 4.9(b) and therefore, the phase
contrast imaging system is also diffraction limited. The loss in resolution is mainly
due to the reduced exit pupil and not to aberrations. The resulting spread functions
(|PSF |2) are shown in Figure 4.10 for both optical systems. The distance between
the maximum and the first minimum of the spread function commonly defines the
incoherent resolution limit (Rayleigh criterion), which is 1.1 µm for the absorption
imaging system and 1.4 µm with the telescope.
In practice, we would like to accurately determine the number of atoms in each

microscopic cloud. When counting atoms we define a finite region of interest around
one cloud and integrate the column density over this region. The accuracy of this
method depends on the capability to confine the signal within a small region so that
no overlap with the neighbouring clouds occurs.
The spread functions enables one to evaluate how well the imaging system can

concentrate, in image space, the collected photons originating from a point source
or a cloud. Indeed, integrating the spread functions in space leads to the amount
of energy per unit time collected in this region. It is then possible to calculate the
fraction of energy collected within a disk centred on the cloud. The results are
presented in Figure 4.11. As expected, the phase contrast imaging setup cannot
confine the energy as well as the original absorption imaging setup. But for typical

59



170 µm

(a) Absorption imaging setup.

170 µm

(b) Phase contrast imaging setup.

Figure 4.9: Spot diagram for the absorption imaging setup 4.9(a), and for the phase
contrast imaging setup 4.9(b) (with telescope). The black circle de-
notes the size of the Airy disk and the scale (170 µm) corresponds to
the distance between two adjacent microscopic clouds in image space.
Geometrical aberrations, illustrated by the ray impacts, are compara-
bly small for both setups. However, the reduced aperture of the relay
telescope enlarges the Airy disk in the case of the phase contrast system.
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Figure 4.10: Cut of the spread functions (|PSF |2) for the absorption imaging setup
and the phase contrast imaging setup. Loss of resolution is illustrated
by the extent of the spread function.
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Figure 4.11: Encircled energy for both setups.

regions of interest, with diameter equivalent to the inter-cloud distance, the overall
performance is comparable (approximately 90 % of the signal is enclosed by the
region).

4.2.4 Tolerancing

The optical performances discussed above are valid only when the optical compo-
nents are perfectly aligned and centred. We now investigate the case where compo-
nents are slightly tilted and misaligned in order to identify the sensitive components
and design the optomechanics accordingly.
Ideally, our phase contrast imaging system is diffraction limited, which can be

expressed quantitatively by comparing our ideal RMS wavefront error (0.037 λ) with
Maréchal’s criterion (RMS wavefront error smaller than 0.07 λ). In the tolerancing
procedure, we search, for each optical component, the maximal displacement (tilt
or decentering) until the system does not fulfil Maréchal criterion anymore.
Sometimes, it is possible to compensate the misalignment of one component by

moving another one. If one allows for some compensation, tolerances are usually
larger.
The tolerances for the telescope are presented in Table 4.2. Additionally, we

included the tolerance on the phase plate position. The transversal and axial dis-
placement of the phase plate are limited by the condition that the focused probe
beam fits entirely in the phase dip.
The tolerance analysis shows that three degrees of freedom are critical, namely

the tilt of each telescope lens and the overall tilt of the telescope.
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Degree of
freedom

Tolerance
without
compensation

Tolerance with
compensation

Telescope
spacing

20 µm 3.5mm

1st lens
decentering

2.5mm -

2nd lens
decentering

1.4mm -

1st lens tilt 0.093◦ 0.46◦
2nd lens tilt 0.093◦ 0.77◦
Telescope
decentering

2.9mm -

Telescope tilt 0.24◦ -
Phase plate axial
displacement

±1.5mm -

Phase plate
lateral
displacement

±30 µm -

Table 4.2: Tolerances for the telescope and the phase plate. If no compensation with
an other optical component is needed or possible, cells are kept empty.
Tight tolerances are highlighted in red.
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Telescope

Phase plate

Figure 4.12: Optomechanical system of the phase contrast system.

