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In dieser Arbeit wird die Wechselwirkung von dunklen Solitonen, die in zigarrenför-
migen Bose-Einstein Kondensaten oszillieren, experimentell und theoretisch untersucht.
Eine gerade Anzahl von Solitonen wird erzeugt indem zwei in einem Doppelmuldenpo-
tential voneinander getrennte Kondensate in einer harmonischen Falle zur Kollision ge-
bracht werden. Die Bewegung der Solitonen wird über mehrere ihrer Schwingungsperio-
den beobachtet und ihre Stabilität nach mehrfachen Kollisionen miteinander gezeigt. Die
Oszillationsfrequenzen der Solitonen werden bestimmt. Sie sind deutlich höher als die
numerisch bestimmten Oszillationsfrequenzen von einzelnen Solitonen in Kondensaten
mit gleichen Eigenschaften. Zur Interpretation dieser Abweichungen wird die Wechsel-
wirkung von Solitonen für den exakten Fall homogener eindimensionaler Systeme un-
tersucht und ein effektives Potential zur Beschreibung der Wechselwirkung eingeführt.
Dieses Potential wird verallgemeinert um die Dynamik zweier oszillierender Solitonen in
zigarrenförmigen Kondensaten zu beschreiben und seine Anwendbarkeit wird im Vergle-
ich mit numerischen Simulationen bestätigt. Unter Anwendung dieses Wechselwirkungspo-
tentials kann gezeigt werden, dass die Abweichungen der Oszillationsfrequenzen zweier
Solitonen tatsächlich durch ihre Wechselwirkung hervorgerufen werden. Die Methode
zur Erzeugung von Solitonen wird erweitert um die Erzeugung einer ungeraden Zahl von
Solitonen zu ermöglichen und in einem ersten Experiment erfolgreich genutzt. Das effek-
tive Wechselwikungspotential wird weiter verallgemeinert und seine Anwendbarkeit auf
die Wechselwirkung von mehr als zwei Solitonen mit verschiedenen Geschwindigkeiten
wird in numerischen Rechnungen bestätigt. Dieses kann in der Zukunft genutzt werden,
um die Wechselwirkung von Solitonen in solch allgemeineren Situationen durch Messung
ihrer Oszillationsfrequenzen zu identifizieren.

This thesis investigates experimentally as well as theoretically the interactions between
dark solitons oscillating in cigar shaped Bose-Einstein condensates. Even numbers of
dark solitons are created experimentally in the collisions of two condensates released
from a double well potential into a harmonic trap. Their motion in the trap is recorded
for several oscillation periods and they are shown to be stable while undergoing multiple
collisions with each other. The oscillation frequencies of two dark solitons in the trapped
condensates are determined and are significantly higher than the numerically determined
oscillation frequencies of single solitons under the same conditions. To interprete these
frequency deviations, the interactions of dark solitons are investigated for the exact case
of homogeneous one-dimensional systems and an effective potential describing their in-
teractions is introduced. This potential is generalized to describe the dynamics of two
dark solitons oscillating in cigar shaped condensates and its validity is shown by compar-
ison to numerical simulations. Using this potential, the observed frequency deviations of
the two oscillating solitons can be attributed explicitly to their interaction. Furthermore,
the soliton generation method is extended to allow the creation of odd numbers of solitons
which is realized in a first experiment. The effective interaction potential is further gener-
alized and numerically corroborated to allow for the treatment of more than two solitons
with different velocities and can in the future be used to identify interaction effects on
their oscillation frequencies in these more general cases.
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1 Introduction

The dynamics of nonlinear systems exhibit characteristic features which have been, in
different forms, the subject of research for more than 150 years. The existence of solitons
is one of these features. Solitons were first observed in the year 1834 by John Scott Russel
at the Union Canal in Scotland as travelling water waves. He wrote about them [1]:

"I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped - not so the mass of water in the
channel which it had put in motion; it accumulated round the prow of the vessel in a state
of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap
of water, which continued its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and overtook it still rolling on at a
rate of some eight or nine miles an hour, preserving its original figure some thirty feet
long and a foot to a foot and a half in height. Its height gradually diminished, and after
a chase of one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful phenomenon
which I have called the Wave of Translation"

These “waves of translation”, or bright solitons, show some characteristics quite dis-
tinct from ordinary waves. They travel for long distances at constant velocities without
a deformation of their shape. Their velocity is directly related to the height of the wave
and instead of merging upon collision with each other, they pass through each other, only
experiencing a shift of their position.

The solitons were later explained as solutions to the Korteweg-de Vries equation [2],
which describes the behavior of waves in shallow water. Solitons were found to exist
as solutions to many other nonlinear differential equations and in addition to the bright
solitons, which constitute a local elevation of a constant background, dark solitons were
found to exist. These are characterized by a localized dip travelling through a constant
background. Aside from this obvious difference between the two kinds of solitons, they
share the general characteristics mentioned above. Physical systems in which the dark
solitons were experimentally observed include the surfaces of liquids [3], discrete me-
chanical systems [4] and thin magnetic films [5].

Dark solitons were also intensively investigated as solutions to the one-dimensional
nonlinear Schrödinger equation [6, 7] which were experimentally created and investigated
in the context of nonlinear fiber optics [8, 9, 10]. A special attention in the theoretical
examination of the dark solitons was payed to the nature of their interaction with each
other, which was found to be of a repulsive nature [7, 11, 12]. Evidence for this interaction
has been experimentally observed for dark optical solitons [13, 14].
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1 Introduction

With the first creation of Bose-Einstein condensates [15, 16, 17], a new system for the
investigation of nonlinear dynamics became available. Dark Soliton have been created
and observed in Bose-Einstein condensates with three dimensional geometries [18, 19,
20, 21], but they were found to be instable in these systems and to decay rapidly [22].

This decay is inhibited for Bose-Einstein condensates with more one-dimensional ge-
ometries, where the condensate is strongly confined in two directions. In the completely
one-dimensional case, the nonlinear equation governing the dynamics of the condensate is
completely equivalent to the one-dimensional nonlinear Schrödinger equation describing
the behavior of optical dark solitons.

Dark solitons have recently been created in so called cigar shaped geometries, which are
in the crossover regime between one and three dimensions [23]. In these geometries, the
solitons are stable for hundreds of milliseconds which allows for a detailed investigation
of their dynamics. The dark solitons in these geometries oscillate along the axis of rota-
tional symmetry of the cigar shaped condensate due to the harmonic confinement along
this axis that traps the condensates[24]. This was observed experimentally in [23] for a
single oscillation period. Also very recently, the collision of two dark solitons was ob-
served in the same experiment, but no conclusions about the interaction of these solitons
could be reached [25] because the effects of interaction in this case of a single collision
were too small to be observed.

In our experiments, two dark solitons are created in the collision of two Bose-Einstein
condensates released from a double well potential into a harmonic trap. Their subsequent
oscillation in the cigar shaped condensate is observed for several oscillation periods.

During this oscillation, the two solitons collide with each other multiple times, which
increases the total effect of the short ranged interaction between the solitons on their
dynamics and facilitates the quantitative investigation of their interaction.

The influence of this interaction on the oscillation frequency of the dark solitons is iden-
tified using an effective interaction potential. For the first time, the theoretical predictions
about the interaction between dark solitons can be quantitatively tested with experimental
data.

Outline of this thesis

Chapter 2 investigates the dynamics of dark solitons in the framework of the one-dimensional
nonlinear Schrödinger equation. A special focus is put on the interaction between dark
solitons and an effective interaction potential is introduced.

In chapter 3, the concept of dark solitons is extended to cigar shaped Bose-Einstein
condensates. The soliton dynamics is shown to be oscillatory and the oscillation frequen-
cies are investigated numerically and using a generalization of the effective interaction
potential. The effects of the interaction are found to increase the oscillation frequencies
of multiple oscillating solitons with respect to those of single solitons, which provides an
approach for the experimental investigation of this interaction.

In chapter 4, a method to create multiple oscillating solitons in a 87Rb Bose-Einstein
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condensate is discussed and the experimental results on the creation and subsequent os-
cillation of dark solitons are presented.

Chapter 5 discusses the observed soliton oscillation frequencies. In comparison to the
theoretical predictions, the role and magnitude of the repulsive interaction between dark
solitons is unambiguously identified.

Chapter 6 provides a short summary of the results of this thesis and an outlook on
further experiments.

3





2 Dark Solitons - Dynamics and
Interactions

Solitons, first observed by John Scott Russel as travelling, shape preserving water waves
in a canal, were found to exist as stable solutions of various types of nonlinear partial
differential equations and exhibit a set of common characteristics.

Solitons are localized wavepackets in nonlinear dispersive media. They can be either
bright, constituting a localized elevation, or dark, as a localized dip, on a homogeneous
background. They travel without deformation and at a constant velocity that is directly
related to their height, in the case of bright solitons, or depth, in the case of dark soli-
tons. When two or more solitons collide with each other, instead of merging to form
larger wave packets, they leave the collisions without perturbation of their characteristic
features,which are their shape and velocity. The only form of interaction with each other
is a phase shift acquired during the collision.

In this chapter, the general characteristics of dark soliton solutions to the homogeneous
one-dimensional nonlinear Schrödinger equation (NLS) are investigated, with a special
attention being paid to their behavior upon collision with each other and the implications
of their interactions.

2.1 Solitons

2.1.1 A Definition

Following the definition of Scott [26], a soliton is a solution of an integrable partial dif-
ferential equation which satisfies the following criteria:

1. The solution is a travelling wave that travels with a constant velocity v, i.e. the
solution Φ(ξ ) depends on the spatial variable z and the time variable t 1 only via
the relation ξ = z− vt.

2. The solution is a solitary wave, i.e. it exhibits a transition between two asymptotic
constant values of Φ(ξ ) for ξ →±∞ that is localized in ξ .

3. The solution asymptotically preserves its shape and velocity upon collision with
other solitary waves, i.e. a solution which, at t → −∞, is composed of a sum of

1Note that in some cases the time and space variables may be interchanged, e.g. for optical solitons in
waveguides [27].
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2 Dark Solitons - Dynamics and Interactions

solitary waves ∑ j Φ j(ξ j) with ξ j = (z− v jt) will, after a collision between the sep-
arate solitary waves, for t→+∞ be composed of the same solitary waves ∑ j Φ j(ξ̃ ′j),
subjected only to a phase shift ξ̃ ′j = (z− v jt +δ j).

This definition of a soliton is a rather mathematical one, being strictly applicable only to
integrable systems. The properties of these types of soliton solutions will be discussed in
this chapter but in an experimental realization the condition of integrability of the govern-
ing nonlinear equation will not be fulfilled. A more practical definition for “soliton-like”
wave packets in the realistic case of near- or non-integrable systems will be given in chap-
ter 3.2.1 and it will be investigated, how closely the characteristics of ideal solitons are
reflected in more complex situations.

Criterion three, which Scott considers a “working definition”, entails some of the fas-
cinating features solitons exhibit, namely their stability in collisions with each other and
their interaction with each other, affecting them only via a phase shift.

In the way it is stated in [26], criterion three seems to presuppose that the solitons are
identified by their velocities and thus a soliton leaving a collision with a certain velocity is
identified with the soliton of that velocity entering the collision as being the same soliton
preserving its shape. In section 2.3.1 a different viewpoint on these collisions will be
taken to make way for a more particle like interpretation of soliton collisions in cases
where it is physically counterintuitive to regard the solitons as being transmitted through
each other. In this picture it will be possible for two solitons to exchange velocity during a
collision and thus a single soliton will indeed change its shape and velocity. Nevertheless,
criterion three will still hold since the final solution still contains the same number of
solitons with the same velocities; it is simply the question of identification that will be
treated differently.

2.1.2 Bright and Dark Solitons

There are numerous types of nonlinear partial differential equations that support soliton
solutions. First discovered as solutions to the Korteweg-de Vries equation, they were
later also found for the Sine-Gordon equation, nonlinear lattice equations, the Born-Infeld
equation and many others [26], including the nonlinear Schrödinger equation which will
be investigated within this thesis.

To illustrate the mechanism responsible for the stability of soliton solutions, it is in-
structive to look at the nonlinear Schrödinger equation as an example. The homogeneous
one-dimensional nonlinear Schrödinger equation has the form:

i
∂

∂ t
u(z, t) =

[
−1

2
∂ 2

∂ z2 ±|u(z, t)|2
]

u(z, t) (2.1)

The first term of the right hand side is the normal dispersion term for massive particles
which, in the absence of the second, nonlinear term on the right hand side, leads to a
broadening of a localized wave packet. This effect results from the fact that every wave
packet solution can be decomposed into a series of different frequency Fourier compo-
nents. In a system with normal dispersion and no counteracting effect, these components
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2.2 Dark Solitons of the One-Dimensional Nonlinear Schrödinger Equation

propagate with different phase velocities and any localized structure smears out over time.
Figure 2.1(a) illustrates this behavior.

x t

(a) without nonlinear term term (b) negative nonlinearity (c) positive nonlinearity

Figure 2.1: Numerical time evolution of wave packets using the nonlinear Schrödinger equation
(Eq. 2.1) with different signs of the nonlinearity. In the presence of nonlinearity,
solitonic, i.e. non-spreading solutions, are observed.

For a soliton solution of the nonlinear Schrödinger equation this dispersion effect is
cancelled out by the effect of the nonlinear term. Depending on the sign of the nonlinear
term, two different classes of solutions are allowed.

In the so called focusing case of a negative sign, the nonlinear term leads to a reduction
of energy at points with high density and a bright soliton solution exists. This bright
soliton corresponds to a localized peak of |u(z, t)| with |u(z, t)| → const. for z→ ±∞.
Figure 2.1(b) shows a stationary bright soliton solution and its time evolution. The shape
of the solution remains completely unchanged over time since the dispersion is completely
cancelled out by the nonlinearity.

In the defocusing case of a positive sign of the nonlinearity, the wavefunction expe-
riences an effective repulsion, since the nonlinear term leads to an increase of energy at
points of high density. In this case, a dark soliton solution exists, corresponding to a local
minimum of |u(z, t)| with nonzero asymptotic values of |u(z, t)| → const. for z→ ±∞.
This case and its time evolution are shown in Figure 2.1(c) for a stationary solution.
Again, the shape of the solution is stable over time.

2.2 Dark Solitons of the One-Dimensional
Nonlinear Schrödinger Equation

2.2.1 Single Dark Soliton Solutions

Dark solitons exist as analytic solutions of the homogeneous one-dimensional nonlinear
Schrödinger equation with a positive nonlinear term:

i
∂

∂ t
u(z, t) =

[
−1

2
∂ 2

∂ z2 + |u(z, t)|2
]

u(z, t) (2.2)
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2 Dark Solitons - Dynamics and Interactions

Note that this equation is given in dimensionless units, and will be used in this form
throughout this chapter. To apply it to different physical situations, it can be scaled by a
transformation of the variables and the normalization of the wave function u(z, t).

The first exact soliton solution to this equation was given by Tsuzuki [6] and later by
Zakharov and Shabat [7] for the more general case of multiple solitons and is here given
in the form of [27] for a single dark soliton in a homogeneous background:

u(z, t) = eit (B tanh [B(z− vt− z0)]+ iv) . (2.3)

This complex valued solution exhibits a local minimum of the modulus of the wave-
function |u(z, t)| which is accompanied by a phase change of the wavefunction. The local
minimum is considered the soliton’s position, which is at t = 0 given by z0. The asymp-
totic background value of |u(z, t)| is normalized to one and the global phase factor eit

describes the time evolution of this background but, without a fixed scale for the phase,
bears no physical significance. The parameter B =

√
1− v2 determines the darkness of

(a) v = 0 (b) v = 0.5

z

(c) v = 0.9

z

(d) v = 0

z

(e) v = 0.5

z

(f) v = 0.9

Figure 2.2: (a)-(c): The modulus of single solitons solutions (eq.2.3) for different soliton velocities
v. The dip in the homogeneous background becomes shallower the faster the soliton
moves. (d)-(f): The phase of the soliton wave functions for the same velocities. The
phase jump at the position of the soliton becomes less sharp and smaller in magnitude
for faster solitons.

the soliton. The value of |u(z, t)| at the local minimum is given by
√

1−B2. This pa-
rameter depends on the velocity v ∈ [0,1] with which the local minimum moves. For the
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2.2 Dark Solitons of the One-Dimensional Nonlinear Schrödinger Equation

limiting case of a stationary soliton (v = 0) the modulus of |u(z, t)| at the minimum goes
completely down to zero and B = 1. These solitons are referred to as black solitons, while
solitons with velocities v > 0 are commonly referred to as gray solitons.

The faster the soliton moves, the shallower the dip in the modulus of the wave function
becomes, as exemplified in figure 2.2(a)-(c), which shows the modulus of the soliton wave
function for different values of v. As the soliton’s velocity approaches one, B goes to zero
and the solitons vanishes, becoming identical to the homogeneous background.

The phase change of the wave function also depends on the soliton velocity. For a
stationary soliton the phase has a sharp jump of π at the position of the minimum of the
modulus of the wave function. For moving solitons this phase change gets smaller in
magnitude and extends over a larger distance centered around the minimum as shown in
figure 2.2(d)-(f).

This soliton solution satisfies the criteria one and two of the definition (section 2.1.1).
The solution is a travelling wave solution with a constant velocity, since, aside from a
global phase factor, it depends on the time and space variables only via the relation (z−
vt− z0). As shown in figures 2.2(a)-(f) it is also a localized solution, since the transition
between two asymptotic values of the wave function takes place within a small region.

