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Zusammenfassung

Eines der interessantesten Themen im Gebiet der elektronisch hochkorrelierten Systeme
ist die Konkurrenz verschiedener Grundzustände wie zum Beispiel Magnetismus und
Supraleitung. Die sogenannten Schwere-Fermion Systeme sind aufgrund ihrer niedri-
gen charakteristischen Energie (Fermi-Temperatur) besonders zur Untersuchung einer
solchen Konkurrenz geeignet, da der Grundzustand durch Druck oder ein Magnetfeld
einfach verändert werden kann.

In dieser Arbeit wurde das Hochdruck-Phasendiagramm der Schwere-Fermion Verbin-
dung URu2Si2 durch Messungen des spezifischen Widerstands und der spezifischen Wärme
im Detail untersucht. Der hydrostatische Druck wurde von einer Diamant-Stempel-
Druckzelle erzeugt und die spezifische Wärme mittels AC-Kalorimetrie gemessen. Alle
Messungen wurden an derselben Probe durchgeführt. Bei Normaldruck werden in dieser
Verbindung zwei aufeinander folgende Phasenübergänge beobachtet. Bei T0 = 17.5 K
geht das System in eine geordnete Phase über, deren Ordnungsparameter jedoch trotz
intensiver Anstrengungen noch nicht eindeutig bestimmt werden konnte. In der Literatur
wird diese Phase daher ”versteckte Ordnung” genannt. In Neutronenstreuexperimenten
wurde ein geordnetes magnetisches Moment von m = 0.03 µB bestimmt; dieses ist aller-
dings viel zu gering, um die große Entropieänderung beim Phasenübergang zu erklären.
Bei tiefen Temperaturen unterhalb von TSC = 1.4 K wird die Verbindung zusätzlich
supraleitend.

Unter Druck findet ein Übergang zu einer normalen antiferromagnetischen Phase mit
einem größeren geordneten Moment statt. Das Zusammenspiel zwischen der versteck-
ten Ordnung und der antiferromagnetisch geordneten Phase und deren Einfluss auf die
Supraleitung wurde durch unsere Untersuchung besser verstanden: Das Phasendiagramm
zeigt vier getrennte Bereiche. Die Grenzlinie zwischen der versteckten Ordnung und der
antiferromagnetischen Phase konnte sowohl in den Messungen der spezifischen Wärme als
auch des spezifischen Widerstands zum ersten Mal bestimmt werden. Sie steigt mit dem
Druck steil an und trifft auf die Phasengrenzlinie T0(p). Die typische Form der Anomalie
im spezifischen Widerstand beim Eintritt in die versteckte Ordnung, verursacht durch ein
Umordnen der Fermi-Fläche unterhalb von T0, wurde bis zum größten gemessenen Druck
von p = 5.5 GPa beobachtet. Dies bedeutet, dass die mit der Umordnung einhergehende
Spin-Dichte-Welle bis zu hohen Drücken fortbesteht und mit der antiferromagnetischen
Phase koexistiert. Die Volumen-Supraleitung koexistiert mit der versteckten Ordnung,
wird aber bei dem Druck unterdrückt, bei dem die antiferromagnetische Phase stabilisiert
wird. Damit verhält sich URu2Si2 anders als übliche Schwere-Fermion Supraleiter auf
Uranbasis, in denen eine mikroskopische Koexistenz von Supraleitung und Magnetismus
beobachtet wurde.





Abstract

One of the most exciting topics in strongly correlated electron systems is the competition
between different ground states like magnetic order and superconductivity. The so-called
heavy fermion compounds are, due to their low characteristic energy (Fermi temperature),
extremely suitable to study such a competition because the ground state properties can
be modified easily by applying pressure or magnetic field.

In this work we have studied in detail the pressure-temperature phase diagram of the
uranium based heavy fermion compound URu2Si2 by resistivity and ac-calorimetric mea-
surements under highly hydrostatic pressure and at low temperature. All measurements
were carried out on the same sample in a diamond anvil cell. At zero pressure this com-
pound shows two successive phase transitions. The first transition occurs at T0 = 17.5 K
to the so-called ”hidden order” phase. The nature of the order parameter of this phase is
still unknown. The observed ordered magnetic moment of m = 0.03 µB is too small to
explain the enormous anomaly in specific heat, which is due to a condensation process
where a gap opens on the Fermi surface. Below 1.4 K superconductivity coexists with
this phase. Under pressure a probably first order transition to a usual antiferromagnetic
phase with a larger ordered moment develops.

Our investigation sheds new light on the interplay between the different ground states.
The pressure phase diagram we established shows four distinct regions. The transition line
between hidden order and antiferromagnetism is seen in both resistivity and ac-specific
heat for the first time. It shifts very strongly to higher temperatures with increasing
pressure and joins the transition line T0(p). The typical shape of the resistivity, which
is caused by the rearrangement of the Fermi surface, persists to the highest pressure
we measured of p = 5.5 GPa, indicating that the spin density wave, associated to the
rearrangement, is coexistent with the antiferromagnetic phase at high pressures. The
superconducting phase is suppressed at the pressure where the antiferromagnetic phase
emerges, whereas in other uranium based heavy fermion systems magnetism and super-
conductivity can microscopically coexist.
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Introduction

URu2Si2 is member of a class of materials called heavy fermion compounds known for ex-

traordinary low temperature properties. Especially since the discovery of unconventional

superconductivity in some of these intermetallic compounds they have created much in-

terest in the solid state physics community. Their particular properties, like an enormous

specific heat or linear term of the resistivity at low temperature, cannot be described

within the free electron model as in the simple metals copper or aluminium but they are

rather an effect of strong interactions between the electrons. In theory the interactions

are taken into account by introducing an effective mass, which can be up to 1000 times

larger than the free electron mass. This is the reason why they are called heavy fermion

systems, electrons being fermions. Moreover, they lie close to a quantum critical point, a

transition point between two quantum phases. Under the action of an external parame-

ter different from temperature (like pressure, magnetic field or chemical substitution) the

ground state can be driven from a magnetic to a non-magnetic state. In proximity to such

a phase transition, the systems are often superconducting, one can even find coexistence

of magnetism and superconductivity.

In this Diplomarbeit we will focus on the unusual properties of the heavy fermion

compound URu2Si2. At zero pressure this compound undergoes at 17.5 K a phase tran-

sition to an ordered state. Despite considerable experimental and theoretical efforts for

more than 20 years, the order parameter is not yet totally understood and therefore the

phase is called ”hidden order”. At low temperature a superconducting state coexists with

this phase with TSC ≈ 1.4 K.

In the present study pressure is used as a tool to tune the strength of interaction

between the electrons. The pressure-temperature phase diagram of URu2Si2 is particu-

larly rich. At low pressures up to ∼ 0.5 GPa the hidden order phase is predominant and

at higher pressures a usual antiferromagnetic phase develops. At the same time, super-

conductivity is suppressed. The behaviour of the phase transitions under pressure and

especially the interplay and competition of the hidden order and the antiferromagnetic

phase will be investigated and a detailed pressure phase diagram will be established in

order to understand the phases at ambient pressure.

The experimental techniques used for this study are ac-calorimetry and resistivity

measurements under high pressure and at low temperature. The specific heat gives us

information about the entropy of the system, especially entropy changes at phase tran-
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sitions. Resistivity measurements allow a view on the scattering of conduction electrons

and are sensitive to changes at the Fermi surface. Pressures up to 5.5 GPa are generated

in a diamond anvil cell. This guarantees highly hydrostatic pressure conditions, but en-

tails sample sizes smaller than half a millimeter. Under these conditions the experimental

realisation is not easy and demands developed fine motor skills. Low temperatures down

to 60 mK are attained with standard cryostats.

In the following work I will first explain the most important aspects of theory which are

necessary to understand heavy fermion systems in general and especially the compound

URu2Si2. In the second chapter I will introduce previous results of URu2Si2 at ambient

pressure and under high pressure published before the beginning of my Diplomarbeit. The

third chapter will then treat the experimental technique of resistivity and ac-calorimetry

measurements under pressure and at low temperature before we present our results in

the last chapter and discuss them regarding also the latest publications of other groups.
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Chapter 1

Theory

URu2Si2 is a uranium based heavy fermion system. It undergoes two succesive phase

transitions: one at ∼ 17.5 K to hidden order and the transition to superconductivity at

∼ 1.4 K. This chapter first gives an overview of the important physical phenomena in

heavy fermion compounds before describing subsequently the physical effects, interactions

and theoretical models in question more in detail. The last paragraph deals with an

antiferromagnetic ground state which could possibly be a candidate for the hidden order

state.

1.1 Heavy fermion systems

Heavy fermion compounds are intermetallic compounds which contain rare earth elements

like cerium (Ce) or ytterbium (Yb) or actinides like uranium (U). Famous representatives

are for example CeAl3 or CeCu2Si2 [1]. These elements have a partly filled 4f -shell for

ytterbium and cerium and 5f -shell for uranium. The 4f -states are well localised (see

figure 1.1b) in real space, that means close to the atomic core compared to the closed

5s and 5p-shells because of the strong centrifugal potential l(l + 1)/r2 with l=3 for f -

electrons. Therefore they keep their atomic like character even in solids. Nevertheless the

tail of their wave function at the outside of the closed 5s and 5p-shell is not negligible.

This part of the wave function can easily be influenced by the potential energy, crystal

field and the distance between the lanthanide atoms and it overlaps with the conduction

electron wave function. In energy space the 4f -level is narrow and lies near the Fermi

energy so that the corresponding electrons can interact and hybridise with the conduction

electrons. This evokes spin- and valence fluctuations.

The low temperature behaviour of macroscopic properties in heavy fermion systems

can first be analyzed by Landau’s Fermi-liquid theory [2]. In this theory strongly inter-

acting fermions are substituted by weakly interacting quasiparticles with an enhanced

effective mass, which results in very large specific heat, susceptibility and resistivity at

low temperature. The most important results of this theory are given in paragraph 1.2.
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Fig. 1.1 : Effective radial charge densities of (a) Ni, (b) Ce and (c) U atoms [4].

At high temperature these systems show a Curie-Weiss like behaviour of the suscep-

tibility χ ∝ µ2

eff

T−Θ
due to the weakly interacting magnetic moments of the 4f respectively

5f -electrons. Curie-Weiss temperature ΘCW is often smaller than zero and the effective

magnetic moment µeff usually larger than 2 µB. However, it usually does not exactly

correspond to the value calculated by Hund’s rules for the electron configuration of the

free ion because of the crystal field splitting.

At lower temperatures the local moments are screened by the spins of the conduction

electrons like in metals with dilute magnetic impurities. We will introduce the Kondo

effect shortly in paragraph 1.3. Additionally the local moments interact indirectly via the

conduction electrons by the RKKY interaction (see paragraph 1.4 [3]). The competition

between the RKKY interaction which favours long range magnetic order and the mo-

ment screening of Kondo effect leads to different ground states in heavy fermion systems

(see paragraph 1.5). At zero temperature the system can be driven from a magnetically

ordered ground state to an non-magnetic state by changing a parameter other than tem-

perature. This parameter, notably pressure, magnetic field or chemical substitution tunes

the strength of the two competing forces. Such a phase transition happens at a quantum

critical point. In the vicinity of this point usually the typical properties of a Fermi liquid

are violated at least down to a rather low temperature and so-called Non-Fermi-liquid

behaviour is found (see paragraph 1.6).

In uranium the 5f -states are less localised as shown in figure 1.1c) where you can see

the effective radial charge density of the U atom compared to those of Ce and Nickel

(Ni) 1.1b and a), the latter being a typical magnetic system with itinerant (delocalised)

3d-electrons. We see that the f -state in uranium has a more itinerant character than

in Ce and the 5f -wave function is between atomic-like (as in Ce) and band-like (as the

3d-state in Ni). As a consequence, magnetism in U compounds probably also has a more
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CHAPTER 1. THEORY

itinerant character. In the dual modal which is applicable for example for UPd2Al3, one

of the three 5f -electrons is delocalised and the two other ones are localised [5]. In general,

uranium compounds with strong electronic correlations show a high complexity. Not only

the unknown degree of itineracy but also the presence of several competing energy scales

such as strong magnetic anisotropies, strongly hybridised crystal field excitations and soft

lattice modes play a role.

There are some heavy fermion systems which show unconventional superconductivity

(see paragraph 1.7), for example CeCu2Si2, UPt3, URu2Si2 or UPd2Al3. Highly interest-

ing phenomena like coexistence of superconductivity with magnetic ordering, anisotropic

gaps and coupling of cooper pairs by magnetic or valence fluctuations need further inves-

tigation.

1.2 Fermi-liquid theory

Electrons in a solid interact by Coulomb interaction. In heavy fermion systems, the

interaction cannot be neglected like for example in the normal metal copper. In the Fermi-

liquid theory the interacting electrons are described as weakly interacting quasiparticles.

Concerning their motion the interaction is taken into account by introducing an effective

mass m∗ in terms of Landau parameters [2]. The quasiparticles are excitations of this

N body system where the only difference to the excited states of free electrons is the

renormalized effective mass. A simple image would be that, when an electric field is

applied, the electrons cannot move easily or freely like in an electron gas because of their

interaction with the other electrons which gives them a larger inertia and so a larger mass.

In this theory the low temperature properties follow the following laws: The specific heat

C divided by temperature is given as:

C

T
= γ + βT 2 (1.1)

The second term is the phonon contribution and the first term originates from the quasi-

particles. γ is called the Sommerfeld coefficient and given as

γ =
π3

3
k2

BN(EF ) =
kFk2

B

3~2
m∗. (1.2)

Here, kF is the radius of the Fermi sphere, kB is the Boltzmann constant and ~ Planck’s

constant.

The susceptibility χ is calculated as

χ = χ0(1 − aT 2) (1.3)

with

χ0 = µ0µ
2
BN(EF ) ∝ n1/3m∗ (1.4)
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In first order this is a Pauli susceptibility proportional to m∗. In case of magnetic interac-

tions, for example ferromagnetic interactions, there may be another factor of enhancement

introduced by another Landau parameter G0.

For T −→ 0 the susceptibility and the specific heat depend both on the density of

states on the Fermi surface N(EF ). The so called Wilson ratio

R =
χ

γ

π2k2
B

µ0µ2
eff

(1.5)

is one for free electrons but between two and five for heavy fermion systems. The en-

hancement is due to the additional Landau parameter G0 in the susceptibility.

For the resistivity in Fermi-liquid theory we obtain:

ρ = ρ0 + AT 2. (1.6)

with A ∝ m∗2. The first term is due to scattering at impurities and defects and the

second term is due to quasiparticle quasiparticle scattering. This crude proportionality

of χ, C/T and A to m∗ and m∗2 is roughly valid since in heavy fermions the spin dynamics

and the mass enhancement is dominated by local fluctuations. By contrast in 3d itinerant

magnetism where the phenomena occur around a given wavevector this proportionality

is not observed.

