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Abstract

BrainScaleS-2 is a mixed-signal neuromorphic platform that provides a substrate

for experiments with spiking neural networks. Like other analog substrates, it is af-

fected by �xed-pattern noise, which causes mismatches between identically designed

components. Calibration mitigates this issue by determining the hardware con�gu-

rations that yield the desired e�ective behavior. The current calibration library em-

ploys an iterative binary search algorithm to identify the operating point, a process

that is time-consuming. This work presents a transformation-based parametrization

approach that leverages an e�ective model to signi�cantly accelerate calibration.

By explicitly capturing both, hardware-model dependencies and interdependencies

among hardware parameters, this method reduces the time needed to determine

operating points by approximately an order of magnitude. Furthermore, the devel-

oped architecture enables unit translation from analog-to-digital converter (ADC)

values to physical quantities, thereby providing interpretable readouts.

Zusammenfassung

BrainScaleS-2 bietet als neuromorphe Plattform zwar ein Substrat für Experimente

mit neuronalen Netzen, leidet jedoch, wie jedes analoge Substrat, an durch den

Herstellungsprozess verursachten zeitlich konstanten Variationen zwischen identisch

entworfenen Komponenten. Kalibration kann helfen, dies einzuschränken, indem

Hardware Parameter gefunden werden, die zum gewünschten Verhalten führen. Die

aktuelle Kalibration verwendet ein iteratives Verfahren zur Operationspunktbestim-

mung, was ein zeitaufwendiger Prozess ist. Das Ziel dieser Arbeit ist es deshalb, ein

transformationsbasiertes System zu entwickeln, welches die Parametrisierung sig-

ni�kant beschleunigt. Dabei werden nicht nur Abhängigkeiten zwischen Modell- und

Hardwareparametern berücksichtigt, sondern auch solche zwischen Hardwareparam-

etern untereinander. Zudem wird diese Architektur verwendet, um eine Einheit-

sübersetzung von den Werten von Analog-Digitalwandlern zu physikalischen Ein-

heiten umzusetzen.
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1 Introduction

As various �elds pro�t from the recent advancements in the �eld of arti�cial neural net-
works (ANN), the relevance and usage of arti�cial neural networks has become larger
than ever [Schilling et al., 2020]. Nevertheless, this development gives rise to concerns
about the sustainability and computational e�ciency of this technology. For instance,
common large language models can consume up to 40 Wh per prompt � about two
orders of magnitude more energy than a Google search. [Jegham et al., 2025]. Recent
research estimates the related carbon emissions to make up approximately 8% of global
emissions in the following decade, with the energy demand of global data centers reaching
1000 TWh by 2026 [Wilhelm et al., 2025].
In contrast, the human brain, despite performing similar tasks, is much more energy
e�cient [Balasubramanian, 2021]. Therefore, spiking neural networks (SNN), that are
inspired by the functionality of biological neurons, promise to improve the e�ciency of
neural networks, especially on speci�cally designed hardware [Bouvier et al., 2019]. SNNs
encode the information in the timing of spikes, which makes them potentially more en-
ergy e�cient than classic ANNs, because neurons only compute and communicate when
a spike occurs, saving energy. This work utilizes the mixed-signal neuromorphic plat-
form BrainScaleS-2 (BSS-2) [Pehle et al., 2022] that emulates SNNs. This system forms
a working substrate for experiments and modelling, however, like in all analog substrates,
�xed-pattern noise is unavoidable [Wunderlich et al., 2019]. This leads to mismatch be-
tween identically designed components [Weis, 2020], which can be reduced using cali-
bration. The calibration process determines the hardware con�guration that yields the
desired analog behavior. The current calibration library utilizes an iterative binary search
algorithm which optimizes the hardware parameters iteratively. However, this approach
is time consuming due to the large amount of iterations.

