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Zusammenfassung

Neue stereotaktische neurochirurgische Verfahren ermölichen es Gehirntumore
minimal invasiv zu entfernen und damit die Belastung des Patienten erheblich
zu verringern. Die Qualität der zur Operationsüberwachung notwendigen in situ
Bilder wird durch Spühlflüssigkeit und schon abgetragene Gewebeteile extrem
beeinträchtigt. Diese Störungen sollen mit adaptiver Optik kompensiert werden,
d.h. die auftretenden Aberrationen sollen in Echtzeit analysiert und korrigiert
werden. Die erfolgreiche Entwicklung eines hierfür optimierten Kontrollalgorith-
mus für die Ansteuerung einen Membranspiegels wird in dieser Arbeit dargelegt.
Des weiteren wird der Aubau eines geeigneten adaptiv opitschen Testsystems
beschrieben.

Abstract

New sterotactic neurosurgical techniques enable a micro invasive treatment of
brain tumors and therefore decrease the patients strain significantly. To allow for
a precise ablation process high quality in situ pictures are essential. The quality
of the in situ images is severely degraded due to irrigation liquid and ablated
tissue. It is possible to correct for these aberrations employing adaptive optics.
Therefore a real time realisation of a closed loop system containing detection,
reconstruction and correction unit is desired. The design of an control algorithm
to shape a membrane mirror, optimised for real time applications, is presented
within this thesis. Furthermore the construction of an adaptive optics system
suitable to test this algorithm is described.
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Introduction

Optics is one of the classic disciplines of physics and imaging systems form a
considerable part of it the . Here great efforts have been made to increase the
quality on the ’hardware’ side, like lenses and mirrors as well as light sources.
Today’s optics equipment reaches high precisions, mirror or lens surfaces can
be produced with sub-micron accuracies as well as laser techniques deliver light
sources of high homogeneity. Still there is an inconnu, which is turbulence, i.e.
irregularities of the refractive index, in the propagation path. All this has already
be foreseen by Sir Isaac Newton in his work about optics:

If the Theory of making Telescopes could at length be fully brought
into Practice, yet there would be certain Bounds beyond which Tele-
scopes could not perform. For the Air through which we look upon
the Stars, is in perpetual Tremor; as may be seen by the tremulous
Motion of Shadows cast from high Towers, and by the twinkling of
the fix’d Stars. But these Stars do not twinkle when viewed through
Telescopes which have large apertures. For the Rays of Light which
pass through divers parts of the aperture, tremble each of them apart,
and by means of their various and sometimes contrary Tremors, fall
at one and the same time upon different points in the bottom of the
Eye, and their trembling Motions are too quick and confused to be
perceived severally. And all these illuminated Points constitute one
broad lucid Point, composed of those many trembling Points confus-
edly and insensibly mixed with one another by very short and swift
Tremors, and thereby cause the Star to appear broader than it is,
and without any trembling of the whole. Long Telescopes may cause
Objects to appear brighter as to take away that confusion of the Rays
which arises from the Tremors of the Atmosphere. The only Remedy
is a most serene and quiet Air, such as may perhaps be found on the
tops of the highest Mountains above the grosser Clouds.

Here a new discipline has come up to solve this problem. It was in 1953, that
H.W. Babcock [1] published his idea to compensate for turbulence in the atmo-
sphere by active optics devices like deformable mirrors. It still is the astronomical
society that enforces the work on this field. With impressive pictures of high res-
olution they showed the effectiveness of this method. From a growing number
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vi INTRODUCTION

of adaptive optics systems the Very–Large–Telescope (VLT) [2] in Chile is the
largest and most sophisticated setup. There even exist efforts to implement low
cost systems for amateur astronomy [3]. Medicine is another field where adaptive
optics is employed. It has successfully been applied to diagnostic instruments in
ophtalmoloy. Currently scientists aim to utilise adaptive optics for endoscopic
surgery. As the dimension of those optics systems is in the order of several cen-
timeters, also the adaptive optics devices have to be of the same size.
The aim of this thesis is the implementation of a suitable control algorithm for
such a small scale adaptive optics system. From earlier work one learned, that ex-
isting solutions were much to slow for this purpose. Therefore a suitable adaptive
optics system had to be designed to test and optimise the new algorithm.



Chapter 1

Medical Applications of Adaptive
Optics

In this chapter an overview of the up to date applications of adaptive optics sys-
tems is given.
In ophthalmology retinal laser scanning tomography images the retina by sensing
the light emerging from the eye after reflection at the retina[4]. Those images
are very helpful for early diagnoses of numerous diseases like glaucoma, but as
the eye is no perfect optics system, their resolution is reduced by disturbances of
the laser light. Static aberrations occur due to corneal imperfections, well known
as they also affect the quality of human vision. Besides the human eye performs
transient movements, while fixing a target, which is another source of aberration.
Using adaptive optics it is possible to compensate for those aberrations and hence
to increase the image quality to the diffraction limit. For instance A. Türpitz de-
veloped such a retinal laser scanning tomograph with included adaptive optics
correction unit[5].
As mentioned before a current field of interest is the application of adaptive optics
to the field of neurosurgery, to stereotactic neurosurgery, which is a micro inva-
sive procedure, to be more precise. The method of stereotaxis was first invented
by Victor Horsley and Robert Henry Clarke in 1904 to reach precisely subcor-
tical points through the normal brain to treat moving disorder, pain, epilepsy
or impairment of the limbic systems, more see[6]. The idea is to use a metal
frame externally fixed to the patient’s skull, to serve as reference for a three
dimensional coordinate system. On the basis of images from preceding x–ray,
computer–tomographic (CT) as well as nuclear magnetic resonance (NMR) ex-
aminations target points and volumes can be located precisely in this coordinate
system. This supplies a navigation system for telecommanded surgical instru-
ments inside the head[7] and therefore enables to treat deep seated tumors, while
avoiding to remove greater parts of the skullcap.
The Department of Stereotactic and Functional Neurosurgery at the university of
Cologne and the DKFZ (Deutsches Krebsforschungszentrum) in Heidelberg are
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2 CHAPTER 1. MEDICAL APPLICATIONS OF ADAPTIVE OPTICS

working on a project that combines this method with an ablation based clear-
ance of cancerous tissue. The manner of interaction of a laser with tissue depends
mainly on the power density and the duration of the irradiance, i.e. the amount
of energy deposited in the area (see figure 1.1). Till today mainly so called ’ther-
mally active’ lasers are used to destroy tissue. These are for example CO2 or
Nd:YAG lasers. Their power density lies within the range of 104 W/cm2, which
leads to a warming and exceeding 60◦ C to a denaturing (Nd:YAG) or evaporation
(CO2) of the tissue. Problematic is, that a traumatisation of the surrounding tis-
sue is unavoidable. Due to the deposition of large amounts of heat at the target
volume, the surrounding tissue is also heated and therefore severely damaged.
The depth of the damaged zone around the cleared out tumor depends on the
power density, but it is at least several millimeters deep.
With the method of plasma–mediated ablation the amount of stray heat is sig-
nificantly reduced. If the power density reach the range of 109 − 1012 W/cm2,
the emerging electric field generates a microplasma, which is a highly ionised
unstable state. The tissue gets destroyed by ionisation as well as the shock wave
induced by the expansion of the plasma. In first tests [7] no thermal side effects
like coagulation, carbonisation or oedems appeared, the surrounding tissue was
not affected. For more information about laser–tissue interaction see [8].
The probe employed by the Department of Stereotactic and Functional Neuro-

Figure 1.1: Dependence of laser–tissue–interaction on the power density.

surgery at the University of Cologne and the DKFZ guides two laser beams onto
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(a) (b)

Figure 1.2: Scheme (a) and photo (b) of the probe combined with the stereotactic
ring.

the tissue, one for ablation and one for diagnostics. The laser for ablation is a
Nd:YLF laser with ultra short pulses of some picosecond duration and a power
density greater than 1011 W/cm2. One pulse of this laser destroys a very small
volume of about 8× 105 µm3, so that almost any target geometry can be cleared
away by computer controlled scanning with repeated pulses. For diagnostics a
cw–laser continuously scans the region of interest. In combination with a confocal
microscope[9], in situ images of the operation area are obtained. The CT images
give only an approximative position and size of the cancerous tissue. In com-
bination with the in situ images the surgeon has the opportunity to selectively
remove the cancerous and not the healthy tissue. The microscope designed for
this purpose by K.Greger is a auto fluorescence microscope, accompanied with an
improved image processing technique to distinguish between healthy and cancer-
ous tissue[10]. This system is called OligoChannel Spectrum Analyzer (OCSA).
A scheme and a picture of the probe fixed to the stereotactic frame are shown in
figure 1.2.
The quality of the optical system inside the tool is of great importance. However

it is restricted due to two main reasons. For once the diameter of the tool should
be as small as possible and secondly the operation cavity is filled with liquid, as
the ablated tissue is removed continuously by irrigation and suction through the
laser probe. This liquid gets warmed erratic over the volume by the laser beams
passing through. It thus becomes inhomogeneous and formes so called thermal
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lenses due to local changes of the refractive index, aberrating the laser beams.
Such disturbances reduce the beam quality of the cw laser and thus of the in situ
images in the microscope, as well as the focus quality of the ablation laser beam.
If the pulsed laser can not be focused to a small beam waist, the energy density
might not reach the plasma threshold. Instead of ablated, the tissue would only
get thermally damaged. Here adaptive optics can be applied to guaranty a precise
ablation and clear in situ images. How such a surgical system including adaptive
optics could be designed is shown in figure 1.3. How to control the active optics
devise in real time shall be carried out in this work.

