
Department of Physics and Astronomy

University of Heidelberg

Bachelor thesis

in Physics

submitted by

Ben Luca Kroehs

born in Berlin

2025

An Intermediate Data Format for

In-the-loop Training on Neuromorphic Hardware

This Bachelor thesis has been carried out by

Ben Luca Kroehs

at the

Kirchhoff Institute for Physics

under the supervision of

Prof. Dr. Johannes Schemmel

Ein intermediäres Datenformat für In-the-Loop-Training auf neuromorpher
Hardware

Intermediäre Formate, sowohl für Netzwerktopologien als auch für Daten in gepulsten neu-
ronalen Netzen (SNNs) sind entscheidend für die Interoperabilität zwischen Simulatoren
und die Austauschbarkeit neuromorpher Hardware-Plattformen. In dieser Arbeit wird ein
Datenaustauschformat vorgestellt, das die Neuromorphic Intermediate Representation (NIR)
erweitert, indem es die Infrastruktur zur Darstellung und Transformation von Spike-Daten
auf Netzwerkknotenebene bereitstellt. Das Format unterstützt sowohl event-basierte als auch
zeitdiskretisierte Repräsentationen von Daten und ermöglicht die Konvertierung zwischen
beiden.
Um die praktische Relevanz des Formats zu demonstrieren, wurde eine In-the-Loop-
Trainingsroutine implementiert, die die Software-Frameworks hxtorch und jaxsnn mit der
neuromorphen Hardware BrainScaleS-2 kombiniert. Der Vorwärtspfad wird auf der Hardware
ausgeführt, während der Rückwärtspfad in der Simulation unter Verwendung der Hardware-
Spikes berechnet wird. Die Trainingsleistung wird als Funktion der zeitlichen Auflösung dt
bewertet und zeigt eine starke Abhängigkeit in der Simulation und eine auflösungsinvariante
Genauigkeit auf der Hardware jenseits eines bestimmten Schwellenwertes.
Im Vergleich zu existierenden Standards wie ONNX oder PyNN bietet das vorgeschla-
gene Format eine leichtere und anpassungsfähigere Lösung, die auf Anwendungsfälle des
maschinellen Lernens von gepulsten neuronalen Netzen zugeschnitten ist. Es erleichtert
simulator-unabhängiges Training und vereinfacht den Zugang zu neuromorphen Substraten.

An Intermediate Data Format for In-the-loop Training on Neuromorphic Hard-
ware

Intermediate representations for both network topologies and observable data in spiking
neural networks are crucial for achieving interoperability between simulators and enabling the
interchangeability of neuromorphic hardware platforms. This thesis introduces a data exchange
format that extends the Neuromorphic Intermediate Representation (NIR) by providing the
infrastructure to represent and transform node-wise spike data. The format supports both
event-based and time-discretized representations of data and allows conversion between them.
To demonstrate its practical relevance, an in-the-loop training routine is implemented that
combines the hxtorch and jaxsnn software frameworks with the BrainScaleS-2 neuromorphic
hardware. The forward pass is executed on hardware, while the backward pass is computed in
simulation using the hardware spikes. The training performance is evaluated as a function
of the temporal resolution dt, showing a strong dependency in simulation and a resolution-
invariant accuracy on hardware beyond a certain threshold.
In comparison to existing standards such as ONNX or PyNN, the proposed format offers a
more lightweight and adaptable solution tailored for machine learning use cases of spiking
neural networks. It facilitates framework-independent training pipelines and simplifies access
to neuromorphic substrates.

Contents

1 Introduction 5

2 Theoretical Background 7
2.1 Spiking Neural Networks . 7
2.2 Description of SNNs in Software and the Implementation of Algorithms for Training 9
2.3 Gradient-based Learning for Spiking Neural Networks 10
2.4 In-the-loop Training . 10
2.5 BrainScaleS-2 – A Mixed-signal Neuromorphic Hardware 11
2.6 The YinYang Dataset and Time-To-First-Spike Encoding 12

3 Existing Software 14
3.1 jaxsnn . 15
3.2 NIR . 16
3.3 hxtorch . 17

4 Implementation 19
4.1 Intermediate Data Exchange Format . 20
4.2 Conversion between jaxsnn and NIR . 24
4.3 Conversion between hxtorch and NIR . 25
4.4 Other Contributions to NIR . 28

5 Experiments 29
5.1 In-the-loop Training via NIR – One Loop to Rule Them All 30
5.2 Runtime Performance Evaluation of In-the-loop Training 36

6 Discussion 38

7 Outlook 40

8 Acknowledgments 41

9 References 43

A Software State 48

4

1 Introduction

During the decades, various approaches have emerged to address how data is processed and
computed, ranging from optimizing conventional methods to exploring entirely novel paradigms.
There are many different aspects that can be taken into consideration. On the one hand a
major goal is to increase the efficiency of existing algorithms concerning the time and energy
needed, since energy consumption of computation is rather high [1]. At the same time, visionary
algorithms and methods are being explored to solve the same problems through fundamentally
new approaches, like event-based computation [2] or low precision numerics [3].

During the end of the last century, machine learning has emerged to be one of these visionary
approaches, though being around since the 19th century [4]. From the the early 2000s on, the
popularity has been increasing exponentially, benefiting many other fields [5, 6, 7]. One example
is the translation tool DeepL, which outperforms conventional statistical and rule-based models
[8].

Nowadays, machine learning as a tool has been adopted in a wide range of domains, itself
containing several subfields. A key concept of machine learning is to define computational
models and train their parameters by defining a loss with respect to a performance metric to
be optimized and using algorithms like gradient descent. Artificial neural networks (ANNs)
show a basic concept of machine learning which imitate the brain, being models consisting of
abstracted neurons and synapses. There are different approaches which are oriented to biology
in varying degrees. While ANNs encode the information in numbers, spiking neural networks
(SNNs) encode the information in events over time, also known as spikes, much like the brain.
This event-based nature promises to be more energy efficient than conventional computing. As
a result, different approaches to optimize these models are emerging and in order to determine
the most effective ones, a comparison between these methods is necessary.

The training and inference of these SNNs in software [9, 10, 11, 12, 13] or on dedicated
neuromorphic chips [14, 15, 16, 17] is one aspect where these approaches might differ. To train
SNNs on neuromorphic hardware, a common approach is so-called hardware in-the-loop (ITL)
training [18], in which a simulator interacts with the hardware by receiving the model’s inference
results and computing the corresponding parameter updates. However it is also possible to train
the model in software and port it to hardware for inference. This might possibly perform not as
well because it does not take special properties of the hardware into account that might alter
the inference.

For hardware ITL training there is typically one simulator framework that is tailored for

5

the special configurations of the hardware platform. To enlarge the accessibility of such
neuromorphic hardware it is desired to enable training and inference of SNNs that are defined
in other simulators. This can be simplified by introducing an intermediate representation
for network topologies, as this simplifies the implementation of network conversions between
different simulators.

There are several approaches for the intermediate representations of network topologies
between software frameworks, like ONNX [19] or PyNN [20], where ONNX is solely an exchange
format for ANNs and PyNN can also transform topologies of SNNs influenced by neuroscience.
Both define a set of nodes that are commonly used in ANNs or SNNs, which form an intermediate
representation. A recent development that aims in the same direction is the neuromorphic
intermediate representation (NIR) [21], which also defines nodes but focuses on SNNs from a
machine-learning perspective.

But additionally to the exchange of topologies, data must be translated between the software
frameworks for ITL training. Also the comparison of methods concerning SNNs, as it is done in
benchmarks, is simplified when the input data can be converted between the different software
frameworks.

In this thesis, a data exchange format is introduced to simplify implementing approaches like
hardware ITL training with arbitrary software frameworks. It takes its cue from NIR – a data
exchange format for topologies of SNNs. As a first step, the current definition of data formats
for observables in software frameworks for SNNs is investigated and a conversion between these
formats is implemented. Further, this implementation is then validated in an demonstrator
example for ITL training with the BrainScaleS-2 (BSS-2) hardware platform and also with
simulation. Finally the performance of the conversion is evaluated.

6

2 Theoretical Background

2.1 Spiking Neural Networks

During the last years, machine learning as a tool found its way into various fields of application.
A basic concept of machine learning are neural networks (NNs) – computational models which
are inspired by the behavior observed in the brain. Therefore, they implement a computational
graph, consisting of “neurons” connected by “synapses”, where the neurons are nodes where the
main computation happens and the synapses forward the information and adjust the strength.
Artificial neural networks (ANNs) work such that a neuron sums over its input values xi from
incoming synapses and a bias term b, applies an activation function ϕ and returns the output y.

yj = ϕ

(
n∑

i=1

wjixi + bj

)
(2.1)

The synapses can be displayed by a 2-dimensional matrix of weights, where each weight wij

corresponds to the factor by which the output of neuron j is scaled by arriving at neuron i.
In ANNs, the input data is processed in a static, feedforward manner, lacking an inherent

time dimension. Spiking neural networks (SNNs) are an extension of ANNs, that have a time
dimension by introducing neurons with a state that evolves over time. Their characteristic is
that they implement a time dimension in which the data is encoded as discrete events in time,
also called spikes. Similar to NNs, the neurons are connected via synapses.

There, an often used spiking neuron model is the leaky-integrate and fire (LIF) neuron [22],
where the neuron state consists of a membrane voltage V and the current on the membrane I.
For each incoming event, a certain amount of charge is deposited on the membrane, resulting
in a membrane voltage V which is decaying over time to the resting potential Vrest. If the
membrane voltage crosses a threshold θ, the neuron sends out a spike which is transmitted to all
connected subsequent neurons and the membrane voltage V is reset to the set potential Vreset,

if V > θ : V → Vreset. (2.2)

If there is no spike, the dynamics of the neuron are described by the following differential
equation:

τmem
dV

dt
+ V = Vrest +

I

gl
. (2.3)

7

Here, gl describes the leak conductance and τmem the membrane time constant. For an
incoming spike from a neuron i, the synaptic input current I is raised by the value of the
corresponding weight:

I → I + wjiei, (2.4)

where ei is a unitary vector with an 1 at i-th position. Within the LIF model, the synaptic
current is modeled as discrete spike events.

The LIF model can be extended by modeling the current I which is decaying over time:

τsyn
dI

dt
+ I = 0. (2.5)

This formula describes current-based synapses with exponential decay, which are used in the
current-based leaky-integrate and fire (CubaLIF) neuron.

