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Abstract
Analog neuromorphic hardware is subject to fixed-pattern noise stemming from the
manufacturing process and resulting in different analog behaviour in identically designed
components. Calibration counteracts this mismatch by finding a set of hardware parameters
that yield a desired behaviour. BrainScaleS-2 is a mixed-signal neuromorphic hardware
platform emulating spiking neural networks. The current calibration framework for
BrainScaleS-2 only supports single operation point calibrations, meaning that for each
different calibration target, a new calibration needs to be run, which is time-consuming.
Thus, the goal of this thesis is to start developing a parameter transformation model
which supplies hardware parameter settings for arbitrary model parameters. As a proof
of concept the transformation model is constructed and evaluated on two parameters of
the leaky integrate-and-fire neuron. As these two parameters exhibit dependencies on
each other’s hardware parameter, a joint transformation is developed. Even though the
calibration using the transformation shows some systematic deviations, its accuracy is
comparable to the fixed-point calibration leading to the conclusion that the results indicate
potential for a transformation model encompassing all parameters.

Zusammenfassung

Analoge neuromorphe Hardware weist zeitlich konstante Variationen auf, welche durch
den Herstellungsprozess verursacht werden und zu unterschiedlichem Verhalten zwischen
identisch entworfenen Komponenten führt. Kalibration wirkt diesen Abweichungen entge-
gen, indem sie einen Satz an Hardwareparametern findet, die ein gewünschtes Verhalten
der Hardware bewirken. BrainScaleS-2 ist eine neuromorphe Hardwareplattform, die
gepulste neuronale Netze emuliert. Die aktuelle Kalibration für BrainScaleS-2 unterstützt
ausschließlich Kalibrationen auf einen einzelnen Operationspunkt, das bedeutet, dass für
jedes unterschiedliche Kalibrationsziel eine neue Kalibration ausgeführt werden muss,
was zeitaufwendig ist. Deshalb ist das Ziel dieser Arbeit, ein Transformationsmodell zu
entwickeln, welches die Hardware-Einstellungen für beliebige Modellparameter liefert. Um
die Umsetzbarkeit des Konzepts nachzuweisen, wird das Transformationsmodell für zwei
exemplarische Parameter des Leaky Integrate and Fire Neurons konstruiert und evaluiert.
Da diese Parameter Abhängigkeiten vom jeweils anderen Hardwareparameter aufweisen,
wird eine gemeinsame Transformation entwickelt. Obwohl die Kalibration mit der Trans-
formation systematische Abweichungen aufweist, ist ihre Genauigkeit vergleichbar zur
aktuellen Kalibration. Die Ergebnisse deuten darauf hin, dass ein Transformationsmodell
aller Parameter möglich ist.



Contents

1 Introduction 1

2 Methods 3
2.1 Hardware Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Neuron Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Storage System for Analog Parameters: Capacitive Memory . . . . . . . . . 5
2.4 Current Calibration Framework: Calix . . . . . . . . . . . . . . . . . . . . . 6

3 Results 9
3.1 Characterization of the Analog-to-Digital Converters . . . . . . . . . . . . . 9
3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Fitting of the Transformation Model . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Transformation Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Evaluation of the Calibration using the Transformation Model . . . . . . . . 23

4 Discussion 30

5 Outlook 32

6 References 35



1 Introduction

With recent advancement and rising relevance of artificial neural networks (ANN) in various
fields, high computational costs and energy consumption have become a prominent concern [7].
An alternative to ANNs is the so-called third generation of neural networks, the spiking
neural networks (SNN) [13], which are expected to improve the computational performance
and efficiency of neural networks, especially on specifically designed hardware [5].

The mixed-signal neuromorphic platform BrainScaleS-2 (BSS-2) [14] which emulates
spiking neural networks is used in this thesis. The analog circuits of the system suffer
from fixed-pattern noise, i.e. temporally constant systematic deviation of parameters from
the values targeted during chip design [19]. These deviations are an unavoidable result
of the manufacturing process and cause differing analog behaviour (e.g. differing time
constants) between identically designed instances when choosing the same hardware settings.
Calibration is capable of reducing this fixed-pattern noise. The concept of calibration is to
find the hardware settings that yield a targeted analog behaviour. Therefore, calibration can
on the one hand equalize the behaviour across identically designed hardware components or,
if intended, can achieve targeted behaviour that differs across these components.

The current calibration [18] is a single-operation-point calibration, which means that for
each different calibration target a new calibration needs to be run. For most parameters
the calibration routines perform a (noisy) binary search on the digital settings which is
time-consuming due to the large number of measurement iterations. One can use the
programmable plasticity unit (PPU) [12] to speed up the calibration, however, this is still a
single-operation point approach.

In contrast, the calibration routines for the preceding BrainScaleS-1 system employ a
lookup-based approach [15], where the model parameters (meaning parameters describing
the analog behaviour) are measured as a function of the hardware settings once. Then, the
obtained data is used to create a translation from model parameters to hardware parameters,
which can then be used for calibration without having to measure again. A prerequisite for
the feasibility of this lookup-based approach is the long term stability of the fixed-pattern
noise, since the characterization of the hardware should be done once and will then be reused.
The long term stability was shown in [18] for BSS-2.

Experiments that would benefit from the lookup-based approach compared to the fixed-
point calibration are experiments where different calibration targets need to be tested
beforehand or experiments which try to learn the model parameters which entails frequent
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changes of the calibration target during training.
Hence, the goal of this thesis is to develop a lookup-based parameter transformation model

for BSS-2, which provides the hardware parametrization for arbitrary calibration targets.
In this thesis, the transformation model will be developed for two exemplary parameters

and in the end evaluated by calibrating a chip using the transformation. The circuits of
the chosen parameters are designed such that one hardware parameters controls one model
parameter. The transformation model will be constructed by measuring model parameters
as a function of their digital hardware setting and then fitting a function to the obtained
data. The resulting function forms the transformation model. Due to the fixed-pattern
noise, the resulting functions for identically designed instances will be of the same form
but differently parametrized. Since some model parameters exhibit dependencies not only
on their respective hardware parameters, but also on the hardware parameters of other
model parameters, thought needs to be put into how to implement these multidimensional
transformations.
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2 Methods

2.1 Hardware Setup

In this thesis, the HICANN-X v3, the current version of the BSS-2 [14] system, is used.
Figure 2.1 shows an image and a schematic arrangement of the chip. This section will

describe the relevant parts of the chip for this thesis.