Figure 1.3: Layout of a surgical system including adaptive optics.



Chapter 2

Theoretical Foundation

In this chapter some specific terms concerning optics will be explained and the
conceptual framework given for what is examined and done by adaptive optics.

2.1 Concept of Light as Wavefront

A light wave is a disturbance, comprising variations in space and time of coupled
electric and magnetic fields and therefore obeys the Maxwell equations. As all
applications described in the following do restrict themselves to a charge–free
medium (ρ = 0) the Maxwell equations [11] for those systems are given by:

∇ · ~E(~r, t) = 0 (2.1)

∇ · ~B(~r, t) = 0 (2.2)

∇× ~E(~r, t) = −∂ ~B(~r, t)

∂t
(2.3)

∇× ~B(~r, t) = µ0ε0
∂ ~E(~r, t)

∂t
. (2.4)

One important consequence of these equations is the wave equation, describing
the propagation of an electromagnetic disturbance along a linear path in propa-
gation direction, often called ray:

∇2 ~E − µ0ε0
∂2 ~E

∂t2
= 0 (2.5)

∇2 ~B − µ0ε0
∂2 ~B

∂t2
= 0, (2.6)

with the propagation velocity:

v = c =
1

√
µ0ε0

. (2.7)

5



6 CHAPTER 2. THEORETICAL FOUNDATION

One solutions to equation (2.5) and (2.6) respectively, that also satisfy the Maxwell
equations, is a plane wave:

E(~r, t) = Re[E0 exp(iφ(~r, t))] = Re[E0 exp(i(ωt− ~k · ~r + ϕ))] (2.8)

B(~r, t) = Re[B0 exp(iφ(~r, t))] = Re[B0 exp(i(ωt− ~k · ~r + ϕ))], (2.9)

E0, B0: amplitude,
ω: wave frequency,
k: wave vector.

If such a plane wave passes through a convex lens, it collapses in one point,
called focus point. The distance of this point to the lens is the lens’ focal length.
As an imaging system is a combination of lenses and the image of a point source
is again a point. This point is also referred to as image point or conjugated point.
Conjugated plane is another name for the image plane, that contains all image
points of an object, while maintaining the objects aspect ratio. Another name
for a plane wave is collimated beam, it indicates that the beam comes from a
point source infinitely far away and therefor can be described as being plane.
Another solution for the equations (2.5) and (2.6) is a spherical wave:

E(~r, t) = Re[
E0

r
exp(i(ωt− ~k · ~r + ϕ))] (2.10)

B(~r, t) = Re[
B0

r
exp(i(ωt− ~k · ~r + ϕ))], (2.11)

which is the form of a wave emerging from a point source. As according to
Huygens’ principle any source can be described as superposition of many point
sources, the spherical solution will be the most frequently used model of light.
Concerning imaging systems the most interesting quantity in the above expres-
sions is the phase φ. Constant φ gives a surface of constant optical path length
(OPL = length× refractive index) from the source, carrying all information about
this source and therefore forming the image. Any imaging error can be described
in terms of aberration of this phase front, concrete the optical path difference
(OPD) W (x, y), between an ideal wavefront, serving as reference wavefront, and
the aberrated one. For a spherical wavefront, this is illustrated in figure 2.1.
In mathematical form this OPD function can be represented by a polynomial,

so that every term describes a specific type of aberration, like tilt or defocus, and
to which extend it is present. This is called a modal representation, in contrast
to local ones, where each point of the OPD function is described independently
by some absolute value. Most frequently used for modal representation is the
Zernike polynomial series[12]. In polar coordinates (ρ, θ) it has the form:

Zm
n (ρ, θ) =


Rm
n (ρ) cos(mθ) for m > 0

R−mn (ρ) sin(mθ) for m < 0
Rm
n (ρ) for m = 0,

(2.12)
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Figure 2.1: The aberration of a spherical wavefront can be measured as optical
path difference W (x, y) compared to an undisturbed spherical wavefront.

with

Rm
n (ρ) =

(n−m)/2∑
s=0

(−1)s(n− s)!

s! [(n + m)/2− s]! [(n−m)/2− s]!
rn−2s, (2.13)

n: radial order,
m: azimuthal order, m < n, (n−m) is even.

This polynomial set is normalised on a unit circle and its first terms depict
just commonly known aberrations like tilt, defocus, astigmatism or coma, which
makes it very illustrative (see figure 2.2). Therefore it is traditionally used for
optical systems. There exist different numberings for the terms of the series,
like an ISO representation, which is implemented in the interferometer software
(see section 4.1.3) and the mirror control program I wrote or one by Malacara,
used by T. Nirmaier in his sensor control program (see section 4.3). Generally in
Cartesian coordinates the Zernike polynomials are linear combinations of Taylor
monomials, a feature I will use for the wavefront reconstruction. The first 19
polynomials of the ISO representation are listed in table 3.1. Any OPD function
can then be written as infinite sum of those Zernike polynomials with specific
coefficients ci:

W (x, y) =
∞∑
i=0

ciZi. (2.14)

Chromatic aberrations are not of interest here as only monochromatic light
sources - lasers with well defined wavelength - are involved in this work.

2.2 Limits of Imaging Systems

Any imaging system aims to give a perfect image of some object in the image
plane. Thus ideally all the light coming from the image should reach the image
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plane undisturbed. But not even theoretically this is possible. As all optics
devices, like a lens for example, are of finite size, diffraction effects at the edges
degrade the propagation process and thus the image. Those effects are inherent
in the Maxwell equations, so that the best one can do is to reach the limit of
diffraction for an optics system. The interaction of light with optics devices on
its way of propagation can in a strict mathematical derivation from Maxwell
equations be described by the Helmholtz–Kirchhoff–theorem in full detail given
in [13]. An approximation to this theorem, describing the light source as a sum of
point sources and replacing the field distribution in the aperture plane with the
incoming field, is summoned in Kirchoff’s formula of propagation. Due to this
the field E at a point (ρ, θ) in the plane normal to the direction of propagation
and behind the aperture is given in polar coordinates by:

~E(ρ, θ) = C
ei(ωt−k

~R)

~R

∫ a

q=0

∫ 2π

Θ=0
ei(

kρq
~R

)ωs(θ−Θ)︸ ︷︷ ︸
Eap(q,Θ)

q dq dΘ, (2.15)

z: distance to aperture plane,
C: constant,
Eap: field distribution in the aperture plane,
~R: vector from (ρ, θ) to (q, Θ),

where ap indicates, that the integral runs over the aperture, the light interacts
with.
A concrete effect of diffraction on the image is, that a diffraction limited system
does not focus a point source onto one single image point, but into a finite sized
spot in the focus plane. This lateral intensity distribution is called the point
spread function (PSF) of the system (see figure 2.3). The distance between its
central maximum and the first zero is used to define the radius of a disk, which
is called Airy disk after the British astronomer Sir George Bidell Airy. The size
of the Airy disk is used to define a comparable measure of a focal point’s size.
It is approximately the size recognised by a human eye. The diameter is defined
by:

dAirydisk = 2.44λ(f/]), (2.16)

f/]: F–number.

The F-number of a system is (effective) focal length F divided by entrance
pupil diameter D, which e.g. for a biconvex lens is just the lens diameter:

f/] ≡ f

D
. (2.17)

It is a measure for the effective light output of an optics system in the focus plane
and therefore frequently used in medical applications to verify the doses, that can
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be applied for example in eye operations.
Other limits of resolution are imperfections of optics instruments and light sources.
A magnitude for the quality of the optics devices and there adjustment involved
in am imaging system is the relative intensity deviation on axis, called Strehl
ration or normalised intensity S. It is the quotient of the ideal intensity on axis
and the real intensity on axis:

S =
I(P )

Iφ=0

=
1

π2
|
∫ 1

0

∫ 2π

0
ei[kφ−vρ cos(θ−ψ)− 1

2
uρ2]ρ dρ dθ|, (2.18)

where P is the point of intersection between wavefront and image plane and (ρ, θ)
are points in the image plane. Problematic is that if tilt aberration is present
the axis of the real wavefront is normal to the plane of that tilt and not parallel
to the axis of the ideal intensity, so that the intensity distributions are shifted
relative to each other in the image plane. Therefore the Strehl ration is only a
figure of merit for the quality of beam propagation in a system, as long as static
tilt is removed.
Concerning the light intensity there is another measure, that is interesting, when
light sensitive surfaces, like the eye’s retina or thin membrane mirrors are in-
volved. This is the optical load EE, which gives the light output in the image
plane in form of load of radiation per area:

EE =
dΦe

dAE

=
IdΩ

dAE

, (2.19)

Φe: power of radiation (of source),
Ω: angel of space,
AE: irradiated area, i.e. image plane.