To answer the question whether criterion three, regarding the interactions of solitons,
is satisfied one has to turn to solutions containing more than one soliton.

2.2.2 Multiple Dark Soliton Solutions

The nonlinear Schrödinger equation also supports solutions of multiple dark solitons
propagating with different velocities. The first solutions of this kind were obtained by
Zakharov and Shabat by means of the inverse scattering transform [7]. The dynamics of
multi soliton wavefunctions was later investigated by Blow and Doran [11] who obtained
an analytic solution for two dark solitons travelling with different velocities that is given
by:

u(z, t) =[1− 2i
Γ

[
2

B1 +B2

(
1

iB1 + v1
+

1
iB2 + v2

)
+(iB1− v1)

(
1

B1
+

e2zB1

µ1

)
+(iB2− v2)

(
1

B2
+

e2zB2

µ2

)
]]e−2it (2.4)

with :

Γ =(v1− iB1)(v2− iB2)
(

e2zB1

µ1
+

1
B1

)(
e2zB2

µ2
+

1
B2

)
− 1

(B1 +B2)
2

(
1

v1 + iB1
+

1
v2 + iB2

)2

,

µ j = e2B j(x0
j+v jt)

B j =
√

1− v2
j , j = 1,2

9



2 Dark Solitons - Dynamics and Interactions

where v1 and v2 denote the velocities of the solitons, subject to the conditions −1 <
v1,2 < 1 and v1 6= v2. B1 and B2 are measures for the darkness of the solitons analogous
to B of equation 2.3. Again, for a stationary soliton the solution goes completely to zero
at the local minimum of the dip that constitutes the soliton. For faster solitons the dip
becomes shallower and vanishes for solitons approaching v j→±1. The x0

j are constants
to adjust the initial positions of the two solitons.

(a) v1 = 0.3, v2 =−0.3 (b) v1 = 0.5, v2 =−0.2

-10 -5 0 5 10

15

10

5

0 |u(z,t)|
1

0

(c) v1 = 0.7, v2 = 0.0

Figure 2.3: Time Evolution of the modulus of the two soliton solution (Eq.2.4) for different initial
soliton velocities v1,v2.

This equation, its time evolution being visualized in Figure 2.3 for different initial
soliton velocities, fulfills all three criteria demanded in the definition of the term soliton
(see section 2.1.1). For t →±∞ the solitons are well localized and travel with constant
velocities. The solution for t → +∞ consists of two solitons travelling with the same
velocities as the solution for t →−∞ and the shapes of the solitons are preserved. The
only effect of the shown collision of the two solitons, as demanded in the third criterion, is
a phase shift between the incoming and the outgoing solitons. This phase shift is visible
as a shift between the trajectories of the solitons before and after the collision and is
investigated in more detail in the next section.

2.3 Interactions Between Dark Solitons

2.3.1 Collisions of Dark Solitons

The interaction between dark solitons can be characterized by the phase shifts of their
wavefunctions acquired upon collision, manifesting themselves in the displacement of
the soliton trajectories. Following Zakharov and Shabat [28, 7], for t → ±∞ the two
soliton solution can be decomposed into individual solitons:

u(z, t)→ u0(z− v1t,z+
1 ) and u0(z− v2t,z+

2 ), t→+∞

u(z, t)→ u0(z− v1t,z−1 ) and u0(z− v2t,z−2 ), t→−∞ (2.5)

10



2.3 Interactions Between Dark Solitons

where
u0(z− vit,z±i ) = eit (Bi tanh

[
Bi(z− vit− z±i )

]
+ ivi

)
. (2.6)

The two separate soliton solutions are valid in regions far apart from each other and the
wavefunction in the region between them is supposed to take the homogeneous back-
ground value of |u(z, t)|= 1.

The scattering of the two solitons leads to a phase shift of their center:

δ z1 = z+
1 − z−1 , δ z2 = z+

2 − z−2 (2.7)

This shift has been calculated in [7], assuming v1 > v2, to be

δ z1 =
1

2B1
ln

(v1− v2)2 +(B1 +B2)2

(v1− v2)2 +(B1−B2)2

δ z2 =− 1
2B2

ln
(v1− v2)2 +(B1 +B2)2

(v1− v2)2 +(B1−B2)2 . (2.8)

In the case of v1 > 0 and v2 < 0, in which the two solitons move in opposite directions,
the signs of the phase shifts imply that both shifts act in the direction of motion of the
individual solitons.

z

t

(a) v1 = 0.2, v2 =−0.2
z

t

(b) v1 = 0.8, v2 =−0.8.

Figure 2.4: Symmetric two soliton collisions as given by eq. 2.4 for different initial soliton veloc-
ities v1,v2. The soliton trajectories before and after the collisions (full lines) and the
acquired phase shifts are indicated.

Figure 2.4 shows these phase shifts of the trajectories of the soliton with v > 0 for two
different velocities. It can be clearly observed, that the soliton travels with the same con-
stant velocity before and after the collision but the trajectories are displaced with regard
to each other by the amount given by equation 2.8.

Figure 2.5 shows the phase shifts that a soliton moving with velocity v1 experiences in
a collision with a second soliton for cases of particular interest in the scope of this thesis.
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2 Dark Solitons - Dynamics and Interactions
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Figure 2.5: The phase shifts a soliton moving with velocity v1 experiences upon collision with
a soliton moving with v2 = −v1 (full line) and with a stationary soliton with v2 = 0
(dashed line)

The full line shows the phase shift for the case where the second soliton moves with the
same velocity in the opposite direction (v2 = −v1) and the dashed line for the case of a
stationary second soliton (v2 = 0). In both cases, the phase shift increases with decreasing
soliton velocity. The phase shifts for the collision with a stationary soliton are higher than
the ones for the collision with the moving soliton.

In general, the phase shift, that determines the effect of the interaction on the trajecto-
ries of two colliding solitons, depends on their total velocity, having a much larger effect
on slowly moving solitons than on very fast ones.

2.3.2 Reflection or Transmission?

So far the investigation of the nature of collisions between dark solitons has been con-
ducted in the spirit of criterion three of the definition of a soliton (section 2.1.1), iden-
tifying the separate solitons by their velocities. This point of view implies that in every
collision the solitons are transmitted through each other and afterwards continue to move
in the same direction as they did while approaching each other. From a formal point of
view, this assumption can always be justified by the fact, that the multi-soliton solutions,
at times long before and after the collision, can be decomposed into the same single soli-
ton wave functions being only affected through a phase shift. Nevertheless, when looking
at the collisions directly, this picture is counterintuitive.

Figure 2.6 shows collisions in two different velocity regimes. In Fig 2.6(a) both soli-
tons move fast. As they collide, the modulus of the wavefunction between the solitons
decreases below the level it takes at the center of each individual soliton before and after
the collision. This collision indeed looks like the solitons are transmitted through each

12
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|u(z,t)|

(a) initial velocities: v1 = 0.9, v2 =−0.9

|u(z,t)|

(b) initial velocities: v1 = 0.1, v2 =−0.1.

Figure 2.6: The collision dynamics of dark solitons (eq. 2.4) for slow and fast solitons show a
qualitatively different behavior at the point of closest proximity of the two solitons.

other, for a short time being in the same place forming a deeper dip. On the other hand,
Figure 2.6(b) shows a collision for two slow solitons. Here, the modulus of the wavefunc-
tion between the two solitons hardly changes from the asymptotic background level and,
instead of forming a dip that is deeper than each individual soliton, the solitons seem to
simply repell each other and change their direction of motion without being transmitted
through each other.

To investigate these different regimes more quantitatively, a simpler form of equation
2.4 is employed, obtained by Akhmediev and Ankiewicz [12] for the case of two solitons
moving with equal velocities v in opposite directions that is given by:

u(z, t) =

(
1−2v2)cosh [2tvB]−

√
v2 cosh [2Bz]+2ivBsinh [2tvB]

cosh [2tvB]+
√

v2 cosh [2Bz]
eit (2.9)

This solution has the advantage of being symmetric in time and the point of closest
proximity of the two dark solitons is always at t = 0.

Figure 2.7 shows the behavior of this two soliton wavefunction at t = 0 for different
initial velocities. Three cases can be distinguished. For v < 0.5, the modulus of the
solution at z = 0, which is the center between the two solitons at the point of closest
approach during their time evolution, never goes down to zero. The solitons approach
each other up to a certain distance but are always characterized by two separate minima.
At t = 0 the wave function at these minima takes the value u(z, t) = 0. For v = 0.5, the
solution at z = 0 goes exactly down to zero and the two solitons form, at the point of
collision, a single dip. For v > 0.5, the solitons still form a single dip at t = 0 but the
modulus of the solution does not go completely down to zero at the minimum.

The behavior of the modulus of equation 2.9 at t = 0 for the complete range of allowed
velocities is shown in figure 2.8. It can be seen that for all velocities v < 0.5 the solution
entails two distinguishable minima with u = 0 while the modulus of u(z = 0, t = 0) slowly

13



2 Dark Solitons - Dynamics and Interactions

(a) v = 0.3 (b) v = 0.5 (c) v = 0.7

Figure 2.7: The modulus of the symmetric soliton solution (eq.2.9) at t = 0, the point of closest
proximity, for different soliton velocities v

z

v

Figure 2.8: Dependence of the modulus of the symmetric two soliton solution (Eq.2.9) at t = 0 on
the velocity v of the solitons. The line at v = 0.5 indicates the transition where the two
separate minima merge into a single one

decreases with increasing v. At v = 0.5, the two separate minima merge into a single
one at z = 0 and for larger velocities, the solution maintains a single minimum. From
there on, the modulus of the solution at z = 0 increases with increasing velocities and
reaches |u(z = 0, t = 0)|= 1 at v = 1, for which the two solitons completely vanish, since
B =
√

1− v2→ 0 for v→ 1.

Regarding the question whether the two solitons pass through each other or are reflected
by each other upon collision, the different behavior for v < 0.5 and v > 0.5 can serve as
a distinction between these two cases. For v < 0.5 it seems physically more intuitive to
regard the behavior of colliding solitons as a repulsion of slowly moving particles (as
already stated in [12]). During their complete time evolution, they can be characterized
by two separate minima which, as they approach each other, become deeper, suggesting
a slowdown of the solitons. When the modulus of the solution at the two minima reaches
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2.3 Interactions Between Dark Solitons

the value 0, which happens at the point of closest proximity, the solitons have completely
stopped and change their direction of motion.

For the case of v > 0.5, it is not immediately clear, which point of view is the physi-
cally more convincing. This point marks the border between the two regimes. Since for
increasing velocities in the regime v < 0.5 the centers of the two solitons approach each
other with closer and closer proximity at t = 0 and merge at v = 0.5, it seems suggestive
to assume, that for velocities larger than v = 0.5 the repulsion between the two solitons
is not sufficient to lead to a reflection and the solitons are transmitted through each other.
When investigated more closely, it turns out that, in contrast to the repulsive interaction
in the case v < 0.5, the interaction would actually change its sign and become attractive
in the case of v > 0.5 if the solitons were considered to be passing through each other.

This can be seen by looking at the phase shifts the solitons acquire during a collision,
as given by equation 2.8 for v1 = −v2 = v. The magnitude of the phase shift for the first
soliton travelling with velocity v1 > 0 is in the reflected and transmitted case given by

|δz1|=
1

2B
ln
(

1+
B2

v2

)
(2.10)

but the sign of the phase shift and of the final velocity changes. If the solitons are consid-
ered as being transmitted through each other, the single soliton wave function of soliton
one before and after the collision will be

u0(z− v1t) = eit (B tanh [B(z− v1t)]+ iv1)→ eit (B tanh [B(z− v1t−δz1)]+ iv1) (2.11)

If instead the solitons are considered as being reflected by each other and their direction
of motion is inverted, the single soliton wave functions before and after the collision are
given by

u0(z− v1t) = eit (B tanh [B(z− v1t)]+ iv1)→ eit (B tanh [B(z+ v1t +δz1)]+ iv1) (2.12)

In the first approach, the behavior of the wavefunction before and after the collision
indicates that during the collision the soliton has actually advanced faster than it would
have, had it been travelling with its constant asymptotic speed, since the shift is in the
direction of the solitons movement (see also figure 2.4). The interaction between the soli-
tons in this approach is of an attractive nature. If one were to attribute classical trajectories
to the solitons while they are undergoing a collision this would mean that the solitons are
accelerated by their interaction up to the point where their trajectories cross each other
and afterwards decelerated to their asymptotic constant velocities, travelling in the same
directions as before the collision. This is indicated in figure 2.9(a) for one of the solitons.

In the second approach, the nature of the interaction is obviously repulsive, since the
soliton changes its direction of motion. If one were to attribute classical trajectories in
this case, the solitons would first be decelerated until they come to a full stop and then
be accelerated again to their asymptotic constant velocities with inverted directions of
motion. The full line in figure 2.9(b) shows this trajectory for one of the solitons.

To summarize, there are three different points of view which can be taken regarding the
question of whether two solitons pass through each other or are reflected by each other.
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Figure 2.9: Exemplary classical trajectories for the dark solitons in collisions considered transmis-
sive (a) or reflective (b)

The first point of view is to always consider the solitons as being transmitted through
each other. This has the advantage of a clear criterion of identification, mathematical clar-
ity and a well described interaction via the phase shifts of equation 2.8. The disadvantage
is, that the assumption of a transmission seems very arbitrary and counter intuitive for
slow solitons which exhibit separate minima throughout the whole collision process.

The second point of view is to consider the solitons as reflected by each other for
the case |v1,2| < 0.5 and transmitted through each other for the case |v1,2 > 0.5|. The
investigated symmetric two soliton solution suggests this point of view but the interaction
between the solitons then has to be described as repulsive in the first and attractive in the
second case.

The third point of view is to consider the solitons as always being reflected by each
other. This point of view explains the behavior of slow solitons very well. If the collision
is regarded as that of two particles with an interaction potential that becomes more and
more like that of hard spheres the faster the solitons move, the behavior over the whole
range of allowed velocities can qualitatively be explained. Nevertheless, one would expect
the central dip to be deeper, considering that in this picture the two solitons are always
decelerated to v = 0 at some point during their evolution where their minima should go
down to zero.

In the following, the solitons will be regarded as repulsively interacting, being reflected
by each other upon collision. This allows for treating the soliton interaction as that of
simple repelling particles, albeit with a velocity dependent interaction potential that is
investigated in the next section, and satisfies the intuitive picture of repulsion for the
case of slow solitons. Since in the situation relevant for the experiment the solitons have
velocities smaller than 0.5, this point of view is the most intuitive and turns out to be
helpful in the analysis of soliton collisions.
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2.3 Interactions Between Dark Solitons

2.3.3 Effective Interaction Potential for Dark Solitons

In cases without a homogeneous background, the asymptotic velocities of the solitons
are not defined, and the phase shifts that result from collisions between them can not be
calculated using the exact equation 2.8. In these cases it is useful to consider the two
solitons as repelling particles and model their interaction by an effective potential, that
depends on their momentary velocity.

Assuming a particle like nature of the solitons and repulsive interaction between them,
equation 2.9 can be used to derive such an effective interaction potential for the collision
of two equally dark solitons of the one-dimensional nonlinear Schrödinger equation, as
done by Kivshar and Królikowski [29]. Under the assumption that the solitons are always
well separated from each other, i.e. that their initial velocities are smaller than |v| < 0.5,
they derive an equation of motion for the two minima constituting the solitons and deduce
an interaction potential from this equation of motion. This repulsive interaction potential
in the symmetric case is given by 2:

V (z,v) =
1
2

B2

sinh2 (2zB)
, B =

√
1− v2 (2.13)

where z = z1 denotes the position of the local minimum of one of the dark solitons.

The equation of motion for the dark soliton is then given by the Lagrange equation:

d
dt

(
∂L
∂ ż

)
=

∂L
∂ z

, (2.14)

with: L = T −V =
z̈2

2
−V (z,v) (2.15)

⇒ z̈− d
dt

(
∂V
∂ ż

)
=−∂V

∂ z
, (2.16)

with:
d
dt

(
∂V
∂ ż

)
=

d
dt

F =
∂F
∂ z

ż+
∂F
∂ ż

z̈, F =
∂V
∂ ż

(2.17)

⇒ z̈
(

1− ∂F
∂ ż

)
− ∂F

∂ z
ż+

∂V
∂ z

= 0 (2.18)

Since the collision between the solitons is symmetric, the equation of motion for the
soliton at z2 =−z1 is simply given by z̈2 =−z̈1. This allows for describing the solitons as
classical particles moving in a velocity dependent potential. The potential depends on the
darkness B of the solitons, being stronger for darker solitons in accordance with the exact
phase shifts given by equation 2.8.

Figure 2.10 shows the repulsive potential during a soliton collision. Note that the ve-
locities indicated on the graph are the initial velocities of the soliton. Since the potential

2Note that this potential differs from the one used in [29], where the sinh term in the denominator is
replaced by a cosh term. The correct form used here has been determined by Kevrekidis et al. [30]
and confirmed by the authors of [29]. The potential used in [29] also gives correct results, since the
derivation requires |v| < 0.5 and thus the solitons are always so far apart from each other (see figure
2.10) in their collisions, that only the asymptotic behavior of the potentials is relevant, which does not
deviate significantly.
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Figure 2.10: The strength of the repulsive potential given by equation 2.13 for different initial
velocities v. The potential is only plotted down to the turning points of the solitons,
indicated by the squares.

depends on the darkness B and thus on the velocity of the soliton, which is slowed down
and turns its direction of motion during collision, the spatial behavior that is plotted in-
cludes the changing velocity during the collision. The potentials are plotted only down to
the turning points indicated by the squares.

