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Zusammenfassung

AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) – eines der

Experimente am CERN – zielt darauf ab, fundamentale physikalische Eigenschaften von

Antimaterie zu untersuchen, um den Wissensstand über die Unvereinbarkeit der Grav-

itation mit anderen Kräften voranzubringen. Hierfür wird das Experiment in seiner

ersten Phase die Gravitationsbeschleunigung von Antiwasserstoff mit einer Präzision

von 1%messen, um damit Daten für ein besseres Verständnis von Antimaterie zu liefern.

Als Gravimeter für diese Messung wird ein Moiré-Deflektometer benutzt, das in Hei-

delberg entworfen und gebaut wird. Um dieses Deflektometer auf seine erreichbare

Sensitivität hin zu testen und zu charakterisieren, wird eine Atomstrahlquelle metasta-

biler Argonatome mit einem hohen Fluss und ein Faraday Cup zur Detektion dieser

Atome gebaut. Ein zusätzliches optisches Mach-Zehnder Interferometer kontrolliert die

Stabilität der Apparatur. Die Hauptkomponenten des Deflektometers, die Beugungs-

gitter, werden aus sechs Zoll Siliziumgitter hergestellt. Erste Modelle der Gitter und

die gesamte Apparatur sind mit der erforderlichen Sorgfalt entworfen und gebaut wor-

den, um die experimentellen Bedingungen des Aufbaus am CERN zu berücksichtigen.

Eine erste Gravitationsmessung des Testaufbaus in Heidelberg liefert g = (9.5± 1.9) m

s2

und eröffnet eine Vielzahl an möglichen Verbesserungen.

Abstract

AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) – one of the

experiments carried out at CERN – aims to examine fundamental physical properties

of antimatter, in order to promote knowledge about the incompatibility of gravitation

with other forces. As part of achieving this knowledge, the experiment will measure in

its first phase the gravitational acceleration g of antihydrogen with a precision of 1%

and hence, provide data for a deeper understanding of antimatter in general.

A Moiré-deflectometer is applied as gravimeter for this measurement. Its design and

construction are carried out in Heidelberg. In order to test and characterise this de-

flectometer to its best achieveable sensitivity, a high-flux source of metastable argon

atoms as well as a Faraday cup to detect these atoms are built. An additional optical

Mach-Zehnder interferometer controls the stability of the apparatus. The major com-

ponents of the deflectometer, the deflection gratings, are manufactured out of six-inch
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silicon wafers. Their prototypes together with the entire apparatus are designed and

built with due care to account for the experimental conditions given by the apparatus

at CERN. A first gravitational measurement with the test setup at Heidelberg yields

g = (9.5± 1.9) m

s2
and opens up a huge number of potential improvements.
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Preface and Outline

The first prediction of antimatter was simply a side note in Dirac’s 1931 publication

titled ‘Quantised singularities in the electromagnetic field’ [1]. In this publication,

Dirac’s prior intent was to prove that the existence of magnetic monopoles leads to

quantised electric charges. In this context, he reconciled Schrödinger’s description of

an electron with special relativity, and for the solution of the resulting equation, he

needed to assume the existence of a particle with the same mass as the electron and

oppositely charged to it. Today, this antiparticle is known as positron. It was observed

experimentally for the first time by Carl Anderson in 1933 [2].

The first observation of the antiparticle to the proton, the antiproton, followed in 1955

at the Berkley laboratories [3].1 Since then, fundamental research on antimatter has

continued. At the end of the last century, the first neutral antiatom – the antihydrogen

– was produced at relativistic speeds. In 1995, a group a CERN was the first to suceed

in this production [5], and in 1998, the Fermilab group published their production of

about 100 antihydrogen atoms [6]. It took until 2002 for antihydrogen to be created

at low energies. This has been accomplished by two groups working at the CERN an-

tiproton decelerator (AD), namely the ATHENA [7] and shortly afterwards the ATRAP

collaboration [8]. Very recently, the first trapped antihydrogen was reported [9]. After

ATHENA broke up, some of its former members founded a new collaboration called

AEgIS (Antimatter Experiment: Gravity, Interferometry, Sectroscopy) [10].

As its name suggests, AEgIS aims for fundamental research on antimatter by grav-

itational, interferometric and spectroscopic experiments. As its first defined scientific

goal, AEgIS intends to measure the gravitational acceleration of antihydrogen with a

precision of 1%. Hence, it will represent the first direct gravitational measurement of

1An overview of the research on antiprotons can be found in [4].
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antimatter, which gives the project great scientific importance.

However, an appropriate method for the gravitational measurement of antihydrogen

needs to be found first. For this purpose, the following paragraph provides an overview

of some of today’s accelerometers that can measure the absolute or relative gravitation.

By the end of the last century, various methods were known for measuring the grav-

itational acceleration g. One particular example of such a so-called gravimeter works

with sensitive spring balances [11]. This device can only measure a relative gravitational

acceleration. Another type of gravimeter makes use of pendulums [12, 13]. Today, one

of the most common method is based simply on free-falling objects [14, 15, 16, 17].

While pendulum-gravimeters can measure both the relative and absolute gravitation,

gravimeters with free-falling objects predominantly determine the absolute value of g.

The variety of possible free-falling objects for these gravimeters ranges from single cold

atoms [18, 19, 20] to large massive cubes [14, 15, 16, 17].

With regard to the precisions that can be achieved with today’s gravimeters, the cold-

atom type is particularly interesting. Using atom interferometry, one can even measure

absolute gravitation to a precision of �g

g
= 1 · 10−10 after two days of integration time

[18]. Nevertheless, since the setup of these gravimeters typically includes vacuum cham-

bers and fairly complex laser systems for optical trapping of the atoms, they are not

convenient for many applications such as, for example geophysical field measurements.

For the AEgIS-experiment, none of the described methods for a gravitational mea-

surement is applicable. Either the annihilation process, which occurs when antihy-

drogen interacts with matter, or other more technical-related difficulties appear. For

instance, the implementation of a gravimeter similar to the ones based on atom inter-

ferometry is not possible for several reasons. Firstly, the laserlight that is necessary

for setting up the Magneto-Optical-Trap (MOT) [21] delivers too much energy into the

cryogenic environment. Furthermore, the magnetic field configurations preclude the

measurement of the time of flight of the particles. Consequently, a different method

has to be found.

An appropriate method by using a classical Moiré-deflectometer as gravimeter is based

on the experiments of Oberthalter et al. [22]. In these experiments, the functionality

of a Moiré-deflectometer as an accelerometer that is sensitive to rotations as well as
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to gravitation has been shown with metastable atoms. The setup of Oberthaler et al.

requires major adjustments to match the experimental conditions of AEgIS. In the

present thesis, these adjustments are examined and improvements are initiated, yield-

ing an absolute gravitational measurement of argon atoms with a first prototype of

such a modified Moiré-deflectometer.

Outline of this Thesis

The present thesis consists of four major parts. The first one (chapter 1) provides the

motivation of the project in Heidelberg. For this purpose, we briefly outline some key

points to describe how a unification of general relativity with quantum field theory can

be connected to a gravitational measurement of antimatter. Subsequently, different

antihydrogen production methods are outlined and the one of the AEgIS-experiment

is summarised. Thus, we provide in this first chapter the base for the project of this

thesis – a Moiré-deflectometer that is designed and tested for antihydrogen experiments.

The second part (chapter 2) covers the theoretical background of a Moiré-deflecto-

meter. In order to do this, we give an overview of its different application regimes.

Here, we distinguish between a device that is based on wave-propagation and wave-

interference and one where classical ray optics or Newtonian Mechanics are sufficient

as theoretical descriptions. Subsequently, we discuss the most characteristic property

of the classical deflectometer: its minimal resolvable acceleraction gmin. At this stage,

we need to distinguish for the first time between the two setups: the final one at CERN,

that examines the gravitation of antihydrogen, and the one in Heidelberg, which mea-

sures the gravitation of argon and which we mainly use to test the design. Besides the

achievable 1% precision of the setup at CERN, we find a gmin for the argon testing-

setup that can resolve even the effect of the tidal force.

The sensitivity analysis of the deflectometer given in the third part (chapter 3) pro-

vides critical values for external magnetic and electric fields that substantially disturb

the gravitational measurement. For the two examined setups, with argon and with

antihydrogen, these critical values are particularly interesting for shielding purposes.

15



CONTENTS

The analysis concludes with an examination of how to solve this shielding issue for

the magnetic field by adding a large offset field in a direction that is perpendicular to

the one in which gravity is acting. We refer to this method as bias-reduced-gradient-

susceptibility (BRGS).

For a description of the first prototype of the modified Moiré-deflectometer, we

present the experimental construction and the first measurements in the fourth part

of this thesis(chapter 4 and chapter 5). To do this, we start with the design of the

transmission gratings. This includes the atom’s transmission gratings as well as the

gratings for the additional optical Mach-Zehnder interferometers, which are necessery

to control the stability of the setup. After presenting the details on the realisations of

the gratings out of silicon wafers, we further summarise the results of a vibration and

stability analysis of a prototype of the setup. Finally, chapter 5 provides a detailed

description of the testing setup in Heidelberg. This facilitates a detailed discussion of

the results of our first gravitational measurement with argon.
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Chapter 1

The AEgIS-Experiment at CERN

1.1 Introduction

Since the last century, when physicists have started to look for a unification of the

dynamical space-time geometry of general relativity and the fixed background approach

of quantum field theory, the concept of antigravity g has become a controversial issue.

Determining the gravitational acceleration of antimatter is regarded as a promising

approach for a deeper insight into the theoretical description of gravitation.

This first chapter briefly summarises the background of a potential unification of

the two directions in physics – general relativity and quantum field theory – and how

this can be connected to gravitational experiments. In addition to this, we provide a

particular demonstrative description of the concept of antigravity, the gedanken exper-

iment of Morrison. Both sections strongly motivate the experimental test of gravity

with antimatter. For this purpose, it is preferable to produce electrically neutral anti-

matter. After summarising state-of-the-art production methods for antihydrogen, we

give a short introduction into the method of the AEgIS-experiment at CERN. This

provides the initiation for the Moiré-deflectometer presented in this thesis.

1.2 Theoretical Background for Antigravity

In order to understand the theoretical aspects of a gravitational measurements of anti-

matter and how this can be connected to the incompatibility of general relativity with

electromagnetism, we first consider the apparent differences of these two theories: It

is known for general relativity that it has only a single charge (mass m) and its force

17



1. THE AEGIS-EXPERIMENT AT CERN

general relativity classical/quantum electromagnetism

force mediated by tensor force mediated by vector

spin-2 exchange particle spin-1 exchange particle

charge = mass m charge = + or −
always attractive force attractive or repelling force

Table 1.1: Some of the main differences between general relativity and electromagnetism.

(mediated by a tensor particle of spin 2) is always attractive. In contrast to this, elec-

tromagnetism has two charges (+ and −) and its force (mediated by a vector field, a

spin-1-particle) can yield an attractive force for opposite charges and a repelling force

for alike charges. An overview of these differences is given in table 1.1.

What is known about the spin of exchange bosons from nuclear forces, is that the ones

with an even integer spin always mediate attractive forces and the ones with an odd

integer spin can yield attractive as well as repelling forces [23, 24, 25, 26] depending on

whether the interaction occurs between opposite or alike charges, respectively.

For a general description of gravitation, we consider two masses m1 and m2 that

have gravitational charges1. Thus, we remember Newton’s law of gravitation, which

provides the interaction potential

VNewton = −G
m1m2

r
, (1.1)

where the gravitational constant is denoted by G and the distance between the two

charges by r. For an even more general description of gravitation, this potential needs

to be modified. Its exchange boson of spin 2, which is also known as the graviton2,

might have partners of spin 0 or 1. This possibility is included in the more general

potential [23] given by

V = −Gm1m2

1∓ ae
−r/v + be

−r/s

r
, (1.2)

where a and b (a, b ≥ 0) are the products of the vector and the scalar charges of the

two particles, and v and s their respective ranges. Hence, a and b can be considered

1For the gravitational interaction there are two types of charges: particle and antiparticle.
2This elementary particle is introduced as exchange boson for quantum field theory. Its existence

has never been proven experimentally and is also not expected to be detectable at all [27].
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1.3 The Gedanken Experiment of Morrison

as the ‘coupling strength’ relative to G. Note that the sign ∓ in front of the vector

component denotes the differentiation between the two types of charges. This accounts

for the fact that the vector component yields attractive forces for opposite charges and

repelling forces for alike ones. Particularly interesting is this potential, as it emphasizes

the necessity of measuring interactions between matter and antimatter. To be specific,

it reveals that examinations of the matter-matter interaction are sensitive on |a−b|. As

for matter-antimatter interactions, the sign of a changes, the experiments that measure

their interactions are sensitive on |a+ b| [10, 23] . Nieto et al. [23] showed that models

can be thought of, where not |a − b| = 0 but |a + b| does get changed. Hence, a

measurement between particles and antiparticles is urgently needed to promote this

controversally discussed derivation of Nieto et al..

In contrast to this, a more intelligible approach, which forbids any difference between

gravity for matter and the one for antimatter, is the following gedanken experiment of

Morrison.

1.3 The Gedanken Experiment of Morrison

As a comprehensible example for the requirement g �= g, Morrison et al. [28, 29] de-

picted a gedanken experiment, to which it is often referred to as Morrison argument

[23]. Starting with an electron-positron pair e−e+ within the earth’s gravitational field,

we define their starting point by their height x0. Before letting them annihilate, we

move them to a height x1, with x1 > x0
1. Their annihilation process at this height

produces two photons that can be deflected by perfect mirrors back to their starting

point at x0. On their way down to x0, the photons gain energy, as they get blue-

shifted. Hence, the following pair production of the two meeting photons back at x0

will produce a pair e− and e
+ with some kinetic energy. Assuming the validity of the

equivalence principle as well as symmetric gravitation, this kinetic energy will match

the energy, which has been necessary initially to move the e
−
e
+-pair from x0 to x1. If

there is no symmetric gravitation between e
− and e

+, this energy balance will break

down. Thus, in this gedanken experiment, either energy conservation or gravitational

1In order to keep this experiment as simple as possible, we assume the initial kinetic energies of

the two particles to match exactly the energy that is necessary to move them from x0 up to x1.
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1. THE AEGIS-EXPERIMENT AT CERN

method process

spontaneous radiative recombination p+ e
+ → H + hν

laser-stimulated recombination p+ e
+ + hν → H + 2hν

3-body recombination p+ e
+ + e

+ → H
∗
+ e

+

resonant charge-exchange colliscions with positronium p+ Ps
∗ → H

∗
+ e

−

Table 1.2: Different methods how antihydrogen could be produced.

symmetry will be violated.

Both of the last two sections are typical examples of the ongoing discussions and

controversal suggestions of how to approach the unsolved issue of the complete theoret-

ical description of gravity. Observering the gravitation of antihydrogen is of particular

interest, as the first direct gravitational measurement of antimatter at all.

1.4 Antihydrogen Production Methods

Following R. Greaves and C. Surko [30], there several methods known today, by which

antihydrogen could be generated. An overview of the underlying processes is given in

table 1.2.

The most intuitive production method is the spontaneous radiative recombination,

where an antiproton recombines with a positron. To enhance the small recombination

rate of this process, a photon could be added. The following laser-stimulated recombi-

nation has been experimentally tested only for the recombination of p and e
−[30] but

has never been observed for the corresponding antiparticles.

Instead of the additional photon, an additional positron provides even larger enhance-

ments of the recombination rate. As the rate of this three-body recombination is pro-

portional to T
−4.5, lower energies can strongly increase the recombination rate. This

three-body recombination process can also be optimised by replacing the two input

positrons with Rydberg-positronium Ps∗1 , which is electrically neutral. This yields

on the one hand a large cross-section of the process but also, on the other hand, a

possibility to control the state of the created Rydberg-antihydrogen via the excitation

1Positronium Ps is an exotic atom consisting of an electron and a positron.
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1.5 The AEgIS-Experiment

of the Ps. This method will be used in the AEgIS-experiment, which will be described

in the following section.

1.5 The AEgIS-Experiment

The AEgIS-collaboration has been developed out of former members of the ATHENA-

collaboration that produced cold antihydrogen for the first time 2002 [7]. Hence, their

knowledge can be applied on new experiments with antihydrogen that are now planned

for the AEgIS-project.

Figure 1.1 shows the scheme of the antihydrogen production of the AEgIS-experiment.

Figure 1.1: Scheme of the antihydrogen production of the AEgIS-experiment at CERN.

This figure is taken out of [31].

One input for the antihydrogen production via the used resonant charge exchange

method are the antiprotons trapped in a penning trap (the antiproton trap) in a cryo-

genic environment. This provides us with an output of very slow antihydrogen, as

their final velocity is mainly determined by the temperature of the massive particles

21



1. THE AEGIS-EXPERIMENT AT CERN

of the production process. Besides this, it is the excitation of the positronium1 (laser

excitation) to a Rydberg-state that makes this experiment unique: First of all, the

H-production rate is strongly enhanced as the process’ cross-section σCE scales with

the 4th power of the positronium’s principle quantum nPs. This enhancement is shown

in figure 1.2(a), where simulation results of AEgIS-members [10] are plotted. Further-

more, the Rydberg-positronium with nPs also leads to a well-defined distribution of

final states n
H

of the antihydrogen as can be expected from the simulation results in

figure 1.2(b).

Nevertheless, one of the major advantages of working with Rydberg-antihydrogen is

(a) (b)

Figure 1.2: Predictions of simulations for the antihydrogen production of the AEgIS-

experiment. They show (a) the increase to the cross-section σCE by using higher energy

states nPs of Ps. The dots refer to a fixed configuration of quantum numbers and the

squares include a randomly chosen one and (b) the distribution of the antihydrogen’s

principal quantum number n
H

on the one of the positronium nPs. Both figures are taken

out of [10].

the induced sensitivity on electric fields of such a highly excited state. This can be used

together with the low velocity distribution of the produced antihydrogen ((25...80) m

s
)

as the ideal initial situation for accelerating the Rydberg-states out of theH-production

region via inhomogenous electric fields. Such a so-called Stark-acceleration can reach

1The positronium is retrieved from a porous insulating material (positronium converter) that is

bombarded with positrons e+.
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1.5 The AEgIS-Experiment

several 100 m

s
.

Thus, out of the production region, a pulsed, divergent beam of Rydberg-antihydrogen

can be extracted. For an appropriate apparatus to measure the gravitational accelera-

tion of this antimatter-beam, a classical Moiré-deflectometer [22] has been suggested.

The following chapters examine and characterise such a deflectometer with regard to

the AEgIS-setup.
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Chapter 2

Theoretical Background of a

Moiré-Setup

2.1 Introduction

freely falling mirror

imcoming laser beam

beam splitter

detector measuring the
interference signal

stationary mirror

Figure 2.1: Conceptional setup of

a corner-cube-experiment

Today’s most common concept for measuring the

earth’s acceleration g uses a freely falling test mass,

which is shaped as a corner cube [14, 15, 16, 17]. In

these experiments a Michelson-interferometer for

laser light is set up vertically, such that one of the

interferometer’s arms ends with a freely falling re-

flective test mass. A sketch of this setup is given

in figure 2.1. The absolute value of the length

change of the vertical arm is measured by count-

ing the interference fringes at the detector. Besides

the achievable high precision of the g-measurement

with such a setup, it is in particular the availabil-

ity as a portable apparatus, that makes this mea-

surement concept popular [16, 17, 32]. Thus, for

instance, it became a very useful tool for geophys-

ical field measurements. Other promising concepts

as the ones based on atom interferometry exper-

iments with cold atoms [18, 19, 20] still lack this
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2. THEORETICAL BACKGROUND OF A MOIRÉ-SETUP

great advantage of portability.

For the usage in the AEgIS-experiment, a measurement concept has to be found that

can tackle the experimental conditions at CERN. As a corner cube experiment for an-

tihydrogen is not feasible, AEgIS needs to use a different gravimeter. The one chosen

for the first gravitational measurements is known as Moiré-deflectometer.

For the theoretical background of such a Moiré-deflectometer, it is essential to dis-

tinguish between the different regimes, in which the apparaturs can be used. To char-

acterise these regimes, we need to distinguish between setups, where wave-propagation

and -interference effects are observable and the ones, for which classical ray optics and

Newtonian Mechanics suffices to describe the observable effects.

We start with the mathematical description of these two regimes using lightwaves.

This way, we provide a basic understanding of the setup and also the theory for some

testing purposes, which will be presented in chapter 4. While one regime is governed

by the propagation and interferometry of the incoming lightwaves (optical Talbot-

interferometer), simple classical ray optics describes entirely the other one (optical

Moiré-deflectometer).

This differentiation is then extended to matterwaves. In this context, the same

regimes are interesting: the one governed by interferometric features of matterwaves

(atomic Talbot-interferometer) and the one, where already Newtonian Mechanics en-

tails the major theoretical background (atomic Moiré-deflectometer).

These considerations are finalised with a calculation of the minimal resolvable ac-

celeration gmin of the setup at CERN and the one in Heidelberg. In this context, the

experimental tunable parameters are examined. For the setup in Heidelberg, we can

even aim to measure the effect of the moon on the earth’s gravitation. The background

of this effect is also outlined in a short presection right before the calculation and

discussion of gmin.

2.2 The Moiré-Effect

In order to observe the so-called Moiré-effect, we need to superimpose two spatial

periodicities. A new periodicity, that is not imprinted in the superimposed structures,

will appear, if these periodicities are characterized by a ‘slight difference’ from each

other. Such a difference can be a variation of their periods as well as a translation or
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2.2 The Moiré-Effect

tilt between them. Figure 2.2 (a)-(c) shows these three cases for a periodic line pattern.

