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Event-basiertes Lernen von synaptischen Verzögerungen und arbiträre Topologien

Das Lernen von Verzögerungen ist ein entscheidender Schritt zur Verbesserung der zeitlichen
Verarbeitungsfähigkeiten von spikenden neuronalen Netwerken. Dadurch lassen sich komplexere
Probleme lösen, die sich vor allem durch eine zeitliche Struktur auszeichnen und bei denen
präzise Zeiten wichtig sind, wie zum Beispiel Spracherkennung oder Sinnesverarbeitung. In
dieser Arbeit wird der EventProp Algorithmus auf die Berechnung von exakten Gradienten
von synaptischen Verzögerungen ausgeweitet. Event-basierte Methoden für den Forward Pass
sowie den Backward Pass beim Trainieren von spikenden neuronalen Netzen bieten großes
Potential, wenn es darum geht, energieeffiziente Lösungen zu finden. Außerdem passt dies
sehr gut zu ereignisgesteuerter neuromorpher Hardware wie BrainScaleS-2. Die Methode zum
Lernen von Verzögerungen wird ereignisbasiert in der Python-Bibliothek jaxsnn implementiert.
Dies wird verwendet, um ein Modell auf dem Yin-Yang-Datensatz zu trainieren. Außerdem
wird die jaxsnn Bibliothek zur Unterstützung von Machine Learning für arbiträre Topologien
erweitert und eine Methode zum Aufschreiben von beliebig zusammensetzbaren Netzwerken
eingeführt. Dabei werden auch rekurrente Netze mit Feedback-Verbindungen unterstützt.
Dies wird schließlich in einigen kleinen Beispielen veranschaulicht.

Event-based Learning of Synaptic Delays and Arbitrary Topologies

Delay learning in spiking neural networks is a critical step in enhancing the network’s temporal
processing capabilities. It allows for more complex problems to be solved, especially for
tasks with rich temporal structure where precise timing is crucial such as speech or sensory
processing. In this work, the EventProp algorithm is extended to the calculation of exact
gradients with respect to synaptic delays. Making use of event-based methods for both the
forward and backward pass for training spiking neural networks, has high potential when
it comes to exploiting sparsity and resulting efficiency gains. And it fits very well with
event-driven neuromorphic hardware platforms like BrainScaleS-2. This method for delay
learning is also implemented in an event-based fashion for the python library jaxsnn. Using
this, a network is trained on the Yin-Yang dataset. Furthermore, the support for machine
learning with arbitrary topologies is added to jaxsnn and a composable network definition
paradigm is introduced. This also supports recurrent networks with feedback connections.
These features will be displayed in simple examples, which also make use of the EventProp
method for the delay case.
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1 Introduction

Due to the remarkable success of deep learning with artificial neural networks (ANNs) in
recent years, ANNs have attracted a significant amount of attention [2]. They have already
outperformed humans on many tasks, achieving superior accuracy and speed. For instance, they
have completely transformed the field of computer vision, accomplishing breakthroughs in tasks
such as object recognition, image segmentation or facial recognition [39]. Among other factors,
a big part of these performance improvements can be attributed to the massive upscaling of
model sizes and the drastic increase in the number of training parameters [17]. However, these
advancements come at a cost, as the energy demands for training these models have surged [35].

Spiking Neural Networks (SNNs), which have been called the third generation of neural
networks [22], present a promising solution to these challenges. SNNs are biologically-inspired
networks that more closely mimic the behavior of the brain. In those networks a temporal
dimension is introduced, allowing for the sparse and asynchronous activity to evolve dynamically.
Unlike traditional neural networks, which process information with continuous activation
functions, SNNs rely on discrete spikes. As stated by Maass [22], SNNs exploit both spatial and
temporal patterns and are computationally more powerful than traditional neural networks.

Moreover, the sparse, event-driven processing of SNNs poses great opportunities when it
comes to specialized hardware design. Brain-inspired computing systems have the potential to
be transformative for energy-efficient and real-time computing in the future [34]. One example
for a neuromorphic hardware platform is the BrainScaleS-2 (BSS-2) ASIC [30], a mixed-signal
neuromorphic substrate. It is designed to emulate the behavior of spiking neural networks by
representing the neuronal differential equations with electrical circuits. Since SNNs inherently
rely on temporal information, they are extremely well suited for tasks that have a time dependent
input like real-time sensory processing in fields such as robotics or autonomous systems [5].

Furthermore, SNNs as well as neuromorphic hardware present many possibilities for biology-
focused research. They can help researchers model neuronal dynamics to gain insights on the
processes that happen in the brain. This can then be used to investigate the learning mechanisms
of the brain by for example simulating spike-time-dependent plasticity rules [21].

Applying approaches from classical machine learning to spiking neural networks, however,
is challenging mainly because of the discrete state transitions, which happen at spike times.
One approach to bypass this problem was proposed by Neftci, Mostafa, and Zenke [28], where
surrogate gradients are introduced. In this method, the SNN is discretized in time and the
forward pass is calculated by a time-step based evolution of the neuronal dynamics. For the
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backward pass, the "hard" threshold is replaced with a differentiable approximation to allow
backpropagation through time (BPTT). While this learning algorithm is widely used in practice,
it is only an approximation and is not fully aligned with the event-driven nature of SNNs and
neuromorphic hardware.

It therefore would be a natural choice to aim for an event-based simulation and backpropagation
framework. A method utilizing exact spike time formulas for the leaky integrate-and-fire model
was proposed by Göltz et al. [11], where they consider special cases of the synaptic time constants.
In this algorithm the forward pass happens event-based and the backward pass is calculated
with the derivatives of the differentiable spike time functions. The EventProp algorithm [37]
takes this one step further where the adjoint method is used to derive exact gradients without
restrictions on the synaptic time constants. In this method the adjoint variables are evolved
backwards in time and sampled at spike times to calculate the gradients. This allows for both
the forward and backward passes to be computed in an event-based fashion or let the forward
pass be emulated on neuromorphic hardware.

SNNs are governed by temporal dynamics and the communication between neurons happens
with discrete spikes. In this context, the notion of delays that influence the propagation of
spikes arises naturally. Moreover, delays are biologically plausible because information cannot be
transmitted instantly. Recently, an increasingly popular research topic has been the learning of
delays. An example of such a learning method was proposed by Hammouamri, Khalfaoui-Hassani,
and Masquelier [14] where the delays are learned through dilated convolution with learnable
spacing (DCLS). Moreover, Göltz et al. [12] extended their framework for exact gradients to
support the learning of synaptic delays by differentiating the exact spike time functions.

In this work the EventProp method is extended to synaptic delays to both support the
training of weights with constant delays as well as the gradient calculation with respect to both
weights and synaptic delays. This is then also implemented in an event-based fashion in the
python library jaxsnn. Moreover, arbitrary topologies are implemented for event-based machine
learning or simulations of SNNs.
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2 Theoretical Background

2.1 Biological Neuron

Neurons are the basic building blocks of our nervous system. They allow us to perceive, process
and respond to the world around us. While a single or a handful of neurons might not be very
powerful for processing information, their real strength lies in the complex networks that they
form. Our brain is believed to have neurons on the order of 1011 and synapses on the order of
1015 [38]. However, incredibly, the brain with this massive network of interconnected neurons
only consumes about 20 watts of power on average [4].

Dendrites

Soma

Axon

Figure 2.1: Biological neuron, adapted from Jarosz [16].

Now the basic mechanisms of biological neurons will be explained, based on the explanations
by Zhang [38]. In fig. 2.1, the basic structure of a neuron is displayed. The dendrites are
branch-like extensions around the cell body, which receive electrical input signals from other
neurons. The soma (cell body) contains the nucleus and it is also where the incoming spikes are
integrated. These lead to a change in the neuron’s membrane potential, which at rest lies around
−70mV. If the membrane potential reaches a certain threshold, it generates an action potential,
also referred to as a spike. When this happens, voltage-gated sodium (Na+) channels open,
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causing a rapid depolarization of the neuron. While the action potential is then propagated
through the axon, the membrane potential of the presynaptic neuron is reset. Next, the spike
arrives at a synapse, where the release of neurotransmitters is triggered, which eventually leads
to the signal reaching the postsynaptic neuron via its dendrites. As a result, the membrane
potential of the postsynaptic neuron is changed which can again lead to the emission of an
action potential.

The strength of the connection between a presynaptic and postsynaptic neuron is governed
by the synaptic weight. It directly determines the magnitude of the postsynaptic response to
incoming spikes. Not all spikes have a depolarizing, increasing effect on the membrane potential.
Synapses are categorized into excitatory and inhibitory, which either cause an increase or a
decrease in the postsynaptic potential.

2.2 Leaky Integrate-and-Fire Model

The leaky integrate-and-fire (LIF) neuron is a simple yet powerful mathematical model to
describe neuronal dynamics. It goes back to Lapicque [20] who proposed a mathematical
description in 1907. The LIF model only captures the very basic aspects of neuronal dynamics
and does not model the biophysical processes in detail. However, it balances mathematical
simplicity with biological plausibility, making it very widely used, especially for SNN-inspired
machine learning. Other more sophisticated models include the AdEx [7] or the Hodgkin-Huxley
model [15].

The following explanations of the LIF model are inspired by the ones from Gerstner et al. [10].
The basic idea is that neurons receive an input current which is integrated over time. This leads
to a change in the membrane potential. However, the membrane potential naturally decays over
time, which causes it to converge towards a resting potential in the absence of inputs.