An alternative would be to use a translation-based approach, where the model parameters
describing the analog behavior are determined as a function of the hardware parameters,
with the advantage being that once the transformation function has been determined no
further measurements are necessary. The predecessor to BSS-2, BrainScaleS-1, as well
as some BSS-2 prototypes, already employed such a system. Yet, its implementation
only allowed for each model parameter to only depend on a single hardware parameter
[Visions, 2013]. This assumption does not hold true in every case, since some hard-
ware parameters on BSS-2 are interdependent [Hinterding, 2025]. The primary objective
of this work is to develop a software architecture that implements a translation-based
parametrization algorithm, considering interdependencies between hardware parameters.
Measurements of exemplary parameters [Hinterding, 2025] are utilized to design and im-
plement a functional Application Programming Interface (API) that allows to request
the parametrization and serialization of arbitrary parameter constellations. This API is
also used to additionally implement a unit translation from analog-to-digital converters
(ADC) digital steps to SI units to achieve interpretable readouts.
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2 Methods

2.1 Structure of the BrainScaleS-2 system

This section gives a basic description of the BSS-2 system architecture [Pehle et al., 2022],
as shown in Figure 1.

Figure 1: Overview of the HICANN-DLS-SR-HX chip structure. The chip is divided into
four quadrants, each featuring a synapse array with 256 rows and 128 columns. Each
column corresponds to a neuron circuit. The CADC makes analog observables accessible
by the Plasticity Processing Unit (PPU). The upper and lower half of the chip each
feature a PPU with CADC 512 channels each. There are four CADC units and one
MADC unit per chip, totaling 1024 CADC channels and 2 MADC channels. Taken from
[Pehle et al., 2022]

.

It is divided into four quadrants, each hosting a synaptic crossbar with 256 rows and
128 columns, corresponding to the neuron circuits. Additionally, each quadrant has its
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own Capacitive Memory (CapMem), which stores analog neuron parameters as well as
global quadrant parameters. Dividing the space between the quadrants is the event-
routing network, which is responsible for spike communication. There are two types of
ADCs on the chip: the membrane analog-to-digital converter (MADC) and the columnar
analog-to-digital converter (CADC). The MADC is featured once on every chip and has
two channels, whereas the CADC is featured four times with 256 channels per quadrant,
being 1024 channels in total. This enables the CADC to record the potential of all neurons
at once. However, the MADC has a higher sampling frequency of 30MHz compared to
the CADC's 1MHz.

2.2 Calibratable parameters

This section describes the model utilized by BrainScaleS-2 and gives an introduction to
the calibratable parameters that are relevant for this work.

2.2.1 Leaky integrate-and-�re model

The HICANN-DLS-SR-HX chip uses a common simpli�cation for spiking neurons, namely
the adaptive exponential integrate-and-�re (AdEx) model [Brette R, 2005]. However, the
measurements utilized in this work are based only on the leaky integrate-and-�re (LIF)
part of the model [Schmidt, 2024].

The LIF model describes the temporal evolution of the membrane potential V(t) with
the di�erential equation:

τmem ∗ V̇ = −[V (t)− Vleak] +
I(t)

gleak
(1)

where gleak is the leak conductance, Vleak is the resting potential and I(t) denotes the
synaptic input current. When the membrane potential reaches a threshold voltage, the
neuron �res a spike, which is distributed to all following neurons. The membrane po-
tential is clamped to the reset potential Vreset. The membrane time constant is given by
τmem = Cm

gleak
. Figure 2 depicts a conductance based circuit diagram emulating the model

[Schmidt, 2024].
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Figure 2: Conductance based circuit diagram emulating the LIF model. The synaptic
current is composed of the inhibitory and excitatory synaptic currents with conductances
gc and gi respectively. The membrane potential is emulated by the potential over the
capacitor Cm. The comparator that compares the membrane potential to the threshold
potential is realized via an operation ampli�er (OTA), with the voltage source being
short-circuited to the capacitor, forcing the membrane potential to reset to Vreset. τrefrac
denotes the refraction time, which is the time period immediately after the spike during
that the neuron cannot �re again. Adapted from [Schmidt, 2024].

2.2.2 The resting potential

The resting potential Vleak has a directly corresponding hardware parameter V CapMem
leak ,

which is stored in the capacitive memory.