To be specific, we consider the case of the ‘beating’ of two wavelengths λ1 and λ2.1

(a) (b) (c) (d)

d1 �= d2 d1=d2

α

α

two-dimensional:

Figure 2.2: The Moiré-effect in 4 different forms of appearance: It can be caused by (a)

slightly different periods, (b) a spatial shift or (c) rotation between two equal patterns; (d)

it is not limited to one dimension.

The wavelength λ3, that is created by superimposing λ1 and λ2, can then be calculated

via
1

λ3

=
1

λ2

− 1

λ1

⇒ λ3 =
λ2λ1

λ2 − λ1

. (2.1)

Analog to the beating of the two wavelengths, we find the periodicity d3 of the structure,

that is generated by two superimposed periodicities d1 and d2. Thus, with the angle α

between the original structures d1 and d2 this newly generated periodicity reads

d3 =
d1d2�

d
2

1
+ d

2

2
− 2d1d2 cos (α)

, (2.2)

1The ‘beating’ of two periodicities is rather known from superimposing two frequencies ν1 and ν2,

where ν1 �= ν2. The ‘beating-frequency’ ν3 is then given by ν3 = ν2 − ν1. Their spatial representation

λi = c
νi

leads to equation 2.1.

27



2. THEORETICAL BACKGROUND OF A MOIRÉ-SETUP

which can then be observed as Moiré-effect. This effect is not limited to one dimension

as illustrated in figure 2.2(d).

Besides the often undesired occurence of the Moiré-effect in photography, for example,

this effect can also be a very useful tool. Thus, it has become a common method for

precision measurements and engineering devices [33, 34, 35, 36, 37]. How it will be used

within the AEgIS-experiment is described in the following sections.

2.3 The Most General Moiré-Setup

In the following sections we present some of the possible applications of the Moiré-

effect. All of them have a common basic setup that is sketched in figure 2.3. Three thin

material transmission gratings G1, G2 and G3 are fabricated with the corresponding

period di and opening width ai of the i
th grating. They are mounted at distance Li

along the z-axis and their slits are aligned parallel to the y-axis.

For a mathematical description of the different applications, we distinguish between

light- and matterwaves that are sent through such a setup along the z-axis. As these

waves can show diffraction effects behind tranmission gratings, we need to distinguish

further between between two major regimes :

1. Diffraction effects of the gratings are significant, i. e. Li and di are chosen

such that any displacements due to the diffraction of the wave from the ma-

terial gratings are observable. In this regime, we refer to the setup as Talbot-

interferometer.

2. Li and di are set such that diffraction effects of the wave are negligible. In this

regime, we refer to the setup as Moiré-deflectometer.

If not stated as Li, di and ai, we assume in the following L1 = L2 = L, d1 = d2 = d

and a1 = a2 = a.

2.4 Moiré-Setups for Lightwaves

2.4.1 Optical Talbot-Interferometer

In the regime, where diffraction effects are significant, the mode of operation of an inter-

ferometer for lightwaves is dominated by the Talbot-effect. We consider the diffraction
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2.4 Moiré-Setups for Lightwaves

G1 G2
G3

(optional)

L1, T1 L2, T2Lpre, Tpre

x
y

za1

d1

Figure 2.3: General Moiré-setup: a light- or matterwave (indicated as red arrow) travels

through 2-3 thin material gratings with an opening width ai and a period di. The distance

Li between two consecutive gratings determines the time of flight Ti that the particles need

for a given longitudinal velocity vz. Note that the necessity for the third grating depends

on the application of the setup.

process of a lightwave from a diffraction object as a transmission grating for example.

The Talbot-effect is then observable as a full re-image of the transmission function of

the diffraction object at a particular distance, the Talbot-distance zT
1. To understand

the occurrence of this re-imaging, it is adjuvant to analyse the propagation of waves in

space after they are diffracted from a particular structure.

The following study is based on the derivations in in [38] and [39] and provides the

derivation of the re-imaging effect by considering the propagation of a lightwave in

Fourier space.2

1This distance is also often taken as orientation of the limit between ‘near-’ and ‘far-field diffraction’.
2At this point, the derivation of the Talbot effect for light is described in detail as it is also chosen

as test of the quality and functionality of the first produced material gratings, section 4.4. In addition
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2. THEORETICAL BACKGROUND OF A MOIRÉ-SETUP

Firstly, the propagation in space of a lightwave ψ(x, y, z, t) can be generally described

via a scalar wave equation which in cartesian coordinates is given by

∆ψ =
∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
=

1

c2

∂2ψ

∂t2
. (2.3)

Assuming the lightwave to be monochromatic and coherent, i. e. ψ(x, y, z, t) = e
iωtψ(x, y, z, 0)

simplifies equation 2.3 to the well-known Helmholtz equation

∂2ψ

∂x2
+

∂2ψ

∂y2
+

∂2ψ

∂z2
= −k

2ψ, (2.4)

where the wavenumber k = |k| is given by the light’s angular frequency ω = c · k.
Choosing the positive z-axis as the direction of propagation provides the ansatz

ψ(x, y, z) = f(x, y, z)e−ikz
, (2.5)

which is governed by the amplitude function f(x, y, z) that varies only slowly in the

z-direction. This ansatz together with its associated differential equation 2.4 leads to

�
∂2

f(x, y, z)

∂x2
+

∂2
f(x, y, z)

∂y2
+

∂2
f(x, y, z)

∂z2

+ 2ik
∂f(x, y, z)

∂z
− k

2
f(x, y, z)

�
e
−ikz = −k

2
f(x, y, z)e−ikz

and can be approximated with

∂2
f(x, y, z)

∂x2
+

∂2
f(x, y, z)

∂y2
+ 2ik

∂f(x, y, z)

∂z
= 0 (2.6)

due to the slow variation of f(x, y, z) in z-direction. This so-called paraxial wave equa-

tion, together with a given inital distribution f(x, y, z0), provides the amplitude distri-

bution f(x, y, z) at any distance z.

In order to determine the propagation of the amplitude distribution in space, we

transform equation 2.6 into Fourier space to find its solution. With the Fourier pair

f(x)
FT←→ F (u) and f(y)

FT←→ F (v), the two- dimensional Fourier transform of equation

to this, the way the Talbot-effect is derived demonstrates a neat alternative way to the solution of the

Fresnel-Kirchhoff-Integral of Brezger et al. [40] presented in section 2.5.1.
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2.4 Moiré-Setups for Lightwaves

2.6 reads1

(2πiu)2F (u, v, z) + (2πiv)2F (u, v, z) + 2ik
∂F (u, v, z)

∂z
= 0 (2.7)

⇒ ∂F (u, v, z)

∂z
=

2π2
i

k
(u2 + v

2)F (u, v, z). (2.8)

Integrating the latter over z finally yields the amplitude distribution in Fourier space

F (u, v, z) = F (u, v, 0)e−
2iπ2

k (u
2
+v

2
)z
. (2.9)

In order to apply this result to a light wave that has passed an amplitude grating,

we first need to transform the grating’s transmission function t(x, z = 0) into Fourier

space. For this purpose, we limit the following derivations to one dimension without

loss of generality. With � denoting a convolution and the number of slits (N − 1), the

Fourier pair2

fgrat(x) =

� N/2�

l=−N/2

δ

��
x+

ai

2

�
− ldi

��
�
��

x+ ai
2

ai

�
(2.10a)

FT←→ Fgrat(u) = e
2iπaiu sin(π(N + 1)diu)

sin(πdiu)� �� �
FTof finite train of δ-functions

sin(aiu)

u
(2.10b)

describes the transmission function of a one-dimensional amplitude grating with a pe-

riod di and rectangular openings of width ai (see figure 2.3).

The Fourier representation of equation 2.10b can now be used as initial distribution

F (u, v, 0) in equation 2.9 and a peculiar feature can be observed considering the am-

plitude distribution behind a grating: Whenever the additional phase factor e−
2iπ2u2

k z

of the propagation becomes unity, the observable amplitude distribution equals exactly

the one directly behind the grating. Such a so-called re-phasing or re-imaging can be

observed for the first time for

2iπ2

k

1

d
2

i

zT = 2π (2.11)

⇒ zT =
2d2

i

λ
, (2.12)

1This Fourier transform can be determined straight forward via the general properties of the Fourier

pair f(x)
FT←→ F (u) given in Appendix A.2.

2A mathematical derivation based on basic properties of Fourier transformations can be found in

Appendix A.
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2. THEORETICAL BACKGROUND OF A MOIRÉ-SETUP

with k = 2π
λ . This particular distance zT behind the grating is known as the Talbot

distance, named after William Henry Fox Talbot (1800− 1877) [41], who observed this

effect of re-imaging of a grating’s transmission function for the first time. Note that

the re-images are observable at any integer multiples of zT .

In the region between grating and Talbot distance, the so-called fractional Talbot effect

is observerable at fractional multiples of the Talbot distance, i. e. at

z =
n

m
zT , with

n

m
≤ 1, and n,m ∈ N. (2.13)

The derivation of the amplitude transmission function, as it is done above via Fourier

transfomation, becomes very complicated in this region.

Alternatively, P. Cloetens et al.[42] solve the Fresnel diffraction integral for this near-

field diffraction regime. For this purpose, they take advantage of the periodicity of the

initial amplitude distribution and receive the general expression

f(x, z) =
1√
2inm

�

l=0,1,...1(n−1)

cT (n,m, l)t

�
x+

ldi

n
, z = 0

�
, (2.14)

where the transmission function of the grating is given by t(x) = f(x, z = 0) and the

fractional Talbot coefficients can be evaluated by

cT (n,m, l) =
�

r=0,1,...(m−1)

e
iπ(l+nr)2

2nm . (2.15)

For n = m = 1 the expected integer Talbot effect with f(x, zT = 2d2
i
/λ) = t(x) follows.

Other particularly interesting distances are for example

z =
zT

2
⇒ f

�
x,

zT

2

�
= t

�
x+

di

2

�
(2.16a)

z =
zT

4
⇒ f

�
x,

zT

4

�
=

1√
2i

�
t(x) + it(x+

di

2
)

�
(2.16b)

z =
3zT
4

⇒ f

�
x,

3zT
4

�
=

1√
2i

�
it(x) + t(x+

di

2
)

�
. (2.16c)

Thus, the amplitude distributions behind the grating consist of a superposition of repli-

cas of the gratings transmission function t(x) which may be weighted or also shifted

vertically. Particularly interesting is the distribution at half the Talbot distance, where

a copy of the transmission function can be observed. Note that this copy is no complete

re-image yet, as it is shifted in x-direction by half the grating period.
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2.4 Moiré-Setups for Lightwaves

Furthermore, equations 2.16 also indicate the changing period of the amplitude dis-

tribution at distances in-between integer multiples of zT
2
. This change of the spatial

frequency of the amplitude in x-direction suggests a possible diminishment or magnifi-

cation of the images of the grating’s transmission function.

Under the ideal conditions of a coherent and collimated beam, that yield a clear

interference pattern in the regime close to the grating (also known as Talbot-carpet), we

can realise an optical Talbot-interferometer. Superimposing this interference pattern

with another addiditional spatial modulation yields the Moiré-effect. For this additional

spatial modulation, it is convenient to use a second material grating, which is then

scanned parallel to the first one along the x-axis. This provides us a useful analysing

tool, with which we can examine the amplitude distributions of equations 2.16 . We

will use this technique to test transmission gratings on possible defects (see section 4.4).

2.4.2 Optical Moiré-Deflectometer

G1 G2 G3

L1 L2

Figure 2.4: Shadow effect of classical optical rays travelling through a Moiré-setup. The

gratings’ openings are expected to be point-like here.

So far, the wavelength λ and grating period di have been chosen such that interfer-

ence effects of the diffracted wave play a crucial role for the output of the Moiré-setup.
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2. THEORETICAL BACKGROUND OF A MOIRÉ-SETUP

Varying these parameters can lead to a regime with very large Talbot distance zT =
2d

2
i

λ

and where diffraction effects become negligible. This can be reached by either increas-

ing di, the size of the grating’s period, or by approaching the limit of λ → 0. Either

way, we will find a corresponding mathematical description that is simply governed by

classical ray optics.

For a qualitative understanding of this regime, figure 2.4 provides a sketch of the possi-

ble paths of optical rays in a Moiré-setup that consists of three identical gratings. The

grey background denotes the rays that pass the first grating G1 but are blocked by the

second one G2. Hence, the first grating’s transmission function is washed out shortly

behind G1 and we need to find a way to uncover it again. Considering the optical rays

that pass the setup of the two consecutive gratings G1 and G2 (solid black lines) shows

clearly the reappearance of the gratings’ spatial modulation with period di at distance

L2. Thus, it is actually the additional blocking of G2 that uncovers the shadow picture

at L2.

In order to examine this self-focusing effect of G1 and G2, it is convenient to use a

third grating G3. This last grating probes the created shadow pattern at L2 by moving

along the x-direction. Hence, it serves as analysing tool as did the second grating in

the previously described Talbot-interferometer.

Besides this general shadow-image of the gratings, we can even observe harmonics of

them at distances L�
2
= m

n
L2, with the integer numbers m and n.

Note that in this optical-ray-description, the results are independent of the coherence

and collimation of the incoming light. This makes this Moiré-deflectometer very robust

to experimental imperfections.

2.5 Moiré-Setup for Matterwaves

Setting up an interferometer for atomic beams reveals an important difference between

lightwave- and matterwave-diffraction experiments: While the wavelength λ of laser

light is well-defined with typically ∆λ
λ ≈ 10−9, the deBroglie wavelength λdB of an

atomic beam is generally given by a broad distribution. This can be narrowed by col-

limating the atomic beam.

Most of today’s atom interferometer work with collimated atomic beams. Hence,

monochromatic matterwaves can be assumed, which, in analogy to the diffraction of
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2.5 Moiré-Setup for Matterwaves

light, enables the observation of the Fresnel-diffraction-regime and the Talbot-effect

[43, 44]. Besides this, the Fraunhofer-diffraction-regime (far-field-diffraction), that can

be observed with these beams [45, 46, 47], is particularly interesting. For the latter

regime, the different diffraction orders are not allowed to overlap, such that the first

grating serves as beam splitter. Such a Mach-Zehnder-setup – also known as Seperated-

Beam-Envelope-interferometer (SBE) [48] – allows to manipulate the path of only one

diffraction order, while leaving the other one unaffected. The interference of the two

orders at the end of the interferometer then offers a broad range of fundamental studies.

However, such a SBE-interferometer has a couple of disadvantages: Besides a high sen-

sitivity on the gratings’ misalignment, the incoming wave has to be well prepared in

direction and collimation to ensure a proper spatial separation of the diffraction orders.

Furthermore, for most collimation techniques, the flow of atoms provides a severe limit

to the resolution of the interferometer [48]. This can be solved by a less collimated

beam and gratings with a larger aperture. How such a beam can be used in atom

interferometry is shown in the following section.

2.5.1 Atomic Talbot-Interferometer

Independently from the degree of collimation of the atom beam, we can observe in

analogy to light, a re-imaging-effect – the atomic Talbot-effect – for matterwaves in the

near-field diffraction regime, i. e. at distances z ∼ zT . The matterwave distribution

at specific distances behind the transmission grating can be either found using the

properties of the Fourier-transform as done for light in section 2.4.1 or by solving the

Fresnel-Kirchhoff-Integral. The latter method has been pursued by Brezger et al.[40] to

evaluate explicitly the output of a divergent atomic beam traveling through a Talbot-

interferometer. The following considerations follow their publication.

As opposed to the previously described atomic Mach-Zehnder-interferometer, a general

atomic Talbot-interferometer does not need a collimated beam. The lack of coherence

can be handeled by an incoherent summation over the atoms that are transmitted by

the first grating G1.1 With a three-grating setup, this still yields a re-imaging effect of

the grating’s transmission function, but there is a strong dependence of the pattern on

1The incoherent summation describes an addition of Talbot fringe patterns that miss any phase

synchronisations – the Lau-effect. Therefore, these kind of interferometers are also often called Talbot-

Lau-interferometers.
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the distance between the gratings. The geometry of the setup has to fulfill the so-called

period matching condition. It reads [40]

1

r1

d2

d1
+

1

r2

d2

d3
= 1, (2.17)

with r1 =
�
L1+L2

L2

�
d2
d1

and r2 =
�
L1+L2

L1

�
d2
d3
. Hence, the choice of geometric parameters

is strictly limited for this type of interferometer.

Particularly interesting for a potential application in the AEgIS-experiment are the

considerations of Brezger et al. concerning possible interactions between the gratings’

surfaces and the transmitted wave: In the Eikonal approximation, i. e. with a linear

propagation within the grating’s potential, the transmission function ti(x) changes to

[40]

ti,int(x, z) = ti(x) · e
− i

�
�
V (x,z(t))dt

� �� �
additional phase grating

, (2.18)

where
�
V (x, z (t)) dt denotes the additional potential integrated over the interval, for

which the interaction holds on. The additional phase grating neither affects the func-

tionality of G1 nor that of G3: at G1 incoherent particles have been assumed anyway

and G3 only acts as mask for a subsequent flux-measurement. Hence, the additional

phase grating of equation 2.18 only matters at G2.

Nevertheless, this effect should not be neglected. The integration in equation 2.18 in-

dicates an additional dependence on the particles’ longitudinal velocity component vz.

Numerical results of Brezger et al. show that this additional dispersive grating prop-

erty can break up the periodic re-imaging effect: Dependent on the atomic species, the

re-images are still observable at zT and zT
2

but appeared blured in-between and may

even disappear in these regions. Consequently, changing the geometric parameters

in the AEgIS-experiment to values, for which the setup is rather acting as Talbot-

interferometer, requires particular care of the period matching condition.

2.5.2 Atomic Moiré-Deflectometer: Newtonian Mechanics Producing

the Shadow-Effect

As for lightwaves, one can change the geometry of an atomic Talbot-interferometer

such that diffraction effects become negligible. For this purpose, the diffraction effects

of λdB from the grating with period di have to be smaller than a grating period at the
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Figure 2.5: The top figure shows examplary the classical trajectories of 1000 argon atoms

(coming from a point-like source 30 cm in front of the first grating with an initial transversal

temperature of 100mK and a longitudinal velocity of 430m/sec) traveling through the

Moiré-deflectometer with a grating distance of 20 cm. The bottom picture provides a

zoom-in into the central region A. The red shaded regions denote the regions of particle

transmission of the gratings.

distances Li of interest. Thus, zT =
2d

2
i

λdB
is very large in this regime, which can then be
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characterised by

di �
�

λdBLi. (2.19)

The setup of such an atomic Moiré-deflectometer [22] makes use of the atomic analogon

of the optical shadow-effect described in section 2.4.2.

In order to determine the atoms’ trajectories through a deflectometer analytically, it is

sufficient to apply classical Newtonian Mechanics via

F(t) = m
dv

dt
, (2.20)

where F(t) is the net force of the atomic motion at time t, m is the mass and v =

(vx, vy, vz) is the velocity of the moving particle, respectively. Solving the differential

equations that follow from equation 2.20 leads to the vertical component x(t) of the

trajectory of a freely moving particle in the gravitational field given by

x(t) = x0 + vx0t−
1

2
gt

2
, (2.21)

with the gravitational acceleration g, the particle’s initial position x0 and its corre-

sponding velocity vx0. Note the orientation of the coordinate system as it is drawn in

figure 2.3: The x-axis is pointing vertically upwards.

For a ‘field-free’ deflectometer region without any disturbing magnetic or electric fields1

and under the condition to pass two transmission gratings, equation 2.21 yields a

shadow pattern at the end of the deflectometer that re-images the gratings’ trans-

mission functions.

Analytically, these re-images can be found by considering the condition to pass one

of the gratings more into detail. Passing the gratings is illustrated in figure 2.5,

which shows a zoom into the center of one of the gratings. The transmission func-

tion ti(x), i = 1, 2, of one of these amplitude gratings can be expressed as a convolution

(denoted by �) between a train of δ-functions and the so-called ‘top-hat-function’
�
(x),

ti(x) =

Nslits,i/2−1�

k=−Nslits,i/2

δ

��
x+

ai

2

�
− kdi

�
�
��

x+ ai
2

ai

�
, (2.22)

1A detailed study of disturbing magnetic and electric fields can be found in chapter 3.
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with the grating’s total number of slits Nslits,i, its period di and opening width ai.1

Consequently, these grating-properties determine the conditions on the vertical coordi-

nate xGi of a particle to pass the i
th grating. To be specific, the conditions for the first

two gratings are given by (see figures 2.3 and 2.5):

1. A particle passes the 1st grating if

xG1

!
= x(Tpre), with xG1 ∈ t1(x) (2.23a)

⇒ x0 = xG1 − vx0Tpre +
1

2
gT

2

pre (2.23b)

2. A particle passes the 2nd grating if

xG2

!
= x(Tpre + T1), with xG2 ∈ t2(x) (2.24a)

⇒ x0 = xG2 − vx0(Tpre + T1) +
1

2
g(Tpre + T1)

2 (2.24b)

As both conditions have to be fulfilled for a particle to contribute to the shadow-image

at the end of the deflectometer, equation 2.23b and 2.24b yield a condition on the initial

vertical velocity given by2

vx0 = − 1

T1

xG1 +
1

T1

xG2 + gTpre +
1

2
gT1. (2.25)

To sum up, for a particle to reach the detection region of the deflectometer its ini-

tial position and velocity needs to fulfill equation 2.23b and 2.24b and its velocity is

conditioned by 2.25. The vertical position at the detection region reads then

x(Tpre + T1 + T2) = x0 + vx0(Tpre + T1 + T2)−
1

2
g(Tpre + T1 + T2)

2 (2.26)

= −T2

T1

xG1 +

�
1 +

T2

T1

�
xG2 −

1

2
gT1T2

� �� �
1st↔2ndgrating

− 1

2
gT

2

2

� �� �
behind 2ndgrating

.