4.2.5 Optomechanics
The optomechanical system has to be designed in order to fulfil the following two
main constraints:

1. The telescope and the phase plate should be able to be moved in and out of
the existing absorption imaging setup with high reproducibility.

2. The optomechanics should achieve the required position precision given by the
tolerances.

In order to accurately move the phase contrast system, we decided to use a trans-
lation stage with micrometer precision and a sufficient travel range of 50mm (model
VT-80 from Micos).
Since the system is quite sensitive to the relative tilt of each telescope lens, we

decided to insert the lenses in a rigid tube to ensure the parallelism of the compo-
nents. The tube support, which defines the overall tilt of the telescope, is a precise
tilt aligner from Newport (model 9071). Finally, the phase plate is supported by
three micrometer translation stages for the lateral and axial positioning.
The remaining mechanical adapters and holders were made at the workshop of

the institute.
The overall optomechanical system is shown in Figure 4.12 where we omit the

Micos translation stage and the support base.
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4.2.6 Positioning of the phase plate
The precise positioning of the phase plate is a crucial and delicate task. The dip
is a sub-wavelength structure and does not scatters light notably compared to any
dust particle. It could be therefore misleading to search for the dip by looking at
the scattered light of the focused probe beam.
In order to find the dip, we rather build an appropriate pinhole mask (with 1mm

diameter), that we placed against the substrate and centred on the dip. We then
aligned approximately the phase plate by focusing the probe beam in the centre of
the pinhole and scanned the surrounding region. The best lateral position can be
found by either maximising the phase contrast signal or by sensing the edges of the
circular structure and then centring the phase dip accordingly.
The axial position can also be evaluated with the pinhole mask by estimating the

waist of the focused beam through the focus. Experimentally, we observed that an
axial displacement of the phase plate introduces an inhomogeneous Gaussian pattern
to the originally flat background. We suspect here interference of the probe beam
at the dip structure. The best axial position is then found when the background is
homogeneous and at the same level as when the probe beam crosses the phase plate
outside of the dip.

4.3 Experimental results

4.3.1 First light: Observation of a large BEC
Our first phase contrast images were done with a large BEC containing around 50 000
atoms of 87Rb. The probe beam was red-detuned by approximately 50MHz (δ ≈
−16 in half linewidths) with a probe intensity of 19mWcm−2 (11 times the cycling
transition saturation intensity) and the exposure time was 15 µs. Phase contrast
imaging requires two pictures, namely one picture in the presence of atoms and a
second reference picture in the absence of atoms. They are shown in Figure 4.13.
Because of the high column density, the signal shows a periodicity, characteristic

of phase contrast imaging. As expected for red-detuned light and a −π/2 phase
plate, the intensity decreases first for the low densities near the edges of the clouds;
then the intensity reaches a minimum, grows again and surpasses the background
level in the centre of the cloud, where the column density is maximal.

4.3.2 Calibration and quantitative measurements
In order to perform precise quantitative measurements, for example deduce the exact
number of atoms in a cloud, we have to calibrate the imaging in order to account
for experimental imaging conditions that we earlier ignored for simplicity, such as
the linear polarisation of the probe beam, a residual magnetic field or the multilevel
structure of the excited state. The experimental imaging beam is then π−polarised.
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(a) Picture with atoms.
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(b) Reference picture.
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(d) Horizontal cut of the normalised intensity.