The different behavior for different velocities agrees with the picture of solitons always
being reflected by each other with a potential that corresponds closer to that of a hard
sphere the faster the solitons move. For v = 0.2, the solitons always move in a potential
with a rather gentle slope. For v = 0.5 the potential starts out steeper to begin with and,
since the solitons come much closer to each other, at the turning point it exhibits a very
steep slope.

The potential was derived under the assumption that the solitons are well separated. As
discussed in section 2.3.2, this is only the case for solitons with velocities |v|< 0.5. Thus,
the behavior of V (z,v)→ ∞ for z→ 0, given by the 1/sinh2 dependence on the soliton
distance 2z, is irrelevant, since the solitons in the velocity regime of applicability never
come closer to each other than indicated in figure 2.10.

Figure 2.11 shows the phase shifts the soliton with velocity v1 > 0 experiences in a
symmetric collision with a soliton with v2 =−v1. The dots indicate the exact phase shifts
calculated from equation 2.8 and the crosses those determined from a numerical solution
of the differential equation for the soliton coordinate using the effective interaction poten-
tial (equation 2.18). The potential approximates the behavior of the solitons very well for
velocities smaller than 0.5. For velocities larger than 0.5, the phase shifts obtained from
the effective potential start to deviate from those given by equation 2.8 and for very large
velocities the phase shifts from the potential even start to increase again, while the phase
shifts given by equation 2.8 are monotonically decreasing.

18



2.3 Interactions Between Dark Solitons

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

v

P
h
a
s
e
 S

h
if
t

Effective Potential

Exact Theory

range of validity

Figure 2.11: Comparison between the exact phase shifts the solitons experience in symmetric col-
lisions with velocities v given by equation 2.8 and the phase shifts determined using
the effective interaction potential

Figure 2.12 shows the comparison between soliton trajectories given by a numerical
time evolution of a solution of the nonlinear Schrödinger equation containing separate
solitons (density plot in the background) and those of particles subjected to the repul-
sive potential of equation 2.13 (bright lines).Once again, for velocities |v| ≤ 0.5 (figures
2.12(a) and 2.12(b)) the agreement between the trajectories is very good. For v > 0.5
(figure 2.12(c)), the difference between the trajectories after the collision becomes larger.
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Figure 2.12: Soliton trajectories for symmetric collisions, calculated with the effective potential
(full lines) and with a numerical time evolution of the 1D homogeneous NLS (density
plot in the background), for different initial velocities

The trajectories still show qualitative agreement and the effective potential might be
used to investigate qualitatively the behavior of faster solitons, but quantitative agreement
to a satisfactory degree is only reached if the criteria for the derivation of the potential are
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met, i.e. the solitons are always identifiable by two separate minima which is the case if
their initial velocity in a symmetric collision is smaller than ±0.5.

2.3.4 Generalization to Asymmetric Collisions of Multiple
Solitons

The effective potential of equation 2.13, being derived from equation 2.9, is only applica-
ble to symmetric collisions, i.e. collisions of two solitons moving with equal velocities in
opposite directions. A derivation directly from 2.4, which would incorporate cases with
arbitrary velocities, is more complicated and does not lead to such a simple form as in
the symmetric case. A generalization of the symmetric potential can instead be attempted
using an average darkness for two colliding solitons. This preserves the form of the po-
tential but takes into account the two different velocities of the solitons. It is not obvious
how to define this average darkness. The definition that is used here has to be justified a
posteriori by a comparison of the results to those of the analytic theory of interactions.

The following definition for the average darkness is considered. Bi j = (Bi + B j)/2,
where Bi is the darkness given by velocity vi of soliton i, and the coordinate z of the sym-
metric case is replaced by relative coordinates z→ (zi− z j)/2. With these substitutions
the interaction potential for soliton i in the presence of other solitons is

Vi = ∑
j 6=i

B2
i j

2sinh2 Bi j(zi− z j)
, Bi j =

Bi +B j

2
(2.19)

This interaction potential reduces to equation 2.13 in the case of two solitons with vi =
−v j and xi =−x j.

Using this potential, it is now possible to obtain equations of motion for an arbitrary
number of solitons. The total Lagrangian for n solitons is given by

L = T −V =
n

∑
i=1

Ti−
n

∑
i=1

Vi =
n

∑
i=1

żi
2

2
−

n

∑
i, j=1,i 6= j

B2
i j

2sinh2 Bi j(zi− z j)
(2.20)

The Lagrange equations are

d
dt

(
∂L
∂ żi

)
=

∂L
∂ zi

, i = 1,2, ...,n (2.21)

⇒ z̈i− d
dt

(
∂V
∂ żi

)
=−∂V

∂ zi
(2.22)

Expressing the total time differential as partial differentials with respect to all variables

d
dt

(
∂V
∂ żi

)
=

d
dt

Fi =
n

∑
j=1

∂Fi

∂ z j
ż j +

n

∑
j=1

∂Fi

∂ ż j
z̈ j, Fi =

∂V
∂ żi

(2.23)

leads to a set of n coupled differential equations:

z̈i−
(

n

∑
j=1

∂Fi

∂ z j
ż j +

n

∑
j=1

∂Fi

∂ ż j
z̈ j

)
=−∂V

∂ zi
, i = 1,2, ...,n (2.24)
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which can be solved for the z̈i and integrated numerically to obtain the time evolution of
the solitons.

It is not immediately clear what the range of validity with respect to the initial soliton
velocities for this potential is. In the scope of this thesis it will be applied to collisions
of a moving soliton with another initially stationary soliton and the range of validity is
investigated for this situation.
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Figure 2.13: Soliton trajectories for asymmetric collisions, calculated with the generalized effec-
tive potential (full lines) and with a numerical time evolution of the 1D homogeneous
NLS (density plot in the background), for different initial velocities v1,v2

Figure 2.13 shows a comparison between the soliton trajectories obtained from the
equations of motion using this generalized effective potential (bright lines) and the time
evolution of the nonlinear Schrödinger equation for a wavefunction containing two soli-
tons with different initial velocities (density plots in the background). The collisional
dynamics are qualitatively well reproduced by the asymmetric effective potential.

In Figure 2.14 the phase shifts in this situation, obtained from the generalized effec-
tive potential, are compared to the exact ones given by equation 2.8 for different initial
velocities of the moving soliton. It can be seen, that the agreement between the asymmet-
ric potential and the results of equation 2.8 are good for initial velocities v < 0.5 of the
moving soliton. For larger velocities the deviations become more significant and again the
phase shifts obtained from the effective potential show a different trend for high velocities
than the exact ones derived from equation 2.8.

This generalization of the interaction potential, as shown in the derivation of the equa-
tions of motion, allows for the application of the interaction potential to collisions involv-
ing more than two solitons.

This is shown in figure 2.15 for the case of three solitons, where one is initially station-
ary and the other two collide with it at the same time from both sides with equal velocities.
The bright lines indicate the soliton trajectories obtained from the generalized effective
potential and the density plot in the background shows a numerical time evolution of the
homogeneous one-dimensional nonlinear Schrödinger equation for three solitons.
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Figure 2.14: Comparison between the exact phase shifts the soliton with velocity v experience
in an asymmetric collisions with a stationary soliton given by equation 2.8 (dots, full
line) and the phase shifts determined using the effective interaction potential (crosses)
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Figure 2.15: Soliton trajectories for collisions of three solitons, calculated with the generalized
effective potential (full lines) and with a numerical time evolution of the 1D homoge-
neous NLS (density plot in the background), for different initial velocities (v1,v2,v3)

2.3.5 Advantages of an Effective Potential Approach

The interaction between two solitons is well defined in the homogeneous one-dimensional
situation. Given the initial velocities of the two colliding solitons, the phase shift they
acquire can be directly obtained from equation 2.8. The effective potential approach
becomes useful when considering less ideal situations or collisions with more than two
solitons.

The effective interaction potential has two advantages. Firstly, it describes only the
interaction of solitons in arbitrary collisions. The exact phase shift of equation 2.8 re-
quires knowledge about the asymptotic constant velocities. In cases where the solitons
are not as well defined as in the framework of the homogeneous one-dimensional non-
linear Schrödinger, these asymptotic values are also not defined. The effective potential
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circumvents this problem by depending on the momentary velocity of the solitons. As it
will be seen in the next chapter, other effects on the dynamics of the solitons that do not
stem from their interaction can be incorporated as additional effective potentials added
to the interaction potential. Their separate effects on the soliton motion can then be
distinguished, given that the effective potential accurately approximates these nonideal
situations.

Secondly, the effective interaction potential is applicable to collisions of arbitrary num-
bers of solitons. To obtain the effects of interactions between more than two solitons one
has to do a numerical time evolution of their wavefunction using the governing nonlinear
equation, which is in general a lot more time consuming than a numerical solution of the
equations of motion given by the interaction potential.
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3 Dark Solitons in Bose-Einstein
Condensates

Bose-Einstein condensates are a new system for the experimental investigation of non-
linear dynamics. They are well described by the the nonlinear equation governing their
dynamics, the Gross-Pitaevskii equation, given that their temperature is well below the
critical temperature of condensation. They are usually three dimensional systems and the
questions arise whether solitons can exists in Bose-Einstein condensates and how their
properties differ from those of solitons in the ideal, homogeneous and one-dimensional
case. These questions are addressed in this chapter.

3.1 Bose-Einstein Condensates as Nonlinear
Systems

3.1.1 The Gross-Pitaevskii Equation

For a realistic description of a dilute Bose gas, as realized in cold atom experiments,
interactions between the atoms and the effects of an external confining potential have
to be taken into account. The many body Hamiltonian in second quantization for this
problem reads

Ĥ =
∫

dr Ψ̂
†(r)

[
− h̄2

2m
∇

2 +Vext

]
Ψ̂(r)+

1
2

∫
drdr′ g Ψ̂

†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r) (3.1)

where Ψ̂†(r) and Ψ̂(r) are the boson field operators, Vext is the confining external po-
tential, m is the mass of the atoms and

g =
4π h̄2as

m
. (3.2)

describes the interaction between the atoms. Here, the fact has been used that for dilute
atomic gases, where almost every collision process is a two-body process at low energies,
the interaction is governed by the s-wave scattering potential which can be described by
a delta distribution with a single parameter g that depends on the s-wave scattering length
as[31].

Solving the complete many body problem for large numbers of atoms is analytically
impossible and numerically very demanding. The problem can be greatly simplified by
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employing a mean field approximation to avoid having to treat all interatomic interactions
individually. The field operator is approximated by a complex valued function

Ψ̂(r)≈Φ(r) (3.3)

Φ(r) is generally referred to as the wave function of the condensate. At temperatures
well below the critical temperature for condensation (Tc) essentially all atoms are in the
macroscopically occupied ground state and the condensate can be adequately described
by the complex wave function Φ(r) and the fact that Ψ̂(r) is actually an operator can be
neglected [32].The wave function Φ(r) is taken to fulfill the normalization condition

N =
∫
|Φ(r, t)| . (3.4)

where N is the total number of atoms in the Bose-Einstein condensate.

Applying this substitution to the equation of motion for the Hamiltonian 3.1 leads to
[33]

ih̄
∂

∂ t
Φ(r, t) =

[
− h̄2

2m
∇

2 +V (r)+g |Φ(r, t)|2
]

Φ(r, t). (3.5)

This equation was originally derived independently by Gross and Pitaevskii [33, 34]
and is known as the three dimensional Gross-Pitaevskii equation (3D GPE).

In the following the external potential that confines the Bose-Einstein condensates will
be considered as harmonic, given by

Vext =
m
2
(
ω

2
x x2 +ω

2
y y2 +ω

2
z z2) (3.6)

In the case of cigar shaped trap geometries, where the trapping frequencies in two direc-
tions are equal and much larger than in the third one, the x and y directions will always
be considered the transverse directions with stronger confinement and the z direction is
considered the longitudinal direction with weaker confinement.

The chemical potential µ of the condensate is for the ground state given by the relation

Nµ = Ekin +Epot +2Eint =
∫

drΨ
∗(r)

[
− h̄2

2m
∂ 2

∂x2 +V (r)+2g |Ψ(r, t)|2
]

Ψ(r) (3.7)

The separate energy contributions are the kinetic energy Ekin, the potential energy Epot
and the nonlinear interaction energy Ekint and correspond to the respective parts of the
Hamiltonian.

The chemical potential has an associated length scale, the so called healing length ξ of
the condensate. This is the length scale over which the condensate density grows from
zero to n if subjected to an infinite potential barrier. It is given by

ξ =

√
h̄

ngm
(3.8)
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3.1 Bose-Einstein Condensates as Nonlinear Systems

For the case of a homogeneous condensate with density n0 the chemical potential is given
by µ = n0g and the healing length can be written as:

ξ =
√

h̄/µm (3.9)

In the case of a non-homogeneous harmonically confined condensate, this expression
of the healing length can be used to get an approximate value for the healing length close
to the center of the condensate. In the following, whenever a healing length is attributed
to the whole condensate, this is the quantity referred to.

3.1.2 The One-Dimensional Gross-Pitaevskii Equation

If the harmonic confinement of a BEC is much stronger in two directions and the harmonic
oscillator length a⊥ =

√
h̄/mω⊥ of the confinement in these perpendicular directions is

smaller than the healing length ξ of the condensate 1 the Gross-Pitaevskii equation can be
simplified by integration over these axes, leading to a one dimensional Gross Pitaevskii
equation (1DGPE) for the remaining longitudinal direction with weaker confinement[35]:

ih̄
∂

∂ t
Ψ(z, t) =

[
− h̄2

2m
∂ 2

∂ z2 +
1
2

mω
2
z z2 +g1D |Ψ(z, t)|2

]
Ψ(z, t) (3.10)

Here g1D is the effective one dimensional interaction strength given by

g1D =
g

2πa2
⊥

. (3.11)

If the confining potential is set to zero, the homogeneous form of the one dimensional
Gross-Pitaevskii equation is obtained:

ih̄
∂

∂ t
Ψ(z, t) =

[
− h̄2

2m
∂ 2

∂ z2 +g1D |Ψ(z, t)|2
]

Ψ(z, t) (3.12)

This equation has the same form as the nonlinear Schrödinger equation

i
∂

∂τ
u(z̃,τ) =

[
−1

2
∂ 2

∂ z̃2 + |u(z̃,τ)|2
]

u(z̃,τ) (3.13)

which was considered in chapter 2 as the description of a medium supporting dark soliton
solutions. They are connected through the following scaling of the variables and normal-
ization of the wavefunction:

t→ h̄
g1Dn

· τ

z→ h̄√
g1Dnm

· z̃

Ψ(z, t)→√n ·u(z, t) = Ψ(z, t) (3.14)

1This can also be expressed by the relation µ � h̄ω⊥
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3 Dark Solitons in Bose-Einstein Condensates

where n is the homogeneous one-dimensional atom density in the condensate.

The wave function of a single dark soliton solution of the homogeneous one-dimensional
Gross-Pitaevskii equation, which for the homogeneous one-dimensional nonlinear Schrödinger
equation is given by equation 2.3, takes the form [36]

√
n
[

B tanh
(

B
(z− vt− z0)

ξ

)
+ i

v
c

]
e
−iµt

h̄ (3.15)

where µ is the one-dimensional chemical potential µ = g1Dn and B is the darkness of
the soliton, in this case defined as B =

√
1− v2/c2 with the Bogoliubov speed of sound

c =
√

µ/m and ξ is the healing length ξ = h̄/
√

µm.

For a Bose-Einstein condensate that can be described by the homogeneous one dimen-
sional Gross-Pitaevskii equation all considerations that were taken in chapter 2 about the
nature of dark solitons and their interactions apply as well.

Applicability of the One-Dimensional Gross-Pitaevskii Equation

In realistic experimental situations, the conditions for the applicability of the homoge-
neous one-dimensional Gross-Pitaevskii equation are hard to fulfill. Firstly, in most cases
the condensate is confined by an external potential in the longitudinal direction 2, so the
equation is not completely homogeneous and secondly the confinement in the perpendic-
ular direction has to be very strong to achieve the ideal one dimensional regime.

Menotti and Stringari derived the following criterion for a harmonically confined Bose-
Einstein Condensate to be in the one dimensional regime [38, 39]:

NΩ
as

a⊥
� 1 (3.16)

where Ω = ωz/ω⊥ is the aspect ratio of the confining trap. For their derivation a local
density approximation is used which also requires(

N√
Ω

as

a⊥

)1/3

� 1. (3.17)

Figure 3.1(a) shows a phase diagram indicating the conditions for the different dimen-
sionality regimes and figures 3.1 (c)-(e) show a comparison between the ground states
of Bose-Einstein condensates determined with the three dimensional and the one dimen-
sional Gross-Pitaevskii Equations. For parameters in the regime indicated by “3D cigar”
in figure 3.1(a), the wavefunctions obtained from the one-dimensional Gross-Pitaevskii
equation deviate substantially from those of the three-dimensional Gross-Pitaevskii equa-
tion and an accurate description of the dynamics of such condensates can not be expected
from the one-dimensional equation.