(2.27)

This analytic expression reveals some remarkable features as the re-imaging effect of

the gratings’ transmission functions: The first two terms represent a kind of beating

1Further details on the mathematical expression of the transmission function are given in Ap-

pendixA.
2Note that due to this limitation on the initial transversal velocities, such a two-grating-setup is

also sometimes referred to as ‘collimation’.
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of the two transmission functions, with xG1 ∈ t1(x) and xG2 ∈ t2(x). Hence, the exact

spatial periodicity of the resulting pattern depends on the ratio of the distances L1

and L2 that determine T2
T1
. Furthermore, it is important to note that the final position

in equation 2.27 is completely independent of Tpre. This emphasizes the independence

on the degree of collimation of the incoming atomic beam. Besides this, the effect

of gravity – a vertical shift of the whole pattern – can be seperated into two parts

as indicated by the terms with underbraces: one originating from the gravity present

inbetween the two gratings and one resulting exclusively from gravity that is present

behind the second grating.

Particularly interesting is the case of a setup with equal distances Li, i. e. with T1 =

T2 = T . Equation 2.27 becomes then

x(Tpre + 2T ) = − xG1����
1stgrating

+2 · xG2����
2ndgrating

−gT
2
. (2.28)

For identical gratings, the addition of the first two terms in equation 2.28 leads to a

clear re-image of the grating’s transmission function at the end of the deflectometer.

Furthermore, the effect of gravitation as simple offset shift becomes particularly useful

for sensitivity analysis of any type of accelerating forces. Before presenting such ana-

lysis, we provide more details about the potential application of a Moiré-deflectometer

as accelerometer.

2.6 The Characteristic Moiré-Pattern of a Deflectometer

In order to use an atomic Moiré-deflectormeter as accelerometer, the following section

gives a deeper insight in the characteristic pattern that is expected as the output of

this device. Generally, the output of a three-grating-setup is given by a fringe pattern,

that results from the re-image of the first two gratings. A vertical scan of the third

grating over this pattern provides us the signal to be analysed.

For a setup with L1 = L2 = L, i. e. T1 = T2 = T , we expect the pattern to be a clear

image of the grating’s transmission function (see equation 2.27). However, as we work

with transmission gratings with an opening width a1 = a2 = a (see figure 2.3), we need

to take a closer look on this image. For this purpose, figure 2.6(a) shows some of the

possible paths through the deflectometer. For a deflectometer with identical gratings,
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(a) Moiré-setup with finite openings a

∆x
F

d+d-a4d+a

d

Z

L L

q·L(2-q)·L

a

(b) The width �xF of the shadow fringes due to

largest divergent beams.

Figure 2.6: Sketches of the shadow-effect for gratings for a two-grating Moiré-setup with

L1 = L2 = L. The identical gratings are defined by their periods d and their openings

a. Opposed to figure 2.4 these openings are not taken to be point-like. In figure 2.6(b) q

denotes a fractional number with 0 < q < 1.

i. e. d1 = d2 = d and a1 = a2 = a, this figure illustrates interesting features of the

image1:

• Due to the geometry of the setup, only the particles that contribute to one of the

fringes are transmitted through the setup, regardless from which opening they

originate. Note that in the figures of 2.6, we included only the contributions from

the next neighbouring slits. This can be easily extended to all slits and does

not change the width �xF of the fringe. The validity of this statement for all

paths over the entire grating area becomes clear by comparing this situation to

the shadow-effect drawn in figure 2.4.

• In order to describe the shape of one fringe of the pattern, we need to consider

the contributions of the paths with the largest possible divergence. These paths

are denoted by the dotted lines. Using the example in figure 2.6(b), that is

accentuated by the black solid lines, we find with the intercept theorem two

1Due to its modified shape as train of trapeze, we also refer to this re-image right before the third

grating as fringe pattern.

41



2. THEORETICAL BACKGROUND OF A MOIRÉ-SETUP

geometric conditions1:

1.
�xF

d+ d− a
=

q · L
(1− q) · L (2.29a)

2.
�xF

4d+ a
=

q · L
(1 + 1− q) · L. (2.29b)

They yield

q =
�xF

2d− a+�xF
and (2.30a)

� xF = 3a. (2.30b)

This width �xF provides us a measure of the ‘smearing’ out of the pattern.

To sum up, for a classical Moiré-deflectometer as in our experiments, we can expect –

even for large divergent beams – a fringe pattern right before the third grating, that

consist out of a train of smeared-out top-hat-functions. The degree of ‘smearing-out’

is determined by the grating’s opening width a.

We confirmed these expectations by Monte-Carlo simulations of the experiment in

Heidelberg. Figure 2.7 shows their results for an input of 5 · 109 atoms2.

Furthermore, figure 2.7 shows with the upper plot the pattern right before the third

grating without any external forces, whereas the lower plot shows the same simulation

with additional gravitational force. Following equation 2.28, a vertical shift �xg is

expected for the entire pattern. For L = 1m, d = 40µm and a longitudinal velocitiy

of vz = 430 m

sec
, this shift writes

�xg = 53µm = 1.3 · d, (2.31)

which is clearly visible in the results of our simulations.

1This particular example has been chosen mainly for illustration reasons: It is the case, where the

largest divergence due to the slidwidth a is visible and still resolvable in a drawing. The universal

validity for the entire grating again results from the applicable shadow-effect of figure 2.4
2For these simulations (as for all simulations, if not stated differently), we assumed normally dis-

tributed initial values for x0 and vx0, corresponding to the currently implemented source (width=

2.2 cm) and to room temperature, respectively.
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Figure 2.7: Characteristic Moiré-pattern of the deflectometer for the experiment in Hei-

delberg. These results of Monte-Carlo simulations show a zoom into the central periods

of the pattern right before the third grating. The upper (bottom) plot corresponds to the

pattern without (with) the gravitational forces.

2.7 The Moiré-Deflectometer as Gravimeter

In order to apply a Moiré-deflectometer as gravimeter for the AEgIS-exeriment, some

important quantities need to be defined for the apparatus first. Thus, the following

subsections introduce the setups sensitivity S that yields the minimal resolvable gravi-

tational acceleration gmin. As this strongly depends on the corresponding experimental

conditions, we have to distinghish between the conditions in Heidelberg, working with

matterwaves of a high-flux source of metastable argon, and the ones at CERN, work-

ing with a low-flux source of antihydrogen. These different conditions lead to different

possible applications: Being an absolute gravimeter with a very limited gmin for antihy-

drogen, the deflectometer for the argon source turns out to even reach a gmin with which

we are able to measure the influence of the moon on the earth’s gravitational accelera-
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tion. How this influence can arise and a rough estimation of its order of magnitude is

precedingly given in the following.

2.7.1 Moiré-Deflectometer for Tidal Forces

Following Newton’s gravitational law, the magnitude of the earth’s gravitational accel-

eration on a point-like mass can be evaluated via [49]

g(rE) = G
mE

r2E

, (2.32)

with the mass of the earth mE, its radius rE and the gravitational constant G. In fact,

g has a lot more dependencies than the ones predicted by Newton. For instance, some

of them are of geophysical origin (e.g. the structure of the earth crust), others originate

from the rotation of celestial bodies [18].

It is known that g also depends on the moon-earth rotation, which can be explained

by a more sophisticated model than the one that yields to equation 2.32 and is based

on point-like masses. For this model, we choose spatially extended masses as indicated

A B C

moon M

rA

rB rE

Ftest

Fg

earth as very
pliable body

Figure 2.8: Sketch of the force balance between the attraction of the moon and the earth

and the resulting net forces that change the shape of a pliable body as the earth.

in figure 2.8. In particular, we assume the earth E not only to be spatially extended

but also very pliable. For a better understanding of the situation on the earth at the

points A and C, we introduce now a so-called ‘test-force’ Ftest [50]. The strength of

this force is equal to the gravitational one of the moon but it acts in opposite direction.

In this situation, the test force Ftest can compensate the gravitation for only one of the

points A,B or C at the time. Thus, if the test force compensates the gravitation of the
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2.7 The Moiré-Deflectometer as Gravimeter

moon at point B, its magnitude will be too weak to compensate the entire gravitation

of the moon at A and too strong for the situation at point C. Consequently, A still

experiences a weak attraction towards the moon M and C is weakly pulled away from

M .

As A,B and C are connected to each other via the pliable earth, the earth becomes

quenched as indicated by the dark blue shadow in figure 2.8.

In the described moon-earth-situation the test-force Ftest is simply the centrifugal force

that originates from the moon-earth rotation around the common center of mass.1

Following the given quantitative description and with rE � rB, the net acceleration

that the moon excerts to point A can be found as [49]

gM = −2GmMrE

r3B

. (2.33)

with the mass of the moon mM and the distances as indicated in figure 2.8. Comparing

this to the total value g of the equation 2.32, we find

���gM
g

��� = 2mM
mE

�
rE
rB

�3

(2.34)

⇒ |gM| ∼ 10−7
g. (2.35)

Hence, in order to measure any influence of the attractional force of the moon – the

so-called tidal effect – an experiment has to be able to resolve a minimal acceleration

of gmin = 10−7
g. We will show in the following that this limit is reachable with the

Moiré-setup in Heidelberg. Hence, it is the ideal precision test for our setup.

2.7.2 Minimal Resolvable Acceleration of a Moiré-Deflectometer

The gravitational resolution Rg of the Moiré-deflectometer – i. e. the infinitesimal

change of the deflectometer’s output resulting from an infinitesimal change of g – is

found by considering the spatial shift �xg that is caused by gravitation. Assuming a

setup with L1 = L2 = L and d1 = d2 = d (see figure 2.3) and with �xg = gT
2 (see

equation 2.28), the actual output of the deflectometer consists of a shadow pattern that

re-images the grating’s transmission function. Hence, the output is as periodic as the

1Note that at real scales, this point lies within the earth due to the huge mass-imbalance between

the moon and the earth.
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gratings are and the observable phase shift �ϕshadow of the shadow pattern, that is

induced by g, can be determined via

�ϕshadow

2π
=

�xg

d
(2.36)

⇒ �ϕshadow = 2π
�xg

d
= 2π

T
2

d
g. (2.37)

This yields a resolution of the setup [22]

Rg =
∂ϕshadow

∂g
=

2π

d
T
2 (2.38)

=
2π

d

L
2

v2z

, (2.39)

where a single, well-defined longitudinal velocity vz has been assumed1.

Further assuming a Poissonian distribution of the events that generate the shadow

pattern yields a signal to noise ratio proportional to
√
Ndata, where Ndata denotes the

total number of these events. In addition to this, this ratio has to be weighted with

the fringe contrast C of the pattern in order to account for its visibility. This visibility

strongly depends on experimental conditions as the gratings’ opening fractions or the

particles’ velocity distributions2, for instance. Thus, the sensitivity S of the setup,

which determines the minimal gravitational acceleration that can be measured per unit

time, reads [22]

S =
1

RgC
√
nunit

, (2.40)

where the average count rate per unit time nunit = Ndata
t

and the time interval t for

taking Ndata events has been introduced. Hence, the minimal resolvable acceleration

gmin of the apparatus can be determined by

gmin =
S√
t

(2.41)

=
d

2πC

v
2
z

L2

1√
Ndata

. (2.42)

This already points out the dependence on the number of contributing particles and

measurement time. Furthermore, the exact conditions of the source – as its velocity

1Effects concerning the more realistic case of a whole distribution for vz can be found in Chapter 5.
2A detailed discussion of the visibility dependence on some experimental conditions can be found

in Chapter 4 and 5.
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distributions, for example – have an additional influence on C. This will be covered

in detail in section 5.2. For now, we can compare the setup at CERN with the one

in Heidelberg and find for the latter a decrease of gmin of up to five orders of magni-

tude. The limits of both setups and their dependencies on some experimentally tunable

parameters are discussed in the following two paragraphes.

gmin of the Ar∗-experiment

In order to determine the smallest acceleration gmin that is measurable in the Ar∗-

experiment, equation 2.42 provides the major theoretical dependencies. As the actu-

ally reachable value strongly depends on the exact experimental setup, the following

paragraphs summarise the influence of the parameters that are experimentally tunable

to a certain extent.

These dependencies are plotted in figures 2.9 and 2.10. Note that for all of them, the

blue lines in the corresponding upper plots are gmin-values of data that is retrieved from

1 s of measurement, whereas the red lines in the lower plots belong to data integrated

over 20min. This particular time integration has been chosen as it is small enough

to resolve the periodicity of the tidal effect of about 12 h25min with a satisfying sam-

pling rate and is large enough to achieve the desired gmin ∼ 10−7
g.1 The range of the

periodic variation of the absolute value of g is shaded green in the figures. As soon

as the reachable value of gmin is smaller than this bar, the tidal effect of the moon is

resolvable with the setup. Note the dashed vertical lines in all figures of this section:

They indicate the current values of the experiment. An overview of them is given in

table 2.1.

Considering the dependencies in detail, we stress the importance of the performance of

the atomic source in figure 2.9. The best tunable source parameters and their impact

on Ndata and therewith on gmin are shown. Concerning the range of feasible source

diameters, figure 2.9(a) demonstrates that the range is not large enough to change

gmin. Nevertheless, this subfigure accentuates the significant decrease of gmin that can

1Concerning the Nyquist-Shannon sampling theorem, it is in principle possible to integrate for

a longer time and still resolve the frequency of the moon’s acceleration. However, we need to keep

this integration time as short as possible, in order to stay independent from any disturbing forces.

Furthermore, the frequency of the moon’s acceleration is superimposed by other periodic effects of

e. g. other celestial bodies [18]. This might also lead to an adulteration of the integrated signal if the

sampling rate of the moon’s periodicity is too long.
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parameter current value

source diameter 13mm

transversal velocity width 80 m

s

longitudinal velocity 430 m

s

source flow 3.8 · 1014 atoms

s

grating distance 1m

contrast 0 .8

Table 2.1: Current experimental parameters of the setup in Heidelberg, which are ex-

perimentally accessible and influence the achievable minimal resolable acceleration gmin of

the Moiré-deflectometer. The contrast is written in italics, as the best achievable value is

assumed here, which has not been measured yet.

be reached by the 20min-integration time. The same effect can be observed in figure

2.9(b), which shows the expected linear dependence on the initial transversal velocity

vx0 of the atoms. Even for atoms with vx0 = 100 m

s
the tidal effect remains resolvable.

Particularly interesting is the dependence on the flow of the source plotted with

a logarithmic scale in figure 2.9(c). Even an increase beyond the current value of

3.8 · 1014 atoms

s
will not improve the measurement of gmin significantly. Furthermore,

the proposed integration time suffices already to resolve the tidal effect with the current

atomic flow.

As last source property, figure 2.9(d) shows the effect that the atoms’ longitudinal

velocity has within their accessible range. At this point, it is important to note that

the loss of contrast, that a broad velocity distribution yields, is not yet included. This

is be covered in section 5.2. Consequently, the current value of the contrast, whose

dependence is plotted in figure 2.10(a), is not determinable at this stage. Nevertheless,

the plotted dependence emphasises the necessity to reach a value of about C ∼ 0.5.

Below this value, gmin increases very quickly to ranges, where even the time integration

of 20min cannot resolve the tidal effect any more. Furthermore, beyond C ∼ 0.5 the

measurements improvement slowly stagnates. This is particularly interesting for esti-

mations of disturbing fields as it is done in subsection 3.2.

In Figure 2.10(b) the plotted proportionality to 1

L2 points out that the chosen distance

of 1m not only yields a satisfying value for gmin after 20min of integration, it also

demonstrates that – with the current experimental conditions in Heidelberg – only a
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Figure 2.9: The minimal resolvable gravitational acceleration gmin dependent on source

parameters for the Ar∗-experiment in Heidelberg. The blue (red) lines in the upper (lower)

plots are gmin-values of data retrieved from 1 s (20min) of measurement. The range of the

periodic g-variation, that is induced by the moon’s gravitation, is shaded green. In order

to resolve this tidal effect, gmin needs to lie under this green bar. The dashed vertical lines

indicate the current values of the experiment. An overview of them is given in table 2.1.

very small improvement can be expected when further increasing L.

To sum up, the parameters of the Ar∗-experiment are given in table 2.1 and yield
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Figure 2.10: The minimal resolvable gravitational acceleration gmin dependent on ge-

ometrical and measurement parameters for the Ar∗-experiment in Heidelberg. The blue

(red) lines in the upper (lower) plots are gmin-values of data retrieved from 1 s (20min)

of measurement. The range of the periodic g-variation, that is induced by the moon’s

gravitation, is shaded green. In order to resolve this tidal effect, gmin needs to lie under

this green bar. The dashed vertical lines indicate the current values of the experiment. An

overview of them is given in table 2.1.

a minimal resolvable acceleration of gmin ≈ 2.4mgal for 1 s and1

gmin ≈ 68µgal, (2.43)

1Note for the these considerations the unit for small accelerations 1 gal = 0.01 m
s2
.
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for 20min of integration. This can be decreased even further by integrating longer as

it is shown in figure 2.10(c). However, note that 20min remains a good choice as the

gain of longer integration times drops quickly.

Although the reachable value for gmin cannot compete with today’s most precise

gravimeters [18, 20], it is small enough to measure the influence of the moon on the

earth’s gravitation and opens a promising possibility to test the equivalence principle

with the Moiré-deflectometer for a large variety of different sorts of matter or even for

antimatter. As the production of antimatter is still a challenging procedure, the value

of equation 2.43 has to be reevaluated with the experimental conditions for antimatter

experiments. This is done in the following paragraph for the antihydrogen production

of the AEgIS-experiment at CERN.

gmin of the H-experiment

Estimating gmin for the H-experiment at CERN depends on the experimental conditions

in the same manner as in the case of the the Ar∗-experiment in Heidelberg. But accord-

ing to the source performance of the H-production, the reachable gmin(H) is by several

orders of magnitude larger than gmin(Ar). It turns out that a longer time integration

is necessary to approach the desired sensitivity for the gravity measurement with 1%

precision. Due to this, the dependencies on the experimental parameters presented in

this paragraph are directly given for a data set, that is retrieved after 6 h of integration.

This integration time corresponds to the interval per day, during which antiprotons are

accessible for the AEgIS-group.

Concerning the antihydrogen production, figure 2.11 provides the most important

dependencies. The dashed lines indicate the predicted values for the corresponding

parameters, whereas the solid green lines denote the limit for gmin(H) < 1% ·g ≈ 0.1 m

s2
.

With its logarithmic scale, figure 2.11(a) demonstrates the particular importance of

the initial temperature of the antihydrogen which is expected to be around 100mK.

Besides this, it is the absolute flow as one of the major differences between the two

experiments at CERN and in Heidelberg, that has a huge impact on gmin. This is

shown in figure 2.11(b) with a predicted production rate of 1Hz. For the integration of

one day, both parameters are good enough for the planned gravitation measurement.

Nevertheless, there are some parameters contributing to these estimations, which are
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Figure 2.11: The minimal resolvable gravitational acceleration gmin dependent on some

experimental parameters for 1 day of integration time of the H-experiment at CERN

(L = 1m). The green lines indicate 0.1 m
s2 , which corresponds to 1% of g. In order to

resolve this limit, gmin needs to lie below this limit. The dashed vertical lines indicate the

currently predicted values of the experiment. They are 100mK, 1 atom
s and 400 m

s for the

temperature, the particle flow and the longitudinal velocity, respectively. The contrast is

assumed to be 0.8.

either only very rough estimates or even totally unknown so far. One particular exam-

ple is the contrast C, which has been assumed to be the ideal C = 0.8. Figure 2.11(c)

provides the dependence on the contrast of the shadow pattern and yields – as in the

case of the Ar∗-experiment – a value of about C ≈ 0.4−0.5, that should be approached

for the aimed precision of the measurement.

Regarding the influence of the longitudinal velocity of the H-measurement in figure

2.11(d), we have to remember an important difference to the measurement in Heidel-
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Figure 2.12: The minimal resolvable gravitational acceleration gmin dependent on the

grating distance L and the integration time t measured in months of measurement. Other

experimental parameters are chosen as in figure 2.11.

berg. The H-experiment is based on time of flight (TOF) measurements. For this

purpose, the time, the particles need for their flight through the deflectometer, is going

to be measured and thus, their vertical deflection due to gravity can be recorded as a

function of the time, during which the particles had been exposed to gravity. Never-

theless, figure 2.11(d) demonstrates that with the currently predicted parameters and

one day of integration, even the fastest particles can reach the desired gmin.

Noticing the logarithmic scale in figure 2.12(a), we see that an increase of the inter-

grating distance L will not have a huge effect beyond the currently planned value of

1m.

The most important, experimentally adjustable parameter remains the integration time.

Figure 2.12(b) shows the dependence for the two extreme TOF measurements, i. e. the

fastest particles with vz = 1000 m

s
and the slowest with vz = 100 m

s
are drawn with

the blue and red curve, respectively. Thus, other particles being some hundreds of

meters per second fast will lie in between these two curves. The purple and the orange

dotted lines denote an integration of one day and one week, respectively. This shows

that – even with some possible corrections of the predicted parameters – a measure-

ment of a couple of months will definitively provide the necessary sensitivity of the

Moiré-deflectometer in order to achieve a gravitational measurement of 1% precision.
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Chapter 3

Sensitivity Analysis of a

Moiré-Deflectometer on External

Fields

3.1 Introduction

Although AEgIS aims to investigates the electrically neutral antihydrogen, there are

still disturbing effects that can be caused by external magnetic or electric fields. These

disturbances originate from the Zeeman- and the Stark-effect in the case of external

magnetic and electric fields, respectively. Hence, such external fields make it difficult

to ensure that a measurement of the deflectometer exclusively examines the effect of

gravitation and not of the interaction with the mentioned fields.