Figure 4.13: Phase contrast pictures in the presence of atoms 4.13(a), and in the
absence of atoms 4.13(b). The normalised intensity Ia/Iref is shown in
4.13(c) and an horizontal cut at the centre of the cloud is plotted in
4.13(d). The detuning of the probe beam is δ ≈ −16 with a satura-
tion parameter around 10. The pixel size is 13 µm in image space and
0.42 µm in object space.
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Calibration method

The calibration procedure is described in Muessel et al. [15] and relies on the de-
pendence of the quantum projection noise over atom number (see Itano et al. [22]).
We shall briefly review the method here. We prepare a cloud of independent atoms
in an equal superposition of two states |A〉 and |B〉 (in our case |A〉 and |B〉 are two
Zeeman sublevels of the ground state of 87Rb). If the system is well-calibrated, the
variance of the measured population difference should be an affine function of the
total measured atom number with unit slope. Furthermore, this relation should be
independent of the imaging intensity so that we measure two independent condi-
tions and can therefore determine the two calibration parameters that arise for the
distinct intensity dependence of the formula

nc = − 1
σ0

[
c1(1 + δ2) ln

(
If
Iref

)
+ If − Iref

c2Isat

]
, (4.4)

where c1 and c2 are calibration parameters, Iref is the reference intensity and If is
the intensity right after the cloud. If can be numerically deduced from the phase
contrast images Ia and Iref by mean of the relation

Ia = Iref

[
If
Iref

+ 2 + 2
√
If
Iref

cos
(
δ

2 ln If
Iref
− α

)
− 2

√
If
Iref

cos
(
δ

2 ln If
Iref

)
− 2 cosα

]
,

(4.5)

where α is the phase shift of the phase plate. Note that α and δ are considered to
be fixed parameters. The exposure time for the calibration, τ = 35 µs, was chosen
to maximise the experimental SNR on phase contrast images for a blue-detuning of
δ = 3.3. Note that, as expected theoretically, the optimal exposure time is longer for
phase contrast imaging than for absorption imaging ( τabs ≈ 15 µs). The calibration
is performed with a set of saturation intensities between 5 and 35 Isat and for several
detunings between 1.6 and 8.2 half linewidths.

Calibration attempt

In the following section, we report on the progress concerning the calibration of our
phase contrast system. Results presented here are therefore not definitive but rather
reflect what we so far achieved in this field.
Our first calibration shows an unexpected detuning dependence: the column den-

sity is clearly under-estimated for lower detunings compared to higher detunings.
We then restricted our calibration to one detuning, namely the one for which we
choose the optimal exposure time, δ = 3.3.
A calibration curve for suitable calibration parameters (c1 = 2.3 and c2 = 1) is

shown in Figure 4.15. An other unexpected issue (most likely related to the detuning
dependence) is that the calibration parameters found this way for phase contrast
imaging differ clearly from absorption imaging parameters (c1 = 5.9 and c2 = 1.35)
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Figure 4.14: Example of phase contrast images used for the calibration, 4.14(a),
4.14(b) and the deduced column density 4.14(c). Each one-dimensional
array corresponds to a Zeeman sublevel of the ground state. The vari-
ance in the number of atoms measured in the two components enables
the calibration of the imaging setup. The detuning of the probe beam
is δ ≈ 3.3 with a saturation parameter around 10. As expected from a
blue-detuned probe beam, atoms introduce a positive signal. The pixel
size is 13 µm in image space and corresponds to 0.42 µm in object space.
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Figure 4.15: Variance of the population difference over atom number for suitable
calibration parameters. The detuning is δ = 3.3 and the saturation
parameter s0 = 35.

although they should be close. The slope of nearly one demonstrates the success of
the calibration for this particular intensity and detuning. The dependence of the
calibration slope on the saturation parameter in shown in Figure 4.16. Ideally, the
calibration slope is equal to one independent of the probe intensity, which is the
case for this calibration.
The detection noise σ2

det, which states the precision of the atom number deter-
mination, can be evaluated by the offset of the unity-slope calibration curve in
Figure 4.15. In our case, the average detection noise for saturations between s0 = 5
and s0 = 35 is σ2

det = 100 ± 20 at a detuning δ = 3.3. Therefore, the precision on
the atom number determination is σdet ≈ 10 atoms, which is comparable to the best
resolution obtained with optimised absorption imaging, σdet = 3.7 atoms.