1.3 Kondo effect

The signature of the Kondo effect is a minimum in resistivity of metals with dilute mag-

netic impurities, that means that the resistivity rises again when lowering the temperature

(see figure 1.3). This behaviour has first been explained by Kondo [6] who introduced

the perturbation term

HK = −2J S · s (1.7)

into his Hamiltonian. It describes the scattering of conduction electrons with spin s with

a local moment S of the impurity. J is the exchange integral of the attributed spin wave

functions. The interaction is antiferromagnetic and owing to higher order processes the

spins of the conduction electrons form a screening cloud around the local moment. At

low temperature the hybridisation V of conduction electrons with the d or f -electrons

responsible for the local moment S leads to a peak in the density of states at the Fermi

level called Kondo resonance or Abrikosov-Suhl resonance (see figure 1.2). This peak

develops to compensate the loss of degrees of freedom of the spin and the orbital moment

of the conduction electrons. Its width is ∼ kBTK . It is this large density of states which

leads to the enhanced effective mass in heavy fermion compounds.

A simple image would be that in the ground state the spin S(↑) and the spin s(↓)

form a non-magnetic bound singlet state {S(↑) · s(↓) ± S(↓) · s(↑)} with a binding
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CHAPTER 1. THEORY

Fig. 1.2 : In the Kondo model a maximum (Kondo resonance) develops in the density of states

near the Fermi energy due to hybridisation. The virtual 4f -level has a distance of ǫ ≈ 2 eV from

the Fermi level. The Coulomb repulsion against one electron more in the 4f -level is ∼ 5 eV [7].

energy

kBTK ∝ D exp(− 1

N(EF )J
) (1.8)

N(EF ) is the number of charge carriers at the Fermi surface and D is linked to the width

of the virtual bound state of the magnetic impurity.

Just above the Kondo-temperature TK the resistivity of a metal with magnetic im-

purities rises when lowering the temperature (see figure 1.3) according to the following

equation

ρ ∝ −ln(
T

TK
) (1.9)

Remarkably in heavy fermion systems, where the magnetic ”impurities” i.e. the moments

of the f -electrons, are present on every cerium-lattice site, the Ce f -electrons behave just

above the Kondo-temperature like diluted magnetic moments in spite of their periodicity.

Only at a still lower temperature Tcoh coherence effects start to play a role and the

correlations between impurity spins and spins of conduction electrons become important

on an extended length scale. Below this temperature Bloch-waves develop and a band

of quasiparticles is formed. In these Kondo lattices the resistivity drops strongly due

to coherent scattering and follows at low temperature a Fermi-liquid behaviour (dashed

line).
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Fig. 1.3 : Temperature dependence of resistivity of a metal with the Kondo effect.

1.4 RKKY interaction

The wave functions of f -electrons are well localised and therefore the corresponding mo-

ments cannot interact directly with each other. But the spin polarised screening cloud of

conduction electrons described in the paragraph about the Kondo effect (see paragraph

1.3) has a longer range and can mediate indirectly an interaction between two local mo-

ments. This so-called Rudermann, Kittel, Kasuya, Yosida (RKKY) interaction extends

over a long range and damps with a sinusoidal oscillation with a wave vector kF [3].

Depending on the distance between the magnetic moments Si and Sj it can be ferro- or

antiferromagnetic. The associated energy is:

kBTRKKY = J2N(EF )
cos(kF r)

(kF r)3
(1.10)

1.5 Kondo versus RKKY interaction in heavy fermion

compounds under pressure

Kondo interaction and RKKY interaction both depend on the exchange J between the

conduction electrons and the f -electrons. The system will take the ground state with the

lower energy, that means where the energy gain is higher. If the RKKY interaction is

stronger, this will be a magnetic ground state but if the Kondo interaction is stronger it

will be a non-magnetic one. The competition of those two interactions has been studied

by Doniach [8]. In the Doniach diagram (see figure 1.4) he draws the energies attributed

to these two interactions as function of JN(EF ). Heavy fermion systems are systems with

a value of JN(EF ) for which the associated energies kBTK and kBTRKKY have a similar

value. By varying J , the system can be tuned from a magnetic to a non-magnetic system
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CHAPTER 1. THEORY

Fig. 1.4 : The Doniach phase diagram shows the competition between the energies associated

to the Kondo effect TK and the RKKY interaction TRKKY as a function of JD(EF ) (corresponds

to JN(EF ) in the text) and the corresponding ordering temperature TN [9].

by passing a quantum critical point. This is a transition point at zero temperature where

the ground state of the system passes from one quantum state to another driven by an

external parameter other than temperature.

A possible parameter to tune the system through a quantum critical point is pressure.

When pressure is applied, obviously the lattice parameters change and also the exchange

integral between the conduction electron and the f -electron wave function. In energy

space schematically presented in figure 1.5 the width of the virtual 4f bound state is

defined as 2∆ and its distance to the Fermi level EF is ǫ4f where we find the Kondo

resonance. In case of a strong Coulomb repulsion within the f -orbital (U−→ ∞) the

exchange J , the hybridisation matrix element V and the width ∆ fulfil the relations [10]:

JN(EF ) ≈ ∆

ǫ4f
⇒ J =

V 2

ǫ4f
(1.11)

as ∆ = V 2N(EF ). Under pressure the f -level becomes wider and its energy level can

also change. With a larger ∆ and smaller ǫ4f (in case of Ce) also the hybridisation and

the exchange increase. This tunes the two competing forces and we move on the Doniach

diagram.

Uranium as a free neutral atom has the electron configuration [Rn]5f36d17s2. In a solid

the most usual ions are U3+ with the configuration [Rn]5f3 or U4+ with the configuration

[Rn]5f2. Both of these states are magnetic but the magnetic moments calculated by

Hund’s rules are never found in uranium compounds, because of the delocalisation of some

of the 5f -electrons. The delocalised f -electrons form bands and cannot contribute to the

9
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Fig. 1.5 : Schematic density of states of a heavy fermion system. The 4f -level with a width

2∆ is localised with a distance of ǫ4f from the Fermi energy EF .

stable local moment. Under pressure the hybridisation increases and the f -electrons tend

to escape into the conduction band and therefore the occupation of the f -level decreases.

The comportment of uranium can qualitatively be described [11] in a model of f -

electron systems in a crystal where core electrons of an atom are localised in spheres

around the nucleus with a diameter equal to the lattice parameter. The spheres of neigh-

bours touch. i) When pressure is applied, the atomic distance is reduced and consequently

the core region becomes also smaller. As a result, the core electrons screen the core poten-

tial more effectively so that it decreases. It is then less attractive for the f -electrons whose

orbitals spread out more of their waves outside the core region in real space. Being large

the latter are distorted by the crystal field and loose their f -character. Thus in a crystal

there will never be 14 available f -states and the occupancy of the available f -states di-

minishes with pressure or from system to system with decreasing atomic distance. ii) The

diffusion of the f -wavefunctions causes a higher overlap with the conduction band which

results in a larger hybridisation. As a consequence, the hybridisation-induced two-ion

coupling (RKKY) also grows with pressure. iii) In the density of states pressure leads to

a broadening of the f -level, an f -band can be formed and f -electrons can hop from site

to site. This is the reason why not all f -electrons contribute to the stable local moment.

So by applying pressure (i) f -waves are turned into non-f -waves due to spectral loss in

real space and (iii) localised f -waves are turned into itinerant f -waves due to spectral

loss in energy space. These effects weaken the magnetic ordering and compete with the

strengthened two-ion coupling(ii).
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Fig. 1.6 : Pressure-temperature phase diagram around a quantum critical point for CeIn3.

The inlay shows the pressure dependence of the exponent n of a ρ = ρ0 + AT n fit. [12]

1.6 Non-Fermi-liquid behaviour

In proximity to a quantum critical phase transition heavy fermion systems often exhibit

strong deviations from Fermi-liquid theory due to strong spin fluctuations or valence fluc-

tuations [13, 14]. As a typical example we present the pressure-phase diagram around

a quantum critical point for CeIn3 in figure 1.6. For low pressure p < pc the system is

magnetically ordered. Coming close to the quantum critical point at pc the spin fluctu-

ations become stronger and stronger and the associated energy Tsf becomes larger. If

the transition is of second order the spin correlation length ξs diverges at the quantum

critical point. The characteristic spin fluctuation time τs is related to ξs via the critical

exponent z as τs ∼ ξ−z
s . At the quantum critical point the temperature TN is so low that

the magnetic order cannot be established down to zero temperature. In this fluctuation

dominated region non-Fermi-liquid behaviour is found. For two and three dimensional

spin fluctuations in a ferro- (F) or antiferromagnet (AF) the temperature dependence

of resistivity ρ and specific heat C/T is given in tabular 1.6. The exponent n of the

temperature behaviour of resistivity ρ = ρ0 + AT n as a function of pressure for CeIn3 is

shown in the inlay of figure 1.6. It is smaller than two near the quantum critical point but

equal to two for higher pressures. On this side of the quantum critical point the system

recovers a Fermi-liquid behaviour.
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C/T ρ ∼ T n

F 3d −lnT T
5

3

2d T−
1

3 T
4

3

AF 3d T
1

2 T
3

2

2d −lnT T

Table 1.1: Temperature variation of C/T and ρ in the non-Fermi-liquid regime [10].

1.7 Unconventional superconductivity

Heavy fermion superconductivity appears usually at a transition temperature TSC ≤ 2 K.

Below this temperature the heavy quasiparticles condense into cooper pairs. The fact that

quasiparticles and not light electrons take part in the condensation process can be seen

from the size of the jump in specific heat ∆C ∼ γTSC which is large due to the enhanced

effective mass γ ∝ m∗. Another surprising feature is that the superconductivity occurs

even in presence of magnetic ordering or near a quantum critical point. In classical BCS

theory with s-wave pairing magnetic impurities destroy superconductivity because the

cooper pair electrons have opposed spin and propagation vector k. In magnetic materials

however it is possible to find cooper pairs with total spin S = 1, 3... i.e. the cooper

pair wave function is not an s-wave but a p- or d-wave. In heavy fermion systems super-

conductivity is often found in proximity of a quantum phase transition [15]. Therefore

one might suspect, that it is the magnetic fluctuations which mediate the attraction be-

tween the members of a cooper pair and not phonons as in BCS theory. Unconventional

superconductivity is characterized by a gap showing not the full lattice symmetry. For

both conventional and unconventional superconductivity the order parameter can van-

ish on lines or points on the Fermi surface but in unconventional superconductivity the

order parameter changes its sign at these points. In these special directions there is no

gap and as a consequence no exponential temperature dependence of physical properties

below the transition but simple power laws. The slope of the critical field µ0Hc2 (the

external magnetic-field where superconductivity is suppressed by field and temperature)

for T −→ TSC is given as
∂µ0Hc2

∂T

∣

∣

∣

∣

T=TSC

∝ m∗2TSC (1.12)

The value and temperature dependence of the critical field µ0Hc2 are determined from

basically two mechanisms:

• Orbital pair breaking: the cooper electrons move in a magnetic field and are exposed

to the Lorentz force which tends to separate the pair. As a result, the transition

temperature is decreased. This is the limiting mechanism near TSC.

• Pauli limiting: In a conventional singlet BCS superconductor the spins of the cooper

12
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Fig. 1.7 : Left side: A sketch in k-space of a (0, 0, 1) section of the Fermi surface of Cr. The

band structure of Cr yields an electron pocket (green) centred at Γ and a hole pocket (blue)

centred at H. The surrounding black square represents the first Brillouin zone boundary. Right

side: The typical nesting shape in the resistivity of chromium. [16]

electrons are opposed. Applying a magnetic field tends to align them and will in

this way break the pair. This also reduces the transition temperature in field. It is

of course not present in simple triplet states with S=1 and L=1, 3, ...

1.8 Spin density waves

The spin density wave state is an itinerant antiferromagnetic ground state. It often

occurs in low dimensional or highly anisotropic systems. The most famous representative

of systems with this ground state is chromium (Cr) [17, 18]. On the left side of figure

1.7 is sketched the Fermi surface of chromium in k-space perpendicular to the (0, 0, 1)

direction. The band structure of Cr shows an electron pocket (green) centred at Γ and

a hole pocket (blue) centered at H. The boundaries of these two kinds of pockets have

large parallel regions that match when shifted by the nesting wavevector q (red). If this

nesting is possible, the electrons and holes condensate into the spin density wave state

with a sinusoidal or helical variation of the spin density. The charge density meanwhile

stays constant implying an opposite variation of the density of fermions with spin up

and spin down. The energy gain for the condensate is ∆N(E) with the gap ∆ which

opens on the concerned part of the Fermi surface. The gap opening leads to a loss of

carrier density and therefore firstly to an increase in the resistivity curve below the Neel

temperature TN (see figure 1.7 on the right) and secondly to a BCS like exponential

decay in resistivity and specific heat. If q is a rational multiple of the lattice constant

a, the spin density wave is said to be commensurate, otherwise it is incommensurate.

The real space periodicity of the resulting spin density wave is given by 2π/q. The spin
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Fig. 1.8 : Temperature dependence of resistivity (a), derivative of resistivity (b) and specific

heat (c) of UIr2Si2 [19, 20]. Lines are guides to the eye.

density wave state is an antiferromagnetic ground state. The typical nesting signature

of the resistivity at the phase transition is different from the signature of a transition to

”normal” antiferromagnetism. As and example for the signature of an antiferromagnetic

transition without nesting, we present in figure 1.8 data for UIr2Si2, another example out

of the same class of compounds with UT2Si2 structure (T is a transition metal). Here the

resistivity just makes a downward kink at TN and its derivative is similar to the specific

heat.
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Chapter 2

URu2Si2

In 1985 during systematic studies of CeT2Si2 and UT2Si2 compounds, where T is a tran-

sition metal, interest fell on URu2Si2. It is a heavy fermion compound with a slightly

enhanced mass. Two successive phase transitions were seen as large anomalies in macro-

scopic properties like specific heat and susceptibility [21], one at T0 ≈ 17.5 K and the

other one at TSC ≈ 1.4 K to unconventional superconductivity. Below T0 an antiferro-

magnetically ordered phase (AF) with a very small ordered moment of m ≈ 0.3 µB is

found [22], which cannot account for the large loss of entropy ∆S ≈ 0.2R ln 2 at T0. The

order parameter accountable for this symmetry change is still not known and therefore

the phase is called ”Hidden Order” phase.