2.2.3 The membrane time Constant

The membrane time constant is described by τmem = Cm

gleak
, where Cm denotes the mem-

brane capacitance, which, in the current implementation, is kept constant during cali-
bration, and gleak is the variable leak conductivity. gleak is mostly, but not exclusively,
controlled by the OTA's leak bias current Ibias_leak. That makes Ibias_leak the correspond-
ing hardware parameter of the membrane time constant.

2.3 Calibration libraries

There are currently two main libraries implementing the calibration that are relevant for
this thesis, namely calibtic, which was introduced for BrainScaleS-1, and calix, which
was developed for BrainScaleS-2. The following sections lay out their basic functionality.

2.3.1 The original calibration module: calibtic

This section presents the former calibration library: calibtic. It is important to note
that calibtic does not implement the calibration algorithm itself, but is responsible
for data access and storage. There is a separate library for data acquisition, cake. To-
gether, the two libraries implement a translation based parametrization approach, similar
to the one developed in this thesis [Jeltsch, 2014]. Its basis is formed by a transforma-
tion class in calibtic, whose attributes are shown in Figure 3. The database stores
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calibration data in the form of parameters for certain prede�ned functions, i.e. polyno-
mials [Müller et al., 2022]. This, however, only considers one dimensional dependencies
[Visions, 2013], meaning each hardware parameter depends on a single model parameter.
Yet in [Hinterding, 2025] it was shown, that some hardware parameters are interdepen-
dent, which makes the development of a translation-based parametrization interface with
multi-parameter correlations one of the main objectives of this thesis.

Transformation

mDomain
 
mReverseDomain

apply(float_type, OutsideDomainBehavior) : float_type
 
reverseApply(float_type, OutsideDomainBehavior) : float_type
 
getDomain() : domain_type
 
setDomain(domain_type) : void
 
getReverseDomain() : domain_type
 
respectDomain(float_type, OutsideDomainBehavior) : float_type
 
respectReverseDomain(float_type, OutsideDomainBehavior) : float_type

Figure 3: Abstract Transformation base class from calibtic. OutsideDomainBehavior is
an enum- type that either clips the value to closest value in the domain (default), throws
an exception or ignores depending on the input case. The transformation only takes one
dimensional inputs. Adapted from [Visions, 2013].

2.3.2 The current calibration module: calix

calix was later introduced as a new calibration library [Electronic Visions, 2023]. Con-
trary to calibtic, calix is a data acquisition library, similar to cake. However, in-
stead of a translation-based model, the calibration algorithm utilizes a bisection ap-
proach, where the hardware parameters are repeatedly updated based on a measure-
ment of the model parameters, until the optimal hardware setting is found. To re-
alize that, a calibration class is implemented with the methods run(), prelude(),

configure_parameters(), postlude() and measure_results. Figure 4 shows an ac-
tivity diagram visualizing an exemplary calibration algorithm used in calix.
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call prelude():
configures chip for calibration

measure model parameter

call configure_parameters():
change hardware parameter

yes

optimal hardware setting found? no

call postlude():
applies post-calibration
configurations

Figure 4: Visualization of the standard calibration algorithm.

2.4 Data measurements

The developments in this thesis are based on measurements performed in [Hinterding, 2025].
The results of this work are summarized in the following section.

2.4.1 Characterization of the Analog to Digital Converters (ADC)

Prior to this work, the readout values of the respective analog-to-digital converters (ADC)
determined the units of the calibration targets [Schmidt, 2024]. However, these units are
not interpretable as they depend on the ADC con�guration. Therefore, measurements
were made in [Hinterding, 2025] to determine �tted function parameters that translate
the ADC readout units into physical quanitities, volts. The results of those measurements
can be seen in Figure 5.
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Figure 5: (a) Linear translation of the MADC readout to volts. (b) Linear translation
from CADC to volts. Taken from [Hinterding, 2025]

2.4.2 2D-parameter translation

It was discovered, that some hardware parameters show a dependency on each other,
speci�cally V CapMem

leak and ICapMem
bias_leak. To describe this, V CapMem

leak was measured in relation

to Vleak for discrete I
CapMem
bias_leak values. Similarly, I

CapMem
bias_leak was measured in relation to τmem

for discrete V CapMem
leak values. Figure 6 visualizes the result.