Pleas refer to [14, 15] for further reading on optics and adaptive optics.
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Z1 Z2 Z3

Z4 Z5 Z6

Z7 Z8 Z9

Z10 Z11 Z12

Z13 Z14 Z15

Figure 2.2: The first 15 Zernike coefficients, according to ISO numbering.
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Figure 2.3: The point spread function gives the lateral intensity distribution of
an optics system at the focal plane.
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Chapter 3

Adaptive Optics Systems

The theoretical foundations of adaptive optics were laid in the previous chapter.
This chapter will introduce the principles of adaptive optics systems and give an
overview of the current implementations.
An adaptive optics system is generally a system with some mechanical device, to
compensate for imaging errors corresponding to disturbances in the propagation
path. Such a system consists of three main units, a wavefront sensor, a wavefront
reconstructor and a wavefront corrector, merged in a servo loop and driven in a
frequency range up to 1 kHz. The wavefront sensor measures the optical path
difference W or its gradient dW at a finite number of points across the exit pupil,
passes this data to the reconstructor computer, which controls the wavefront
corrector. A scheme of a whole system is shown in figure 3.1
Active optics systems are based on the same concept, but only aim to correct for
slower quasi static errors. For example thermal telescope errors can be corrected
with regulation rates of only about 0.01 Hz. Those errors occur due to the
thermal expansion and contraction of the telescope mirrors and mounts. As the
temperature changes during 24 h the telescope has to follow with its thermal
load.
The following sections will focus on the three main units of an adaptive optics
system.

3.1 Wavefront Sensing Techniques and Recon-

struction

There are mainly three ways to measure wavefront aberrations. Either one uses
interference, geometrical effects or intensity variations.

13
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Figure 3.1: Scheme of an adaptive optics system.

3.1.1 Interference Based Wavefront Sensors

Interfering the aberrated wavefront with a reference wavefront, that resembles the
undisturbed ideal wavefront, the fringe pattern reflects the phase shift between
the two surfaces.
The correlation between phase shift δ for a certain wavelength λ and OPD W is
generally given by:

δ =
4πW

λ
. (3.1)

There are many different ways to obtain a reference. Either it can be obtained
from an external source or it must be generated from the aberrated wavefront
itself. Examples for the latter are the radial shear interferometer and the point
diffraction interferometer.
Generally high accuracies can be reached with interferometers, but disadvantages
are, that they only work for coherent light sources, they are sensitive to vibration
of the aperture and that they often need movable parts.

Radial Shear Interferometer

The radial shear interferometer is based on a Mach-Zehnder-type interferometer[14].
As can be seen in figure 3.2 the wavefront to be tested is parted by a beam splitter
into a reference and a test arm. Each arm runs through a telescope before being
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reunited. The reference arm gets expanded, the test arm compressed. That way
the phase shift of the reference arm, in the region of the image plane, where the
two beams overlap, is about a tenth wavelength or less[16], which is plane enough
to be used as reference wavefront. By detecting the fringe pattern in the image
plane, the interferometer becomes a sensor.

Figure 3.2: Radial shear interferometer

Point Diffraction Interferometer

The point diffraction interferometer, first build by Dr. Ray Smartt[17], is illus-
trated in figure 3.3. It is a neutral density filter disk with a small pinhole, which
acts as diffraction aperture. Only a minute part of the beam interacts with it,
being diffracted into a clean spherical wavefront. This serves as reference for
the rest of the beam, that passes through unhindered except for a reduction in
intensity. As the intensity distributions of the two interfering wavefronts diverge
with increasing distance to the center, the fringe contrast goes down at the range
extremes.

Figure 3.3: Structure of a point diffraction interferometer.
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3.1.2 Intensity Based Wavefront Sensors

Knife Edge Test Principle

In the 19th century the French physicist Foucault showed that the form of a
wavefront can be tested using a knife edge. A sharp edge, like a knife edge, is
placed in the focus plane of the entrance pupil. It can be moved up and down in
this plane. As an undisturbed wavefront converges to a point focus, the wavefront
image on an observation screen well outside of the focal region will be completely
blocked the moment the knife edge crosses the focal point. Aberrated wavefronts
do not converge to a point focus, but the image formed is spread out around the
ideal focus point instead. Hence the image in the focal plane is of finite size and
can’t be blocked out at once, but a straight shadow edge moves over the image.

Implementations

So called knife edge wavefront sensors use this method operating with one or more
knife edges. The knife edge position is triggered together with intensity profiles
of the pupil image. After the blades have passed the image the whole data is
analysed by a computer and the optical path difference W (x, y) is computed.
Obviously here lies the main disadvantage of this sensing method. A lot of data
analysis and calculation has to be done. Thus for high frequency rates great
computer capacity is needed.
Also based on Foucault’s idea is the pyramid wavefront sensor developed by the
Italian astronomer Ragazoni. The incoming wavefront is focused onto the apex
of a transparent four-sided pyramid. The expanding light inside the pyramid
get diffracted by the four different sides onto four separate images below the
pyramides base. In the ideal case the intensity is equally distributed among the
four spots. This is obviously not the case for an aberrated wavefront. On the
bases of the intensity distribution between these four pictures the optical path
difference W (x, y) can be determined.

Curvature Sensor

Another frequently used example of an intensity based wavefront sensor is the
curvature sensor. Its method has first been proposed by F. Roddier et al.. Here
the irradiance profiles in two complimentary planes in the same distance before
and behind the focal plane of a perfect lens are detected. For a plane wavefront
incident upon the lens the intensity is distributed symmetrically around the focus
point. An aberrated wave does not converge onto the focal point and therefore
the intensities measured in the two planes are different. The phase φ is related
to the irradiance I(~r) by[15]:

I1(~r)− I2(−~r)

I1(~r) + I2(−~r)
=

f(f − s)

s
[∇2φ(

f

s
~r)− ∂

∂~n
φ(

f

s
~r)δc] (3.2)
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I1: intensity on axis in the distance ~r before the focal point,
I2: intensities in −~r behind the focal point,
δc: Dirac delta function, representing the outward pointing normal derivatives on
the edge of the signal.

3.1.3 Wavefront Sensors Based on Geometry

This class of wavefront sensors is based on pure ray optical considerations, which
are valid as far as diffraction effects are negligible, i.e. the the aperture size is
much bigger then the used wavelenght. A widely used exponent is the Hartmann-
Shack-Sensor , which is an advancement of the Hartmann-Test(figure 3.4), which
was originally developed by Hartmann for lens evaluation. For this test the wave-
front falls paraxial onto a disk with a small circular hole. This disk, positioned
in the entrance pupil of a lens, can be moved orthogonally to the optical axis.
For different disk positions one detects the corresponding positions of the ray,
that passes the hole, in the image plane. For a plane wavefront all rays reach
the detector at the paraxial focal point. For aberrated wavefronts different rays
reach the detector plane in different positions off-axis. These deviations Tx, Ty
from the paraxial focal point provide all information about the local optical path
difference W (x, y) of the wavefront.

∂W (x, y)

∂x
= −(

nR

r
)Tx (3.3)

∂W (x, y)

∂y
= −(

nR

r
)Ty (3.4)

R: pupil radius
r: distance of exit pupil to focal plane
n: refractive index

An easy extension is the parallel Hartmann sensing. Instead of one hole, an

Figure 3.4: Illustration of the Hartmann–Test.
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array of holes is printed on the aperture disk. As the Tx,y values over the entire
pupil would be present concurrently, the specific spots wouldn’t be distinguish-
able. This is solved by the integration of lenses in each hole combined with a
position sensitive detector in the focal plane. Finally leading to the Hartmann-
Shack-Sensor, which leaves out the disk and instead fills the plane continuously
with lenses to get as many spots as possible over the wavefront’s cross section,
consists only of a lenslet array and the detector.

Detection

Position sensitive detectors are in this group realised in two different ways. The
simpler detector is based on a ccd1 camera in combination with a computer based
read out and an image analysis software. The more advanced detector is realised
with an asic2[18]. The latter detector was used in this work and is fully described
in section 4.1.2.

Reconstruction

In the following paragraph it will be shown how to derive the OPD function out
of the focus point positions measured by the sensor for each microlens. This is
often referred to as direct approach of reconstruction in contrast to an indirect
approach, that never works out the wavefront explicitly, but translates the mea-
sured local tilt information directly into signals for the control unit.
The deviation of each spot detected in the focal plane to the ideal focal spot po-
sition separately in x– and y–direction is xmeasured − xideal = ∆x and ymeasured −
yideal = ∆y. The correlation to the local tilt of the OPD W(x,y) is illustrated in
figure 3.5 and given for the nth subaperture by:

∂W (xn, yn)measured
∂x

= tan α =
∆xn
f

= Pn (3.5)

∂W (xn, yn)measured
∂y

= tan β =
∆yn
f

= Qn (3.6)

f : focal length of the lenses,
α, β: angles between tilt and normal in x– and y–direction respectively.