This issue can be solved by using one of the pecularities of gravitation: In contrast to

magnetic and electric fields, gravitation cannot be shielded. Therefore, the simpliest so-

lution for an unperturbed gravitational measurement can be realised by shielding any of

these disturbing fields. In order to design an appropriate shielding, a sensitivity analy-

sis on these fields is necessary for both experimental setups in Heidelberg and at CERN.

The following chapter provides such a sensitivity analysis. After examining the

effect of any kind of accelerating fields existing in the two major regions (between the

1st/2nd and behind the 2nd grating) of such a deflectometer, we distinguish between

magnetic and electric fields and provide the corresponding sensitivity analysis. For this
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purpose, we need to further distinguish between the experiments with metastable argon

in Heidelberg and the ones with Rydberg-antihydrogen at CERN, as the different inter-

nal atomic structure can lead to different atom-field-interactions. This differentiation

yields first estimates for the field strengths and configurations that can decrease the

contrast of the deflectometer’s fringe pattern fundamentally.

In addition to the sensitiviy analysis, we consider the feasability of a method, to

which we refer to in the following as Bias-Reduced-Gradient-Susceptibility (BRGS).

This method uses offset magnetic fields to reduce the dependence on a gradient in a

specific direction.

3.2 Additional Forces in a Moiré-Deflectometer

Analog to the derivation in section 2.5.2, we can derive the effect of a general additional

external force. Introducing such a force with an acceleration aext modifies equation 2.27

to

x(Tpre + T1 + T2) = −T2

T1

xG1 +

�
1 +

T2

T1

�
xG2

� �� �
without external forces

(3.1)

− 1

2
g
�
T1T2 + T

2

2

�

� �� �
∆xg

− 1

2
aext

�
T1T2 + T

2

2

�
,

� �� �
∆xext

(3.2)

where the terms∆xg and∆xext describe the deflections that are induced by the gravita-

tional and any other accelerating force, respectively. Concerning the two major regions

of a deflectometer, this last term can be seperated into

|∆xext| =
1

2
aextT1T2

� �� �
between the 1st and 2nd grating

+
1

2
aextT

2

2

� �� �
behind the 2ndgrating

. (3.3)

With an overall length of the deflectometer of up to 2m and longer, an examination of

disturbing forces acting along different regions of the apparatus becomes particularly

interesting.

First of all, the independence from an external force before the two gratings, i. e. during

Tpre, shall be stressed at this point.1

1Note that the possible particle loss during Tpre, which can occur due to a large divergence of the

beam, is neglected here, as it can easily be included by a reduced particle flow of the source.
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Furthermore, for a setup with T1 = T2 = T equation 3.3 demonstrates that for the

effect of an exteral force, we do not need to distinguish, whether this force exists either

only between the two gratings or only behind the 2nd one. In both of these major

regions, an accelerating external force has the same effect on the Moiré-pattern. Thus,

the same degree of shielding is necessary along the entire deflectometer.

For an estimation of the required shielding degree, we look for critical field values by

examining the strongest possible effect of a small field. Hence, in the following analysis,

we assume this field to be present along the whole deflectometer.

3.3 Magnetic Field

Concerning a disturbing magnetic field, the particle-field interaction can most generally

be determined by considering an atomic sample flying through the apparatus as a ‘bunch

of small magnetic moments’ that are not interacting with each other. The force, that

such a magnetic moment experiences in a magnetic field can be evaluated via [51]

Fmag(r) = −∇Emag(r), (3.4)

where the interaction energy Emag(r) of the atom’s magnetic moment µatom with the

external field B is given by

Emag(r) = −µatom ·B(r). (3.5)

To evaluate µatom we need to consider the internal structure of the particles in detail.

Hence, at this point a differentiation between the two cases of the argon-experiment in

Heidelberg and the one with antihydrogen at CERN is required.

3.3.1 External B-Field and the Argon Measurement

As 40Ar with a relative abundance of 99.6% is predominant in the atomic samples used

for the Moiré-deflectometer tests in Heidelberg, it is absolutely sufficient to examine this

isotope. Concerning any interactions with an external magnetic field, this isotope with

a ground state electron configuration given by 1s22s22p63s23p6 = [Ne]3s23p6 has an

important pecularity1: Due to its so-called even-even nucleus consisting of 18 protons,

22 neutrons, it does not have a nuclear moment I. Consequently, there is no hyperfine

1More details about argon can be found in Appendix B.2.
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splitting and the coupling to an external magnetic field is covered entirely by the

coupling of the atom’s angular moment J.

In order to determine the argon’s angular moment J, we need to account for the

peculiarity of argon as a novel gas with only closed shells in its ground state1. For

the lowest electronic excitation of the atom, one of the outer 3p-electrons needs to be

excited to a higher shell. Due to the closed shells, a large excitation energy is necessary

to reach the lowest electronic excitation (∼ 11.5 eV). Hence, the interaction between

the excited electron and the electrons of the ionic leftover, to which we will refer in the

following as the atomic core, is rather weak. Consequently, the common LS-coupling

does only occur within the core and we can calculate its angular moment Jc by

Jc =
�

i

li +
�

i

si = Lc + Sc =

�
1

2

3

2

, (3.6)

where only the core’s electron spins si and their angular momenta li contribute. The

angular moment le of the excited electron can then couple to Jc and yield the angular

moment of the atom of

K = Jc + le. (3.7)

Finally, this K couples to the spin se of the excited electron, which leads then to the

atom’s total angular moment

J = K+ se. (3.8)

The described Racah-coupling leads to a level scheme given in figure 3.1. Here, the

states are described by the Paschen-notation, where the internal energy levels are de-

fined by (ne−3)lk(J), with ne representing the principle quantum number of the excited

electron, l = |le| its angular quantum number, and the index k labels the states with

the same quantum numbers as shown in figure 3.1.

For detection purposes, which are described in further details in section 5.3, we

prepare the argon atoms in their metastable state 1s5(J = 2).2 To analyse the atom-

field-interaction of this state with J = 2, we need MJ , the projection of the atoms

1More details on the Racah-Coupling of argon and other novel gases can be found in [52, 53, 54].
2Even though our plasma source (see section 5.2.3) produces some of the atoms in the other

metastable state, 1s3(J = 0), they can be neglected for the magnetic sensitivity analysis. They have

no magnetic moment for the external field to interact with.
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Grundzustandselektronenkonfiguration von
Argon:

[Ne]3s 3p! 6

4

69
9

Figure 3.1: The 40Ar level scheme. Note the quantum numbers of the Racah-coupling.

This figure is taken from [53].

total angular moment J on the magnetic field axis. Assuming a small magnetic field,

i. e. the induced Zeeman-energy-shifts needs to remain small compared to the internal
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energy splittings of the atom, we can treat the atom-field interaction as perturbation of

the atom’s Hamiltonian.1 This provides the Zeeman-energy-shift Emag that a magnetic

field B(x) induces on an atom2 with MJ and is given by [54, 55]

Emag,MJ (x) = gJµBMJB(x), (3.9)

where µB denotes the Bohr magneton and gJ the Landé g-factor that is given with the

other atomic properties of argon in Appendix B.2. Thus, the force that is exerted on

an atom due to to the magnetic field reads [54, 55]

Fmag,MJ (x) = −dEmag,MJ (x)

dx
= −gJµBMJ

dB

dx
(3.10)

and the magnitude of the corresponding acceleration, that this force exerts on a mass

m is given by

|amag| =
����
gJµBMJ

m

dB

dx

���� . (3.11)

In order to estimate the strength of a magnetic field gradient
���dB

dx

�
crit

��, which

disturbs a measurement of the gravitational force Fgrav(x), we first need to identify

the magnetically most sensitive states. With equation 3.10, they are given by the ones

with the largest |gJMJ |. Hence, the most sensitive states are the so-called stretched

states with MJ = ±2. They provide a first measure for the critical gradient that can

be estimated via

Fmag,MJ=±2(x) ≈ Fgrav(x) (3.12)

⇒
����

�
dB

dx

�

crit

���� ≈ 2.3
G

cm
. (3.13)

However, measuring Fgrav(x) with a Moiré-deflectometer is more sensitive on desturb-

ing field gradients and the critical value of equation 3.13 needs to be adjusted. Regard-

ing, for instance, a deflectometer-setup with 1m distance between the gratings, we find

a spatial shift of the fringe pattern due to gravity that is larger than one grating pe-

riod d. In this case, smaller gradients than the one of equation 3.13 will already lead

1The explicit calculation of this perturbation can be found in every common textbook on Quantum

Mechanics, e. g. [54, 55].
2The following considerations are restricted on the x-direction, the one gravitation is actually acting.

The more general three dimensional case with B(r) is further examined in section 3.3.3.
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to a fundamental loss of the visibility of the Moiré-deflectometer’s characteristic fringe

pattern. Actually, as soon as atoms with MJ = ±2,±1 become deflected in the vertical

direction, the fringe pattern at the end of the deflectometer is adulterated. Hence, the

contrast of the pattern of all particles changes depending on the relative populations

of the different magnetic sub-states MJ = 0,±1,±2 and the amount of additional de-

flection due to magnetic fields.

Assuming all sub-states to be equally populated, we can expect a fundamental loss of

contrast when the magnetically most sensitive atoms with MJ = ±2 are deflected by

half of the grating period d. This value can be determined with equations 3.3 and 3.11.

We find

|∆xext,MJ=±2|
!
=

1

2
d (3.14)

⇒

�����

�
dB

dx

�

1
2d

����� ≈ 880
mG

cm
, (3.15)

where we evaluated the absolute magnitude of the gradient and hence, account for the

fact, that there is no difference whether the magnetic field points upwards or down-

wards.

Figure 3.2 shows simulation results for this particular case in detail. These simulations

are done for the setup in Heidelberg with L1 = L2 = 1m and the atoms’ vertical and

horizontal velocity components vx = 80 m

s
and vz = 430 m

s
, respectively1. In the upper

five subfigures the fringe patterns of the four central periods right before the third

grating are shown. The expected shift of the (MJ = ±2)-states is visible by compar-

ing the fringe patterns. Note the grey background in each subfigure, which shows the

patterns without any magnetic atom-field-interaction. An equal relative population

of the magnetic substates yields a total fringe pattern given by the ‘Total Pattern’.

Besides the expected shift of the stretched states of 1

2
d, this illustration demonstrates

in particular, how the huge loss of contrast in the total fringe pattern can occur by an

external magnetic field gradient.

Scanning over the total pattern with the third grating produces then a signal that is

1In the following simulations, the vertical velocity components are assumed to be normally dis-

tributed around the given value, which has been chosen due to a former setup [56]. For this sensitivity

analysis, the longitudinal component has been used as discrete value. The effect of longitudinal distri-

butions is examined in chapter 5.
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Figure 3.2: The shift of the different magnetic substates MJ with the additional magnetic

field gradient dB

dx
≈ 880 mG

cm . These are results of a Monte-Carlo simulation for the exper-

imental setup in Heidelberg and with an input of 109 atoms per magnetic substate. The

grey background and the dashed lines indicate the result without any magnetic gradient.

plotted at the bottom of figure 3.2. The solid, red line is the signal including the mag-

netic field gradient. It emphasizes the loss of contrast as compared to the one without

gradient drawn with the dashed line. Nevertheless, the contrast in figure 3.2 decreases
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only down to 0.2 and does not diminish entirely as might have been expected. This can

be explained by considering the creation of the total fringe pattern right before the 3rd

grating: The sum over all magnetic substates provides new maxima, which consist of

the maxima of the (MJ = ±2)-states, but also of the tails of the smeared out top-hat

functions of the other substates. Thus, it is the combination of the smearing out of the

top-hat functions and the number of substates that leads to the persisting value of the

contrast.
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Figure 3.3: The change of contrast dependent on the external magnetic field gradient
dB

dx
. The encircled numbers refer to the detailed plots in figure 3.4 and 3.5.

Figure 3.3 shows the dependence of the contrast on an increasing magnetic field

gradient along the entire deflectometer. The contrast of the used three-grating setup

has a distinct local minimum < 0.01 at a gradient of ∼ 720 mG

cm
. This minimum is

plotted in detail in figure 3.4(a). The summation over all magnetic substates in the

total pattern shows that the smeared out top-hat functions of the substates’ patterns

can indeed cause a total extinction of the periodic pattern. But the gradient, where

this occurs, differs slightly from the
�
dB

dx

�
1
2d

of equation 3.15.

Increasing the magnetic field gradient as in figure 3.3 leads to a periodic reoccurence of
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local minima and maxima. They result from the different shifts of the fringe patterns

of the different MJ -states. As a consequence, the total pattern becomes adulterated.

Particular examples for this adulteration are shown in subfigures 3.4(b) and 3.5(a) for

field gradients of 1770 mG

cm
and 2480 mG

cm
, respectively.

The extreme case of the gradient 3530 mG

cm
in subfigure 3.5(b), when the (MJ = ±2)-

and the (MJ = ±1)-states are shifted by 2d and 1d, respectively, demonstrates the

possibility to reach the same contrast as without external gradient. However, we need

to avoid this situation: As soon as the field gradient varies, the measurement will still

be disturbed in an uncontrollable way.

Particularly important for the experimental setup remains the smallest field gradient

that leads to a contrast of below 0.5. As shown in section 2.7.2 (figure 2.10) this

is still an acceptable value for the gravitational measurement in Heidelberg. Hence,

following the simulation results presented in figure 3.3, we need to avoid a magnetic

field gradient of cB(Ar) ≈ 330 mG

cm
, which provides a good indication for the degree of

magnetic shielding that might become necessary.

3.3.2 External B-Field and the Antihydrogen Measurement

Concerning the effect of a magnetic field gradient on the measurements with antihydro-

gen, we need to consider the internal structure of hydrogen. Contrary to stable argon

isotopes, hydrogen has a nuclear moment I, the one of its proton. This moment couples

to the electron’s total angular moment J such that generally, the quantum numbers,

which govern the behaviour of the atom in an external magnetic field, are given by

F = |F| = |I + J|, with the total angular moment F, and MF , the projection of F on

the external field axis.

The magnetic force acting on an atom with hyperfine structure can be found analog to

equation 3.10; it reads [51]

Fmag,MF (x) = −gFµBMF

dB

dx
, (3.16)

where the Landé g-factor gF is given by

gF =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
gJ . (3.17)
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As for argon, equations 3.16 and 3.17 identify the ‘streched states’ as the important

ones for our sensitivity analysis1.

The atom’s hyperfine splitting requires a careful study of the particular case of

highly excited Rydberg atoms, as the antihydrogen in the AEgIS-experiment will be

produced in such a highly excited state. For this study, we remember that for hydrogen,

the energy splittings between adjacent energy levels decrease very quickly with an

increasing principle quantum number n [57]. Thus, the higher the excited state, the

closer are adjacent energy levels. The same holds for the spacing of the corresponding

manifolds of hyperfine states. Their energy splitting ∆EHFS can be determined via [58]

∆EHFS(n, L, J, I, F ) =
1

2

hcR∞α2
Z

3

n3LJ2

me

mp

gI (F (F + 1)− I(I + 1)− J(J + 1)) (3.18)

with the Rydberg constant R∞, the fine structure constant α, the atomic number Z = 1

for hydrogen and the nuclear g-factor gI , which is reduced by the mass ratio me
mp

of the

mass of the electron me and the proton mp. For instance, for Rydberg hydrogen atoms

with n = 25, L = 24, J = 24.5, I = 0.5, this energy splitting is just ∼ 73Hz · h.

Due to this small splitting, we need to make sure, that the magnetic field, that

we apply, does not induce an energy shift that is bigger than the hyperfine splitting.

Thus, we estimate the induced Zeeman-energy, that the most sensitive atoms aquire

during a small drift of only 1 cm through a magnetic gradient, that is strong enough to

shift their Moiré-pattern by half a grating period. With the analogon for the hyperfine

structure of equation 3.11, this gradient is given by 0.14 mG

cm
. Hence, the atoms gain

during this short drift a Zeeman-energy of

�Emag,MF (x) = µBgFMF

dB

dx
� x ≈ 5 kHz · h. (3.19)

Compared to the hyperfine splitting of ∼ 73Hz ·h, we cannot assume F and MF to re-

main good quantum numbers along the atom’s entire flight through the deflectometer.

In order to determine the difference between the two regimes of F and MF or J and MJ

as the good quantum numbers we summarised the interaction for the stretched states in

1Note that in the following consideratons, we used as the most sensitive atoms always the ones

with vz = 100 m
s as the disturbing field will have the strongest effect on the slowest atoms.
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n = 25 fine structure hyperfine structure

quantum numbers L, S, J,MJ J, I, F,MF

stretched states L = 24, s = 0.5, J = 24.5, J = 24.5, I = 0.5, F = 25

MJ = 24.5 MF = 25

interaction with B(x) Emag,MJ (x) = gJµBMJB(x) Emag,MF (x) = gFµBMFB(x)

g... gJ ≈ 1.00 gF ≈ 0.98

M... MJ = 24.5 MF = 25

Table 3.1: Fine and hyperfine structure of the stretched states of hydrogen with n = 25

in magnetic field B(x)

table 3.11. This shows, that due to the high principle quantum number n, that yields a

very large J as compared to the I of the hydrogen’s core, there is hardly any difference

between |gFMF | and |gJMJ |. Hence, for our estimation that is based on the magnetic

field interaction with the stretched states, it is not relevant which description to choose.

Using the fine structure with J and MJ as good quantum numbers, we see in fig-

ure 3.6 the dependence of the contrast on an increasing field gradient, where the two

stretched states with MJ = ±24.5 are included only. As expected, the patterns are

shifted with respect to each other by half a grating period at a gradient of ∼ 0.14 mG

cm

(see figure 3.6(a)). The first maximum of the contrast of these states can be found at

a gradient of 0.28 mG

cm
, which corresponds to a shift of one grating period between the

two stretched states with MJ = ±24.5 and is shown in figure 3.6(b).

Although the behaviour is similar to that of argon given in figure 3.6, there is an im-

portant difference: instead of considering five magnetic substates as for argon, only the

two most sensitive ones have been examined here, which is sufficient for an estimation

of the critical field gradient. Nevertheless, due to this limitation, no substructure can

be observed as in between ∼ 0.5 G

cm
and ∼ 3 G

cm
of figure 3.3.

For the experimental construction, it remains to note that in order to uphold a

contrast of better than ∼ 0.5 (as figure 2.11(c) showed to be sufficient) disturbing

1The fine structure of hydrogen, that is determined by the common LS-coupling [51, 54, 55], yields

as stretched states for our case the ones with n = 25, L = 24, J = 24.5,MJ = 24.5.
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Figure 3.6: Increasing the magnetic field gradient in the antihydrogen experiment. Re-

garding the output of the two-grating Moiré-setup in figure 3.6 we see an effect that is

not caused by the external field. Due to the small number of antihydrogen contributing

to the signal, the statistical fluctuations, which yield a noisy signal close to the minima of

the contrast, are much higher than in the argon-experiment. Scanning the 3rd grating for

detection purposes smooths this effect but also yields a contrast that will not exceed 0.8

any more (see section 4.2 for further details on this limitation).
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magnetic field gradients of the order of cB(H) ≈ 0.08 mG

cm
need to be controlled at

the AEgIS-experiment. However, it should be stressed at this point that we have ne-

glected the limited lifetime of Rydberg atoms, which can be expected for n = 25 to be

∼ (50...100)µs [59]. Including this fact in a more sophisticated sensitivity analysis will

increase this critical field gradient and provide easier shieldable values. Due to the large

number of magnetic traps (with B-fields of ∼ 1T) in the direct or close surounding of

the AEgIS-setup and the large integration time necessary for the aimed 1% of accu-

racy of the g-measurement, an appropriate magnetic shielding seems to be unavoidable.

3.3.3 Solutions: Constant Offset Field

One option to get rid of a disturbing magnetic field gradient along the deflectometer is

to decrease any kind of external magnetic field via an appropriate magnetic shielding.

For this purpose, a common solution is the usage of a so-called µ-metal-shield around

the setup. Such a surrounding out of µ-metal – a material with very high magnetic

permeability at low field strengths – is a very efficient for screening magnetic field

lines. As such a surrounding is mostly only realisable by costum-made solutions, this

way of magnetic shielding turns out to be very expensive. Besides this, µ-metal is very

sensitive on mechanical damages like buckles and other deformations due to unwanted

mechanical strains. Consequently, both the shielding’s engineering and its implemen-

tation into the experimental setup is very elaborate and rises the expenses a lot.

There are also other approaches to cope with a disturbing magnetic field gradient.

For one of them – to which we refer to as Bias-Reduced-Gradient-Susceptibility (BRGS)

– we need to add a constant magnetic field in one of the directions y or z that are

perpendicular to the one, in which gravity is acting. To understand the functionality

of this method, we consider the very general case of a three-dimensional temporarily

constant B-field with

B(r) = (Bx(r), By(r), Bz(r)) (3.20)

at any position r. As given in equation 3.10 and 3.16, it is the gradient in the vertical di-

rection that disturbs the gravity measurment. With |B(r)| =
�

Bx(r)2 +By(r)2 +Bz(r)2
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this gradient reads in general

∂ |B(r)|
∂x

=
Bx(r)

∂Bx(r)
∂x +By(r)

∂By(r)
∂x +Bz(r)

∂Bz(r)
∂x�

Bx(r)2 +By(r)2 +Bz(r)2
� �� �

=|B(r)|

. (3.21)

If we can now assume that the vertical variations of the two field components By(r)

and Bz(r) are neglectable, i. e. ∂By(r)
∂x ≈ 0 and ∂Bz(r)

∂x ≈ 0, we will be able to use one

of the offsets By(r) or Bz(r) in the denominator as tuneable parameters. Hence, we

aim to reduce the total value of ∂|B(r)|
∂x to a value, where its disturbing effect on the

measurements can be neglected, just by increasing one of the offset fields in the other

directions. Depending on the necessary field-values for the particular setups, such a

tuning that influences only an offset field component can be quite challenging to realise

experimentally, as it is important to keep any vertical variations, i. e. ∂By(r)
∂x and ∂Bz(r)

∂x

neglectable at the same time.