Figure 2.1: Left: Image of the HICANN-X chip. Right: Schematic floorplan of the chip. One
can see the division into four quadrants with 128 analog neuron circuits and a parameter
storage system, the capacitive memory (CapMem), each. Also shown are the columnar
analog-to-digital converters (CADC) and the single membrane analog-to-digital converter
(MADC). Taken from [14].

The chip is divided into four quadrants with 128 neuron circuits each. Each neuron
receives input from 256 synapses, resulting in a total number of 131 072 synapses. There
are two different analog-to-digital converters dedicated to digitizing the potentials in the
neuron circuits: the columnar analog-to-digital converters (CADC) and the membrane
analog-to-digital converter (MADC).

There are 256 CADC channels per quadrant, since there is a causal and an acausal channel
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for each neuron. This also allows the CADC to record the potential of all neurons in parallel.
In contrast, there is only one MADC with two channels per chip, which implies that it can
not read all neurons in parallel like the CADC. The advantage of the MADC over the CADC
is a higher sampling frequency of approximately 30 MHz compared to a sampling frequency
of around 1 MHz of the CADC.

Next to each neuron block of 128 neurons, the parameter storage system, the capacitive
memory (CapMem) [11], is located. It stores the analog parameters of the neuron circuits
as well as quadrant-global parameters. It will be described in section 2.3.

The chip is controlled in real-time by sending instruction from a host computer to a field
programmable gate array (FPGA).

2.2 The Neuron Circuit

The neuron circuits of the HICANN-X chip emulate the adaptive exponential integrate-and-
fire (AdEx) model [6]. In this thesis, only the leaky integrate-and-fire (LIF) [1] part of this
model is used. The model describes the temporal evolution of the membrane potential, as
well as defining a threshold for spiking. The following equation describes the subthreshold
dynamics of the membrane potential V according to the LIF model:

τmemV̇ = −[V (t)− Vleak] +
I(t)

gleak
(2.1)

with the leak conductance gleak that pulls the membrane potential to the leak potential
Vleak, the membrane time constant τmem which is given by τmem = Cmem/gleak where Cmem

is the membrane capacitance, and the current I which is the sum of an external current
and excitatory and inhibitory synaptic currents. When the membrane potential reaches the
threshold potential Vthresh, an output spike occurs and the membrane potential is pulled to
the reset potential Vreset for the refractory period τref.

The subthreshold solution for an initial condition of V (t0) = Vleak +∆V is:

V (t) = ∆V exp

(
− t− t0

τmem

)
+ Vleak (2.2)

for t > t0, meaning that the membrane potential decays exponentially back to the leak
potential.

Figure 2.2 shows a schematic diagram of how the LIF neuron is realized in the circuitry
of the HICANN-X.
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Figure 2.2: Schematic of the LIF part of the neuron circuit. The conductivity gleak that is
responsible for the leak term, is realized by a operational transconductance amplifier (OTA)
which is controlled by the leak bias current Ibias_leak. The reset and leak mechanism is
realized using a single OTA, when the threshold is reached the OTA is reconfigured from
the leak state to the reset state. The schematic also shows the threshold comparator as well
as the inhibitory and excitatory synaptic inputs which can be disabled. Adapted from [4].

2.3 Storage System for Analog Parameters: Capacitive Memory

There are 24 analog parameters (8 voltages and 16 currents) for each neuron that can be
adjusted in order to achieve a targeted behaviour of the neuron. These parameters are
stored by a capacitive memory (CapMem) [11] which consists of an array of cells where each
column belongs to one neuron circuit and each row belongs to one analog parameter (cf.
fig. 2.3). Each cell can store a 10 bit value, which is converted to a voltage or a current.
The CapMem consists of a voltage generator creating a linearly increasing voltage ramp.
Simultaneous to the voltage ramp, a 10-bit quadrant-global counter is incremented, whose
value is compared to the value of each cell. When the counter value matches the digital
value of a cell, the storage capacitor of the cell is updated to the current value of the voltage
ramp [11]. The digital cell values will be referred to as CapMem values from now on. As
fig. 2.1 shows, there is one CapMem per quadrant.

A problem occurs with the current implementation of the CapMem. When a large number
of cells of one CapMem, i.e. of one quadrant, is set to the same value, the stored voltages
and currents differ from the value they would have if only one cell was active.

The current calibration counteracts this problem by adding a noise of ±5 LSB [18] to the
CapMem values. In [9] we evaluated the extent of this CapMem crosstalk as it might pose a
problem for the parameter transformation model. The problem is that we do not want to
model these complex dependencies as they lead to a large number of data points. However,
the conclusion of [9] was that the parameter shift due to CapMem crosstalk in the range of
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Figure 2.3: The analog parameter storage system: the CapMem. One can see the arrangement
of the cell array, where one row belongs to one neuron and one column belongs to one analog
parameter (current or voltage). There is one voltage ramp per quadrant. When the digital
value of the cell matches the digital value of the 10 bit counter, the cell is charged to the
value of the ramp. Taken from [10].

interest is small enough to be neglected in the transformation.

2.4 Current Calibration Framework: Calix

The current calibration framework for BSS-2 is the so-called calix library [8]. It finds the
suitable hardware parameters to achieve a given target model parameter. The structure of
the software will shortly be described here, since parts of it were used in this thesis and since
the calibration results using calix will be compared with the results using the lookup-based
parameter transformation model.

The framework consists on the one hand of calibrations, which provide the necessary
methods for each model parameter to be measured and for the respective hardware parameter
to be configured. On the other hand, there are algorithms which define how the optimal
hardware setting is found.

The base of the software is formed by a calibration class with the following methods: run(),
prelude(), postlude(), measure_results() and configure_parameters(). The run() method is
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called for executing a calibration of a certain parameter. It takes the target model parameters
for all neurons as an argument, as well as an algorithm and a connection to the chip that is
calibrated. The run() method first calls prelude() to configure the chip for the calibration and
to perform other preparations. After preparing the measurement, the model parameter is
measured and then the hardware parameter is changed according to the algorithm by using
configure_parameters(). The process of measuring and configuring hardware parameters
according to the algorithm is repeated until the optimal hardware setting is found. Lastly,
the postlude() method is called to apply necessary configurations of the chip after calibration.

A noisy binary search is used as an algorithm for τmem and Vleak. The binary search can
be used for parameters for which the model parameter is a monotonous function of the
hardware parameter. As mentioned, some noise is added to the starting values of this binary
search because of the CapMem crosstalk problem which occurs when a large number of cells
is set to the same value.