The aim is now to find the OPD W (x, y) (2.14), that fits best this measured
deviations. This can be reached doing a least square fit, i.e. minimising the sum
D of the squared deviations between wavefront derivatives and measured tilt for
all N subapertures. This sum is:

D =
N∑
n=1

(
∂

∂x
W (xn, yn)− Pn)

2 +
N∑
n=1

(
∂

∂y
W (xn, yn)−Qn)

2. (3.7)

1CCD is the abbreviation for charged coupled device.
2ASIC is the abbreviation for application specific integrated circuit
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Figure 3.5: Correlation of focus point deviation in off axial direction and local
tilt. This is also in the orthogonal direction the case.

If the wavefront derivatives are represented by a polynomial series, the fit param-
eters are the polynomial coefficients.

∂W (x, y)

∂x
=

∑
i

kiLi (3.8)

∂W (x, y)

∂y
=

∑
i

liLi, (3.9)

where Li are some not yet specified polynomials and ki, li the free fit parameters.
Now the sum D reaches its minimal value, if the derivatives concerning kj and lj
vanish, meaning:

0 =
∂D

∂kj
= 2

N∑
n=1

(
∑
i

kiLi(xn, yn)− Pn)Lj(xn, yn) (3.10)

0 =
∂D

∂lj
= 2

N∑
i=1

(
∑
i

liLi(xn, yn)−Qn)Lj(xn, yn) (3.11)

⇒
N∑
n=1

PnLj(xn, yn) =
∑
i

ki
N∑
n=1

Li(xn, yn)Lj(xn, yn) (3.12)

N∑
n=1

QnLj(xn, yn) =
∑
i

li
N∑
n=1

Li(xn, yn)Lj(xn, yn) (3.13)
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This simplifies considerably, if an orthogonal set of polynomials for Li is chosen,
so that

N∑
n=1

Li(xn, yn)Lj(xn, yn) = δij ∀ i, j, (3.14)

δij: Kronecker symbol.

Hence the conditions for minimisation become:

kj =

∑N
n=1 PnLj(xn, yn)∑N
n=1 L2

j(xn, yn)
, (3.15)

lj =

∑N
n=1 QnLj(xn, yn)∑N
n=1 L2

j(xn, yn)
. (3.16)

From these fitted wavefront derivatives, the wavefront itself must be determined.
Therefore a Taylor monomial representation for the wavefront W (x, y) is selected,
because these monomials are less complex than the Zernike polynomial series and
it is easy to derive the latter from them later on (see chapter 2). The wavefront
then is:

W (x, y) = a0 + a1x + a2y + a3x
2 + a4xy + a5y

2 + a6x
3

+a7x
2y + a8xy2 + a9y

3 + a10x
4 + a11x

3y + . . . , (3.17)

and its partial derivatives become:

∂

∂x
W (x, y) = a1 + 2a3x + a4y + 3a6x

2 . . . + a13y
3 (3.18)

∂

∂y
W (x, y) = a2 + a4x + 2a5y + a7x

2 . . . + 4a14y
3, (3.19)

with an accuracy to the third order. Now the Taylor coefficients can easily be
determined by comparing them to the fitted derivatives from above:

a1 + 2a3x + a4y + 3a6x
2 . . . + a13y

3 = k1L1 + k2L2 + . . . + kiLi, (3.20)

a2 + a4x + 2a5y + a7x
2 . . . + 4a14y

3 = l1L1 + l2L2 + . . . + liLi. (3.21)

As the cartesian representation of all Zernike polynomials is based on linear com-
binations of the Taylor monomials, all Zernike coefficients can easily be calculated.
A detailled description of the way how this is done in can be found in[19]. All
the other polynomials and the concrete coefficients are listed in appendix A.

3.2 Wavefront Correction

Active optics elements are used to correct a wavefront, i.e devices that can change
the wavefront’s phase in a controlled manner. There are two ways to do this,
either in transmission by changing the light velocity, i.e. the refractive index, or
in reflection by mechanical changes of the optical path length.
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Order n m Coefficient Polynomial Significance
0 0 0 Z0 1 offset(piston)
2 1 1 Z1 ρ cos θ tilt x

Z2 ρ sin θ tilt y
2 0 Z3 2 ρ2 − 1 defocus

4 2 2 Z4 ρ2 cos 2θ astigmatism 0◦, 1st
Z5 ρ2 sin 2θ astigmatism 45◦, 1st

3 1 Z6 (3ρ2 − 2) cos θ coma and tilt, x
Z7 (3ρ2 − 2) sin θ coma and tilt, y

4 0 Z8 6ρ4 − 6ρ2 + 1 spherical aberration
6 3 3 Z9 ρ3 cos 3θ trifoil, 0◦

Z10 ρ3 sin 3θ trifoil, 30◦

4 2 Z11 (4ρ2 − 3) ρ2 cos 2θ astigmatism 0◦, 2nd
Z12 (4ρ2 − 3) ρ2 sin 2θ astigmatism 45◦, 2nd

5 1 Z13 (10ρ4 − 12ρ2 + 3) cos θ
Z14 (10ρ4 − 12ρ2 + 3) sin θ

6 0 Z15 20ρ6 − 30ρ4 + 12ρ2 − 1 radial term
8 4 4 Z16 ρ4 cos 4θ tetrafoil, 0◦

Z17 ρ4 sin 4θ tetrafoil, 22.5◦

5 3 Z18 (5ρ2 − 4) ρ3 cos 3θ
Z19 (5ρ2 − 4) ρ3 sin 3θ

Table 3.1: Zernike polynomials in ISO nomenclature.
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3.2.1 Transmission Light Elements

Phase changes in transmission can be realised by liquid crystals (LC). Other than
in frequently used LC displays phase modulators do not change the intensity, but
the phase of the transmitted light. This can be controlled dynamically, allowing
closed–loop operations in the kHz range. Advantages are a large stroke range of
tens of wavelength , small consumed capacities (0.1 mW/cm2), compact design,
no–moved parts, the wide interval of working temperatures (-20◦c to 100◦C), low
cost of initial materials as well as that only low voltages are needed for control
[20, 21].

3.2.2 Mirrors

With active mirrors one can change the optical path length of a wavefront. There
are many different realisations of such devices, but the principle of the correction
mechanism is always the same. If the wavefront has an OPD of W , the mirror has
to be deformed by W/2, so that the aberrations are cancelled out after reflection,
as it is illustrated in figure 3.6.

Figure 3.6: Principle of wavefront correction with active mirror.

Segmented Mirrors

The mirror surface of segmented mirrors is a combination of closely set mirror
segments, which are usually hexagonal shaped. In simpler implementations each
segment has only one degree of freedom, i.e. it can be moved up and down. So
called tip–tilt–mirrors open additional degrees of fredom for each segment. The
segments can be moved up and down, as they are supported by tip and can be
tilted in two directions due to actuators (see figure 3.7).
As the outline of those mirrors is comparable to the Hartmann-Shack sensor’s
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Figure 3.7: Sketch of tip and tip–tilt realisation of segmented mirrors.

segmentation, the control of the actuators is more straight forward. Each mirror
segment adjusts its declination directly to the data of the local slope of the cor-
respondent micro lens.
What is generally problematic about segmentation, is to synchronise the pis-
ton of each mirror to its neighbours to guarantee a smooth wavefront. Another
handicap are the gaps between the discrete mirror segments, that cause a loss
of information as well as diffraction of light. The advances in micro machining
allow the miniaturisation of the segmented mirrors. This new class of segmented
mirrors are the micromachine–electromechanical (MEM) deformable mirrors. On
a silicon or metal substrate components like very small mechanically functioning
actuators and mirrors are micromachined. In addition control and detection elec-
tronics can also be integrated to such devices. Current technologies allowes to
have up to 105 actuators in one device [22, 15]. The disadvantage of segmented
mirrors described above hold also for the micro machind ones. Here the fitted
control electronics causes even further separation of the mirror segments.

Continuous Mirrors

Bimorph Mirrors The basic unit of bimorph mirrors[23] is a passive layer
attached to two counter acting layers of piezoelectric material. Responding to a
control voltage the piezoelectric layers expand and cause a bending of the layered
structure. This local curvature is directly proportional to the applied voltage.
An array of control electrodes underneath the piezoelectric layers enables to con-
trol the bending of the face sheet locally. Like the segmented mirrors matched
the geometry of the Hartmann–Shack–Sensors, the geometrically corresponding
sensor for bimorph mirrors are the curvature sensors. In contrast to segmented
mirrors here the reflected wavefronts inherently are continuous.