Figure 6: The left plot shows the measurements of V CapMem
leak for discrete ICapMem

bias_leak and

the right plot shows the measurement of ICapMem
bias_leak for discrete V CapMem

leak . To �nd the

(V CapMem
leak , ICapMem

bias_leak) pair to the corresponding (Vleak, τmem) pair it is required to project

the discrete set of functions into the V CapMem
leak − ICapMem

bias_leak plane and �nd the intersection

between the resulting interpolated contour lines (red). Taken from [Hinterding, 2025]
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3 Results

This section presents the key aspects of the software implementation for an ADC trans-
lation from digital units into SI units, as well as a 2D-parameter translation for hardware
parameter interdependencies. The system uses n → m dimensional transformations to
describe parameter dependencies. Those can then be applied to translate model- to cali-
brated parameters. C++ was chosen as the implementation language, as it o�ers shorter
algorithm execution times compared to Python. The classes implemented in C++ within
the scope of this work are exposed to Python using genpybind, a tool that generates
pybind11 bindings.

3.1 The n → m dimensional Transformation

The n → m dimensional transformations implement the abstract base class Transformation,
which is similar to the one shown in 2.3.1 but extended to support multiple dimensions,
as illustrated in Figure 7.

Transformation

mDomain : box_type
 
mReverseDomain : box_type

apply(vector<float_type>) : vector<float_type>
 
reverseApply(vector<float_type>) : vector<float_type>
 
is_invertible() : bool
 
in_[reverse]domain(vector<float_type>) : bool
 
get[Reverse]Domain() : box_type
 
setDomain(box_type) : void
 
respect[Reverse]Domain(vector<float_type>) : vector<float_type>
 
serialize(Archiver&) : void

Figure 7: Abstract n → m dimensional Transformation class structure. apply()
and reverseApply() take mutltidimensional inputs. The domain is represented by
box_type, which is a vector of intervals. float_type denotes a double in the given
case, can however be changed to any �oat-like type. Note that the diagram only shows
the methods relevant for illustrating the main functionality.

In contrast to the calibtic equivalent the apply() and reverseApply() methods take
vector inputs. mDomain signi�es the outer dimensionality, which must be of a multi-
dimensional box-type. This is implemented using a vector of intervals that contains a
domain for every dimension. The reverse domain is then computed by applying the trans-
formation to the domain limits. Furthermore, the invertability of a multi-dimensional
function is not trivial and therefore needs to be checked in is_invertible().
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3.2 ADC translation

This section presents the development of a system architecture that enables the trans-
lation of ADC readout units into physical quantities. Parts of this architecture are also
used in the development of a two-dimensional parameter translation described in later
sections. It should be noted that only neuron membrane measurements are considered
here.

3.2.1 Parameter Translation

As described in [Hinterding, 2025], the ADC to SI unit translation has a linear shape.
Therefore, the new ADC characterization developed in the scope of this thesis imple-
ments the abstract Transformation class for the simplest possible case: the linear trans-
formation. Even though the ADC only takes a one-dimensional input signal, the general
structure of the Linear class allows arbitrary input dimensionality for reasons discussed
in Section 4.
As every parameter generally has di�erent dependencies and therefore requires di�er-
ent translation functions, an abstract type ParameterTranslation was created, which
allows every parameter to contain its own translation attribute. The derived trans-
lation classes (i.e. MADC_translation and CADC_translation) implement the virtual
translate() method depending on what is expected as the result of the respective
translation. For the ADC case translate() simply yields the transformation rather
than the translated parameter, as the ADC translation needs to be invertible. The
CompleteParameterTranslation class implements translate() such that it calls the
translate() methods of all the parameter translation classes requested by the user, so
that all translations can be performed with one function call. This hierarchy is visualized
in Figure 8.
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Transformation

apply(vector<float_type>) : vector<float_type>
reverseApply(vector<float_type>) : vector<float_type>
is_invertibe() : bool
respectDomain(vector<float_type>) : vector<float_type>