For each parameter, there is a calibration class that is derived from the base calibra-
tion class, where prelude(), postlude(), measure_results() and configure_parameters() are
implemented.

In particular, the implemented measure_results() methods are used in this thesis for
measuring the model parameters. Furthermore, we will use the result of a default calix
calibration to preconfigure the chip before measurements. This calibration is run and saved
nightly on the setups.

2.4.1 Leak Potential Calibration

The measure_results() method for the leak potential calibration takes one CADC read for
digitizing the resting potential. The corresponding hardware parameter, that is adjusted
according to the provided algorithm, is the CapMem value for the leak potential V CapMem

leak .

2.4.2 Membrane Time Constant Calibration

The membrane time constant is given by τmem = Cmem/gleak. The calibration of the
membrane time constant in calix keeps the membrane capacitance constant and tunes the
leak conductivity to achieve the desired τmem. The leak conductivity is controlled by the
OTA’s bias current, which is generated and stored by a CapMem cell. This CapMem value
of the leak bias current ICapMem

bias_leak is the corresponding hardware parameter of the membrane
time constant when keeping the capacitance fixed.

For measuring the membrane time constant, there are three different calibrations that use
different methods for measuring. The method that uses the CADC for measuring was not
used in this thesis. The other two use the MADC for recording a trace, i.e. measuring the
membrane potential as a function of the time. They then use a fit to determine the time
constant.

7



One of the methods measures the response to a step current, and an exponential fit to the
decaying membrane potential (cf. eq. (2.2)) determines the membrane time constant. This
measurement method does not generate reliable results for membrane time constants under
3 µs because the offset current is too weak to stimulate the membrane significantly. There is
a leak division or multiplication mode, where either multiplication or division or neither
can be enabled and which scales the leak transconductance by a factor of nine [3], which
allows for wider ranges of τmem. With leak multiplication enabled, τmem is mostly below
3 µs, which is why the offset method does not support leak multiplication.

The other method does support these short time constants. It fits an exponential to
the trace after a reset. To ensure a good amplitude for the fit, the leak potential and the
reset potential are changed, which means that it can not be used for measurements of the
dependency of the membrane time constant on the leak potential.
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3 Results

This section presents the key steps carried out for the construction of the transformation, as
well as an evaluation of the calibration using the transformation. The model parameters
are first measured as a function of the hardware setting. Then, a function is fitted to the
obtained data. This function forms the transformation model for which an interface is
implemented and which can then be used for a look-up based calibration.

3.1 Characterization of the Analog-to-Digital Converters

With the current implementation of calix, the unit of the calibration targets for all voltages
is the readout value of the respective analog-to-digital converters (ADC). It is of interest
to know the voltages in SI units, because the ADC read values are units which are not
interpretable since they depend on the ADC configuration. This section describes how a
conversion from columnar analog-to-digital converters (CADC) read values to volts is found,
which is used for the evaluations.
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Figure 3.1: (a) Linear translation of the MADC read value to volts using this script. (b)
Linear translation from CADC to MADC read value by setting the CapMem value of Vleak

and then measuringVleak ten times with the CADC and ten times with the MADC on
one neuron. The error bars show the standard deviation over the ten measurements. (c)
Composition of the first two linear functions to get a conversion from CADC read values
to volts. Shown here: translation for chip W61F0 using a CADC calibration performed by
calix.

There already exists a script that translates the MADC read values to volts by connecting
the MADC to an external analog-to-digital converter (DAC) which is sufficiently accurate.
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This conversion is linear. By finding a translation from MADC read values to CADC read
values, a translation from CADC read values to volts can be inferred.

This conversion is achieved by setting the CapMem value of the leak potential of one
neuron to a certain value and then measuring Vleak once with the MADC and once with the
CADC. Repeating this process for different CapMem values yields a set of points of MADC
read values with corresponding CADC read values. The translation from CADC to MADC
is then determined by a linear fit. Combining the two linear translations yields a conversion
from CADC read values to volts.

Figure 3.1 shows the three translations for the CADC calibration that is used for all
measurements in this thesis. When a voltage in volts is shown in this thesis, this translation
is used. The assumption of a linear translation is not true across the entire parameter range
[18]. Furthermore, there might also be inaccuracies that are caused by only measuring the
translation from CADC to MADC on one neuron and thus neglecting differences between
neurons caused by the readout. However, these translations are sufficient to provide a
conversion for better interpretability.

3.2 Measurements

This section describes the procedures for measuring the model parameter as a function of its
respective hardware parameter and as a function of other hardware parameters it depends on.
The measurements are carried out for the leak potential and the membrane time constant,
since the membrane time constant is an example for a current based parameter and the leak
potential for a voltage based parameter.

Furthermore, these model parameters show dependencies on the respective hardware
parameter of the other parameter: the membrane time constant not only depends on the
CapMem value of the leak bias current that controls the leak conductance, but also exhibits
a dependency on the CapMem value of the leak potential. Likewise, the leak potential
mainly depends on its CapMem value, but is also dependent on the leak bias current.

For all following measurements, the synaptic input is disabled so that the characteristics
of τmem and Vleak can be measured in isolation. By applying a default (nightly) calibration,
we assure that the CADCs are calibrated.

3.2.1 General Structure

The objective of the measurements is to sweep through an array of hardware settings and
measure a model parameter for each setting. For this, a base class for executing the sweep
as well as the measurement is created. It has a method called sweep_one_neuron() that
first prepares the measurement, and then performs a loop over the array of hardware setting
for one neuron. In each iteration, the hardware setting is applied, and then the model
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parameter is measured for that neuron. After the loop, the data is serialized and saved for
later evaluation.

For each hardware parameter, a derived class must define how to configure the hardware
settings. For CapMem values, not only the value of the cell of the neuron that is measured is
set, but all neurons in order to avoid CapMem crosstalk. All other neurons are set to a value
that differs by five from the value of the neuron that is swept because the parameter shift
due to CapMem crosstalk occurs not only when a large number of cells is set to the same
value but also for the neighbouring two values (cf. fig. 3.2). When configuring a CapMem
cell to a new value, the analog value is not reached instantly. Thus, a wait of 20 ms after
configuring is used, before measuring the model parameter.