Membrane Mirrors A membrane mirror is basically a thin flexible membrane,
typically 0.5 - 1.5 µm thick, coated with some reflecting material, that is situated
over an array of actuators. An examples for an implementation is sketched in
figure 3.8. The actuators can be mechanical devices forcing the face-sheet to
bend by pushing it up or pulling it down. More commonly the interacting force is
electrostatically. Than the actuators are electrodes and the membrane is pulled
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Figure 3.8: Membrane mirror with mechanical actuators.

towards them by electrostatic attraction. This enables only one direction of
deformation if the membrane is grounded. Therefore is helpeful to pre-bias the
membrane mirror. The force, produced by each electrode in this case is:

F =
εε0(Vb + Vc)

2A

d2
, (3.22)

where Vb is the bias voltage, Vc the control voltage, A the surface of one electrode
and d the distance between electrode and membrane. As the sensitivity to the
control voltage Vc is equal to:

dF

dVc
=

2εε0(Vb + Vc)

d2
≈ 2εε0VbA

d2
, (3.23)

it is roughly proportional to the bias voltage, what implies, that to bias the
mirror also enables to use smaller control voltages, than without bias and the
mirror could even be driven by standard low-voltage integrated electronics. To
reconstruct specific surfaces with the mirror it is important to understand the
relation between stroke and the applied voltage distribution. Unfortunately the
electrodes are not independent of each other. The voltage applied to one electrode
also affects the neighbouring, so that the description of the mirror surface as
sum of individual actuator activities can only be an approximation. In addition
one has to bare in mind, that an elastic membrane, which is deformed by the
actuators, always fulfills the membrane equation. In conclusion, the membrane
can not be arbitrarily shaped.



Chapter 4

Implementation

4.1 Technical Data

4.1.1 Experimental Setup

Figure 4.1: Photo of the experimental setup.

Figure 4.1 shows a photo of the complete adaptive optics system, that was
implemented to test the control algorithm. I use standard optics devices and
a HeNe–laser at 632.8 nm (4 mW) wavelength. The beam of the HeNe–laser
is expanded to a beam waist of 8 mm. Two achromatic lenses1 with a focal

1Still I use achromatic lenses, which are lens combinations, that compensate for chromatic
differences, realising one single focus point for all wavelengths. But that is only because it
makes no difference for monochromatic light and that they were already on stock. Besides the
realisation of a diagnoses unit based on an auto fluorescence microscope runs only with a multi
chromatic light source.

25
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length of 100 mm are positioned in focal planes between the membrane mirror
and the expander output. In the focus point between the lenses a beam–splitter
(transmission of 30%, reflection of 70%) redirects the beam after reflection at the
mirror in direction of the sensor. The beam passes another achromatic lens of
only 50 mm focal length. This halves the beam diameter before it is incident
upon the lenslet array and the HSS asic. The expander output, the mirror and
the lenslet array are positioned in conjugated planes.

4.1.2 Hartmann-Shack Sensor

The sensor I use to detect spot positions is a Hartmann–Shack type sensor, which
consists of a lenslet array out of 400 µm diameter micro–lenses with a focal
length of 30 mm (figure 4.3) and an asic designed by Thomas Nirmaier[18]. The
HSS asic, shown in figure 4.2, relies on standart CMOS2 technology. The core
with a total size of 4.08 mm×4.08 mm consists of an array of 8 × 8 position
sensitive detectors, each matching the size of a microlens of the lenslet array.
The detectors contain 21 × 21 n+/substrate photodiodes with a diameter of 7
µm, a ring–ring network of winner–take–all circuits and digital multiplexers for
read–out. The chip achieves a fill factor of 80%. It is specially designed to
overcome speed limitations of conventional ccd cameras and software solutions,
to be used for applications in biomedical optics. The data analysis could be done

Figure 4.2: Photo of HSS asic

with a FPGA3 directly reading out the spot positions and calculating the control
signals for an adaptive mirror, to realise a real time closed–loop adaptive optics
system. For the evaluation of the HSS asic’s performance T. Nirmaier chose a

2CMOS is the abbreviation for Complementary Metal Oxide Semiconductors
3FPGA is the abbreviation for Field Programmable Gate Array
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(a) (b)

Figure 4.3: Photo of the Lenslet array (a) and a spot pattern derived with it (b).

simpler variant, which I use for my first tests. Over a PCI–based data acquisition
card ME–2600 from Meilhaus, containing four D/A and four A/D converters as
well as two 16–bit digital ports, that can be programmed as input and output
ports separately, a C++ programm communicates with the sensor. Forming the
reconstruction unit of the system, it computes the first 14 Zernike coefficients,
out of the 8× 8 spot positions and allows repetition rates in the range of 1 kHz.
The Zernike coefficients are represented in the Malacara notation, which has been
described in chapter 2.

4.1.3 Membrane Mirror

The correction device is a 37-channel micro-machined deformable mirror system
designed and produced by OKO Thechnologies (technical passport see [24], pic-
ture see figure .4.5). A photo is shown in figure 4.5. It consists of a silicon
nitride membrane of 15 mm diameter, coated with aluminum. The maximum
optical load it tolerates for λ =632.8 nm cw, is 0.03 W/mm2. Underneath 37
close-packed hexagonal control electrodes are positioned within a circle of 12 mm
diameter (see figure 4.4). Their center-to-center distance amounts to 1.75 mm.
The maximal voltage the mirror abides is 250 V between actuator and membrane,
which limits the maximum deflection of the whole system.

Interferometer

To measure the voltage response behaviour of the membrane mirror surface I used
a µPhase Interferometer from FISBA OPTIK AG (see figure 4.6). It is based on
a Twyman–Green system, which is a Michelson–Interferometer for collimated
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(a) (b)

Figure 4.4: The hexagonal structure of the electrodes (a) and a section through
the mirror, where the electrodes and the membrane can be seen (b).

light. The light source is an external highly stabilised HeNe–laser (λ =632.8
nm), launched by a fiber. An internal ccd–camera digitises the fringe pattern
and a software, from FISBA OPTIK AG, analyses the phase–shifts.
I used µShape 3.11, which is the latest freely available version. It can calculate
directly the Zernike polynomials till the 35th order in ISO nomenclature out of
the data of a measured surface.

4.1.4 Digital Analog Converter

The computer interface is a D/A converter specially designed for this application
by Lothar Bockstaller GmbH. It is an ISA bus plug–in card with 4 times 40
channels, each susceptive to 13 bit words. The channels’ output voltage ranges
from -5 V to 5 V. A cycle of setting all 40 channels takes 1.3 ms, viz the DAC
card allows an update frequency of 770 Hz.
To access the card I used the freely available MapMemPlus driver, a universal
Windows NT driver designed by the Ecole d’ingénieurs du Canton de Vaud.

4.1.5 Amplifier Board

As it needs higher voltages, than those 5 V from the DAC card, to drive the
mirror, A. Türpitz, a former group member, has designed a board to amplify
the DAC signal by a constant factor4 (see also [5]). To drive all of the mirror

4The amplification factor is ∼ 53 and the rise time of 220 µs does not affect the performance
of the servo loop.
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Figure 4.5: Photo of the membrane mirror clamped to its holder.

electrodes two boards are involved, each connected to 19 actuators, central and
peripheral ones respectively. According to [25] the quality of the output voltage
depends mainly on the high voltage source used, which in this setup is a Rhode
& Schwartz power supply.

4.2 Control Algorithm

An important part of the adaptive optics system is the algorithm, that translates
the reconstructed surface into signals for the control unit. In this implementa-
tion translation means finding the voltage distribution for the actuators of the
membrane mirror.
Working with the same active mirror Stephan Wühl, a former member of this
group, compared the performance of a control sequence based on a genetic algo-
rithm with one working sequentially[25]. The primer takes an arbitrary voltage
distribution for all actuators as a starting matrix, optimising it evolutionary.
This means that the evolutional algorithm compares the (n-1) wavefront with
the current and changes maximally all actuators. The latter changes the voltages
sequentially, i.e. addressing one actuator after the other, to find the best fitting
voltage distribution. S. Wühl came to the conclusion, that the genetic algorithm
needs fitting parameters, which are not trivial to define, but a further analysis of
this problem could lead to a high quality of correction. Whereas the sequential
approach has some principle problems to cope with the crosstalk of the electrodes,
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Figure 4.6: The mirror mounted underneath the interferometer.

he did not see a solution for. But both are not suitable for real time corrections,
as they need at least some hundred wavefront measurements to correct for one
static aberration.
As a high frequency of correction is the aim of this adaptive optics system to be
implemented, it would be preferable to find a direct way to calculate the volt-
age distribution for the actuators out of the reconstructed Zernike coefficients,
instead of optimising this distribution successively in many measurements. So I
choose a linear approach, i.e. a linear approximation of the ’answering behaviour’
of the mirror. The idea is to describe any mirror surface as a linear superposition
of certain basic modes. A basic mode of the mirror is the surface generated by
the deflection due to a single electrode charged to the mean value, whereas all
other electrodes remain grounded. If for each of those basic surfaces the control
voltage for every actuator is known, then the voltage distribution of any surface
can be found by simple linear transformations.
As the membrane is clamped to the holder at its edge, the stroke of the outer
elements is damped notably. Therefore I constrict the wavefront onto the inner
part of about 8 mm of diameter and approach only the first 19 actuators, that
are the center element and the first two rings. Thus to control the mirror I get
19 degrees of freedom, i.e. 19 basic modes. To determine the basic modes exper-
imentally I take the response–surface for each actuator driven with 100 V, while
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the rest of the actuators as well as the membrane are grounded.