With our sensitivity analysis of sections 3.3.1 and 3.3.2 we found critical vertical field

gradients cB = ∂|B(r)|
∂x for the experiment with argon, cB(Ar) ≈ 330 mG

cm
, and for the

one with antihydrogen, cB(H) ≈ 0.08 mG

cm
.

For an outline of the experimental realisation of BRGS, we concentrate on the

experimental feasability of it for the particular geometry of the Moiré-deflectometer. As

the geometry of the deflectometer setup suggests, we attempt to realise the necessary

additional magnetic field for BRGS via a solenoid, which is aligned co-axially with

the z-axis of the deflectometer. The induced additional constant offset field in the z-

direction provides two major advantages: As opposed to By(r), it can be kept constant

during the flight of the atoms through the deflectometer reasonable easily by a very

long solenoid. Furthermore, a solenoid’s implementation into the experimental setup

seems feasible surrounding the currently 2.5m long vaccuum chamber.

In order to estimate the necessary construction of such a solenoid we need to determine

the participating field strengths by calculating the magnetic field within a solenoid of

appropriate size. For this purpose, we follow the derivation of N.Derby and S.Olbert

[60]. In cylindrical coordinates they use the Biot-Savart law and integrate along the

z-axis. With a coordinate system as sketched figure 3.7, they received for any point
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3
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r

z B

R

21

Figure 3.7: Sketch of a finite long solenoid for the calculation of the magnetic field lines.

The situations 1, 2 and 3 are plotted in further detail in figure 3.9.

given by (r, z) a magnetic field component in radial direction

Br(r, z) = B0

� π
2

0

(cos2 ψ − sin2 ψ)·


 α+�
cos2 ψ + k

2
+
sin2 ψ

− α−�
cos2 ψ + k

2
− sin2 ψ



 dψ (3.22a)

and for the one in axial direction, they found

Bz(r, z) =
B0R

r +R

� π
2

0

cos2 ψ + γ sin2 ψ

cos2 ψ + γ2 sin2 ψ
·



 β+�
cos2 ψ + k

2
+
sin2 ψ

− β−�
cos2 ψ + k

2
− sin2 ψ



 dψ, (3.22b)

with

B0 =
µ0

π
nI, γ =

R− r

R+ r
,

z± = z ± L

2
, k± =

�
z
2
± + (R− r)2

z
2
± + (R+ r)2

,

α± =
R�

z
2
± + (R+ r)2

, β± =
z±�

z
2
± + (R+ r)2

,

where the magnetic permeability µ0 and the details of the solenoid are included by

its length L, its radius R, and its winding via n turns per unit length with current I.

The integrals in equation 3.22a and 3.22b are special forms of the generalized complete

elliptic integral [60]

C(kc, p, c, s) =

� π
2

0

c cos2 ϕ+ s sin2 ϕ

(cos2 ϕ+ p sin2 ϕ)
�
cos2 ϕ+ k2c sin

2 ϕ
dϕ, (3.23)
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which simplifies the evaluations of the magnetic field components. They become [60]

Br(r, z) = B0(α+C(k+, 1, 1,−1)− α−C(k−, 1, 1,−1)) (3.24a)

Bz(r, z) =
B0R

r +R
(β+C(k+, γ

2
, 1, γ)− β−C(k−, γ

2
, 1, γ)). (3.24b)

Using these expressions, the magnetic field components can be evaluated at any point

within a solenoid. Figure 3.8 shows exemplary the axial dependence of the off-axis

field components, i. e. they are not evaluated at the symmetry axis of the solenoid,

the z-axis, but at a distance r = R

2
. This calculation refers to a solenoid of L = 3m,

R = 30 cm, n = 200m−1 and I = 100A.

For our application of the solenoid, we need to consider cB, which is given in the
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Figure 3.8: Axial dependence of the off-axis magnetic field components Br and Bz at

r = R

2 .

solenoid’s cylindrical coordinates by

∂ |B(r)|
∂r

=
Br(r)

∂Br(r)
∂r +Bz(r)

∂Bz(r)
∂r�

Br(r)2 +Bz(r)2� �� �
=|B(r)|

. (3.25)

In order to keep this value low but only determined by the field components of the

solenoid, a large offset in z-direction is preferable. Thus, figure 3.8 suggests to use

a very long solenoid, where Bz is high and does not change considerably along the
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EXTERNAL FIELDS

deflectometer.

Besides this, it is essential to know the radial dependencies of the two field components

along the deflectometer. These dependencies are plotted in figure 3.9 for the exemplary

z-positions denoted in figure 3.7. The corresponding radial dependence of cB at the

bottom each subfigure is plotted together with the critical values cB for the argon- and

the antihydrogen-experiment with the dashed and the dotted line, respectively. This

illustration demonstrates the importance to position the deflectometer in the axially

central region of the solenoid, as cB increases from figure 3.9(a) to 3.9(b). Coming too

close to the solenoid’s edges as shown in figure 3.9(c), the influence of the radial field

components become that strong, that cB of this particular solenoid even lies above the

critical gradient value of the argon experiment.

Nevertheless, figure 3.9 shows, that it is possible to construct a solenoid for the BRGS-

method for the argon experiment, one only needs to be careful to construct it sufficiently

long.

At the same time, figure 3.9 also points out that this method is a lot more difficult for the

experiment with antihydrogen. However, there is indeed a possibility to use BRGS at

the experiment at CERN: Instead of excluding the magnetic fields of the magnetic traps

of the AEgIS-setup by compensation coils right before the deflectometer region, one

might think of using these field lines and leading them with an appropriate surrounding

shielding right through the whole deflectometer. This way, a large offset in longitudinal

direction with a small gradient in the vertical one can be achieved, too.1

3.4 Electric Field

Besides a vertical magnetic field gradient, other disturbing effects may also originate

from electric fields. These fields induce the so-called Stark-effect, which describes elec-

trically induced internal energy shifts, that are either proportional to the electric field

amplitude E in case of the linear Stark-effect, or proportional to the square of this

1For the sake of completeness it is improtant to note that the considerations that yield figures 3.9

are based on the case of a magnetic field that is symmetric around the z-axis. Hence, figure 3.9 only

shows the field configuration within the solenoid. As soon as the external disturbing field – which

presumabely does not obbey this particular symmetry – becomes too large and this symmetry breaks

down, we need to go back to equation 3.21 in cartesian coordinates and find appropriate simplifications

by comparing the actual field strength that contribute.
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Figure 3.9: Radial dependencies of the radial and axial magnetic field component Br and

Bz for the exemplary situations 1, 2 and 3 as denoted in figure 3.7.

75



3. SENSITIVITY ANALYSIS OF A MOIRÉ-DEFLECTOMETER ON
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amplitude, which is known as the quadratic Stark-effect.

In general, a Stark-shift is caused by the interaction between an electric dipole µel and

an external electric field E with its field amplitude E = |E|. This interaction yields an

internal energy shift of the atom, that can be calculated via perturbation theory, if the

shift is small compared to the internal energy splittings of the atom. The perturbation

part of the atomic Hamiltonian writes

Hel = −µel ·E (3.26)

and the energy shift ∆ε(1) of the first order perturbation term becomes [61]

∆ε(1) = �0|µel ·E |0� = 0 (3.27)

As Hel is of odd parity, ∆ε(1) varnishes for unperturbed states |0�, that have a definite

parity. For these states, no permanent dipole moment and no linear dependence of the

energy shift is observable. Thus, the interaction with the electric field is governed by

the second order perturbation, whose energy shift is given by [51, 55]

∆ε(2) = −
�

c �=0

�0|µel ·E |c� �c|µel ·E |0�
εc − ε0

, (3.28)

where |c� denotes the state, to which the unperturbed one |0� is coupled by the ex-

ternal field. This coupling between the two states of different energy is an interesting

difference to the first order perturbation ∆ε(1), that can only couple states of the same

energy. The amount of electrically induced energy shift ∆ε(2) strongly depends on the

energy gap between the coupled states given by the difference of their eigenenergies

εc − ε0. Another interesting difference to the first order perturbation term is the E
2-

dependence of ∆ε(2) that is eponymous for the quadratic Stark-effect.

The distinction between the two types of Stark-effects gains importance when consid-

ering the two atomic species to be examined with the Moiré-deflectometer. This will

be done in the following subsections.

3.4.1 External E-Field and the Argon Measurement

As it is the case for most atoms, the internal energies of argon with the same principal

quantum number n do not have degenerate angular momentum states. Hence, the

first order perturbation term ∆ε(1) varnishes and the resulting states do not exhibit a
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permanent electric dipole moment (on time average). Therefore, the external electric

field first needs to induce a dipole moment to interact with. This induced dipole moment

can be evaluated by

µel = αel ·E, (3.29)

where the atom’s electric polarisability αel is assumed be diagonalised.1 Its components

depend on the internal atomic electron configuration and the good quantum numbers,

which are either governed by the fine-or hyperfine-structure of the atom. As the 40Ar

has no nuclear spin, it only exhibits fine-structure-splitting and the valid good quantum

numbers for the interaction with an external field are J and MJ .

The polarisability tensor αel has been measured for the 3
P2 metastable state of argon

by Pollack et al. [62]. They found2

αel,x(MJ = 0) = (52.4± 4.8) · 10−24 cm3 (3.30a)

αel,x(MJ = ±1) = (50.4± 3.5) · 10−24 cm3 (3.30b)

αel,x(MJ = ±2) = (44.5± 3.1) · 10−24 cm3
. (3.30c)

Note that as opposed to the magnetically induced Zeeman-shift, the magnitude of

electrically induced Stark-shift does not depend on the sign of MJ . Another interesting

aspect are the absolute magnitudes of the components of equation 3.30. They can be

understood by considering the argon’s internal structure:

• Due to the excitation of the argon atom to its metastable state (as can be seen in

figure 3.1) which yields an incomplete shell in the atomic core, one might expect

a strong anisotropy of the interactomic charge distribution and hence, even a

permanent electric dipole moment of the atom. But since the contribution of the

core to the polarisability of the atom is very small, there is hardly any anisotropy

induced by it. This is confirmed by the results of Pollack et al.: The components

of the polarisability are almost symmetric in all three spatial directions [62].

1For an analytic calculation of αel that depends on the atom’s internal structure, equation 3.28

needs to be evaluated explicitely.
2When comparing their results, note the differently orientated coordinate system in the experiment

of Pollack et al. [62].
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• The main influence of the atom’s interatomic structure to the electrical property

is given by the valence electron. As the valence electron for the considered 3
P2-

state is in a S-state, the αel,x(MJ)s do not differ a lot for different MJ -states [62].

Using this polarizability, we can calculate the induced dipole moment of equation

3.29 and calculate the energy shift that originates from the interaction of this dipole

with the external field. This is given by

∆ε(2)
Ar

= −1

2
µel ·E (3.31)

and yields an electric force F el on the atom. Restricting our analysis to only vertically

dependent fields, we can determine the corresponding force Fel,x as

|Fel,x| = αel,x(MJ)E
dE

dx
, (3.32)

where αel,x(MJ) denotes the αel,xx-component of the polarisability tensor.

For an estimation of the smallest electric field configuration, that can disturb the

gravitational measurement of a Moiré-deflectometer, we precede analogous to our ex-

aminations of the magnetic field in section 3.3. For this purpose, both the most and

the least sensitive states need to be identified first.1 With equation 3.32 we identify

the most sensitive ones as the ones with MJ = 0 and the least sensitive ones turn out

to be the ones with MJ = ±2. Hence, for a Moiré-setup with T1 = T2 = T , we use

equations 3.3 and 3.32 to determine the electric field, where the Moiré-patterns of the

two interesting states MJ = 0 and MJ = ±2 are shifted by half a grating period with

respect to each other. Thus, we find

|∆xel|
!
=

1

2
d (3.33)

⇒ |∆xel| =
����
αel,x(MJ = 0)− αel,x(MJ = ±2)

m
E
dE

dx
T
2

���� (3.34)
�����

�
E
dE

dx

�

1
2d

����� ≈ 280
V2

m3
, (3.35)

1Note that, as opposed to the magnetic field analysis, all of the atomic states get deflected by the

quadratic Stark-effect.
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where we used the identity of αel,x[cm3] = 10
−6

4πε0
αel,x

�
Cm

2

V

�
and note the dependence on

both, the offset field amplitude E and its vertical gradient dE

dx
.

Equation 3.35 provides a first rough estimate for the order of magnitude of the critical

external field. More details are given in figure 3.10, which shows the results of our

Monte-Carlo simulations of the argon experiment. An external electric field has been

varied for the predicted critical order of magnitude and the contrast’s dependence of

the three-grating setup on this electric field is plotted in the top subfigure. It clearly

demonstrates that a critical loss of contrast, which corresponds to C ∼ 0.5 can be

observed at ∼ 170 V
2

m3 . A deeper insight to this loss of contrast and how the different

substates contribute to it, is given by the two inlays. They show the Moiré-pattern

right before the third grating for the different substates and the total pattern.

3.4.2 External E-Field and the Antihydrogen Measurement

For the electric field sensitivity analysis of the antihydrogen experiment, a more so-

phisticated approach is neccessary than the one we used so far. The first issue arises

for the theoretical description of a Rydberg atom in an external electric field. Due to

their excitation and the anisotropic field, we need to change to parabolic coordinates,

in order to find separable solutions of the Hamiltonian. In this new coordinate system,

the known spherical quantum numbers n, L and M are replaced by n1, n2 and m [63].

Thus, with the electronic quantum number k = n1 − n2 = (−n + 1), ...(n − 1), the

relationship to the known main principal quatnum number n is given by [63]

n = n1 + n2 + |m|+ 1. (3.36)

For instance, in the electric field, the ‘stretched states’ of a hydrogen Rydberg atom

with n = 25 are the ones with n1 = 24, n2 = 0 (n1 = 0, n2 = −24) and k = 24

(k = −24).

Using these new quantum numbers, we can evaluate the Stark-shifts∆ε(1,2)
Ry

for Rydberg

states via first and second order perturbation theory. In atomic units, they write [63]

∆ε(1,2)
Ry

= − 1

2n2
+

3

2
nkE − n

4

16

�
17n2 − 3k2 − 9m2 + 19

�
E

2
, (3.37)

Note at this point that, in contrast to an argon atom, the field configuration for the

energy of the Stark shift is already dependent on E and its gradient dE

dx
. Evaluating
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the electrically induced force on the atoms out of equation 3.37, we find in atomic units

Fel,x

�
E
dE

dx

�
=

3

2
kn

dE

dx
− 1

8
n
4(17n2 − 3k2 − 9m2 + 19)E

dE

dx
, (3.38)

where we assumed the electric field to act exclusively in the vertical direction.

So far, the strong dependence of this force on the still unknown quantum numbers and

the additionally dependence on both, dE

dx
as well as E dE

dx
, seem to be the main challenges

for our approach. In addition to this, there are also further issues, as the Inglis-Teller-

limit1 or the fact of the limited lifetime of the atoms, which is not expected to exceed

(50...100)µs [59]. With a time of flight of the antihydrogen atoms in the order of

milliseconds, the description as Rydberg-atoms breaks down during their flight through

the deflectometer. Hence, our approach is not adequate for the electric field sensitivity

analysis of the antihydrogen experiment. A more promising approach is left to the

group of Prof. Dr. F. Merkt, the specialists on Rydberg-hydrogen in electric fields of

the AEgIS-collaboration. They also implement the accerlerating fields for the intitial

beam formation.

1In this context, the Inglis-Teller-limit refers to the electric field strength EIT, for which the adjacent

n-states of the Rydberg atom approach degeneracy. In atomic units, it is given by EIT = 1
3n5 [63].
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Figure 3.10: The change of contrast dependent on the external electric field E
dE

dx
for a

two grating setup in the argon experiment. The inlays show examplary the shifts of the

different substates and how their addition leads to the total pattern given at the bottom.

These are results of a Monte-Carlo simulation for the experimental setup in Heidelberg

and with an input of 109 atoms per atomic substate.
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Chapter 4

Construction of the

Moiré-Deflectometer

4.1 Introduction

Considering the simple sketch of an ordinary Moiré-setup in figure 2.3, it seems to

be straightforward to implement such a setup into the AEgIS-experiment at CERN.

However, due to the experimental conditions of the ambitious experiment with antihy-

drogen, there are a lot of details to account for when designing and implementing an

appropriate Moiré-setup. Hence, the following chapter provides the most important of

these details as well as the resulting design.

This chapter starts with an outline of the requirements on the design of the grat-

ings. In this context, the design of both grating structures are discussed – the major

one that consists of the atoms’ transmission gratings as well as the optical gratings

for the Mach-Zehnder-interferometers. Subsequently, a brief explanation of the basic

principle of Deep Reactive Ion Etching (DRIE), the processing method that is used

for manufacturing the gratings, is given together with an outline of the problems that

occured during the processing of the prototypes. In addition to this, tests of the first

prototypes of the atoms’ grating structures are presented. These tests apply the previ-

ously described Talbot-effect (see section 2.4.1).

Besides these details about the core of the deflectometer – the gratings – this chapter

also covers the construction of an appropriate designed wafer mount, to which we refer
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4. CONSTRUCTION OF THE MOIRÉ-DEFLECTOMETER

to in the following as ‘riders’. The brief overview of the construction of these riders and

their mounting within the experimental setup in Heidelberg is given. Subsequently, the

results of the first vibration and stability analysis, which has been performed with a

prototype of the mounting construction [64], are summarised.

4.2 The Design of the Gratings

In order to design appropriate transmission gratings for a Moiré-deflectometer of the

AEgIS-experiment at CERN, there are four major requirements:

Active Aperture: The active aperture of the gratings needs to be large enough to

capture all of the produced antihydrogen atoms. First estimates of our collaborators

[65] provide an expected beam divergence of approximately 50mrad. Thus, for a Moiré-

deflectomter with an overall length of 2L = 2m, we need gratings whose active aperture

covers a beam diameter of ∼ 20 cm. This requirement can be fulfilled by using 8 inch-

silicon wafers as raw material. Silicon suggests itself, as there are a lot of different

etching techniques [66, 67, 68, 69] known to imprint small structures on such wafers.

Some of these techniques will be used to imprint the structure of the transmission

gratings on the wafers.

Structure of the Atoms’ Transmisson Gratings: The major structure of the

transmission gratings needs to be chosen such that the necessary sensitivity1 of the

deflectometer for the gravitational measurement can be achieved. Besides this, the

scale of the output pattern at the end of the deflectometer needs to be large enough

that a future antimatter detector can resolve it spatially. These two requirements can

be fullfilled with a grating period d = 40µm [65].

The best open fraction2 of these gratings can be found with Monte-Carlo simulations of

the experiment. For identical gratings, figure 4.1 shows their results for different open

fractions fopen.

The upper plot provides an overview for open fractions of up to 70%. Although the

contrast increases again when increasing fopen beyond fopen = 50%, it does not exceed

1For more details on the requirements of the sensitivity refer to section 2.7.2.
2The open fraction fopen of a transmission grating is defined as the fraction of a slidwidth a to its

period d, i. e. fopen = a
d .
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4.2 The Design of the Gratings

the values that can already be reached with smaller fopen < 50%. The lower plot of

figure 4.1 shows a zoom into the region of these smaller open fractions. It demonstrates

that a good trade-off between a low offset and a large contrast of C = 0.8 is found with

fopen = 30%, which is plotted with the red triangles. This result agrees with other

investigations using a Moiré-deflectometer as gravimeter [22].

For the analysis of different open fractions, we used the three-grating Moiré-setup in
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Figure 4.1: Output signal of a three-grating Moiré-setup. These results are retrieved from

Monte-Carlo simulations (see Chapter 3 for more details) of the experiment with 40Ar in

Heidelberg. Simulation the antihydrogen-experiment will yield similar results.

Heidelberg, whose output is more sensitive on fopen than a two-grating version planned
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4. CONSTRUCTION OF THE MOIRÉ-DEFLECTOMETER

at CERN. This way, we also account for the possibility that the necessary spatial

resolution of the AEgIS-dectector cannot be reached. In this case, the planed two-

grating setup at CERN can still be replaced by the three-grating version including its

spatial resolution achieved by a third grating. In addition to this option, it is important

to note that the possibility to use the same gratings in a three grating setup, enables us

to test the deflectometer for sensitivies far beyond the one that is required for the setup

at CERN (see section 2.7.2). Due to the high particle flow that is essential for these

sensitivities, usual detection methods via Multi-Channel-Plates or similar detectors

with the necessary spatial resolution are useless due to their quick saturation.

out
out

left

right

Figure 4.2: General alignment of the

optical Mach-Zehnder-interferometer

Requirements for the Stability Analysis:

As shown in section 2.7.2, we need long in-

tegration times to reach the desired gmin of

the deflectometer. Hence, not only the short-

but also the long-term stability of the deflec-

tometer is of major importance. To monitor

both ranges of the stability during the grav-

itational measurements, we implement optical

Mach-Zehnder-interferometers. Figures 4.2 and

4.3 show schematic sketches of these interfer-

ometers and their implementation. As figure

4.2 illustrates the interferometers can be used

to control movements across the silicon wafers

by comparing the outputs outright and outleft.

Besides this, figure 4.3 illustrates in more de-

tail how such interferometers provide informa-

tion about spatial movements. Recording both

outputs, O1 and O2, enables a stability char-

acterisation of the setup that is independent of

the laser input. This way, we can determine successful tools for vibration islotation.