Neutron scattering measurements under pressure revealed a new antiferromagnetic

phase with a large ordered moment (LMAF) coming up for pressures larger than a crit-

ical pressure pc1 [23, 24]. However nuclear magnetic resonance (NMR) [66] and muon

spin resonance (µSR) [25] measurements showed that not the ordered magnetic moment

but the volume fraction of the magnetically ordered phase is small at ambient pressure

and increases under pressure. Additionally the critical pressure depends quite strongly

on the sample [24] and this phase transition is extremely sensitive to uni-axial stress in

some crystallic directions [26]. This points towards the interpretation that at ambient

pressure a small volume fraction of the sample is antiferromagnetic due to inner strains

caused by defects but that the hidden order phase itself is nonmagnetic. Nevertheless

some arguements suggest that the ordered moment is intrinsic to hidden order for exam-

ple the fact that the order temperature of the small moments is also T0. Under pressure

T0 increases first slowly until pc2 ≈ 1.4 GPa and then faster in the large moment antifer-

romagnetic phase [27]. Although basic differences between the hidden order phase and

the antiferromagnetic phase are expected, the signature of the transition in macroscopic

measurements as far as it has been studied is quite similar for low and high pressures [28].

Here much more detailed studies are necessary looking at the signature of the transition

with different macroscopic measurement techniques.

First neutron scattering measurements showed that the small ordered moment was
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Fig. 2.1 : Crystal structure of URu2Si2 with ordered moments of the uranium atoms below

TN = 17.5 K.

even present in the superconducting phase, hence the compound was believed to be a

candidate for coexistence between antiferromagnetism (AF) and superconductivity (SC)

[22]. In resistivity measurements the superconducting transition is visible up to pressures

far into the AF regime [27, 29]. Newer ac-susceptibility results claim that bulk supercon-

ductivity is suppressed under pressure by the AF phase [30]. In case of volume separation,

this might mean that superconductivity would be only coexistent with the hidden order

phase and not with magnetism.

Finally several open questions are left. Their answer could provide clues to the nature

of the hidden order parameter: Is superconductivity coexistent with antiferromagnetism?

What is the interplay between the order parameters in hidden order and antiferromag-

netism? Are they coexisting or not? Is the low moment antiferromagnetism intrinsic

to hidden order? How do the transitions change under pressure? Important for the

symmetry of the order parameters is also, if the first order transition line in the pressure-

temperature phase diagram has a critical endpoint or if we find two separated regions.

2.1 Ambient pressure results

URu2Si2 is a uranium based heavy fermion system. It has the body centred tetragonal

ThCr2Si2 crystal structure with I4/mmm group symmetry (see figure 2.1)[21]. Its lattice

parameters are a = b = 4.124 Å, c = 9.5817 Å at 4.2 K. These values are ∼ 0.1 %

smaller than the values at room temperature hence the crystal structure does not change

upon cooling [21]. After Schlabitz et al. had found hints to superconductivity in poly-

crystalline samples of URu2Si2, single crystals have first been studied by Palstra et al.

in 1985 [31, 21]. They measured the specific heat (of an annealed polycrystalline sam-
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Fig. 2.2 : Specific heat C/T of polycrystalline URu2Si2 sample [21].

ple), susceptibility and magnetization at ambient pressure and found two large anomalies

in all these macroscopic properties. The anomaly at T0 = 17.5 K was interpreted as

transition to antiferromagnetic order and the anomaly at TSC = 1 K as transition to a

superconducting state. In figure 2.2 is shown the specific heat C/T with the two large

anomalies. The line is a C
T

= γ + 12π2NkB

5T 3

D

T 2 fit to the high temperature data with a

Debye temperature of TD = 312 K. The y-axis intercept gives the γ value. One can see

that it drops during the transition from ∼ 180 mJ/molK2 at T ∼ T0 to ∼ 60 mJ/molK2

at ∼ 2 K. This corresponds to an entropy change of ∆S ≈ 0.2 Rln 2. Furthermore there

is a Schottky anomaly at ∼ 60 K beyond the presented temperature scale.

Figure 2.3 shows the dc-susceptibility χdc of a single crystal measured along the two

different crystallographic axes [21]. The response is highly anisotropic with the easy

axis ~c and little magnetisation along ~a. The large anisotropy implies that magnetism is

understood on the basis of localised moment picture. The Curie-Weiss fit for the high

temperature data 1/χdc (crosses) indicates an effective moment of 3.51 µB with a Curie-

Weiss temperature ΘCW = −65 K. The data derivate from the Curie-Weiss behaviour

already at 150 K. The value of the dc-susceptibility at 300 K is 30 times larger than the

value for the non-magnetic analogue ThRu2Si2 [32].

The resistivity is also anisotropic (see figure 2.4 [33]). Its behaviour for I ‖ a has five

regions:

• At high temperature the resistivity is determined by the Kondo effect with a ρ ∝
−ln( T

TK
) behaviour. Here the uranium atoms present the magnetic impurities.

• Below the large maximum at Tm ≈ 75 K the resistivity decreases dramatically due

to coherence effects in a Kondo lattice. The quasi-particle band is formed.

17



Fig. 2.3 : Dc-susceptibility χdc of a monocrystalline URu2Si2 sample along ~a and ~c direction in

a field of µ0H = 2 T. The line is a Curie Weiss fit of the high temperature 1/χdc data (crosses)

along the c axis [21].

Fig. 2.4 : Resistivity of a monocrystalline URu2Si2 sample along ~a and ~c direction [33].
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• At T0 the resistivity curves in both crystal directions show a remarkable transition

like the in spin density wave itinerant antiferromagnet chromium with an evident

loss of carrier density causing a jump in resistivity.

• Below T0 the resistivity can be accurately described by the theory of a an energy

gap (∆) antiferromagnet [34] with an additional Fermi-liquid T 2 term:

ρ = ρ0 + AT 2 + bT (1 + 2T/∆) exp(−∆/T ) (2.1)

with ∆ = 90(68) K parallel to the a (c) axis.

• Below TSC ≈ 1.4 K the compound becomes superconducting and the resistivity

drops to zero in both crystal directions.

The transition at T0 obviously resembles an electronic condensation process [35] with

a gap opening on part of the Fermi surface. The specific heat data can also be nicely

fitted with a gap-like exponential decay for temperatures between 2 K and 17 K:

C = γT + βT 3 + δ exp(−∆/T ) (2.2)

This fit gives an energy gap of ∆ = 115 K. The slope of magnetisation dM/dT becomes

larger for T < T0 indicating the formation of a spin gap [36]. Optical conductivity mea-

surements also suggest [37] a charge gap and finally thermal conductivity measurements

[38] point towards a gap as well.

Neutron diffraction measurements revealed that the uranium 5f moments order anti-

ferromagnetically along the c-axis below T0 as shown in figure 2.1 [43]. The moments m

are ordered ferromagnetically in the planes perpendicular to c and antiferromagnetically

between these planes. In figure 2.5 are shown the results from different groups for the

temperature dependence of the integrated scattering intensity I of the magnetic Bragg

peak (for three-dimensional order I ∝ m2Vaf , where Vaf is the antiferromagnetic volume)

at Q = (1, 0, 0) in reciprocal space, which is a forbidden nuclear peak. The ordered mo-

ment T −→ 0 is very small m ≈ 0.03± 0.01 µB and stands in contrast to the fluctuating

moment obtained from the high temperature susceptibility of m ≈ 3.5 µB. Additionally

the ordered moment depends on the sample [41]. The small ordered moment cannot ac-

count for the large entropy loss at T0 that we see as jump in the specific heat if we apply

the following formula [44]:

m2
0 = 2χ(TN)

∫ TN

0

C(T ) dT (2.3)

UPt3 in comparison has a similar moment of m = 0.02 µB in the antiferromagnetic phase

below TN = 5 K but it shows no anomalies at the magnetic transition in macroscopic

properties [45, 46].

No anomaly is found in the neutron scattering intensity on the Bragg peak (1, 0, 0) at

the superconducting transition, hence the antiferromagnetic phase is also present below
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Fig. 2.5 : Neutron scattering intensity of the magnetic bragg peak of URu2Si2 at Q = (1, 0, 0)

as a function of temperature from reference [39]. Data is from [39] (closed circles), [23] open

squares, [22] dash-double-dotted line, [40] (broken line), [41] (dash-dotted line), [42] (dotted

line).

the transition temperature to superconductivity.

The dispersion of magnetic excitations in URu2Si2 in the antiferromagnetic phase is

shown in figure 2.6. There are two minima with the propagation vectors (1, 0, 0) and

(1.4, 0, 0). Note that the points (1, 0.4, 0), (1.4, 0, 0), (0.6, 0, 0) are equivalent on the

Brillouin zone. The sharp spin waves in (1, 0, 0) direction are gapped with ∆ ≈ 1.8 meV

and in (1, 0.4, 0) direction with ∆2 ≈ 4.8 meV. Above T0 the itinerant-like spin excitations

with incommensurate wave vector Q = (1, 0.4, 0) are highly damped (i.e. very large)

and the gap is closed. Nevertheless their integrated intensity is constant for T > T0

and decreases exponentially below T0 with a characteristic temperature of (110±10) K,

the same as the gap from the specific heat [47]. Broholm et al. found no transverse

excitations with energies up to 400 K. This explains the anisotropy of the susceptibility

below 300 K.

Superconductivity coexists with the hidden order state and can give us a hint about

the unknown order parameter. Only electrons which are left on the Fermi surface during

the condensation process at T0 can participate in the Cooper pair condensation process.

In the specific heat the transition is seen at about 1.2 K (from the equal entropy fit) and

in resistivity it is found at a slightly higher temperature (1.5 K) if the criterion is the

temperature where the resistivity has dropped by half. The transition can have a double
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Fig. 2.6 : Dispersion of magnetic (full circles) and phonon (open circles, linear optic phonons

LO, linear acoustic phonons LA) excitations of URu2Si2 along (ξ, 0, 0) and partly (1, 0, ξ) at

4.2 K. Half filled circles denote a hybridised exciton-phonon mode [43]. Lines are guides to the

eye.

or triple step, depending on the sample and its heat treatment. In contrast to the double

transition in UPt3 this is not intrinsic and not present in every sample. The upper critical

field is anisotropic (see figure 2.7) and large [21] with a value of about ∼ 13 T for H ‖ a.

But it can be described taking into account both orbital and Pauli-limitation (fit line).

The upward curvature for small fields could be due to multi band effects like proposed

for PrOs4Sb12 [48] or anisotropic pairing [49], but this unconventional behaviour is still

not understood. The de Haas van Alphen frequency is the same in the normal and the

superconducting mixed state but the cyclotron mass decreases in the superconducting

state [51] when the field is reduced.

Theoretical models for the hidden order state are quite varied and can be basically di-

vided into two groups [39]. In group (A) the order parameter is a magnetic dipole and the

antiferromagnetism is an intrinsic property of the hidden order phase whereas in group

(B) the order parameter is some other degree of freedom. In this case antiferromagnetism

is not intrinsic but an additional order parameter. In the first group we include for ex-

ample crystalline electric field effects [52], dynamically phased order parameter [53], spin

density waves [54] or combination of local and itinerant magnetism [55]. To group (B)

belong amongst others quadrupolar [56, 57] or octupolar ordering [58], unconventional

density waves [59], helicity order [60], orbital antiferromagnetism [61] or Jahn-Teller dis-

tortion [62]. In group (B) two possibilities arise: i) The additional hidden order parameter

can induce antiferromagnetic order, that means as soon as the hidden order parameter is

larger than zero for T < T0 the antiferromagnetic order parameter is automatically also

different from zero. In this case the system is ordered homogeneously with two coexisting
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Fig. 2.7 : Upper critical field µ0Hc2 of URu2Si2 for H ‖a and H ‖c [50]. Dashed lines are from

pure orbital limit calculations and dashed-dotted lines from BCS- Pauli limit.

orders. ii) The second order is phase separated from the antiferromagnetic phase and the

order parameters are not coupled. Here the volume is inhomogeneously divided between

the two phases.

2.2 URu2Si2 under pressure

Measurements under pressure shed new light on the hidden order transition. The anti-

ferromagnetic phase is stabilised under hydrostatic pressure which is manifested by an

enhancement of the transition temperature T0 [63, 27, 64]. The temperature dependence

of resistivity under different constant pressures and the pressure phase diagram estab-

lished from these measurements are shown in figure 2.8. T0 grows first slowly up to

p ∼ 1.4 GPa (= 14 kbar) and then faster with a steeper slope. The temperature of the

maximum also increases with pressure and the superconducting transition temperature

decreases until ∼ 1.2 GPa. When normalised to the maximum temperature and maximum

resistivity, the different curves coincide accurately down to T0. Hence the mechanisms

responsible for the temperature dependence stay approximately the same under pressure.

Remarkably the typical nesting shape of the resistivity is resistant to pressure.

Amitsuka et al. observed in 1999 a large moment antiferromagnetic phase emerge

under hydrostatic pressure [23]. The neutron scattering intensity of the magnetic Bragg

peak at (1, 0, 0) increased gradually up to a large saturated value of the moment of

m ≈ 0.4 µB for p & 1.4 GPa. This value would account for the entropy change at T0

at zero pressure. However the entropy change at high pressures is not known. High
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Fig. 2.8 : Left side: Temperature dependence of resistivity of URu2Si2 for the pressures

0.1 GPa, 0.46 GPa, 1.07 GPa and 1.54 GPa [27]. Right side: Pressure phase diagram from

these measurements[27].

pressure 29Si-NMR [65](nuclear magnetic resonance) and µSR [25](muon spin resonance)

measurements indicated that it is not the magnetic moment but the volume fraction of the

antiferromagnetic phase which increases with pressure at the expense of the hidden order

phase. In contrast to neutron scattering, where a volume average is measured (scattering

intensity I ∝ m2Vaf ) these two methods can distinguish the volume fraction and the

ordered moment. In nuclear magnetic resonance the volume fraction is given by the

intensity of the resonance line and its Larmor-frequency is proportional to the Zeeman-

splitting in the local field. At low temperature with increasing pressure the frequency

of the antiferromagnetic resonance lines does not change, only their intensity grows (see

the two outer peaks in figure 2.9). This means that the local field at the Si sites created

by the uranium moments stays the same, only the number of Si atoms located in field

and consequently the magnetically ordered volume grows. Over a wide pressure range

(0.1 GPa - 1.52 GPa) the paramagnetic phase (seen as the line in the middle) is also

present next to the antiferromagnetic phase but the two phases are locally seperated.