This dynamical behavior of the membrane potential can be represented by a parallel circuit,
composed of a capacitor with capacitance C and a resistor with resistance R. For the described
circuit the following differential equation can be derived,

τmem
dV
dt

= −[V (t)− Vrest] +RI(t) (2.1)

where in the biological context I(t) refers to the synaptic input current and V (t) to the membrane
potential. Furthermore, Vrest corresponds to the resting membrane potential and τmem = RC

represents the membrane time constant.
As already mentioned in section 2.1, the membrane potential when crossing a specific threshold

is reset to a predefined value Vreset. This corresponds to a discrete transition when the following
condition is satisfied,

V (ts)− ϑ = 0, (2.2)
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where ts is the time of the spike. Using − and + to denote variables before and after the
transition as done by Wunderlich and Pehle [37], we get the following jump of the membrane
potential at the transition

V +(ts) = Vreset. (2.3)

An essential feature of neurons in the brain is their connectivity. The connections via synapses
allow the propagation of spikes through the network. Similarly, LIF neurons can be extended to
connected networks. One choice to do this, is to link the spikes of presynaptic neurons to the
synaptic input current of postsynaptic neurons. A common approach is to choose an exponential
model to describe the synaptic input dynamics. For this choice, the synaptic input current of a
postsynaptic neuron also experiences a discrete state transition at the spike time ts:

I+ = I− + w, (2.4)

where w is the weight that connects the presynaptic neuron to the postsynaptic neuron. For
the case of no delays between the neurons, the presynaptic and postsynaptic spike time are the
same. Moreover, the free dynamics of the synaptic current I(t) between state transitions are
described by a simple exponential decay:

τsyn
d

dt
I = −I. (2.5)

Now we can consider spiking neural networks with N neurons, which are connected by a weight
matrix W ∈ RN×N . The state variables of the membrane potential and the synaptic current
thus become vector-valued functions: V : t 7→ V (t) ∈ RN and I : t 7→ I(t) ∈ RN . Table 2.1
shows the set of equations for a spiking neural network of N LIF neurons without delays. When
excluding self-recurrent connections, the weight matrix W has a zero diagonal and en ∈ RN is a
unit vector with a 1 at index n.

Free dynamics Transition condition Jumps at transition

τmem
dV
dt = −V + I (V )n − ϑ = 0 (V +)n = 0

τsyn
dI
dt = −I (V̇ )n ̸= 0 for any n I+ = I− +Wen

Table 2.1: The LIF model for a network of N neurons without delays, listed as by Wunderlich
and Pehle [37]
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2.3 Encoding and Decoding Techniques

Spiking neural networks intrinsically take spikes as input, which raises the question how the
gap between real-world data and spike-based processing of SNNs can be bridged. It is desirable
that SNNs can work with all kinds of data, such as images or sounds, which have to be encoded
into spike trains. In the end, the spike-based output also needs to be decoded into interpretable
results. The two most common approaches to input encoding are rate coding and temporal
encoding.

For rate coding, the information is encoded via the frequency of spikes in a given time interval,
where the frequency of spikes corresponds to the intensity of the signal. However, it does not fit
very well with time-sensitive applications and requires long observation times to be accurate.
Moreover, biologically, rate codes also seem to be less plausible in many cases, because the
human brain is able to process object recognition tasks in around 150ms, which suggests that
rate codes would be too slow [3].

Figure 2.2: Continuous vs discrete spike
times. Taken from [27]

For temporal encoding, intensities of input sig-
nals can be encoded using the precise timing of
individual spikes [9]. For this approach, there is a
crucial difference between a time-grid and continu-
ous time based paradigm. As displayed in fig. 2.2,
by introducing time steps, the resolution of the
input gets, depending on the time step size, signifi-
cantly worse compared to an event-based approach
where the time of the spike is exact.

One popular approach for decoding is to consider
the max-over-time value of the membrane potential
of non-spiking output neurons. Also, rate codes
are used for decoding by considering the spike frequency of output spikes of the network.
However, in an event-based approach, encoding with spike times is desired because it exploits
the intrinsic sparsity, possibly exhibiting advantages for energy-efficient computing. For example,
for classification tasks, time-to-first-spike (TTFS) [11] can be used, where the neuron that spikes
first can be interpreted as the predicted class. Another way is to use the distance to specific
target times for the output neurons of each class.

2.4 Machine Learning with Spiking Neural Networks

Machine Learning with artificial neural networks has achieved remarkable success across a wide
range of fields. One of the key components behind this success has been the backpropagation
algorithm which enables the optimization of neural networks through gradient descent. So the
question arises how well these well-proven methods from traditional machine learning can be
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applied to learning in spiking neural networks.
Traditional ANNs are typically multilayer networks of artificial neurons. In the forward pass

of these networks, each neuron in a layer computes the weighted sum of its input and applies a
non-linear activation function. A classical activation function is the sigmoid function

σ(x) =
1

1 + e−x
(2.6)

The result is then passed as input into the next layer. In the end, the output of the last layer is
used to calculate a loss. This loss function is chosen to be high for wanted outputs and low for
unwanted ones. To improve the performance of the network after the forward pass, the gradients
with respect to the weights can be computed in order to update the network’s parameters and
hence improve its performance. This is done using backpropagation which makes use of the
chain rule to propagate errors backward through the network.

Biologically inspired SNNs are fundamentally different from ANNs in mainly two ways: Time
plays a crucial role because SNNs receive temporal input and also exhibit temporal dynamics in
continuous time. And secondly, the transmission of information through the network happens
with binary spikes whereas ANNs utilize continuous outputs.

To make SNNs compatible with the backpropagation methods of traditional machine learning,
the continuous time dynamics can be changed to a time step based evolution by applying
discretization methods on SNN dynamics. This way, SNNs almost resemble Recurrent Neural
Networks (RNNs). RNNs are a type of ANN, which can handle sequential data and allow
information to persist through recurrent connections [26]. These types of networks can also be
optimized by applying backpropagation through time (BPTT) [36].

However, when trying to apply BPTT to discretized spiking neural networks, one encounters
a problem which is caused by the binary nature of spikes. Since they only happen when a hard
threshold is crossed, they correspond to a discrete activation function σ(V ) = θ(V − ϑ). One
solution to this problem was proposed by Neftci, Mostafa, and Zenke [28] where they introduce
surrogate gradients. In this method, the forward pass is computed using the normal spiking
behavior of the SNN while for the backward pass, the discrete activation function is replaced
with a differentiable function like a sigmoid (eq. (2.6)).

Although this method is widely used, it has certain limitations. On one hand, the gradients
are only approximations, resulting from the exchange of the activation function in the backward
pass. Moreover, the time-step based approach to spiking neural networks which are inherently
event-based is something that may diminish some advantages like sparsity in data structures and
temporal resolution. This leads to the search for exact event-based backpropagation algorithms.
Those will be discussed in the next section.
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2.5 Approaches for Exact Gradients

Exact gradients offer the potential to train with higher accuracies and to leverage sparse data
structures. This could be particularly important for tasks that involve temporal precision or
sparse input data. In this section, two approaches for exact gradients will be discussed.

Göltz et al. [11] look at the special cases of τmem = 2τsyn and τmem = τsyn to derive exact
formulas for the time of the next spike T . Equation (2.7) shows the formula for τmem = 2τsyn.

T

τsyn
= 2 ln

[
2a1

a2 +
√
a22 − 4a1glϑ

]
(2.7)

where a1 and a2 are terms that depend on the times of previous spikes and gl is the leak
conductance of the neuron’s membrane. In the forward pass, the next spike times can be found
with the analytical solution and the state variables can be evolved to the transition times in an
event-based fashion. The gradients of the spike times with respect to the weights can then be
calculated in the backward pass because the formula is differentiable and thus compatible with
backpropagation.

Another more general approach was first proposed by Wunderlich and Pehle [37] where they
apply the adjoint method to the case of spiking neural networks. This leads to the derivation
of adjoint equations, which define dynamics for adjoint variables λV : t 7→ λV (t) ∈ RN and
λI : t 7→ λI(t) ∈ RN . The gradients can be computed by a backward pass in which the adjoint
variables are evolved backwards in time. This can be done event-based where discrete transitions
happen at the spike times, which were obtained from the forward pass. Moreover, the gradients
are updated at these spike times. They consider a loss of the form

L = lp(t
post) +

∫ T

0
lV (V (t), t)dt (2.8)

where lp(tpost) and lV (V (t), t) are smooth loss functions. The loss lp depends on the postsy-
naptic spike times tpost ∈ RNpost , with Npost being the number of postsynaptic spikes. The loss
lV depends on the membrane potential V as well as the time t.

They show that the gradients with respect to a weight of a presynaptic neuron i and
postsynaptic neuron j can be computed by sampling the adjoint variable λI of the postsynaptic
neuron at the input spike times:

dL
dwji

= −τsyn
∑

spikes from i

(λI)j . (2.9)

The adjoint equations governing the hybrid dynamics with state transitions of the adjoint
variables are derived by Wunderlich and Pehle [37]. The jump transition of the adjoint variable
λV of the spiking neuron n is given by eq. (2.10) and the adjoint equations are listed in table 2.2.
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(λ−V )n(k) = (λ+V )n(k) +
1

τmem(V̇ −)n(k)

[
ϑ(λ+V )n(k) +

(
W⊤(λ+V − λI)

)
n(k)

+
∂lp

∂tpost
k

+ l−V − l
+
V

]
(2.10)

Free dynamics Transition condition

τmemλ
′
V = −λV − ∂lV

∂V t− tpost
k = 0

τsynλ
′
I = −λI + λV for any k

Table 2.2: The adjoint equations for a network of N neurons, from Wunderlich and Pehle [37]

These equations will later be compared with the ones that are derived in chapter 4 by
extending the original derivation to synaptic delays.

2.6 Neuron Delays

Since spiking neural networks have an inherent temporal dimension, the natural question arises
if the time between the firing of a presynaptic neuron and the time of arrival at the postsynaptic
neuron can be adapted. Delays are very plausible because the transmission cannot occur
instantaneously. This applies both to biological neurons as well as to neuromorphic hardware
like BrainScaleS-2. Delays have also been observed to play a crucial role in neuronal dynamics,
influencing processes such as synchronization, information processing and learning in biological
networks [23]. The main distinction is between axonal, synaptic and dendritic delays.

Axonal delays refer to the time that it takes for the action potential to travel down the axon.
A cause for these delays is myelination because myelinated axons conduct signals faster than
unmyelinated ones [24]. As can be seen in fig. 2.3 (a), axonal delays vary for each presynaptic
neuron. So for a connection between two given feed-forward layers, the axonal delays can be
written as a vector of size nI where nI is the size of the presynaptic layer.

Synaptic delays are the most flexible because they occur at each connection between neurons.
At this step, neurotransmitters are released and processed. Since each pair of neurons from
an input and output layer has a different synaptic delay, the synaptic delays connecting two
layers can be written as an nI × nI+1 matrix where nI+1 is the size of the postsynaptic layer,
see fig. 2.3.

Dendritic delays correspond to the time that electrical signals take to propagate within the
dendritic tree of the postsynaptic neuron before reaching the soma. Since they vary for each
postsynaptic neuron, in a multilayer feed-forward example, they can be written as a vector of
size nI+1.

Recently, there has been an increasing interest in the learning of delays. For example,
Hammouamri, Khalfaoui-Hassani, and Masquelier [14] learn delays by modeling synaptic
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Figure 2.3: Showcasing the differences between the different types of delays, adapted from Göltz
et al. [12].

connections as 1D convolutions across time, where each kernel has a weight representing the
synaptic delay. The learning can be done alongside the synaptic weights using the Dilated
Convolution with Learnable Spacings (DCLS) technique [18].