~Ui =



0
.
.

100V
.
.
0


← ith element ⇒ ~Si =



c1

.

.

.

.

.
c19


, i = 1, . . . , 19, (4.1)

where Si is the vector of Zernike coefficients representing the measured surface i in
the accuracy of 19 Zernike polynomials. I left out piston as it is a constant term,
a shift of the complete wavefront and not measurable with a Hartmann–Shack
sensor, so that the coefficients in the vector belong to the Zernike polynomials
C1 till C19. I have chosen the voltage of 100 V here because it is close to the
mean voltage, that can be applied to the mirror (see 4.4.1).
Any surface can then be represented in terms of this bases as matrix multipli-
cation of a specific surface–coefficient–vector ~x with a matrix A with columns of
basic surfaces:

~Sarbitrary = x1
~S1 + . . . + x19

~S19 =


x1c0 1 + . . . + x19c0 19

.

.

.
x1c19 1 + . . . + x19c19 19

 (4.2)

~Sarbitrary =
((

~S1

)
. . .

(
~S1

))
︸ ︷︷ ︸

A

·~x. (4.3)

Thus by matrix inversion I derive a prescription to specify the surface–coefficient–
vector to a certain mirror surface,

~x = A−1 · ~Sarbitrary, (4.4)

where the xi specify how much of a certain basic surface i is needed. As will
be seen later on (figure 4.9), the correlation of voltage and stroke is quadratic.
Hence voltage that must be applied to electrode i to maintain a mirror surface
like ~S is:

vi =
√

xi · 100V. (4.5)

That means, finding the control voltages, to rebuild a given surface with the
membrane mirror, can be approximated by one single matrix multiplication. This
makes the linear approach superior to the approaches described above, where
several hundred iterations were required to obtain a corrected wavefront. The
quality of correction due to the linear approach is discussed in section 4.4.2.
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4.2.1 ’Normalised’ Surface–Vectors

To guaranty, that the symmetry of the mirror actuators is reproduced by the
matrix, I normalise the 19 basic modes to form unity modes. As the actuators
are positioned symmetrically around a center actuator, stimulating the third
actuator should result in the same surface as stimulating the second, only turned
by 30◦. Hence I turn all surfaces measured for the stimulation of the elements
of the first and second ring to superimpose with the stimulation of the second
respectively eights actuator. Then I calculate the average surface and rotate
this back into the different initial positions. A sketch of the mirror elements to
illustrate the rotation is given in figure 4.7.

Figure 4.7: Sketch of the mirror elements with a rotation–angle.

Surface ~Si rotated by the angle φ is:

~Srotated(φ, ~Si) =



c1 cos(φ) + c2 sin(φ)
c2 cos(φ)− c1 sin(φ)

c3

c4 cos(2φ) + c5 sin(2φ)
c5 cos(2φ)− c4 sin(2φ)
c6 cos(φ) + c7 sin(φ)
c7 cos(φ)− c6 sin(φ)

c8

c9 cos(3φ) + c10 sin(3φ)
c10 cos(3φ)− c9 sin(3φ)
c11 cos(2φ) + c12 sin(2φ)
c12 cos(2φ)− c11 sin(2φ)
c13 cos(φ) + c14 sin(φ)
c14 cos(φ)− c13 sin(φ)

c15

c16 cos(φ) + c17 sin(4φ)
c17 cos(φ)− c16 sin(4φ)
c18 cos(3φ) + c19 sin(3φ)
c19 cos(3φ)− c18 sin(3φ)



, i = 2, . . . , 7, (4.6)
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ci: Zernike coefficients of the surface ~Si
The average surface then is:

~SØ =
1

6

7∑
i=2

~Si,rotated. (4.7)

4.3 Software Implementation

As mentioned before the spot pattern is analysed on a Linux machine using a
Linux driver for the HSS I/O–board and the mirror control program runs on a
Windows machine using a windows driver for the mirror’s I/O–board. It would
need a new driver and therefore a new program to run the HSS asic under Win-
dows or the mirror under Linux. This should be the next step, to implement a
fast time adaptive optics system, but can’t be done within the scope of this work.
My priority is to test an algorithm, which is highly suitable for real time applica-
tions, in the first place and not so much to optimise the time performance of any
exiting adaptive optics system. So I use the local–area–network (LAN) to trans-
fer the data from the HSS to the mirror. The program to interface the mirror is
realised in C++, it is a strict object orientated implementation. The code itself
and the user interface are machine and operating system independent5, which
makes them ideally suited for portation. The calculation of the control voltages,
with the algorithm described above, is easily implemented and does not represent
a dominating time factor on any of today’s computers. Especially as it can be
optimised to any given hardware, or be implemented on a FPGA board.
The user interfaces of the sensor– as well as the mirror–control are shown in figure
4.8. Most area of the sensor control interface is occupied by a spot patter, repre-
senting the 8×8 sensors of the asic. The red dots give the measured positions of
the focus points. The size is the same for all points and does not correspond to
the actual point sizes. Due to stray light some of the sensors can not determine
a unique spot, hence do not report one. However the wavefront surface can be
evaluated, using an interpolation between the remaining spots. In the lower part
of the interface, the Zernike coefficients are represented in a bar plot. This starts
with the Z3 according to the Malacara notation and goes up to Z14.
The mirror control interface is implemented to go in a sigle step mode through
the iterations of the servo loop. For each step the different potentials at each
actuator are listed in the lower right part. In the control sequence error messages
such as >>potential limit at actuator Ai reached<< are reported.

5Current restriction is the lack of a suitable hardware driver for the I/O–boards on every
operating system.
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(a) (b)

Figure 4.8: The user interface to control the sensor (a) and the mirror (b).

4.4 First Measurements

4.4.1 Surface Measurements with Interferometer

In neutral position, i.e. without any voltage applied, the membrane mirror shows
a relatively strong defocus with a peak–to–valley (P–V) deviation of flat less than
1.2 µm, which is twice the magnitude observed by A. Türpitz for the same mirror
in 2000. This is probably an effect of aging or bad treatment as well as, that the
maximum P–V value, gained for deflection of the center element by applying the
maximum voltage of 250 V, while the rest is grounded, of about 1.06 λ = 68.64
nm is only 10% of the value obtained by A. Türpitz. The membrane might have
lost some of its flexibility.
To control the membrane’s shape by applying voltages the most important mag-
nitude is the correlation between voltage and stroke. For the first element it can
be seen in figure 4.9. The best fit is a quadratic relation, hence I implemented it
in my algorithm as mentioned before (section 4.2).
Also quadratic in first approximation is the coefficient–voltage correlation, which
is illustrated for the first 8 Zernike coefficients in figure 4.10.

To motivate a linear approach I made some measurements concerning the
crosstalk between neighboured actuators. Therefore I applied different voltages
between 0 V and 200 V to the center element, then to the second and at last si-
multaneously to both. I compared the coefficients measured for the simultaneous
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Figure 4.9: Correlation between applied Potential and maximal stroke.

Figure 4.10: Correlation between applied potential and the different Zernike co-
efficients for the center actuator.
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stimulation with coefficients derived by adding up the coefficients of the surfaces
for separately stimulated actuators. As can be seen in table 4.1 (see also figure
4.11) for the case of 100 V applied to the center element and 150 V to the second
actuator, despite the crosstalk between neighbours the actuator activities can be
approximated with a linear fit. Especially for a closed loop system this should
be adequate, as all deviations are re–corrected continuously.

Ci S1[nm] S2[nm] S3[nm] S1 + S2[nm] deviation[nm]
C1 -1 21 24 20 4
C2 1 3 5 4 1
C3 45 40 82 85 3
C4 3 -63 -58 -60 2
C5 1 -16 -18 -15 3
C6 -17 -58 -75 -75 0
C7 -9 -8 -17 -17 0
C8 -23 5 -20 -18 2
C9 -3 37 32 34 2
C10 -3 10 10 7 3
C11 -2 42 35 40 5
C12 2 12 12 14 2
C13 17 -2 13 15 2
C14 4 -4 4 0 4
C15 10 -2 8 8 0
C16 8 -13 -2 -5 3
C17 4 -7 -3 -3 0
C18 -3 -24 -28 -27 1
C19 -1 -10 -10 -11 1

Table 4.1: S1 is the surface measured for applying 100 V to the first actuator,
for 150 V applied to the second actuator S2 is measured. S3 is the surface
corresponding to those voltages both applied at the same time and in the fourth
column the sum of the first two surfaces is listed. The last column gives the
deviation of the added surface to S3 for each Zernike coefficient. The mean
deviation is 2 nm.