4.3.3 Limitations
As mentioned earlier, for the calibration to be completely satisfying, one parameter
set should be valid for all detunings, which is not the case presently. We list below
some practical issues that might be responsible for this discrepancy and also propose
some solutions.
As can be seen in the raw pictures in Figure 4.16, images are subject to a relatively

strong fringe pattern, mainly originating from the uncoated phase plate and from
dust particles. If the fringe pattern is not stable while the atom picture and the
reference picture are taken, this introduces fringe noise that may be stronger than
the shot noise. Furthermore, since fringes are features introduced after the probe
beam have passed the atoms, it is, in principle, not correct to interpret the intensity
measured without atom Iref to be the probe intensity I0 as we did in Equations (4.4)
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Figure 4.16: Slope of the calibration curve for different saturation parameters and
for a detuning δ = 3.3.

and (4.5). These issues can be addressed practically by coating the flat surface of
the phase plate or by additional post-processing of the image.
We experimentally observe that phase contrast images are more subject to inter-

ferences between clouds than absorption images. For example, it exhibits stronger
undershoots between adjacent clouds. Since undershoots are not related to the phase
contrast signal, they have to be dealt with, for example by choosing a region of in-
terest that excludes undershoots or by practically increasing the inter-well distance.
All calibration measurements were performed with the same exposure time of

35 µs, which seemed to be near-optimal for a detuning δ = 3.3. As seen in Section 3.2,
for each detuning there is a corresponding optimal exposure time. If the exposure
time is too long, no useful signal is collected in the last stage of the exposure and
the inferred intensity Ia is underestimated compared to the intensity that would
be measured with an optimal exposure time. This could be the reason for the
detuning dependence we observed in our calibration and, in particular, explain why
the measured column density grows with the detuning.
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5 Conclusion

During this master thesis, we investigated theoretically and implemented an imag-
ing technique – phase contrast imaging – to provide a new tool with which to probe
Bose-Einstein condensates in our lab. We started by investigating the existing ab-
sorption imaging technique and compared it with phase contrast imaging on a the-
oretical basis. Although the comparison is well documented when phase contrast
is performed with high detuning, the performance of near-resonant phase contrast
imaging is rather unknown and we have explored this new regime.
Theoretically, we found that near resonant phase contrast imaging should deliver

a better signal-to-noise ratio than absorption imaging for typical experimental sat-
urations and for the cycling transition of 87Rb. This results from the combination
of a stronger signal and the possibility to expose longer. Near-resonant phase con-
trast as well as absorption imaging are destructive techniques that lead to a rapid
expansion of the imaged cloud during exposure time. We developed a simple model
to describe the imaging of an expanding cloud that helped us to understand the
imaging process better, especially the limitation on the exposure time. In order to
cross-check our theoretical investigations and to investigate further practical issues,
we numerically simulated phase contrast and absorption imaging systems.
The last part of this thesis was dedicated to the design and implementation of

the optical system. The most crucial component, the phase plate, was designed
according to the existing system, fabricated outside of the institute and finally char-
acterised with interferometric methods. We implemented phase contrast imaging as
a flexible tool that can be moved in and out of the existing imaging setup so that
both techniques (absorption and phase contrast imaging) are available within a few
seconds. We finally reported on the on-going attempt to reach a complete and valid
calibration of our phase contrast system and discussed the actual limitations.
Although we considered in this thesis only the case of near-resonant phase contrast

imaging, nothing prevents our setup to be used in the more usual way, with larger
detuning and as a non-destructive technique.
Our phase contrast imaging setup does not yet perform in its maximal capability

but there is good hope that once optimised, this technique becomes a valid alterna-
tive to absorption imaging, even for relatively thin clouds.
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A Phase contrast imaging theory