2.1.1 Grid-based Computation in Spiking Neural Networks

In the several software frameworks like hxtorch [23], Norse [11], or snnTorch [12], which implement
SNNs, the spike data is stored in a time-gridded fashion. This means that a temporal resolution
dt is introduced and thus the time axis is divided in a set number of time steps. The data, such
as the outgoing spikes of a specific neuron, are now represented by a vector which has one entry
for every time step. If the neuron spikes at this certain time step, the vector has the value 1 at
this position, else it is 0. A whole batch of spike data for one layer of neurons is represented
by a 3-dimensional tensor. Software frameworks now implement their numerical solver of the
LIF dynamic equations to find the spike times. Consequently, the numerical solvers used in
simulator frameworks operate on this discretized time axis to simulate the dynamics of spiking
neurons, such as those described by the LIF model.

The main disadvantage of this approach is concerning the time resolution dt. If the exact
timing of a spike is crucial, e.g. for one’s learning algorithm, the temporal resolution should
be as small as possible. But with smaller temporal resolution also the tensor holding the data
gets larger and thus it takes longer to solve the differential equation 2.3. This shows a trade-off
between temporal resolution vs. memory and experiment runtime.

2.1.2 Event-based Computation in Spiking Neural Networks

The counterpart of the time-gridded approach is the event-based data representation. The spikes
of a neuron are represented by the time stamp at when the spike is emitted as well as some
identification key of the neuron that emits the spike. By that, the accuracy of the spike time is
no longer limited by a time resolution dt. This representation can especially show advantages
for sparse data, e.g. if there is only one spike per neuron: While in the event-based approach
there would only be n tuples of spike time and index, where n denotes the number of neurons,

8

the grid-based data representation would show a tensor consisting of mainly zeros. The size
would be dependent on the temporal resolution.

2.2 Description of SNNs in Software and the Implementation of
Algorithms for Training

Spiking neural networks but also neural networks in general perform different according to their
parameters. In a process called "training" the parameters are varied such that the performance
is maximized. Therefore the performance has to be defined in a formula. A common approach
is to define a loss, e.g. the mean-squared-error, between a value that is predicted by the model
and the real value.

In software frameworks the forward pass is commonly defined by a model instance (lst. 1),
which can be executed with input data, that matches the model’s topology in terms of shape
and data format, see section 2.1.1 f.. While computing the forward pass, the model keeps track
of the computations that happened. This information is necessary to perform the gradient
calculations in the backward pass.

1 model = ...
2 optimizer = ...
3

4 for e in range(n_epochs):
5 input_batches, target_batches = dataset(seed=..)
6 for i in range(n_batches):
7 input_batch = input_batches[i]
8 target_batch = target_batches[i]
9

10 output_batch = model(input_batch) # forward pass
11

12 loss = loss_func(output_batch, target_batch)
13 loss.backward() # backward pass
14

15 optimizer.step()

Listing 1: Exemplary training routine of an ANN. After defining the model and a optimizer for
training, for each batch of each epoch the model is trained on the dataset by performing the
forward pass of the network and then performing backpropagation on the loss.

To achieve a good performance, the most common approach is to use a set number of samples
drawn from a dataset split into batches. The model is then applied on all batches iteratively,
while the model’s parameters are updated after each batch. These processes happen during one

9

so-called epoch. After one epoch has finished, the dataset is potentially shuffled and the next
epoch begins. After several epochs and assuming that the conditions are good enough and the
learning rate is decreasing, the accuracy of the model converges to a certain value and reaches a
(local) maximum.

2.3 Gradient-based Learning for Spiking Neural Networks

To obtain an optimized set of parameters, a commonly used algorithm is backpropagation.
This is achieved by differentiating the loss with respect to the parameters. In a basic case, the
gradient descent algorithm would be used to compute an update for the respective parameters.
The gradients are scaled with a step size η, which determines how strong the parameters are
altered per iteration. In a working training setup, the parameters would converge to a certain
value, which denotes a local minimum of the loss. For large step sizes, the gradient descent
algorithm can become unstable and thus the parameters would not converge. But there are
methods to make the gradient descent algorithms more stable, like the Adam optimizer [24],
which uses a floating mean of past gradients (momentum) and is based on stochastic gradient
descent.

However spiking neural networks introduce discrete jumps in the dynamics of neurons
(eq. (2.2)). With the equations not being differentiable, backpropagation cannot be used
for gradient estimation. There are different approaches to handle this issue. The first one is
using a differentiable approximation for the threshold function, like a sigmoid function (eq. (2.6)),
in the backward pass:

σ(x) =
1

1 + e−x
. (2.6)

Furthermore the computation is performed on a discrete time grid, limiting the resolution of
the spike times. This method is called surrogate gradients and was derived by Neftci, Mostafa,
and Zenke [25]. This does not alter the forward pass, but the gradients are no longer exact.
Nevertheless, this makes it possible to perform backpropagation through time (BPTT).

Wunderlich and Pehle [26] proposed EventProp, an algorithm, where exact gradients are
computed using the adjoint method. In the event-based backward pass, the adjoint variables
are evolved backwards in time and then sampled at the spike times to calculate the gradients.

2.4 In-the-loop Training

To use neuromorphic hardware like the BrainScaleS-2 (BSS-2) chip, special training routines
have to be used, because models trained in software are expected to perform worse on analog
hardware, which cannot be simulated perfectly, due to manufacturing defects or fixed-pattern
noise. Therefore, backpropagation cannot be performed on the physical dynamics of the neurons

10

on-chip. To address this problem, Schmitt et al. [27] developed the concept of hardware in-the-
loop (ITL) training (fig. 2.1), an approach where the forward pass is performed on hardware and
the recording is then used in the backward pass in a software model to compute the gradients
and the model parameter updates, instead of evolving the observables in a simulation. This
software model only has to be an approximation of the hardware platform since the forward pass
is performed on hardware. During this training, several data exchanges are necessary: Every
batch has to be transformed from the software framework to hardware and back.

so�ware hardware

substrate

Model

event-based
training

weight
updates

Dataset

topo

input

output

Figure 2.1: Flow graph for ITL training. The model as well as the dataset are defined in the
main software framework (left). To perform the inference on the hardware platform, the network
topology as well as the batch of input data has to be translated to it. The resulting output
data is then transformed back and used for gradient computation and updating the weights.

2.5 BrainScaleS-2 – A Mixed-signal Neuromorphic Hardware

The way in which information is processed by spiking neural networks differs from that of
conventional von-Neumann architectures. While these conventional computers have a separation
between the storage and the CPU, neuromorphic hardware does not show this separation – just
like the brain. Due to the architectural similarity to the executed model, efficiency benefits are
expected.

Thus, it is useful to investigate the field of neuromorphic hardware, that is tailored to fit
the requirements and needs of spiking neural networks. There are analog as well as digital
approaches concerning the type of signal and data processing on such hardware: On digital chips,
the single neurons are simulated such that the equations of the desired neuron model are solved
in a numerical way. Also digital hardware in general offers advantages such as reduced sensitivity
to noise, since calculation inaccuracies are the only significant source of noise. Therefore this

11

approach is often followed, e.g. by the SpiNNaker architecture using of SpiNNaker-2 chips to
emulate spiking neural networks.

In contrast to this, analog hardware implements circuits that emulate the neuron dynamics
physically, which aim to be more energy efficient. On analog substrates, the dynamics are more
vulnerable to noise on the signal. The BrainScaleS-2 chip [17] is one example for a mixed-signal
neuromorphic platform, meaning that there are both, digital and analog parts on the substrate.
This chip implements 512 adaptive exponential integrate-and-fire (AdEx) neurons [28], whose
parameters, like the threshold potential or the time constants, can be configured and also the
topology of the network is flexible. These neurons and the synapses are emulated in an analog
fashion, but the processing of the event signals as well as the chip configuration happens digitally.
Typical time constants for parameterization of the neuron circuits on the BSS-2 hardware are in
the range of microseconds, what facilitates a speed-up factor of 1000 in comparison to biological
time constants.

These chips are currently accessible via field-programmable gate arrays (FPGAs), which
execute so-called playback programs, describing the experiment protocol in physical time.

The spikes are represented as events, while their time resolution is 8ns – corresponding to
the FPGA’s 125MHz clock. When measuring the membrane potential of the analog neurons,
an analog-to-digital converter (ADC) is needed. The BrainScaleS-2 chip contains two different
kinds of ADCs: a slow columnar ADC (CADC) and a faster and thus more precise membrane
ADC (MADC). The CADCs are only faster when all neurons have to be read out because they
can each read out 256 columns of one row of neurons at parallel, while the MADC can only
read out two neurons at one time. Another important information is that the synaptic weights
are supplied as 6-bit digital values, while the sign is adjustable for each row of synapses.

This has to be accounted for when deploying a model from software to hardware.

2.6 The YinYang Dataset and Time-To-First-Spike Encoding

The Yin-Yang dataset [29] has been introduced as a task which can be solved by rather small
network topologies (30 hidden neurons), though achieving high accuracies (97.6%). These are
reasons why it is convenient to be used for prototyping network architectures, new algorithms
or substrates. The dataset describes points in a circle, that are categorized in three classes,
"Yin", "Yang" and "Dots" (fig. 2.2), where each class occurs equally frequently.

12

Figure 2.2: Visualization of YinYang dataset and the encoding of coordinates into spike times.
Taken from Kriener, Göltz, and Petrovici [29].

For spiking neural networks, each sample is encoded into four input spikes plus one bias spike,
that has the same timing for all samples. The spike times of the other four input spikes depend
on the sample’s coordinates. The coordinates x and y are encoded into spike times such that
two spikes correspond to the x and y value while the other two are corresponding to 1− x and
1 − y for symmetry reasons. Each of these four values is then mapped to the range between
tearly to tlate.

Typically, either a non-spiking layer built of leaky-integrator (LI) neurons or a spiking output
layer of LIF neurons are used [29, 30]. The spiking output layer requires decoding of the output
spikes. Therefore, target spike times are defined for the three output neurons. A possible way is
the time-to-first-spike decoding: Here, the loss operates on the difference between the time of
the first spike of a neuron and its target time and the classification is based on the first spike
occurring across the output neurons.

13

3 Existing Software

In the previous years, a variety of neuromorphic frameworks with different approaches for
network representation came up [23, 11, 12, 13]. Since these software frameworks differ in
their implementation, also the numerics might be different. For reasons of comparability it
is advantageous to have the possibility to translate the implementation of a spiking neural
network from one framework to another. In cases where different implementations are to be
compared, the same model description is written down in both frameworks (fig. 3.1a). But with
an intermediate representation for model descriptions of SNNs, the topology can be translated
from one framework to another, thus erasing the need to write it down twice (fig. 3.1b).

model A model B

task

topology

input input

results results

(a) Processing pipeline without an intermediate
representation

IR modelmodel A model B

task

topology

input input

results results

(b) Processing pipeline with an intermediate
representation (IR)

Figure 3.1: Process of applying a task on a software framework by implementing (purple arrows)
an encoding of the data into spikes and an implementation of a topology that has previously
been the subject of consideration on the basis of the task. The circles describe data while
the rectangles describe a model for spiking neural networks. The different colors refer to
implementations within different software frameworks. With an intermediate representation
(right), the implementation of the topology in one framework suffices and the second model is
obtained by conversion via this intermediate representation (orange arrows).