The 19 basic surfaces were measured with the interferometer in a unbiased
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(a) (b)

(c)

Figure 4.11: Mirror surface with 100 V applied to the center element (a) and
with 150 V applied to the second actuator (b). Measured mirror surface with
100 V applied to the center element and 150V applied to the second actuator
simultaneously (red) and the mirror surface, derived by adding up coefficients of
the two surfaces above (blue)(c). Generally all heights are strongly exaggerated.

configuration. United in a matrix they are:

A =



0. 10 5 −6 −10 −5 5 1 4 1
0 0 9 8 −2 −10 −9 −1 2 2
46 23 23 17 25 24 23 1 2 1
−3 −24 9 15 −21 9 6 −25 −16 11
0 −1 −20 19 −1 −17 20 0 −27 −21
−3 −32 −17 14 29 14 −18 −1 −3 0
−1 −1 −25 −27 −2 25 24 −1 −2 −1
−20 2 2 −4 1 2 5 0 1 0
2 12 −11 12 −7 10 −10 16 0 −15
2 2 1 −2 1 1 0 2 21 0
−3 16 −10 −15 17 −11 −10 −2 1 0
1 2 16 −17 −1 15 −15 1 3 0
−1 5 1 −4 −12 −5 3 0 −2 −1
−1 −2 4 0 −2 −8 −9 −2 −3 −2
14 −2 −1 4 −4 −2 −2 1 2 1
−1 −6 1 4 −5 2 4 −11 7 5
0 −1 6 −4 0 4 −4 0 −10 10
−1 −12 9 −12 9 −11 10 −1 −1 0
3 1 1 3 1 −1 2 1 −3 1

. . .
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0 −1 −5 −2 −3 −1 0 1 4
5 2 2 −1 0 0 −4 −2 −2
2 2 3 1 5 2 5 1 2
32 9 −15 −23 −16 9 26 8 −17
−1 19 25 −1 −25 −19 2 20 24
0 −1 2 −1 4 −1 −1 0 −4
−5 −1 −2 −1 1 −1 2 0 2
−5 4 1 0 8 5 4 0 2
0 17 2 −14 3 17 −1 −14 3
−20 0 19 0 −16 3 20 −2 −20
−5 0 2 −1 1 −1 −4 −1 1
0 0 −3 0 3 0 0 0 −4
−3 −2 −1 −2 −2 −2 −1 −1 −4
−9 −1 −2 −1 −4 −3 0 1 3
7 −1 0 0 −3 0 −1 1 0
−13 4 6 −11 7 5 −13 7 5
1 −10 11 0 −11 10 −1 −8 12
0 0 −1 0 0 −1 0 1 0
7 1 −4 0 5 0 −5 −1 3



where each column corresponds to one surface, listing its coefficients C1 till C19.

This is the basic matrix first implemented in the control algorithm. But mea-
surements showed some problems with the astigmatic term (see section 4.4.2), so
that I averaged this matrix to fit the actuators symmetry. The matrix I derived
out of this ’normalisation’, according to the normalisation procedure described
above, is:



4.4. FIRST MEASUREMENTS 39

Anormal =



0 10. 4.6 −5.7 −10. −4.6 5.7 −6.0 −5.3 −5.1
0 0.64 9.2 8.6 −0.64 −9.2 −8.6 0.29 −2.8 3.3

46. 23. 23. 23. 23. 23. 23. 4.5 4.5 4.5
−3.0 −22. 11. 11. −22. 11. 11. −52. −25. −27.

0 −0.067 −19. 19. −0.067 −19. 19. −0.93 −46. 45.
−3.0 −30. −15. 15. 30. 15. −15. 3.6 3.2 3.0
−1.0 0.11 −26. −26. −0.11 26. 26. −0.14 1.7 −1.9
−20. 1.3 1.3 1.3 1.3 1.3 1.3 3.3 3.3 3.3
2.0 10. −10. 10. −10. 10. −10. −35. 2.0 −2.0
2.0 −0.17 0.17 −0.17 0.17 −0.17 0.17 −2.0 −35. 35.
−3.0 18. −8.9 −9.5 18. −8.9 −9.5 3.5 1.5 1.9
1.0 −0.33 16. −16. −0.33 16. −16. 0.23 3.1 −2.9
−1.0 6.9 3.1 −3.8 −6.9 −3.1 3.8 1.9 2.2 1.1
−1.0 0.39 6.2 5.8 −0.39 −6.2 −5.8 −1.0 0.061 −1.8
14. −1.2 −1.2 −1.2 −1.2 −1.2 −1.2 1.2 1.2 1.2
−1.0 −5.3 1.8 3.6 −5.3 1.8 3.6 −24. 13. 11.

0 −1.1 5.2 −4.1 −1.1 5.2 −4.1 −0.91 −20. 21.
−1.0 −10. 10. −10. 10. −10. 10. 5.0 0.67 −0.67
3.0 −0.17 0.17 −0.17 0.17 −0.17 0.17 −0.67 5.0 −5.0

. . .

−3.3 −2.8 −0.29 0.29 2.8 3.3 5.1 5.3 6.0
−5.1 5.3 −6.0 6.0 −5.3 5.1 −3.3 2.8 −0.29
4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
27. 25. 52. 52. 25. 27. −27. −25. −52.
−45. 46. 0.93 0.93 46. −45. 45. −46. −0.93
1.9 1.7 0.14 −0.14 −1.7 −1.9 −3.0 −3.2 −3.6
3.0 −3.2 3.6 −3.6 3.2 −3.0 1.9 −1.7 0.14
3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3
35. 35. −2.0 2.0 −35. −35. 2.0 −2.0 35.
2.0 2.0 35. −35. −2.0 −2.0 −35. 35. 2.0
−1.9 −1.5 −3.5 −3.5 −1.5 −1.9 1.9 1.5 3.5
2.9 −3.1 −0.23 −0.23 −3.1 2.9 −2.9 3.1 0.23
1.8 0.061 1.0 −1.0 −0.061 −1.8 −1.1 −2.2 −1.9
1.1 −2.2 1.9 −1.9 2.2 −1.1 1.8 −0.061 1.0
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
11. 13. −24. −24. 13. 11. 11. 13. −24.
21. −20. −0.91 −0.91 −20. 21. 21. −20. −0.91
−5.0 −5.0 −0.67 0.67 5.0 5.0 0.67 −0.67 −5.0
0.67 0.67 −5.0 5.0 −0.67 −0.67 5.0 −5.0 0.67


On this the latest version of the control algorithm is based. As is shown in the
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next section, the astigmatic aberrations do not increase so strongly anymore using
this ’normalisation’.

4.4.2 Wavefront Corrections with Adaptive Optics Sys-
tem

After the matrices have been determined using the interferometer the mirror is
introduced into the adaptive optics setup. Initially the system is aligned in such
a way, that the Hartmann–Shack sensor measures zero for all coefficients, i.e.
the system is calibrated. This is done while no control voltage is applied to the
mirror. In a pre biased configuration the mirror would be at the bias voltage.
Correction of defocus, astigmatism and a combination of both, has been realised
till now.
I start testing the plane inverse of the measured matrix, the ’un–normalised’ one.
A defocus is to be corrected, which I obtain by adjusting one part of the beam
expander out of focus. In figure 4.12 can be seen how a defocus of 0.029 nm can be
decreased to a value of only 0.006 nm. Within three iterations the magnitude of
defocus converges to its final value, hence the iteration can be stopped. The final
value is determined due to the maximum deflection of the mirror’s membrane
(0 V, 250 V). However, figure 4.12 shows, that the astigmatism 0◦ grows with
each iteration. This astigmatism must be inherent in the measured matrix. As
can be seen by the following measurements, this is no principle problem of the
approximation, but due to inaccuracies of the surface measurements, on which
the matrix is based. The symmetrical relations within the matrix correspond
only insufficiently to the actuator symmetry. Therefore I made the effort of
normalising the matrix input. Using the normalised matrix I again correct for
different magnitudes of defocus and astigmatism. The defocus is illustrated in
figur 4.13. A defocus of 0.04 nm converges to 0.015 nm already after the first
iteration. The astigmatism 0◦ still increases as in the un–normalised case, but it
settles at a lower value of 0.02 nm.
This shows, that the normalisation improves the approach. However, not all
residual errors can be corrected. A more detailed discussion of the remaining
errors can be found in section 4.4.2. Furthermore I perform measurements to
analyse the capability of the adaptive optics system to corrector for first order
astigmatism (0◦ and 45◦) as well as combinations of defocus and astigmatism. In
addition the behaviour of the major contributing terms are observed.
An astigmatism 45◦ of 0.038 nm is decreased to its final value of 0.016 nm in
only one iteration. At the same time the astigmatism 0◦ increases, but only to a
value of -0.001 nm, that stays stable during further iterations(figure 4.14). The
best result is gained for the correction of the astigmatism 0◦ (see figure 4.15).
The astigmatism of -0.046 nm converges to the tenth of its initial value within
four iterations. In addition a wavefront aberrated by a combination of defocus
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Figure 4.12: Correction of defocus with initially measured matrix.

and astigmatism 45◦ was corrected. I gained a decrease from 0.025 nm to a
value under 0.01 nm after one iteration for the defocus. The astigmatism 45◦

with an initial value of 0.029 nm converges to 0.015 nm in three iterations. The
astigmatism 0◦ increases, but only till it reaches a value of -0.01 nm (illustrated
in figure 4.16). The final value, i.e. the limit of correction, is set by the limited
deviation possible of the membrane.