A.1 Two-lens imaging
Let f , g and h be the complex amplitudes in the object plane (x− y), Fourier plane
(ξ− η), and image plane (x′− y′) respectively, as shown in Figure A.1. The Fourier
property of a lens leads to

g(ξ, η) = C1F [f(x, y)]
(
ξ

λf1
,
η

λf1

)
(A.1)

with C1 = i
λf1

e−2ikf1 , and

h(x′, y′) = C2C3F [g(ξ, η)]
(
x′

λf2
,
y′

λf2

)
, (A.2)

with C2 = i
λf2

e−ik(f2+d), and C3 = eiπ (x′2+y′2)(d−f2)
λf2 . Substitution of (A.1) into (A.2)

gives

h(x′, y′) = C
∫∫ +∞

−∞

[∫∫ +∞

−∞
f(x, y) e−2iπ( ξ

λf1
x+ η

λf1
y) dx dy

]
e−2iπ( x′

λf2
ξ+ y′

λf2
η) dξ dη

= C
∫∫∫∫ +∞

−∞
f(x, y) e−2iπξ( x

λf1
+ x′
λf2

) e−2iπη( y
λf1

+ y
λf2

) dx dy dξ dη,

(A.3)

with C = C1C2C3.
Using the transformation u = 2πξ

λf1
and v = 2πη

λf1
, one gets,

h(x′, y′) = C

(
λf1

2π

)2 ∫ +∞

−∞
du

∫ +∞

−∞
dv

∫∫ +∞

−∞
f(x, y) e−iu(x− x

′
M

) e−iv(y− y
′
M

) dx dy,

(A.4)

with M = −f2
f1

the magnification (the minus sign meaning that the image is in-
verted). Finally, we obtain, by the application of the Fourier integral theorem1, the

1If f(x, y) is a complex piecewise smooth function and
∫∫∞
−∞ |f(x, y)| dx dy exists (for more

details, see Courant and Hilbert [23]), then:

f(x, y) = 1
(2π)2

∫ +∞

−∞
du

∫ +∞

−∞
dv
∫∫ +∞

−∞
f(t, s) e−iu(t−x) e−iv(s−y) dt ds.

In practice, smoothness and integrability are always fulfilled by real complex amplitudes.
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Figure A.1: Schematic representation of the imaging setup.

complex amplitude in the image plane,

h(x′, y′) = Cλ2f 2
1 f

(
x′

M
,
y′

M

)
, (A.5)

and the intensity in the image plane,

I(x′, y′) = |h(x′, y′)|2 ,

=
(
f1

f2

)2 ∣∣∣∣∣f
(
x′

M
,
y′

M
)
)∣∣∣∣∣

2

,

= 1
M2 If

(
x′

M
,
y′

M

)
,

(A.6)

where If = |f |2 is the intensity in the object plane. The image is then a perfect,
scaled replica of the object. Nevertheless, in reality (even with perfect optics) the
image is a blurred replica of the object because of the finite aperture of our system.
The real image is not obtained with the complex amplitude (A.5) but with the real
complex amplitude, which is the convolution of (A.5) with the point spread function
(PSF(x, y)) of the imaging system,

hreal(x′, y′) = Cλ2f 2
1

[
f

(
x′

M
,
y′

M

)
∗ PSF(x′, y′)

]
, (A.7)

where ∗ represents the two-dimensional convolution.
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A.2 Ideal phase contrast imaging
Let us now consider the case of phase contrast imaging where the zero-order diffracted
wave is phase shifted in the Fourier plane by a phase α. Being able to phase shift
exclusively the zero order wave without disturbing the diffracted wave is an ideal-
ization that we are going to consider in the section A.3.