For the case of (hardware) in-the-loop training, where the forward pass is executed on an
external software framework (or on a hardware platform), the framework has to support the so-
called "Unterjubel" functionality (Ger.: to slip something to someone unnoticed). "Unterjubel"
describes the functionality to calculate the gradients of the weights according to the loss and
update the weights without performing the forward pass by itself but with externally acquired
observables by performing the inference on an external framework. Examples of frameworks

14

which are currently supporting this are the event-based simulation and training framework jaxsnn
[13] as well as the grid-based simulation and training network hxtorch [23]. Both frameworks
support the use of the BrainScaleS-2 hardware platform.

3.1 jaxsnn

jaxsnn is an event-driven software framework [13], designed to match with the event-driven
nature of neuromorphic substrates just like BSS-2 [17]. It is built upon JAX [31], a library
that is built on top of NumPy and designed especially to support high performance computing.
This is achieved by delivering key features like just-in-time (JIT) compilation and also efficient
and convenient function transformation, improving flexibility. Similar as in PyTorch [32],
JAX supports defining a custom backward function and autograd functionality for gradient
computation. A new feature is that when generating the backward pass, the forward pass does
not have to be performed.

jaxsnn follows an init-apply-approach: The apply function implements the network’s forward
pass and also implicitly the backward pass while the init function generates an initial weight
setup for the synapse layers. To create deep SNNs, individual init and apply functions of each
layer of neurons are composed in an init-apply-pair, representing the whole network. Currently,
jaxsnn does not explicitly represent synapse layers1. The apply function also depends on the
used neuron type. Currently, only CubaLIF neurons are supported in jaxsnn, since this is
also a neuron type which is implemented on BrainScaleS-2. The CubaLIF neuron in jaxsnn is
implemented in different variations, as detailed in the following:

LIF This is the basic CubaLIF neuron. For the forward pass, the neuron
dynamics are evolved from spike to spike, while these spikes are
found by a analytical formula [30], which only holds for τmem = τsyn

and τmem = 2τsyn.

EventPropLIF The EventProp version uses the same forward pass but applies the
EventProp algorithm for the computation of the backward pass.

RecurrentLIF This one allows for layer-wise recurrence by representing the input
and the recurrent connection in a single weight matrix, allowing
projecting the neuron layer’s spikes onto itself.

RecurrentEventPropLIF There is also a recurrent version of the EventPropLIF, which enables
the definition of recurrent network topologies.

HardwareLIF If the forward pass should be external, the neuron needs a "Unter-
jubel" functionality. This is provided by the HardwareLIF neuron.

1It is planned to implement an explicit representation of synapse layers in jaxsnn [33].

15

Its backward pass is implemented using the EventProp algorithm.

HardwareRecurrentLIF This is a HardwareLIF neuron, which can be used for recurrent
networks.

In contrast to a time-gridded data representation as it is used in many PyTorch-based
neuromorphic frameworks, in jaxsnn every spike is described by a tuple of the time it occurred
and the index of the neuron. This tuple is called Spike. If the user wants to use the EventProp
algorithm for training, also the neurons state, consisting of membrane voltage and current,
needs to be known at the spike times. The membrane voltage directly before the spike is the
threshold ϑ and is reset to the reset potential Vreset directly after the spike. Therefore only the
current has to be provided additionally for every spike, what is represented in a class called
EventPropSpike.

3.2 NIR

The idea of the neuromorphic intermediate representation (NIR) [21] is an approach to implement
a simple and universal representation for SNNs in the form of a NIRGraph. In addition,
its implementation is very close to other machine learning frameworks, which simplifies the
integration. Different neuromorphic frameworks can now implement a conversion from their
representation of the networks topology to a NIRGraph as well as the opposite direction, coming
from the NIRGraph. An exemplary NIRGraph is implemented in lst. 2.

The NIRGraph is represented by a dictionary consisting of the graph’s nodes plus a list of the
edges between the nodes. In advance of this thesis, NIR defines a set of 16 primitive nodes, such
as a Linear node or a LIF node. For convenient graph handling the primitives also include two
dummy nodes Input and Output, that contain the input and output shape of the network. The
input and output shape of the remaining nodes are defined implicitly via their attributes: For
the Linear node the size is determined by the shape of the weight matrix; the shape of the
neuron parameters, e.g. threshold, specifies the LIF’s size.

The intermediate representation is also limited to a description of the networks topology and
does not include a representation of e.g. spike data. In addition, NIR itself does not implement
the numerics of the nodes but is a pure representation for abstract topologies of spiking neural
networks.

Typically, frameworks for SNNs implement a to_nir and a from_nir function, which rep-
resent the interface to NIR. The to_nir function takes a graph in the representation of the
respective framework that is converted to a NIRGraph. Analogously, the from_nir function
takes a NIRGraph and returns the model in the frameworks representation. In some software
frameworks, also a conversion configuration has to be supplied. This holds parameters that are
not represented in the current version of NIR.

16

1 one_layer_graph = nir.NIRGraph(
2 nodes = {
3 "input" : nir.Input(input_type=np.array(5*[1])),
4 "linear1" : nir.Linear(weight=...),
5 "lif" : nir.LIF(tau=np.array(20*[1]),
6 r=np.array(20*[1]),
7 v_leak=np.array(20*[0]),
8 v_threshold=np.array(20*[1])),
9 "linear2" : nir.Linear(weight=...),

10 "output" : nir.Output(output_type=np.array(3*[1]))
11 },
12 edges = [
13 ("input", "linear1"),
14 ("linear1", "lif"),
15 ("lif", "linear2"),
16 ("linear2", "output")
17]
18)

Listing 2: Example of a NIRGraph with 5 input neuron, 20 hidden neurons and 3 output neurons.

3.2.1 NIRTorch

Since many neuromorphic frameworks are based on PyTorch, a helper module NIRTorch [34] is
provided as part of NIR. Its aim is to facilitate the implementation of a conversion between
PyTorch-based neuromorphic frameworks and NIR. Frameworks like Norse [11] or snnTorch [12]
are already using this module. The conversion is implemented such that the nodes are converted
iteratively, according to a network graph, which is generated by NIRTorch. Each node is then
transformed according to a framework-specific conversion function.

3.3 hxtorch

The PyTorch-based neuromorphic simulation and training framework which supports the mixed-
signal substrate BSS-2 is hxtorch [23]. This framework supports hardware in-the-loop (ITL)
training, meaning that the forward pass is executed on the neuromorphic hardware. The
recorded spikes are then used in hxtorch ("Unterjubel") to perform the backward pass by
calculating the gradients, e.g. via back-propagation. hxtorch implements different PyTorch
modules, like a leaky integrate-and-fire neuron (Neuron), a leaky integrator (ReadoutNeuron), a
synapse (Synapse) and also a dummy input neuron (InputNeuron). These PyTorch modules

17

are especially designed to use the BrainScaleS-2 chip. This is shown e.g. by the ability to set
which of the analog-digital-converter should record the membrane trace or if the membrane
is to be recorded at all. In addition, hxtorch has a mock mode, where the neuron traces are
simulated in software. This mode is especially useful for testing algorithms or training routines
before deploying them on neuromorphic hardware.

Every module in hxtorch has an attribute that takes a Experiment object, which represents
a experiment in software or hardware. It also contains the information if the experiment is run
on hardware or not and also the whole network topology including the associated modules.

18

4 Implementation

As shown in fig. 3.1, the workflow for deploying the same experiment on different software
frameworks is simplified by the introduction of an intermediate representation for topologies,
as it eliminates the need to implement the topology twice, once for each framework. In the
following, NIR is used as an exchange format for topologies of SNNs. Additionally, the data
has to be encoded and transformed to both software frameworks. This can be avoided by
introducing a data exchange format, as it is shown in fig. 4.1. With this, spike data between
different software frameworks can be transformed easily, no matter if the data is represented
grid-based as a torch.Tensor or if it is a event-based jax.Array.

IR modelmodel A model B

task

topology

input input

results results

(a) Processing pipeline without an intermediate
data representation

IR modelmodel A model B

task

topology

input input

IR input

results results

results

IR results

(b) Processing pipeline with an intermediate
data representation

Figure 4.1: Process of applying a task on a software framework by implementing (purple arrows)
an encoding of the data into spikes and implementation of a topology that has previously
been the subject of consideration on the basis of the task. The circles describe data while the
rectangles describe a model for spiking neural networks. With NIR the model has only to be
implemented in framework A (blue) and the data exchange format enables transforming the
data from framework A to framework B (green). Also the output data of both models can
be compared easier since they can be transformed between the different software frameworks.
Orange arrows show the conversions, which are performed with the NIR interface

19

Also this format should be oriented on the NIRGraph, so that the spike data is organized as
a dictionary that connects multiple NIRNode objects and the corresponding input or output
spikes. It also necessary that the data provided by the software framework is arranged in a
dictionary such that the keys correspond to the NIRGraph.

1 # transformation: software framework (sf) -> NIR
2 nir_data = sf.to_nir_data(sf_data, sf_model)
3

4 # transformation: NIR -> software framework (sf)
5 sf_data = sf.from_nir_data(nir_data, sf_model)

Listing 3: Conversion interface for conversion of dictionaries of spike data between an arbitrary
software framework and NIR. Both conversion functions take the corresponding dictionary of
spike data.

The software interface in NIR ought to be one function call per conversion to or from the data
exchange format to retain simplicity (lst. 3). An arbitrary software framework has to implement
a from_nir_data function that converts a NIRGraphData object into the frameworks native
data representation as well as a to_nir_data function. Both functions take just two arguments:
the dictionary of data and the model in the software framework’s native representation.

4.1 Intermediate Data Exchange Format

This thesis proposes extending the neuromorphic intermediate representation (NIR), which is
currently an exchange format for topologies of SNNs, by an intermediate data representation.

4.1.1 TimeGriddedData and EventData

The data representation should be as general as possible – just like NIR itself: It must be very
flexible and therefore have the ability to convert effortlessly between event data and time-gridded
data. To provide this, the data format must be able to contain time-gridded data as well as
event data. For the case that a framework requests the data to be time-gridded but it was
delivered as event data and vice versa, there should be an internal conversion between both of
the formats.