Figure 3.2: Measured membrane time constant of one arbitrarily chosen neuron as a function
of the CapMem value of the leak bias current of all other neurons in the quadrant. The
standard deviation over ten measurement of τmem is around 0.2 µs. The CapMem value of
the chosen neuron is kept constant at 10 while the value of all other 127 neurons in the
quadrant was varied from 0 to 1022. The membrane time constant of the chosen neuron
is affected if the CapMem value of other neurons in the quadrant have a value one or two
below the value or the same value of the measured neuron’s cell.

In addition to CapMem values, there are other hardware parameters that affect the model
parameters. For example, the leak division or multiplication mode, where either multipli-
cation or division or neither can be enabled and which scales the leak transconductance
by a factor of nine [3]. The scaling of the conductance leads to a scaling of the membrane
time constant, allowing for a wider range of the time constant. Since the membrane time
constant is one of the parameters for which the transformation is developed in this thesis,
the setting of this scaling factor is also swept.

The sweep_one_neuron() function takes a "recorder class" as an argument. This recorder
class implements a method to measure a specific model parameter. These measurement
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methods are taken from calix and are executed multiple times in order to get an estimate for
the variance in the measurement and to reduce measurement-to-measurement noise. For all
measurements in this section, the number of measurements is ten.

For now, the 512 neuron circuits are swept in succession, possibilities for parallelization
are described in the discussion.

Figure 3.3 and Figure 3.4 show that the leak potential and the membrane time constant
exhibit significant dependencies on each other’s hardware parameter, leading to the conclusion
that one dimensional, independent transformations for the two parameters would not
represent the hardware’s behaviour accurately enough to get a good calibration. Therefore,
both model parameters are measured as a function of the V CapMem

leak as well as the ICapMem
bias_leak.

Since the leak potential is expected to depend linearly on V CapMem
leak , the V CapMem

leak is swept
for 20 equidistant values from 0 to 1000. For ICapMem

bias_leak a logarithmically spaced list of 18
setting between 0 and 1022 was chosen due to the hyperbolic dependency of the membrane
time constant on the leak bias current [3]. For all measurements in this section, a grid of all
the combinations of these lists of settings is swept.

3.2.2 Leak Potential

The recorder for the leak potential simply uses the measure_results() function of the leak
potential calibration class from calix to measure the leak potential using the CADC.

Figure 3.3 shows the measured Vleak as a function of the V CapMem
leak for different setting of

ICapMem
bias_leak for three exemplary neurons once with leak division enabled and once with leak

division and multiplication disabled. One can see, that for some neurons the dependency
on the ICapMem

bias_leak is stronger than for others and that the direction of the dependency differs
from neuron to neuron. Further, if one were to neglect this dependency, it could result in a
difference of approximately 100 mV.

3.2.3 Membrane Time Constant

For the measurements of the membrane time constant as a function of V CapMem
leak and ICapMem

bias_leak,
the measurement method which applies an offset current to the neuron and then fits an
exponential to the decaying membrane potential is used (cf. section 2.4.2). Slight changes
were made to this method: the maximum value of the fit-result is increased from 100µs to
1000 µs. Furthermore, the sampling time, i.e. the duration that the membrane potential
is recorded, is changed (cf. section 3.2.3) and the method is changed such that only one
neuron is measured at a time.

The offset method does not support the measurement of time constants below approxi-
mately 3 µs and consequently does not support leak multiplication. The method from calix
that measures the time constant after reset would be able to measure the smaller membrane
time constants, but can not be used for this two-dimensional measurement because the
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Figure 3.3: Vleak as a function of V CapMem
leak for different settings of ICapMem

bias_leak. These three

neurons are chosen because they show that the dependency of Vleak on ICapMem
bias_leak varies

between the neurons. For some neurons the spread between different ICapMem
bias_leak of the

measured Vleak for a given V CapMem
leak is wider than for others. Additionally, the direction of

the dependency varies from neuron to neuron. The leak division setting has no visible impact
on the behaviour of the leak potential. The measurements of neuron 401 and 298 show, that
the dependency on the ICapMem

bias_leak can not be neglected as it can cause a change of Vleak of
up to 100 mV. The variance of the CADC read of the leak potential from 10 measurements
are so small that the error bars are not visible. The measurements are conducted on chip
W61F0.
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Figure 3.4: Membrane time constant as a function of the ICapMem
bias_leak for different V CapMem

leak

for two exemplary neurons and with division enabled or disabled. The time constant is
measured using a method from calix which records the decaying membrane potential after a
step current was applied to the neuron and then fits an exponential to the recorded data
(cf. section 2.4.2). The plot clearly shows a dependency of the membrane time constant on
the V CapMem

leak . The differently scaled y-axes show the effect of the leak division mode. The
measurements are taken on chip W61F0.
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method alters the V CapMem
leak during measurement. Therefore, the measurements are only

carried out with leak division enabled and with leak division/ multiplication disabled. Other
measurement methods for the membrane time constant would need to be developed so that
the measurements can be carried out with multiplication enabled.

Figure 3.4 shows the membrane time constant as a function of the ICapMem
bias_leak for different

settings of V CapMem
leak . The plot clearly shows that τmem does not only depend on ICapMem

bias_leak,

but also on V CapMem
leak , showcasing the necessity of a two-dimensional transformation.

Problems of the measurement method

A problem occurs for long time constants. At first, every time constant was measured using
a sampling time of 1000 µs. However, for long time constants (approximately above 200 µs)
the fit result differed significantly when varying the sampling time. Figure 3.5 shows a worst
case of how the result changed when varying the sampling time. In this case the fit result
varied by over 100 µs. Therefore, for ICapMem

bias_leak lower than 54 and with division enabled, the
sampling time was increased to 2200 µs.
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fitresult: 340.55 ± 0.68 s

(a) Sampling time of 1000 µs
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fitresult: 442.74 ± 0.08 s

(b) Sampling time of 2200 µs

Figure 3.5: Exponential fit to the decaying membrane potential that the measurement
method from calix uses to measure τmem for different sampling times. The difference in the
measured τmem is more than 100 µs. Therefore, τmem is measured with a sampling time of
2200 µs for higher τmem. Measured on chip W61F0, neuron 436 with division enabled and
ICapMem
bias_leak=6, V CapMem

leak =750.

Figure 3.6a shows that for even larger τmem one should use an even higher sampling time,
but this is not possible with the mode of the MADC used by calix, where the number of
samples is limited. One could for example reduce the sampling frequency in order to be able
to record for longer durations.
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(a) Long τmem: The sampling time is 2200µs.
The fit could be improved with a longer sam-
pling time, which would require changing the
sampling frequency of the MADC. Measured
on chip W61F0, neuron 436 with leak division
enabled and ICapMem

bias_leak=1 and V CapMem
leak =500.
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(b) Short τmem: The offset current can not
stimulate the membrane enough for a reli-
able and precise fit result. Measured on chip
W61F0 neuron 222, with leak division and
multiplication disabled and V CapMem

leak =100
and ICapMem

bias_leak=1000.