From thermal expansion measurements Motoyama et al. [24] found a sharp steep

transition line between the hidden order and the large moment antiferromagnetic phase

(see figure 2.10). This is in contrast to the quite large pressure range, in which the volume

of the antiferromagnetic phase increases in first measurements by Amitsuka et al. and in

NMR by Matsuda et al. They suggested therefore a first order phase transition in the

pressure phase diagram and ascribed the large transition pressure ranges to inhomoge-

neous pressure in those measurements. They measured the thermal expansion with the
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Fig. 2.9 : NMR spectra of URu2Si2 for different pressures [66] at low temperature. The

frequency of the central resonance line is slightly shifted for different pressures because the field

in which the spectra were taken varied between the measurements.
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Fig. 2.10 : Pressure phase diagram of URu2Si2 from thermal expansion [24] from three different

samples. The transition line between hidden order and antiferromagnetism is measured for three

different samples.

strain gauge method. The data at zero pressure correspond nicely to the data by deVisser

et al. [67] who used a capacitive method. In their data presented in figure 2.11 at 0 GPa

and 0.5 GPa only the transition at T0 is visible. With pressure it moves to higher temper-

atures. The second peak at Tx is very clearly coming up at p > 0.71 GPa and also shifts

to higher temperatures. Whereas the transition at T0 attenuates with pressure, the new

transition seems to survive to higher pressures. Its shape seems to change from gaussian

like to a mean field like discontinuous jump for 1.64 GPa when only one transition is

left. The c/a ratio increases at the transition to large moment antiferromagnetism. For

different samples the transition line between hidden order and antiferromagnetism occurs

at different pressures with a lower critical pressure for the annealed samples having a

higher superconducting transition temperature.

Yokoyama et al. carried out neutron scattering measurements under uniaxial stress

[26]. The ordered moment increases very sensitively for pressure applied along (1, 0, 0) and

(1, 1, 0) and not for pressure along (0, 0, 1). Bakker et al. also prooved that T0 increased

only under uniaxial stress σ ‖a and decreased for σ ‖c [68]. The ratio c
a
≡ η is the

key parameter which drives the transition from hidden order to antiferromagnetism. Its

critical value ηc is very small. This is proposed to be the reason, why the antiferromagnetic

phase can appear locally, where lattice defaults cause internal strains with values of

η > ηc even at ambient pressure. In this case the antiferromagnetism measured by

neutron scattering at ambient pressure would be parasitic in a very small valume fraction

(∼ 0.6 %) in the non-magnetic hidden order phase.

So far, experiments under pressure support a theory with two order parameters: the
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Fig. 2.11 : Temperature dependence of the thermal expansion coefficient of URu2Si2 in the

two crystal directions for sample #5 at different pressures [24].

hidden order parameter (now called Ψ) giving rise to the large anomaly in the specific heat

and the large moment antiferromagnetic order parameter m. Possibilities for the hidden

order parameter are given in the end of paragraph 2.1. A phenomenological framework

to study the pressure-temperature phase diagram presents the Ginzburg-Landau theory.

The topology of the pressure phase diagram is important for the symmetries of the con-

cerned order parameters [54, 69, 70]. Up to now the calculations have only been done for

the case of a homogeneous distribution of both order parameters over the entire sample

volume (group B, case i) [54]. For such a system the one dimensional Landau functional

for the free energy density is given as:

f = αΨΨ2 + αmm2 + 2γΨm + βΨΨ4 + βmm4 + 2βiΨ
2m2 + ... (2.4)

The topology of the pressure phase diagram depends strongly on the existence of the

third term that means on γ = 0 or γ 6= 0. If γ 6= 0 a linear coupling between the

two order parameters is possible. This can only be the case, if both of them break

the same symmetries (e.g. lattice translation, time reversal). The order parameters

develop below T0(p). A first order transition line occurs between the hidden order and

the antiferromagnetic phase, if βi >
√

βΨβm, i.e. in case of strong microscopic repulsion

between the two order parameters. Equation 2.4 gives then two different phase diagrams

presented schematically in figure 2.12.

If γ = 0 (left panel) one finds two separated regions on the pressure-temperature

phase diagram. At low pressure below the transition line at TM (in this work called Tx),

only the hidden order parameter Ψ is greater than zero and no magnetic moment exists,

whereas at high pressure there is no hidden order and only antiferromagnetic order. The

transition line at TM joins the second order transition lines at Tm(p) (in this work called
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Fig. 2.12 : Schematic pressure-temperature phase diagrams of the functional in equation 2.4

for γ = 0 (left panel) and γ 6= 0 (right panel)[54].

Tx) in a bicritical point. If γ 6= 0 (right panel) both order parameters are non-zero below

Tm for all pressures and both phases coexist. The first order transition line between the

hidden order dominated phase at low pressure and the antiferromagnetic order dominated

phase at high pressure stays seperated from the Tm transition line and ends in a critical

end point.

Similar considerations yet have to be done for the case of inhomogeneously phase

separated order parameters (group B, case ii).

The phase diagram by Motoyama et al.(see figure 2.10) is not clear concerning the

question if the transition lines touch. In previous resistivity [27] and specific heat [71]

measurements under pressure the transition line at Tx has not been seen at all. Bourdarot

et al. published the phase diagram in figure 2.13. Note that the transition line at Tm is

determined from resistivity measurements (black open circles) and the transition line at

TM from neutron diffraction measurements (blue closed circles). The lines don’t touch

below 1.3 GPa, which supports in their opinion a Landau functional with γ 6= 0 (right

panel in figure 2.12). Obviously it is better to detect both transitions at the same time

with the same technique to be sure that there is no problem with thermometry. This

will be done in our study with the additional advantage that in our labratory very tiny

pressure steps are possible so that the pressure region where the lines should touch can

be scanned very carefully.

Microscopic measurement techniques like neutron diffraction, NMR and µSR reveal

fundamental differences between the hidden order phase and the pressure induced large

moment antiferromagnetic phase. One could expect that this implies also significant

changes in macroscopic quantities notably in the signature of the transition at T0 at low

pressure (transition to hidden order) and at high pressure (transition to large moment

antiferromagnetism). At first view this is not valid for resistivity measurements. There

the signature of the transition at T0 does not change apparently under pressure. The two
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Fig. 2.13 : Pressure-temperature phase diagram of URu2Si2 [72]. The transition line at Tm

is determined from resistivity measurements (black open circles) and the transition line at TM

from neutron diffraction measurements (blue closed circles). (closed circles for pressure clamps,

closed squares for hydrostatic helium cells). The lines are guides to the eye.

phases indeed seem to be quite similar. De Haas-van Alphen experiments under pressure

for example didn’t show any abrupt changes of the Fermi surface at low temperature

up to p ≈ 1.8 GPa [73]. One of our main objectives in this study will be the detailed

investigation of the signature of the transition at T0 in resistivity and specific heat up to

pressures of 2.5 GPa, where we are sure to be far in the antiferromagnetic phase.

As a last point in our description of previous experimental results we want to look

at the pressure dependence of the superconducting transition. Concerning this question

previous measurements are contradictory. Uemura et al. show that superconducting tran-

sition measured with ac-susceptibility is abruptly suppressed at p ∼ 0.5 GPa [30]. Because

this is the pressure where antiferromagnetism sets in they claim that superconductivity

competes with the large moment antiferromagnetism. On the other hand resisitivity mea-

surements by McElfresh [27] and Schmidt [29] show that the superconducting transition is

indeed slowly suppressed with pressure but seen up to ∼ 1.2 GPa (see figure 2.8) far in the

antiferromagnetic phase. As resistivity in opposition to susceptibility is not compulsorily

a volumic property it is possible that the superconductivity exists only on the surface or

on inhomogeneous paths through the sample in the antiferromagnetic phase. The nature

of the hidden order parameter of the superconductivity is still unknown and the answer

to the question whether superconductivity can coexist with antiferromagnetism in this

compound could give a hint about it. Specific heat measurements under pressure as car-

ried out in this study will give us information about bulk properties. It is the appropriate

means of studying the pressure dependence of the superconducting transition.
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Chapter 3

Experimental methods

In order to understand the phases in URu2Si2, their interplay and competition, micro-

scopic measurements (especially inelastic neutron scattering) are necessary but not yet

done at high enough pressures to explore region of the large moment antiferromagnetic

phase. Macroscopic measurements under pressure are therefore an important tool to

determine the phase diagram and to look at the signature of the transitions at T0 for

different pressures. As well they allow a study of the behaviour of the different phases

under pressure and magnetic field.

3.1 Samples

The sample quality plays a crucial role in material physics and most notably in uranium

compounds where metallurgical effects can completely change the sample properties. Ow-

ing to this a careful choice of the sample is fundamental for a successful experiment.

Throughout this work all measurements under pressure were done in the same pressure

cell with the same sample.

3.1.1 Preparation and characterisation of the single crystals

The single crystals studied in this work were grown by Pascal Lejay at CRTBT/CNRS

Grenoble. The basic materials had a very high purity: depleted uranium 99.9 %, Ruthe-

nium 99.99 % and Silicon 99.9999 %. In a first step, these materials are melted in

stoichiometric proportions U:Ru:Si = 1:2:2. The melting temperature is not measured

but estimated to about Tm = 1800 ◦C. The heating is achieved by a high frequency alter-

nating field additional to a static magnetic field which makes the drop of liquid URu2Si2
levitate. Nevertheless URu2Si2 is very reactive at high temperatures and therefore the

use of a water cooled copper melting crucible is required. Moreover the melting is done

under purified Argon atmosphere to avoid UO2 being formed. It’s not possible to work

in vacuum because all the Silicon would volatilize.

29



Fig. 3.1 : Czochralski method and photo of a tri-arc furnace in action.

Using x-ray scattering the structure of the polycrystalline samples is tested and no

parasitic phases could be found. The monocrystal is pulled by Czochralski method in a

tri-arc furnace (see figure 3.1). For this the polycrystal is put on a cooled copper plate

in the furnace which is first evacuated to an ultra high vacuum in order to clean the

furnace. Then again under pure Argon atmosphere of a pressure of about 1 atm the

sample is melted by three Argon arcs. An oriented monocrystalline seed crystal is dipped

into the liquid and pulled at about 5 mm per hour. A rotation of about 20 turns per

minute homogenises the temperature. The single crystal can have a diameter of about

5 mm and a length of several centimetres.

The four samples that were at my disposal were precut by electro erosion and already

small with masses of ∼ 1 mg. The sample out of which I cut my small sample for the

pressure cell is called sample #2 here. Its mass is about m ≈ 0.8 mg and it had the

dimensions 1200 × 600 × 150 (µm)3. Its specific heat was measured in a commercial

Quantum Design Instrument PPMS down to T = 0.4 K. Compared to samples 1, 3 and

4 it has the most prominent anomaly at the superconducting transition (see figure 3.2a)

although it shows a slight double step feature. This is the reason why I continued my

work with it. Note that the form of the transitions at T0 and TSC seems to be correlated.

Additionally this sample had the right size to be cut and polished by circular saw. With

a 15 µm thick saw blade covered with diamond powder first a 100 µm thick slice was cut.

It was then cut into two halves and one of the little ashlars was polished on two sides to

its final size of 283 × 60 × 50 (µm)3 (see figure 3.3). These lengths are measured with

a micrometric screw under microscope and the error is about ∆l ≈ 3 µm. In order to

know the orientation of the mini crystal, I made a Laue diagram of the larger sample #2.

The current injection for the resistivity measurements is finally not parallel to any crystal

axis. In polar coordinates the angles to the c-axis are approximately Θ ≈ (25 ± 2)
◦

and

φ ≈ (7 ± 2)
◦

. This sample will be called sample 2a in this work. In literature better

samples with a higher transition temperature TSC are known (see for example [74]).
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Fig. 3.2 : The specific heat at the superconducting transition (a) and at the transition at T0

(b) of different samples before choosing sample #2 to proceed. ∗ The short dashed line in (a)

gives the specific heat C/T of the best sample measured by Motoyama et al. [24]

Fig. 3.3 : a) Scheme of resistivity measurement setup with four point contact method. b)

Photo of realisation in pressure chamber.

3.2 Resistivity measurements

The resistivity ρ is measured via the four point contact method presented in figure 3.3.

Four gold wires with a diameter of 10 µm are welded on the sample, the outer ones for the

injection of the measurement current I and the inner ones for the voltage measurement

U . The resistivity is then calculated according to the formula

R =
U

I
R = ρ

l

A
⇒ ρ =

U

I

A

l
(3.1)

with the cross sectional area A and the distance l between the inner wires. A Stanford

SR830 Lock In amplifier serves as alternating voltage source. A tension of U = 1 V

through a R = 10 kΩ resistance delivers a current of I = 100 µA. The resistance of

the cables and the sample can be neglected compared to this resistance even though

the cables for current injection are superconducting wires with a large resistance above

the transition temperature. This is proven by the fact that no jump is detected in the
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Fig. 3.4 : Comparison of temperature dependence of resistivity at low pressure between setup

1 and setup 2.

measurement signal. The measurement frequency is 17 Hz. The measurement signal is

amplified first by a transformer by a factor of 100 and second by a Stanford SR560 low

noise pre-amplifier by a factor of 1000 and then measured by the same Lock In. The error

on resistivity is mainly due to the uncertainty of the geometric factor ∆(A
l
) ≈ 8 %. This

is a systematic error, basically just a wrong normalisation factor. As it is the same factor

for all pressure curves for one pressure cell setup the resistivity curves measured with one

cell setup can be compared in a more precise way.

During this work, I measured two resistivity setups. In setup 1 measurements from

0 GPa to 1.78 GPa were carried out in the 3He cryostat and measurements with very small

pressure steps from 0.3 GPa to 2.4 GPa in the 4He cryostat. The geometrical factor l
A

for the first setup is given by the distance between the welding points of the inner wires

of about l = 154 ± 3 µm and the cross section of the sample of A = 50 × 60 (µm)3.

In the second setup, the distance between the welding points was l = 163 ± 3 µm with

the same cross section. The measured pressures are 0.1, 2.28, 3.45, 4.37 and 5.37 GPa.

Apart from the lowest pressure, I had a short circuit between one measurement wire

for current injection and the cell body and at the highest pressure even between two

measurement wires and the cell body. This is the reason why the signal was very small and

noisy and the normalisation factor was higher. I basically only determined the transition

temperatures at T0 from these measurements which were clear despite the short circuit.

The temperature dependence of the resistivity from the second setup compared to the

first one is slightly different even at low pressure, notably in proximity to T0 (see figure

3.4). The transition temperature at 0.1 GPa of setup 2 (red) is between the transition

temperature of setup 1 at 0 GPa (black) and 0.2 GPa (green), but the height of the

jump in resistivity, defined as ρ(Tmax) − ρ(Tmin), is smaller. Because this hight depends
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sensitively on the crystal direction (see figure 2.4), the different geometry i.e. slightly

different angles in current injection and voltage measurement in the two setups caused

the different heights. One can say, that in setup 1 the resistivity is measured more in the

c direction.

3.3 Ac-calorimetry under pressure

For an ideal specific heat measurement, the sample must be thermally isolated from its

environment. Then a certain known amount of energy is added increasing the inner energy

of the sample by ∆U and the temperature enhancement of the sample ∆T is determined.