2Note that recent advances in the creation of ring shaped traps overcome this need for a confinement in
the longitudinal direction, see e.g. [37]
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3.1 Bose-Einstein Condensates as Nonlinear Systems

(a) The different regimes of dimensional-
ity of a Bose-Einstein condensate (taken
from [38]). The regime investigated ex-
perimentally is indicted by the gray shaded
area.
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Figure 3.1: Comparison between BEC Groundstates determined with three- and one-dimensional
Gross-Pitaevskii equations

Our experiments will be performed for parameters in the region indicated by the grey
shaded area in figure 3.1(a). Our experimental parameters are not in the fully one di-
mensional regime but rather in the dimensionality crossover regime between the three-
dimensional cigar shape and one-dimensionality. Thus the one-dimensional Gross-Pitaevskii
equation cannot yield a precise description of the systems investigated. Furthermore, the
Bose-Einstein condensates under experimental investigation are subjected to a harmonic
confinement in the longitudinal direction and thus the condensates will not be homoge-
neous in this direction. The question has to be raised whether solitonic excitations of such
a system can exist, how they can be characterized, how stable they are and how much of
the theoretical aspects lined out in chapter 2 can be applied to them.

3.1.3 Effectively One-Dimensional Gross-Pitaevskii Equations

As mentioned above, the one dimensional Gross-Pitaevskii equation does not accurately
describe a Bose-Einstein condensate for the parameters accessible in our experimental
realization. The three dimensional Gross-Pitaevskii equation does give an almost accurate
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3 Dark Solitons in Bose-Einstein Condensates

description of our experiment (neglecting finite temperature effects), but is in general non-
integrable and thus its time evolution has to be computed numerically. Numerical methods
for the integration of (3.5) provide in principle the possibility to obtain Ψ(r, t) at any point
in time with arbitrary precision, given adequate computational resources. Since all three
spatial dimensions have to be incorporated into the computations, this is numerically very
demanding and time consuming. In the cases relevant to the performed experiments, one
can still take advantage of the elongated shape of the condensate. In these cases it is more
efficient to use effectively one-dimensional equations that take the transverse structure
of the Bose-Einstein condensate into account without the need to extend the calculations
over the whole space. These equations still rely on the fact, that the extension of the
condensates in two transverse directions is much smaller than in the third, longitudinal
one, but not as strictly as equation 3.10 does.

The Non-Polynomial Schrödinger Equation

In [40], Salasnich et al. derive a so called nonpolynomial nonlinear Schrödinger equation
(NPSE). Assuming a gaussian shape of the Bose-Einstein condensate in the transverse di-
rection that is slowly varying along the longitudinal direction and employing a variational
ansatz for this gaussian profile, they arrive at

ih̄
∂

∂ t
f (z, t) =

[
− h̄2

2m
∂ 2

∂ z2 +Vext +
gN

2πa2
⊥

| f (z, t)|2
C

+
h̄ω⊥

2

(
1
C

+C
)]

f (z, t) (3.18)

with : C =
√

1+2asN| f (z, t)|2 (3.19)

This equation will be employed to do the numerical time evolution of the wave func-
tions of cigar shaped Bose-Einstein condensates in the most cases throughout this thesis.
In the dimensionality crossover regime (see 3.1.2) it gives an excellent approximation of
the dynamics[41]. The numerical time evolutions will be carried out using the split-step
fast Fourier transform method [42] which is a common tool for he numerical integration
of the Gross-Pitaevskii equation and related Schrödinger equations [43].

3.2 Dark Solitons in Quasi One-Dimensional
Bose-Einstein Condensates

3.2.1 Soliton Like Excitations

As discussed at the beginning of chapter 2, dark solitons of the nonlinear Schrödinger
equation are only well defined in the one-dimensional homogeneous case, where they
exist as exact analytic solutions.

To obtained a notion of a dark soliton that can be applied to realistic experimental situ-
ations, the concept of a dark soliton has to be extended to three dimensional condensates
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(a) Density of the first excited state of a cigar shaped Bose-Einstein condensate
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Figure 3.2: The first excited state of a cigar shaped BEC, numerically determined using the 3D
GPE

subjected to external confining potentials.

Since the three-dimensional Gross-Pitaevskii equation reduces to a one-dimensional
nonlinear Schrödinger equation in the limit of tight radial confinement, dark soliton like
states can be expected for condensates in cigar shaped traps [44]. When looking at Bose-
Einstein condensates in such geometries, the simplest structure that features dark soliton
like characteristics is the first excited state of the condensate. This state has a macroscopic
wave function that exhibits a nodal plane perpendicular to the symmetry axis of the trap
(longitudinal axis).

Figure 3.2(a) shows the density of a cigar shaped condensate (summed over one of the
transverse directions) in its first excited state. The density of the condensate in the nodal
plane at z = 0 goes down to zero (see also figure 3.2(b), which shows the longitudinal
density distribution, summed over both transverse directions) and the first excited state is
analogous to a completely black, stationary dark soliton. The similarity becomes obvious
when looking at figure 3.2(c), which shows the phase of the condensate along its symme-
try axis. The phase experiences a sharp jump of π at the local density minimum, as the
phase of a completely dark soliton in the one dimensional homogeneous case does.

To generalize this concept to nonstationary solitons, one can turn to the effectively one-
dimensional non-polynomial Schrödinger equation (Eq. 3.19). This equation incorporates
the transverse structure of the condensate while still being defined one-dimensionally.
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Figure 3.3: The time evolution of analytic soliton solutions of the homogeneous 1DGPE with
different velocities v, in units of the speed of sound c, conducted with the homogeneous
NPSE. After some initial radiation, the density dips are stable and propagate through
the condensate.

To approximate a dark soliton in the non-polynomial Schrödinger equation a homo-
geneous background density of the condensate in the longitudinal direction is assumed.
The condensate is only confined in the transverse directions. The analytic soliton solu-
tion to the homogeneous one-dimensional Gross-Pitaevskii equation 3.15 is multiplied
to this background. Obviously, this soliton solution is not an exact solution to the non-
polynomial Schrödinger equation, but it can be seen in figure 3.3 , which shows the time
evolution of such a wave packet for different initial velocities, that after some initial ra-
diation leaves the soliton a stable dip maintains that is stationary or moves through the
homogeneous background density with a constant velocity. This shows the general sta-
bility of dark solitons. The soliton itself constitutes a local energy minimum of the total
energy of the condensate. If, like in this case, an initial density or phase modulation is
close enough to the shape of a dark soliton, it is energetically favorable for the wavefunc-
tion to develop into such a soliton. The energy and density difference between the initial
shape and the dark soliton is radiated into the condensate. This mechanism is of great use
for the experimental creation of dark solitons that will be discussed in section 4.1.

Figure 3.4 shows a comparison between the initial shape of the wave packet and the
final shape after a time evolution of 30ms for the case of a stationary soliton as shown in
figure 3.3(a). The shapes correspond very closely, but the soliton of the non-polynomial
Schrödinger equation has a slightly larger spatial extension than the initial solution to the
homogeneous one-dimensional Gross-Pitaevskii equation.
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Figure 3.4: The shape of the initial dark soliton solution (dashed line) and the final shape after a
time evolution of 30ms (full line) for the stationary case shown in figure 3.3(a)

This approach to a definition of a soliton entails in principle that the soliton in a three-
dimensional setting is approximatively considered as being a one-dimensional structure
modifying a three-dimensional stationary condensate:

Ψs(x,y,z, t)≈ΨBG(x,y,z) ·Φs(z, t) (3.20)

The complete wavefunction of the soliton and the background Ψs is seen as the product of
a stationary three dimensional cloud ΨBG and a one-dimensional time dependent soliton
Φs.

The effect of a confinement in the longitudinal direction on the dynamics of a soliton
will be discussed in detail in section 3.3. As far as the characterization of a soliton in
such an inhomogeneous situation is concerned one can resort to the local density approx-
imation. The soliton’s extension is on the scale of the healing length. As long as the
condensate density does not vary strongly on this scale it can be approximated as homo-
geneous in the direct vicinity of the soliton and thus the above considerations are locally
valid in such a condensate.

Thus, a dark soliton in a cigar shaped condensate shall be defined as a travelling or
stationary depletion of the condensate density over a plane transverse to the longitudinal
axis and can be regarded as the realization of a one dimensional soliton-like excitation in
a three dimensional system.

3.2.2 Stability of Dark Solitons

Dark solitons of the one-dimensional nonlinear Schrödinger equation are exact solutions
of the integrable system and stable. The situation is more complex in nonintegrable sys-
tems like the three dimensional Gross-Pitaevskii equation where the properties of the
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3 Dark Solitons in Bose-Einstein Condensates

stable solutions only apply approximately. Since the soliton corresponds to an excited
state of the Bose-Einstein condensate, which only experiences a local energy minimum,
it can be expected that the system eventually decays into the energetically lower ground
state, given appropriate decay channels.

The phenomenon of soliton decay was first investigated by Kuznetsov and Turitsyn
[22] who showed that one-dimensional solitons in three-dimensional systems are unstable
against transverse perturbations. These perturbations lead to a snake-wise bending of the
dark soliton[45], which is initially flat in the perpendicular direction, and finally a decay
of the soliton into pairs of vortex solitons, as experimentally observed in [20]. Due to the
bending of the soliton along the transverse plane, this decay channel is referred to as the
snaking-instability. Muryshev et al. [46] investigated this transversal instability for the
case of cigar shaped Bose-Einstein condensates. They derived a parameter

γ =
n0mg
h̄ω⊥

, (3.21)

where n0m is the maximum density of the condensate, which determines the stability of
the dark soliton. If γ is below a critical value γc the dark soliton is stable against trans-
verse decay. This value depends on the aspect ratio Ω = νz/ν⊥ and for our experimental
parameters it can be obtained from [46] to be γc > 2.2.

Typical densities for our experiment are nm0 ≈ 1 · 1014 cm−3 and typical transversal
trapping frequencies are on the order of ω⊥ ≈ 400−800 Hz. Thus in our experiments the
value for γ ranges from 1.2 to 1.7 and a stationary soliton is stable against the snaking
instability.

A similar transverse instability exists for moving dark solitons. In this case, the trans-
verse structure of the dark soliton is modified due to the inhomogeneity of the condensate
density in radial direction, which results in different soliton velocities at the center of the
soliton and at its edges, and leads to a bending of the soliton. This instability is referred
to as the inhomogeneity induced dynamical instability.

The stability against this form of decay is also characterized by the parameter γ but the
critical value γc(v) is velocity dependent. For velocities between v = 0 and v = 0.5 · c the
critical value ranges from γc ≈ 2.2 in the stationary case to γc ≈ 3 for v = 0.5cS, where cs
is the speed of sound at maximum density given by

√
n0mg/2m.[47] Thus for a moving

dark soliton the criterion for stability against transverse decay is even more relaxed.

Another possibility of decay is due to a thermodynamic instability which originates
from the scattering of thermal particles on the dark soliton at finite temperatures [48, 18,
47]. This scattering leads to an increase of the soliton’s velocity over time until it reaches
the velocity of sound and, keeping in mind the relation between velocity and darkness
of a dark soliton, becomes essentially indistinguishable from the background. At low
temperatures T � µ the time τ at which the soliton acquires sound velocity is given by
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[48]:

τ
−1 = 2τ

−1
D ln−1

(
M
m

)
(3.22)

τ
−1
D ∼ 24ζ (4)ω⊥(πn0a3

s )
1/2
(

T
µ

)4

(3.23)

where M = 4n0a⊥ξ m and the Riemann ζ -function takes the value ζ (4) ≈ 1.08. For our
experimental parameters, assuming a temperature of the condensate of T ≈ 20 nK, this
corresponds to a lifetime of the dark soliton between 350ms and 6s.

In conclusion, for our experimental conditions the cigar shaped Bose-Einstein conden-
sate allows the existence of dark solitons that are stable over a time scale long enough to
observe their dynamics, which in our experiment is done for times on the order of 100ms.
The question how the fact that the condensate is subject to a longitudinally varying, har-
monic potential is expected to alter these dynamics still remains.

3.3 Dynamics of Dark Solitons in Harmonically
Confined Condensates

3.3.1 Oscillating Dark Solitons in the asymptotic
one-dimensional case

The confining potential in the longitudinal direction leads to a drastic alteration of the
soliton dynamics. The difference between this situation and the one for the homogeneous
case is that the potential significantly changes the boundary conditions for the allowed
solutions. For dark soliton solutions in the homogeneous case, the boundary conditions
demand that the modulus of the wave function approaches a constant value larger than
zero for z→±∞. In the case of harmonic confinement, this can obviously not be fulfilled
and instead it has to be demanded that |Ψ(z, t)| → 0 for z→±∞. The background density
of the BEC cloud will be high in the center of the trap and vanish at the edges of the cloud.

The behavior of dark solitons in confined Bose-Einstein condensates was investigated
by Busch and Anglin [24] for slowly varying potentials in the framework of the one-
dimensional Gross-Pitaevskii equation. Slowly varying in this case means that the back-
ground density of the confined condensate is varying slowly on the healing length scale
and its associated time scale so that spatial and temporal derivatives of the background
cloud can be neglected. This is usually referred to as the Thomas-Fermi approximation.

Using this assumption, the dynamics of a dark soliton in such a cloud is described by

z̈ =−1
2

∂

∂ z
Vext(z) (3.24)

where Vext is the confining potential and z denotes the position of the dark soliton. In
the case of harmonic confinement with a potential Vext = mπν2

z z2 this will lead to an
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oscillation of the soliton described by

z(t) = z0 sin
(√

22πνzt
)

. (3.25)

Thus, the frequency of a soliton oscillating in a harmonically confined one-dimensional
Bose-Einstein condensate in the Thomas-Fermi approximation is

νDS =
1√
2

νz. (3.26)

The frequency of the oscillating soliton and the frequency of the dipole oscillation of
the Bose-Einstein condensate in the trap differ by a factor

√
2. This result for the case

of harmonic confinement had already been obtained by Muryshev et al. [46] for small
oscillations and will be referred to in the following as the asymptotic prediction for the
oscillation frequency of a dark soliton.

t[s]

z[m]

Figure 3.5: A dark soliton oscillating in a Bose-Einstein condensate in the Thomas-Fermi regime,
calculated using a numerical time evolution of the 1D GPE.

Figure 3.5 shows the oscillation of a single dark soliton in a Bose-Einstein condensate
determined with the numerical time evolution of the one-dimensional Gross-Pitaevskii
equation. The frequency of the oscillating dark soliton is νDS = 71.13 Hz. With a lon-
gitudinal trap frequency of νz = 100 Hz the ratio νz/νDS is 1.406 which is very close to√

2 = 1.414. The parameter for the Thomas-Fermi criterion (see equation 3.27) in this
case is (N/

√
(Ω)as/a⊥)1/3 = 7.9, the atom number is N = 10000 and ν⊥ = 1000 Hz.

The dynamical properties of the dark soliton correspond closely to the basic features
discussed in chapter 2. At the turning points of the oscillatory motion the density at the
center of the soliton goes completely down to zero as it is expected for a soliton with
velocity v = 0. During its motion through the trap the soliton becomes less dark with
respect to the background density the faster it gets. This can be seen in figure 3.6, which
shows the longitudinal density of a condensate cloud with one oscillating soliton at its
turning point (figure 3.6(a)) and in the center of the trap, where its velocity is highest
(figure 3.6(b)).

To obtain these graphs of a single oscillating soliton, the soliton wave function has been
approximated in the following way: The split-step fast Fourier method[42] in imaginary
time is used to calculate the ground state of the Bose-Einstein condensate for the given
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oscillation

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−5

0.5

1

1.5

2

2.5

3

z[m]

n[a.u.]

(b) The soliton in the center of the trap

Figure 3.6: The longitudinal density distribution of a Bose-Einstein condensate in a harmonic trap
with a single oscillating solitons at different points in the evolution

parameters (N,ν⊥ and νz). Then, the single soliton solution for a stationary soliton of the
homogeneous one-dimensional Gross-Pitaevskii equation is multiplied to the condensate
wave function such that the minimum of the soliton is located at the center of the trap.
Another numerical evolution in imaginary time is conducted which leads to an evolution
of the condensate cloud into it’s first excited state with a density depletion in the center
of the trap. This first excited state is divided pointwise by the ground state wavefunc-
tion to obtain the pure shape of a stationary single soliton in the center of the trap that
goes asymptotically to ±1 far away from the center of the trap. This soliton shape is
now multiplied back to the ground state of the condensate, but displaced by the desired
oscillation amplitude. The obtained wavefunction corresponds closely enough to that of
an oscillating dark soliton at its turning point, where the soliton has a velocity of v = 0.
This method will be used throughout this thesis to numerically investigate the dynamics
of dark solitons.

3.3.2 Deviations of the Oscillation Frequency from the
Asymptotic Prediction

The result above was obtained assuming that the one dimensional Gross-Pitaevskii equa-
tion (eq. 3.10) correctly describes the condensate dynamics and that the background cloud
can be described in the Thomas-Fermi limit, i.e. that the spatial and temporal derivatives
of the background cloud can be neglected.

As indicated in figure 3.1(a), our experimental parameters are in a regime where the
conditions for the applicability of the one dimensional Gross-Pitaevskii equation are not
completely fulfilled.

A condition for the cloud to be in the longitudinal direction accurately described by the
Thomas-Fermi approximation can be given by [38](

N√
Ω

as

a⊥

)1/3

� 1 (3.27)
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In our case, the values for this parameter range from 1.5 to 2.5 which is not sufficiently
high to assume the validity of the Thomas-Fermi approximation. Thus, deviations from
the asymptotic prediction have to be expected.