Linear

coefficients : vector<float_type>
domain : box_type

ParameterTranslation

translate(ModelParameters, CalibratedParameters) : void

CADC_translation

translation : Linear
cadc : CADC_On_DLS

MADC_translation

translation : Linear
madc : MADC_On_DLS

CompleteParameterTranslation

cadc: vector<CADC_translation>
madc: vector<MADC_translation>

ModelEntityOnDLS

MADC_On_DLS

channel : channel_type

CADC_On_DLS

channel : channel_type

Figure 8: Class hierarchy of the ADC characterization. Linear imple-
ments Transformation and is a MADC_translation and CADC_translation.
ParameterTranslation forms the abstract basis of all parameter translations and
CompleteParameterTranslation de�nes the translate() method that translates all
requested parameters. Note that the translation functions di�er not only between CADC
and MADC but also between their respective channels, which is why CADC_translation

and MADC_translation each hold a member derived from ModelEntityOnDLS, which
speci�es the channel. All classes implement a data serialization interface.

Notably, translate() does not have a return value, but rather takes two input argu-
ments, ModelParameters and CalibratedParameters, that are both polymorphic maps
and the latter of which is modi�ed during the function runtime. ModelParameters con-
tains the parameters for which a translation is requested and CalibratedParameters con-
tains the results of the calibration. In CompleteParameterTranslation, translate()
is generally called with CalibratedParameters being empty. The method then iter-
ates through the translations, and in turn calls their translate() methods, that verify
whether the parameter is requested in ModelParameters. If so, the calibrated parameter
is added to the CalibratedParameters map. Figure 9 visualizes this algorithm.
The keys of both maps are of type ModelEntityOnDLS, which represents the model enti-
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ties on the chip, i.e. CADC or MADC. As previously mentioned, the keys are polymor-
phic, which cannot be realized using std::unordered_map <typename Key, typename

Value>, therefore, a custom map is used to support this functionality. This requires the
keys to be hashable, which is why all classes derived from ModelEntityOnDLS implement
a hash() method.

For MADC and CADC, the translation functions di�er between channels, so MADC_On_DLS
and CADC_On_DLS store the speci�c channel for which the respective translation is re-
quested. This allows for arbitrary channel con�gurations.

translate() is called in
CompleteParameterTranslation

for each parameter translation

call translate()

translate and add to
CalibratedParameters

yes

parameter contained in ModelParameters? no

no

more parameters? yes

Figure 9: Schematic visualizing the translation algorithm. The iterate method in
CompleteParameterTranslation iterates through all parameter translations and calls
their respective translate() methods. These verify whether the parameter is contained
in ModelParameters, if so, the calibrated parameter is added to CalibratedParameters.

3.2.2 Integration into the calibration system

The architecture laid out above was integrated into the existing calibration module in
PyNN, which makes it accessible to the user. When conducting an experiment, a cus-
tom parameter translation can be constructed and passed to the setup. An example
construction can be seen in Listing 1.
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1 targets = pyccalix.ParameterTranslation.ModelParameters ()

2 #example coefficients for Linear trafo (MADC)

3 coeff_madc = [[0.0018685445400704107] ,[ -0.43310387776092285]]

4 #create Linear transformation objects

5 LinearTrafoMADC_1 = pyccalix.Linear(coeff_madc)

6 #specify channels

7 madc_config = halco.SourceMultiplexerOnReadoutSourceSelection (0)

8 #create targets

9 targets.set(pyccalix.MADC_On_DLS(madc_config), pyccalix.ModelMADC

())

10 #create translation

11 translation = pyccalix.MADC_translation(pyccalix.MADC_On_DLS(

madc_config), LinearTrafoMADC_1)

12

13 pynn.setup(injected_parameter_translation = pyccalix.

CompleteParameterTranslation ([],

14 [translation ]))

Listing 1: Example construction of a translation of ADC values for measurements of the
membrane capacitance in Python.
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Figure 10: ADC readout in (left) digital steps and (right) volts during a single neuron
experiment. External stimulation was applied.