Critical Discussion

The first surface measurements where made with the interferometer. Therefore
a special mount for the mirror was constructed by former group members. The
position in the planar directions can be fine tuned with micrometer screws. The
tilt can be compensated by tilting the interferometer itself via fine screws. The
position of the mirror has to be precisely adjusted with respect to the interfer-
ometer. As the Zernike polynomials are evaluated on a unit circle, this circle’s
center has to correspond to the mirror center. To assure a good alignment the
following procedure is performed. First the central actuator is deflected to the
maximum value. This should result in a leading defocus term and especially no
tilt should be present. Now the mirror’s position is adjusted until the tilt coef-
ficients are minimised. A zero for both tilt terms is hardly reachable with this
setup. Obviously this leads to systematic errors, when the Zernike coefficients
are evaluated.
The described linear approach is founded on the possibility to have precise mea-
surements of the basic modes. Any error occurring in the determination of those
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Figure 4.13: Defocus correction with the normalised matrix.

basic modes, due to systematic misalignment which affects all Zernike coeffi-
cients, can not be removed by normalisation of the surface matrix, but propagate
through to the control instructions of the servo loop.
Now I will focus on the adaptive optics system itself. Adjusting this system
several sources for image errors occur. Again the positioning of mirror is cru-
cial. The mirror center has to be exactly on the optical axis. To assure a good
alignment I employed x–y–z–translation stage as well as a tip–tilt stage in two
directions. It is possible to do a pre alignment observing the beam trail. The
tip–tilt alignment can be done by superimposing incoming and reflected beam.
The fine adjustment is achieved by using the HSS asic. However, the wavefront
detector has an intrinsic error source itself.
As mentioned before the detector consists of the lenslet array and the HSS asic.
These two components have to be aligned in such a way, that every sensor of HSS
asic is illuminated by a single lens. The lenslet array is matched to the geometry
of the HSS asic only if the rows of lenslets are parallel to the sensor rows and
at focal distance. As the correct distance can easily be assured, as main error
source remains the rotational degree of freedom. The right angular position for
the lenslet can be found by exposing the HSS asic to a planar wave. Summaris-
ing, the HSS asic is adjusted correctly if, exposed to a planar wave, it detects a
planar wave. The errors due to rotational misalignment have been elaborately
discussed in [25].
Errors due to the mechanical properties of the mirror itself, as they are degraded
flexibility of the membrane as well as finite deflection possible, are mentioned
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Figure 4.14: Correction for astigmatism 45◦ with the normalised matrix.

within previous sections.
Further error sources, which arise from the design of the HSS asic are discussed
in [18].
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Figure 4.15: Correction for astigmatism 0◦ with the normalised matrix.

Figure 4.16: Correction for a combination defocus and astigmatism 45◦.
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Conclusion

In this diploma thesis it could be shown, that a linear approach to control a
membrane mirror has a high potential for real time realisations of adaptive op-
tics systems. The linear approximation of the mirror response to applied voltages
enables a correction of common aberrations within one to three iterations, i.e. one
to three times measurement and reconstruction of the wavefront as well as adjust-
ment of the mirror. In contrast to the earlier (in this group) tested approaches
this makes it realistic to reach frequency ranges for wavefront correction of several
kHz implemented in an appropriate system.
The aberrations decreased to values between 10 and 50 % of their original size.
Those limits were set by the flexibility of the membrane mirror. As the mirror
used in the adaptive optics system implemented to test the algorithm seems to
have lost great amount of its flexibility, a fully working mirror should increase
the extent of correction significantly.
Another limit for the quality of correction represent the basic modes employed in
the control algorithm. As is shown, the averaging of those modes improved the
algorithm’s ability greatly. This emphasises the importance to account for the
symmetry of the actuator’s positions. Hence the optimisation of the matrix, i.e.
of the quality of the surface measurements, should amend the algorithm’s perfor-
mance. With the here applied interferometer this could be realised by increasing
the accuracy of the mirror positioning underneath the instrument. It should be
centered more precisely.
An employment of the algorithm to increase the image quality of the microscope
for diagnostic purposes is highly recommendable, especially as the algorithm
shows a very strong converging. In comparison to the stochastic converging of
the genetic algorithm, where also far off pictures are tested, this algorithm will
rapidly sharpen the picture without flickering.
Using adaptive optics to control the ablation laser’s focus is more problematic. A
membrane is a quite sensitive feature, that can’t cope with optical loads suitable
to cause ionisation. Till now I do not know any active device resistive to such
high power densities.
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Appendix A

Zernike Polynomials

The polinomial series picked for Li is the following:

L1 = 1,

L2 = x,

L3 = y,

L4 = xy,

L5 = x2 − y2,

L6 = x2 + y2 − α,

L7 = x3 − βx,

L8 = βy − y3,

L9 = xy2 − τx,

L10 = x2y − τy,

within the accuracy of the 3rd order, i.e. up to L10 and with

α =
2

∑N
n=1 x2

n

N
,

β =

∑
n x4

n∑
n x2

n

,

τ =

∑
n x2

ny
2
n∑

n x2
n

.

Coefficients ki and li corresponding to the minimasation constraint are stated
explicitly like:

k1 =

∑
n Pn
N

,
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k2 =

∑
n xPn∑
n x2

,
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∑
n yPn∑
n y2

,
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∑
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n x2y2

,
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∑
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∑
n y2Pn

2
∑
n x4 −∑

n x2y2
,
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∑
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∑
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∑
n αPn

2
∑
n x4 − 2

∑
n x2y2

,
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∑
n xPn∑

n x6 − 2β
∑
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∑
n x2

,
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β
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∑
n y3Pn∑

n x6 − 2β
∑
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∑
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(A.1)
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∑
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The resulting Taylor coefficients read as:

a1 = k1 − αk6,

a2 = l1 − αl6,

a3 =
1

2
k2 −

1

2
βk7 −

1

2
τk9,

a4 = k3 + βk8 − τk10,

a5 =
1

2
l3 +

1

2
l8 −

1

2
l10,

a6 =
1

3
(k5 + k6),

a7 = l5 + l6,

a8 = k6 − k5,

a9 =
1

3
(l6 − l5),

a10 =
1

4
k7,

a11 = l7,

a12 =
1

2
k9,

a13 = −k8,

a14 = −1

4
l8,



50 APPENDIX A. ZERNIKE POLYNOMIALS



Bibliography

[1] H.W. Babcock. The possibility of compensating astronomical imaging. Publ.
Astron. Soc. Pac., 56:229, 1953.

[2] D.Enard. ESO VLT Project i: a status report. Proc. SPIE, 1236:63, 1990.

[3] J.C.Dainty C.Paterson, I.Munro. A low cost adaptive optics system using a
membrane mirror. OPTICS EXPRESS 175 (OSA), 6(9), 2000.

[4] A.J.Augustin. Augenheilkunde. Springer, Berlin, 2001.

[5] Alexander Türpitz. PhD thesis, Universität Heidelberg, 2000.

[6] Neurozentrum Unikliniken Freiburg Abteilung Stereotaktische Neu-
rochirurgie. http://www.ukl.uni-freiburg.de/neurozen/stx/stereode d.htm.

[7] Volker Sturm Josef F.Bille, Wolfgang Schlegel. Stereotaktische Laser–
Neurochirurgie. Physik in unserer Zeit, 6:280, 1993.

[8] M.H.Niemz. Lasers-Tissue Interaction. Springer-Verlag, Berlin, Heidelberg,
1996.

[9] ed. T.Wilson. Confocal mircroscopy. Academic Press, London, 1990.

[10] Klaus Greger. PhD thesis, Universität Heidelberg, 2003.

[11] John David Jackson. Classical Electro Dynamics. Wiley, New York, 1998.

[12] L.N.Thibos. Handbook of visual optics. 1999.

[13] Thomas E.Furtak Miles V.Klein. Optik. Springer–Verlag, Berlin, Heidelberg,
1988.
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die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 31.05.2003


	kip-nr: HD-KIP-03-08
	typ: Diplomarbeit
	Titel: Novel Control Algorithm for Real Time Adaptive Optics Systems
	Autoren: Elisabeth Kierig