Another approach was done by Göltz et al. [12] where they extended their method for exact
gradients to the learning of delays. As discussed in section 2.5, they use differentiable functions
for the spike times, which can be easily extended by adding differentiable delay terms.
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3 Existing Software

3.1 JAX

JAX [6] is a python package for high performance numerical computing. It provides a lightweight
NumPy-like API for array-based computing. Its main advantages come from the support
for powerful, composable function transformations. These include automatic differentiation
(jax.grad), just-in-time (JIT) compilation (jax.jit), vectorization (jax.vmap) and paralleliza-
tion (jax.pmap). Moreover, the code can directly be executed on different backends like CPU,
GPU or TPU.

JAX achieves this by tracing Python functions when they are first called or the input shapes
have changed. For this, functions are called on a tracer value, which records all the computations
that happen on it. In this process, all JAX operations are reduced to a set of primitive
operations defined in jax.lax which mirrors XLA (Accelerated Linear Algebra) [32]. The
primitive operations are used to store the whole computational graph in JAX’ intermediate
representation JAXPR. Because it only consists of the predefined primitive operations, JAX
can easily apply composable function transformations to it. Then it can be JIT-compiled into
high level optimized code (HLO) which is read by XLA. Next, XLA compiles this HLO code
and sends it to the requested backend.

However, these functionalities place certain constraints on the way JIT-compatible code can
be written. JAX transformations are designed to only work with pure python functions. So the
return values always have to be identical for the same arguments and the functions cannot have
side effects like the mutation of non-local variables. Moreover, JAX does not allow in-place
updates of arrays which can only be updated with functional array updates. Also, for code used
within transformations the output arrays and intermediate arrays are required to have a static
shape.

When it comes to control flow, also special care has to be taken. Code inside transformations
does not support flexible python control flow that depends on the traced variables. This is
because during tracing, all operations have to be recorded by passing in abstract tracer values
where the concrete values are not available. However, JAX provides its own jax.lax primitives
for control flow. Listing 1 shows how for example jax.lax.cond and jax.lax.scan can be
used to replace if statements and loops.

JAX provides powerful automatic differentiation capabilities with jax.grad that are both
efficient and flexible. It supports both forward- and reverse-mode differentiation. Moreover, it
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allows higher order differentiation as well as computations of Jacobian and Hessian matrices.
And it also permits flexible gradient override.

1 import jax
2

3 # Example of loop control flow
4 def body_fun(carry, inputs):
5 ...
6 return carry, output
7

8 # Pass in initial carry value and inputs which are scanned
9 carry, output = jax.lax.scan(body_fun, initial_carry, inputs)

10

11 # Example of conditional control flow
12 def true_fun(val):
13 ...
14 return output
15

16 def false_fun(val):
17 ...
18 return output
19

20 res = jax.lax.cond(condition, true_fun, false_fun)

Listing 1: Example of JAX control flow operations using jax.lax.scan and jax.lax.cond.

3.2 jaxsnn

jaxsnn [27] is a python library for machine learning with SNNs. It is split up into a time step
based and an event-based implementation. The time-step-based implementation was inspired
by Norse [31]. In the following, the state of the event-based implementation before this thesis
will be explained.

Only feed-forward layers are directly implemented. These feed forward layers are simulated
sequentially where the output spikes of a given layer serve as the input queue of the next layer.
The simulation happens for a predefined number of steps where at each step an event happens
and is recorded. This event can either be an input spike, internal spike or no spike. The
fundamental data structure are EventPropSpikes. They are tree_math.structs which makes
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them compatible with JAX’ transformations.

1 @dataclasses.dataclass
2 @tree_math.struct
3 class EventPropSpike:
4 time: jax.Array # float
5 idx: jax.Array # int
6 current: jax.Array # float

Listing 2: Data structure for Eventpropspikes.

At each step, the type of the next event is determined first. Therefore, the time of the
next spike of all neurons is calculated using the function ttfs_solver which is vectorized with
jax.vmap. Then the earliest internal spike is selected. This can be done using the analytical
equations from [11]. Then, this internal time is compared with the time of the next spike from
the input queue. Depending on which time is smaller, the corresponding spike is chosen as the
next event. If both spikes occur later than a predefined time tlate, no event is simulated and an
empty event is stored.

If the next event is an input or internal event, all neurons in the layer are evolved to that
point in time using the implemented function lif_exponential_flow. Then a discrete state
transitions is applied with the transition function. This means that for input spikes, the
synaptic input current of all neurons in the layer is increased by the corresponding weight. For
internal spikes, only the membrane potential of the firing neuron is reset. Then, the spike is
stored and the step is repeated. The data flow of the step function is visualized in fig. 3.1.

Figure 3.1: Data flow of the step function, adapted from Müller et al. [27].

The analytical gradients are calculated with JAX’ automatic differentiation functionalities
and can be used to train custom loss functions. However, also the EventProp algorithm [37] is
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implemented for which a custom backward pass is defined. The custom backward pass contains
a backward step function step_bwd, which evolves the adjoint variables backwards in time to
the events that were calculated in the forward pass. If the event is an internal event, the discrete
transition (2.10) is applied and if it is an input event the gradients with respect to the spiking
input neuron are updated by adding −τsynλI as described in section 2.5.
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4 Derivation of exact gradients for synaptic delays

In this section, the EventProp algorithm [37] is extended to support synaptic delays, as well
as to calculate the gradients with respect to the delays. This derivation closely follows the
original derivation [37], but some critical adjustments are made to generalize it to synaptic
delays. First, the gradients with respect to the weights will be calculated for constant synaptic
delays in section 4.1. Then, this will be extended to also calculate the gradients of the synaptic
delays. As introduced in section 2.5, we consider a loss of the following form,

L = lp(t
pre) +

∫ T

0
lV (V (t), t)dt, (4.1)

where it should be noted that tpost was changed to tpre because the loss depends on the time
at which the neurons fire. For the original derivation, this did not play any role because they
had no delays and therefore had tpre = tpost.

For a given spike event k, the presynaptic spike time tpre
k is connected to the postsynaptic

spike time tpost
km by the delay dmn(k):

tpost
km = tpre

k + dmn(k), (4.2)

where m and n(k) are the indices of the post- and presynaptic neuron, respectively. We
now consider a system of N recurrently connected neurons, excluding self connections. The
differential equations governing the LIF dynamics, which were introduced in section 2.2, can be
written in implicit form:

fV = τmemV̇ + V − I = 0 (4.3)

fI = τsynİ + I = 0. (4.4)

4.1 Gradients with respect to the weights

With the introduction of synaptic delays, the system experiences discrete state transitions at
both the presynaptic and the postsynaptic spike times. This makes it natural to split up the
integral at all times where discrete transitions happen. For simplicity reasons, we will first treat
the special case where the postsynaptic spike time for all postsynaptic neurons is the same which
corresponds to axonal delays. However, this can then later be easily extended to synaptic delays.
Lagrange multipliers, λ : t 7→ λ(t) ∈ RN , are introduced to constrain the system’s dynamics to
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fI and fV . Now, the gradient with respect to a weight wji of a postsynaptic neuron j and a
presynaptic neuron i will be calculated:

dL
dwji

=
d

dwji

lp(tpre) +

Npre∑
k=0

∫ tpre
k+1

tpre
k +dk

[lV (V, t) + λV · fV + λI · fI ] dt

+

∫ tpre
k+1+dk+1

tpre
k+1

[lV (V, t) + λV · fV + λI · fI ] dt

]
,

(4.5)

where dk is a short notation for the delay corresponding to the event k and · signifies the dot
product. This is possible because in the case of axonal delays each event has one corresponding
delay dk. We consider Npre spikes with presynaptic spike times tpre

k , k ∈ 1, . . . , Npre. Conse-
quently, for the integration to occur from 0 to T , the boundary integration limits are set to
tpre
0 + d0 = 0 and tpre

Npre+1 + dNpre+1 = T . As stated in [37], using Gronwall’s theorem [13] and
the commutativity of the derivatives, we get the following expressions:

∂fV
∂wji

= τmem
d

dt

∂V

∂wji
+

∂V

∂wji
− ∂I

∂wji
(4.6)

∂fI
∂wji

= τsyn
d

dt

∂I

∂wji
+

∂I

∂wji
. (4.7)

The next steps are shown only for the first integral, but they work analogously for the second
one. The corresponding terms and the loss lp will be accounted for later. Using the Leibniz
integral rule on the first integral leads to

(
dL
dwji

)
integral 1

=

Npre∑
k=0

[∫ tpre
k+1

tpre
k +dk

[
∂lV
∂V
· ∂V
∂wji

+ λV ·
(
τmem

d

dt

∂V

∂wji
+

∂V

∂wji
− ∂I

∂wji

)

+λI ·
(
τsyn

d

dt

∂I

∂wji
+

∂I

∂wji

)]
dt+ l−V,k+1

dtprek+1

dwji

∣∣∣∣
tpre
k+1

− l+V,k
dtpre

k

dwji

∣∣∣∣
tpost
k

] (4.8)

where the terms outside the integral, which would include fI/fV vanish because fV = fI = 0

holds along all trajectories. Also, l±V,k was introduced for the voltage loss before (−) and after
(+) the transition and it was used that the delays do not depend on the weights. Now, we can
use partial integration:

∫ tpre
k+1

tpre
k +dk

λV ·
d

dt

∂V

∂wji
dt = −

∫ tpre
k+1

tpre
k +dk

λ̇V ·
∂V

∂wji
dt+

[
λV ·

∂V

∂wji

]tpre
k+1

tpre
k +dk

(4.9)
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∫ tpre
k+1

tpre
k +dk

λI ·
d

dt

∂I

∂wji
dt = −

∫ tpre
k+1

tpre
k +dk

λ̇I ·
∂I

∂wji
dt+

[
λI ·

∂I

∂wji

]tpre
k+1

tpre
k +dk

. (4.10)

By substituting this into (4.8) and collecting terms, we get

(
dL
dwji

)
integral 1

=

Npre∑
k=0

[∫ tpre
k+1

tpre
k +dk

[(
∂lV
∂V
− τmemλ̇V + λV

)
· ∂V
∂wji

+
(
−τsynλ̇I + λI − λV

)
· ∂I
∂wji

]
dt

+ l−V,k+1

dtpre
k+1

dwji

∣∣∣∣
tpre
k+1

− l+V,k
dtpre

k

dwji

∣∣∣∣
tpost
k

+τmem

[
λV ·

∂V

∂wji

]tpre
k+1

tpre
k +dk

+ τsyn

[
λV ·

∂I

∂wji

]tpre
k+1

tpre
k +dk

]
.