As pointed out by Brazhnyi and Konotop [49], the deviations from the Thomas-Fermi
limit will lead to an increase of the soliton oscillation frequency on the order of a few
percent.

Another change of the oscillation frequency of the dark solitons arises if the conden-
sate can not be described by the one dimensional Gross-Pitaevskii equation. This was
investigate by Theocharis et al. [41] who showed that in the crossover regime between
condensates that can be described one-dimensionally and those that require a full three-
dimensional description, the oscillation frequencies of dark solitons can be increased with
respect to the prediction of νz/

√
2 by up to 10 %.

(a) Single Soliton oscillation frequencies in cigar
shaped BECs for different dimensionalities of the
condensates. Full lines are calculated via a
Bogoliubov-de Gennes analysis, dotted lines via the
1D GPE. The dashed line indicates the asymptotic
prediction 1/

√
(2). Taken from [41]
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(b) Single Soliton frequencies for typical experi-
mental parameters and different oscillation ampli-
tudes (squares, dashed line). The asymptotic pre-
diction is indicated by the full line.

Figure 3.7: Oscillation frequencies of single dark solitons in cigar shaped Bose-Einstein conden-
sates

This is shown in figure 3.7(a), taken from [41], which shows soliton oscillation fre-
quencies, normalized to the longitudinal trap frequency νz, for different dimensionality
parameters. It can be seen, that for a constant dimensionality parameter NΩas/a⊥, the
oscillation frequency also depends on the aspect ratio Ω alone.

To demonstrate the magnitude of deviations of the single soliton oscillation frequencies
from the asymptotic prediction that are expected in the case of our experiment, figure
3.7(b) shows the oscillation frequencies of a single soliton with typical parameters used
in our experiments for different oscillation amplitudes. The trap frequencies are νz = 50
Hz and ν⊥ = 500 Hz and the atom number is N = 1000. The asymptotic prediction of
νz/
√

2 is indicated by the full line and the deviations in this case are on the order of 5%.
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3.3 Dynamics of Dark Solitons in Harmonically Confined Condensates

It should be noted, that the oscillation frequency of single dark solitons, as can be
observed in figure 3.7(b), not only depends on the dimensionality parameters of the con-
densate but also on the amplitude of the oscillation. This dependence can be attributed to
the fact that for large amplitudes the soliton reaches the low density tail of the conden-
sate density distribution where its dynamics are altered compared to the more or less flat
central regions of the condensate [49, 50].

Thus, when investigating the question how the presence of more than one soliton in the
condensate alters their oscillation frequencies, which will be done in the next section, it
has to be kept in mind that the frequencies of multiple solitons have to be compared to
those of the corresponding single soliton oscillations, which deviate significantly from the
asymptotic prediction, depending on amplitude and dimensionality.

3.3.3 Multiple Oscillating Solitons

As discussed in chapter 2.3, two dark solitons interact repulsively with each other. As-
suming now a situation, where two dark solitons oscillate symmetrically in a trapped
Bose-Einstein condensate, this interaction will modify their oscillation frequencies. Since
the strength of interaction between the two solitons depends on their velocities, which in
turn depend on the oscillation amplitude, it can be expected that the modification of the
soliton oscillation frequencies depends on their oscillation amplitude.

t[s]

z[m]

(a) d0 = 10µm

t[s]

z[m]

(b) d0 = 90µm

Figure 3.8: Two dark solitons with different initial distances d0 oscillating in a harmonically con-
fined Bose-Einstein condensate, calculated using the NPSE

Figure 3.8 shows the oscillation of two dark solitons in a harmonically confined Bose-
Einstein condensate for different initial distances of the solitons, obtained from a nu-
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3 Dark Solitons in Bose-Einstein Condensates

merical time evolution of the non-polynomial Schrödinger equation. The trapping fre-
quency of the confining potential is νz = 50 Hz,ν⊥ = 1000 Hz and the number of atoms
is N = 1000. These parameters will be exemplarily used throughout this section.

The initial wave function containing the two solitons was determined as described in
section 3.3 but in this case, the soliton wave function was multiplied twice to the ground
state of the condensate. The wave functions of the two solitons are not ideal and some
radiation is produced during the first milliseconds (see section 3.2.1), that also oscillates
in the cloud. After this initial radiation, the two solitons are stable and their oscillation
frequencies can be investigated.

As expected, the oscillation frequencies differ for the two different oscillation ampli-
tudes. In figure 3.8(a), the effect of the repulsion between the two solitons is also observ-
able. The solitons start at t = 0 very close to each other and are repelled away from the
center of trap before they turn around in the effective harmonic potential and approach
each other again. This can not be observed in 3.8(b) where the solitons start so far away
from each other that they are first accelerated by the effective harmonic potential towards
the center where they are repelled by each other and move outwards again.
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Figure 3.9: The normalized oscillation frequencies of two dark solitons as a function of their os-
cillation amplitude (dots, full line) compared to those of single dark solitons (squares,
dashed line)

To investigate the effect the oscillation amplitude has on the frequency of the solitons
figure 3.9 shows the oscillation frequencies of two dark solitons oscillating in the con-
densate for different oscillation amplitudes. The frequencies are normalized to the trap
frequency. The oscillation frequencies for a single soliton under the same conditions are
also shown in the graph.

Note, that the frequency of the two soliton oscillation has been obtained by applying a
fit function d|sin(2πνzt)|+ d0 to the soliton trajectories which describes the oscillation
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3.3 Dynamics of Dark Solitons in Harmonically Confined Condensates

of their distance from each other. This avoids having to answer the question whether the
solitons are transmitted or reflected at the collision point. The maximum distance that the
two solitons assume is d + d0. The offset d0 is introduced because for small oscillation
amplitudes, the minima that constitute the solitons do not meet at the center of the trap
(see figure 3.8(a)) and the solitons always maintain a minimum distance. In order to
compare the amplitude dependence of the two soliton frequencies with the single soliton
frequencies, the amplitude, which is well defined in the single soliton case, is in the two
soliton case taken to be (d +d0)/2 which amounts to the maximum distance the solitons
move from the center of the trap.

The effect of the different oscillation amplitudes on the oscillation frequencies is clearly
visible. For large oscillation amplitudes the oscillation frequencies differ only very slightly
from those of single solitons oscillating in the trap. The smaller the amplitude gets the
higher is the oscillation frequency and the larger the deviation from the single soliton
frequency.

This behavior is qualitatively explained by considering that for smaller oscillation am-
plitudes, the velocities of the solitons upon collision with each other are also smaller than
the velocities for large amplitudes. Looking at figure 2.4, which shows the phase shifts
two solitons acquire upon collision with each other depending on their velocities, it is
obvious that for smaller velocities the effect of the interaction is much stronger, leading
to a larger increase of the oscillation frequency since the phase shifts always act in the
direction of motion of the solitons.

Application of the Effective Interaction Potential

To investigate the contributions of the interaction to the oscillation frequencies more
closely the effective interaction potential of section 2.3.3 can be employed. The repul-
sive potential between two solitons given by equation 2.13, scaled to the physical units of
the homogeneous one-dimensional Gross Pitaevskii equation, reads:

Vint(z,v) =
µB2

2msinh(2B z
ξ
)

B =

√
1− v2

c2
h̄2

µ2 (3.28)

Considering now that the harmonic confinement of the Bose-Einstein Condensate leads
to an effective external harmonic potential, the total potential determining the evolution
of a soliton in the trapped condensate can be written down as

V (z,v) = Vint(z,v)+Vext(z) =
µB2

2msinh(2B z
ξ
)
+(2πνeff)2 z2

2
(3.29)

The frequency νeff of the effective harmonic potential for the dark solitons is taken
to be the frequency of a single soliton oscillating in a Bose-Einstein Condensate. As
seen in section 3.3.2, this oscillation frequency deviates from the asymptotic prediction
ν1s = νz/

√
2 depending on the oscillation amplitude and the dimensionality of the system.

In order to apply this potential to a certain physical situation, the single soliton frequency
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3 Dark Solitons in Bose-Einstein Condensates

is obtained from numerical time evolutions of the non-polynomial Schrödinger equation
for a condensate with a single oscillating soliton.

The parameters µ and ξ are the one-dimensional chemical potential and healing length,
since the potential was derived from the homogeneous one-dimensional nonlinear Schrödinger
equation and rescaled to the units of the homogeneous one-dimensional Gross-Pitaevskii
equation. For the adaption of the potential to the three-dimensional case, µ is taken to be
the chemical potential obtained from the three-dimensional Gross-Pitaevskii equation and
ξ is taken to be the associated healing length ξ =

√
h̄/(mµ). This choice is not obvious,

since these quantities for the three dimensional case are not in general applicable to the
homogeneous one-dimensional situation. It will be justified a posteriori by a comparison
of the results given by the potential with those of the evolutions of the non-polynomial
Schrödinger equation.

The potential can now be used to derive the Lagrangian equations of motion for the two
oscillating solitons (equation 2.18) and the resulting differential equations can be solved
numerically to obtain the trajectories of the two solitons. Figure 3.10 shows the com-
parison between these trajectories and the density evolution plot for two oscillating soli-
tons determined with the non-polynomial Schrödinger equation. It can be seen that even
though the effective potential was derived for the purely one dimensional, homogeneous
case the oscillation pattern of two solitons in a harmonic trap is very well reproduced if
the effective harmonic potential is adjusted to the frequency of a single oscillating soliton
and µ and ξ in the effective interaction potential are taken from the three-dimensional
Gross-Pitaevskii equation.
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Figure 3.10: The oscillation of two dark solitons calculated with the NPSE (density plot in the
background) and the soliton trajectories obtained from the effective potential (full
lines)

To investigate this more quantitatively, Figure 3.11 shows a comparison between the
oscillation frequencies of two solitons oscillating with different amplitudes obtained from
the effective potential with those obtained from the non-polynomial Schrödinger equation.

The overall agreement of the frequencies obtained from the effective potential with
those from the non-polynomial Schrödinger equation is very good, considering the ideal-
izations contained in the effective interaction potential. For large amplitudes, the effective
potential slightly overestimates the frequencies while for small amplitudes, it underesti-
mates them. The deviations for the parameters used are at most 4%.
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Figure 3.11: The oscillation frequencies of two dark solitons as a function of their oscillation
amplitude determined with the NPSE (squares, dashed line) and with the effective
potential (dots, full line) and the corresponding frequencies of single oscillating dark
solitons (diamonds)

The effective potential provides a direct insight into the different contributions to the
deviations from the asymptotic prediction. Since it incorporates the effects due to dimen-
sionality directly via the frequencies of the oscillations of single solitons, the upshift from
these frequencies seen in figure 3.11 can be attributed solely to the interaction of dark
solitons.

As mentioned in chapter 2.3.3, the second advantage of the effective interaction poten-
tial is, that it can be applied to arbitrary numbers of solitons. To see this, it is applied to
another experimentally relevant case of three solitons in a Bose-Einstein condensate of
which one is stationary at the center of the trap and the other two oscillate to the left and
right of the stationary soliton.
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Figure 3.12: The oscillation of three dark solitons determined with the NPSE (density plot in the
background) and the soliton trajectories obtained from the effective potential (white
lines)

Figure 3.12 shows such an oscillation. The density plot in the background of the picture
is calculated using the non-polynomial Schrödinger equation. The white lines indicate the
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3 Dark Solitons in Bose-Einstein Condensates

trajectories obtained from the effective interaction picture which are in good agreement
with the soliton trajectories of the non-polynomial Schrödinger equation. In this case the
generalization of the potential for asymmetric collisions (equation 2.19) has to be used,
since the collisions between the solitons are not symmetric anymore and more than two
solitons are involved in the collisions.
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Figure 3.13: The oscillation frequencies of dark solitons as a function of their oscillation amplitude
determined with the NPSE for one soliton (diamonds), two solitons (squares) and
three solitons (crosses) and the frequencies determined with the effective interaction
potential for two solitons (full line) and three solitons (dashed line)

The effect of the interaction on the oscillation frequencies is even stronger in the case
of three solitons, as shown in figure 3.13. The deviations of the frequencies from the
single soliton oscillations are significantly higher for the three soliton case than for the
two soliton case. This is easily explained by considering that the oscillating solitons
in the three soliton case always collide with the stationary soliton and not with another
moving soliton. Thus, the total velocity of the solitons involved in the collision is lower
for the three soliton case, which, as shown in figure 2.4, leads to larger phase shifts and
thus higher oscillation frequencies.

The relation between the oscillation frequencies of dark solitons and their oscillation
amplitudes can now be used to experimentally investigate the interactions of dark soli-
tons (see chapters 4 and 5). Solitons with different oscillation amplitudes are produced
experimentally and their oscillation frequency is recorded to reproduce this amplitude de-
pendence of their oscillation frequency. The effective potential can then be used to clearly
distinguish between effects stemming from the dimensionality of the condensate and ef-
fects stemming from the interaction of the solitons to show that observed deviations of the
frequency from the asymptotic value of νz/

√
2 indeed result from both effects and how

large the different contributions are.

Note that the distinction between effects stemming from the dimensionality and those
stemming from the interaction between the solitons is slightly misleading. Obviously, the
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3.3 Dynamics of Dark Solitons in Harmonically Confined Condensates

effective potential incorporates the effects the dimensionality has on the single solitons
directly via an effective harmonic potential. But, as it can be seen in equation 3.28, the
interaction potential itself depends on the chemical potential µ of the condensate. This
chemical potential is directly influenced by the dimensionality of the system and thus, the
interaction strength between the two solitons depends as well on the dimensionality.

The distinction between the effects of dimensionality and the effects of interaction in
the following means to distinguished between effects that are always present for dark
solitons in Bose-Einstein condensates resulting from the dimensionality of the system
and effects that only appear when two or more solitons interact with each other, even
though the latter are also influenced by the dimensionality.
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4 Creation and Observation of
Oscillating Dark Solitons

As explained in the previous chapter, the interaction between dark solitons can be in-
vestigated experimentally by measuring their oscillation frequencies and amplitudes in
harmonically confined Bose-Einstein condensates. Since the interaction can only be ob-
served if two or more solitons oscillate in the condensate, a method to produce different
numbers of solitons oscillating with different amplitudes is required.

4.1 Creation of Dark Solitons in a Bose-Einstein
Condensate

Different methods to create dark solitons in Bose-Einstein condensates have been sug-
gested. Methods that rely on the direct manipulation of the condensate wavefunction
imprint a local phase change to the condensate wave function, locally modify its density
distribution or use a combination of both techniques [51].

For phase imprinting, an additional potential is introduced to one part of the conden-
sate which leads to a different time evolution of its phase. If this additional potential is
spatially well localized, a localized phase difference at the interface between the two re-
gions of the condensate develops. This technique has been used to create dark solitons
in elongated Bose-Einstein condensates [18, 19] and very recently a collision of two dark
solitons created this way has been observed [25].

A density modification technique can also rely on the manipulation of the condensate
wave function via an additionally introduced potential [52]. A different approach has
been taken by Dutton et al. [21], who created a density depletion in a Bose-Einstein
condensate by shining in an ultra-slow light pulse, creating quantum shock waves that
shed dark solitons.

4.1.1 Dark Soliton Production through Matter Wave
Interference

Another approach to the creation of dark solitons takes advantage of interference phenom-
ena in collisions between two separate Bose-Einstein condensates. As first demonstrated
by Andrews et al. [53], two condensates that collide with each other produce a pattern of
interference fringes. For the description of this interference pattern, that deviates from a
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simple linear superposition of the two wavefunctions of the separate condensates, the non-
linear interaction of Bose-Einstein condensates has to be taken into account [54] which
can lead to the formation of dark solitons [55].

Scott et al.[56] investigated these nonlinear interference patterns theoretically by con-
sidering two Bose-Einstein condensate ground states, displaced equal and opposite amounts
from the center of a harmonic trap, which are released and collide in the center. In the
collisional dynamics, they found two different regimes to be distinguished, depending on
the relation between the kinetic energy the condensates acquire before colliding and the
nonlinear interaction energy.

If the kinetic energy of the two condensates exceeds the nonlinear interaction energy,
the clouds will essentially pass through each other while exhibiting an interference pattern
that closely corresponds to the one expected for linear superposition of the individual
wavefunctions of the condensates. A critical initial distance of the condensates to be in
this regime is shown to be

d > π

(
6Nh̄as

νzm

)1/3

(4.1)

If the initial distance between the condensates is smaller than d, the nonlinear interac-
tion energy dominates the kinetic energy. The interferences pattern experiences nonlinear
features and some of the central interference fringes develop into dark solitons. This
happens because a dark soliton, as mentioned in chapter 3.2.2, is stable, constituting a
local energy minimum of the governing nonlinear equation, and a deformation towards
the filling of a dark soliton would be energetically unfavorable. Thus, once the shape and
phase distribution of an interference fringe are close enough to that of a dark soliton, the
nonlinear dynamics, approaching the minimalization of energy, lead to a stabilization of
this fringe as a dark soliton.

(a) Two condensates
prepared in a double-
well potential

(b) The barrier sepa-
rating the two wells
is switched off and
the two condensate
clouds start moving
towards the center of
the trap

(c) The two clouds
interfere when they
collide in the trap
center

(d) In the nonlinear
interference regime
some of the interfer-
ence fringes stabilize
as dark solitons

Figure 4.1: Schematic depiction of the dark soliton creation process
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A schematic depiction of this production process is shown in figure 4.1 for two con-
densates initially prepared in a double well potential.