Therefore, two classes, EventData and TimeGriddedData that each hold the spike data for a
single batch are implemented. Both classes have a function that returns the spike data converted
to the respective other class.

In case of the EventData, an orientation is the Spike class in jaxsnn. EventData has two
attributes, time and idx, each being a 2-dimensional numpy.ndarray of shape (batch_size,

20

n_spikes), where n_spikes is the number of spikes which are allowed per layer. The time-
array holds the time of the occurring spikes while the idx-array contains the indices of the
corresponding neurons. If the number of spikes that are allowed per layer n_spikes exceeds the
number of spikes that really happened, empty events are added, denoted by a -1 as idx at the
corresponding place.

1 event_data = EventData(idx_array, time_array)

For the TimeGriddedData the implementation in Norse or hxtorch is referred. Here the
spikes for one batch are stored in a 3-dimensional numpy.ndarray of shape (batch_size,

n_time_steps, n_neurons). This array is by default filled with zeros. If a spike happens for a
specific neuron in a time step, this is denoted by a 1 at the corresponding position along the
time dimension in the array. Also the data class contains the temporal resolution dt as attribute
to interpret the time-gridded data correctly:

1 time_gridded_data = TimeGriddedData(data, dt=5e-5)

Each of both classes also contain a function implementing the conversion to the other data
format, meeting the demands of different software frameworks connected via NIR. This reduces
the amount of effort that is necessary for a software framework to implement the conversion to
the data exchange format and back.

The translation from EventData to TimeGriddedData is implemented straight-forward by
assigning each event-based spike the corresponding time step on the grid (fig. 4.2a). For this
conversion one additionally has to provide the number of neurons as well as the number of time
steps and the temporal resolution, since these parameters are needed in the grid-based format:

1 time_gridded_data = event_data.to_time_gridded(n_neurons=50,
2 n_time_steps=100,
3 dt=5e-5)

The opposite direction, converting grid-based data to event-based data is not as trivial. Since
the number of spikes is not easily known, the maximum number of spikes has to be provided as
an argument to get the shape of the event-based data format. But for a spike occurring in on
certain time step it is not known at which discrete point it time the threshold was exceeded
(fig. 4.2b). Some implementations in neuromorphic software frameworks might differ in the way
of numerically solving the neurons dynamics. Thus it is useful to implement the conversion
from TimeGriddedData to EventData such that the user can choose, where the spike should be
located on the time axis.

21

EventData TimeGriddedData

(a) Conversion from EventData to TimeGriddedData

EventDataTimeGriddedData

(b) Conversion from TimeGriddedData to EventData

Figure 4.2: Example showcasing the conversion between EventData and TimeGriddedData.
While the conversion from the event-based format to the time-gridded format is ambiguous, the
way vice versa is not clear. The introduced parameter time_shift resolves this ambiguity in
the translation from TimeGriddedData to EventData. This is illustrated by three exemplary
spikes (time_shift = 0.0, 0.5 dt, dt) in one time step.

The time_shift parameter, introduced in the time_gridded_to_event conversion, describes
the temporal offset from the start of a time step, enabling more flexibility for the implementation
of data format conversions:

1 event_data = time_gridded_data.to_event(n_spikes=100, time_shift=0.5*dt)

The range of this parameter is limited from 0 to dt ensuring the event-based spike stays in
the corresponding time step. For most cases this offset will either be 0 (fig. 4.2b, orange spike)
or dt (purple spike), but also a value like 0.5 · dt (green spike) could be desirable.

Currently it is not supported to change the temporal resolution dt when converting from the
data exchange format to a software framework. If the temporal resolution has to be changed,
the data could first be translated to an EventData object and then back to a TimeGriddedData

object.

4.1.2 From NIRNodeData to NIRGraphData

In an SNN, every node, e.g. a LIF layer, comes with a set of observables. Some of these
are value-less observables and just contain a time stamp of an event, like spike times. Other
observables like the membrane trace are valued data, because there is a value for each time
stamp. Also for different training approaches, the set of necessary observables varies. The

22

proposal is to have a NIRNodeData object, which contains a dictionary of observables for a
specific NIRNode. Currently, the conversion only supports one entry, "spikes", which can either
be TimeGriddedData or EventData, but this would be a possible interface for future extensions.
This NIRNodeData object also has an attribute t_max, which denotes the maximum simulation
time. This is necessary for the conversion from EventData to TimeGriddedData, to ensure that
the resulting time-gridded arrays do not differ in size along the time axis. This would happen if
the last spike time would be taken as t_max.

1 lif_data = NIRNodeData(
2 observables = {
3 "spikes": event_data,
4 # "membrane": not_yet_implemented
5 },
6 t_max = ..
7)

Listing 4: Exemplary use of a NIRNodeData object, containing the event-based data of a LIF
layer. As of now, only spikes are supported as observables.

A possible application of this data exchange can now be the transformation of recorded spikes
on a hardware platform back to a software framework for training. For example, one could be
interested in the spikes of the output layer but also of a hidden layer. The different instances of
NIRNodeData are organized in a dictionary nodes with the corresponding node key, according
to the NIRGraph. The nodes dictionary is the only member of the NIRGraphData class, which
finally represents one batch of data for the desired nodes (fig. 4.3 and lst. 5).

1 graph_data = NIRGraphData(
2 nodes = {
3 "lif": lif_data,
4 ..
5 }
6)

Listing 5: Exemplary use of a NIRGraphData object, containing a NIRNodeData object lif_data
to the node with key "lif".

23

NIRGraphData
EventData

NIRNodeData

key
node data

...

TimeGriddedData

...

NIRGraph

di
ct

di
ct

NIRNode

key
node

Figure 4.3: Class diagram of the data exchange format. The books display dictionaries. The
keys of the dictionary which contains the NIRNodeData objects coincide with the keys in the
nodes dictionary of the corresponding NIRGraph, retaining interoperability between NIR and
the data exchange format. The data is stored in a NIRNodeData object, which is currently
restricted to spike data, thus being either of type EventData or TimeGriddedData.

Similar to the topology conversion, the different software frameworks now have to implement
the conversion from their data format to the data exchange format and back. It is expected that
a software framework converts to the type of data that is more suitable, such that a grid-based
framework like Norse also uses the TimeGriddedData class for the conversion to NIR. For the
opposite direction, coming from the data exchange format, the framework should first check of
which type the spike data is and then use the internal conversion function if the other format is
desired.

4.2 Conversion between jaxsnn and NIR

In previous work by the author [35] the conversion of network topologies from NIR to jaxsnn
has been implemented for the set of nodes which are currently supported by jaxsnn. This was
done by an iterative approach translating node-by-node. Also a separate ConversionConfig

object had to be implemented to provide additional attributes that are not represented in NIR
such as the maximum simulation time tmax, which in jaxsnn is required for constructing the
neuron layers. At the moment, the set of subclasses of NIRNode that is supported for translation
to jaxsnn is limited, as it only includes the CubaLIF and Linear. See lst. 6 for the conversion
interface from NIR to jaxsnn.

This configuration is now being extended to also support use cases where the forward pass
is not performed by jaxsnn itself but on an external framework like hxtorch using the BSS-2
hardware. Therefore, a boolean argument external is added, which determines which layer
type to use. For external spikes, the neuron type is changed to a version which does not perform

24

the forward pass itself but receives the output spikes from the inference platform.

1 nir_model = nir.NIRGraph(...)
2

3 jaxsnn_cfg = jaxsnn.ConversionConfig(v_reset = ..,
4 n_spikes = {'layer_1': .., 'layer_2': ..}
5 t_max = ..,
6 external = ..)
7 jaxsnn_model = jaxsnn.from_nir(nir_model, jaxsnn_cfg)

Listing 6: Conversion of a NIRGraph to jaxsnn; v_reset: reset potential of neuron layers,
n_spikes: dictionary of neuron layers that contains the maximum number of spikes allowed per
layer, t_max: maximum simulation time of the experiment, external: indication if the forward
pass is processed on an external framework. The jaxsnn_model consists of of the init and the
apply function.

In jaxsnn the spike data is represented in an event-based fashion. See lst. 7 or a depiction of
the interface. Thus the translation from jaxsnn to the data exchange format simply extracts
the indices and spike time from the Spike object and then injects them in the new EventData

object. This conversion expects the data coming from jaxsnn to be an EventPropSpike with
global indexing of neurons. This global index determines the layer the neuron belongs to. The
opposite direction for the conversion takes a NIRGraphData object and transforms it to a Spike.

1 # transformation jaxsnn -> NIR
2 nir_data = jaxsnn.to_nir_data(jaxsnn_data, jaxsnn_model)
3

4 # transformation NIR -> jaxsnn
5 jaxsnn_data = jaxsnn.from_nir_data(nir_data, jaxsnn_model)

Listing 7: Conversion interface for conversion of spike data between jaxsnn and NIR. The
to_nir_data conversion takes the spike data as EventPropSpike and the neuron model in
jaxsnn to infer which spikes belong to which layer. Analogously, from_nir_data takes a
NIRGraphData object and converts it to an EventPropSpike.

4.3 Conversion between hxtorch and NIR

Similar to the conversion between jaxsnn and NIR, hxtorch, a software framework with access
to the BSS-2 hardware, is to be connected to NIR. This involves the conversion of network
topologies on the one hand and on the other hand the data conversion to the new data exchange

25

format.

4.3.1 NIRGraph Conversion

Since hxtorch is based on PyTorch, the first approach is using NIRTorch for the translation of
topologies between hxtorch and NIR. The part of the NIRTorch module that converts a node
from a PyTorch framework to NIR or vice versa is very intuitive and without any constraints,
but the challenge is to extract the graph information, meaning which nodes are connected via
synapses. This part already contains various edge cases for the different software frameworks
using NIRTorch, what makes it less practical to use. And in addition, the Experiment instance
introduced in hxtorch (Sec. 3.3) would have to be passed through the conversion since it is an
attribute for all hxtorch nodes. To avoid these difficulties during implementation, NIRTorch is
just referenced for the implementation for the general parts but the graph building is performed
in hxtorch itself.

Since a graph of the network topology is already needed in hxtorch for the mapping on
hardware, this existing functionality is used to generate the network graph. Graph means in
this case that for every node, the output node is stored. This sufficiently describes the network
topology. This graph is processed node-by-node to build the NIRGraph and the NIRNode objects
it consists of. The topology conversion at this moment supports the hxtorch modules Neuron,
ReadoutNeuron, Synapse and InputNeuron, which are translated to CubaLIF, CubaLI, Linear
and Input – subclasses of NIRNode – and vice versa.