A.2.1 Intensity in the image plane as function of the atom
phase shift

Using the superposition principle, we can write the complex amplitude in the object
plane (which is the plane just after the object) as the sum of two other complex
amplitudes, which we will identify as the undiffracted (zero-order) and the diffracted
waves,

f(x, y) = f0(x, y) + fd(x, y), (A.8)

with f0(x, y) the complex amplitude that would be obtained if no object were
present. If the thickness of the object is small compared to the variation of the com-
plex envelope of the probe wave along the z-axis, f0(x, y) can be seen as the complex
amplitude just before the object, so that the complex amplitude after transmission
through the object can be written as,

f(x, y) = f0(x, y) t(x, y) eiφ(x,y) (A.9)

with t(x, y) the transmission coefficient and φ(x, y) the phase shift introduced by
the object. From (A.8) and (A.9), one find the expression for the diffracted complex
amplitude,

fd(x, y) = f0
[
t(x, y) eiφ(x,y) − 1

]
. (A.10)

Using the Fourier transform property of the objective, the complex amplitude in the
Fourier plane can also be expressed as a sum,

g(ξ, η) = C1 [g0(ξ, η) + gd(ξ, η)] , (A.11)

with g0 and gd the Fourier transform of f0 and fd respectively evaluated in ξ
λf1

and
η
λf1

.
In practice, f0 has very low spatial frequencies compared to the diffracted wave.

In the idealised case where the probe wave is a plane wave, f0 =
√
I0 is a constant

(I0 beeing the probe beam intensity). Diffracted and undiffracted waves are then
well-separated in the Fourier plane and g0 reduces to a Dirac delta for an incident
plane wave.
Until now, we have just used the superposition principle to rewrite the amplitude

in the Fourier plane (A.1) in a convenient way. It is now possible to apply a phase
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shift to the undiffracted wave by multiplying the "zero order" complex amplitude by
the factor τeiα so that the complex amplitude after the phase plate is given by2

g′(ξ, η) = C1
[
τeiαg0(ξ, η) + ts gd(ξ, η)

]
, (A.12)

where τ is the transmission coefficient of the phase dip, α the phase shift introduced
by the phase plate3 and ts is the transmission coefficient of the phase plate substrate.
In most of the cases, τ = ts because the dip is dug in the substrate. Nevertheless,
the raw contrast can be enhanced using more elaborated phase plates where τ < ts.
Performing another Fourier transformation and using the Fourier integral theorem

yield to the complex amplitude in the image plane,

h(x′, y′) = C2C3 F [g′(ξ, η)]
(
x′

λf2
,
y′

λf2

)
,

= C F
[
τeiαg0(ξ, η) + ts gd(ξ, η)

] ( x′

λf2
,
y′

λf2

)
,

= C λ2f 2
1

[
τeiα f0

(
x′

M
,
y′

M

)
+ ts fd

(
x′

M
,
y′

M

)]
.

(A.13)

The intensity in the image plane for phase contrast imaging is

I(x′, y′) = |h(x′, y′)|2 = |Cλ2f 2
1 |2 |f0

(
x′

M
,
y′

M

)
(τeiα + ts t

(
x′

M
,
y′

M

)
eiφ( x

′
M
, y
′
M

) − ts)|2

=
I0
(
x′

M
, y
′

M

)
M2 |τeiα + ts t

(
x′

M
,
y′

M

)
eiφ( x

′
M
, y
′
M

) − ts|2.

(A.14)

Omitting the variables for better visibility, one gets

I = I0

M2

[
t2st

2 + t2s + τ 2 + 2tstτ cos(φ− α)− 2t2st cosφ− 2tsτ cosα
]

(A.15)

The intensity (A.15) is the general expression for a 2-lens imaging system with a
phase plate in the Fourier plane. Standard phase contrast imaging is obtained as a
special case where α = ±π

2 and τ = ts = 1,

I(x′, y′) = I0

M2

[
2 + t2 ± 2t sin(φ)− 2t cosφ

]
(A.16)

and reduces for small φ and for a phase object (t = 1) to

I(x′, y′) = I0

M2 [1± 2φ] . (A.17)

2We neglected here the depth of the dimple since it is of the order of a half-wavelength compared
to the depth of focus of the probe beam on the order of a few hundreds micrometer.