The specific heat C is calculated with the formula C = ∆U
∆T

for ∆T −→ 0. In a pressure cell

the sample is thermally strongly coupled with the Argon bath and the measurement wires.

The coupling most probably depends on temperature and pressure and is not well known.

Therefore we use the ac-calorimetric method described more detailed in [75, 76]. In this

method the sample is heated with an alternating power P = P0(1+cosωt) where P0 is the

mean value and ω the oscillation frequency. The induced temperature oscillations Tac of

the sample are then measured with a thermometer. The coupling with the environment

is taken into account as a heat leak with thermal conductance κ . A detailed description

is given in reference [77].

The sample temperature consists of several terms:

T = Tb + Tdc + Tac cos ωt (3.2)

with the temperature of the bath Tb, the average temperature enhancement due to average

heating Tdc = P0

κ
and the temperature oscillation Tac cos ωt with the same frequency as

the heating and the amplitude Tac. Thus we obtain

Tace
iφ =

P0

κ + iωCac

(3.3)

Φ is the phaseshift between the heating and the Tac signal. The measurement frequency

has to be chosen high enough to decouple the sample from its environment i.e. ωCac ≫ κ,

but not so high that the heat is not distributed homogeneously in the sample. In this

case we obtain for the specific heat Cac of the sample in dependence of the measured

temperature oscillations Tac

Cac =
P0

ωTac
∝ 1

Tac
(3.4)

In our setup the sample is heated with a laser diode beam lead into the cryostat via

optical fibres. The laser diode is controlled by the Lock In amplifier.

The used thermometer is a thermocouple Au:Au(0.007% Fe) with a thermoelectric

power S = ∆U
∆T

. The sensitivity was measured by Chaussy et al. [78] and has at one

Kelvin the value of S(1K) ≈ 7 µV/K. It is assumed to be independent of pressure [79].
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The measurement signal is the ac-part of the thermocouple voltage Vac = STac and its

phaseshift to the heating. Like for the resistivity measurement the signal is amplified by

a factor of 100 with a transformer and by a factor of 1000 by a pre-amplifier. It is then

read out by the Lock In with the same as the excitation frequency.

Up to this point we would be able to determine

Fig. 3.5 : Schematic ac-calorimetry

setup. Gold–gold/iron thermocouple

welded to the sample.

the absolute value of the specific heat, but in real-

ity this is not the case: Due to the tiny size of our

sample not only the sample but also the environ-

ment is heated by the laser beam as it is not well

focused. This is the reason why P0 i.e. the average

heating power and the amplitude are unknown and

they change when the setup is moved and for ex-

ample connections of the optical fibers are changed.

As a consequence, the absolut value of the specific

heat is not known. Another mistake comes from the fact that we measure not only the

sample but also its environment. This gives us a pressure and temparature dependent

background signal. As κ grows with temperature, the chosen frequency (which fulfils

the condition ωCac ≫ κ) is small (f = 127 Hz) at low temperature when the supercon-

ducting transition is measured and higher (f = 678 Hz) for the measurement at higher

temperature.

The last problem that has to be mentioned here is the fact that the sample has

an average temperature which is elevated in comparison to the bath. This elevation

(TD) is not known as we measure only the absolute temperature of the bath TB with

a thermometer on the outside of the pressure cell but it is proportional to the heating

power (TD = P0

κ
). Since the temperature of the sample, which is unknown, is higher than

the temperature of the thermometer, we see the transition at a lower temperature. The

absolute temperature of the sample and therefore TD could be determined by measuring

the dc voltage of the thermocouple. Another method, and this is the one used in this

study, is to trace the transition temperature as a function of the heating power. A linear

extrapolation to zero power will then give the real transition temperature because in this

limit TD is zero. This effect is taken into account when looking at the superconducting

transition but not at the transition at T0 since TD ≪ TB ≈ T0.

Because of the unknown P0 and background this method is –strictly seen– only qual-

itative. It allows us to determine the transition temperatures where the specific heat

makes a jump and to draw that way the phase diagram for different pressures. But it

is known from previous measurements of e.g. CeRhIn5 that this technique gives reliable

even semi-quantitative data in the pressure region up to ∼ 4 GPa [80].
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3.4 Pressure

Pressure is a controllable and reversible tool for tuning sample size and lattice parameter.

Along with chemical doping and magnetic field it changes the hybridisation in heavy

fermion compounds and can induce a quantum phase transition. Contrary to chemical

substitution which leads to disorder effects, pressure is a clean method to change the

lattice parameter with the slight disadvantage that negative pressures are not procurable.

In our case, negative pressures are not required as the interesting pressure region is in

particular between 0 and 2.5 GPa.

Working under high pressure is experimentally difficult for several reasons: Since

pressure is defined as

p =
F

A
[p] = GPa = 10 kbar = 109 N

m2
= 109 kg

ms2
(3.5)

high pressure requires a large force F on a small surface A. For this reason pressure

chamber and hence sample sizes are very small which implies on the one hand a work

under microscope when preparing the sample and the cell and on the other hand a small

signal. But the enormous advantage of heavy fermion systems is their large macroscopic

quantities at low temperature as the specific heat and resistivity. Consequently the signal

is detectable in spite of the tiny sample size. Another difficulty is to introduce the

measuring wires into the pressure chamber without loosing leak tightness: Typical gaskets

are made out of stainless steel. The measuring wires have to be electrically isolated against

it to avoid shorted currents while the setup has to stay leakproof. This technique is well

established in the laboratory and described in paragraph 3.4.2. Additionally pressure is

not a continuous variable and measurements are usually temperature scans at constant

pressure. The change of pressure is implemented at room temperature (for measurements

in3He cryostat) and pressure reduces upon cooling between 0.5 GPa and 1 GPa but below

T = 50 K it doesn’t change significantly[81]. Measurements are usually made at constant

pressures. It is hard to achieve the desired pressure at low temperature because the cell

doesn’t behave linearly due to mechanical relaxation processes during cooling.

A large variety of different pressure cells exist, for example piston-cylinder pressure

cells, Bridgman cells and diamond anvil pressure cells. In this study a diamond anvil cell

was used which can attain pressures up to 20 GPa.

3.4.1 Pressure cell

The cell I used for most of my measurements is a diamond anvil cell (see figure 3.6). It is

made out of CuBe with anvils made out of the hardest material known, diamond. Two

flat diamond anvils with a table diameter of d = 1 mm are glued to the pistons. They

are aligned coplanar with the help of Newton rings. One of the pistons is fixed to the

outer cylinder, the other one can be moved by turning three screws in order to apply
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Fig. 3.6 : Diamond anvil pressure cell (a) and gasket (b) as used in this work.

or to change the pressure. The mobile piston is well guided along the symmetry axis in

the cylinder with the help of a groove to avoid inhomogeneous pressure on the diamonds

which could make them break. The two diamonds exert pressure on a gasket with a hole,

the pressure chamber, filled with the pressure transmitting element. The sample swims

in this liquid and receives the same force from all directions.

Due to the large forces a pressure cell setup can fail at several stages: During loading

the failure rate is about 3/4. Frequent heating and cooling works on the wires and can

break them. And last but not least the pressure chamber is deformed when the pressure

is changed. This can induce a breaking of the wires and also short circuits, when the

wires or the sample touch the gasket.

3.4.2 Gasket

A key point to a successful pressure cell setup is the gasket. The pressure cell is first

mounted with the gasket only. By applying a force of about 8000 N the gasket is preformed

until the thickness of it between the diamonds is about 100 µm. In the centre of the

diamond impression a hole is drilled by hand with a diameter of 500 µm. This presents

the pressure chamber (see figure 3.6). The insulation between gasket and measurement

wires is assured by a thin layer of epoxy glue (stycast) mixed and saturated with Al2O3

powder. Only that way it has the required rigidity and strength to resist high pressure.

On four sides of the diamond there are contacts for the measurement wires. Flattened

25 µm gold (or gold-iron for the thermocouple) wires are glued to these contacts with

silver paste and attached perpendicularly to the diamond anvil. They are cut on the anvil

table so that they don’t enter the pressure chamber. Then the small 10 µm gold wires

are contacted to the sample by spot welding. Typical welding parameters for my sample

were a voltage of U = 4 V and a time constant of τ = 9 µs. For the resistivity setup the

four wires must be bent all in the same direction before welding leading to the flexibility
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needed when the pressure chamber is deformed. Otherwise the wires or the bond would

break. Finally the sample is placed on the diamond as seen in figure 3.6. The small wires

are pushed under the broad wires arriving from the outside. The contact is achieved only

under pressure when the cell is loaded. Next to it some rubies are arranged which will be

necessary for the pressure measurement. In figure 3.3 a resistivity setup is photographed

through the (unloaded) pressure cell with the help of a microscope. The diamond, sample

in the pressure chamber, small wires, broad wires and the rubies are discernible.

3.4.3 Pressure transmitting element

In this laboratory we use Argon as pressure transmitting element. The noble gases and

especially Helium are the most adequate media because they are highly isotropic. The

only interactions between the atoms are van der Waals forces which are non-directional.

The enormous disadvantage of He is its high compressibility at low temperatures which

induces large changes of the pressure volume. This causes problems with the measurement

wires in the pressure chamber due to deformation. Argon is also highly hydrostatic at

least up to 10 GPa [81]. To load the cell, it is only slightly closed and plunged into liquid

Argon during 45 min. After that time the cell is cold and almost no gas bubbles are

formed any more. Pressurising with a force of about 5500 N induces a pressure of about

1.1 GPa at room temperature.

3.4.4 Ruby method of pressure measurement

We introduce some ruby crystals into the pressure chamber next to the sample before

closing the pressure cell, which serve as pressure sensors. The wavelength of the fluores-

cence lines of rubies depends on pressure and on temperature. Below T≈ 35 K the line

position does not depend on temperature any more but only on pressure. By measuring

the spectrum, we can deduce the pressure in the chamber at several positions. The rubies

are excited by an Argon laser, whose light is lead to the pressure cell into the cryostat via

an optical fiber. Here we benefit from the fact that the diamond anvils are transparent.

The outcoming light is again lead outside the cryostat via an optical fiber on the other

side of the pressure cell. It is spectral-fragmented with a HR 1000 monochromator of

Czerny-Turner type. The emission spectrum is taken with an Andor Technology CCD

spectrometer. At room temperature T = 300 K and zero pressure, two ruby lines, called

R1 and R2 are at the positions λR1
= 694.239 nm and λR1

= 692.82 nm. With the help

of these lines and a reference line from a Ne lamp the spectrometer is calibrated. Inde-

pendently of temperature within an error of 3% [82] the lines shift with 0.365 nm/GPa.

The pressure is measured at room temperature and at 4.2 K. At low temperature the

excited state which leads to R2 is not thermally populated and therefore the line is not

detectable. In the concerned pressure region the pressure changes between 0.55 GPa and

1 GPa upon cooling. The absolute pressure error is estimated to about ∆p ≈ 0.05 GPa.
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Fig. 3.7 : Ruby spectra at 4.2 K for two different pressures in cell setup 1.

We always measured the pressure at 4.2 K before the measurements of this pressure and

before heating up. Within the error bar we never observed changes in pressure between

these two measurements without heating up inbetween. Therefore we claim the pressure

to be stable. If the pressure in the chamber is not homogeneous, the different rubies will

have slightly different emission lines. This leads to a broadening of the line. Hence its

width indicates the homogeneity of pressure in the chamber. In figure 3.7 the ruby spec-

tra at 4.2 K for two different pressures in one cell setup is shown: 0.01 GPa (black dots)

and 1.6 GPa (red dots). The lines are gaussian fits of the peaks with their maxima at

λ1 = 693.38 nm which corresponds to 0.01 GPa and λ2 = 693.98 nm which corresponds

to 1.6 GPa. The width of the peak in the low pressure spectrum is 0.137 ± .0005 nm,

which es exactly the width of the peak of the rubies in the unloaded cell. For 1.6 GPa

it is slightly enhanced to 0.147 ± .0005 nm showing a tiny loss of hydrostatic conditions.

The small peak at λLaser = 696.54 nm is a harmonic of the laser. The same laser is also

used at high temperature as excitation of the sample. In this case the beam is chopped

by a mechanical chopper.

3.4.5 Changing pressure

During my Diplomarbeit I used basically two methods to change pressure: For the mea-

surements in the 3He cryostat and in the dilution cryostat, the pressure was changed at

room temperature by simply turning the screws. This makes the measurement of one

pressure quite long because of the cooling and heating process which takes some time.

When the pressure is changed inner strains in the cell appear and the relaxation process

will take some time (one hour to one night, depending on the pressure). Either the piston

can be blocked a little bit or the gasket deformation is not instantaneous. After a heating
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Fig. 3.8 : Scheme of the in-situ pressure tuning system in the 4He cryostat [83].

and cooling process the pressure can have changed without touching the cell. The second

method is described in the next paragraph.

3.4.6 In-situ pressure tuning

The 4He cryostat contains a system to change pressure in-situ (see figure 3.8). For a

detailed description see reference [83]. No heating and cooling is necessary to change the

pressure which has an enormous advantage regarding the measurement time. Pressure

is applied and changed with a bellow. He under pressure from a bottle is lead into the

bellow in the cryostat. A lever system multiplies the force by a factor four and pushes

the mobile piston in the pressure cell. Heating during the measurement can heat the

gas-liquid mixture in the bellow which increases the pressure in the bellow. Since the

pressure in the bellow and in the cell are not linearly coupled, this is usually in a range

where it does not affect or change the pressure in the cell. We checked this by pressure

measurements before and after the measurement. The pressure can be varied in very

small steps limited basically by the resolution of the spectrometer. Steps of 0.03 GPa are

possible. Sometimes the piston is blocked in its guide in the cell when the pressure in the

bellow is increased. This results in uncontrollable high pressure steps when it suddenly

moves again. Because this happened during the specific heat measurement series at low

pressure the measured pressures were 0.3 GPa, 0.8 GPa, 1.1 GPa, 1.3 GPa. For higher

pressures we didn’t have this problem and could achieve smaller pressure steps.
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3.5 Cooling process

3.5.1 3He cryostat

The measurements down to 450 mK were made in a 3He cryostat. Here I will briefly

describe its functioning. For a detailed description see for example reference [2]. As

insulation between working temperature inside the cryostat and room temperature we

find several layers. The dewar, also called outer vacuum chamber, is evacuated in order

to diminish heat transport by diffusion of gases. Against heat transport via radiation, it

is filled with about 40 layers of vacuum super insulation foil. First liquid nitrogen is filled

into the dewar bringing the magnet and the dewar to 77 K. All the parts of the cryostat,

where gases or liquids will circulate, and the calorimeter (inner vacuum chamber) are

cleaned by pumping. After some hours or better one night the nitrogen is exchanged by

liquid 4He with a temperature of 4.2 K. Into this He bath, the cryostat itself with the inner

vacuum chamber, filled with some mbar of He as exchange gas, is lowered from the top.