For the opposite direction from NIR to hxtorch, a custom hxtorch module SNN is constructed,
which describes the whole network. The nodes are transformed iteratively and are represented
in a dictionary hxnodes, which also contains the node keys. The forward pass is constructed by
iterating through the edges and connecting the output of a node to the input of a following node,
while the input and output of the whole model are handled separately. The construction of the
module SNN takes a NIRGraph and also a ConversionConfig, similar to the implementation in
jaxsnn, which is needed to supply attributes that are not represented is the NIRGraph (lst. 8).
This includes some parameters that complete the description of the network state by the
NIRGraph, like the temporal resolution dt, which is important for solving the dynamics in
software and as measuring grid of hardware, or the reset potential v_reset of the spiking
neurons. Furthermore, the torch.device can be specified, which is the device the computation
for model simulation is executed on, e.g. the CPU or the GPU. In addition, a set of hardware
parameters has to be supplied. This includes for example the scaling of membrane traces and
weights from the software model to the model that is executed on the neuromorphic chip. This

26

is due to limited ranges of e.g. weights and traces on the chip.

1 # define topology in NIR
2 nir_model = nir.NIRGraph(...)
3

4 # transform NIR topology to hxtorch and jaxsnn
5 hxtorch_cfg = hxtorch.ConversionConfig(dt = ..,
6 v_reset = ..,
7 device = ..,
8 hardware_params = ..)
9 hxtorch_model = hxtorch.from_nir(nir_model, hxtorch_cfg)

Listing 8: Conversion of a NIRGraph to hxtorch. The necessary parameters for conversion are the
temporal resolution dt, the reset potential v_reset and device, the torch.device to perform
the computation on. When emulating the SNN on the BSS-2 hardware platform, additional
hardware parameters have to be supplied.

4.3.2 Conversion to data exchange format

Since the grid-based intermediate data representation is inspired by the one in hxtorch, the
conversion between both formats is rather simple. The only differences are that the data exchange
format uses a numpy.ndarray instead of a torch.Tensor for data handling and also the axes of
the data are permuted. The interface is shown in lst. 9 The from_nir_data function introduces
the conversion functionality of a NIRGraphData object to a dictionary of torch.Tensor, on
which hxtorch can operate. The keys of this dictionary correspond to the keys in the nodes

dictionary of the NIRGraph. Analogously to this, the to_nir_data describes the conversion
from a dictionary of torch.Tensor to a NIRGraphData object. Both directions of the conversion
take the corresponding data that is to be converted as well as the hxtorch model, which holds
information like the temporal resolution dt.

1 # transformation hxtorch -> NIR
2 nir_data = hxtorch.to_nir_data(hxtorch_data, hxtorch_model)
3

4 # transformation NIR -> hxtorch
5 hxtorch_data = hxtorch.from_nir_data(nir_data, hxtorch_model)

Listing 9: Conversion interface for conversion of dictionaries of spike data between hxtorch and
the data exchange format.

27

4.4 Other Contributions to NIR

NIR follows a very general approach of representing spiking neural networks without too many
restrictions. In previous work by the author [35] it was discovered that the lack of internal checks,
e.g. for matching input or output sizes, leads to the construction of faulty NIRGraph instances.
This issue is addressed by calling an already existing internal function, _check_graph, during
the initialization of NIRGraph. If now a faulty NIRGraph is built by hand or by a conversion
from another software framework, an error is raised. This ensures that instances of NIRGraph
are built in the way which is specified by NIR, hardening the definition.

In addition to this, the NIR module is extended by a 17th primitive: a current-based leaky-
integrator (CubaLI) neuron. This is done because CubaLI neurons are regularly used in hxtorch
models in the output layer. The only difference from the CubaLIF neuron already existing in
NIR is that the CubaLI does not have a spike mechanism.

As described in section 2.1, dynamics of a neuron are completely described by its differential
equations and thus the neuron’s parameters. For spiking neuron models, like the leaky-integrate
and fire (LIF) neuron or its current-based version, the reset potential Vreset is an essential
parameter in most software frameworks. In contrast to resetting the potential to the reset
potential, NIR implements spiking neuron models such that when exceeding the threshold ϑ,
the threshold is subtracted from the membrane voltage Vmem. In event-based simulation, this
corresponds to the case where the reset potential Vreset = 0. But equality does not apply for
grid-based simulators like Norse: It can happen that the membrane voltage Vmem is larger than
the threshold ϑ when resetting, resulting in a membrane voltage Vmem > 0, caused by the finite
temporal resolution of the point in time where the spike occurs.

Given the influential role of this parameter, it is proposed to introduce the attribute v_reset

as a configurable option for all spiking neurons. To ensure backward compatibility, v_reset=0
is kept as the default value.

28

5 Experiments

In the following, the previously described developed data exchange format is demonstrated. To
this end, an ITL training example is set up, to show how the data exchange format enables
interchangeability of training substrates – independent of the used software framework. ITL
training is a good showcasing example, because frequent exchange of data and topology is
necessary: First, the input spikes need to be translated to the substrate. Then, the spike data
of the forward pass has to be translated to the software framework after each batch of training.
Subsequently, the model description with the updated weights is translated from the training
frontend to the inference backend.

For reasons of comparability, the forward pass of the network is performed via hxtorch on the
neuromorphic substrate BSS-2 and also in simulation, while the resulting spikes are translated
to the jaxsnn framework and then used to perform the backward pass, which yields the gradients
and weight updates (fig. 5.1).

jaxsnn NIR Inference

hxtorch.snn

exchangeable
backend

automated
transla�onfrontend

BSS-2
NIRData

NIRData

NIRGraph
Model

event-based
training

weight
updates

Dataset

topo

input

output

Figure 5.1: Flow graph for ITL training. The model as well as the dataset are defined in the
jaxsnn. To perform the inference on the hardware platform BSS-2, the network topology as well
as the batch of input data has to be translated to it via NIR. The resulting output data is then
transformed back and used for gradient computation and updating the weights.

Since hxtorch uses time-gridded data, it is expected that the temporal resolution dt influences
the accuracy which is achieved. To investigate this, the experiment is run for different values of
dt over three orders of magnitude. In fig. 5.5, the accuracies are compared. In the next section,

29

the training setup as well as the performed routine explained in detail.

5.1 In-the-loop Training via NIR – One Loop to Rule Them All

This hardware ITL training example is performed to validate the functionality of the implemented
data conversions on the one hand and on the other hand to build an example which can easily
be adapted to work for other software frameworks. The general concept of ITL training is
explained in section 2.4.

5.1.1 Experiment Setup

The YinYang dataset (section 2.6) is selected to perform the training on, since small network
topologies suffice to solve this task with high accuracies of approximately 97% [29]. The SNN
which is trained consists of a single hidden layer with 100 CubaLIF neurons. The input size of
five neurons and the three output neurons are given by the task. For the emulation on hardware,
each input neuron is quintupled, making 25 input neurons in total. A reason for this is that
this increases the effective resolution of the synaptic weights on hardware. Additionally, with
less synaptic input, neurons might not spike on hardware due to insufficient input strength. For
computing the gradients in jaxsnn we rely on the EventProp algorithm, which is the reason
for using a spiking output layer consisting of CubaLIF neurons. The neuron parameters of the
hidden and the output layer as well as the initializations for the synapse layers and the dataset
parameters are depicted in table 5.1. The synaptic weights are initialized randomly using a
Gaussian distribution with mean µi and standard deviation σi, where i describes the index of
the synapse layer.

30

Table 5.1: Model parameters for the software simulation model as well as the hardware emulation
model: The means µi and standard deviations σi of the Gaussian initializations of the synapse
layers, the time constants τmem (membrane) and τsyn (synaptic), the voltages Vth (threshold),
Vleak (leak) and Vreset (reset) and the target times ttarget for the correct class and tno target for
the wrong classes. The input spikes happen between tearly and tlate.

(a) Simulation Parameters

parameter value
µ1 1.0
µ2 0.3
σ1 1.6
σ2 0.8

τmem 10 · 10−3 s
τsyn 5 · 10−3 s
Vth 1.0 a.u.
Vleak 0.0 a.u.
Vreset -1000.0 a.u.
ttarget 4.5 · 10−3 s

tno target 5.5 · 10−3 s
tearly 0 s
tlate 10 · 10−3 s

(b) Hardware Parameters

parameter value
µ1 0.5
µ2 0.15
σ1 0.4
σ2 0.2

τmem 12 · 10−6 s
τsyn 6 · 10−6 s
Vth 1.0 a.u.
Vleak 0.0 a.u.
Vreset 0.0 a.u.
ttarget 5.4 · 10−6 s

tno target 6.6 · 10−6 s
tearly 0 s
tlate 12 · 10−6 s

The parameters for the weight initialization are found by starting at the values used by Göltz
et al. [30] and then validating them by grid sweeps for the means µ1 and µ2, both in software
and on hardware (fig. 5.2). Both plots show the test accuracy after 50 epochs of training with
the training procedure that is described in section 5.1.2. As expected, it can be seen that
the accuracy differs for different initializations of the synapse layer weights. For the software
runs, the combination of µ1 = 1.0, µ2 = 0.3 shows the highest accuracy within the investigated
range, while on hardware the this is achieved with µ1 = 0.5, µ2 = 0.15. Also both plots appear
continuous within the measured range, without abrupt jumps or irregularities.

31

Figure 5.2: Grid sweeps for the means µ1 and µ2 of the Gaussian initializations of the synapse
layers. Each data point in the plot represents the mean of three individual measurements.

(a) Grid sweep for the means µ1 and µ2 in software (b) Grid sweep for the means µ1 and µ2 on hard-
ware

The training parameters, such as the sizes of the datasets and the learning rate are depicted
in table 5.2.

Table 5.2: Training Parameters

parameter value
Ntrain samples 5000
Ntest samples 3000
batch size 64

learning rate 0.005
learning rate decay 0.99

5.1.2 Training Procedure

In lst. 10, an example depicts how the ITL training looks like (fig. 5.3). First the network
topology is defined in jaxsnn, the framework for the backward pass, and then converted to
hxtorch, the framework for the forward pass. For the conversion from NIR to hxtorch, a separate
ConversionConfig is delivered.

32

input input

NIR modeljaxsnn hxtorch

task

topology

Figure 5.3: Ideal model conversion during ITL training. Process of implementation (purple
arrows) of a topology that has previously been the subject of consideration on the basis of a
task. The rectangles describe a model for spiking neural networks. With NIR, the model has
only to be implemented in jaxsnn (blue) and can be transformed to hxtorch (green).