3.3 Multi-parameter dependencies

3.3.1 Class structure and algorithm

Moving on from the ADC characterization, the next objective was to enable the translation-
based parametrization of hardware parameters that depend not only on the desired model
parameters but also on each other. Speci�c parameters for which such dependencies have
been measured are V CapMem

leak and ICapMem
bias_leak. The goal was to develop a software imple-

mentation that allows the calibration of these parameters using the measurements laid
out in [Hinterding, 2025]. A class diagram visualizing the systems structure is shown in
Figure 11.
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Transformation

Linear

Polynomial

InterpolatingCollection

m_transformations : transformations

apply(vector<foat_type) : vector<float_type>
project(transformations) : projections
interpolate(std::map<float_type, float_type>) : Linear
findIntersection(projections) : vectot<float_type>

Collection2D

translation2D

collection : Collection2D

translate(ModelParameters, CalibratedParameters) : void

CompleteParameterTranslation

translate(ModelParameters, CalibratedParameters) : void

ParameterTranslation

Figure 11: Class diagram showing the basic structure of the 2D-translation.
InterpolatingCollection implements Transformation and holds discrete sets of trans-
formations at di�erent positiions. apply() projects these transformation collections into
n-1 dimensional space for speci�c input values (model parameters) and �nds the inter-
section between the interpolated contour lines resulting from the di�erent sets. The in-
tersection is equivalent to the corresponding set of calibrated parameters. Collection2D
implements InterpolatingCollection for two dimensions. Its member collection con-
sists of sets of polynomials.

The foundation for this translation is formed by the InterpolatingCollection abstract
class, which is derived from Transformation. InterpolatingCollection contains all
collections of inverted transformations at discrete positions in an n-dimensional space as a
polymorphic map. In this case apply() takes an input vector containing the values of the
model parameters and returns a vector representing the set of corresponding hardware
parameters. apply, in turn, calls the project() method, which returns the set of pro-
jected points in n-1 dimensional space, by applying the inverted transformations at the
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given model parameter values. An interpolation is then applied to �nd the intersection
between the resulting planes, which is equivalent to the set of to-hardware transformed
model parameters.

While apply() and project() are implemented for arbitrary dimensionality, the interpolate()
and findIntersection() methods are pure virtual and thus require an implementation
in the derived classes. This approach was chosen for simpli�cation, as two dimensions
are su�cient for the case at hand, though ideas for a generalised interpolation algorithm
are still going to be discussed in the Section 4.

Collection2D implements InterpolatingCollection for two dimensions. It contains
two collections of polynomials, each positioned at discrete values along the one-dimensional
hardware parameter axes. For a given model parameter, the points where the transfor-
mation equals the model parameter value are projected, as shown in Figure 6. The goal
is then to determine the point where the interpolations through the two sets of points
intersect.

Piecewise linear interpolation was chosen because it is computationally e�cient and the
functions are assumed to be linear to a su�cient degree [Hinterding, 2025]. To �nd the
intersection, a brute-force approach was initially considered, in which the interpolation is
applied to each pair of neighboring points in one set and intersected with the interpola-
tion applied to each pair of neighboring points in the other set. However, this approach
scales as O(n2) on average, which is not optimal. Therefore, an alternative algorithm
was developed that takes advantage of the fact that the two sets are sorted along their
respective axes. It is also reasonable to assume that, as long as the correlation is weak,
the points closest to each other are also closest to the intersection. An activity diagram
illustrating this algorithm is shown in Figure 12.

After applying the projection, a binary search is performed for each point in both sets
to �nd the closest point from the other set along the coordinate axis by which the set
is sorted. This produces two containers of the closest pairs along each axis. The pair
with the smallest absolute distance across both sets is considered the closest pair. Linear
interpolation is then applied between the points of the closest pair and their neighboring
points. If no intersection is found within the given bounds, the points of the closest pair
are removed from the projections, and the process repeats until either an intersection
is found or no projected points remain, in which case findIntersection() returns an
empty vector.
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input value pair for
V_leak and τ_leak