Figure 3.6: Exponential fit to determine τmem for a large and a small membrane time constant
using the offset method from calix. The method does not produce reliable results for very
long and very short τmem.

At the lower end of the τmem range, meaning approximately below 3 µs, the measurement
method also shows some issues. Due to the high leak conductance, the offset current is not
able to stimulate the membrane potential significantly (cf. fig. 3.6b).

3.2.4 Time for Measuring

Table 3.1 gives an overview over how long each part of the measurement with the current
implementation takes. For each neuron, a grid of 20 · 18 · 2 = 720 hardware setting points
is swept (20 V CapMem

leak settings, 18 ICapMem
bias_leak settings, division enabled or disabled). For

each hardware setting point, the settings are firstly configured which takes around 90 ms
for setting ICapMem

bias_leak, V
CapMem
leak and the leak division setting. Then, the model parameter

is measured ten times, which takes around 400 ms for τmem and around 160 ms for Vleak.
Before starting a measurement, a prepare_meas() function is called, which takes around
250 ms for τmem and is not needed for Vleak. In total, the sweep of one neuron takes around
6 min for τmem and around 3 min for Vleak, which results in a time of 51 h for τmem and 26 h
for Vleak for all 512 neurons.

There are multiple possibilities to optimize the measurement in order to make it faster.
The measurements for Vleak could for example be parallelized by measuring all four quadrants
in parallel, or even more neurons in parallel by not choosing the same CapMem values
for the sweeps. For τmem, since it is measured with the MADC, only two neurons can be
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time for τmem time for Vleak
prepare meas 250 ms -

measure result 10x 410 ms 160 ms
setting CapMem 2x 90 ms 90 ms

one neuron (720 points) ∼6 min ∼3 min
512 neurons 51 h 26 h

Table 3.1: Time for measurements of the membrane time constants by recording the membrane
potential using the MADC and the leak potential using the CADC.

measured in parallel. However, one could change the CapMem values for multiple neurons
simultaneously and then measure, which would minimize the overall time needed for setting
the CapMem. Again, one has to take the CapMem crosstalk problematic into account, i.e.
not setting the CapMem cells to the same values.

3.3 Fitting of the Transformation Model

The recorded data will now be used to create the transformation by fitting a function to
it. Since the transformation model will be two-dimensional, one could consider fitting a
function f : R2 → R2 where the domain is a point in the τmem-Vleak-plane and the range a
point in the V CapMem

leak -ICapMem
bias_leak-plane. However, this would require knowledge of the form

of the dependency of the model parameters on each other’s hardware parameter. Figure 3.7
shows the model parameters as a function of each other’s respective hardware parameter.
The plots do not indicate an obvious function to fit to this dependency. Yet, one can see,
that the dependency of the model parameters on their respective hardware parameter is
stronger than on each other’s hardware parameter.

This leads to the conclusion that, since it is challenging to find a function f : R2 → R2

to fit to the data, but we know the form of the dependency of the model parameters on
their respective hardware parameter, we instead choose to fit a set of curves fc : R → R.
This means that for each ICapMem

bias_leak a function is fitted to the data Vleak as a function of the

V CapMem
leak . Likewise, for each V CapMem

leak a function is fitted to the data τmem as a function of
ICapMem
bias_leak.
An idea for a function f : R2 → R2 could be a two-dimensional polynomial, but this

approach is not pursued in this thesis.

3.3.1 Leak Potential

As mentioned we expect Vleak to exhibit a linear dependency on V CapMem
leak , but only in a

certain range. Therefore, before fitting a linear function to the data, the linear part of the
data needs to be selected. This can not be done by hand for all neurons and all ICapMem

bias_leak.
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Figure 3.7: Left: Membrane time constant as a function of V CapMem
leak for different settings of

ICapMem
bias_leak. Right: leak potential as a function of ICapMem

bias_leak for different settings of V CapMem
leak .

Neuron 401 on chip W61F0, leak division disabled.

Thus, this selection needs to be automated. The chosen approach is to calculate a numeric
second derivative from the data points and then cutting at the minimum and maximum of
the second derivative such that the points of the minimum and maximum are excluded.

After selecting the range, a linear function f(x) = ax + c is fitted to the data in the
direction Vleak as a function of V CapMem

leak , using a weighted least squares fit with weights
wi =

1
σ2
i

where σi is the standard deviation of the ten CADC reads of Vleak. The fit returns
the fit parameter for the offset a and the slope b.

For the lookup-based transformation model the user needs a function that converts Vleak

into a V CapMem
leak value. Thus, the function f is inverted resulting in a linear function

f−1(x) = a′x+ b′ with a′ = 1
a and b′ = − b

a . The function f is evaluated at the outermost
hardware parameters of the points that were used for the fit in order to get the model
parameter range.

Figure 3.8 shows the fitted functions f−1 for one neuron for the different ICapMem
bias_leak settings

and the residuals of the fit. Figure 3.9 shows the residuals of the function f−1 (measured
V CapMem

leak minus predicted V CapMem
leak ) as a function of the predicted V CapMem

leak for all 512
neurons on one chip and for different ICapMem

bias_leak settings.
Since the residuals were not spread uniformly around zero, a polynomial fit was tried out

to achieve better fit results. For polynomials of arbitrary degree, the approach of fitting in
the direction "model parameter as a function of the hardware parameters" and then simply
inverting it into the form specified by the transformation interface (cf. section 3.4) does not
work analytically anymore. Therefore, the fit is directly performed in the direction "hardware
parameter as a function of the model parameter" using scipy.odr [17] for an orthogonal
distance regression due to the measurement errors being on the x-axis. A fourth-degree
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Figure 3.8: Linear fits for V CapMem
leak as a function of Vleak for different ICapMem

bias_leak for neuron
401 on chip W61F0. Residuals show that the dependency is not fully linear.

polynomial produced the best results among all polynomials up to degree four.
Figure 3.9 shows the residuals with a polynomial of degree four. The residuals are

on average smaller and spread more evenly around zero. Therefore, the result from the
polynomial fit will be used for later evaluation.