1 # Generate trainset and testset in a jaxsnn representation
2 trainset = yinyang_dataset(...)
3 testset = yinyang_dataset(...)
4

5 # Define topology in jaxsnn
6 jaxsnn_model = ...
7

8 # Transform the jaxsnn model via NIR to hxtorch
9 nir_model = jaxsnn.to_nir(jaxsnn_model)

10 hxtorch_cfg = hxtorch.ConversionConfig(...)
11 hxtorch_model = hxtorch.from_nir(nir_model, hxtorch_cfg)

Listing 10: Conversion of the models for the ITL training example. The network topology is
defined in jaxsnn and then converted via NIR to hxtorch.

With the models set and the datasets generated, a training routine is performed for each
batch (lst. 11). The data is drawn randomly and batched from a trainset, which is defined in
jaxsnn. Each input batch gets converted from jaxsnn via the data exchange format to hxtorch.
After execution of the inference, the resulting spikes of the hidden layer as well as the output
layer are converted back to jaxsnn to compute the weight updates with the backward pass.

33

With the new weights, also the hxtorch model is updated.

1 for e in epochs:
2 # Draw data from trainset
3 trainset = # ... Yin-Yang ...
4

5 for jaxsnn_input, jaxsnn_target in trainset:
6 # input transformation: jaxsnn -> NIR -> hxtorch
7 nir_input = jaxsnn.to_nir_data(jaxsnn_input, jaxsnn_model)
8 hxtorch_input = hxtorch.from_nir_data(nir_input, hxtorch_model)
9

10 # inference: hxtorch
11 hxtorch_output = hxtorch_model(hxtorch_input)
12

13 # output transformation: hxtorch -> NIR -> jaxsnn
14 nir_output = hxtorch.to_nir_data(hxtorch_output, hxtorch_model)
15 jaxsnn_output = jaxsnn.from_nir_data(nir_output, jaxsnn_model)
16

17 # update weights in jaxsnn model
18 # gradient calculations using outputs from hxtorch inference
19 jaxsnn_model = jaxsnn.grad_and_update(
20 jaxsnn_model,
21 loss_fn, optimizer,
22 jaxsnn_input, jaxsnn_target, jaxsnn_output)
23

24 # model transformation: jaxsnn -> NIR -> hxtorch
25 nir_model = jaxsnn.to_nir(jaxsnn_model, ...)
26 hxtorch_model = hxtorch.from_nir(nir_model, ...)

Listing 11: ITL training procedure. First the input spikes are converted from the jaxsnn
framework to hxtorch, where the forward pass is executed. The resulting output spikes are
converted from hxtorch via NIR and then used to perform the backward pass and update the
weights. The updated model is finally converted from jaxsnn to hxtorch for the next loop entry.

5.1.3 Deviations from the Ideal Experiment Procedure

The model conversion from jaxsnn to NIR is not implemented yet, thus the weight updates are
inserted directly into the hxtorch model and also initially the network topology is defined in
NIR and can then be transformed to jaxsnn and hxtorch, instead of implementing the jaxsnn
topology first and converting it to hxtorch.

But due to jaxsnn-internal bugs, only the recurrent adjoint dynamics are computing the
correct gradients, so that the HardwareRecurrentLIF has to be used in the jaxsnn representation
of the network. And since the conversion from NIR to jaxsnn currently does not support the

34

conversion of recurrent spiking neural networks (RSNNs), the jaxsnn model is implemented by
hand.

The model conversion as it is performed in the ITL training is depicted in fig. 5.4.

input input

NIR modeljaxsnn hxtorch

task

topology

Figure 5.4: Deviations from the ideal ITL model conversion shown in fig. 5.3. Process of imple-
mentation (purple arrows) of a topology that has previously been the subject of consideration
on the basis of a task. The rectangles describe a model for spiking neural networks. In contrast
to the ideal model transformation, the model is implemented both in jaxsnn and in NIR and
then converted from NIR to hxtorch.

5.1.4 Experiment Results

The training is performed for a sweep of temporal resolutions over three orders of magnitude.
For each temporal resolution, the mean and the standard deviation of the test accuracy of five
independent runs are determined. The resulting plot in fig. 5.5 shows that the test accuracy for
the software runs strongly correlates with the temporal resolution dt: Training with a temporal
resolution of 0.1τsyn only achieves an accuracy of (45± 10)% in simulation, while for smaller
resolutions, the accuracy saturates at about 95%. The temporal resolution dt = 0.001τsyn

achieved the highest accuracy, with a value of (95.2± 0.8)%. The bad performance for large
temporal resolutions is explained by discretization of the time grid the neuron dynamics are
evolved on. Additionally, the resolution of the time grid spikes are represented on is reduced.
The resolution of the spike time is reduced. Especially looking at the difference between the
target times of the correct and wrong neurons, which only differ by 0.2τsyn = 2 dt, it is clear
why the model performs worse for this temporal resolution.

When emulating the experiment on hardware, again the largest dt corresponds to the worst
accuracy (87.1± 2.5)%. But the difference to the highest accuracy (93.0± 0.9)%, achieved for
a temporal resolution of 0.01τsyn, is not as significant as in simulation. Since when using the

35

neuromorphic hardware, the neural dynamics are not influenced by dt, the worse accuracy in
simulation is most likely caused by the discretization of the numerical computation of the neural
dynamics.

Figure 5.5: Test accuracy after ITL training on software (blue) and hardware (orange) in
dependence of the number of time steps N per τsyn: N = τsyn/dt. For software, the temporal
resolution is used for both the data discretization as well as the neuron dynamics. In comparison,
the dynamics on hardware are not discretized since they are emulated physically – only the
spike times are discretized onto the time grid. This is expected to lead to the test accuracy for
the hardware runs to be more independent of the temporal resolution.

5.2 Runtime Performance Evaluation of In-the-loop Training

The runtime performance of ITL training plays a major role for the feasibility of such a training
routine. It is expected, that the runtime performance is worse than the training within a single
software framework where no conversion are necessary to be performed. Nevertheless, the order
of magnitude of these runtime performance losses is highly relevant: Ideally, the conversion of
observables only takes up a minor part in the total runtime.

To investigate this, the runtimes of the different components of the training routine are
recorded and averaged over 50 epochs. Therefore four training runs are conducted: two with
inference on BSS-2 and two in pure simulation, each with a small dt1 = 0.02τsyn and a large
dt2 = 0.0004τsyn. The measured runtime is divided among the training routines’ key components,
including the input and output transformation of data that was performed via the developed
intermediate data format. The setup used to evaluate runtime performance consists of two AMD
EPYC 7543 32-core processors (128 virtual cores in total) and 1000 GB of RAM. Figure 5.5
shows the measurement results.

36

Figure 5.6: Experiment runtimes divided into the key components of the training routine. The
experiment is performed in simulation (sim) and emulated on BrainScaleS-2 (BSS-2). Also for
each execution platform, an experiment run with a large temporal resolution dt1 = 0.02τsyn and
a small one dt2 = 0.0004τsyn is performed.

Table 5.3: Mean runtime per batch for different training setups

setup sim dt1 BSS-2 dt1 sim dt2 BSS-2 dt2
total runtime per batch (s) 15.4± 2.9 38± 5 308± 4 364± 7

As expected, the runtime of the experiment with larger temporal resolution dt1 exceeds the
one with smaller temporal resolution dt2 by far, as depicted in table 5.3. When comparing the
inference durations, the experiment with a temporal resolution that is 50 times larger than in
the short experiment also shows a similar increase in simulation inference time, with a factor
of approximately 62. On BSS-2, this factor is only 20. This can be explained by the higher
overhead associated with hardware execution at small temporal resolutions, which leads to longer
runtimes compared to simulation. In contrast, the simulation of neuron dynamics becomes
increasingly expensive as the temporal resolution increases. The duration of the data conversion
also scales with the temporal resolution, but not as much as for the inference. Furthermore,
it can be seen that the relative experiment runtimes do not differ much between using BSS-2
or simulation but between the different temporal resolutions. Most importantly, independent
of the experiment setup investigated, the data conversion only requires up to 10% of the total
runtime, which is reasonable.

37

6 Discussion

In this bachelor thesis, a data exchange format is proposed as extension of the neuromorphic
intermediate representation (NIR), which is designed for topologies of spiking neural networks
(SNNs). NIR describes network topologies using a NIRGraph, which contains neurons and
synapses represented as NIRNode objects. The developed data exchange format stores the
observables or input data of a SNN node-wise, matching the NIRNode objects of the corresponding
NIRGraph. A flexible interface supports the definition of arbitrary observables per node. Although
the data format is only implemented for spike data at the moment, extending this to meet the
additional needs of software frameworks is possible, see chapter 7.

Among existing software frameworks, two different representations of spike data are used:
an event-based and a time-gridded one. In order to provide a handy interface for these, the
data exchange format implements their native formats for spike data – as well as a conversion
between them.

As part of this thesis, the model conversion between the hxtorch software framework and NIR
is implemented. Additionally, the data conversion between the data exchange format and the
software frameworks jaxsnn and hxtorch is developed.

This facilitates machine-learning-inspired experiments where flexible data exchange is neces-
sary, like hardware in-the-loop (ITL) training: There, for each epoch, the input spikes have to
be transformed from the software framework to the hardware while the data from the inference
on hardware has to be transformed back into the software framework. In combination, NIR and
the data exchange format enable training of a network without requiring detailed knowledge of
how topologies and spike data are represented within the specific software framework. Also,
accessing hardware substrates via NIR is simplified by removing the constraint to directly using
software frameworks which are connected to the hardware. In general the data exchange format
has been designed in such a way that it is interoperable with NIR. Thus it can be used in
experiments where interchangeability between software frameworks is necessary.

For demonstration of the above, an in-the-loop training example is performed. In this example,
the forward pass is executed on the BrainScaleS-2 (BSS-2) hardware platform via hxtorch, while
the backward pass is performed using jaxsnn. The performance of this is evaluated to investigate
the impact of the temporal resolution dt on training when using the EventProp algorithm for
gradient calculation. For this purpose, the test error is compared for a sweep over different
temporal resolutions dt in simulation and also using the neuromorphic hardware.

It is observed that the test accuracy is strongly anticorrelated with the temporal resolution dt,

38

while on hardware, from a certain dt on, the accuracy is independent of the temporal resolution,
achieving its highest accuracy (93.0 ± 0.9)% for dt = 0.01τsyn. The simulation achieves the
highest test accuracy of 95.2± 0.8)% for temporal resolutions dt = 0.001τsyn.

This section compares the newly implemented data exchange format to existing data repre-
sentations used in intermediate formats for machine learning. In the case of artificial neural
networks (ANNs), the data format is generally consistent across software frameworks, as the
data is typically represented simply as a tensor of numbers. This is why ONNX [19], an example
for an intermediate representation for ANNs, does not include an exchange format for data.
In contrast, SNNs rely on more diverse representations of spiking activity, leading to greater
variation between frameworks. PyNN [20] serves as an exchange format for SNNs, supporting
not only their topologies but also including an intermediate data format. The main disadvantage
is that this data format is difficult to handle for machine-learning purposes such as training,
since PyNN is targeting the field of computational neuroscience and the corresponding data
format was explicitly designed to represent complex biological recordings. The data exchange
format designed and developed in this thesis differs from PyNN in that it can be translated into
other software frameworks’ native formats. In particular, this directly enables training for the
respective frameworks using the transformed observables.