3A positive phase shift (α > 0) means that the phase of the "zero order" is retarded compared to
the diffracted wave. Negative α corresponds to an advance of the "zero order".
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Phase contrast imaging can also be advantageously performed using a non-transparent
phase dip (τ < ts = 1). If the object is transparent (t = 1),

I(x′, y′) = I0

M2

[
2 + τ 2 ± 2τ sin(φ)− 2 cosφ

]
(A.18)

and reduces for small φ to

I(x′, y′) = I0

M2

[
τ 2 ± 2τφ

]
. (A.19)

Absorption imaging is obtained in the absence of phase plate (α = 0, ts = τ = 1),
with resonant probe light (φ = 0), and expression (A.15) reduces to (A.6),

I(x′, y′) = I0

M2 t
2 = If

M2 . (A.20)

A.3 Effect of the size of the phase dip
In the previous derivation, we idealised the action of the phase dip in applying a
phase shift only to the undiffracted wave and nothing to the diffracted wave. In
practice the phase shift is introduced by a phase dip with a given size so that his
effect differs from the idealisation by two ways:

1. First, a small part of the diffracted wave will still cross the phase dip and
experience an undesired phase shift.

2. Second, the undiffracted wave that focus in the middle of the phase dip has in
fact an infinite spatial extension so that a small part (the wings) of the zero
order will cross the Fourier plane outside of the phase dip.

A.3.1 Effect of the spatial extension of the focused probe beam
In opposition to perfect geometrical systems, that can focus a beam into a point,
diffraction and optical aberrations leads to smeared focus. If the size of the spot
exceeds the size of the phase dip or in case of misalignment, a non negligible part
of the undiffracted wave miss the phase dip and does not experience the crucial
phase shift. It is possible to qualitatively describe this effect by considering the
interference of three waves in the image plane:

• the diffracted wave: fd,

• the part of the undiffracted wave that crossed the phase dip: p f0 eiα,

• and the rest part that did not pass through the dip: (1− p)f0,
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where p the fraction of amplitude of the undiffracted wave that crosses the dip.
In the image plane the intensity is given by:

I ∝ |fd + p f0 eiα + (1− p)f0|2 (A.21)

Using the relation: fd = f0(teiφ − 1), one finds:

I ∝ I0
[
t2 + 2pt cos(φ− α)− 2pt cosφ+ 2p2 − 2p2 cosα

]
. (A.22)

In the case of standard phase contrast imaging (α± π
2 ) and for small φ, the intensity

is an affine function of the phase,

I ∝ I0
[
1 + 2p2 − 2p± 2pφ

]
. (A.23)

If the phase dip has an equivalent size than the focused probe beam (p<1), it leads
to a lower background and a lower phase sensitivity. For example, for p = 1/2,

I ∝ I0

(1
2 ± φ

)
.

A.3.2 Effect of the size of the dip with respect to the diffracted
wave

The phase dip being not infinitely small, a small fraction of the diffracted wave also
crosses the phase dip and causes therefore no useful signal. It is possible by means of
Fourier optics considerations to understand how the image is influence by the phase
dip : The objective maps in the Fourier plane the multiple frequencies comprises in
the object plane amplitude. The phase dip acts therefore in the frequency domain
as an exclusion filter for the phase signal frequencies. Namely the spatial frequencies
mapped on the phase dip will remain invisible. If the phase dip is centred on the
optical axis, it acts as a low pass filter with cut-off frequency: |νc| = d/2

λf
, where d

is the dip diameter, f the objective focal length and λ the wavelength. Big phase
structures are not well reproduced and their edges appears much more pronounced.