apply projection

binary search for points with
smallest distance along I-axis

binary search for points with
smallest distance along V-axis

iterate through both containers and
find points with smallest total distance

interpolate linearly

yes

intersection is between points? no

remove points from projections

return intersection

Figure 12: Activity diagram visualizing the algorithm for �nding the intersection. The
projection produces two discrete sets of points, each sorted along one of the coordinate
axes. Using binary search, the closest point along the relevant axis is found for each point
in each set. Iterating through the resulting pairs, the pair with the smallest absolute
distance is identi�ed. A linear interpolation is then applied between these points and
their neighbors. If the intersection lies between the points, the search stops; otherwise,
the points are removed, and the process repeats until an intersection is found or no
points remain. The algorithm has an average-case runtime of O(n log n), assuming weak
correlations.

Notably, this algorithm has a worst-case runtime of O(n2), which occurs if the intersec-
tion lies between the points that are furthest apart or if no intersection is found. The
former case, however, is considered negligible, as the correlation between the parameters
is assumed to be weak in most instances. On average, the algorithm scales as O(n log n)
due to the e�ciency of binary search, vastly outperforming the brute-force approach for
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large data sets.

Following the structure shown in Figure 8, the ADC-characterization section translation2D
is derived from the ParameterTranslation class. The translate() method applies the
Collection2D transformation to the given model parameters and adds a calibrated pa-
rameter containing the result to the CalibratedParameters map.

3.3.2 Runtime analysis

This section presents a runtime evaluation of the calibration algorithm presented above
compared to one the shown in Figure 4. For that, the measurement result is extrapolated
to the number of analog neuron parameters on the chip. Since there are 512 neurons and
27 analog neuron parameters, the number of parameters per chip sums up to 13824. For
this analysis, it is distinguished between the best and worst case. The best case considers
only linear transformations for all parameters, while the worst case that is realizable with
the architecture developed in this work assumes that every parameter is calibrated using
a 2D-collection of polynomials. For both cases, the measurement was repeated �ve times,
then the average was taken and the error was determined using the gaussian approxima-
tion.

First, it is assumed that all parameters are calibrated using a linear transformation. In
this case, a loop with 13,824 iterations was executed, since the time required for a single
transformation was too short to yield a su�ciently accurate measurement. The measured
execution time is approximately 15.79± 0.01ms.

Using only collections of polynomials the estimated calibration time would be (35.2±5.5)s.
This was approximated by running a loop over 9912 collections, one for each pair of pa-
rameters, where the polynomials has di�erent o�set values, but the same number of terms
in each collection. The input values of apply() were also slightly varied between each
call. In this case, an intersection was always found in the �rst iteration, which is the best
case.

If the input values were chosen such that an intersection was never found, the runtime
increased approximately by order of three, since the algorithm then scales with O(n2).
In praxis, this would, however, only ever be the case when invalid model parameters are
requested.

In contrast, the current single operation-point calibration takes 7.46min to calibrate all
parameters on the chip. This order of magnitude improvement is a promising result for
faster calibration processes in the future.

3.3.3 Memory footprint analysis

This section evaluates the memory footprint of the data structures presented in this
work. The footprint was approximated by summing the memory usage of all attributes
in the respective classes. The results are summarized in Table 1. For Polynomial1D,
the footprint depends on how many terms the polynomial has, as the implementation
features two maps containing the coe�cient and o�set for every term. The progression
of the footprint depending on the number of terms in the polynomial is shown in Figure
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13. Collection2D was approximated by taking example data from [Hinterding, 2025].
However, the size of Collection2D linearly grows with the number of polynomials it
stores. The footprint of CompleteParameterTranslation was determined for an MADC
translation vector of size 2, a CADC translation vector of size 1024 and a Collection2D

for Vleak and τmem.