39

7 Outlook

The data exchange format that is developed in this thesis is designed to be extensible. Therefore,
an obvious extension is the support for arbitrary observables, like membrane traces. This can
be achieved by adding ValuedEventData next to the existing EventData class. For spike data,
the only information to be represented is when a spike happens (time) and from which neuron
it originates (idx). But for other observables, a value is to be recorded in addition. Sticking to
the example of the membrane recording, the conversion from event-based data to time-gridded
data has to implement some kind of configurable interpolation functionality because there has
to be a value for every time step, not only when an event occurred:

1 valued_event_data = ValuedEventData(idx_array, time_array, value_array,
interpolation_method)↪→

The TimeGriddedData format can also be extended by an additional conversion which returns
the data in a time-gridded format but with different temporal resolution. To implement this,
it is necessary to decide how to proceed with more that one events in one time step or, when
converting to a smaller temporal resolution dt, which time step holds the event. The latter issue
is similar to the one occurring in the conversion of time-gridded data to event-based data, where
a time_shift parameter was introduced (fig. 4.2b).

A valid intermediate format for topologies and data is key to providing a user-friendly
experience. To achieve this, an internal check is now performed during initialization of NIRGraph
objects, ensuring it was built properly. A similar approach can be followed for verifying
NIRGraphData objects. Two exemplary aspects that should be tested for are: first, that the
used keys of NIRNodeData also corresponds to a NIRNode in the NIRGraph; and second, that the
data matches the corresponding node in shape.

A goal of development that is not directly connected to the data exchange format is the
implementation of the jaxsnn.to_nir function to convert jaxsnn models to the NIR format.
This will for example enable a more inherent implementation of hardware ITL training, where
the network topology is initially defined in jaxsnn and then transformed via NIR to hxtorch
and also the update of the hxtorch model during training can be performed via NIR.

To take full advantage of the capabilities of the BSS-2 hardware platform, the time-gridding
performed in hxtorch should be omitted for accessing the hardware. This would increase
efficiency by eliminating an unnecessary conversion step and could also improve performance by
returning precise spike times instead of discretized ones.

40

8 Acknowledgments

First of all, I would like to thank Prof. Johannes Schemmel for giving me the opportunity to
write my Bachelor’s thesis in the Electronic Visions group.

From the very beginning, I felt warmly welcomed by the entire group. A major part of this
positive experience is thanks to my supervisors Elias, Philipp, and Eric, who not only helped me
keep sight of the bigger picture during my thesis but also supported me with debugging when I
was stuck and couldn’t find a way forward. Working with them was both enjoyable and inspiring
— our interactions made research feel exciting and accessible, and they definitely contributed to
my growing interest in scientific work. Equally important were my office mates, Florian and
Lennart. Our office had a perfect balance of casual conversations and focused coding sessions,
which I truly appreciated. I would also like to thank the rest of the group, who were always
friendly, approachable, and supportive.

Furthermore, I want to thank Elias, Philipp, Florian, and Jakob for taking the time to
proofread my thesis. Your feedback and suggestions were a great help.

Last but not least, I want to thank my parents, my siblings, and my family in general for
their continuous support throughout this time.

The work carried out in this Bachelor’s thesis used systems, which received funding from the
European Union’s Horizon 2020 Framework Programme for Research and Innovation under the
Specific Grant Agreements Nos. 720270, 785907 and 945539 (Human Brain Project, HBP) and
Horizon Europe grant agreement No. 101147319 (EBRAINS 2.0).

41

Acronyms

ADC analog-to-digital converter

AdEx adaptive exponential integrate-and-fire

ANN artificial neural network

BPTT backpropagation through time

BSS-2 BrainScaleS-2

CADC columnar ADC

CubaLI current-based leaky-integrator

CubaLIF current-based leaky-integrate and fire

FPGA field-programmable gate array

ITL in-the-loop

JIT just-in-time

LI leaky-integrator

LIF leaky-integrate and fire

MADC membrane ADC

NIR neuromorphic intermediate representation

NN neural network

RSNN recurrent spiking neural network

SNN spiking neural network

42

9 References

[1] Susan Rakov and Abigail Ham. Fact file: Computing is using more energy than ever.
https://frontiergroup.org/resources/fact-file-computing-is-using-more-

energy-than-ever/. Accessed: 2025-04-10. Oct. 2023.

[2] Christopher Willuweit, Carsten Bockelmann, and Armin Dekorsy. “Energy and Bandwidth
Efficiency of Event-Based Communication”. In: IEEE 97th Vehicular Technology Conference
(VTC Spring). IEEE. 2023, pp. 1–5. doi: 10.1109/VTC2023-Spring.2023.10181234.

[3] Nicolas Alder and Ralf Herbrich. “Energy-Efficient Gaussian Processes Using Low-Precision
Arithmetic”. In: Proceedings of the 41st International Conference on Machine Learning.
Ed. by Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp. Vol. 235. Proceedings of Machine Learning
Research. PMLR, July 2024, pp. 955–975. url: https://proceedings.mlr.press/v235/
alder24a.html.

[4] Justyna Zwolak. Ada Lovelace: The World’s First Computer Programmer Who Predicted
Artificial Intelligence. Accessed: 2025-04-10. Mar. 2023. url: https://www.nist.gov/
blogs/taking-measure/ada-lovelace-worlds-first-computer-programmer-who-

predicted-artificial.

[5] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali
Tishby, Leslie Vogt-Maranto, and Lenka Zdeborová. “Machine Learning and the Physical
Sciences”. In: Reviews of Modern Physics 91.4 (2019), p. 045002. doi: 10.1103/RevModPhys.
91.045002. arXiv: 1903.10563 [physics.comp-ph]. url: https://arxiv.org/abs/
1903.10563.

[6] John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael
Gastegger, Klaus-Robert Müller, and Alexandre Tkatchenko. “Combining Machine Learn-
ing and Computational Chemistry for Predictive Insights Into Chemical Systems”. In:
Chemical Reviews 121.16 (2021), pp. 9816–9872. doi: 10.1021/acs.chemrev.1c00107.
arXiv: 2102.06321 [physics.chem-ph]. url: https://arxiv.org/abs/2102.06321.

[7] Mohammad Shehab, Laith Abualigah, Qusai Shambour, Muhannad A. Abu-Hashem,
Mohd Khaled Yousef Shambour, Ahmed Izzat Alsalibi, and Amir H. Gandomi. “Machine
learning in medical applications: A review of state-of-the-art methods”. In: Computers in
Biology and Medicine 145 (June 2022). Epub 2022 Mar 28, p. 105458. doi: 10.1016/j.
compbiomed.2022.105458. url: https://pubmed.ncbi.nlm.nih.gov/35364311/.

43

https://frontiergroup.org/resources/fact-file-computing-is-using-more-energy-than-ever/
https://frontiergroup.org/resources/fact-file-computing-is-using-more-energy-than-ever/
https://doi.org/10.1109/VTC2023-Spring.2023.10181234
https://proceedings.mlr.press/v235/alder24a.html
https://proceedings.mlr.press/v235/alder24a.html
https://www.nist.gov/blogs/taking-measure/ada-lovelace-worlds-first-computer-programmer-who-predicted-artificial
https://www.nist.gov/blogs/taking-measure/ada-lovelace-worlds-first-computer-programmer-who-predicted-artificial
https://www.nist.gov/blogs/taking-measure/ada-lovelace-worlds-first-computer-programmer-who-predicted-artificial
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://arxiv.org/abs/1903.10563
https://arxiv.org/abs/1903.10563
https://arxiv.org/abs/1903.10563
https://doi.org/10.1021/acs.chemrev.1c00107
https://arxiv.org/abs/2102.06321
https://arxiv.org/abs/2102.06321
https://doi.org/10.1016/j.compbiomed.2022.105458
https://doi.org/10.1016/j.compbiomed.2022.105458
https://pubmed.ncbi.nlm.nih.gov/35364311/

[8] Mohamad Kamaluddin, Moch Rasyid, Fourus Abqoriyyah, and Andang Saehu. “Accuracy
Analysis of DeepL: Breakthroughs in Machine Translation Technology”. In: Journal of
English Education Forum (JEEF) 4 (June 2024), pp. 122–126. doi: 10.29303/jeef.v4i2.
681.

[9] Marc-Oliver Gewaltig and Markus Diesmann. “NEST (NEural Simulation Tool)”. In:
Scholarpedia 2.4 (2007), p. 1430. doi: 10.4249/scholarpedia.1430.

[10] Marcel Stimberg, Romain Brette, and Dan Fm Goodman. “Brian 2, an intuitive and
efficient neural simulator”. In: eLife 8 (Aug. 2019). doi: 10.7554/eLife.47314.

[11] Christian Pehle and Jens Egholm Pedersen. Norse — A deep learning library for spiking
neural networks. Version 0.0.7. Documentation: https://norse.ai/docs/. Jan. 2021. doi:
10.5281/zenodo.4422025. url: https://doi.org/10.5281/zenodo.4422025.

[12] Jason K Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. “Training spiking neural
networks using lessons from deep learning”. In: arXiv preprint (2021). arXiv: 2109.12894
[cs.NE].

[13] Eric Müller, Moritz Althaus, Elias Arnold, Philipp Spilger, Christian Pehle, and Johannes
Schemmel. “jaxsnn: Event-driven Gradient Estimation for Analog Neuromorphic Hardware”.
In: Neuro-inspired Computational Elements Workshop (NICE 2024). 2024. doi: 10.1109/
NICE61972.2024.10548709. arXiv: 2401.16841 [cs.NE].

[14] Eric Müller, Sebastian Schmitt, Christian Mauch, Hartmut Schmidt, José Montes, Joscha
Ilmberger, Johann Klähn, Felix Passenberg, Christoph Koke, Mitja Kleider, Sebastian
Jeltsch, Maurice Güttler, Dan Husmann, Sebastian Billaudelle, Paul Müller, Andreas
Grübl, Jakob Kaiser, Jonas Weidner, Bernhard Vogginger, Johannes Partzsch, Christian
Mayr, and Johannes Schemmel. “The Operating System of the Neuromorphic BrainScaleS-
1 System”. In: arXiv preprint (Mar. 2020). submitted to Neurocomputing OSP. arXiv:
2003.13749 [cs.NE]. url: http://arxiv.org/abs/2003.13749.