It is connected to the top by several tubes for thermometer cables, measurement cables,

optical fibers and 3He and 4He circulation. These tubes are made out of stainless steel

which has a low heat conductance. Here as well we find shielding against heat radiation

from the top at several levels. As soon as the cryostat is at 4 K, the inner vacuum chamber

is pumped (10−5 − 10−6 mbar) in order to bring out the exchange gas and to insulate

the cool spots from the He bath. From the top to the bottom there is first the so called

1 K pot. It is connected via an impedance to the 4He bath. Through this capillary the

liquid 4He gets into the 1 K pot on which we pump. This lowering of the pressure leads

to a lowering of the boiling temperature to about 1.2 K. The same principle is used for

the 3He circuit. However the 3He is injected from the reservoir at room temperature and

cools on the way down in the cryostat. The 3He inlet capillary is thermally connected

to the 1 K pot where the gas condenses. Afterwards it flows into the 3He pot and

special pumps which are included into the closed 3He circuit lower the pressure as well.

The achieved temperature can reach down to 300 mK, but in the cryostat we used, the

minimum temperature was ∼ 450 mK. The pressure cell is thermally connected to the
3He pot. The temperature is measured with a calibrated Cernox thermometer. It is

glued to a copper band which is thermally connected to the cell. The cryostat contains

a superconducting magnet producing fields up to 7.5 T. The thermometer is situated in

the region of compensated magnetic field. The temperature regulation is assured by a

ORPX temperature controller with a regulation heater resistance.

3.5.2 4He cryostat

The cooling in this cryostat is obtained only with liquid 4He and the lowest temperatures

are ∼ 1.4 K. The most important difference is the absence of a 1 K pot. We pump on

the He bath to cool below 4.2 K. This was not always the case because the interesting
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temperatures were either too small for this cryostat or higher than 4.2 K.

In this cryostat we had some experimental problems. Firstly there is a leak for super-

fluid 4He in the inner vacuum chamber. Thus the vacuum in it is uncontrolled when we

pump on the He bath and lower the temperature in the He bath below 2.17 K, the transi-

tion temperature to superfluidity. Additionally a superfluid film covers parts of the inside

of the inner vacuum chamber which leads to strong temperature gradients. Secondly the

heating in this cryostat is not regulated. The heating power increases linearly or expo-

nentially with time. Hence the heating rate cannot be controlled directly and depends

for example on the pressure in the bellow and in the inner vacuum chamber. Resistivity

and especially specific heat measurements have to be done in thermal equilibrium. If the

temperature of the cell and the thermometer are not the same, the results will be wrong.

A too fast heating rate as a consequence of the missing regulation can therefore result in

wrong temperatures. Depending on the inner vacuum and on the pressure over the He

bath the transition temperature changed significantly. This is why we will not consider

the temperature measurements executed in this cryostat as absolute and basically only

look at the shape of the transition. Thirdly another difficulty arises from the pressure

system which is mechanically and thermally connected to the pressure cell. When heating

the cell also the He gas in the bellow is heated. Therefore some of it evaporates, expands

and enhances the force on the pressure cell. Usually this was in an extent where it had no

effect on the pressure in the cell. The advantage of fast and easily controllable pressure

is in my opinion partly compensated by the not very reliable temperature measurement

in this cryostat. If detailed measurements have to be made, a solution to these problems

has to be found.

3.5.3 Dilution cryostat

Very few measurements in this work were done in a dilution cryostat. In this type of

cryostat we find a 1 K pot and a mixing chamber. Instead of a circuit with pure 3He a

mixture of 3He and 4He circulates. Owing to the special properties of this mixture (see

for example reference [2]) this cryostat can usually cool down to several mK. During this

work, it didn’t cool below 50 mK, maybe because of the optical fibres bringing heat from

the top. But during specific heat measurements the cell is anyway warmed up by the

laser beam so the measurement startet normally at 100 mK.
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Chapter 4

Results

During this work the resistivity and specific heat of URu2Si2 were measured under pres-

sure and at low temperature. The main purpose was the elaboration of a detailed phase

diagram but also the investiagion of the signature of the transition at T0 for different

pressures.

In order to characterise the samples #2 and 2a (cut from the first one) some prelimi-

nary measurements were necessary. In figure 4.1 the temperature dependence of specific

heat and resistivity of sample #2 around the transition at T0, measured in a PPMS

at zero pressure, is compared to the resistivity of the small sample 2a in the pressure

cell setup. The resistivity curves are normalised to the value at 18 K. The difference in

shape is due to the fact that the resistivity was measured in different crystal directions,

i.e. more in c-direction for sample 2a in the pressure cell. According to these measure-

ments the transition temperature in specific heat is defined as the temperature at the

maximum and in resistivity as the temperature at the inflection point i.e. at the min-

imum of the derivative (green line). The minimum of the derivative of sample 2a is at

a slightly smaller temperature (dashed green line) because of the different shape of the

curve and the stronger smoothing when calculating the derivative. Throughout this work

the derivatives are calculated in the same manner as this derivative.

As to the superconducting transition the characterisation consists additionally of an

ac-susceptibility measurement, performed in the 3He cryostat with an ac-excitation field of

B ≈ 15 µT and with the frequency f = 168 Hz by a simple coil wound with the detection

coil around the sample #2. The thermal contact is achieved with the measurement

wires glued to a Copper sample holder. In figure 4.2 the transition in the real part of the

susceptibility signal (green line) shows a double step feature. In the specific heat (red line,

PPMS measurement of sample #2) this is not as clear but also visible: Coming from high

temperatures the ac-specific heat starts to grow and the real part of the susceptibility

starts to fall at ∼ 1.34 K, that means that a small part of the sample undergoes the

phase transition. This is exactly the temperature where the resistivity is zero (black

dashed line, sample 2a in pressure cell). Most of the sample however transits at a lower
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Fig. 4.1 : Temperature dependence of specific heat C/T (red line) and resistivity (black line)

of URu2Si2 around the transition at T0 at zero pressure for sample #2 measured in a PPMS.

The dashed black line shows the resistivity of sample 2a in the uncharged pressure cell. The

two resistivity curves are normalised to a value at 18 K, the difference in shape being due to

different crystal directions during the measurement. The derivatives of the resistivity curves

are green.

temperature T ≈ 1.15 K. There the specific heat rises faster and the susceptibility drops

faster. In this work the superconducting transition temperature in resistivity is defined as

the temperature where the resistivity has dropped by half (see the construction in figure

4.2). The width of the superconducting transition is defined as the temperature difference

Tmax − Tmin. In specific heat it is again defined as the temperature of the maximum.

4.1 Resistivity measurements

Figure 4.3 presents an overview of the temperature dependence of resistivity at different

pressures measured in the 3He cryostat. The results of the two pressure cell setups with

the same sample are shown. Under pressure the transition temperature is shifted to

higher temperatures and the resistivity at the transition temperature decreases. In other

resistivity measurements under pressure [27], the jump in resistivity becomes significantly

smaller and flatter, whereas in our measurements the anomaly stays very prominent up

to high pressures. This indicates good hydrostatic conditions.

In order to compare in detail the resistivity curves at different pressures they were

normalised to the minimum in resistivity as proposed by other groups (see for example

[27]). In figure 4.4 are shown the curves for zero and 1.78 GPa the lowest and the highest

pressure obtained with setup 1 in the 3He cryostat. The curves for all other pressures lie

in between. Above T0 they overlap nicely and apart from a slight difference in the height

of the jump below T0, the anomaly has almost the same shape as a logical consequence of
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and 1.3 GPa.

the dominance of the characteristic energy scale T0 in this temperature region. Only at

lower temperature the curves do not overlap. This means that the scattering mechanisms

at low temperatures do not scale with pressure like the minimum of the resistivity. For

pressures larger than 0.5 GPa, it is also not possible to fit the data according to equation

2.1 for an antiferromagnet with an energy gap ρ = ρ0 +AT 2 + bT (1+2T/∆) exp(−∆/T ).

In contrast, the fit becomes quite good, when the exponent n of the AT n term is another

variable fit parameter. We will not enter in different possible origins of such derivatives

clearly associated with the proximity to the pressure pc1 defined below.

4.1.1 Transition between hidden order and antiferromagnetism.

Looking closely at the curves at p = 0.98 GPa and 1.13 GPa in figure 4.5, not only

the anomaly at T0 but also a small second anomaly at Tx is visible. It is interpreted as
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Fig. 4.6 : Temperature dependence of derivative dρ/dT of URu2Si2 for different pressures.

The second anomaly emerges for pressures larger than 0.4 GPa. At 1.3 GPa only one anomaly

is left.

the transition between the hidden order phase and the large moment antiferromagnetism

and it has been observed for all pressures between 0.47 GPa and 1.25 GPa. With in-

creasing pressure the transition temperature shifts to higher temperatures and becomes

narrower and more remarkable. At low pressure the transition temperature could only

be determined by taking the derivative dρ/dT and comparing directly the curves. In

figure 4.6 the temperature dependence of resistivity derivatives at different pressures is

presented. At 0.3 GPa and 0.4 GPa the behaviour is quite similar and then very abruptly

at pc1 = 0.47 GPa the second anomaly emerges and shifts very sensitively in temperature

with increasing pressure (see figure 4.6a). At higher pressures (see figure 4.6b) the second

anomaly approaches the sharp minimum in the derivative at T0 which moves much slower

to higher temperature with pressure. At 1.3 GPa only one transition is left. Note that

in the figure 4.6a) the y-scale is stretched in comparison to the figure on the right side.

As one can see, the anomaly at Tx is very small just above the critical pressure pc1. The

presented curves in figure 4.6b) are the derivations of the resistivity curves in figure 4.5.

4.1.2 Superconducting transition

The superconducting transition temperature decreases for increasing pressure. The tem-

perature dependence of the resistivity close to the superconducting transition at several

pressures is presented in figure 4.7. The highest pressure where we observed the transi-

tion is 1.78 GPa. In this figure only a small part of the transition is visible, but for a

smaller current the resistivity dropped to ∼ 40% at the lowest temperature in the 3He

cryostat. Surprisingly the transition temperature depends quite strongly on the injected

measurement current (see figure 4.8a). With decreasing current the transition tempera-

ture rises with an increasing slope. For small currents the two step feature seen in the

susceptibility and the specific heat is recovered. This current dependence is not fully
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understood but might be explained as follows: If we assume the presence of inner strains

and inhomogeneities in the sample, there will be a distribution of critical temperatures

TSC and inhomogeneous superconductivity (along paths or the surface) is possible. For

a very tiny current one superconducting path is enough to see a zero resistivity. So as

the temperature is lowered the path with the highest TSC will make the resistivity drop.

When the current is increased the critical current density can be reached for this path

and it stays in the normal state down to a lower temperature where a larger part of

the sample becomes superconducting. Thus it is imaginable that the transition tem-

perature decreases with an increasing current. If the distribution of TSC is Gauss-like,

then the transition temperature seen in resistivity drops first faster because the number

of accessible paths grows slowly and then it will decrease slower because the number of

accessible paths grows faster. For our highest currents a saturation is found because we

are very far from the real critical current [85]. When plotting the transition temperature

TSC(I)− TSC(100 µA) against the current for different pressures like in figure 4.8b), it is

evident that this behaviour does not depend on pressure.

Upper critical field

The magnetic field was applied along the symmetry axis of the pressure cell. This was

unfortunately a direction with a small response of the system that means a small angle to

the a-axis. The highest field µ0H = 7.5 T almost did not affect the transition temperature

T0. The superconducting transition temperature however was suppressed by field. In

figure 4.9 at a pressure of 0.78 GPa the transition could be observed up to a field of 3 T.

The measurement current was chosen to 10 µA, low enough to see the transition at a

high temperature but high enough to avoid too much noise. The magnetoresistance is

quadratic in field as expected. Figure 4.10 shows the critical field µ0Hc2/TSC for different
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pressures. It was only determined via temperature sweeps. The unusual upward curvature

for small fields known from previous results is found at all pressures (see figure 4.10b)

[50]. Near TSC we expect that TSC is principally given by the orbital limit. Then the

slope is given as
∂µ0Hc2

∂T
1

TSC
∝ m∗2 (see equation 1.12). From µ0Hc2 measurements the

slope of the linear fits disregarding the low field data is independent of pressure. The

effective mass therefore would be independent of pressure.

4.2 Specific heat measurements

A comparison of the specific heat measurement in the PPMS at ambient pressure and the

signal of the ac-method at 0.3 GPa, which was the smallest pressure measured with this

setup is shown in figure 4.11. The overall temperature dependence is different because

the background is not subtracted in the ac-specific heat, but the shape of the anomaly is

quite similar.

In the following figures the value of C/T is normalised to the value at the minimum

and the absolute temperature is scaled as well for the following reasons: The transition

temperature during this series of measurements was always too high (∼ 0.6 K) in com-

parison to the resistivity measurements at the corresponding pressures probably due to

temperature gradients between the sample and the thermometer. Additionally it changed

depending on experimental parameters like the pressure in the inner vacuum chamber.

These experimental problems have been described in paragraph 3.5.2. Nevertheless the

curves at constant pressure with different experimental parameters matched nicely upon

scaling the temperature for example to the temperature of the maximum of the transi-

tion. This is the reason why the measured temperature Tmes is normalised so that the

maximum in specific heat TCmax coincides with the transition temperature T0 from resis-
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Fig. 4.11 : Temperature dependence of specific heat C/T of URu2Si2 measured with two

different methods: ac-calorimetry under pressure at 0.3 GPa and relaxation method at ambient

pressure in a PPMS. The background has not been substracted from the ac-specific heat data.

tivity measurement at the corresponding pressure: Tnorm = Tmes
T0

TCmax
. Doing so, a direct

comparison of the shape of the transition in resistivity and specific heat is possible.

Figure 4.12 shows the ac-specific heat Cac/T for different pressures. At 0.3 GPa (black

curve) the transition at T0 is very sharp and steep and its shape does not change until

1.3 GPa. This demonstrates again that our pressure conditions are excellent. The second

transition which is interpreted as the transition between hidden order and antiferromag-

netism is seen at 0.8 GPa and shifts to higher temperatures for 1.1 GPa and 1.3 GPa.

It is very broad but becomes narrower and higher with increasing pressure. The results

of specific heat measurements at higher pressures will be presented later and directly

compared to the resistivity curves.