A summary of this vibration analysis is given in section 4.6 and further details can be

found in [64].

Note that optical Mach-Zehnder-interferometers enable the recording of the setup’s
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4.2 The Design of the Gratings

stability during the actual data acquisition of the entire gravimeter. This can be used

in future setups for either the data processing after the actual measurement or for an

active control of the gratings’ position. Which of these options will be applicable de-

pends on the time scales of the disturbing movements and vibrations of the final setup.

-1.
0.

1.

0.

1.

0.

1.

-1.

L

O1

O2

ß

ß

=

=

=

=

L

∆xw

dopt

Figure 4.3: Side view of the alignment of a Mach-Zehnder-interferometer. The geometry

of the entire setup yields equation 4.1a. The green dotted inlay denotes a zoom in; it

illustrates the diffraction process that leads to equation 4.1b.

Requirements for the Additional Optical Gratings: For the experimental reali-

sation of the optical Mach-Zehnder-interferometers and their transmission gratings out

of silicon wafers, the choice of the laser’s wavelength is of major importance. We restrict

ourselves on the commercially available wavelengths of a common Helium-Neon-Laser

(λ = 632 nm) and a Distributed FeedBack (DFB) Laserdiode (λ = 1550 nm). These

two different wavelengths offer us the possibility to test the special characteristics of

a silicon transmission grating for our applications. As silicon becomes transparent for

far infrared light, i. e. for λ > 1µm [70], the gratings rather act as phase- than as

amplitude-gratings for these wavelengths. Depending on the structue of the gratings

and the exact properties of the used wafers, the gratings may even act as a mixture of

both – amplitude- as well as phase-gratings.

87



4. CONSTRUCTION OF THE MOIRÉ-DEFLECTOMETER

Detail wavelength λ distance L grating period dopt angle β open fraction

B 1550 nm 0.5m 7.1µm 12.969◦ 0.64

C 1550 nm 0.341m 5µm 19.395◦ 0.58

D 632.816 nm 1m 5.7µm 6.403◦ 0.55

E 1550 nm 0.75m 10.6µm 8.566◦ 0.77

F 632.816 nm variable 7.9µm 4.594◦ 0.66

Table 4.1: Parameters of the optical gratings for the first prototype of silicon wafers. The

labeling as different details corresponds to the arrangement in figure 4.4. dopt results from

equations 4.1a and 4.1b, whereas β and fopen have been determined with GSolver [71, 72].

The limitation on these wavelengths together with the restrictions due to discrete dis-

tances L of the deflectometer lead to limited number of options for the periodicity dopt

of these optical gratings. With the alignment as given in figure 4.3 we find the condi-

tion to match the interferometer’s geometry and the maxima of the grating’s first order

diffraction (n = ±1) as

tanβ =
�xw

L
, and (4.1a)

sinβ =
n · λ
dopt

, (4.1b)

respectively. Using these two conditions we can evaluate an ensemble of grating periods

dopt for some distances L. The ones we have chosen for the first prototype are given in

table 4.1. They provide us with a large variety for testing purposes of the deflectometer

and the gratings processing methods.

Concerning the realisation of the optical gratings out of a silicon wafer, we further need

to account for the thickness of the wafers, which is typically ∼ 100µm. For such thick

wafers as compared to the diffracted wavelength, the assumption of infinitissimally thin

transmission gratings that leads to equation 4.1b breaks down. The propagation of the

lightwave during the passage of the gratings needs to be taken into account, too. For this

reason we apply the commercially available GSolver programme [71, 72] to determine

appropriate open fractions of the gratings. Its algorithm is based on Rigorous Coupled

Wave (RCW) Analysis [73]. Hence, using Floquet’s theorem for handling the periodic

structure, GSolver determines numerical solutions of Maxwell’s equations. For this

purpose, the programme handles the thick gratings as a series of several thin layers.
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4.3 The Fabrication of the Gratings

This procedure makes GSolver a very useful tool for testing the diffraction efficiencies

for different grating periodicities dopt, wavelengths λ, grating thicknesses and materials.

The open fraction of the optical gratings of the first prototype are given in table 4.1.

Using the free trial version of GSolver [71], we determined the corresponding open

fractions by maximising the output O1 and O2 of an alignment as given in figure 4.3.

In order to match the condition of equation 4.1a, the different optical gratings are

arranged at the top and bottom of the first prototype of the silicon wafer.1 The technical

drawing of this prototype is given in figure 4.4. Besides the atoms’ transmission grating,

enlarged in detail A, and the inlays with the optical gratings (detail B-E), the vertical

bars with an optical grating structure in detail F, enables the possibility to vary the

distances L. In addition to this, note the vertical 5mm-thick bars, that sustain the

horizontal structure of the atoms’ transmission grating.

4.3 The Fabrication of the Gratings

4.3.1 DRIE – Deep Reactive Ion Etching

Aiming for anisotropic etching of silicon, DRIE has been developed by F. Laermer and

A. Schilp at the beginning of the 1990s [74]. This process is based on an alternating

DRIE-process, which enables to control the direction and depth of the etching.

As a first step, a lithography mask is produced. This mask is positioned on the wafer

such that covers the regions of the silicon that should not be etched (see figure 4.5(a)).

Depending on the required precision of the structures typical masks are made out of

aluminium foils or imprinted as a chrome structure on a glass plate.

For the actual etching process (see figure 4.5(b)), an inductively coupled plasma is

positioned above the silicon wafer that is covered with the mask. For etching silicon

wafers, a mixture of SF6 and argon as carrier-gas is commonly used. Hence, this reactive

gas leads to an isotropic chemical etching and by accelerating the ions of the plasma

with applied electric fields, material can be sputtered-off the surface of the wafer. The

direction of the sputtering is controllable by the direction of the electric fields.

In order to stop the isotropic etching effect, the next step is a passivation step (see

figure 4.5(c)). Different gas mixtures (e. g. C4F8) are induced into the plasma region,

1Note that for the first testing purposes we used 6 inch-silicon wafers. This can be easily extended

to the 8 inch-wafers for the setup at CERN.
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4.3 The Fabrication of the Gratings

silicon

mask

(a) silicon covered with

mask

(b) first etching step (c) passivation step (d) second etching step

Figure 4.5: A typical Deep Reactive Ion Etching (DRIE)-process: as going from (a) to

(d), these sketches show two etching steps (b) and (d), that are interrupted by a passivation

step (c).

such that a particular polymer-membrane covers the entire wafer. This way, the side

walls of the etched holes are protected from further chemical etching processes.

Switching back to the actual etching process (see figure 4.5(d)) with the plasma of the

SF6 and argon mixture, yields then an etching effect only in the direction, in which the

accelerated ions sputter-off the passivation-membrane. The side walls remain covered

and protected by the membrane.

These two processes of etching and passivation are now applied in an alternating way

to the wafer. The exact etched structure can be controlled by various parameters of

the etching process, as for example, the concentration of the gas mixtures, the applied

voltages or the timings of the alternating process.

4.3.2 Attempts with SOI-Wafers

The final design of our first prototype given in figure 4.4 involves two catagories of

structures, which are characterised by their different length scales. The first one, to

which we refer to as the ‘microscopic structure’, includes the transmission gratings for

the atoms (d = 40µm, fopen = 30%) as well as the gratings for the optical Mach-

Zehnder-interferometers (see table 4.1 for their details). The second structure is rather

a ‘macroscopic’ one; it includes the support structures, i. e. the frame around the atoms’

transmission gratings and the vertical bars sustaining the horizontal bars of these grat-

ings.

Due to the large difference in length scales of the two categories of structures, the

use of SOI(Silicon On Insulator)-wafers1 has been suggested by our collaborators of

1SOI-wafers are special layered substrates. Their layered silicon-insulator-silicon structure enables

a large variety of applications in microlectronics. They have been used industrially for the first time
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si-layer, 100µm

siO2-layer, 2µm

si-layer, 400µm

microscopic 

macroscopic 

structure

structure

Figure 4.6: Sketch of a cross-section through a SOI-wafer. For our purposes, we use a

2µm-thick insulator layer of silicon-oxygen, SiO2. The ‘microscopic structure’ is etched

into the 100µm-thick upper silicon-layer, and the ‘macroscopic structure’ is etched into

the 400µm-thick bottom layer. This picture has been received from [75].

iX-factory [75]. Such a wafer consists of two silicon layers that are seperated by an

insulator layer. A sketch of the cross-section through a SOI-wafer used for our pur-

poses is given in figure 4.6. The insulating 2µm-thick SiO2-layer enables to process the

wafer subsequently from two sides with two independent etching processes. Thus, the

‘microscopic structure’ can be etched before the wafer is flipped and the ‘macroscopic

structure’ is etched into the backside of the wafer. Thereafter, the SiO2-layer can be

removed.

As first steps of this attempt with SOI-wafers, the optical masks have been manufac-

slit width = 12.59 µm

bar width = 27.18 µm

silicon

silicon oxygen silicon

Figure 4.7: Picture of the cross-section through a SOI-wafer taken with a microscope.

It shows the etching results of the atoms’ transmission gratings with a desired period on

d = 40µm and an open fraction of 30%. This picture has been taken from [75].

tured for both etching processes – one for the front side with the ‘microscopic structure’

1998 [76, 77].
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4.3 The Fabrication of the Gratings

bar width = 2.26 µm

slit width = 4.81 µm

(a) Etching result for detail B

       7.35 µm

      2.55 µm

bar width = 2.94 µm

slit width = 1.84 µm

(b) Etching result for detail C

       5.75 µm

bar width = 3.58 µm

slit width = 2.12 µm

(c) Etching result for detail D

bar width = 2.30 µm

slit width = 8.32 µm

 2.30 µm

 8.32 µm

(d) Etching result for detail E

bar width = 2.40 µm

slit width = 5.23 µm

 98.09 µm

(e) Etching result for detail F

Figure 4.8: Results of etching the optical transmission gratings for the different Mach-

Zehnder configurations refering to figure 4.4 and table 4.1 The corresponding pictures on

the left hand side show the view from above the structure, whereas the ones on the right

hand side are cross-sections through the structures. Details C and D are not etched deep

enough, as the etching process is saturated. These pictures have been taken from [75].
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Detail dopt,theo measured bar width measured slit width dopt,exp

B 7.1µm 2.26µm 4.81µm 7.07µm

C 5µm 2.94µm 1.84µm 4.78µm

D 5.7µm 3.58µm 2.12µm 5.70µm

E 10.6µm 2.30µm 8.32µm 10.62µm

F 7.9µm 2.40µm 5.23µm 7.63µm

Table 4.2: First etching of the optical gratings in a SOI-wafer. Note the remaining

silicon in detail C and D of ∼ 7µm and ∼ 6µm, respectively. Note the error of reading of

±0.01µm for all measured values.

and the one for the back side with the ‘macroscopic structure’.

The outcome of the optimisation of the etching process is shown in figure 4.7. These

pictures are taken with a microscope and show a cut through the etched atoms’ trans-

mission gratings. We find a period of d = (39.77± 0.01)µm.

Unfortunately, using the same etching process for the optical gratings turns out to be

very difficult. Realising the high aspect ratios1 of all of these structures is difficult by

itself. Using the same etching process for all grating structures over the entire area

of the wafer is out of the realm of possibility for the DRIE-process. The results for

the different optical gratings are shown in figure 4.8 and the measurements from the

microscope are summarised in table 4.2. As the priority is set on the structure of the

atoms’ gratings, the optimisation of the etching process of the front side has been con-

cluded, although the optical gratings of detail C and D (see figure 4.8(b) and 4.8(c),

resppectively) could not be etched to the desired depth. Due to the saturation of the

etching process2, a silicon layer of ∼ 7µm and ∼ 6µm remains for these optical grat-

ings, respectively.

Besides the described problems of etching all optical gratings to the full satisfaction,

more crucial problems emerge during the etching process of the back side of the SOI-

1The aspect ratio is defined as the ratio of the slit width to the depth of the slit. In our applications

the high aspect ratios require a sophisticad alternating etching process as it has been sketched in figure

4.5.
2Saturation of the etching process will occur if the rift in between the silicon bars are too narrow

to maintain an adequate gas exchange.
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wafers. The tensions, which are induced on the wafer during this etching process1,

are too strong for the 2µm SiO2-layer. It breaks up and either helium enters into the

etching gas and the etching process is interrupted or the break of the SiO2-layer leads

to a break of the entire wafer. Even additional support bars in horizontal direction

cannot increase the wafers stability.

Further attempts to etch the back side via wet etching techniques2 were not successful.

Wet etching techniques for the back side show uncontrollable additional etching of the

front side and the instability of the wafer remains an unsolved problem. Neverthe-

less, during the attempt to find protection methods for the wafer, a new concept using

simple one layer silicon wafers has been developed.

4.3.3 Attempts with Protected Si-Wafers

Figure 4.9: Sketch of the results

with simple Si-wafers. This picture

has been received from [75].

The 2µm-thick SiO2-layer is a severe weakness

of the SOI-wafer. As it covers the entire area

of the wafer, it also shares any locally induced

tensions with the entire wafer, which leads to

breakages of the wafer. Thus, another concept

has been developed, where the DRIE-process is

applied on a simple silicon wafer. Following this

concept, the wafer’s front side is etched as it is

done for the SOI-wafers. Before etching its back

side, it needs to be prepared to gain more stabil-

ity. For this purpose, it is brought into contact

with an additional unprocessed wafer. The lat-

ter provides the necessary stability to open the

wafer’s back side. Unfortunately, as it is marked with the green shaded regions in

figure 4.9, the etching process of the back side is faster at the edges of the area to be

processed.3 Thus, during this second etching process, the regions with higher etching

1For the used DRIE-process, the wafer needs to be cooled during the etching. This cooling is

achieved via a helium flow from below the wafer, which induces strong tensions on the large area of

the SiO2-layer.
2The wet etching technique uses chemical solutions (e. g. potassium hydroxide (KOH) for a silicon

substrate) to etch structures of typically � 1µm [75].
3Note that the thick horizontal bar is only for stability reasons of these first attempts.
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rates need to be covered step by step until the entire area is opened.

Besides this, the contact of the two wafers spares a thin silicon membrane that cov-

(a) the thin silicon membrane

silicon 

needle

(b) isolated silicon naddle

(c) sticking effect

Figure 4.10: Pictures that are taken with a microscope and reveal some of the problems

with the Si-wafers. These pictures have been taken from [75].

ers the etched structure after removing the additional wafer again. A picture of this

membrane is shown in figure 4.10(a). Further progress of this technique removed the

membrane. Nevertheless, as a general issue, that does not decrease the functionality of

the wafers in the Moiré-deflectometer, some isolated tiny silicon needles remain, as it

can be seen in figure 4.10(b).

The worst problem, that occurs during the attempts with the protected Si-wafers,

is the so-called sticking effect. This effect emerges on both the atoms’ and the optical

transmission gratings during the processing of the back side. As shown in figure 4.10(c),

these effects change the gratings’ periodicities locally, which will have a crucial effect on

the gratings’ application for our Moiré-deflectometer. In order to solve this problem,

an additional support structure of vertical bars needs to be implemented to sustain

and stabilize the horizontal ones. To determine the appropriate distance of these bars,
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4.4 The First Transmission Gratings

an optical testing mask has been designed. Figure 4.11 shows both optical masks; the

stucture of the original chrome mask is yellow shaded and the additional testing mask

is denoted with the green areas. As we aim to test different distances of the support

bars over the entire wafer, the regions with different distances are distributed over the

entire wafer.

The additional testing mask has been manufactured out of a aluminium foil, which is

an economic alternative for testing purposes. Due to the small scale of the structures

of the foil mask and the thickness of the glass layer of the chrome mask, it is not

possible to put the foil mask on the top of the chrome mask. In this configuration,

the structures are not mapped correctly on the wafer. As shown at the bottom of

figure 4.11, this can be solved by placing the foil mask in between the chrome mask

and the wafer. Unfortunately, this also leads to a snatchy mapping of the structures of

the chrome mask and makes it impossible to etch the thin bars of the gratings for the

Mach-Zehnder-interferometers. However, for the atom’s transmission gratings, these

tests have been successful. They yield additional vertical bars with a width of 2µm

and at a distance of dvert = 2mm as solution against the sticking effect.

As final remark on the attempt with protected Si-wafers, note the different colour

of the surface indicated in figure 4.12. Due to the mentioned different etching rates

over the area of the wafer (see figure 4.9), the wafer needs to be covered step by

step during the process. Depending on the time that these regions are not covered,

the surface of the structure becomes modified. This modification, which looks like a

‘burned’ surface, becomes stronger the longer the regions are uncovered. As this effect

is not removable with any chemicals it seems to be no residue of organic compounds

or polymers. Consequently, we can act on the assumption that this is a purely optical

effect, which does not alter the gratings performance within the deflectometer.

4.4 The First Transmission Gratings

In order to check the periodicities of the first prototypes of the transmission gratings,

we make use of the optical Talbot-effect, of which a detailed derivation is given in

section 2.4.1. As the main findings of that section, we remember the integer Talbot
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 foil mask
glas

chrome
 chrome mask 

wafer

foil mask 
on glas side:

 

foil mask 
on chrome side:

bar widths: 2 µm
testing the distances: d =  

2.5 µm,

1 µm,

1.5 µm,

0.8 µm,0.5 µm, 0.7 µm,0.2 µm,

1.7 µm, 2 µm,

Foil mask for testing purposes:  

dvert

Figure 4.11: Drawing of the last mask designs. The yellow areas denote the structrures

of the original chrome mask whereas the green areas indicate the additional aluminium

mask. This picture has been taken from [75].

effect being characterized by the re-image of a grating’s transmission function at the

98



4.4 The First Transmission Gratings

(a) Photo of the silicon wafer (b) Microscope picture of the ‘burned’ surface

Figure 4.12: Pictures of a ‘burned’ silicon surface, where the etching process leads to an

optical effect, that looks like burned material. These pictures have been taken from [75].

Talbot distance zT = 2d
2

λ and its fractional correspondence at distances

z =
n

m
zT , with

n

m
≤ 1, and n,m ∈ N, (4.2)

where λ is the wavelength of the diffracted light and d denotes the period of the grating.

For our testing purpose of the period d, we investigate the optical Talbot effect behind

one of the gratings. Using a Helium-Neon Laser with λ = 632.816 nm, we measure the

intensity distribution behind this grating by scanning vertically over it with a second

one of the transmission gratings and measuring the intensity behind this second grating

with a photodiode. Thus, we determine the contrast of the intensity distribution at

a specific distance behind the first grating and repeat this measurement for different

distances z behind the first grating. Figure 4.13 shows the data of these measurements

for z < 10zT . We observe maxima of the contrast at distances that correspond to

any integer multiples of half the talbot distance.1 All of the gaussian-fits to these

maxima feature a quality of a R
2-value better than 0.89. Thus, referring to these fits,

1Note that although the image of the transmission function at z = zT
2 is shifted vertically by d

2 , it

still has a maximum of contrast.
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4. CONSTRUCTION OF THE MOIRÉ-DEFLECTOMETER

all distances between two adjacent peaks together yield a grating period d of1

d = (40.2± 1.5)µm. (4.3)

The smaller maxima inbetween these large maxima refer to an amplitude distributions

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

position [mm]

co
n

tr
as

t

ZT

4
ZT

2 ZT

Figure 4.13: Observation of the Talbot-effect behind one of the silicon transmission

gratings with a Helium-Neon-Laser (λ = 632.816 nm) and a second transmission grating

as analysing tool.

at distances that correspond to odd multiples of zT
4

(see equation 2.16). Hence, out of

their distances, we find a grating period d of

d = (40.0± 1.0)µm. (4.4)

To sum up, our results for the grating’s period agree within their errorbars and the

measured mean value for d matches the demanded 40µm to utter satisfaction.

1As the z-positioning of the second grating has been done via a stepper motor (Encoder Mike with

its controller 18011 from LOT Oriel) with a resolution of 0.1µm, the major error in the z-axis occurs

when initially mounting the translation stage of the stepper motor behind the grating. But since this

determines only the absolute position on the z-axis and we examine the relative position of various

multiples of the Talbot distances with respect to each other, we can neglect this error.
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4.5 Mounting the Gratings

4.5 Mounting the Gratings

Apart from the transmission gratings, the experimental setup of the Moiré-deflectometer

predominantly consists of their appropriately designed mounts. We designed special

holders, to which we refer to as riders. Figure 4.14 shows one of them as an example.

Made of aluminium1, their large mass (∼ 1 kg each) helps against undesired vibrations.

As shown in the inlays of figure 4.14, the wafer is fixed against tilts and dumpings

D

D

Detail A 

Scale - 2 : 1

Cut D - D 

Scale - 1 : 1

Detail H 

Scale - 5 : 1

Figure 4.14: Technical drawing of one of the riders that serve as mounts for the silicon

wafers.

without excering too much tension on it. We further implemented piezo-controlled

stepper motors – visible as the construction of the tubes on both sides of the wafer –

to be able to adjust the gratings’ alignment from outside the vacuum chamber.

Furthermore, the bottom of the riders is manufactured such that we can change the

distance L for different experiments. In the first setup, a 2.5m-long aluminium rail

1Concerning the material of the riders for the setup at CERN, we probably need to replace alu-

minium with a material, whose thermal expansion coefficient is closer to the one of silicon. This way,

tensions due to the cryogentic environment can be minimised.
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4. CONSTRUCTION OF THE MOIRÉ-DEFLECTOMETER

from Thorlabs (XT95 rail) is implemented. Figure 4.15 show a technical drawing of

the Moiré-setup.

6 Design of the Measuring Apparatus

6.4 Computer Aided Design of the Measuring Apparatus

Figure 6.6 shows the final design of the device holding the silicon wafers for the Moiré

deflectometer and the Mach-Zehnder interferometer. The device fits through the entry

of an ISO 320 vacuum flange. The aluminum rail XT95 is the basis element, it is the

same rail used for the prototype of the Mach-Zehnder interferometer. The silicon wafers

sit on aluminum mounts. The first mount is fixed; the second and third wafer mounts

have the indispensable degrees of freedom.