3.3.2 Membrane Time Constant

For the membrane time constant the function eq. (3.1) is fitted to the data τmem as a
function of ICapMem

bias_leak and inverted analytically afterwards. This function is chosen because
the equations describing the leak OTA state that its transconductance is linearly dependent
on the leak bias current for small bias currents and is proportional to the square root of the
leak bias current for higher bias currents [3]. An interpolation between these two cases and
the fact that τmem is inversely proportional to gleak for constant Cmem, yields eq. (3.1).

f(x) = b · (x− c)a (3.1)

with a < 0, b > 0 and x− c > 0 ∀x.
The second derivative of the function is positive for all valid x. This property can be

used to select a part of the data for the fitting. The numeric second derivative of τmem as a
function of ICapMem

bias_leak is calculated in the same way as for the leak potential using np.gradient.

Then, the data is cut at the first negative second derivative going from high to low ICapMem
bias_leak

values, while ensuring that at least three data points are left for the fit.
Then the function eq. (3.1) is fitted to the selected part of the data using scipy.curvefit() [16]

with the standard deviation of the membrane time constant measurements as y-errors.
For the user of the parameter transformational model, the function is inverted again, to
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Figure 3.9: Residuals of the linear fit (left) and polynomial (right) for all neurons and for
different settings of ICapMem

bias_leak. The residuals of the linear fit show systematic deviation
from zero. Thus, a polynomial fit was tested. The right plot shows the residuals with a
polynomial of fourth degree. The residuals are smaller and spread more evenly around zero.
The polynomial seems to describe the hardware’s behaviour better than the linear model.
The residuals do not depend on the ICapMem

bias_leak setting. Measured on chip W61F0.
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Figure 3.10: Fit results of the function eq. (3.2) to the data ICapMem
bias_leak as a function of Vleak

for division enabled and division disabled for different V CapMem
leak settings for one neuron. The

second row shows the relative residuals of the function (3.1). Measured on chip W61F0.
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Figure 3.11: Relative residuals of the fit of the function (3.2) to the data ICapMem
bias_leak as a

function of τmem for all 512 neurons on chip W61F0 once with division enabled (right) and
disabled (left). The V CapMem

leak values were reduced to the values from 300 to 800 since this is
the range of the Vleak fits (cf. fig. 3.9). The grey block marks the time constants below 3 µs
since the used measurement method does not support these small time constants, which
might explain the increase of the residuals towards these small τmem for the left plot. The
colours indicate that the residuals depend on the V CapMem

leak . Overall, the residuals are not
spread uniformly, which means that a different function would fit the data better. Excluding
the range below 3 µs, the residuals stay below 20 %.

get the hardware parameter as a function of the model parameter. The inverted function is:

f−1(x) = d · xe + g (3.2)

with g = c, d = b−1/a and e = 1/a.
Figure 3.10 shows the resulting fits for one exemplary neurons for leak division enabled as

well as for leak multiplication and division disabled and for different values of the CapMem
value of the leak potential. It also shows the residuals of the fit with division mode and
without division mode.

Figure 3.11 shows the relative residuals for all neurons and the different settings of
V CapMem

leak , but only from 300 to 800 because this is the maximum range that the fits for
Vleak yield (cf. fig. 3.9). The fits converge for all neurons, but the residuals show systematic
deviations, meaning that for better results one would have to find a different function to fit
to the data.
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3.4 Transformation Interface

The results from fitting are (for each neuron) two sets of curves: ICapMem
bias_leak as a function

of τmem for different V CapMem
leak and V CapMem

leak as a function of Vleak for different ICapMem
bias_leak.

Each curve additionally specifies a model parameter range, i.e. a range for which the
transformation is valid.

The task of the transformation interface is to return a pair of CapMem values (V CapMem
leak ,

ICapMem
bias_leak) for a given pair of model parameters (Vleak, τmem) using the two sets of curves.
Since we did not use a two-dimensional fit, the idea is to interpolate between the curves.

Figure 3.12 shows the two sets of curves in three dimensions, and the surfaces represent the
interpolation between the curves. The interpolations now provide both model parameters as
a function of the pair of hardware parameters. In order to get a pair of hardware parameters
from the pair of model parameters, one can imagine drawing a contour line at the target
model parameters for each of the model parameters. This results in two lines in the plane of
the two hardware parameters. An intersection of the contour lines forms the transformation
result.
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Figure 3.12: Visualization of the two sets of curves (green) resulting from the fits and
the interpolation (grey surface) between the set of curves. A pair of hardware settings
corresponding to a pair of model parameters is retrieved by finding the intersection of the
two contour lines (red) at the respective model parameter. Red lines show the contour lines
for τmem=25 µs and Vleak=100 CADC read.

In practice, the transformation result is computed in the following way. Given a pair (Vleak,
τmem), for each curve Vleak as a function of V CapMem

leak , the hardware parameter V CapMem
leak is

calculated for the given Vleak. Since each of these curves is assigned to a ICapMem
bias_leak, the result

is a set of point in the ICapMem
bias_leak-V

CapMem
leak -plane. Likewise, the ICapMem

bias_leak is computed for

each curve τmem as a function of ICapMem
bias_leak at the given τmem, also resulting in a set of point
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in the ICapMem
bias_leak-V

CapMem
leak -plane. If the given model parameter is not in the model parameter

range of a curve, this point is not added to the set of points. Connecting the points of each
set of points is equivalent to the interpolation.

Now, the last step is to find an intersection of these lines to get the hardware parameter
pair. The lines are a set of connected line segments defined by the points. The approach
to find the intersection is to test for each segment of line 1 whether it intersects with any
segment of line 2. There is a well-defined way of finding out whether an intersection of
two non-parallel line segments in two dimensions exists and if so, how to calculate the
intersection [2]. Given the coordinates of the endpoints of segment 1 (x1, y1), (x2, y2) and of
segment 2 (x3, y3), (x4, y4), the following equation needs to be solved:(

x2 − x1 −(x4 − x3)

y2 − y1 −(y4 − y3)

)(
s

t

)
=

(
x2 − x1

y3 − y1

)
(3.3)

where s and t parametrize the lines. If the solutions s0 and t0 are 0 ≤ s0, t0 ≤ 1, an
intersection of the two lines exists:(

x∗

y∗

)
=

(
x1 + t0(x2 − x1)

y1 + t0(y2 − y1)

)
(3.4)

We assume that there is only one intersection because the two contour lines are nearly
orthogonal to each other (cf. fig. 3.12). Therefore, the linear search algorithm stops after
finding an intersection. The intersection point forms the transformation result after it is
rounded to an integer, since the digital values are integers.