(4.11)

Since the Lagrange multipliers are unconstrained, they can be chosen to satisfy the differential
equations defined by the terms in the parentheses within the integral. By making this choice,
the integral evaluates to 0 and we get the adjoint equations. Since adjoint variables are usually
integrated from t = T to t = 0, the time derivative is transformed to d

dt → −
d
dt . By writing the

transformed derivative using ′, we get the following adjoint equations which have to be fulfilled
between transitions

τmemλ
′
V = −λV −

∂lV
∂V

(4.12)

τsynλ
′
I = −λI + λV . (4.13)

The previous steps can be repeated for the second integral term which leads to the same
adjoint equations. For the remaining terms, only the corresponding evaluation times have to be
changed, which are simply the integration limits from eq. (4.5). By combining the terms from
both integrals and also differentiating lp we arrive at the following expression

dL
dwji

=

Npre∑
k=0

[
∂lp
∂tpre

k

dtpre
k

dwji
+ l−V,k+1

dtpre
k+1

dwji

∣∣∣∣
tpre
k+1

− l+V,k
dtpre

k

dwji

∣∣∣∣
tpost
k

+τmem

[
λV ·

∂V

∂wji

]tpre
k+1

tpre
k +dk

+ τsyn

[
λV ·

∂I

∂wji

]tpre
k+1

tpre
k +dk

+ l−V,k+1

dtpre
k+1

dwji

∣∣∣∣
tpost
k+1

−l+V,k+1

dtpre
k+1

dwji

∣∣∣∣
tpre
k+1

+ τmem

[
λV ·

∂V

∂wji

]tpre
k+1+dk+1

tpre
k+1

+ τsyn

[
λV ·

∂I

∂wji

]tpre
k+1+dk+1

tpre
k+1

]
.

(4.14)

Assuming parameter-independent initial conditions for V and I and also setting the initial
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condition for the adjoint variables as λV (T ) = λI(T ) = 0 leads to all the boundary terms at
t = T and t = 0 being equal to zero:

0 = λV ·
∂V

∂wji

∣∣∣∣
T

= λI ·
∂I

∂wji

∣∣∣∣
T

= λV ·
∂V

∂wji

∣∣∣∣
0

= λI ·
∂I

∂wji

∣∣∣∣
0

(4.15)

Because of the definitions tpre
0 + d0 = 0 and tpre

Npre+1 + dk+1 = T , the terms containing
dtpre

k
dwji

,
dtpre

k+1

dwji
are also zero for k = 0 and k = Npre.

0 =
∂lp
∂tpre

0

dtpre
0

dwji
= l+V,0

dtpre
0

dwji

∣∣∣∣
tpost
0

= l−V,N+1

dtpre
N+1

dwji

∣∣∣∣
tpre
N+1

(4.16)

With this simplification, we can now identify the boundary terms at the pre- and postsynaptic
spike times as pairs where there is one evaluation before (−) and one after (+) the transition.
Thus, we are only left with a sum over the Npre spikes where there are terms evaluated before
and after the presynaptic spike and analogously for the postsynaptic spike. The sum is split up
into terms that are evaluated at the presynaptic spike time, denoted by ξk, and terms that are
evaluated at the postsynaptic spike, denoted by ψk:

dL
dwji

=

Npre∑
k=1

ξk + ψk (4.17)

ξk =

[
τmem

(
λ−V ·

∂V −

∂wji
− λ+V ·

∂V +

∂wji

)
+ τsyn

(
λ−I ·

∂I−

∂wji
− λ+I ·

∂I+

∂wji

)
+
∂lp
∂tpre

k

dtpre
k

dwji
+ l−V,k

dtpre
k

dwji
− l+V,k

dtpre
k

dwji

] ∣∣∣∣
tpre
k

(4.18)

ψk =

[
τmem

(
λ−V ·

∂V −

∂wji
− λ+V ·

∂V +

∂wji

)
+ τsyn

(
λ−I ·

∂I−

∂wji
− λ+I ·

∂I+

∂wji

)] ∣∣∣∣
tpost
k

. (4.19)

It is to be noted that ψk does not contain terms that depend on lV because these terms cancel
out. This is due to the fact that at t = tpost the membrane potential V does not experience a
jump and thus l−V = l+V holds.

The only difference with respect to the derivation in [37] is that instead of having only the
term ξk at the presynaptic spike times, now there is also the term ψk at the postsynaptic spike
times.

Now, the relations of the adjoint variables before and after the transitions will be derived. This
is done by first deriving the relationships between the partial derivatives of the state variables
with respect to the weights before and after the transition. In contrast to the original derivation,
we now have to find these relationships at both the presynaptic as well as the postsynaptic
spike times. For each pair of transitions we consider a spike which is caused by the nth neuron
where all other neurons m ̸= n do not spike.
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For partial derivative jumps to occur in ∂V
∂wji

for a specific neuron at a discrete transition,
either the neuron’s potential or synaptic current have to experience a jump because V̇ depends
on I. For ∂I

∂wji
, there is only a jump if the neuron’s synaptic current jumps.

Transition at presynaptic spike time

Membrane potential transition. At the presynaptic spike time, the only state transition that
happens is the reset of the membrane potential from the threshold ϑ to the reset potential
Vreset of neuron n. So for the membrane potential before the transition we get:

(V −)n − ϑ = 0. (4.20)

By differentiating this, it follows that(
∂V −

∂wji

)
n

+ (V̇ −)n
dtpost

dwji
= 0. (4.21)

For (V̇ −)n ̸= 0 (excluding the edge case where neuron reaches the threshold as the maximum of
its potential) we have

dtpost

dwji
= − 1

(V̇ −)n

(
∂V −

∂wji

)
n

. (4.22)

After the transition, the spiking neuron’s membrane potential is reset, so we get

(V +)n = 0. (4.23)

By differentiation we have (
∂V +

∂wji

)
n

+ (V̇ +)n
dtpost

dwji
= 0. (4.24)

Combining this with (4.22) yields the following condition for the jump:(
∂V +

∂wji

)
n

=
(V̇ +)n

(V̇ −)n

(
∂V −

∂wji

)
n

. (4.25)

Because both the membrane potential and the synaptic current of the non-spiking neurons do
not experience any jumps, we have(

∂V +

∂wji

)
m

=

(
∂V −

∂wji

)
m

. (4.26)

Synaptic current transition. Since at the presynaptic spike time, all synaptic currents do not
experience jumps, the derivatives of the current for all neurons do not experience jumps

∂I+

∂wji
=
∂I−

∂wji
. (4.27)
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Transition at postsynaptic spike times

Membrane potential transition. At the postsynaptic spike time, the spiking neuron’s
membrane potential and synaptic current do not experience any jumps and therefore neither do
their respective gradients. So we have(

∂V +

∂wji

)
n

=

(
∂V −

∂wji

)
n

. (4.28)

For non-spiking neurons we know that (V +)m = (V −)m and thus by differentiating both sides
with respect to the weights we get(

∂V +

∂wji

)
m

+ (V̇ +)m
dtpost

dwji
=

(
∂V −

∂wji

)
m

+ (V̇ −)m
dtpost

dwji
. (4.29)

Because we know that the membrane potential V of the non-spiking neurons does not change at
the postsynaptic spike time, but the synaptic current experiences a jump of wmn, we immediately
get from the differential equation of V (4.3) that

τmem(V̇ +)m = τmem(V̇ −)m + wmn (4.30)

and thus we then get with eq. (4.29) and eq. (4.22)(
∂V +

∂wji

)
m

=

(
∂V −

∂wji

)
m

− τ−1
memwmn

dtpost

dji

=

(
∂V −

∂wji

)
m

+

[
1

τmem(V̇ −)n
wmn

(
∂V −

∂wji

)
n

] ∣∣∣∣
tpre
k

.

(4.31)

Note that this partial derivative jump of neuron m at the postsynaptic spike time includes a
term with a partial derivative of the spiking neuron n at the presynaptic spike time. This will
be important when the terms are reordered again later.

Synaptic current transition. As argued above, the gradients of the spiking neurons do not
experience any jumps: (

∂I+

∂wji

)
n

=

(
∂I−

∂wji

)
n

. (4.32)

For the non-spiking neurons, the synaptic current jumps by the corresponding weight wmn

(I+)m = (I−)m + wmn. (4.33)

Differentiation of this equation yields(
∂I+

∂wji

)
m

+ (İ+)m
dtpost

dwji
=

(
∂I−

∂wji

)
m

+ (İ−)m
dtpost

dwji
+ δinδjm. (4.34)
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Moreover, from the differential equation of the current (4.4) we get

τsyn(İ
+)m = τsyn(İ

−)m − wmn (4.35)

Substituting this into eq. (4.34) and also using (4.22), we get the following expression for the
jump of the partial derivative:

(
∂I+

∂wji

)
m

=

(
∂I−

∂wji

)
m

+ τ−1
synwmn

dtpost

dwji
+ δinδjm

=

(
∂I−

∂wji

)
m

−

[
1

τsyn(V̇ −)n
wmn

(
∂V −

∂wji

)
n

] ∣∣∣∣
tpre
k

+ δinδjm.

(4.36)

Similar to eq. (4.31), this equation also includes a term with the partial derivative of the
spiking neuron n at tpre. Now, we need to group all terms by their partial derivatives at the same
time because this allows to define jump conditions, which lead to all partial derivatives vanishing
from the sum. Thus, the two aforementioned terms from ψk (from eq. (4.31) and eq. (4.36))
need to be grouped with the other terms at the presynaptic spike time. By substituting all the
partial derivative jumps at the presynaptic spike times into ξk and also including these two
special terms with their preliminary factors from ψk, we get the following expression:

ξ′k =

∑
m̸=k

[
τmem(λ−V − λ

+
V )m

(
∂V −

∂wji

)
+ τsyn(λ

−
I − λ

+
I )m

(
∂I−

∂wji

)]

+

(
∂V −

∂wji

)
n(k)

τmem

(
λ−V −

(V̇ +)n(k)

(V̇ −)n(k)
λ+V

)
n(k)

+
1

(V̇ −)n(k)

∑
m̸=k

[
wmn(k)(λ

+
I − λ

+
V )m + l−V − l

+
V

] ∣∣∣∣
tpost
k

− ∂lp

∂tpost
k

+ l+V − l
−
V


+ τsyn(λ

−
I − λ

+
I )

(
∂I−

∂wji

)
n(k)

] ∣∣∣∣
tpre
k

.