4.2.1 Superconducting transition

The specific heat at low temperature has been measured in the 3He cryostat (0.1 GPa,

0.13 GPa, 0.27 GPa) and in the dilution cryostat (0.5 GPa and 0.6 GPa). A careful

smooth of the temperature dependence of Cac/T is shown in figure 4.13a). The transition

temperature can be determined from these curves but it is much clearer in the phase

of the signal (see figure 4.13b), which is the phase shift between the ac-heating and the

tension of the thermocouple. For 0.5 GPa and 0.6 GPa no anomaly is visible down to

the lowest temperatures of ∼ 100 mK. The results shown here for different pressures are

from similar heating power so that the error, originating from the average temperature

elevation of the sample in comparison to the thermometer, is approximately the same

(see paragraph 3.3).
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4.3 Discussion

4.3.1 Pressure-temperature phase diagram

The pressure-temperature phase diagram obtained from both resistivity (circles) and

specific heat (triangles) measurements is presented in figure 4.14. It is separated into

four regions corresponding to four different phases. For the transition T0(p) the data from

resistivity measurement in the 4He cryostat are not included due to the problems of the

temperature gradients in the setup. The points obtained from measurements in the 3He

cryostat are more precise. The error bars on the pressure are smaller than the symbols.

As mentioned the transition temperatures from specific heat are too high, thus there is a

large error on these points. The transition temperature rises first slowly with a slope of

∼ 1.01 K/GPa and then for p > 1.4 GPa faster with a slope of ∼ 2.61 K/GPa. This is

consistent with previous measurements (see for example [28, 29, 71]). The transition line
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between hidden order and antiferromagnetism Tx(p) is observed in both measurement

methods for the first time. It emerges at pc1 ≈ 0.47 GPa and joins the other line at

pc2 ≈ 1.4 GPa. Just above the first pressure where the transition appears the width can

be estimated to 4 K. It is shown in the phase diagram as a grey shadow. The error can be

estimated from the dispersion of the values for the transition temperatures to ±0.75 K.

Let us compare this phase diagram to the one by Amitsuka et al. (see figure 4.15 [39])

established from their recent neutron diffraction studies made on a small high quality sin-

gle crystal of URu2Si2 which has therefore a smaller distribution of inner constrains. In

their data, the integrated magnetic Bragg scattering intensity at Q = (1, 0, 0) increases

step-like at the critical pressure of the transition to large moment antiferromagnetism

for a certain temperature in contrast to the continuous increase in their previous mea-

surements [23]. That means that the pressure region where the AF-volume increases is

much smaller (∆p ∼ 0.1 GPa) than in NMR measurements by Matsuda et al. [66] or

the first measurement by Amitsuka et al. [23](∆p ≈ 0.7 GPa). The high pressure satu-

rated value of the magnetic moment at low temperature stays however the same as before

µ = 0.4 µB. In their pressure-temperature phase diagram the boundary line between hid-

den order and antiferromagnetism emerges very steeply at a high pressure of p ≈ 0.7 GPa.

This is ∼ 0.2 GPa higher than the critical pressure pc1 from our measurements and the

higher steepness clearly points towards a first order transition line. Apart from this, the

phase diagrams are quite similar and the transition lines coincide nicely. Very recent

neutron scattering measurements with different pressure transmitting elements indicate

that pc1 is shifted to lower pressure when the hydrostatic conditions are improved [86].

With the determination of the pressure dependence of the critical temperatures T0,

Tx and TN and the concomitant measurement of the thermal expansion and the specific

heat, it is possible to evaluate the consistency with the thermodynamic relations by

Ehrenfest and Clapeyron for a respectively second order and first order transition. In

Ehrenfest equation at a second order phase transition the change of the thermal dilatation

coefficient ∆αv, the jump in specific heat ∆C and the slope of the transition line in the

pressure-temperature phase diagram are linked as

dTc

dp
=

3∆αvvTc

∆C
(4.1)

with the molar volume v = 51 cm3mol−1 for URu2Si2 at T = 4 K and ambient pressure.

At zero pressure deVisser et al. find for the thermal dilatation coefficient αv = 1

3
(2αa+αc)

at the transition to hidden order a jump of ∆α = 3 · 10−6 K−1 measured with capacitive

method [67]. The measurements under pressure have been carried out by Motoyama et al.

[24] with a resistive method and from their data (see figure 2.11) we find at zero pressure

a value of ∆αv = 2 ·10−6 K−1. This method is less accurate and therefore we set the error

bar to ±1 · 10−6 K−1. With ∆C = 5.6 Jmol−1K−1 from our PPMS measurement and

T0 = 17.5 K we obtain dT0

dp
= 0.96 K/GPa in good agreement with our measured value of

dT0

dp
= 1.01 K/GPa. To point out the contribution of the transition of Tx to the specific
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Fig. 4.15 : Pressure-temperature phase diagram of URu2Si2 by Amitsuka et al. [39]. The phase

boundary line between hidden order and antiferromagnetic phase is determined from neutron

diffraction data (open circles). The transition temperatures T0 and TN (closed) are obtained

from electrical resistivity measurements with a different single crystal. Open and closed triangles

represent the superconducting transition temperature Tc from susceptibility measurements on

the same single crystal with two different definitions of the transition temperature. Lines are

guides to the eye.
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Fig. 4.16 : a) Electronic contribution of the specific heat Cac/T − aT 2 for p = 1.1 GPa. The

phononic contribution (determined from a C/T = γ + aT 2 fit for Tmin < T < Tmin + 5 K) has

been subtracted. The red line is an approximate curve without transition with the same shape

as the low pressure curves so that the contribution of the transition at Tx can be seen very

clearly. b) Zoom on pressure phase diagram. The black straight line has a slope of 10 K/GPa.

Lines are guides to the eye.
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heat, figure 4.16a) shows the electronic contribution of the specific heat Cac/T − βT 2 at

p = 1.1 GPa. In order to determine the phonon contribution we made a C/T = γ + βT 2

fit for Tmin < T < Tmin + 5 K and substracted the term βT 2 from our data. One sees

that the suspected first order transition at Tx does not correspond at all to the textbook

figure of jump of entropy at a first order transition but to a broad signal. The reason for

this might be fundamental, i.e. the transition at Tx is only weakly of first order on top

of a regime with strong fluctuations, or it might be linked to the large sensitivity of the

Tx line to pressure and pressure gradients. For a first order phase transition we have to

apply the Clapeyron relation:

dTc

dp
=

∆V

∆S
(4.2)

where ∆V is the volume change at the transition and ∆S is the change of entropy. From

the ac-specific heat measurement, as the absolute value of Cac/T under pressure is not

known, we only compare the entropy of the two transitions determined in figure 4.16.

With ∆S0

∆Sx
≈ 1.6 and ∆Vx

∆V0

≈ 10 (from the measurements by Motoyama et al.) the slope of

the transition line Tx(p) is expected to have a 16 times higher slope than the line T0(p).

In figure 4.16b) is shown a zoom of the phase diagram. The straight line in this figure

has a slope of 10 KGPa−1 which is ten times higher than the slope of T0(p). It represents

nicely the slope of the specific heat data. The agreement with the calculated value is not

very bad in comparison with the very inaccurate determination of ∆V .

In our phase diagram the borderline between hidden order and antiferromagnetism

Tx(p) seems to join the transition line T0(p). Of course this issue cannot be clarified

definitively with discontinuous steps in pressure, but our measurements with quite small

steps point towards two separated regions on the pressure-temperature phase diagram. In

the phase diagram in figure 4.15 this is not as clear. Besides the two lines touch exactly

at the pressure where the transition line at T0(p) exhibits the kink.

For the calculation of the phase diagram in Ginzburg-Landau framework according to

equation 2.4 we can ascribe two order parameters to respectively the hidden order phase

and the antiferromagnetic phase. In case of two order parameters that are homogeneous

all over the sample, our phase diagram corresponds to the scenario γ = 0 (see the left

panel of figure 2.12 [72]). That means that no linear coupling terms between the two order

parameters in the Landau free energy functional exist. In this case the order parameters

can break different symmetries. This is contrary to the phase diagram proposed by Bour-

darot et al. [72] where the transition line between hidden order and antiferromagnetism

ends in a critical point.

What we can learn about their nature from the signature of the transitions in resis-

tivity and ac-calorimetry under pressure will be described in the next chapter.
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URu2Si2 for different pressures. The temperature scale of the specific heat measurements is

normalised so that the maximum of the specific heat coincides with the transition temperature

at the corresponding pressure in the resistivity measurements. Equal pressures have equal

colours.

4.3.2 Transition at T0

As the pressure phase diagram presents two distinct regions below T0 respectively TN ,

the corresponding order parameters can break different symmetries. Their microscopic

differences would probably imply changes in the signature of the transitions when applying

pressure. This question will be discussed in this paragraph regarding our results. In figure

4.17 we present a detailed comparison of the signature at T0 of the specific heat Cac/T

and resistivity under pressure with special emphasis on the pressure region where the two

transition lines touch. The temperature scale of the specific heat measurement is scaled

like above. The pressures presented in the same colour are approximately the same within

the error of the pressure measurement of about ∼ 0.05 GPa. As mentioned before, the

qualitative shape of the resistivity curves does not change. The jump in resistivity typical

for a nesting of the Fermi surface persists to all measured pressures: this means that this

property of the hidden order state which implies the condensation process is also present

in the antiferromagnetic phase. Nevertheless looking closely at the shape some changes

can be observed (see figure 4.18). At pressures below 1.3 GPa the onset of the transition

coming from high temperatures is very abruptly. This is for example expressed in the

temperature difference Tmin − T0 between the minimum in resistivity and the inflection
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point, corresponding to the zero and the minimum in the derivative (see figure 4.18a).

This temperature difference makes a jump at the critical pressure pc2 ≈ 1.3 GPa (see

figure 4.18c). At higher pressures where the transition is to the antiferromagnetic phase,

the onset is consequently smoother with a lower curvature. This is also directly visible

in the resistivity data (see for example figure 4.5).

The slope at the inflection point is however not smaller for higher pressures. The

slope at the steepest point is given as the minimum value of the derivative (dρ/dT )min

(see figure 4.18a). This value can change for example with smoothing parameters. But as

throughout this work the derivatives have been taken with the same numerical procedure

for all resistivity curves the derivatives can be compared. The pressure dependence of

the derivative’s minimum value is shown in figure 4.18d). With increasing pressure the

slope first decreases, i.e. the minimum value increases, and at the same critical pressure

as before it suddenly jumps to a lower value.

The third parameter which indicates a change of shape of the resistivity curve is the

height of the jump (see figure 4.18b). The ratio between the maximum and the minimum

resistivity ρmax/ρmin, presented in figure 4.18(e) attenuates with pressure and jumps to a

higher value at the critical pressure. The increase of this ratio already at 1.1 GPa is due

to the second anomaly on top of the maximum (see the brown data in figure 4.5). The

height of the jump is an indication of the part of electrons which are lost on the Fermi

surface during the nesting process. At zero pressure the resistivity jumps by a factor of

1.4, that means ∼ 40 % of the electrons are removed. This value first diminishes under

pressure from ∼ 40 % to ∼ 35 % in the hidden order phase and then rises to a value of

∼ 43 % in the antiferromagnetic phase.

Compared to resistivity, the specific heat changes much more obviously its shape (see

figure 4.17). In analogy to the resistivity curves the ratio between the maximum and

minimum specific heat (C/Tmax)/(C/Tmin) versus pressure as defined in figure 4.18f) is

traced in figure 4.18g). It attenuates slowly until a critical pressure pc2 ≈ 1.3 GPa, where

it jumps to a higher value. For increasing pressure it decreases then faster.

The width of the transition, defined as the temperature difference between the min-

imum and maximum Tmin − Tmax (see figure 4.18f), is strongly enhanced at the same

critical pressure pc2 (see figure 4.18h). Summarising, one could say that the shape of the

specific heat curves is much more symmetric for pressures higher than pc2. The critical

pressure is a little bit higher than the one determined from resistivity measurements.

In all shown parameters the change of shape of the transition at T0 to hidden order

(pc2 < 1.3 GPa) respectively antiferromagnetism (pc2 > 1.3 GPa) is distinct, even if

the effect in resistivity is small, and it happens quite abruptly at a critical pressure of

pc2 ≈ 1.3 GPa.

Besides the quantitative description of the signature of the transition at T0 a detailed

qualitative description is necessary. Let us therefore look closer to the Cac/T curves in

figure 4.17. The large bump of the second anomaly at Tx comes up with pressure. At
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1.1 GPa (green data) it is visible in both resistivity and specific heat and its position

coincides well. At 1.3 GPa in resistivity only one transition is left, whereas in specific

heat both transitions are discernible. The contributions from the two different anomalies

are estimated as presented by the black lines in figure 4.19. The contribution of the

anomaly at Tx (dashed line) is relatively small and broad for 1.3 GPa. The contribution

of the sharp step-like transition at T0 (solid line) has not changed its shape in comparison

to lower pressures. As T0 increases slower with pressure than Tx, for higher pressures the

round bump at Tx shifts up further in temperature and the anomalies superpose. This is

the pressure region where the two get close. With increasing pressure in this region, the

intensity of the sharp anomly is attenuated whereas the intensity of the round anomaly

increases. At 1.8 GPa the transition at T0 is dominated by it i.e. the contribution of the

transition at T0 is only left as a small peak on top of the large round anomaly (see fig 4.19).

For all higher pressures, only the round anomaly is observed. From the specific heat data

I suppose that always T0 ≥ Tx and that in the pressure phase diagram the transition line

at T0 ends when the borderline between hidden order and antiferromagnetism comes up

and transforms into the transition line at TN between the para- and the antiferromagnetic

state.

To summarize we can say that the shape of the transition in resistivity is only slightly

affected by pressure and therefore the nesting takes place at all measured pressures. If

this rearrangement of the Fermi surface (due to some sort of spin density wave) is one

characteristic of the hidden order, this would mean that this characteristic of the hidden

order parameter is also non-zero for high pressures. But from the specific heat measure-

ments the shape at TN is totally different from the signature at T0. So the transition at

TN is not a continuation of the transition at T0.
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In URu2Si2 itinerant (some sort of spin density wave) and local (local antiferromagnetism)

properties are coupled. Probably the gap-opening is a necessary condition for magnetic

ordering: When a part of the electrons is removed from the Fermi surface, the hybridi-

sation is weakened and therefore the local character of the f -electrons becomes more

important. Thus the 5f -bandwidth gets smaller, which leads to long range magnetic or-

der of almost localised moments. This coupling is the reason why the nesting temperature

follows the ordering temperature TN , which seems to be the extension of the line Tx(p).

Dc-magnetisation measurements show a qualitatively equal behaviour for low and high

pressures, but reveal a change of the temperature derivative ∂M
∂T

in the antiferromagnetic

phase. That means that the slope just below T0 decreases by half for B and M‖c and

increases by a factor of 15 for B and M‖a at p ≈ 1.7 GPa [28] compared to the zero

pressure curves.