The two colliding condensates are considered to have the same phase and as a result,
the interference fringe pattern will be symmetric about the center of the trap with a density
peak exactly at the trap center. Thus, the number of formed solitons will always be even.
The total number of solitons formed in the collision of the condensates depends on the
kinetic energy the condensates acquire while moving down the harmonic potential. This
can be seen in figure 4.2 where the numerical time evolution of two condensate clouds
in the situation described above is shown for different speeds with which the separating
barrier is removed.
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Figure 4.2: The condensate evolution during and after the soliton creation process for different
ramping times Tramp of the barrier

In figure 4.2(a), the barrier is instantaneously removed. The condensates acquire a high
kinetic energy while they are accelerated by the harmonic potential. After the collision
three pairs of solitons are formed, which travel outwards from the center of the trap. In
figure 4.2(b), the height of the barrier is linearly ramped down over 1ms. The condensates
are slowed down in their evolution, acquire less kinetic energy and only two pairs of
solitons are formed. For a ramping time of 2ms, as seen in figure 4.2(c), only one pair of
solitons is formed. The trapping frequencies in this case are νz = 50 Hz and ν⊥ = 500
Hz, the number of atoms is N = 1000 and the initial barrier height is V0 = 1000 Hz (see
section 4.1.2).

The same effect can also be achieved by choosing a different trapping frequency of the
harmonic confinement, which lowers or raises the potential energy of the two wells. This
is limited in practice by the fact that for a weaker harmonic confinement the difference
between the potential energy of two adjacent wells is also lowered which can lead to the
initial population of more than two wells. In the collision of more than two condensates,
solitons will still be created but since they originate from several points their dynamics
will be more complicated, with multiple solitons moving in different directions, colliding
very frequently.

Another way to influence the number and distance of the created solitons is by adjusting
the initial barrier height. For a higher barrier, the distance between the two wells increases
slightly, and the kinetic energy of the condensates is higher. Experimentally, this is limited
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for high barriers by the fact, that a sufficient coupling for the two clouds has to be given
in order to prevent a dephasing due to the finite temperature [57] and thus the barrier can
not be chosen too high.
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Figure 4.3: The condensate evolution during and after the soliton creation process for different
heights of the standing wave potential separating the two wells

Figure 4.3 shows the condensate evolution for different initial barrier heights. In this
case, the barrier is removed instantaneously, the trapping frequencies are again νz = 50
Hz and ν⊥ = 500 Hz and the number of atoms is N = 1000. Again, for an initially
higher barrier, which increases the initial well distance and thus the kinetic energy upon
collision, more solitons are formed. For lower barriers less solitons are formed and their
initial velocity increases, which can be seen very well in 4.3(c), where the solitons are
only faintly visible, due to their high velocity and low darkness.

The transverse trapping frequency ν⊥, varied over our experimentally possible range,
and the total atom number both have only a very slight effect on the number and distance
of the produced solitons.

Using the initial barrier height and the ramping time of the barrier it is thus possible
to create different numbers of solitons with different initial velocities in a harmonically
confined Bose-Einstein condensate, which is done experimentally as detailed in the next
section.

4.1.2 Experimental Realization

For the experimental realization of the creation of dark solitons a Bose-Einstein con-
densate of 87Rb is prepared in a double well potential. The 87Rb atoms from a heated
dispenser are gathered in a 2D+ magneto-optical trap (MOT)[58] that confines and cools
them them in two spatial directions and creates a collimated beam of atoms that is subse-
quently captured by a three dimensional MOT [59]. After cooling in the MOT, all atoms
are optically pumped to the |F = 2,mF = 2〉 state in which they are trapped by a magnetic
quadrapole trap with a time-orbiting potential [60]. In this trap, the atoms are evapo-
ratively cooled to temperatures slightly above the critical temperature of condensation.
Afterwards, the atoms are transferred into an optical dipole trap, where they are further
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4.1 Creation of Dark Solitons in a Bose-Einstein Condensate

evaporatively cooled below Tc ≈ 110nK and condense into a Bose-Einstein condensate.
For more details about the condensation of 87Rb in our experimental setup, see [61].

The optical dipole trap is created by a laser beam at λ = 1064nm which is far red
detuned from the optical resonance at 780 nm of the |F = 2〉 → |F ′ = 3〉 transition of the
D2 line. The 87Rb atoms are high field seeking in this case and the gaussian intensity
distribution of the beam creates an effective potential with a minimum at the point of
highest intensity. The gaussian waist of the beam is approximately 5 µm and creates
a strong confinement in the transverse direction. The Rayleigh range is about 70 µm
which creates a weaker confinement in the longitudinal direction. The strength of the
confinement can be adjusted by varying the intensity of the laser beam. The ratio between
the transverse and the longitudinal confinement is ν⊥/νz ≈ 20. This optical dipole trap is
called the charger. [62]

To increase the confinement along the longitudinal direction another laser beam is su-
perimposed. This beam orthogonally crosses the charger and has an elliptic shape with
waists of 60 µm in the longitudinal direction and 120 µm in the transverse direction of the
charger.

charger

Xdt

Movable mirror

Figure 4.4: The setup of the crossed optical dipole trap

This crossed beam, which in the following will be referred to as the Xdt, leads to an
additional confinement mainly in the longitudinal direction of the charger. The Xdt can
be moved along this direction using a mirror mounted to a high precision piezo stage and
the strength of the longitudinal confinement can be adjusted by varying the laser intensity.
The combined crossed optical dipole trap is used in our experiments with transverse trap-
ping frequencies of ν⊥ = 408 Hz or ν⊥ = 890 Hz and longitudinal trapping frequencies
between νz = 25 Hz and νz = 58 Hz. A schematic depiction of the layout of the crossed
optical dipole trap is shown in figure 4.4

To create the double well potential, a one-dimensional optical lattice, created by two
laser beams with λ = 843nm crossed in the region of the dipole trap under an angle of 8◦,
is superimposed on the crossed optical dipole trap. This creates a standing wave lattice
potential with a lattice spacing of l = 5.7 µm. The superposition of the lattice potential
with the optical dipole trap leads to a modulation of the harmonic potential as shown in
figure 4.5.

The total external potential created by the superposition of the harmonic potential and
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Figure 4.5: The sum of the lattice potential and the harmonic potential create a symmetric double
well potential.

the lattice potential is given by

V (x,y,z) =
m
2

(ω2
x x2 +ω

2
y y2 +ω

2
z z2)+

V0

2
2π(1+ cos(2π

z
l
+ z0) (4.2)

where the strength of the lattice potential V0 is given in Hz.

By adjusting the longitudinal position of the Xdt, the relative position z0 between the
center of the harmonic trap and one of the maxima of the lattice potential can be made
zero. The minima of the lattice to the left and right of the center of the harmonic trap
form a symmetric double well potential. The other wells created by the lattice potential
are shifted up in energy because they are situated further away from the center of the
harmonic trap. If the atom number of the condensate is low enough or the longitudinal
confinement high enough so that no other wells of the lattice can be populated with atoms,
a symmetric double well potential with one Bose-Einstein condensate in each well is
obtained. For more details about the creation of the double well potential see [63].

Figure 4.6: Absorption image of two condensates, containing a total of about 910 atoms, in the
double well potential

Figure 4.6 shows the two condensates in a symmetric double well potential with a total
of about 910 atoms, trapping frequencies of νz ≈ 63 Hz and ν⊥ ≈ 408 Hz and a barrier
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height between the two wells of V0 ≈ 1050 Hz.

The images of the condensate density as seen in figure 4.6 are obtained by absorption
imaging of the condensate. A laser beam resonant to the |F = 2〉 → |F ′ = 3〉 transition
of the D2 line with a σ+ polarization is shined in. The atoms are kept spin polarized by
a constant magnetic field so that all atoms absorb the imaging light. An objective images
the beam on a CCD chip with a magnification of about 11.2. The pixel size of the CCD
chip is 6.45 µm so that the length of one pixel of the absorption image corresponds to
0.58 µm. The resolution of the imaging system is approximately 1 µm. Since the con-
densate absorbs the resonant imaging light, the atoms gain energy and after the imaging
process, the Bose-Einstein condensate is destroyed. Thus, to observe a time evolution
using this imaging technique, one has to repeat the experiment for every time step and
take an image at a different point in time of the condensate evolution. For more details on
the imaging system see [64].

The initial trap configuration used for the creation of dark solitons is that of νz = 63 Hz
and ν⊥ = 408 Hz. The barrier height is experimentally adjusted to be low enough to al-
low enough coupling between the two condensates in order to prevent a dephasing [57],
ensuring that the relative phase of the two clouds is always close to 0. In our experi-
ments, the height of the initial barrier is always around 1000 Hz and the total number of
atoms ranges from 860 to 2080. The phase fluctuations for smaller barrier heights can be
used to determine the temperature of the Bose-Einstein condensate [65]. In our case, the
temperature is on the order of 10−20 nK.

The barrier between the two condensates is then instantaneously removed and the two
condensates collide in the center of the trap. The critical distance for the formation of
solitons (equation 4.1) in our experiments is on the order of 25 µm, which is much larger
than the well distance of 5.4 µm and thus, dark solitons develop from the interference of
the two condensate clouds.

The evolution of the solitons in the condensate is investigated for different longitudinal
trapping frequencies νz. Thus, during the first few milliseconds after switching off the
barrier, the longitudinal trapping frequency is ramped down to the desired final value
for νz. The duration of the ramp is experimentally adjusted to prevent excitations of
quadrupole oscillations of the whole cloud after merging, which naturally arise when two
condensates collide.

Figure 4.7 shows a time evolution of the longitudinal density of the condensate during
such a soliton formation process. At each time step longitudinal density distributions
from nine realizations of the condensate, obtained from absorption images, are averaged.
At t = 1ms, the two condensates initially in the double well can be seen. At t = 2ms
the condensates have already collided and the central maximum has formed. Close to the
maximum, two dark solitons are recognizable. At t = 3ms and thereafter, two additional
solitons can be observed that move further out in the trap

This production method is used for all experiments conducted to determine the oscil-
lation frequencies of two solitons in harmonically confined Bose-Einstein condensates.
Special attention is paid to the visibility of the solitons during their further evolution and
the initial barrier height as well as the ramping time of the trap frequency are determined
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Figure 4.7: Time evolution of the experimentally observed longitudinal density profile for the first
six milliseconds of the creation process. Each horizontal line is the average over nine
realizations of the experiment.

experimentally to maximize the reproducibility of the soliton evolution. In section 4.2 the
observed soliton oscillations will be shown and chapter 5 will discuss the experimental re-
sults on the oscillation frequencies of the solitons created in this way and how conclusions
about their interactions can be drawn.

4.1.3 Soliton Creation with Initial Phase Difference

The initial position of dark solitons formed in the collision of Bose-Einstein condensates
depends on the phase difference between the two condensates. In the previous section,
the phase difference was always taken to be zero, leading to an even number of solitons
symmetric about the center of the trap. If the condensates instead have a phase difference
of π before the collision, one interference fringe forms in the center of the trap and as a
result, the total number of solitons is odd and one soliton is stationary in the center of the
trap.

This phase difference has been applied to the ground state wave function of a double
well potential and the subsequent collision of the condensates and the creation of solitons
in numerical a numerical time evolution is shown in figure 4.8.
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Figure 4.8: A phase difference of π between the condensates in the double well leads to the cre-
ation of one stationary soliton in the center of the trap during the collision of the two
condensates

As expected, as the clouds collide one stationary soliton is created in the center of the
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4.1 Creation of Dark Solitons in a Bose-Einstein Condensate

trap and an equal amount of additional solitons to the left and right of the stationary one.

The experimental realization of such a phase modification of the condensate would best
be achieved by employing an additional potential acting only on one of the wells, much
like the phase imprinting methods [18, 19] mentioned above.

With our experimental setup, the only way to manipulate the relative phase of two
condensates in the double well potential is to use the possibility of moving the harmonic
trap along the longitudinal axis, which can be done by moving the Xdt beam. Moving
the harmonic potential with respect to the standing wave creating the double well barrier
results in an asymmetric double well, since the two wells created by the standing wave
have their minima at different heights of the harmonic potential (see fig 4.9).

V[a.u.] V[a.u.]

z[a.u.]z[a.u.]

Figure 4.9: Moving the harmonic potential along the longitudinal direction creates an asymmetry
in the double well potential which leads to a potential difference between the two wells

The different potential energy of the condensates in the two wells leads to a differently
fast time evolution of their global phases and over time they acquire a phase difference.
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(b) ∆z = 4µm
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(c) ∆z = 6µm

Figure 4.10: The condensate evolution during and after 1 ms of phase accumulation for different
displacements ∆z of the longitudinal harmonic potential

Figure (4.10) shows the numerical time evolution of the condensate during and af-
ter the modification of the relative phase. In this case, the parameters are νz = 50 Hz,
ν⊥ = 500 Hz and N = 1000. The initial barrier height for the ground state determination
is V0 = 1000 Hz. The barrier height is then set to V0 = 2000 Hz and the longitudinal
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4 Creation and Observation of Oscillating Dark Solitons

trapping potential is displaced along the longitudinal axis by different amounts ∆z for one
millisecond. During this time, the accumulation of the phase difference takes place. After
1 ms, the harmonic trap is shifted back to its original position and the barrier height is set
back to V0 = 1000 Hz and from there on ramped down over 3 ms. It can be seen how the
accumulated phase over a fixed time depends on the displacement ∆z. For ∆z = 4 µm, the
accumulated phase is very close to π and the desired soliton pattern with one stationary
soliton in the center forms. The height of the potential barrier is increased during the
phase accumulation process in order to reduce tunneling of the atoms between the wells,
which would lead to a relative atom number difference between them.
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(a) The ground state density distribution in
the double well potential at t = 0 (dashed
line) and the phase of the wavefunction,
which is flat over the two condensates (full
line)
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(b) The density distribution at t = 1.6
ms, after the phase accumulation process
(dashed line). The phase of the wavefunc-
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Figure 4.11: The density distributions and phase of the wave functions before and after the phase
accumulation process

Figure 4.11 shows the density distributions and the phase of the wave functions before
the phase accumulation process (figure 4.11(a)) and at t = 1.6 ms (figure 4.11(b)), shortly
before the two condensate clouds merge during the ramping down of the barrier. At t = 0,
the phase of the wavefunction is flat over the extension of the two condensates. This is the
ground state wavefunction of the double well potential. At t = 1.6 ms, after the double
well potential has been asymmetric for 1 ms and while the barrier is being ramped down,
the phase of the two condensates is not flat anymore over the extension of the condensates
but instead exhibits a parabolic shape, which is due to the different phase evolutions at
points in the separate wells with different potential energies. More importantly, at the
center between the two condensates, the phase of the wave function shows a sharp jump
of π . This is the desired feature that leads to the formation of the stationary soliton in the
center of the trap.

This phase accumulation process is the general procedure that is used in the experiment
to create three oscillating dark solitons. The displacement and the barrier height during
the phase accumulation time are experimentally adjusted to result in a stable pattern of
three solitons being created. To investigate the oscillations for different aspect ratios, the
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4.2 Observation of Oscillating Solitons

trap frequency in the longitudinal direction is again ramped from its start value of 63Hz
to the desired final values and the ramping time is experimentally adjusted to minimize
quadrupole oscillations of the condensate cloud after the collision.
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Figure 4.12: The longitudinal density of the condensate 4ms after the creation process with phase
manipulation, averaged over 16 realizations of the experiment. The stationary soliton
in the center of the trap and the two solitons to the left and right of the stationary one
can be observed.

Figure 4.12 shows the first result on the creation of three solitons. The graph shows
an average over 16 longitudinal density profiles of the condensate cloud 4ms after the
ramping of the longitudinal trap frequency. The fact that the solitons are still visible after
averaging over so many realizations shows that the phase difference accumulation process
is stable enough to reproducibly create three dark solitons in a Bose-Einstein condensate.

4.2 Observation of Oscillating Solitons

For the measurements of the two soliton frequencies, solitons are created with the produc-
tion method explained in section 4.1.1 for twelve different parameter sets. The parameters
are in the ranges: νz between 25Hz and 60Hz, ν⊥ either 407.5Hz or 890Hz and the Atom
number of the condensate N is between 860 and 2080.

For each data point, a Bose-Einstein condensate is produced, the solitons are created
and the confining potential is ramped to the desired values. The end of the ramping
process marks the start of the evolution time of the solitons, which now oscillate in the
harmonically confined condensate. After a certain evolution time an absorption image of
the condensate is taken, which destroys the Bose-Einstein condensate. Then, a new Bose-
Einstein condensate is produced, the solitons are created and the confining potential is set
using the same parameters. After a slightly longer evolution time, an absorption image
is taken again. This process is repeated for a certain number of different points in time
during the desired total evolution time. Typically, the spacing between two points in time
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(c) at t = 4ms the two solitons collide in the cen-
ter of the condensate and are indistinguishable
due to the finite imaging resolution
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(d) at t = 10ms the two solitons are close to their
turning points

Figure 4.13: Absorption images of the condensate cloud with the dark solitons at different times t

is 1 ms or 2 ms and the total evolution time ranges from 60 ms to 120 ms. After the image
at the last point of the evolution time is taken, the whole process is repeated between 3
and 7 times.

At the end of the measurement for one parameter set, at each point in time during the
evolution of the wave function between 3 and 7 images of the condensate density have
been taken, which amounts to a total of 90 to 490 images per parameter set.