(4.37)

The scalar products are written as sums of the components where terms are grouped for the
spiking neuron n and the non-spiking neurons m ̸= n. In order to reduce this whole term to
0 and therefore not have any partial derivatives left, we get that all adjoint variables except
(λV )n do not experience jumps at t = tpre

k

(λ−V )m = (λ+V )m (4.38)

λ−V = λ+I (4.39)
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Now, we only need to find the jump condition for (λV )n for which ξ′ resolves to zero. Rearranging
of terms yields

(λ−V )n =
(V̇ +)n

(V̇ +)n
(λ+V )n +

1

τmem(V̇ −)n

∑
m̸=k

[
wmn(k)(λ

+
V − λ

+
I )m

] ∣∣∣∣
tpost
k

+
∂lp

∂tpost
k

− l+V + l−V

]
.

(4.40)

Now we will look at the second term at the time of the postsynaptic spike. It is obtained by
substituting the previously derived jumping conditions of the partial derivatives at t = tpost

k

into eq. (4.19) where the two terms that already went into ξ′ are omitted. We get

ψ′
k =

[∑
m ̸=k

[
τmem(λ−V − λ

+
V )m

(
∂V −

∂wji

)
+ τsyn(λ

−
I − λ

+
I )m

(
∂I−

∂wji

)
− τsynδin(k)δjm(λ+I )m

]

+ τmem(λ−I − λ
+
I )

(
∂V −

∂wji

)
n(k)

+ τsyn(λ
−
I − λ

+
I )

(
∂I−

∂wji

)
n(k)

]
.

(4.41)

By choosing all adjoint variables to not experience jumps at the postsynaptic spike times

λ−V = λ+V (4.42)

λ−I = λ+I (4.43)

the whole term reduces to

ψ′
k = −τsyn

∑
m ̸=n(k)

δin(k)δjm(λ+I )m

∣∣∣∣
tpost

= −τsyn
∑

m̸=n(k)

δin(k)(λ
+
I )j

∣∣∣∣
tpost

. (4.44)

The remaining Kronecker delta is only non-zero if the presynaptic neuron is neuron i. So,
overall we can write the gradients as

dL
dwji

=
N∑
k=0

ξ′k + ψ′
k = −τsyn

∑
spikes from i

(λI)j

∣∣∣∣
tpost

(4.45)

If we now instead look at synaptic delays where the dk = dmn(k) vary for each m, we would
need to split up the integral at all N − 1 postsynaptic spike times for each spike k. This would
just lead to the result from eq. (4.17), but with instead of just the term ψk, we would have to
sum over all N − 1 postsynaptic spikes and evaluate them at the corresponding postsynaptic
spike time
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dL
dwji

=

Npre∑
k=1

[
ξk +

N−1∑
m=1

ψkm

]
, (4.46)

where ψkm is the corresponding term for the postsynaptic neuron m given by

ψkm =

[
τmem

(
λ−V ·

∂V −

∂wji
− λ+V ·

∂V +

∂wji

)
+ τsyn

(
λ−I ·

∂I−

∂wji
− λ+I ·

∂I+

∂wji

)] ∣∣∣∣
tpre
k +dmn(k)

. (4.47)

However, it is straightforward to argue that the arguments made in section 4.1 for the jumps
at the transition times can be repeated for all terms with a few adjustments. The additional
terms from the partial derivative jumps at postsynaptic spike times in eq. (4.31) and eq. (4.34)
need to be adapted. These go into the jump condition and their evaluation just has to be
changed to the correct postsynaptic spike time of the corresponding postsynaptic neuron m.
For the transition of λV we then get

(λ−V )n =
(V̇ +)n

(V̇ +)n
(λ+V )n +

1

τmem(V̇ −)n

∑
m̸=k

[
wn(k)m(λ+V − λ

+
I )m

] ∣∣∣∣
tpre
k +dmn(k)

+
∂lp
∂tpre

k

− l+V + l−V

]
,

(4.48)

where the postsynaptic spike time tpre
k + dmn(k) varies for each k and m. For the Kronecker

delta term in eq. (4.34), we again have a δinδjm. Therefore for all ψkm where m ̸= j, there is no
additional term and we get the Kronecker delta term only in ψkj . This then results in the exact
same expression for the gradients:

dL
dwji

=

N∑
k=0

ξ′k + ψ′
km = −τsyn

∑
spikes from i

(λI)j

∣∣∣∣
tpost

. (4.49)

This means that in this adapted version of EventProp with delays, the adjoint variables have
to be sampled at each postsynaptic spike time, which differs among all neurons. At this time,
also the term wn(k)m(λ+V − λ

+
I )m needs to be calculated, so that in can then be used when the

internal transition of the corresponding spike k happens at time tpre
k .

4.2 Gradients with respect to the synaptic delays

Since the derivation is very similar to the previous derivation of the gradients with respect to
the weights, the more detailed derivation can be found in appendix A. However, the differences
between the derivations will shortly be discussed and the result will be stated in this section.
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In contrast to the derivation for the weights, in the derivation for the delays, the Leibniz rule
yields additional terms because two integral limits contain the delay and must be differentiated.
However, these terms cancel each other out because they reduce to l−V − l

+
V at the time of the

postsynaptic spike, which is zero, as already discussed.
In the derivation of the partial derivative jumps, the crucial difference is that for the derivative

with respect to the delay we have

dtpost

ddji
=

d(tpre + dmn)

ddji
=

dtpre

ddji
+ δjmδin (4.50)

and that the derivative of the weights with respect to the delays is zero:

dwmn

ddji
= 0. (4.51)

Overall, this leads to the exact same adjoint equations and jump conditions as in the derivation
in section 4.1. However, because of eq. (4.50) and eq. (4.51), the terms that are left after
substituting the partial derivative jumps change with respect to the previous derivation. The
gradient with respect to the synaptic delays is then given by:

dL
ddji

=
∑

spikes from i

wji(λV − λI)j
∣∣∣∣
tpost

. (4.52)

4.3 Additional Remarks

As also stated in [37], with the differential equation of V (4.3), it holds that (V̇ +)n − (V̇ −)n =

τ−1
memϑ. Thus, the following relation

(V̇ +)n

(V̇ −)n
=

(V̇ +)n − (V̇ −)n

(V̇ −)n
+ 1 =

ϑ

τmem(V̇ −)n
+ 1 (4.53)

can be used to rewrite the jump of the adjoint variable as eq. (4.54). All other equations of
the method are additionally listed in table 4.1.

(λ−V )n(k) =(λ+V )n(k) +
1

τmem(V̇ −)n(k)

[
ϑ(λ+V )n(k)

+
∑
m̸=k

[
wmn(k)(λ

+
V − λ

+
I )m

] ∣∣∣∣
tpre
k +dmn(k)

+
∂lp
∂tpre

k

+ l−V − l
+
V

] (4.54)

These equations can now be compared with the original equations, which are stated in
section 2.5. You can see that they only differ very slightly. By introducing the synaptic delay,
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Free dynamics Transition
condition Gradients

τmemλ
′
V = −λV − ∂lV

∂V t−(tpre
k +dmn(k)) = 0

dL
dwji

= −τsyn
∑

spikes from i

(λI)j

∣∣∣∣
tpost

τsynλ
′
I = −λI + λV for any k,m

dL
ddji

=
∑

spikes from i

wji(λV − λI)j
∣∣∣∣
tpost

Table 4.1: EventProp with synaptic delays together with jump of λV , see eq. (4.54).

the sampling of the adjoint variable λI for the weight gradients is moved to the postsynaptic
spike times when the spike arrives at the postsynaptic neuron. Moreover, the jump of λV is
adjusted such that the adjoint variables λV and λI are evaluated at tpost. So in the limit where
all synaptic delays approach zero, the proposed model reverts back to the original one which
shows that they are consistent with each other.

Moreover, the fact that the gradients of the delays and the weights are sampled at the same
time, makes the extension to delay learning very straightforward because once EventProp with
constant synaptic delays is implemented, the updating of the delay gradient only has to be added
at the point where the weight gradients are updated. Thus, the complexity of the computation
does not increase much when adding gradients with respect to delays.
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5 Implementation

5.1 Arbitrary Topologies

In this section, it will be described how the event-based part of the python library jaxsnn was
extended to arbitrary topologies. Arbitrary topologies refer to a multi-layer network, where
layers of any size can be connected via feed-forward and feedback connections. In particular,
layers can also be recurrently connected to themselves.

5.1.1 Topology Description

First, we need to find a description for arbitrary topologies in jaxsnn. JAX has a functional
programming paradigm where the computation happens by passing inputs into pure functions
and the outputs are then used by other functions. This stands in contrast to other programming
paradigms such as object-oriented programming where classes are used to handle internal state.
For example, JAX does not allow transformations on methods that act on attributes of a class,
because it can only track the computations that happen on the input that was passed in. This
is why one solution for this is to create an init/apply pair for the network, as it was described
in section 3.2.

We will now define an object-oriented network description that allows flexible composing of the
networks, but in the end also returns a single init/apply pair which can be transformed with
JAX’ transformations. For that, we define a NeuronLayer and an InputLayer class. Objects of
these classes contain all the information about the layer like its size or the layers that have been
added as input layers. Moreover, a method add_input_layer is implemented which accepts
layer objects and adds them to the layer’s inputs. This allows to establish the connections of
the network.

Then in the end, a get_init_apply function can be called on the output layer to create the
init/apply pair because all information for the layers and their connections is available and
can be reached by going from the output layer recurrently down to all other layers. An example
of how a small recurrently connected network can be build up this way is shown in fig. 5.1.

5.1.2 Algorithm

The previous implementation of feed-forward topologies made use of the fact that layers can
be simulated sequentially because there are no feedback connections. For a time step based
solution it would be possible to just add all contributions from the input layers at each time
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1 # Define layers/vertices
2 i1 = InputLayer()
3 l1 = NeuronLayer(layer_params2)
4 l2 = NeuronLayer(layer_params3)
5

6 # Define connections/edges
7 l2.add_input_layer(l1)
8 l2.add_input_layer(i1)
9 l1.add_input_layer(i1)

10 l1.add_input_layer(l2)
11

12 init, apply = l2.get_init_apply()

i1

l1

l2

Figure 5.1: Code (left) that is used to define a recurrently connected network (right) with one
input layer (light blue), one hidden layer (blue) and one output layer (dark blue).

step. This comes from the fact that the whole system is evolved in a synchronized fashion.
However, for an event-based simulation, the layers only jump to the points in time where events
happen and thus we lose simultaneity. For example, we can consider two layers l1, l2 which
receive both input from each other, as show in fig. 5.2. It would never be possible to simulate
this sequentially because they depend on the output of each other.