[15] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri
Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. “Loihi: A
neuromorphic manycore processor with on-chip learning”. In: IEEE Micro 38.1 (2018),
pp. 82–99. doi: 10.1109/MM.2018.112130359.

[16] Christian Mayr, Sebastian Hoeppner, and Steve Furber. “Spinnaker 2: A 10 million
core processor system for brain simulation and machine learning”. In: arXiv preprint
arXiv:1911.02385 (2019).

[17] Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber,
Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, and Johannes Schem-
mel. “The BrainScaleS-2 Accelerated Neuromorphic System with Hybrid Plasticity”. In:

44

https://doi.org/10.29303/jeef.v4i2.681
https://doi.org/10.29303/jeef.v4i2.681
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.7554/eLife.47314
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.5281/zenodo.4422025
https://arxiv.org/abs/2109.12894
https://arxiv.org/abs/2109.12894
https://doi.org/10.1109/NICE61972.2024.10548709
https://doi.org/10.1109/NICE61972.2024.10548709
https://arxiv.org/abs/2401.16841
https://arxiv.org/abs/2003.13749
http://arxiv.org/abs/2003.13749
https://doi.org/10.1109/MM.2018.112130359

Front. Neurosci. 16 (2022). issn: 1662-453X. doi: 10.3389/fnins.2022.795876. arXiv:
2201.11063 [cs.NE]. url: https://www.frontiersin.org/articles/10.3389/fnins.
2022.795876.

[18] Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas Grübl, Maurice Güttler,
Andreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch,
Mitja Kleider, Christoph Koke, Alexander Kononov, Christian Mauch, Eric Müller, Paul
Müller, Johannes Partzsch, Mihai A. Petrovici, Bernhard Vogginger, Stefan Schiefer,
Stefan Scholze, Vasilis Thanasoulis, Johannes Schemmel, Robert Legenstein, Wolfgang
Maass, Christian Mayr, and Karlheinz Meier. “Neuromorphic Hardware In The Loop:
Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System”. In: Proceedings
of the 2017 IEEE International Joint Conference on Neural Networks (IJCNN) (2017),
pp. 2227–2234. doi: 10.1109/IJCNN.2017.7966125. url: http://ieeexplore.ieee.
org/document/7966125/.

[19] ONNX Contributors. ONNX: Open Neural Network Exchange. https://github.com/
onnx/onnx. Accessed: 2025-04-13.

[20] Andrew P. Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller, Dejan
Pecevski, Laurent Perrinet, and Pierre Yger. “PyNN: a common interface for neuronal
network simulators”. In: Front. Neuroinform. 2.11 (2009). doi: 10.3389/neuro.11.011.
2008.

[21] Jens E. Pedersen, Steven Abreu, Matthias Jobst, Gregor Lenz, Vittorio Fra, Felix C. Bauer,
Dylan R. Muir, Peng Zhou, Bernhard Vogginger, Kade Heckel, Gianvito Urgese, Sadasivan
Shankar, Terrence C. Stewart, Jason K. Eshraghian, and Sadique Sheik. “Neuromorphic
Intermediate Representation: A Unified Instruction Set for Interoperable Brain-Inspired
Computing”. In: 2023. doi: 10.48550/arXiv.2311.14641.

[22] Louis Lapicque. “Recherches quantitatives sur l’excitation electrique des nerfs traitee
comme une polarization”. In: Journal de Physiologie et Pathologie General 9 (1907),
pp. 620–635.

[23] Philipp Spilger, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch, Christian
Pehle, Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Sebastian Schmitt, Timo
C. Wunderlich, Yannik Stradmann, and Johannes Schemmel. “hxtorch: PyTorch for
BrainScaleS-2 — Perceptrons on Analog Neuromorphic Hardware”. In: IoT Streams for
Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine
Learning. Cham: Springer International Publishing, 2020, pp. 189–200. isbn: 978-3-030-
66770-2. doi: 10.1007/978-3-030-66770-2_14.

[24] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations (2014). arXiv: 1412.6980 [cs.LG].

45

https://doi.org/10.3389/fnins.2022.795876
https://arxiv.org/abs/2201.11063
https://www.frontiersin.org/articles/10.3389/fnins.2022.795876
https://www.frontiersin.org/articles/10.3389/fnins.2022.795876
https://doi.org/10.1109/IJCNN.2017.7966125
http://ieeexplore.ieee.org/document/7966125/
http://ieeexplore.ieee.org/document/7966125/
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.48550/arXiv.2311.14641
https://doi.org/10.1007/978-3-030-66770-2_14
https://arxiv.org/abs/1412.6980

[25] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization to spiking
neural networks”. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 51–63. doi:
10.1109/MSP.2019.2931595.

[26] Timo C. Wunderlich and Christian Pehle. “Event-based backpropagation can compute
exact gradients for spiking neural networks”. In: Scientific Reports 11.1 (2021), pp. 1–17.
doi: 10.1038/s41598-021-91786-z.

[27] Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas Grübl, Maurice Güttler,
Andreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Sebastian Jeltsch,
Mitja Kleider, Christoph Koke, Alexander Kononov, Christian Mauch, Eric Müller, Paul
Müller, Johannes Partzsch, Mihai A. Petrovici, Bernhard Vogginger, Stefan Schiefer,
Stefan Scholze, Vasilis Thanasoulis, Johannes Schemmel, Robert Legenstein, Wolfgang
Maass, Christian Mayr, and Karlheinz Meier. “Neuromorphic Hardware In The Loop:
Training a Deep Spiking Network on the BrainScaleS Wafer-Scale System”. In: Proceedings
of the 2017 IEEE International Joint Conference on Neural Networks (IJCNN) (2017),
pp. 2227–2234. doi: 10.1109/IJCNN.2017.7966125. url: http://ieeexplore.ieee.
org/document/7966125/.

[28] R. Brette and W. Gerstner. “Adaptive Exponential Integrate-and-Fire Model as an
Effective Description of Neuronal Activity”. In: J. Neurophysiol. 94 (2005), pp. 3637–3642.
doi: 10.1152/jn.00686.2005.

[29] Laura Kriener, Julian Göltz, and Mihai A. Petrovici. “The Yin-Yang Dataset”. In: Neuro-
Inspired Computational Elements Conference. NICE 2022. Virtual Event, USA: Association
for Computing Machinery, 2022, pp. 107–111. isbn: 9781450395595. doi: 10.1145/

3517343.3517380.

[30] Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver Breitwieser,
Benjamin Cramer, Dominik Dold, Ákos Ferenc Kungl, Walter Senn, Johannes Schemmel,
Karlheinz Meier, and Mihai A. Petrovici. “Fast and energy-efficient neuromorphic deep
learning with first-spike times”. In: Nat. Mach. Intell. 3.9 (2021), pp. 823–835. doi:
10.1038/s42256-021-00388-x.

[31] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs.
Version 0.3.13. 2018. url: http://github.com/google/jax.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “PyTorch:

46

https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1038/s41598-021-91786-z
https://doi.org/10.1109/IJCNN.2017.7966125
http://ieeexplore.ieee.org/document/7966125/
http://ieeexplore.ieee.org/document/7966125/
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1145/3517343.3517380
https://doi.org/10.1145/3517343.3517380
https://doi.org/10.1038/s42256-021-00388-x
http://github.com/google/jax

An Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024–8035.
url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[33] Florian Fischer. Event-based Learning of Synaptic Delays and Arbitrary Topologies. Bache-
lor’s thesis. 2025.

[34] Neuromorphs. NIRTorch: PyTorch helper module to translate to and from NIR. https:
//github.com/neuromorphs/NIRTorch. Accessed: 2025-03-31. 2025.

[35] Ben Kroehs. Initial Steps Towards a Translation from NIR to jaxsnn. Internship Report.
Department of Physics and Astronomy, Heidelberg University, Jan. 2025.

47

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/neuromorphs/NIRTorch
https://github.com/neuromorphs/NIRTorch

A Software State

Table A.1: Apptainer container used for all experiments.

key value

path /containers/stable/2025-02-19_1.img
fingerprint 64d91623-6dcd-43b5-886a-2d5eca67eff6
app dls

Table A.2: Software state used in experiments.

repository git hash change set

jax-snn 75383a7f2e52e6e389b5e50a07dbfcdd7a699b4d 21824
code-format 09f3a985a6f264359b10a6a129dd6dce7e55c9e8
hxtorch 701abf3104d8c4dfe2c749edab4e50c2da91eafa 24718
hxcomm 0182b27465ca5f468fbf2c5f4849b5f6934be56a
haldls d8d62550b2cd4183e6d9ed08c4f39ca2be9a634c
grenade 10f67d92fff203348e7d897379903e91dc6bdd09
hate 35b3cb211cabbbc5c01036ae7878a73e338166c4
calix a706868c6ba285b1f8fd7cdef1a19d7328e02912
sctrltp 1d854f953f7e8c8ead44406a22bb80421ca3857c
rant 53199ee94cae1e1c2e4db10e88d570a761b14e0f
hwdb 28a72d4d635aa6c0f1522616b1dacfaa817baeef
logger 73dadb3ce413c521845ef7d36f818073eee4fefa
visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3
flange 28e729d59df3b4ff380f84351c40d4da3086bed8
lib-rcf 000185eb11db4d54cb6b12b09af54cf742741036
bss-hw-params b7be7827b51536804f0bda76f8ba4be693df23a8
halco a97040a732ab1ba954e077616303a18acf623092
fisch a67fc99215f038f09a33fd09ff85c0bb594f9f8c
libnux edfac92188ad2d78c68c7f19f606e45b8cb3b316
pywrap 5e2af30e9593882b471d3cd02df00b93f13ff479
ztl c2d4faee05f497010ee55e35bf9c9607eecbf884
lib-boost-patches 136c5b41cb046afe2c726aa4646928bf5190622e

48

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 16.04.2025 .

	Introduction
	Theoretical Background
	Spiking Neural Networks
	Description of SNNs in Software and the Implementation of Algorithms for Training
	Gradient-based Learning for Spiking Neural Networks
	In-the-loop Training
	BrainScaleS-2 – A Mixed-signal Neuromorphic Hardware
	The YinYang Dataset and Time-To-First-Spike Encoding

	Existing Software
	jaxsnn
	NIR
	hxtorch

	Implementation
	Intermediate Data Exchange Format
	Conversion between jaxsnn and NIR
	Conversion between hxtorch and NIR
	Other Contributions to NIR

	Experiments
	In-the-loop Training via NIR – One Loop to Rule Them All
	Runtime Performance Evaluation of In-the-loop Training

	Discussion
	Outlook
	Acknowledgments
	References
	Software State