Data type Approximated memory footprint (kilobytes)

Linear 0.20

Polynomial1D 0.94

Collection2D 26

vleak_taumem_translation 26

CADC_translation 0.21

MADC_translation 0.21

CompleteParameterTranslation 231.2

Table 1: Approximated memory footprint of the relevant data types developed in this
work. Note that the values for Polynomial1D and Collection2D are exemplary and may
vary depending on factors such as the number of polynomial terms or the number of
polynomials in the collection. The Linear type is assumed to be one-dimensional, as it
is in the ADC translations.
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Figure 13: Plot showing the linear progression of the polynomials memory footprint
against the number of terms. The maximum number was chosen to be 10 because in the
data from [Hinterding, 2025] the polynomials do not feature more terms.
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4 Summary and outlook

In this work, a software architecture was developed, that enables the translation-based
parametrization of BSS-2. This architecture builds on transformations developed for the
calibration library of BrainScaleS-1. However, these are extended to allow multiple hard-
ware parameter interdependencies. This was realized by implementing multi-dimensional
transformations. A class hierarchy was developed that enables the calibration of all pa-
rameters requested by the user with one function call.

As a �rst step, an ADC translation was added to the calibration library, that allows
to convert digitized ADC values to volts. This makes the ADC readouts better inter-
pretable, since, unlike unitless values, SI-units are independent of the ADC setup. This
translation was then integrated into the high-level SNN experiment de�nition language
PyNN, where it can be accessed by users.

Next, a translation was implemented that handles interdependencies of two hardware pa-
rameters. For �nding the corresponding pair of hardware parameters to a pair of model
parameters, an algorithm with an average runtime of nlog(n) was developed.

It was shown that a translation-based algorithm achieves a signi�cantly faster runtime
than the single �xed-point approach. Nevertheless, a translation-based parametrization
can only provide reasonable results in terms of time and resource usage if hardware pa-
rameter interdependencies are low-dimensional. Moreover, as discussed in Section 3.3.3,
the memory footprint of large collections of complex functions becomes substantial.

While the parametrization accounts for 2D-parameter dependencies, in the future there
might be instances where more than two interdependent parameters will have to be con-
sidered.
As mentioned in Section 3.3.1, the algorithm �nding the set of hardware parameters for a
set of model parameters is only partly implemented for arbitrary dimensionality. Speci�-
cally the part where an interpolation would need to be found for points in n-dimensional
space it was decided to adhere to two dimensions, with this being the relevant case at
this point. However, concepts were explored for a general solution.
Perhaps the simplest model would be an extrapolation of the part-wise bilinear interpo-
lation to more than two dimensions. Same as with the linear interpolation in the two
dimensional case, to avoid a suboptimal scaling behavior, an area where the intersection
would be most probable has to be found. Similar to the approach in Section 3.3.1, a
closest neighbor search would be reasonable. Possible solutions would be to organize the
point clouds into k-d trees or bounding volume hierarchies to search for the points with
the closest distance to the intersection area. Also, the Gilbert�Johnson�Keerthi distance
algorithm [Ong and Gilbert, 1997] could be utilized to �nd the closest distance between
the sets.

For higher-dimensional parameter dependencies, the translation-based approach is only
practical to a limited extent, as the time and resource requirements for data acquisition
could become prohibitive. Nevertheless, it could still be used, for example, to identify
a starting point for the iterative calibration, thereby reducing the overall time require-
ment. Determining the true dimensionality of parameter dependencies requires further
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measurements. The class hierarchy developed in this work facilitates the addition of new
parameter translations as needed.

Another question to consider is whether piecewise linear interpolation between the pro-
jections is reasonable in all cases. If the resolution of the point set is too low, linear
interpolation may become considerably inaccurate. In such cases, spline or polynomial
interpolation could be used as alternatives; however, �nding intersections algorithmically
in this context would be challenging. This situation is considered unlikely, as the resolu-
tion is determined by the measurement intervals.

In summary, the translation-based parametrization was shown to be faster than the cur-
rent iterative model, however the data required for a full parametrization of the chip
using this model has not been acquired yet. Furthermore, the dimensionality of gen-
eral parameter interdependencies needs to be investigated. For that, a �rst step would
be to compare the accuracy of the translation-based parametrization with the iterative
approach for the already acquired data, as the iterative calibration implicitly considers
forward dependencies.
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Reporitory hate I5337f Upstream

Repository halco 8129637 Upstream

Container stable container 2025− 07− 131.img -
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