Moreover, if you alternate between the layers to calculate events, also certain problems arise.
Let’s say that those two connected layers are at times t1 and t2 where t1 < t2. If we want to do
a simulation step for l1 we can calculate when the next event will happen, which can either be
an internal event or an input spike.

l1 l2

Figure 5.2: Two recurrently con-
nected layers.

If the time of this next event te is earlier than t2, no
problems arise. However, if the calculated event is later then
t2, layer 1 cannot take this as its next event because there
is a time window between t2 and te where a spike could
happen in the second layer. This spike would then arrive
earlier than te in the first layer and the calculated event at
te would be invalid. Thus l1 cannot be evolved in time to
the event with certainty and can only be evolved to t2. If
we look at l2, it is obvious that it cannot be evolved to its
next event either because there is no certainty if l1 emits a
spike earlier. Thus, if no special care is taken to compare the spikes which conflict with each
other, the system is stuck. And this even becomes a much bigger problem if there are 3 or more
recurrently connected layers. Theoretically, backtracking solutions could be implemented where
spikes are calculated ‚greedily‘ and then the state is backtracked when there are conflicting
spikes.

Another solution to this problem would be to introduce a delay between these layers. That
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way, layer 1 can calculate until t2 + d and in case it does not find an event before that time,
it can evolve to t2 + d. Layer 2 can then safely calculate until the time t1 + d = t2 + 2d and
thus it is guaranteed that the system moves forward in time. It is to be noted, that time-grided
approach actually also kind of make use of this method, where the minimal delays is just the
time step.

The proposed algorithm for one step of a layer is listed in algorithm 1, adapted from [27].
The simulation happens for M iterations. At each iteration a step for each of the K layers is
performed. First, the next internal event is calculated which corresponds to the neuron in the
layer that spikes next. Then, the next input spike is determined by taking the minimum of the
potential input spikes from all input layers. The next event is chosen as the earlier event of
next internal and input spike. Then the time until which the current layer can safely evolve is
calculated. This is done by adding the delay to the times of the input layers, and then taking
the minimum. This makes sure that no input event can arrive before this tsafe. Then it is
checked if the found event at time t is earlier than the safe time tsafe. If not, a dummy spike is
returned. If the spike is allowed, the layer can be evolved to t and the discrete state transitions,
depending on the type of event, can be applied. Then the spike is returned. It is to note,
that the proposed algorithm is directly applicable to axonal delays where all neurons in a layer
receive the same input times for the input spikes and thus can be evolved synchronously. It
could be also extended to synaptic delays but for that each neuron of a layer has to be handled
in parallel and the next internal event and safe time would have to be found for each neuron
individually.

Algorithm 1 Event-based simulation for recurrently connected layers.
1: for i← 1 to M do
2: for j ← 1 to K do
3: tinternal ← find time of next internal event for N neurons
4: tix ← min(tinternal)
5: texternal ← find time of next input for K input layers
6: tex ← min(texternal + d)
7: t← min(tex, tix)
8: tlayers ← find time for K input layers
9: tsafe ← min(texternal + d)

10: if t > tsafe then
11: append dummy spike to spike list
12: end if
13: V, I ← integrate neuron state
14: V, I ← apply discrete state transition
15: append spike to spike list
16: return spike list
17: end for
18: end for
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5.1.3 Implementation

Now, the implementation of algorithm 1 will be discussed. To fit into the description framework,
which was introduced in section 5.1.1, we need to define a get_init_apply function.

This get_init_apply function starts from the output layer and collects all the layers in the
network by recursively exploring all input connections. Thus, first the output layer is added
to a list, then the output layer’s input layers, then the input layers of the input layers of the
output layer and so on. The list is then reversed so that the lists are in a more natural order,
with the output layer being the last layer. All layers then have their own f́latĺayer index which
corresponds to their position in the list.

Now the step functions for each individual layer have to be constructed. For this, a
construct_step_fn function is implemented for the NeuronLayer class which takes the in-
put layers as an input parameter. The constructed step function needs to follow, what was
proposed in algorithm 1. So first, the next internal event is found by using the already imple-
mented ttfs_solver function. As, in the previous implementation, the ttfs_solver has to
be vectorized with jax.vmap to calculate the next internal time for all N neurons of the layer.
Then the earliest of these events is chosen. Next, a new function next_input is implemented,
which compares the next input spikes from all input layers and returns the earliest. To do this,
it finds the earliest internal spike in the spike recordings of the input layers. To make this check
for internal spikes easy, the EventPropSpike class is extended to the following:

1 @dataclasses.dataclass
2 @tree_math.struct
3 class EventPropSpike:
4 time: jax.Array # float
5 idx: jax.Array # int
6 current: jax.Array # float
7 internal: jax.Array # bool

Listing 3: Extension of the EventPropClass to include information if the recorded spike was
internal or external

Also the corresponding delay is added to the input time. The next event is then chosen as
the minimum of the next internal and next input event. Also, a min_delay_check function is
implemented that calculates the safe time from the times of the input layer states and checks if
the time of the next event is earlier than this tsafe. Depending on, if the next event is allowed,
the layer is evolved to the time of the next event or the safe time, using the already implemented
lif_exponential_flow. Then, in case the event is allowed, the discrete transition is applied
for which a new transition function was implemented. This transition function has to be
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created for each input layer and is then chosen inside the step function via jax.lax.switch.
This has to be done, because JAX requires static shapes and if the same transition function
is used for different input layers, different shaped arrays of the weights would appear due to
different layer sizes.

By constructing these step functions for all layers in the call of get_init_apply, the loops
defined in algorithm 1 can be implemented. For the loop, jax.lax.scan is used and after each
call of a step function, the spikes are updated by the result from the step function. The spikes
are stored as a list of EventPropSpikes and they are passed into all layers, so that they can be
used to find the input events.

5.1.4 EventProp

Moreover, the EventProp algorithm [37] was also extended to work with this algorithm. The
extension of Eventprop to delays is done in chapter 4. For the implementation of the EventProp
algorithm, the backpropagation cannot happen layer wise like in the original implementation
because now also feedback connections are allowed. This is because the jumping condition
eq. (4.54) contains the term

(
W⊤(λ+V − λI)

)
n(k)

∣∣∣∣
tpost
k

(5.1)

This term corresponds to the error propagation from layers that take input from the current
layer. For the feed-forward case, one can start with the output layer and go back through
the layers without running into problems because there the output layers of a given layer are
available. However, if you allow arbitrary topologies this can no longer be guaranteed.

Thus the implementation is done in a way that we start with the last spike in absolute terms
and always have to chose the next last spike from the recorded spikes from all layers. For this
a new step_bwd function is implemented where first the next event is chosen. Then all states
are evolved to the time of this event. Then the adjoint transition is applied. If it is an input
spike, the adjoint variable λI is sampled for the calculation of the gradient and also eq. (5.1)
is calculated and saved in the data structure of the adjoint spike. To every input transition
there is a corresponding internal transition. For internal transitions, the jump is calculated
according to eq. (4.54) where for the term in eq. (5.1) a function forward_term is implemented
that checks if the internal spike happened in other layers as an input spike and then adds the
term that was saved in the adjoint spike. This allows to calculate the gradients with EventProp
which was also validated by comparing the analytical gradients and the EventProp gradients
with each other.
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5.2 Synaptic Delays

Now, synaptic delays are also implemented into jaxsnn. This is done for feed-forward networks
because this way layers can still be evolved in a vectorized manner.

For the old implementation without synaptic delays, the output spikes were just taken as the
input queue of the next layer because there they were already ordered. Now the order at the
postsynaptic neurons is not guaranteed anymore because if one synaptic delay is very long and
another one is short, the order can easily change. So before the step function can be used to step
through the events, the delays have to be added to the presynaptic spike times and then ordered
to get a correct input queue. Moreover, in contrast to the original implementation, neurons are
evolved asynchronously in their layer. For that, a new step function was implemented, which is
batched over the axis of the neurons in the layer with jax.vmap.

5.2.1 EventProp

In contrast to the implementation for arbitrary topologies, for the feed-forward case with synaptic
delays the layers can be handled sequentially, because the jumping condition in eq. (4.54) only
depends on forward connected layers which here have been already handled if we start with
the last layer. Moreover, is a step_bwd function implemented which can be batched over, so
that the spikes from all neurons in a layer are stepped through in a vectorized manner. For the
forward term in (4.54)

(
W⊤(λ+V − λI)

)
n(k)

∣∣∣∣
tpre
k +dmn(k)

, (5.2)

a similar implementation to the previous section is done where the term is stored in the data
structure of the adjoint spike. When the input happens a forward_term function checks if the
internal spike was an input spike and then retrieves the value for (5.2) from where it was saved
in the adjoint spike.

5.3 Membrane Potential and Current Traces

The forward pass as well as the backward pass of the previously described implementations
happen completely event-based. This means that only the output spikes are returned as a result.
This turns the simulation with respect to the state variables in between transitions into a black
box. To further examine the states between transitions and display the continuous evolving in
time a new function get_layer_traces is implemented. This function takes the recorded spikes
and the weights from a given network as inputs and then uses this information to calculate
the voltage and current traces of the neurons for a specified time grid. This can be done by
always evolving a given neuron in time to the next point in the time grid and saving the state
variables, V and I. When a input transition happens before the next point in the time grid,
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the corresponding discrete transition is applied, depending on whether the even is an input
or internal spike. This way, the traces are constructed for the whole specified interval. An
exemplary plot where this was used to plot the voltage trace and and synaptic input current for
a single neuron with one input spike can be seen in fig. 5.3.
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Figure 5.3: Plotting the traced values for the membrane potential and synaptic input current for
the simple example of a single neuron and one input spike. The implemented get_layer_traces

function can be used to calculate the traces from the recorded event-based spike data of a
network.
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6 Experiments

6.1 Arbitrary Topologies

6.1.1 Simple Example

First, two simple examples are constructed to validate the creation of arbitrary topologies. The
first example consists of six neurons which are connected in a chain. One of the neurons receives
a single input spike. All weights are chosen such that an input spike increases the synaptic
input current enough to cause a spike in the corresponding postsynaptic neuron. Furthermore,
a single layer of six neurons is used as a consistency check. This layer is recurrently connected
to itself. The weights are set such that the same topology as for the multilayer example is
created. So all weights wji except where j = i+ 1 holds are set to zero to establish the forward
connection. Additionally, the recurrent connection between the last and first neuron is accounted
for by setting w05. The spikes that are recorded for each layer after passing in the input are, as
expected, in both cases identical. The spikes as well as the membrane potential and current
traces that were computed with get_layer_traces are shown in fig. 6.1.