3.5 Evaluation of the Calibration using the Transformation
Model

The interface provides a transformation from an arbitrary pair of model parameters (Vleak,
τmem) to a pair of hardware settings (V CapMem

leak , ICapMem
bias_leak) for all 512 neurons. The aim of

this section is to evaluate the calibration using the parameter transformation model for these
two parameters. This means, calculating the hardware settings for a given pair of target
model parameters for all neurons, then applying them to the chip and measuring the effect
of the hardware settings on the model parameters for all neurons.

As described, the curves that define the transformation also specify a model parameter
range. If a targeted model parameter is outside this range, or the contour lines do not
intersect, the transformation does not find a set of hardware parameters, meaning the
transformation does not exist for the given pair of τmem and Vleak. Figure 3.13 shows the
number of neurons for which the transformation model can find a set of hardware parameters
as a function of the model parameters. The evaluation is then carried out for all model
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parameter pairs in fig. 3.13 for which at least 502 neurons have a transformation, which is
98 % of all neurons.
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Figure 3.13: Number of neurons for which a transformation result exists as a function of
the target τmem and Vleak. The ranges for τmem with division enabled and disabled overlap.
Transformations for chip W61F0.

For each of these model parameter pairs, the hardware parameters are computed using
the transformation and applied to the chip. Then, the two model parameters are measured
again. The neurons for which no transformation exists are excluded in the evaluation. The
membrane time constant is measured with a sampling time of 2000 µs, which should be long
enough since the largest membrane time constant is around 230 µs. The results are shown
in Figure 3.14 with division disabled and Figure 3.15 with division enabled.

The plots show the distributions as well as the deviations of the mean from the target
of the measured model parameters over all neurons with a transformation (at least 502
neurons) on chip W61F0 after calibration using the transformation for different target
model parameter pairs. The target membrane time constant increases from left to right,
and the target leak potential increases from top to bottom. The middle of the cross in
each plot marks the point of the target model parameters. The range of the τmem-axis is
scaled with the target τmem, while the range of the Vleak-axis is kept constant, because the
characteristics of the potential should be independent of its absolute value. The mean and
standard deviations of the distributions are noted in each plot.

The first obvious observation is that most of the distributions are not centred, i.e. they
exhibit systematic deviations from the target, which is demonstrated by the deviations of
the mean from the target.

The membrane time constant after calibration with division disabled is larger than the
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target for a target of 3 µs. Then, for a target of 5 µs, the measured τmem is smaller than
the target. From a target of 10 µs to a target of 25 µs, the mean relative deviation from
the target is positive and increases. But the deviation from the target does not exceed 4 %.
With leak division enabled, τmem exhibits a similar behaviour. The relative deviation from
the target is at its maximum for a target of τmem of 20 µs, then turns negative for a target
of 50 µs and increases with increasing target-τmem. The maximum deviation is 6.5 %. But
the target of 20 µs can be excluded since it is covered by the settings with division disabled.
Then, the deviation of τmem overall stays below 4 %.

The behaviour of the deviation from the target aligns with the behaviour of the residuals
(cf. fig. 3.11). For the smallest τmem (3 µs or 20 µs), most of the residuals are positive,
meaning that the measured τmem are larger than the model predicts, which means that the
model predicts a ICapMem

bias_leak value that is smaller than the measured value which would cause
a larger time constant. This aligns with a positive deviation from the target. From the 3 µs
to 5 µs for division disabled and from 20 µs to 50 µs with division enabled, the residuals fall
below zero, which also aligns with the negative deviation from the target. From there, the
increase of the residuals when going to larger τmem again aligns with the increase of the
deviation from the target.

The mean of Vleak is systematically below the target. However, the deviations of the mean
of the distributions from the target are not significant when comparing them to the standard
deviations of the distributions that are shown in section 3.5.1. The deviations are not larger
than 2.3 mV for the both cases of division enabled and disabled.

3.5.1 Comparison to fixed-point Calibration

Figure 3.16 shows the distribution of τmem and Vleak after calibrating to a typical operation
point using the fixed-point calibration. Since the current calibration framework does not
support two-dimensional transformation, it is important to mention that the membrane
time constant was calibrated before the leak potential, which is probably the cause of the
deviation of the mean of the membrane time constant from the target. This calibration result
will now be used as a reference to compare the calibration result based on the transformation
to.

The standard deviation for the calix calibration of τmem is around 1.5 %. For the trans-
formation model, the standard deviations have a similar dimension, ranging from 0.6 % to
2.2 % for the different targets.

The standard deviation of Vleak is 2.0 mV when using calix and ranges from 2.0 mV to
7 mV for different targets when using the transformation.

In general, the accuracy of the calibration is limited by the resolution of the CapMem.
For Vleak, the order of magnitude of the resolution is 10−3 V per CapMem value (cf. fig. 3.8).
The standard deviation of the calibration using the transformation is of the same order of
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Figure 3.14: Distributions and mean deviations from the target of τmem and Vleak over
all neurons after calibration using the transformation for different calibration targets and
with leak division disabled. The standard deviation of τmem does not exceed 4 %, but the
distributions show systematic deviation from the calibration target, which can be attributed
to the fit, since the trend of the deviations align with the residuals fig. 3.11. The mean of
Vleak is systematically below the target, but the deviations are not significant.
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Figure 3.15: Distributions and mean deviations from the target of τmem and Vleak over all
neurons after calibration using the transformation for different calibration targets and with
leak division enabled. The maximum standard deviation of τmem is 6.5 %. The deviation of
the mean τmem from the target shows similar behaviour as in Figure 3.14 and can also be
attributed to the fit. The mean of Vleak is systematically below the target, but the mean
deviations from the target are not significant.
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Figure 3.16: Distribution of Vleak and τmem after calibrating to the default operation point
of the nightly calibration using calix. This calibration serves as a reference.
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Figure 3.17: Standard deviation of Vleak and τmem over all neurons after calibration using
the transformation for different calibration targets. The maximum standard deviation of
τmem is 2.1 % and the 6.8 mV for Vleak.
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magnitude as the resolution.
For τmem, the resolution depends on the ICapMem

bias_leak value, since the dependency of τmem on

ICapMem
bias_leak can not be approximated as linear. Calculating the slope of a fit from ICapMem

bias_leak

to τmem shows that the order of magnitude of the resolution ranges from 1 % per CapMem
value for small ICapMem

bias_leak to 10−1 % per CapMem value for larger ICapMem
bias_leak. When excluding

3 µs for division disabled and 20 µs for division enabled, the standard deviations increase
from around 0.7 % to around 2 %, which aligns with the trend of the resolution and matches
the order of magnitude of the resolution.