Figure 6.6: Moiré deflectometer: The three gratings, etched in silicon wafers, are mounted on aluminum
mounts. These mounts are fixed on a XT95 aluminum rail from Thorlabs.

Figure 6.7: The deflectometer in side face: The position of the wafer mount is variable, the maximum
distance between two wafer holders is 1 m.

74

Figure 4.15: Technical drawing of the gratings (red shaded) mounted on the riders on

their rail. The length of the rail is not to be scaled.

4.6 Stability of the Setup

As already described for the design of the gratings in section 4.2, we intend to mon-

itor unwanted mechanical movements and vibrations of the Moiré-deflectometer with

additional optical Mach-Zehnder-interferometers. By imprinting the gratings for these

interferometers directly on the wafers, we can also use them to monitor any movements

and tilts of the wafers themselves during data acquisition.

In order to quantify such movements and hence, also the stability of the system, we

consider the so-called Allan-variance of the output signals of those interferometers.

Following some parts of [64], we provide in this section a short introduction to this spe-

cific measure of stability and summarise the first stability measurements. This gives

a quantitative insight into the major improvements regarding the vibration isolation.

Technical details of these measurements can be found in [64].
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4.6.1 Allan Variance as Measure of Stability

In order to quantify the stability of a setup, it is convenient to examine its data on

(temporal) correlations. For this purpose, we make use of the so-called N-sample vari-

ance [78, 79, 80]. For a data set consisting of N discrete data points yi and a temporal

sampling period T , this specific variance is defined as

σ2(N,T, τ) =
1

N − 1

N�

i=1

�
yi −

1

N

N�

k=1

yk

�2

, (4.5)

where the time average yi is calculated by

yi =
1

τ

�
ti+τ

ti

y(t)dt. (4.6)

The timing of these considerations is determined by its period T , the data recording

time τ and measurement’s dead-time given by T − τ .

Assuming no dead-time, i. e. T = τ , and with N = 2, equation 4.5 reduces to

σ2

y(τ) =

�
2�

i=1

�
yi −

1

2

2�

k=1

yk

�2�
=

1

2

�
(y2 − y1)

2
�
, (4.7)

where �·� represents the evaluation of the expectation value. This two-sample variance

is also known as Allan Variance named after a proposition of David W. Allan [78]. The

definition of this particular variance demonstrates a distinct difference to the usual

variance: Instead of refering each value yi to the mean value of all data, all yi are

considered with respect to the mean value of a small subset. With the length of these

subsets τ we can determine the time scales of the examined correlations.

Plotting the Allan Variance σ2
y(τ) for different τ on a double logarithmic scale provides

the so-called Allan Plots. This illustration of the dependence of σ2
y(τ) on the temporal

sampling τ supplies a very useful tool for stability analysis. Thus, considering for

example the Allan Plots of typical systematic effects, we find for a linear drift of the

data, which is simply given by y(t) = c · t, an Allan Variance of

σ2

y(τ) =
1

2

�
(c · τ)2

�
= c

2τ2. (4.8)

In contrast to this increasing line in the Allan Plot, gaussian noise on the data leads

to a total different Allan Variance. It is governed by

σ2

y(τ) ∼
1

τ
. (4.9)
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Hence, examining the Allan Plots can serve as a useful tool to identify the source of

instability.

4.6.2 The Allan Variance of our Setup

Determination of the Allan Variance: In order to evaluate the Allan Variance of

our setup, we take a measurement with the smallest possible sampling time τ0. From

there on, we could calculate the Allan Variance for integer multiples of τ0. However, the

summation in equation 4.7 can quickly become very time-consuming. For an appropri-

ate estimation, we consider the calculation of the expectation values that involves the

evaluation of the corresponding mean values yi. As these mean values become more

precise the more data is taken into account, it is actually preferable to use overlapping

time intervals rather than disjunct ones. For the two time sampling methods illustrated

in figure 4.16(a), the corresponding Allan Plots of a test signal with gaussian noise is

given in figure 4.16(b). This clearly demonstrates the improvement of the Allan Plots

with overlapping time intervals as indicated with the green lines.
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(a) different timings for the Allan Variance
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(b) Allan Plots of a test signal with disjunct

(black) and overlapping (green) timings

Figure 4.16: Comparing the Allan Variance for different timings of a test signal with

gaussian noise. These pictures have been taken from [64].
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4.6 Stability of the Setup

First Stability Measurements: Using the Allan Variance as analyzing tool, we

found a couple of isolation techniques that improved the deflectometers short and long

term stability. Some of these techniques are e. g. flooding the table of the setup,
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eigenfrequency
limit of electronics
shot noise limit

Figure 4.17: Allan Deviation of the first stability tests of the setup. For different total

measurement times (see legend) the data approaches the limit of the setup’s eigenfrequency

and provides the best resolution at an integration time of 100µs. This picture has been

taken from [64].

hanging the rail of the deflectometer into a pendulum, evacuating the environment and

stabilising its temperature. More details can be found in [64].

Particularly interesting for our application is the Allan devation σ(τ). The Allan Plot

of this deviation not only provides us useful information about the sources of noise and

drifts, it also reveals the dependence of the possible spatial resolution on the sampling

time τ . Figure 4.17 shows such an Allan Plot for different total measurement times for

our first setups. Note that for the plots shown in figure 4.17, all isolation techniques

had been implemented, which reduced the offset of σ(τ) by two orders of magnitude.

For the long term stability, we considering the behaviour for larger τ and observe

that for all measurement times, the Allan deviation approaches the red dashed line for

1ms � τ � 1 s. With this line, the Allan deviation of the setup’s eigenfrequency of
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13.4Hz has been plotted and thus, can be clearly identified as the lower limit in this

region [64, 79].

For the determination of the systems best achievable resolution, we need to examine the

Allan deviation for smaller τ revealing the setup’s short term stability. For this purpose,

the two lower limits, the shot noise limit and the cut-off frequency of the measurement’s

electronics are included with the black and blue dashed lines, respectively. Concerning

our measurements, we find an optimum of integration time of 100µs, which shows an

achievable resolution of about 50 pm. Although for these measurements, we decreased

the noise already by two orders of magnitude by our isolation techniques, we still have

not reached the shot noise limit yet. Thus, there is still room for improvements.
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Chapter 5

Testing the Moiré-Deflectometer

as Absolute Gravimeter

5.1 Introduction

The developement of the Moiré-deflectometer for the AEgIS-experiment has been pro-

ceeded to a stage, where first gravitational measurements are possible.

This last chapter covers the two major parts of the test setup in Heidelberg: the source

of metastable argon atoms and the detection technique via a Faraday cup. For the

former, different types of sources are described. Hence, effusive sources in form of a

DC-discharge source as well as the currently implemented inductively coupled plasma

source are presented together with the necessary theoretical background of a possible

future upgrade to supersonic sources. Subsequently, the technique of detection via

a Faraday cup is outlined. Finally, we present in this last chapter the results of the

first gravitational measurement with the Moiré-deflectometer in Heidelberg and discuss

possible future improvements.

5.2 The Source

For testing purposes of the Moiré-deflectometer, the most critical property of the source

is its longitudinal velocity distribution. As different longitudinal velocities lead to a

different shift of the pattern at the end of the deflectometer, a considerable loss of

contrast can be expected when integrating over an entire velocity distribution. Hence,

the following two subsections provide an overview of different possible sources with
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respect to their longitudinal velocity distribution, before the currently usable sources

are described in the subsequent section.

5.2.1 Effusive Sources

Most intuitively one might think of a source of atoms in a vacuum chamber as a simple

feedthrough, through which the desired atomic species can enter into the chamber.

In order to control such an inlet of atoms, we need to control quantities as e. g. the

pressure in the chamber, the temperature and the density of the atoms. Hence, it is

convenient to fill the gas first into a container (the reservoir), from which the atoms

can escape in a controlled way through an aperture into the vacuum.

As known from the general Maxwell-Boltzmann distribution, the velocity distribution

of an atomic ensemble at temperature T is given by

f(v) =

�
m

2πkBT

� 3
2

e
−

m(v2x+v2y+v2z)

2kBT . (5.1)

where the atom’s mass m and its velocity v = (vx, vy, vz) in cartesian coordinates is in-

cluded. This description yields the distribution of the atom’s speed v =
�
v2x + v2y + v2z

as

f(v) =
4√
π
κ−3

v
2
e
− v2

κ2 , (5.2)

where κ =
�

2kBT

m
denotes the most probable velocity. Note for both of these proba-

bility distributions that they are only valid as long as there is no preferred direction of

the atom’s movement and Brownian Motion dominates the dynamics of the atoms.

Considering the distribution behind the aperture, through which the atoms escape

from the reservoir into the vacuum, only atoms with velocity components vz �= 0

contribute, i. e. a ‘directional flow’ is formed shortly behind the aperture. Assuming

that neither the spatial nor the velocity distribution inside the reservoir changes due to

the escaping atoms and that these atoms do not change their velocities as they pass the

aperture (the so-called thin-wall-condition) the velocity distribution can be expressed

in spherical coordinates by

f(v, θ) ∝ κ−3
v
3
e
− v2

κ2 cos θ, (5.3)
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with θ providing the direction with respect to the beam axis and the speed v of the

atoms. Note the additional speed v as compared to equation 5.2. This contributes the

fact that any fast moving atoms pass the aperture more often than slower ones. Hence,

it is more probable for them to leave the reservoir and the number the atoms that leave

the reservoir through the aperture is proportional to their speed v [81]. Measuring the

velocity distribution far behind the source, i. e. θ −→ 0, yields the longitudinal velocity

distribution of such an effusive source as

f(v) ∝ κ−3
v
3
e
− v2

κ2 . (5.4)

The assumption made above that the atoms that leave the reservoir do not change

their velocity distribution is significant for the validity of the distribution. It demands

a negligible collision rate of the atoms during their passage through the aperture. Thus,

not only does the source need to be thin-walled, the atomic mean free path λres in the

reservoir also needs to be very large as compared to the diameter D of the aperture, i.

e. λres � D. The resulting effusive atom source is often realised with small pressure

gradients between the reservoir and the vacuum chamber.

5.2.2 Supersonic Sources

Besides the described effusive source, another type of atomic source is widely used: the

supersonic source [81, 82, 83]. This type features an interesting longitudinal velocity

distribution, which results from the dynamics of the atoms during and right after their

passage through the aperture.

One way to realise such a type of source is to increase the pressure gradient between the

reservoir and the expansion. At a gradient, where the atomic collision rate during the

passage through the aperture is high enough to maintain a continuum flow, a supersonic

expansion can become observable.

Assuming this process of expansion to be adiabatic, the system’s dynamics can be

described via the conservation of the enthalpy H. For an ideal gas the enthalpy is

defined as

H = CpT =
5

2
kBT (5.5)

with T being the temperature of the gas. During the passage through the aperture and

the following expansion1, the high collision rate leads to a continious conversion of the

1Note that this supersonic expansion of atomic beams is often referred to as free jet expansion.
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stagnation enthalpy H0 of the atoms into kinetic energy of the directional flow. This

adiabatic process can be described by

H0 = He,rest +
1

2
mu

2
, (5.6)

where the rest enthalpy of the atoms is denoted as He,rest and the directional flow in

beam direction is determined by its speed u. For an ideal gas the stagnation enthalpy

becomes then1

H0 =
5

2
kBT0

� �� �
enthalpy of the reservoir

=
5

2
kBT

� �� �
rest enthalpy in thermal energy

+
1

2
mu

2

� �� �
kinetic energy of directed flow

, (5.7)

which can be rewritten using equation 5.5 as

CpT0 = CpT +
1

2
mu

2
. (5.8)

With the speed of sound c =
�

γ kBT

m
and γ = 5

3
for an ideal gas, a measure for the

degree of conversion of enthalpy into kinetic energy is defined by the Mach number

Ma ≡ u

c
. (5.9)

Using this measure, we can rewrite equation 5.7 as temperature ratio

T

T0

=

�
1 +

1

2
(γ − 1)M2

a

�−1

(5.10)

As long as a high collision rate is maintained, the conversion of enthalpy into the di-

rected flow continues. Note for this conversion process that not only does the directed

flow u increase, the local speed of sound c decreases simultanously. Hence, Ma in-

creases with increasing distance from the source. However, as the temperature and

simultaneously the density goes down with increasing distance, the decreasing collision

rate slows down the growth of Ma. At a critical distance, which is called the Quitting

Surface [82], the conversion stops entirely, such that the longitudinal velocity should

remain constant. This has been shown by kinetic models [81] as well as Monte Carlo

1Concerning the term 5
2kBT , note that this consists out of the thermal energy 3

2kBT of the atom,

which can be assumed to be randomly distributed in the atom’s reference frame, and the thermal energy

kBT of the gas, which yields the gas’ espansion [84].
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Simulations [81].1

For many applications – as for testing purposes of the Moiré Deflectometer – it is

reasonable to use the axial symmetry of the beam and describe the velocity distributions

via a transversal vt and a longitudinal vz velocity component. Assuming a seperability

of the two distributions, we find for the described directional flow of a supersonic source

a velocity distribution in transversal direction given by [82]

f(vt) ∝ Cte
− m

2kBTt
v
2
t
, (5.11)

a gaussian distribution governed by the transversal temperature Tt and the normali-

sation constant Ct. In contrast to this transversal component, the corresponding lon-

gitudinal distributions is strongly influenced by the directional flow. It is given by

f(vz) ∝ Czv
3

ze

�
− vz−u

κz

�2

= Czv
3

ze

�
− vz−cMa

κz

�2

, (5.12)

where the normalisation constant is denoted by Cz. Particularly interesting becomes

the comparison of the supersonic longitudinal distribution to the one of an effusive ones

(equation 5.4): the longitudinal velocity distributions of supersonic beams are narrower

and shifted to higher mean values. This is also illustrated in figure 5.1, where typical

distributions are plotted for different Mach numbers Ma and an effusive source.

As mentioned above, the longitudinal velocity distribution is the most critical property

of a source for the Moiré-deflectometer. The broader this distribution, the more does

the pattern at the end of the deflectomter smear out. Hence, it seems to be preferable

to use rather a supersonic source. The gain of contrast becomes apparent in figure

5.2, which shows results of our Monte-Carlo simulations of the setup in Heidelberg.

Note that with an effusive source we can only expect a contrast of C = 0.3 (see figure

5.9(b)). The gain of contrast for the here simulated two-grating setup when increasing

the measure of supersonic flow Ma is striking and suggests an upgrade of the currently

used effusive source to a supersonic one in future experiments2.

1Note that any collisional processes with the background gas have been neglected here. They lead

to the formation of shock waves that provide further limits to the supersonic expansion. For more

details on supersonic sources refer to [81, 82, 83, 84, 85].
2Note that the two-grating setup has been chosen here for illustrative reasons only. Scanning the

third grating over the pattern will decrease the contrast even further.
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Figure 5.1: Typical longitudinal velocity distributions of different supersonic beams and

an effusive beam.

5.2.3 The Current Ar
∗
-Source

The current atomic source has been built out of the remainings of former experiments

of our group in Heidelberg [53, 86]. They used a source of metastable argon that

is based on a direct current (DC) glow discharge. As schematically shown in figure

5.3(a), electrons are ejected from the cathode, which is formed as thin naddles, and

subsequently, accelerated towards the first anode, a grounded disk. An appropriate

pressure within the argon reservoir yields a glow discharge that produces metastable

argon atoms in the 1s3- and 1s5-state (see figure 3.1). To enhance the number of

metastable atoms, the interaction region between the argon atoms and the emitted

electrons is increased via a second anode, that attracts the electrons. This possibility

of increasing the fraction of metastable atoms is one of the advantages of this type

of source. Another very interesting advantage for cold atom experiments, is the pre-

cooling option of the argon gas via a cooling tank that surrounds the reservoir. However,

the designed DC-source supplies only ∼ 1·1012 atoms

s·sr . In order to reach a high sensitivity

of the Moiré-deflectometer, we need to increase the atomic flow. For this purpose, we
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Figure 5.2: The gain of contrast C of a two-grating Moiré-setup in Heidelberg when

increasing the Mach number Ma of a supersonic source (L = 1m).

upgraded the setup and implemented an inductively coupled plasma source1, which is

able to provide up to ∼ 3 · 1014 atoms

s·sr [56, 88].

For such an inductively coupled plasma source, we use a glass tube as the atomic

reservoir similar to the one that surrounds the cathode in the DC glow discharge source.

As sketched in figure 5.3(b), a radio frequency of a helical coil around the glass tube

can couple energy into the reservoir and discharge a plasma inside the tube. For this

discharge to occur the density of the argon atoms as well as an efficient coupling be-

tween the coil and the argon reservoir is essential. This coupling can be optimised by

the geometry of the coil, the radio frequency2 and the reservoir pressure. Increasing

the production rate of metastable atoms can be achieved with higher RF-power [88].

Hence, we can optimise the flow of metastable atoms by matching the impedance of

1Further details on inductively coupled plasma sources of argon can be found in [87].
2In order to use common RF-components, we have chosen 144MHz for our input signal of ∼ 35W.
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Figure 5.3: Schemes of the two Ar∗-sources: (a) the old one based on DC glow discharge

and (b) the new one based on an inductively coupled plasma.

the RF-input to the coil. Fine adjustments of this impedance matching can be done

via commercially available impedance matching devices1. A photo of this source in

operation is given in figure 5.4.

Figure 5.4: Photo of the plasma

source

As denoted above, the velocity distributions

of the source are particularly interesting for the

tests of our deflectometer. Figure 5.5 and 5.8(b)

show the corresponding transversal and longitu-

dinal distribution of the Ar∗-atoms in the 1s5-

state 30 cm behind the currently used source.

These profiles have been measured via light-

induced fluorescence of the atoms – a method

based on the photon emission of atoms that are

exposed to a resonant laser beam. The closed

transition, that is used for this method, is the 1s5 → 2p9 (J = 2 → J = 3), which

corresponds to a wavelength for the laser beam of λ = 811.754 nm (see figure 3.1).

For this fluoresence method we need to scan the laser’s frequency over the atomic res-

onance. Thus, the atoms’ transversal velocity distribution can be directly observed by

monitoring the intensity of the photons that are emitted by the excited argon atoms.

1For the chosen frequency of 144MHz we use a MFJ Dual Band Tuner (Model 921) in between

the input signal and the coil. This allows us to optimise the performance of the source during the

experiments.
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Figure 5.5: The transversal velocity distribution out of the fluorescence signal of orthog-

onally crossing laser- and atom beams.

Essential for this measurement is a careful alignment of the laser beam orthogonal to

the atomic beam. This way, the captured fluoresence signal of their crossing region is

not sensitive on the longitudinal velocity component vz of the atoms and an appropriate

fitting (denoted with the red solid line) of the fluorescence data of figure 5.5 provides

us the transversal mean velocity [56]

vt = 269
m

s
. (5.13)

.
α

Ar  -

beam

*

laser 
for v 

laser 
tfor v 

z

Figure 5.6

For the longitudinal velocity distribution, we need

to include the z-component into our measurement. By

aligning a second laser beam with an angle α in between

the two laser beams (see figure 5.6), we receive a flu-

orescence signal that shows a large peak representing

the signal from the orthogonal aligned beam and a sec-

ond broader peak that shows the signal from the angled

beam, which includes the longitudinal velocity compo-

nent. This data can be extracted. It is plotted in figure

5.8(b) and its fit provides useful values as the longitudinal mean velocity, for example.

For a correct determination of this fit and thus, the atomic longitudinal mean velocity,

we need to account for an effect that occurs due to the capture region of the mea-

surement. This becomes clear by remembering that the common Maxwell-Boltzmann
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Figure 5.7: Sketch of the setup for the velocity measurements and the first Moiré-setup.

velocity distribution refers to a gas without preferred direction. Hence, it is, strictly

speaking, only valid within or maybe just directly behind the source, at point R1 in

figure 5.7. As the fluorescence measurement of figure 5.8(b) is taken at point R2, 30 cm

behind the source, we need to consider the restriction of this geometry. In general, a

limited radius r of the capture area of the measurement at the distance R from the

source leads to

|vt|
|vz|

≥ r

R
, ⇒ − r

R
|vz| ≥ vt ≥

r

R
|vz|, (5.14)

which limits the measurable velocity components vt and vz in transversal and longi-

tudinal direction, respectively. For the transversal component, this condition yields a

limitation of the integration of the velocity distribution. Thus, the transversal velocity

measures are determined by � r
R |vz |

− r
R |vz |

f(vt)dvt. (5.15)

Solving this integration with the error-function erf(x)1, we note its interpretation with

erf
�

n

σ
√
2

�
being the percentage of the atoms within the nth-σ environment. This way, we

can determine the factor, by which the measured longitudinal velocities are conditioned.

The correct distribution that accounts for the limited capture region of a measurement

at distance R from the source is then given by

fcorr(vz) = f(vz) · erf
�

r

R
vz

σ
√
2

�
, (5.16)

with σ = vt. The data of figure 5.8(b) corresponds to a measurement capturing an

area with radius r2 = 1.1 cm at distance R2 = 30 cm. Applying equation 5.16 to this

data, we can evaluate the distributions at position R1 and R3 and with r3 = 1.8 cm

1The error-function is defined as erf((x) = 2√
π

� x

0
e−t2dt and it is known that for a normal distri-

bution erf( n√
2
) provides all values within n standard deviations σ [89, 90].
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Figure 5.8: The longitudinal velocity distribution measured at (b) R2 via fluorescence

and calculated at (a) R1 and (c) R3. The corresponding mean velocities are (a) 419 m
s , (b)

476 m
s and (c) 479 m

s . Note the different scales of the f(vz)-axis.