Our measurements cannot reveal the real nature of the hidden order. New time-of-

flight neutron diffraction at ambient pressure by Wiebe et al. shed some more light on

this question. We already mentioned that two kinds of spin excitations exist in URu2Si2,

both gapped below T0 (see paragraph 2.1). The excitations with a wave vector Q0 =

(1, 0, 0) in reciprocal space correspond to the local antiferromagnetism with propagation

vector (0, 0, 1) and the second type of itinerant-like spin excitations is found at the in-

commensurate wave vecor Q = (1, 0.4, 0) and equivalent ones. Wiebe et al. could show

that the spectrum above T0 is dominated by the latter itinerant-like spin excitations [87].

These spin fluctuations occupy much more of phase space than those at magnetic Bragg

peaks and their gapping below T0 can therefore account for the large entropy removal at

the transition. This supports the fact that itinerant rather than local electron physics

determine the transition at T0 and the hidden order state. In recent NMR measurements

no evidence for magnetic ordering at ambient pressure is found [88]. This points towards

the fact that in a perfect crystal of URu2Si2 magnetism is not present in the hidden order

phase but only emerges under pressure. Thus the order parameter of the hidden order

state would be non-magnetic. The proposed theoretical models with an order param-

eter consisting of a magnetic dipole would then be ruled out and the possibilities left

are quadrupolar [56, 57] or octupolar ordering [58], unconventional density waves [59],

helicity order [60], orbital antiferromagnetism [61] or Jahn-Teller distortion [62]. It is

an interesting question, how the mentioned excitations behave under pressure. Inelastic

neutron scattering under pressure is definitively necessary to study for example the be-

haviour of the two gaps at the critical pressures and to determine the microscopic nature

of the order parameters of the hidden order and the antiferromagnetic phase.

4.3.3 Low temperature behaviour

At low temperature above TSC we expect a quadratic temperature behaviour of the resis-

tivity within Fermi-liquid theory. Therefore the data are fitted according to the formula
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ρ = ρ0 + A2T
2 for temperatures between the superconducting transition and 2.75 K (see

there fit on the left side of figure 4.20). The pressure dependence of the fit parameters

ρ0 and A2 is presented in figure 4.20a) and b) on the right. The residual resistivity ρ0

decreases first linearly and stays then at a constant value for pressures p ≥ 0.5 GPa. The

coefficient A2 of the T 2 term decreases with pressure, makes a jump at pc1 ≈ 0.5 GPa

and continues its decline. However the T -dependence at low temperature is more likely

not quadratic. If the fit is extended to a larger temperature range up to 3.5 K, only an

exponent smaller than 2 is able to fit the data accurately (see the blue fit on the left side

of figure 4.20). Consequently in figure 4.20(c) is presented the pressure dependence of

the exponent x in a ρ = ρx + AT x fit. At low pressure it is close to 2, then drops to a

value < 3/2 at 0.5 GPa. From there on it grows steadily until reaching again approxi-

mately 2 at ∼ 1.8 GPa. Just above the critical pressure pc1 definitely a non-Fermi-liquid

behaviour is found. This coincides with a first order transition at ∼ 0.5 GPa where the

antiferromagnetic phase emerges.

4.3.4 Superconducting transition

In figure 4.21a) is shown a zoom of the pressure phase diagram at low pressure and low

temperature. In resistivity the superconducting transition temperature was determined

from measurements with a current of 100 µA. In resistivity the superconductivity is seen

up to p = 1.8 GPa deep in the antiferromagnetic phase. The result is similar as in previous
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resistivity measurements, but the highest pressure, where the transition is observed is

higher than in those measurements with p = 1.2 GPa [27] and [29]. Tenya et al. claim

that the superconducting phase transition disappears above 1.5 GPa from magnetization

measurements [89]. In specific heat measurements in contrast, the transition is not seen

at 0.5 GPa and 0.6 GPa down to 100 mK in our measurements. Specific heat is a bulk

property, so that volumic superconductivity in URu2Si2 is assumed to be suppressed by

the antiferromagnetic phase. This is consistent with the susceptibility data by Uemura et

al. [30]. The resistivity measurement shows however that on the surface or paths through

the sample a current can pass without resistance up to at least 1.8 GPa. This could be

due to small inhomogeneous areas in the sample which are not antiferromagnetic at a

pressure where normally antiferromagnetism dominates. Here again we could argue with

inner strains causing a certain pressure distribution in the sample. It is though quite

surprising that neither the width of the superconducting transition (see figure 4.21b) nor

its current dependence change at the critical pressure. The same holds for the upper

critical field. The unchanged slope under pressure points towards an unchanged effective

mass. But as the coefficient A of the T 2 term in the low temperature fit of the resistivity

curves is proportional to m∗2 as well, one should expect that in makes a jump at the

critical pressure and especially that it decays with pressure. This had been found by

McElfresh et al. and Schmidt et al. who both found a continual decrease of m∗ [27, 29].

But their pressure steps were much larger up to higher pressures so that they did not see

the critical pressure. But looking closely at the data by McElfresh et al. the jump in the

fit parameter A from a ρ = ρ0 + AT 2 fit can even be observed.
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With the suppression of superconductivity by the antiferromagnetic phase URu2Si2
behaves differently than other uranium heavy fermion compounds like UPd2Al3 for ex-

ample, which orders antiferromagnetically at T = 14 K and becomes superconducting at

TSC = 2 K [90].
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Conclusion

The results of ac-calorimetric and resistivity measurements of URu2Si2 under pressure up

to 5.5 GPa have been presented.

The pressure-temperature phase diagram we obtained is very detailed and shows four

distinct regions corresponding to four different phases. The hidden order phase, which

develops below the transition temperature T0 at ambient pressure, is seperated from a

large moment antiferromagnetic phase by a first order transition line Tx(p), which has

been seen for the first time in resistivity and specific heat. This line emerges at a critical

pressure pc1 and joins the transition line T0(p) at the pressure pc2. The first critical

pressure pc1 is sample dependent (for our sample pc1 ≈ 0.47 GPa) whereas the second

critical pressure does not vary a lot comparing different publications (pc2 ≈ 1.4 GPa).

The tiny pressure steps and the development of the signature of the ac-specific heat allows

us to conclude that the transition line between hidden order and antiferromagnetism does

not end in a critical point. As a consequence, the order parameters of the two phases can

have different symmetries.

Regarding this question the signature of the transitions under pressure in resistivity

and specific heat was investigated. On the one hand the results in resistivity indicate

that the condensation process due to the formation of a spin density wave state is also

present at high pressure. On the other hand the shape of the transition seen by ac-

calorimetry changes significantly at the pressure pc2. The transition temperatures are the

same, so maybe the order parameter of the spin density wave is for high pressures coupled

to the antiferromagnetic order parameter. Here, further microscopic measurements are

necessary

Finally concerning the superconducting transition, the results from the two measure-

ment methods show different results. In resistivity the transition temperature was visible

up to 1.8 GPa and in ac-specific heat, it is not visible any more at 0.5 GPa down to

100 mK. Because specific heat is a probe for bulk properties, this means that super-

conductivity in URu2Si2 can only coexist with the hidden order state and is suppressed

rapidly under pressure, when the large moment antiferromagnetic phase emerges. This

behaviour is usually typical for Ce heavy fermion superconductors, where the region of

coexistance between antiferromagnetism and superconductivity is narrow, whereas in U

heavy fermion compounds superconductivity can coexist with magnetism over a large

pressure range maybe due to the dual character of the 5f -electrons.

65



66



Bibliography

[1] G. R. Stewart, Rev. Mod. Phys. 56 (1984)

[2] C. Enss and S. Hunklinger, Low Temperature Physics (Springer Verlag, Heidelberg,

2005)

[3] M. A. Rudermann, C. Kittel, Phys. Rev. 96, 99 (1954)

[4] T. Kasuya et al., J. Magn. Magn. Mater. 76,77 (1988)

[5] G. Zwicknagl et al., Phys. Rev. B 65, 081103 (2002)

[6] J. Kondo, Prog. Theor. Phys. 32, 37 (1964)

[7] E. Bauer, lecture script, Wien

[8] S. Doniach, Physica B 91, 231 (1977)

[9] N.B. Brandt, Adv. Phys. 33, 373 (1984)

[10] J. Flouquet, Progress in Low Temperature Physics Vol. 15, W. Halperin (Elsevier,

Amsterdam, 2005) p.139

[11] Q. G. Sheng et al., J. Appl. phys. 75 (1994)

[12] G. Knebel et al., Phys. Rev. B 65, 024425 (2002)

[13] A. J. Millis, Phys. Rev. B, 48, 7183 (1993)

[14] G. G. Lonzarich, Electron, M. Springford (Cambridge University Press, 1997).

[15] N. D. Mathur et al., Nature 394, 39 (1998)

[16] Spin density wave, Wikipedia

[17] E. Fawcett, Rev. Mod. Phys. 60(1), 209-283 (1988)

[18] E. Fawcett et al., Rev. Mod. Phys. 66(1) (1994)

[19] A. Verniere et al., Physica B 206-207, 509 (1995)

67



[20] A. Verniere et al., J. Magn. Magn. Mater. 153, 55 (1996)

[21] T.T.M. Palstra et al., Phys. Rev. Lett. 55, 2727 (1985)

[22] C. Broholm et al., Phys. Rev. Lett. 58, 1467 (1987)

[23] H. Amitsuka et al., Phys. Rev. Lett. 83, (1999)

[24] G. Motoyama et al., Phys. Rev. Lett. 90, 166402 (2003)

[25] A. Amato et al., J. Phys. Cond. Mat. 16, S4403 (2004)

[26] M. Yokoyama et al., Phys. Rev. B 72, 214419 (2005)

[27] M. W. McElfresh et al., Phys. Rev. B 35, 43 (1987)

[28] C. Pfleiderer et al., arxiv:Cond. Mat.(2006)

[29] L. Schmidt, doctoral thesis

[30] S. Uemura et al., J. Phys. Soc. Jpn. 74, 2667 (2005)

[31] W. Schlabitz et al., abstract presented at Fourth International Conference on Valency

Fluctuations, Cologne 1984

[32] K. Hiebl et al., J. Magn. Magn. Mater. 37, 287 (1983)

[33] T.T.M. Palstra et al., Phys. Rev. B 33, 6527 (1986)

[34] N. Hessel Andersen, Crystalline Field and Structural Effects in f-Electron Systems,

J. E. Crow, R. P. Guertin, and T. W. Mihalism (Plenum, New York, 1980), p. 373

[35] M. B. Maple et al., Phys. Rev. Lett. 56, 185 (1986)

[36] J. G. Park et al., Cond. Mat. 9, 3065 (1997)

[37] D. A. Bonn et al., Phys. Rev. Lett. 61, 1305 (1988)

[38] P. A. Sharma et al., Phys. Rev. Lett. 97, 156401 (2006)

[39] H. Amitsuka et al., J. Magn. Magn. Mater. 0, 1 (2006)

[40] T. E. Mason et al., Phys. Rev. Lett. 65, (1990)

[41] B. F̊ak et al., J. Magn. Magn. Mater. 154 (1996)

[42] T. Honma et al., J. Phys. Soc. Jpn. 68, 338 (1999)

[43] C. Broholm et al., Phys. Rev. B 43, 12809 (1991)

68



BIBLIOGRAPHY

[44] C. Marcenat et al., J. Magn. Magn. Mater. 76-77, 115 (1988)

[45] G. Aeppli et al., Phys. Rev. Lett. 60, (1988)

[46] G. R. Stewart et al., Phys. Rev. Lett. 52, (1984)

[47] C. R. Wiebe et al., arxiv:Cond. Mat.(2003)

[48] M.-A. Measson et al., Phys. Rev. B 70, 064516 (2004)

[49] W. K. Kwok et al., Phys. Rev. B 41, 11649 (1990)

[50] J. P. Brison et al., Physika C 250, 128 (1995)

[51] H. Ohkuni et al., Pilosophical Magazine B 79, 1045 (1999)

[52] G. J. Nieuwenhuys et al., Phys. Rev. B 35, 5260 (1987)

[53] N. Bernhoeft et al., Acta Phys. Polonica B 35, 1367 (2003)

[54] V. P. Mineev et al., Phys. Rev. B 72, 014432 (2005)

[55] Y. Okuno et al., J. Phys. Soc. Jpn. 67, 2469 (1998)

[56] P. Santini et al., Phys. Rev. Lett. 73, 1027 (1994)

[57] F. J. Ohkawa et al., J. Phys.Cond. Mat. 11, L519 (1999)

[58] A. Kiss et al., Phys. Rev. B 71, 054415 (2005)

[59] H. Ikeda et al., Phys. Rev. Lett. 81, 3723 (1998)

[60] C. M. Varma et al., Phys. Rev. Lett. 96, 036405 (2006)

[61] P. Chandra et al., Physika B 312-313, 397 (2002)

[62] T. Kasuya, J. Phys. Soc. Jpn. 66, 3348 (1997)

[63] F. R. deBoer et al., Physica B 139, 1 (1986)

[64] K. Iki et al., J. of Alloys and Compounds 181, 71 (1992)

[65] K. Matsuda et al., Phys. Rev. Lett. 87, 087203 (2001)

[66] K. Matsuda et al., J. Phys. Cond. Mat. 15, 2363 (2003)

[67] A. deVisser et al., Phys. Rev. B 34, 8168 (1986)

[68] K. Bakker et al., J. Magn. Magn. Mater. 108, 63 (1992)

[69] J. A. Mydosh et al., arxiv:Cond. Mat.(2002)

69



[70] N. Shah et al., Phys. Rev. B 61, 564 (2000)

[71] G. Knebel et al., J. Magn. Magn. Mater. , (2006)

[72] F. Bourdarot et al., Physica B 359-361, 986 (2005)

[73] M. Nakashima et al., J. Phys. Cond. Mat. 15, S2011 (2003)

[74] K.-W. Hasselbach, doctoral thesis (1991).

[75] Demuer A et al., J. Low Temp. Phys. 120, 245 (2000)

[76] Wilhelm H and Jaccard D 2002 JPCM 14 10683

[77] P. F. Sullivan et al., Phys. Rev. Lett. 173, 679 (1986).

[78] J.Chaussy et al., J. low temp. phys. 49, 167 (1982)

[79] E. S. Itskevich V. F. Kraidenov, Instrum. Exp. techn. 21, 1640 (1979)

[80] G. Knebel et al., J. Phys. Cond. Mat. 16, 1 (2004)

[81] J. Tomasson et al., private communications (1989)

[82] R. A. Noack and W. B. Holzapfel, High Pressure Sience and Technology, K. D.

Thimmerhaus and M. S. Barber (Plenum New York, 1979)

[83] B. Salce et al., Phys. Rev. Instrum. 71 (2000)

[84] H. L. Alberts, S. Afr. J. Sci. 84, 32-34 (1988)
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