A.3.3 Rigorous treatment

In order to take into account the real size of the phase dip as well as the spatial
extension of the focused probe beam, we introduce the transmission function of the
Zernike plate (N’Diaye et al. [24]),

tZ(ξ, η) = 1 + (τeiα − 1)Z(ξ, η), (A.24)
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where τ is the transmission coefficient of the phase dip, α the dip phase shift and Z
the shape of the phase dip 4. In our case, the phase dip is circular so that

Z(ξ, η) =
{

1 if
√
ξ2 + η2 ≤ r

0 otherwise, (A.25)

with 2r the diameter of the phase dip. If g(ξ, η) is the complex amplitude just before
the Zernike plate, we can write the amplitude just after the phase dip,

g′(ξ, η) = tZ g(ξ, η),
=
[
1 + (eiα − 1)Z(ξ, η)

]
g(ξ, η). (A.26)

The amplitude in the image plane is

h(x′, y′) = C2C3 F [g′(ξ, η)]
(
x′

λf2
,
y′

λf2

)
,

= C
∫∫ +∞

−∞
tZ

[∫∫ +∞

−∞
f(x, y) e−2iπ( ξ

λf1
x+ η

λf1
y) dx dy

]
e−2iπ( x′

λf2
ξ+ y′

λf2
η) dξ dη.

(A.27)

Solutions for this two successive Fourier transformations can be found in Beyer [25]
in the case of simple phase object structure and circular phase dip and in Matthews
[26] for a Gaussian probe beam in one dimension.

A.4 Shot-noise limited Signal to Noise Ratio
Let Nb and Ns be the number of counts due to Background and signal on the imaging
detector, respectively. Using (A.19), one have

Ns ∝ τ 2 ± 2τφ,
Nb ∝ τ 2,

(A.28)

The signal is given by

S = |Ns −Nb| ∝ 2τ |φ|. (A.29)

In the shot noise limited case, the variance are σ2
b = Nb and σ2

s = Ns. The noise
is then given by

N =
√
σ2
b + σ2

s ∝
√

2τ 2 ± 2τφ,

∝
√

2τ
√
τ ± φ.

(A.30)

4To be rigorous, one should take into account the transmission of the substrate ts,

tZ(ξ, η) = ts + (τeiα − ts)Z(ξ, η).
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The signal to noise ratio is finally given by

SNR = S

N
∝
√

2τ |φ|√
τ ± φ

, (A.31)

In the case where φ� τ < 1, the SNR is independent of τ ,

SNR ∝
√

2|φ|. (A.32)

The proportionality factor of equation (A.31) is for a digital camera√
QEopt

I0

M2 hν
QEcam g Apix texp,

where QEopt is the optical system quantum efficiency, I0 the probe intensity, M the
Magnification, h the Planck’s constant, ν the probe frequency, QEcam the camera
quantum efficiency, g the camera gain, Apix the pixel area and texp the exposure
time. So that (A.31) can be exactly written as

SNR =
√
QEopt

I0

M2 hν
QEcam g Apix texp

√
2τ |φ|√
τ ± φ

. (A.33)

As can be seen from (A.19) and (A.31), some inconsistencies arises when τ ≈ φ,
for example the intensity could become negative and the SNR imaginary. A more
careful study where quadratic terms of the phase expansion are taken into account
leads to the result

SNR ∝ |φ2 ± 2τφ|√
φ2 ± 2τφ+ 2τ 2 . (A.34)
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B Specifications sent to Holoeye

B.1 Context
We would like to implement phase contrast imaging to the existing 87Rubidium BEC
experiment. This requires the fabrication of a circular Zernike phase plate for the
working wavelength of 780.24 nm.

B.2 Specifications
B.2.1 Substrate (provided by us)
The substrate is an uncoated fused silica window from Newport (reference: FSW16)
with main characteristics listed below:

• Diameter = 30mm + 0/− 0.2 mm.

• Thickness = 4± 0.1mm.

• Refractive index = 1.453 67 at 780.24 nm.

B.2.2 Phase plate structure
The Zernike phase plate consists of a centered circular dip on one of the substrate
face (see figure B.1) with characteristics:

• Diameter = 100 µm.

• Diameter tolerance = +5/− 20 µm.

• Ideal depth = λ
4(n−1) = 430 nm .

• Depth tolerance = +30/− 30 nm.

• Centering of the dip < 100 µm.

• Roughness over the etched area (dip) < 5nm.

• Transition zone < 5 µm.
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