6.1.2 Learning in arbitrary topologies

Moreover, a simple example is implemented that showcases that learning with the implemented
topologies works with both analytical gradients and EventProp. This is done by constructing a
simple network with an input layer connected to a layer with a single neuron. This layer is then
recurrently connected with the output layer, as displayed in fig. 6.2. We will consider a single
input spike. The initial weights are set such that the input spike causes a single spike in the
first neuron which then causes a single spike in the output neuron, so that without recurrence
nothing would happen after that. But because of the recurrent connection between the two
neurons, the feedback connection causes the two neurons to fire again. Due to the way the
implementation was done, also a short delay has to be included. We will now learn the time of
the second spike of the neuron from the second layer l2. Because at least initially, the system
has to go through the recurrent connection, we can check if the implemented backpropagation
works correctly for recurrent connections. We will consider the squared error loss of the second
spike time of the second neuron t2 and a predefined target time tt:

L = (t2 − tt)2 (6.1)
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Figure 6.1: (a) Spikes, membrane traces, and current traces calculated with get_layer_traces

for the recurrently connected network in (b), where all layers have size 1. The different colors
in the plot correspond to the different neurons. The self recurrent network with only one self
recurrent layer (c) (weight matrix chosen to construct the same topology), results in the exact
same spikes and traces as it is expected. Output layers that are used to construct the layers’
init/apply pair via the get_init_apply method are again displayed in dark blue, hidden
layers in blue and input layers in light blue.

The learning is done with both analytical gradients and the implemented version of the
EventProp algorithm. Here, the implementation described in section 5.1.4 already uses the
derived theory from section 4.1 for EventProp with constant delays.

The gradients which are calculated with the analytical gradients and EventProp are compared
and they are exactly the same. So this is already a verification of the derived equations. To
calculate the gradient to update the weights, 100 steps are performed, where the Adam optimizer
is used. The loss over these time steps is displayed in fig. 6.3. A very striking feature are sharp
jumps which seem to increase the loss by a lot temporarily. These display a critical property of
the EventProp algorithm. Because in the definition of our loss we state that a certain number
of spikes is going to occur, spikes that are added or deleted, are not taken into account. This
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Figure 6.2: Simple learning example for recurrently connected network.

means that for the actual loss function which does not have these constraints, the calculated
gradient is no longer exact.
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Figure 6.3: Loss curve for training of the second spike time of the output neuron from the
network that was defined before. Jumps are observed which normally should not occur. However,
in the EventProp algorithm this is a problem that can happen because by learning the weights
via the spike times, spikes can be added or deleted which completely changes the system and
which is not build into the derivation of the gradient.

6.1.3 Training on the Yin-Yang Dataset

Now, the implementation will also be tested on the Yin-Yang Dataset [19] to verify that different
topologies created with the new implementation can reach the expected high accuracies. The
Yin-Yang Dataset has three output classes which are displayed in fig. 6.4. Training the Yin-Yang
Dataset in jaxsnn was already thoroughly investigated and discussed by Althaus [1]. For the
training in [1], mainly topologies with 5 input neurons, 100 hidden neurons and 3 output neurons
were used, although other layer sizes were also explored. For these topologies an accuracy of

39



0.00.51.0

0.0 0.5 1.0
x1

0.00

0.25

0.50

0.75

1.00

y1

Figure 6.4: Classes (’yin’, ’yang ’ and ’dots’) of the Yin-Yang Dataset, where each colored dot
represents a sample. Adapted from [19].

about 96% is expected after training for 50 epochs. The training will follow what was done by
Althaus [1]. The best results were achieved for a mean-squared error loss, where specific target
times for the right and wrong classes are used for the three output neurons. So, we will build
upon the original topology and loss and try some extensions and to verify that the training
happens as expected. For this, the training is done with just one seed, because it is only used
to verify that the backpropagation in bigger networks with custom defined topologies works as
expected and that it can train to high accuracies. To achieve the highest possible accuracies the
hyperparameters would have to be adjusted accordingly. But for this short comparison, the
hyper parameters from Althaus [1] were used, also displayed in appendix B. The topologies and
corresponding achieved accuracies are displayed in section 6.1.3.
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Topology Accuracy

(a) 96.8%

(b) 96.7%

(c) 96.1%

(d) 96.7%

Figure 6.5: Different SNN topologies were used to train on the Yin-Yang Dataset (left) for 50
epochs with one seed and their corresponding accuracies (right). This was done to verify that
training works as expected for bigger topologies and high accuracies can be reached. Further
hyperparameter optimization should then also be able to further increase accuracies.
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6.2 Synaptic Delays

The implementation of EventProp gradients with respect to delays will now be tested using
the Yin-Yang dataset. Weights and delays are trained at the same time. As a starting point,
the topology, described in section 6.1, with 5 input neurons, 100 hidden neurons and 3 output
neurons was used. Also the same hyperparameters were used as a starting point. And for
the mean and the standard deviation of the delays, different values were tried. The used
hyperparameters are listed in appendix B. Additionally, delays were truncated at zero to rule out
negative delays to ensure causality and plausibility. Initially, there were difficulties to get good
accuracies at all. After some fine tuning of hyperparameters, accuracies that are comparable
to the training of only the weights were achieved. However, this is of course not the goal of
training synaptic delays because we introduce a lot more parameters and expect the neuronal
dynamics to be more adaptable. With ten different seeds a test accuracy of (94.5± 0.4)% was
achieved for training for 50 epochs. The test accuracies over the epochs for one seed during
training are displayed in fig. 6.6.
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Figure 6.6: Test accuracies over the epochs for the training of synaptic delays.

The question arises what could be the reason for that inaccuracy. One possibility would be
that the cutoff of the delays at zero causes the delays to be zero and in principal the optimization
does not follow that constraint. If this happens for many delays, the gradients would not point
in the right direction anymore. Another possibility would be that the hyperparameters are
not fine tuned enough for which also not that much time was available. The train accuracy
graph also looks like it experiences a temporary dip at a few points. This could be a hint for
things going wrong which could be investigated at those points in more detail. For example the
aforementioned deletion and adding of spikes might happen more quickly with the introduction
of learnable delays which leads to more changes in the system.

It was also tested what happens if the synaptic delays are initialized randomly and not trained.
For 10 different seeds a test accuracy of (95.8± 0.2)% was achieved for training 50 epochs. So
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this achieves a significantly higher accuracy then learning of delays, which is not what would be
expected.
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7 Discussion and Outlook

In this bachelor thesis, exact gradients for synaptic delays were derived and implemented. It is to
note, that at the same time, this method was developed by Mészáros, Knight, and Nowotny [25]
and recently published. They derive the same method and apply it to the Yin-Yang dataset [19]
and the SHD dataset [8]. Moreover, this bachelor thesis implements arbitrary topologies for
event-based simulations and SNN-inspired machine learning in jaxsnn. These can also be trained
with the extended EventProp algorithm for constant delays which is part of the presented
derivation in chapter 4. The main result of the derivation is that for delays, the evaluation of
terms in the jump condition of the adjoint variable λV and in the sampling of the gradient
with the adjoint variable λI happens when the presynaptic spike arrives at the postsynaptic
neuron. Moreover this can then easily be extended to calculate the gradients with respect to
the synaptic delays:

dL
ddji

=
∑

spikes from i

wji(λV − λI)j
∣∣∣∣
tpost

. (7.1)

Discussion

The newly developed implementation for topologies is flexible and allows description of arbitrary
networks. By connecting the layers with feedback-connections, the look-ahead time of the
event-based computation can decrease a lot, which leads to more steps in the simulation where
no event can be applied. However, this highly depends on the minimal delays which are used.
In addition, the methods used to obtain exact gradients of spike times exhibit a few problems.
While they offer sparsity and exact gradients, they also fail to incorporate the addition and
deletion of spikes which can have a significant influence as was seen in section 6.1. One solution
to handle this was proposed by Nowotny, Turner, and Knight [29] where they extend the
EventProp formalism to a wider class of loss functions which allows them to penalize the
deletion of spikes.

The accuracy results for training with synaptic delays are not satisfactory. This definitely
needs to be investigated further. A few ideas already mentioned in section 6.2 will be elaborated
further now. There are a few different plausible explanations. On one hand, more time is
needed for optimizing hyperparameters by performing for example performing a grid search.
One quantity of special interest could be the target times. The exact timing of those and also
the distance between them might play a big role when additionally delays are incorporated
because delays directly act on times.
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Moreover, the known problem of adding and deleting spikes could also be a contributing
factor. This should be further investigated. The fact that the training without delays worked
better might also be an indication for that when the delays stay constant there is less change
in the network and when moving spikes forward and backward in time this can easily lead to
deleting/adding spikes as in the example in section 6.1. Thus integrating the solution form
Nowotny, Turner, and Knight [29] would maybe help solving the problem.

Outlook

In the future, the implemented arbitrary topologies could be extended to also support synaptic
delays, where the step function is vectorized and each neuron has its own queue. However, it
would probably still make sense to introduce a minimal delay because in the proposed framework
of evolving the layers, this minimal delay ensures that the layers are moving forward in time.
Consequently, it would also make sense to extend the learning of synaptic delays to those
arbitrary topologies. However, it should be noted that it would be less flexible if a minimal
delay is kept as a constraint.

Another possible objective could be to use the extension of the EventProp algorithm to learn
delays on the neuromorphic platform BrainScales-2. Although the chip does not natively support
delays, there have been workarounds e.g. by Göltz et al. [12] or Tabel [33]. In Göltz et al. [12]
’parrot’ neurons are used to exploit the on-chip dynamics to create artificial delays whereas
Tabel [33] used rerouting of spikes through the host computer. Moreover, because hardware
necessarily has delays, the proposed method for learning weights with constant delays could be
used for more precise in-the-loop traininig.
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A Detailed Derivation of Gradients with Respect to

Synaptic Delays

The derivation of the gradients with synaptic delays will be done here. The derivation mostly
follows the one from section 4.1 but has some deviations.