Figures 4.13(a) and 4.13(b) show exemplary absorption images of the condensate at
different points in time for νz = 53 Hz, ν⊥ = 407.5 Hz and an average atom number of
N = 1710. The images are then summed over the transverse axis of the condensate to
obtain their one-dimensional longitudinal density distribution.

Figures 4.13(c) and 4.13(d) show the density distributions corresponding to the two-
dimensional absorption images above. In figure 4.13(d), the two dips in the condensate
density are two dark solitons very close to their outer turning points. One would expect
from the theory that for these solitons with v≈ 0 the condensate density at the minimum
of the dip would be depleted down to zero. It has to be assumed that this is the case but
the imaging resolution is not high enough to resolve this.

Figure 4.13(c) exhibits only one large dip at the center of the density distribution. At
this time the solitons are very close to the point of closest proximity during their oscil-
lation and due to the finite imaging resolution appear as one very deep dip. This does
not mean that the two solitons necessarily pass through each other, since the resolution
does not allow to distinguish between the characteristic structures for transmission and
reflection at the collision points (see chapter 2.3.2). As it will be seen in chapter 5.2,
a numerical investigation of the experimental situation suggests, that the solitons move
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slowly enough to be considered as being reflected upon collision.

10

20

30

40

50

60

70

t[ms]

15-15 0
z[µm]

(a) The experimentally ob-
served evolution of two dark
solitons. Each horizontal line is
the average over seven longitu-
dinal density distributions

10

20

30

40

50

60

70

t[ms]

15-15 0
z[µm]

(b) The corresponding numeri-
cal time evolution of the 3DGPE
taking the production process
into account

10

20

30

40

50

60

70

t[ms]

15-15 0
z[µm]

(c) The numerical simulation
(b) taking the experimental
imaging resolution and finite
time steps into account

Figure 4.14: The time evolution of two dark solitons in a harmonically confined BEC, experimen-
tally and numerically

To illustrate the complete oscillatory time evolution of the solitons, the one-dimensional
density profiles of the cloud at consecutive moments during the evolution have been com-
bined in figure 4.14(a). Each horizontal line corresponds to the average over seven one-
dimensional density profiles at the given time step. In this case, the trap frequencies are
νz = 53Hz and ν⊥ = 890Hz and the average atom number is N ≈ 1710.

The oscillations of the solitons in the trap are clearly visible and six collisions be-
tween them are observed. This shows, that the solitons indeed oscillate in a trapped
Bose-Einstein condensate and that they are stable over a timespan long enough to observe
their oscillation and stable during collisions with each other.

Figure 4.14(b) shows the numerical simulation of the solitons conducted using the
three-dimensional Gross-Pitaevskii equation. The simulation includes the full produc-
tion process of the solitons, which is not shown in the figure since t = 0 marks the end of
the ramping time for the confining potential. It can be seen that two dark solitons oscil-
late close to the center of the trap and their oscillation dynamics shows good agreement
with the one experimentally observed. Additionally, some solitons with a larger oscilla-
tion amplitude and smaller darkness are created in the production process. These solitons
are only faintly visible in the experimental pictures due to their high velocity and lower
contrast and their oscillation frequencies will not be investigated.
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4 Creation and Observation of Oscillating Dark Solitons

To compare the numerical simulation with the experimental data, in figure 4.14(c) the
density evolution of the simulation is convolved along the longitudinal axis of the con-
densate (vertical axes in the figure) with a pointspread function with a width of 630 nm to
take into account the resolution of the imaging system. Additionally, the time resolution
is set to one density plot per millisecond as it is in the experiment.

As mentioned, the total observed evolution time ranges from 60 ms to 120 ms. This
does not mean that all the solitons decay after this timespan. In fact, solitons are still
observable after more than one second of evolution time but in general are less clearly
identifyable after long evolutions. This is probably due to the thermodynamical instability
discussed in chapter 3.2.2. The observation time for the soliton oscillation is limited by a
dephasing of the soliton oscillations from realization to realization. This originates from
variations in the experimental conditions, which in our case means mainly variations of
the number of atoms in the condensate, for which the solitons experience slightly different
oscillation frequencies. Thus, over longer evolution times the oscillations of the separate
experimental realizations dephase and the trajectories of the solitons, that can be obtained
by determining the positions of the solitons at each time step, smear out. Also, if the
thermodynamical instability is the limiting factor for the visibility of the solitons, it will
lead to an acceleration of the solitons and their oscillation amplitude will change over
time. Thus, obtaining an oscillatory trajectory from the single soliton pictures is easier
for more pictures at shorter evolution times than by increasing the evolution time.
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Figure 4.15: The experimentally observed time evolution of the longitudinal density of a conden-
sate with three dark soliton. Each vertical line is the average over sixteen realizations
of the experiment and the stationary soliton as well as the two oscillating solitons can
be observed.

As explained in section 4.1.3, it is possible to modify the phase between the two con-
densate clouds in the double well potential before their collision and the production of
solitons. This has been done experimentally to create three dark solitons of which two
oscillate to the left and right of a third, stationary soliton situated in the center of the
trap. Figure 4.15 shows the experimentally observed time evolution of the longitudinal
density distribution for such a case. Each vertical line is the average over 16 longitudinal
density distributions obtained from absorption imaging pictures of the condensate at the
given point in time. The solitons behave exactly as expected. The central soliton remains
stationary and the two outer ones oscillate and coincidentally collide with the central one.
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4.2 Observation of Oscillating Solitons

The oscillation amplitude of the two outer solitons is very large and also a quadrupole
oscillation of the cloud is present, both limiting the conclusions about interactions that
can be drawn from this result.
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5 Oscillation Frequencies and
Interaction

To investigate the interaction of dark solitons, the oscillation frequencies of two dark
solitons with different oscillation amplitudes are determined from the experimentally ob-
served soliton oscillations. These oscillation frequencies can then be compared with the
predictions from the effective interaction potential to identify the effects of the interaction.

5.1 Oscillation Frequencies

The oscillation frequencies of the dark solitons are extracted manually from the experi-
mental data. The absorption images of the condensate representing its time evolution (see
chapter 4.2) are summed over the transverse axis to obtain one-dimensional density dis-
tributions. These density distributions are then investigated one by one and the positions
of the most prominent density dips (or, in the case of two solitons colliding in the center
of the trap, the central dip) are recorded manually. In cases where it is not clear which
of the observed minima have to be identified as the relevant solitons the density profile is
discarded and no positions are recorded. Afterwards, the distance between the two soli-
tons at each time step is determined and averaged over all distances recorded for this time
step. This leads to a plot of the distance between the two solitons versus time. The plot
is then fitted by the function 2z0|sin(2πνDSt + φ)|. Figure 5.1 shows two of the oscilla-
tion plots that were obtained from the absorption images together with the corresponding
fitting functions.
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Figure 5.1: The experimentally determined time evolution of the soliton distance (dots) and the
corresponding fits to the data (full lines) for two different parameter sets (see table
5.1)
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5 Oscillation Frequencies and Interaction

# νz[Hz] ν⊥[Hz] N νDS zmax[µm]
1 53.85±0.27 890±89 1372±93 41.32±0.26 3.12±0.20
2 53.0±0.25 890±89 1708±81 40.32±0.20 3.23±0.15
3 25.7±0.17 407.5±40.8 2079±106 19.67±0.13 5.06±0.25
4 32.9±0.7 407.5±40.8 1763±116 24.77±0.26 4.13±0.34
5 37.0±0.85 407.5±40.8 1603±132 29.49±0.34 3.27±0.29
6 37.0±0.85 407.5±40.8 1438±132 29.55±0.19 3.07±0.18
7 38.9±0.19 407.5±40.8 1536±126 30.25±0.24 3.51±0.15
8 54.0±0.82 407.5±40.8 1375±124 42.37±0.35 2.67±0.17
9 57.65±0.29 407.5±40.8 863±134 47.56±0.29 2.30±0.12

10 57.65±0.29 407.5±40.8 945±120 46.70±0.28 2.44±0.14
11 57.97±0.31 407.5±40.8 1055±105 46.35±0.6 2.07±0.23
12 57.0±0.3 407.5±40.8 870±120 48.12±0.48 2.22±0.20

Table 5.1: The experimental parameters and the observed soliton oscillation frequencies

The fits allow to determine the two relevant variables for the oscillation of dark solitons,
namely the oscillation amplitude z0 and the oscillation frequency νDS.

As mentioned in chapter 3.3.3, the oscillation amplitude of the solitons is taken to be
half of their maximum distance, in order to be able to compare them to the oscillation
frequencies of single dark solitons.

In table 5.1, the recorded soliton oscillation frequencies νDS and amplitudes zmax are
listed together with the corresponding experimental parameters. This is the main experi-
mental result of this thesis.

The healing length ξ is the natural length scale of a Bose-Einstein condensate and also
the relevant parameter for the extension of a soliton and the length scale for the interaction
between them. To plot all the experimentally determined oscillation frequencies for dif-
ferent experimental parameters consistently and compare their amplitude dependence, the
healing lengths for all experimental situations have been obtained from simulations using
the three-dimensional Gross-Pitaevskii equation and are given in table 5.2 together with
the oscillation amplitudes scaled in units of ξ . This allows for plotting the experimental
oscillation frequencies depending on their oscillation amplitudes measured in ξ which is
shown in figure 5.2.

The predictions for the oscillation frequencies, which can be determined by numerical
time evolutions of the non-polynomial Schrödinger equation for the given experimental
situations and observed oscillation amplitudes, are also shown in the graph. The agree-
ment between the numerical predictions and the experimental results is good, all predic-
tions fall within the experimental error margins of the observed frequencies.

Two things can be observed immediately. All oscillation frequencies are higher than
the asymptotic prediction of 1/

√
(2) and they show a clear amplitude dependence, being

higher for smaller oscillation amplitudes. Both observations are expected because of
the interaction of the two solitons with each other as discussed in chapter 3.3.3 and the
influence of the dimensionality of the system as discussed in chapter 3.3.2.
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Figure 5.2: The experimentally observed Oscillation frequencies (dots with error bars), the corre-
sponding oscillation frequencies obtained from the NPSE (squares) and the asymptotic
prediction 1/
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2 (full line)

5.2 Effects on the Oscillation Frequencies

To analyze the effects that influence the two soliton oscillation frequencies and extract the
different contributions to the deviations from the one-dimensional Thomas-Fermi pre-
diction of νDS = νz/

√
2, it is necessary to calculate some further quantities from the

experimental results.

The first column of table 5.2 lists the oscillation frequencies of the solitons νDS scaled
to the respective longitudinal trapping frequencies. The second column lists the healing
length ξ of the condensates determined from the ground states of numerical simulations
using the three-dimensional Gross-Pitaevskii equation and the third column the oscillation
amplitudes scaled in the respective healing lengths.

The fourth column of table 5.2 lists the different aspect ratios Ω = νz/ν⊥ of the confin-
ing trap. As seen in figure 3.7(b), these aspect ratios influence the oscillation frequencies
of the oscillating solitons.

As mentioned in section 3.1.2, one of the criteria for the applicability of the one-
dimensional Gross-Pitaevskii equation is

NΩ
as

a⊥
� 1. (5.1)

In the fifth column, the determined values for this quantity are given. They range from
1.21 to 1.81, which is close to one and can be considered a dimensionality crossover
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# νDS
νz

ξ [µm] zmax[ξ ] Ω NΩ
as
a⊥ ν1S[Hz]

1 0.767±0.006 0.2568 12.15±0.78 0.061±0.006 1.22±0.15 39.68
2 0.761±0.005 0.2496 12.94±0.60 0.060±0.006 1.50±0.15 39.03
3 0.765±0.007 0.3768 13.43±0.66 0.063±0.006 1.30±0.15 18.91
4 0.753±0.018 0.3724 11.09±0.91 0.081±0.008 1.42±0.17 24.32
5 0.797±0.021 0.3712 8.81±0.78 0.091±0.009 1.45±0.19 27.57
6 0.799±0.019 0.3769 8.15±0.48 0.091±0.009 1.30±0.16 27.63
7 0.778±0.007 0.3708 9.47±0.40 0.096±0.010 1.46±0.19 28.91
8 0.785±0.014 0.3590 7.44±0.47 0.133±0.0146 1.81±0.25 40.49
9 0.825±0.007 0.3802 6.05±0.32 0.142±0.014 1.21±0.22 43.95

10 0.810±0.006 0.3754 6.50±0.37 0.142±0.014 1.33±0.22 43.78
11 0.830±0.009 0.3693 5.61±0.62 0.142±0.014 1.49±0.21 44.03
12 0.813±0.011 0.3804 5.84±0.53 0.140±0.014 1.21±0.21 43.33

Table 5.2: additional quantities determined from the experimental parameters and results

regime, but already points out that deviations of the oscillation frequencies from νz/
√

2
have to be expected even for a single soliton oscillating in the trap.

The sixth column lists the oscillation frequencies of single dark solitons oscillating
in condensates with the respective experimental parameters and the given amplitudes.
These values have been determined in numerical time evolutions of the non-polynomial
Schrödinger equation.

To show the effect the dimensionality of the system has on the oscillation frequency,
figure 5.3(a) shows the experimentally observed oscillation frequencies together with the
oscillation frequencies for single solitons oscillating under the corresponding experimen-
tal parameters.

It can be seen, that the experimentally observed oscillation frequencies differ signifi-
cantly from the numerically determined single soliton oscillation frequencies and that the
deviations are larger for smaller amplitudes of the oscillation. It can also be seen, that the
single soliton frequencies themselves show an apparently strong amplitude dependence.

To see that this is not only an amplitude dependence, it is instructive to take a look at the
behavior of the single soliton frequencies for their whole amplitude range. This is shown
in figure 5.3(b). The single soliton frequency curves are grouped together by the aspect
ratios of the harmonic trap Ω = νz/ν⊥ and it can be seen that they show an amplitude
dependence as well as a dependence on the aspect ratio. Additional deviations between
the curves with different aspect ratios could be explained by taking also into account
how close the different experimental situations are to the Thomas-Fermi approximation,
as noted in chapter 3.3.2, but to systematically investigate all deviations for the single
soliton frequencies is beyond the scope of this thesis.

Suffice it to note that the single soliton frequencies show a dependence on the oscil-
lation amplitude as well as a dependence on the dimensionality of the system, both of
which will be taken into account in the course of investigating the interactions between
dark solitons in the following.
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Figure 5.3: Comparison between the experimental results and the numerically determined single
soliton oscillation frequencies

As mentioned in chapter 4.2, the dynamics of three solitons, of which one is stationary
in the center of the trap and the other two oscillate to the left and right of it, has also
been recorded. The oscillation frequency of the three oscillating solitons is determined
as described in section 4.2. The oscillation frequency of the two outer solitons has been
determined in the same way as for the two soliton cases and is ν3S = (28.0± 0.2) Hz
with a trap frequency of νz = (36.1±0.1)Hz and ν⊥ = 407.5 Hz and a mean atom num-
ber of N = 1170± 110. The amplitude of the oscillation scaled in the healing length
ξ = 0.389 µm of the condensate is 20.59. This amplitude is very large compared to the
ones of the two soliton oscillations. It can not be expected that the interaction will sig-
nificantly alter the dynamics in this case and it also proves to be difficult to obtain the
corresponding single soliton frequency, due to a problem with the initialization of the sin-
gle soliton wave function for such high amplitudes. Additionally, the cloud experienced
a large quadrupole oscillation, which affects the dynamics of the solitons since the cloud
experiences a density modulation. Thus, the interaction effect can not be determined for
the recorded case and in the following only the two soliton cases are investigated.

As detailed in chapter 3.3.3, to clearly separate the effects the dimensionality has on
the oscillation frequencies from those stemming from the interactions of the solitons the
effective potential (see section 3.3.3) can be used, since it incorporates the single soliton
frequencies directly as an effective harmonic potential. Thus, using the effective potential
to determine the oscillation frequencies of two solitons returns the effect of the interaction
directly, as the difference between the calculated two soliton frequency and the numeri-
cally determined single soliton frequency.

Figure 5.4 shows the experimentally observed frequencies and the frequencies deter-
mined using the effective potential together with the single soliton frequencies from the
numerical time evolution of the non-polynomial Schrödinger equation, which were used
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Figure 5.4: The experimentally observed oscillation frequencies (dots with error bars), the cor-
responding oscillation frequencies obtained from the effective interaction potential
(crosses) and the corresponding single soliton frequencies from the numerical time
evolution of the NPSE. The effect of the interaction can be observed as the difference
between the experimentally observed two soliton frequencies and the single soliton
frequencies.

as the frequencies of the effective harmonic potential.

To ensure the validity of the effective potential, the velocity of the solitons upon colli-
sion with each other is required to be smaller than 0.5, scaled in units of the Bogoliubov
speed of sound. The maximum velocities the solitons reach during their time evolutions
obtained from the equations of motion for the effective potential for the points in fig-
ure 5.4 range between 0.26 and 0.33, which is well in the regime of applicability of the
effective potential, as discussed in chapter 2.3.3.