(see figure 5.7). The corresponding mean velocities become vz,1 = 419 m

s
, vz,2 = 476 m

s

and vz,3 = 479 m

s
. Thus, the mean longitudinal velocity within the deflectometer can

be approximated by the mean of vz,2 and vz,3; we find

vz = 477.5
m

s
. (5.17)

In order to examine the effect of our effusive source on the output of the current

deflectometer setup with L = 0.305m, our Monte-Carlo simulations yield a contrast

of our three-grating setup of ∼ 0.8 . Comparing this result for the same number of

particles but for the planned L = 1m, which is shown in figure 5.9, the loss of contrast

for the future setup becomes clearly visible. We can only expect a contrast of ∼ 0.1.

Due to this huge difference between the contrasts, one might think that the short

distances L between the gratings is of andvantage. Nevertheless, the figure of merit

for the Moiré-deflectometer is still the minimal resolvable acceleration gmin (see section

2.7.2) which scales as

gmin ∝ 1

CL2
. (5.18)

Hence, although the contrast is much worse for L = 1m, the gain for this setup is still

given by
gmin|L=1m

gmin|L=0.305m

≈ 1.3. (5.19)
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Figure 5.9: Results of the Monte-Carlo simulations for the setup in Heidelberg, including

the longitudinal velocity distribution of the currently implemented source for (a) L =

0.305m corresponding to the current measurements and (b) L = 1m, planned in future

setups. The upper plots show the pattern of a two grating setup and lower plot the output

signal when scanning the third grating. They provide a contrast of (a) C = 0.9, (b) C = 0.3

for the two-grating setup and (a) C = 0.8, (b) C = 0.1 for the three-grating setup.
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5.3 The Detection via a Faraday Cup

Measuring the atomic flow via a Faraday cup is based on the release of an electron

out of a metallic surface, when a metastable atom is approaching or hitting onto this

surface. Characterised by the work function of the metal φ and the ionisation energy of

the atom EIon, there are two physical concepts that can cause such an electron emission

[91, 92, 93].

Resonant Ionisation and Auger-neutralisation The sketch in figure 5.10(a) shows

the situation of a metastable argon atom that approaches the metallic surface. Assum-

ing a free state in the metal that is further also resonant with the state of the excited

argon electron, we find the possibility that the two wavefunctions of the excited elec-

tron and the electrons in the metal overlap for a sufficiently long time for tunneling to

occur. Hence, as indicated with (1), the argon’s excited electron tunnels into the metal

and as denoted with (2), the ionised argon atom becomes neutralised by an electron of

the metal’s surface that tunnels in turn into the ground state of the argon atom. The

energy release of this process is transferred (at least partially) to kinetic energy of an

electron in the metal, which can then leave the surface.

(a) Resonant ionisation and Auger-neutralisation (b) Auger-de-excitation

Figure 5.10: The two concepts that lead to a the electron emission of the Faraday cup.

The graphs are taken from [56].
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Auger-de-excitation Figure 5.10(b) provides a sketch of the situation of an ap-

proaching metastable argon atom when no resonant state in the metal is available1 or

the ionisation energy EIon is simply too large for the described Auger-neutralisation to

occur. In this case, a release of an electron out of the metal’s surface is still observable.

For this purpose, the argon atom needs to approach very close to the surface such that

one of the metal’s electrons can tunnel into one of the unoccupied states of the argon

atom. This tunneling is indicated in figure 5.10(b) with (1) and leads to an energy

transfer to the valence electron of the argon atom. Hence, this electron is released as

denoted by (2). For both concepts, the energy of the release electron is of the order of

EAr
∗ − φ and it can be expected that the argon atom is de-excited after its first hit on

the metallic surface [94, 95].

For our detection purposes, the efficiency ρeff of the electron-emission depends the

chosen metal, its temperature as well as on the atomic species. Particularly efficient is

a surface of polished stainless steel with a efficiency of (4− 22)% [92].

The setup of the detection with the Faraday cup that we used is shown in figure 5.11

(a) (b)

Figure 5.11: The Faraday cup: 5.11(a) sketch of its concept and 5.11(b) photo of it in

the open vacuum chamber. These pictures are taken from [56].

together with a photo of it. As soon as electrons become emitted of the inner surface

of the cup, a current IFC can be measured by the ampère-meter A. This current can

1Note that any small contaminations of the metal’s surface can lead to a shielding of the metal’s in-

ner structure. Such a shielding can avoid any interaction between the argon’s and the metal’s electrons.

Consequently, no tunneling between resonant states can occur.
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be expressed in atomic flow dN

dt
by

IFC = eρeff
dN

dt
, (5.20)

where the elmentary charge e is included. A detailed characterization of our Faraday

cup can be found in [56].

5.4 The First Gravitational Measurements

For the first runs with the Moiré-deflectometer, we use a grating setup as it is sketched

in figure 5.7. Note that due to the fragility of the current wafers, we use small cutouts

of the grating structure. Their periodicities have already been tested via the Talbot-

effect of light (see section 4.4).

Apart from the metastable argon atoms1, our plasma source additionally emits a lot

of photons originating from the atoms’ decay processes in the plasma. These photons

provide us a pattern that is not shifted by gravity. Hence, their pattern serves as ideal

reference signal for the absolute fringe shift caused by of the gravitational acceleration

g. Assuming no disturbing magnetic or electric fields (see chapter 3), we can retrieve

the absolute shift of the pattern of the argon atoms that is induced by gravitation by

comparing their pattern to the pattern of the photons.

In order to extract the atoms’ signal from the total one, we pulse a laser into the atomic

beam. With this laser of wavelength λ = 801.699 nm, we quench the metastable atoms

to the ground state2. Note that the Faraday cup is ‘blind’ for atoms in the ground state

and with the laserlight on, the Faraday cup only measures the signal of the photons.

Hence, we can take an ‘alternating measurement’, switching between one with the 1s5-

atoms and the one without them.

By monitoring the signal of the Faraday cup behind a three-grating setup, we observe

then a shift �φg between the two signals. This shift can be used in

�xg

d
=

�φg

2π
, (5.21)

1Note that the emitted argon atoms populate (or decay quickly to) both metastable states – the

1s3- and 1s5-state. Nevertheless, the number of atoms in the 1s5-state, that we use, dominates the

output of the source [96, 97, 98, 99]. The additionally emitted charged particles as ions and electrons

are neglected here. With their uncontrolled velocity distributions and possible deflecting electric fields,

they are accounted for as additional loss of contrast.
2See figure B.1 of Appendix B.
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where d represents the grating period and �xg the spatial vertical shift due to gravita-

tion that is observable within one period. Thus, for a deflectometer without disturbing

forces, we can determine an absolute value of g using

�xg = −gT
2
, ⇒ |g| =

����
�xg

T 2

���� =
����
�xg

L2
v
2

z

���� (5.22)

The following paragraphs outline the factors that can limit this measurement method

substantially.

Determination of the Time of Flight T

Concerning the time of flight T of the atoms, the most critical value is the longitudinal

mean velocity vz. As shown in section 5.2 we need to account for a whole distribution.

The resulting loss of contrast of the output pattern of the deflectometer can be mini-

mized by a supersonic source (see figure 5.2), which might be implemented in the future.

Determination of the Absolute Shift �x

For the measurement of the two signals of the metastable argon atoms and the photons,

we measure the pattern at the end of the deflectometer with a continiously running

source.

The absolute shift is retrieved by scanning the output pattern of the deflectometer

alternating with and without the 1s5-atoms. Comparing the data of the two resulting

signals of the same scanning slopes, we find the signal given in figure 5.12. The upper

plot shows the signal of the photons. Here, the data of the Faraday cup current is

denoted with blue points including their statistical errors. Each of them is averaged

over 50 scanning ramps. The fit of this signal, a sin-function with a linear offset is

plotted with the red line and can be compared with the fit of the atoms’ signal provided

in the bottom plot of figure 5.12. This signal has a much smaller signal-to-noise-ratio,

such that the error bars are clearly visible. Calculating the phase shift between these

two fits leads to a an absolute value of

g = (9.5± 1.9)
m

s
. (5.23)
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The following paragraphs provide the calculation and discussion of the error of this

measurement with regard to improvements for future runs.
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Figure 5.12: First runs of the three-grating setup using the argon source in Heidelberg.

The upper plot shows the signal that the photons and the lower plot corresponds to the

same data, where only the signal of the atoms is plotted.

Discussion of the Error on g

The error on the absolute g-measurement via equation 5.22 is given by

�g

g
=

��
�(�xg)

�xg

�2

+ 4

�
�vz

vz

�2

+ 4

�
�L

L

�2

. (5.24)

The individual relative errors, that conribute here, are discussed in the following.

The distance L between two gratings (L = (30.5± 0.1) cm): Currently, the error

�L on the distance L is not a limiting factor. Nevertheless, note that increasing this

distance will help to decrease the relative error �L

L
, which is planned in the next runs.

Besides this, the decrease of the number of atoms that reach the end of the deflectometer

due to the divergence of the beam could be avoided by implementing the collimator
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that has been originally in the chamber for former argon experiments.

Currently, we have a relative error of �L

L
= 3.28 · 10−3, which is almost neglectable

with respect to the other error contributions.

The longitudinal mean velocity vz

�
vz = (478± 47.8) m

s

�
: The longitudinal mean

velocity is retrieved from a measurement in front of the deflectometer. We find a rela-

tive error of �vz
vz

= 0.1. The correction for longer distances R and small capture regions

of the measurements has not yet been verified with experimental data. To avoid a large

systematic error, a velocity measurement along the region of the deflectometer would

be appropriate.

A temporarily changing velocity distribution can be possible, as from time to time,

we observed different modes of operation of our plasma source. The brightness of the

plasma changed during the experiments. We found that some of these different modes

are directly linked to a changed particle flow. For other mode changes, a change in

temperature and thus also in velocity might be possible but has not been measured so

far.

An ideal solution of this problem, is already work in progress: We plan an implemen-

tation of an optical detection of the atoms’ fluorescence light right before and after

the deflectometer. This way, the number of atoms together with their velocities can

be monitored simultanously and the measurement becomes independent of the source

performance by an adequate post-processing of the data.

The vertical shift �xg (�xg = (3.83± 0.30)µm): The error of this vertical shift is

governed by the contrast of the pattern. The steeper the slopes of the pattern, the more

precise the determination of the phase shift. Following our simulation results in figure

5.9(a), a contrast of up to 0.8 should be observable. However, we measure a contrast

of ∼ 0.05. Taking the confidence bounds of the fit into account, we find a relative error

of �(�xg)

�xg
= 0.08.

Major error sources that lead to such a decrease of contrast are:

• Noise and vibrations, as no isolation techniques have been implemented in this

first setup.

• Unknown fraction of charged particles and atoms which are not in the 1s5-state

with unknown velocity distributions are detected by the Faraday cup.
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• Unknown disturbing magnetic and electric fields yielding an unknown loss of

contrast.

• For future runs, it is important to note that the scanning of the third grating

is done via piezo-controlled stepper motors, that scan with a velocity of vgrat =

40 µm

s
. The bandwidth BW of the Faraday cup behind this scanning grating is

given by BW = 5.7Hz [56] which provides us a rise time of [100]

tR =
0.35

BW
≈ 60ms. (5.25)

Hence, the detection system consisting out of the scanning grating and the rather

inert ampère-meter that measures the current of the Faraday cup integrates over

a vertical range of

xr = vgrattR ≈ 2.4µm. (5.26)

This integration might limit the contrast in future runs. In our first runs, a

dependence on the scanning velocity vgrat has not been observed.

Improving these error sources opens promising prospects towards a high-precision gravime-

ter for the setup in Heidelberg and towards the successful gravitational measurement

of antimatter at CERN.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

In the present thesis, a Moiré-deflectometer has been studied with regard to its appli-

cation as gravimeter for the antihydrogen experiment of the AEgIS-project.

For a complete theoretical background of the deflectometer, we distinguished between

two major regimes – one governed by wave-propagation and wave-interference and the

other one entirely describable by classical ray optics or Newtonian Mechanics. Both

these regimes were presented in the context of optical and matterwaves. With this the-

oretical basis, we optimised the classical Moiré-deflectometer for its application within

the AEgIS-experiment. In order to do this, we discussed its minimal resolvable acceler-

ation gmin with regard to the antihydrogen experiment at CERN, and also considering

an appropriate testing setup with metastable argon atoms in Heidelberg. In the latter

application, we found that the setup can even approach the precision required to resolve

the tidal effect.

In addition, we presented a sensitivity analysis on external magnetic an electric fields

and found critical field values for both experimental setups with argon and with anti-

hydrogen. For the magnetic field, we also discussed the application of a constant offset

field to reduce the dependence on a disturbing field gradient.

The experimental part of this work covered the design and construction and first

gravitational measurements of a Moiré-deflectometer for the AEgIS-project. In this

context, we developed appropriately large-area transmission gratings – the major parts
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of the setup – and demonstrated our improvements to the stability of the setup. Build-

ing a test-setup with an argon source and a Faraday-cup-detection allowed for an ab-

solute gravitational measurement with our first prototype of the deflectometer. These

measurements yielded an absolute value of g = (9.5 ± 1.9) m

s2
, which clearly demon-

strated the functionality and in particular, the potential use of the Moiré-deflectometer

as gravimeter for the AEgIS-experiment.

One of the main goals of the project has been achieved through the successful mea-

surement of gravitation with the modified design of a classical Moiré-deflectometer. A

deeper understanding of both, the setup in general and possible disturbing effects such

as external fields or vibrations has been gained. This will now allow for a focused work

on improving the apparatus and the final implementing it into the AEgIS-experiment

at CERN.

6.2 Outlook

Starting with an outlook for the testing experiments in Heidelberg, there are several ex-

perimental improvements that can be implemented in the near future. Firstly, mounting

Hall-sensors along the deflectometer, will provide us a control of the external magnetic

field, which might lead together with the here presented sensitivity analysis to the de-

sign and construction of an appropriate magnetic shielding. The presented discussion

of the BRGS-method suggests to use a surrounding solenoid for the argon-experiment.

Secondly, after manufacturing three wafers of the grating design that has been de-

veloped within the framework of this thesis, the current Moiré-deflectometer can be

upgraded to a first prototype with large-area gratings. These gratings also facilitate

the implementation of the optical Mach-Zehnder-interferometers to control the setup’s

stability during data acquisition. In this context, the previously found vibration isola-

tion techniques can also be implemented into the current setup and hence, substantially

decrease any noise- and vibration effects.

Furthermore, the large error of the gravitational measurement that originates from

the determination of the longitudinal mean velocity, needs to be decreased. As pre-
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sented in this thesis, this might be done by an upgrade of the currently implemented

source to a supersonic source.

Another even more promising method is to use a velocity-selective detection tech-

nique instead of the Faraday cup. Using the light-induced-fluoresence method, similar

to the one that has already been used for the source characterisation, we can retrieve

the flow of atoms and, simultaneously, their velocity distributions. In this way, the un-

certainty of the considered velocity is much smaller and the error on g can be decreased

substantially.

Furthermore, this detection method exclusively measures the metastable atoms in the

1s5-state and is not sensitive on any other particles originating from the plasma source.

Additionally, the fluorenscence detection method allows us to monitor the fluoresence

signal of the atoms right before their flight through the deflectometer. Hence, we receive

an ideal reference signal, which may become particularly useful when going to larger

integration times. For these time scales, the uncontrollable changing of the modes of

the plasma source, which we observe from time to time, could be mapped out by nor-

malising the velocity selective measurements at the end of the deflectometer with the

fluoresence signal right in front of this gravimeter.

Regarding this large variety of improvements, many of which have already been

initiated, we set up a classical Moiré-deflectometer as gravimeter that can potentially

resolve the acceleration of the tidal force with 10−7
g.

For the AEgIS-setup at CERN, great prospects have been opened with the first

measurements in Heidelberg. Not only have we shown the functionality of our design

of the Moiré-deflectometer. With the demonstration of a three-grating setup, we have

also provided a possible alternative detection method for the antihydrogen experiment

using three gratings instead of two. Although the three-grating setup reduces the

detected antihydrogen atoms by a factor of one third, this option might solve issues

with the spatial resolution of the position-sensitive detector that is currently planned

for AEgIS.

Considering the overall AEgIS-experiment, the design, construction, measurements and

discussion of the Moiré-deflectometer, which were presented in this thesis, provide useful
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information about the prototype of the gravimeter for the first direct gravitational

measurement of antimatter.
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Appendix A

Mathematical Description of

Thin Material Transmission

Gratings

A.1 The Gratings

... in Position Space

For a mathematical expression of a transmission function of a thin material transmis-

sion grating it is convenient to exploit its periodicity. Thus, convolving the analytic

expression of one period with an appropriate train of δ-functions yields the desired

analytic expression of the whole grating’s transmission. Figure 2.5 shows a zoom into

the center region of such an infinitesimal thin grating. To describe the transmission of

one period d, the so-called top-hat-function Π(x), sketched in figure A.1, is used. This

function is defined by[39]

AΠ
�
x

a

�
=

�
A, if |x| < a

2

0, otherwise
(A.1)

Using this function as it is shown in figure 2.5 requires an additional shift of its absolute

position in space. Hence, one period is expressed analytically by

fp(x) =
��

x+ a

2

a

�
, (A.2)
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�

Figure A.1: Usage of a top-hat function.

where the width of one hole is given by a and the maximal transmittance through it is

normalised to one, i. e. A = 1.

In order to implement the periodicity of the grating with N slits a finite train of

δ-functions
�

finite
δ (x− ld) of periodicity d only needs to be shifted by a

2
as it is done

for the top-hat-function before. Thus, the total transmission function of a material

grating is given by

fgrat(x) =

N−1
2�

l=
N−1

2

δ
��

x+
a

2

�
− ld

�

� �� �
=h(x)

�
��

x+ a

2

a

�

� �� �
=fp(x)

, (A.3)

where � denotes the convoltion of the two functions fp(x) and h(x), which is defined

as

(fp � h) (x) =

� ∞

−∞
f(τ)h(x− τ)dτ. (A.4)

... in Fourier Space

The Fourier transform of the grating’s transmission function can now be found by

using the definitions of h(x) and fp(x) of equation (A.3) and some of the transformation

properties given in subsection A.2. Starting with h(x) the properties given in equations

(A.9) and A.13 yield

H(u) = e
πiau sin (πNdu)

sin (πdu)
. (A.5)
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Furthermore, for fp(x) the properties of equations (A.9) and (A.12) lead to

Fp(u) = e
πiau · a · sinc (au) . (A.6)

Using the convolution theorem of equation A.14 finally provides the Fourier represen-

tation of the transmission function

Fgrat(u) = e
2πiau · a · sinc (au) sin (πNdu)

sin (πdu)
(A.7)

A.2 The Fourier Transform and Some Useful Properties

The Fourier Transform of a general function f(x) is defined as

F (u) =

� ∞

−∞
f(x)e−2πixu

dx. (A.8)

There are some important properties of the Fourier pair f(x)
FT←→ F (u) for the deriva-

tion of the grating’s transmission function:

1. Shifting property:

f(x− x0)
FT←→ e

−2πix0uF (u) (A.9)

2. Derivatives:

−2πitf(x)
FT←→ dF (u)

du
and (A.10)

df(x)

dx

FT←→ 2πiuF (u). (A.11)

3. Top-hat-function:

f(x) =
��

x+ a

2

a

�
FT←→ F (u) = Aa · sinc (au) (A.12)

4. Finite train of (2n+ 1) δ-functions:

fn(x) =
n�

l=−n

δ (x− ld)
FT←→ Fn(u) =

sin
�
2π

�
n+ 1

2

�
du

�

sin (πdu)
(A.13)

Note the periodicity of Fn(u) with period 1

d
and its major peaks at any integer

multiples of this period with a height of 2n+ 1.

5. Convolution theorem

g(x) = (f � h) (x)
FT←→ G(u) = F (u)H(u) (A.14)

The proofs of these properties can be found in the Appendix of [101] and in[39].
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Appendix B

Atomic Data

B.1 General and Atomic Constants

Table B.1: Some useful general constants taken from [102].

speed of light c 299792458m

s

gravitational constant G 6.67384(80) · 10−11m3kg−1s−2

atomic mass unit amu 1.660538782(83) · 10−27 kg

electron mass me 9.10938215(45) · 10−31 kg

proton mass mp 1.672621777(74) · 10−27 kg

Planck constant h 6.62606896(33) · 10−34Js

Planck constant � = h

2π 1.054571726(47) · 10−34Js

Boltzmann constant kB 1.3806504(24) · 10−23JK−1

magnetic permeability µ0 12.566370614 · 10−7NA−2

electric permittivity ε0 =
1

µ0c
2 8.854187817 · 10−12 F

m

Bohr radius a0 =
4πε0�2
mee

2 0.52917721092(17) · 10−10m

Bohr magneton µB = e�
2me

927.400915(23) · 10−26 J

T

fine structure constant α = e
2

4πε0�c
1

137.035999074(44)

Rydberg constant R∞ = mee
4

8ε20h
3c

10973731.568539(55) 1

m
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B.2 Atomic Properties of Argon

Table B.2: Some useful atomic properties of 40Ar [102].

relative abundance 0.996

mass m 39.96 amu

nuclear spin I 0

relevant transition 1s5 − 2p9

Landé factor gJ of the 1s5(J = 2)-state 1.506

wavelength λ 811.754 nm

linewidth γ 2π · 5.85 MHz

lifetime τ 27.09 ns

saturation intensity I0 1.44mW

cm2
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B.2 Atomic Properties of Argon

Figure B.1: Atomic Transisions of argon and their properties provided by the Einstein

A-coefficient. Data was taken from [102].
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