We start again by splitting up the loss integral at both the presynaptic and postsynaptic
spike times, where we use the special case that all postsynaptic neurons spike at the same time.
We also introduce Lagrange multipliers λ : t 7→ λ(t) ∈ RN

dL
ddji

=
d

ddji

lp(tpre) +

Npre∑
k=0

∫ tpre
k+1

tpre
k +dk

[lV (V, t) + λV · fV + λI · fI ] dt

+

∫ tpre
k+1+dk+1

tpre
k+1

[lV (V, t) + λV · fV + λI · fI ] dt

] (A.1)

Similarly to before, we get the derivatives of the implicit differential equations

∂fV
∂dji

= τmem
d

dt

∂V

∂dji
+
∂V

∂dji
− ∂I

∂dji
(A.2)

∂fI
∂dji

= τsyn
d

dt

∂I

∂dji
+

∂I

∂dji
(A.3)

Using the following equation for the derivative of tpost

dtpost

ddji
=

d(tpre + dmn)

ddji
=

dtpre

ddji
+ δjmδin (A.4)

we can apply the Leibniz integral rule again, resulting in

(
dL
ddji

)
integral 1

=

Npre∑
k=0

[∫ tpre
k+1

tpre
k +dk

[
∂lV
∂V
· ∂V
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+ λV ·
(
τmem

d

dt
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+
∂V
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− ∂I

∂dji

)

+λI ·
(
τsyn

d

dt

∂I

∂dji
+

∂I

∂dji

)]
dt+ l−V,k+1

dtprek+1

ddji

∣∣∣∣
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k+1

−l+V,k

(
dtpre

k

ddji
+ δjm(k)δin(k)

) ∣∣∣∣
tpre
k

] (A.5)
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Using partial integration we again get the following

∫ tpre
k+1

tpre
k +dk

λV ·
d

dt

∂V

∂dji
dt = −

∫ tpre
k+1
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k +dk

λ̇V ·
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[
λV ·
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∂dji
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k+1
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k +dk

(A.6)

∫ tpre
k+1

tpre
k +dk

λI ·
d

dt

∂I

∂dji
dt = −

∫ tpre
k+1
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k +dk

λ̇I ·
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∂dji
dt+

[
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(A.7)

and substituting it back into eq. (A.1) we arrive at

(
dL
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)
integral 1
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k +dk
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(A.8)

Again, the same adjoint equations can be chosen

τmemλ
′
V = −λV −

∂lV
∂V

(A.9)

τmemλ
′
I = −λI + λV (A.10)

Also including the terms from the second integral leads to

dL
ddji

=

Npre∑
k=0

[
∂lp
∂tpre

k

dtpre
k

ddji
+ l−V,k+1
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(A.11)

By choosing parameter-independent initial conditions for the state variables and setting the
adjoint variables to λV (T ) = λI(T ) = 0 the corresponding bounding terms vanish for t = 0 and
t = T . Moreover, we know that tpre

0 + d0 = 0 and tpre
Npre+1 + dk+1 = T and thus the derivatives
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of tpre
k are equal to zero for k = 0, Npre+1. The terms can again be grouped again into two

variables ξ and ψ

dL
ddji

=

Npre∑
k=1

ξk + ψk (A.12)

ξk =

[
τmem

(
λ−V ·

∂V −

∂dji
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)
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)
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k
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k
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(A.13)

ψk =

[
τmem

(
λ−V ·

∂V −

∂dji
− λ+V ·
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∂dji

)
+ τsyn

(
λ−I ·

∂I−
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− λ+I ·

∂I+

∂dji

)] ∣∣∣∣
tpost
k

(A.14)

where it was again used, that l+V − l
−
V is equal to zero at the time of the postsynaptic spike.

Thus, we have arrived at the same form as in the derivation for the weights. Now the partial
derivative jumps are again derived where we consider a spiking neuron n and all other silent
neurons m.

Transition at presynaptic spike time Again only the membrane potential changes. The
condition for the threshold from eq. (4.20) can be differentiated again and by using (V̇ −)n ̸= 0

we get
dtpost

ddji
= − 1

(V̇ −)n

(
∂V −

∂dji

)
n

(A.15)

From the differentiation of the reset after the spike (4.23) we get(
∂V +

∂dji

)
n

+ (V̇ +)n
dtpost

ddji
= 0 (A.16)

resulting in (
∂V +

∂dji

)
n

=
(V̇ +)n

(V̇ −)n

(
∂V −

∂dji

)
n

(A.17)

Because the membrane potential of non-spiking neurons and all synaptic currents do not
experience jumps, the other conditions are(

∂V +

∂dji

)
m

=

(
∂V −

∂dji

)
m

and
∂I+

∂dji
=
∂I−

∂dji
(A.18)

Transition at postsynaptic spike times The spiking neuron’s state does not experience any
transitions at the postsynaptic spike time and thus the partial derivatives do not experience any
jumps: (

∂V +

∂dji

)
n

=

(
∂V −

∂dji

)
n

and
(
∂I+

∂dji

)
n

=

(
∂I−

∂dji

)
n

(A.19)
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By differentiating (V +)m = (V −)m, using the jumping condition for V̇ (4.30) and substituting
(A.15) we get(

∂V +

∂dji

)
m

=

(
∂V −

∂dji

)
m

− τ−1
memwmn

dtpost

dji

=

(
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∂wji

)
m
+

[
1

τmem(V̇ −)n
wmn

(
∂V −

∂wji

)
n

] ∣∣∣∣
tpre
k

− τ−1
memwmnδjmδin

(A.20)

where the relation from eq. (A.4) was used again resulting in the Kronecker deltas. Also,
there is again a term with a partial derivative from the spiking neuron n at the time tpre.
This is a major difference compared to the gradients for the weights. For the synaptic current
(I+)m = (I−)m + wmn can be differentiated leading to(

∂I+

∂dji

)
m

+ (İ+)m
dtpost

ddji
=

(
∂I−

∂dji

)
m

+ (İ−)m
dtpost

ddji
(A.21)

where it was used that the weights do not depend on the synaptic delays. Now we can use
the jumping condition for İ (4.35) and (A.15) to arrive at

(
∂I+

∂dji

)
m

=

(
∂I−

∂dji

)
m

+ τ−1
synwmn

dtpost

ddji
+ δinδjm

=

(
∂V −

∂wji

)
m
+

[
1

τmem(V̇ −)n
wmn

(
∂V −

∂wji

)
n

] ∣∣∣∣
tpre
k

− τ−1
memwmnδjmδin

(A.22)

where eq. (A.4) as used again. There is also a partial derivative term from neuron n at time
tpre again.

We can substitute all partial derivative jumps at the presynaptic spike times into ξk now and
also include the two terms which arise in eq. (A.20) and eq. (A.22). This yields

ξ′k =

∑
m̸=k

[
τmem(λ−V − λ

+
V )m

(
∂V −

∂dji

)
+ τsyn(λ

−
I − λ

+
I )m

(
∂I−

∂dji

)]

+

(
∂V −

∂dji

)
n(k)

τmem

(
λ−V −

(V̇ +)n(k)

(V̇ −)n(k)
λ+V

)
n(k)

+
1

(V̇ −)n(k)

∑
m ̸=k

[
wmn(k)(λ

+
I − λ

+
V )m + l−V − l

+
V

] ∣∣∣∣
tpost
k

− ∂lp
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k

+ l+V − l
−
V


+ τsyn(λ

−
I − λ

+
I )

(
∂I−

∂dji

)
n(k)

] ∣∣∣∣
tpre
k

(A.23)
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This leads to the same jump conditions as in the derivation in section 4.1:

(λ−V )m = (λ+V )m and λ−V = λ+I (A.24)

and for λV

(λ−V )n =
(V̇ +)n

(V̇ +)n
(λ+V )n +

1

τmem(V̇ −)n

∑
m̸=k

[
wmn(k)(λ

+
V − λ

+
I )m

] ∣∣∣∣
tpost
k

+
∂lp

∂tpost
k

− l+V + l−V

] (A.25)

By substituting the partial derivative jumps at the postsynaptic spike time into ψk and
excluding the two terms that went into ξ′k we have

ψ′
k =

∑
m ̸=k

[
τmem(λ−V − λ

+
V )m

(
∂V −

∂dji

)
m

+ τsyn(λ
−
I − λ

+
I )m

(
∂I−

∂dji

)
m

+ dji(λV − λI)j
∣∣∣∣
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]

+τmem(λ−I − λ
+
I )n(k)

(
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)
n(k)

+ τsyn(λ
−
I − λ

+
I )n(k)

(
∂I−

∂dji

)
n(k)

]
(A.26)

By choosing all adjoint variables to not experience jumps

λ−V = λ+V and λ−I = λ+I (A.27)

all partial derivatives vanish and we are left with

ψ′
k = −τsyn

∑
m ̸=n(k)

δin(k)δjm(λ+I )m = −τsyn
∑

m ̸=n(k)

δin(k)(λ
+
I )j (A.28)

The remaining Kronecker Delta only is not zero if the presynaptic neuron is i and thus we
can write the gradients as

dL
ddji

=
N∑
k=0

ξ′k + ψ′
k = −τsyn

∑
spikes from i

(λI)j

∣∣∣∣
tpost
k

(A.29)

The generalization to different synaptic delays of the neurons leading to splitting up the
integral at all transition times follows exactly the same way as was argued for the synaptic
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weights, see section 4.1. So we get the jump transition

(λ−V )n =
(V̇ +)n

(V̇ +)n
(λ+V )n +

1

τmem(V̇ −)n

∑
m ̸=k

[
wmn(k)(λ

+
V − λ

+
I )m

] ∣∣∣∣
tk+dmn(k)

+
∂lp

∂tpost
k

− l+V + l−V

] (A.30)
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B Training parameters

Parameter Parameter

weight init mean, std batch size 64

hidden 3.2, 1.6 optimizer Adam

output 0.5, 0.8 β (0.9, 0.999)

delay init mean, std ϵ 10−8

hidden 0.025, 0.015 learning rate 0.005

output 0.025, 0.015 decay 0.98

τsyn 0.005 ttarget,correct [τs] 0.9

τm 0.01 ttarget,wrong [τs] 1.1

Vth 1.0

Vreset -1000.0

tbias [τsyn] 0.0 input size 5

tearly [τsyn] 0.0 hidden size 120

tlate [τsyn] 1.5 output size 3

Table B.1: Hyperparameters for training synaptic delays and weights on the Yin-Yang dataset,
adapted from [1]
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