The frequencies given by the effective potential show a very good agreement with the
experimentally observed frequencies. This graph shows that by measuring the oscillation
frequencies of two oscillating solitons for different amplitudes, the interaction between
the two solitons manifests itself as the difference between the single soliton frequencies
and the experimental results for two solitons. The experimental results are in quantitative
agreement with the predictions of the effective interaction potential and thus the interac-
tion between two dark solitons oscillating in a Bose-Einstein condensate is experimentally
observed and in quantitative agreement with the theoretical predictions.
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6 Conclusion and Outlook

To summarize the results: Oscillating dark solitons are created using a method relying
on the nonlinear interference of two Bose-Einstein condensate clouds initially prepared
in a double well potential. These dark solitons are observed as they move through the
condensate cloud and are shown to be stable on timescales longer than several hundreds
of milliseconds. Their movement in the harmonically confined condensate is oscillatory
and they are observed to be stable after colliding with each other several times. The oscil-
lation frequencies of two solitons are investigated for different oscillation amplitudes and
dimensionality regimes. Using an effective potential to model the effects of the interaction
and of the effective harmonic potential created by the trapped Bose-Einstein condensate,
the amplitude dependence of the soliton oscillation frequencies on the oscillation ampli-
tude can be separated into two parts, one stemming from the dimensionality of the system
and one stemming from the interactions between the solitons. This way, the contributions
of the interaction between the two solitons can be extracted from the experimentally ob-
served oscillation frequencies and are in quantitative agreement with the predictions given
by the effective potential.

The effects of interaction are expected to be even stronger for three oscillating solitons.
The possibility of creating three oscillating solitons is investigated and one frequency
measurement for this case is conducted. The oscillation amplitude of the solitons in this
measurement is too high to observe significant frequency deviations from the correspond-
ing single soliton frequencies. In future experiments, the creation of three solitons will be
repeated with a special attention to the creation of small amplitude oscillations to further
investigate the stronger effects the interaction has on the soliton oscillation frequencies
in this situation. To this end, the effective interaction potential for the dark solitons is
generalized to asymmetric collisions of more than two solitons which allows for the un-
ambiguous identification of these interaction effects.

The created solitons were found to exist for more than 1 second in our experiments. The
position stability of the solitons between different realizations at the same point in the evo-
lution time dephases on a scale on the order of hundreds of milliseconds. Generally, dark
solitons can be observed for a much longer time in single images of the condensate. So
far, no quantitative results on the decay of dark solitons have been obtained. The solitons
are expected to decay due to a thermodynamic instability (see chapter 3.2.2). This insta-
bility causes an increase of the soliton velocities over time which leads to an increased
oscillation amplitude. The change of oscillation amplitude can be used to quantitatively
investigate this thermodynamic instability in future experiments.
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We report on the generation, subsequent oscillation and interaction of a pair of matter wave dark
solitons. These are created by releasing a Bose-Einstein condensate from a double well potential
into a harmonic trap in the crossover regime between one dimension (1D) and three dimensions
(3D). Multiple oscillations and collisions of the solitons are observed, in quantitative agreement
with simulations of the Gross-Pitaevskii equation. An effective particle picture is developed and
confirms that the deviation of the observed oscillation frequencies from the asymptotic prediction
νz/

√
2, where νz is the longitudinal trapping frequency, results from the dimensionality of the system

and the soliton interactions.

Solitons are one of the most prominent features of non-
linear dynamics emerging in diverse fields extending from
hydrodynamics to solid state physics and from nonlinear
optics to biophysics. Dark solitons are the fundamental
excitations of the defocusing nonlinear Schrödinger equa-
tion [1], and have the form of a localized “dip” on a back-
ground wave, accompanied by a phase jump [2]. These
localized waveforms have been demonstrated experimen-
tally in different contexts, including liquids [3], discrete
mechanical systems [4], thin magnetic films [5], optical
media [6–8], and, more recently, Bose-Einstein conden-
sates (BECs) [9–15]. The possibility of creating pairs
of dark solitons [7] has stimulated considerable inter-
est in the repulsive [16] short-range interactions between
them [17, 18]. The resulting collisions, during which the
solitons approach within a distance comparable to their
width, have a universal character and thus, e.g., optical
solitons interact essentially the same way as matter-wave
solitons.

In this letter we report on the systematic generation
of a pair of matter wave dark solitons which is subse-
quently oscillating and colliding in a harmonic trap. Our
experiment is performed in the crossover regime between
1D and 3D [19], where dark solitons exist and are ro-
bust [20]. This allows us to monitor multiple oscilla-
tions and collisions of dark solitons, permitting the pre-
cise measurement of their oscillation frequency and their
mutual repulsive interactions. Previous experiments have
been performed in a genuine 3D regime where dark soli-
tons are unstable due to the so-called snaking instability
and eventually decay into vortex rings [11, 20]. In these
experiments solely their translation in the trap has been
shown [9–11]. Only very recently dark solitons have been
reported to undergo a single oscillation period in a har-
monic trap [15].

Different methods have been explored to create dark

solitons in Bose-Einstein condensates [9–15]. In our ex-
periment, the solitons are generated by merging two co-
herent condensates initially prepared in a double well
potential. This formation process can be regarded as a
consequence of matter wave interference of the two con-
densates [21–24]. The further evolution of the created
solitons in the trap is shown in Fig. 1a. Our procedure
is very similar to the recently reported generation of vor-
tices out of a triple well potential [25].

Since the two dominant solitons are created with a dis-
tance of a few healing lengths ξ (ξ is on the order of
250 nm to 400 nm), which defines the range of the repul-
sive soliton interaction, the collisions between them lead
to a significant modification of the oscillation frequency.
The measured frequencies deviate up to 16% from the
single soliton asymptotic Thomas-Fermi 1D (TF1D) pre-
diction of νz/

√
2 [26] where νz is the longitudinal trap-

ping frequency. Our experimental results are in quantita-
tive agreement with numerical simulations of the Gross-
Pitaevskii equation (GPE). They reveal that dark soli-
tons can behave very similar to particles. This is con-
firmed by explaining the essential features of the dynam-
ics within a simple physical picture regarding the dark
solitons as particles in an effective potential due to the
external trap and their mutually repulsive interactions.
Being in the crossover regime, the role of the transverse
degrees of freedom has to be included in the effective po-
tential [27].

Before elaborating on the theoretical models and sys-
tematic studies we will briefly describe the details of the
experimental setup. We prepare a BEC of 87Rb in the
|F =2, mF =2〉 state containing about N = 1500 atoms
in a double well potential. This potential is realized by
superimposing a far detuned crossed optical dipole trap
(λ = 1064 nm) and a one dimensional optical lattice
(λ = 843 nm). The first beam of the dipole trap has
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FIG. 1: Observation of the time evolution of dark solitons in
a harmonic trap. The dominant soliton pair is indicated by
arrows. a) Experimental observation of the dynamics of the
longitudinal atomic density. Each longitudinal density pro-
file (vertical lines), corresponding to a given evolution time,
is deduced from typically 10 experimental realizations. The
obtained absorption images of the condensate at each time
step are averaged and integrated over their transverse direc-
tion. The number of atoms in the shown case is N = 1700
and the trapping frequencies are (νz, ν⊥)=(53 Hz,890 Hz). b)
Result of the numerical integration of the 3D GPE taking
into account the full preparation process of the solitons. c)
Same as b), taking into account the finite spatial (1 µm) as
well as temporal resolution (1 ms) of the experiment. The
loss of contrast due to the convolution process explains the
experimentally observed fading out of the solitons with time.

a gaussian waist of 5 µm and results in a strong trans-
verse and weak longitudinal confinement. The second
beam orthogonally crosses the first one and has an ellip-
tic shape (60 µm × 230 µm waist) leading to an extra
adjustable confinement only in the longitudinal direction
of the trap. We start our experiments with a transverse
frequency of the total harmonic trap of ν⊥ = 408 Hz and
a longitudinal one of νz = 63 Hz. The barrier height of
the optical lattice is chosen to be approximately 1 kHz
and the lattice spacing is 5.7 µm. This results in a double
well potential with a well distance of 5.4 µm.

In order to start with a well defined phase between the
two condensates, the barrier height is chosen to be low
enough such that thermal phase fluctuations are negligi-

ble for the measured temperature of T ≈ 10 nK [28] (the
critical temperature for condensation is Tc ≈ 110 nK)
and high enough so that high contrast solitons are
formed. The solitons are created by switching off the
optical lattice and merging the two condensates in the
remaining harmonic potential. After the switching off,
the trap frequencies are ramped to the parameters of in-
terest (νz, ν⊥). The distance between the formed solitons
is adjusted by choosing different sets of final frequen-
cies and different atom numbers. For each parameter
set, the ramping time is empirically optimized to mini-
mize the excitation of the quadrupole mode (e.g. from
(νz, ν⊥)=(63 Hz, 408 Hz) to (53 Hz, 890 Hz) within 10 ms
for N = 1700 atoms, or to (58 Hz, 408 Hz) within 3 ms
for N = 950). The atomic density after a certain evolu-
tion time in the harmonic trap is obtained using standard
absorption imaging with an optical resolution of approx-
imately 1 µm. We use a short time of flight between 0.6
and 0.9 ms to enhance the contrast.

In our experiment, the initial distance D = 5.4 µm
between the two colliding condensates is well within the
regime where the interaction energy exceeds the kinetic
energy and thus the formation of dark solitons is expected
due to nonlinear interference. This regime is reached if D
is smaller than the critical distance Dc = π(6N~as

νzm )1/3 =
25.8 µm with as being the s-wave scattering length, νz

the longitudinal trap frequency and m the atomic mass
[22]. The formation of dark solitons for our experimental
parameters is confirmed by 3D GPE simulations as shown
in Fig. 1. Including the optical and time resolution, the
experimentally observed density profile evolution is well
reproduced. A dominant pair of solitons oscillates close
to the center of the cloud and we can also distinguish
additional pairs of solitons with much lower contrast. In
the following, we focus on the dynamics of the dominant
central pair and show that its oscillation frequency is well
described within a two soliton approximation.

We experimentally investigate the oscillation frequency
of the dominant soliton pair for different trap parameters
and different inter-soliton distances. A typical data set
consists of 50 time steps and 10 pictures per time step.
The numerical simulations predict, that the solitons do
not cross each other at the collision points (see inset of
Fig. 3c), but our finite resolution does not allow us to
distinguish whether this is actually the case in the ex-
periment. In order to extract the oscillation frequency
of the solitons, we fit the time evolution of the inter-
soliton distance as shown in the inset of Fig. 2. The
obtained frequency is divided by two in order to com-
pare it to the oscillation frequency expected for a single
trapped soliton. The shot to shot reproducibility of the
soliton dynamics up to 100 ms allows the observation of
up to 7 oscillation periods. The typical statistical exper-
imental error in the frequency measurement is ±1.5%.
Fig. 2 shows the results of our frequency measurements
and their comparison with numerical simulations for the
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motion of two trapped solitons using the Nonpolynomial
Schrödinger equation (NPSE) [29], which is an excel-
lent approximation to the 3D GPE in the dimensionality
crossover regime [27].

In order to capture the essentials of the dynamics of
the experimentally realized soliton pairs in the simu-
lations, we initialize the condensate with two solitons
such that the rms amplitude of their oscillating mo-
tion matches the one observed experimentally. The good
agreement between numerics and experiments shows that
the dynamics produced by our experimental method is
well described within a two soliton approximation even
though extra solitons are produced. From our experi-
ment and the NPSE simulations, we observe an upshift
up to 16% from the νz/

√
2 prediction which was the first

value theoretically derived for the oscillation frequency
of a single trapped soliton [26]. It is expected to be
valid in a 1D trap in the asymptotic Thomas-Fermi limit
(NΩas/a⊥ ¿ 1 and ((N/

√
Ω)as/a⊥)1/3 À 1) [19], where

Ω = νz/ν⊥ ¿ 1 is the aspect ratio of the trap and a⊥ the
transverse harmonic oscillator length. Our experimental
parameter range is: Ω ≈ 0.06−0.14, NΩas/a⊥ ≈ 1.2−1.8
and ((N/

√
Ω)as/a⊥)1/3 ≈ 2.8− 4.4, which sets us out of

the validity domain of the νz/
√

2 prediction.
We now give a theoretical description of the different

effects leading to the observed upshift. We consider the
two solitons as particles moving in an effective potential
which arises from the combination of a harmonic poten-
tial due to the trap [26] (see Fig. 3a) and a repulsive po-
tential due to the interaction between the solitons [30].
Because of the spatially symmetric preparation, the effec-
tive potential is a symmetric double well potential which
is depicted in Fig. 3b. This potential can be expressed as
a function of the distance z of each of the solitons from
the trap center and its time derivative ż:

V (z, ż) = (2πν1s)2
z2

2
+

µB2

2m cosh2(2Bz/ξ)
(1)

where B =
√

1− (ż/ξ)2(~/µ)2 denotes the darkness of
the solitons, µ is a typical interaction energy on the order
of the chemical potential, ξ =

√
~/(mµ) the associated

healing length and ν1s the oscillation frequency of a single
trapped soliton. The frequency of the motion is obtained
by solving the Euler-Lagrange equation associated with
the Lagrangian L(z, ż) = ż2/2−V (z, ż). To obtain quan-
titative agreement, the model has to take into account
correctly both the free propagation of the solitons in the
trap when they are far away from each other (z À ξ) and
the repulsive interaction when they approach.

Good estimates for the single soliton frequency ν1s are
obtained by numerical integration of the NPSE describ-
ing a single soliton. Because our experimental parameters
are both in the crossover regime and slightly out of the
Thomas-Fermi limit, corrections to the asymptotic value
νz/

√
2 are expected. Therefore the oscillation frequency

FIG. 2: Comparison between experimentally obtained soliton
oscillation frequencies and NPSE simulation for one and two
solitons. Each frequency point is deduced from the temporal
evolution of the soliton distance as shown in the inset. Dif-
ferent symbols correspond to different aspect ratios Ω of the
trap. For each aspect ratio the oscillation amplitude is varied
as explained in the text. NPSE simulations are represented
by solid lines for the two soliton case, and by dashed lines for
the respective single soliton oscillations. The error bars on
the measured frequencies account for statistical errors on the
measured soliton and trap frequencies and systematic errors
on the atom number used to calculate the healing length.

of a single dark soliton is upshifted by a few percent
from the asymptotic value as discussed in detail using
the Bogoliubov-de Gennes analysis of the NPSE in [27]
(see Fig. 3a). The simulation results for the three dif-
ferent parameter sets used in the experiment are shown
in Fig. 2. This upshift for the single soliton case can be
decomposed into two contributions. For example, consid-
ering one specific parameter set with Ω ≈ 0.06, the up-
shift is 5% (see Fig. 3c). Predictions using the 1D GPE
already give a value approximately 2% higher than the
asymptotic limit because the Thomas-Fermi limit is not
reached [31]. The effect of dimensionality, i.e. the role
of the transverse degrees of freedom which is captured
only by the NPSE or the 3D GPE, accounts for the re-
maining 3%. Fig. 3c shows the comparison between the
νz/

√
2 prediction and the single soliton NPSE simulation

for the considered parameter set.
As also shown in Fig. 3c, the repulsive interaction be-

tween the solitons results in an additional upshift of the
oscillation frequency compared to the single soliton case
that strongly depends on the oscillation amplitude. Our
effective particle model accurately reproduces the upshift
if the interaction parameter µ is set to be the chemical
potential of the condensate obtained from the 3D GPE
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equation. In our experimentally accessible parameter
range, the agreement of the model with NPSE simula-
tions is better than 5%. This allows us to clearly identify
the significant role of the repulsive interactions and shows
that the effective repulsive potential in Eqn. (1) obtained
in the 1D homogeneous case is a good approximation to
our complex situation.

FIG. 3: The oscillation dynamics of dark solitons in a trapped
BEC is well captured in an effective particle picture. a) For
one soliton, the particle moves in a harmonic trap. b) For two
solitons, an additional barrier due to the repulsive interaction
appears. c) For the one and two soliton case, the dependence
of the oscillation frequencies on the oscillation amplitude from
the trap center is shown for one experimental parameter set
with Ω = 0.06. The dashed line shows the TF1D prediction
(νz/

√
2). The thin solid line indicates the upshift of the single

soliton frequency mainly due to dimensionality. For the case
of two solitons, the thick solid line also includes the upshift
due to the inter-soliton interaction deduced from the NPSE.
The dotted line represents the result of the simple effective
particle model from Eqn. (1). Density profile evolutions ob-
tained from the NPSE are shown in the insets. A collision be-
tween the two solitons is also shown in detail, demonstrating
that they do not cross each other. The white lines correspond
to the trajectories of the density minima.

In conclusion we controllably create pairs of dark soli-
tons by colliding two atomic clouds released from a dou-
ble well potential in a harmonic trap. The full dynamics
of multiple dark soliton oscillations and collisions is ob-
served, allowing for precise frequency measurements and
showing that dark solitons are still stable after several
collisions. The experimentally observed total upshifts
from the TF1D frequency prediction are up to 16%. A
simple effective particle picture confirms that the oscil-

lation frequency of two solitons in a harmonic trap is af-
fected by two effects namely the single soliton frequency
upshift and the inter-soliton interaction. The presented
robust method for preparing solitonic excitations will be
a starting point for further studies towards multi-soliton
interactions and perhaps even dark soliton gases.

We thank P. Schmelcher for useful discussions as well
as B. Hemmerling, R. Gati and T. Ottenstein. We ac-
knowledge support from NSF, DFG and AHF. J.E. ac-
knowledges support from the EC MC-EIF program.

[1] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 37,
823 (1973).

[2] Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81
(1998).

[3] B. Denardo and S. Wright, W. andPutterman, Phys. Rev.
Lett. 64, 1518 (1990).

[4] B. Denardo et al., Phys. Rev. Lett. 68, 1730 (1992).
[5] M. Chen et al., Phys. Rev. Lett. 70, 1707 (1993).
[6] P. Emplit et al., Opt. Comm. 62, 374 (1987).
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