To conclude, the standard deviation of τmem after calibration using the transformation
model is of similar size as the standard deviations of the parameters when using the fixed-
point calibration, while the standard deviation of Vleak is slightly larger on average than the
standard deviation of the reference calix calibration. Further, the standard deviation is of
the same order of magnitude as the upper limit of the accuracy imposed by the resolution of
the CapMem.

The time for calibration for Vleak and τmem using the transformation is approximately 4 s,
whereas the calix calibration takes approximately 70 s for the two parameter. The code for
calculating the transformation for all 512 neurons is not optimized, which means that even
shorter calibration times could be achieved.
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4 Discussion

In this thesis, a transformation model for calibration of BSS-2 for the two model parameters,
membrane time constant τmem and leak potential Vleak, of the LIF neuron was developed
and evaluated, since this approach allows faster calibration than the current fixed-point
calibration.

The first step was to measure the model parameters as a function of the hardware
parameters. The measurements showed that the two model parameters exhibit dependencies
not only on their respective hardware parameter but also on the hardware parameter of each
other. Thus, τmem and Vleak were both measured as a function of the hardware parameter
that controls τmem and the hardware parameter that controls Vleak. Additionally, the
measurements were carried out once with leak division enabled and once with leak division
and multiplication disabled, which scales the leak conductance, allowing for a wider range of
τmem. The measurements were not conducted with multiplication enabled, since no suitable
measurement method existed.

Some issues occurred when conducting the measurement for τmem. They mainly concerned
the measurement method, which did not provide accurate result for very long and very
short τmem. The measurements for all neurons on one chip took several days with the
current implementation because all neurons are measured sequentially. However, this can be
improved by measuring several neurons in parallel, which requires an approach on how to
avoid configuring all neurons to the same hardware setting since this would lead to a shift of
the analog parameters due to the CapMem crosstalk problematic. Besides, the measurement
only has to be done once for generating the transformation and in turn provides a very fast
calibration.

The second step, was to fit a model to the obtained data. Since it is challenging to find a
function f : R2 → R2 to fit to the data, and we had some knowledge about the form of the
dependency of the model parameters on their respective hardware parameter, two sets of
parametrizations of transformation functions fc : R → R were fitted, i.e. each of the two
hardware parameter was fitted as a function of its respective model parameter for different
settings of the other hardware parameter. Before fitting, a part of the data was selected for
the fit, this was automated with the help of a numeric second derivative of the measured
data.

For the leak potential, we expected a linear functional dependency of Vleak on its CapMem
value. However, the residuals of the fit were not randomly scattered around zero. Thus, a
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polynomial fit was chosen whose residuals were spread more evenly around zero and were
smaller. For τmem the assumption was, that the data follows the functional dependency of
(3.2). For parts of the parameter range the function fitted the data well, but the residuals
were also not spread randomly around zero, leading to the conclusion that a different function
could achieve better results.

With the fitted result, it was now possible to create the transformation. A transformation
object for one neuron contains two sets of curves, where each curve supplies the transformation
of a model parameter to its respective hardware parameter but for different hardware settings
of the other hardware parameter. A curve is defined by its fit parameters and a model
parameter range, and is assigned to a hardware setting of the other parameter. The
transformation object can be serialized and saved in a database. For a given set of model
parameters, the hardware parameter for each curve is computed, resulting in two sets of
points in the hardware settings plane. The intersection of the lines, resulting from connecting
the points of each line, forms the calibration result.

The last step was to use the transformation for calibration and evaluate the results. The
transformation was computed for a grid of target model parameters using the transformation
interface and then applied to the chip and the model parameters were measured again.
There was a systematic deviation of the membrane time constant from the target which is
caused by the fit and could probably be minimized by a different fit function. The maximum
deviation of the mean over all neurons from the target was 3.9 %. The mean of Vleak after
calibration showed no significant deviation from the target and did not exceed 2.5 mV.

In comparison to the calibration results using the existing fixed-point calibration for
a typical operation point, the standard deviation over all neurons was found to be of
similar size for τmem and slightly larger for Vleak. The maximum standard deviation of
Vleak was 6.8 mV and for τmem 2.1 %. The time for calibration of Vleak and τmem using the
transformation was 4 s with an unoptimized code for the calculation of the transformation,
whereas the calibration using the current fixed-point calibration, takes approximately 70 s
for the two parameters. This clearly shows the speed advantage of the calibration using the
transformation.

To conclude, the transformation model was successfully implemented for one current-
based and one voltage-based parameter that exhibited dependencies on each other. The
model would be improved and would provide more accurate results if a different fit function
for the membrane time constant was used. When comparing the calibration using the
transformation to a calibration using the current calibration framework, the calibration
using the transformation is slightly less accurate. However, there are two main advantages
of the transformation over the current fixed-point calibration: the first one is the speed of
the calibration using the transformation and the second is that it takes interdependencies
between parameters into account.
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5 Outlook

This thesis represents only the initial steps toward a lookup-based transformation model for
calibration. Therefore, potential next steps are outlined here.

Further steps concerning the transformation of τmem and Vleak could be improving the
measurement method. For the membrane time constant, mainly short and long time
constants could not be measured reliably. Thus, developing a measurement method for
very small time constants which does not change the hardware setting of Vleak would enable
the development of a transformation with leak multiplication enabled. For very long time
constants, one could consider implementing a measurement method that allows for longer
measurements.

Concerning the process of measuring the model parameter as a function of the hardware
setting, it would be of benefit to minimize the measurement time. This especially becomes
important when the number of parameters for which the transformation model is created
increases, since we do not want the measurements for all parameters to take weeks. The
measurement time can be minimized by measuring multiple neurons in parallel. A first step
would be to measure all quadrants in parallel, as there is only CapMem crosstalk within
each quadrant. Further parallelization would require that the CapMem values of all neurons
would be at least two values apart from each other to avoid crosstalk.

The transformation interface of the two-dimensional transformation could be used for
a pair of parameters that shows similar dependencies. Furthermore, the interface could
be extended for the membrane time constants such that the transformation automatically
decides whether leak division or multiplication should be enabled. This could be realized by
a section-wise transformation.

As the transformation model in this thesis was only constructed and evaluated for one
chip, it would be of interest to test this approach for more chips, even tough we do not
expect major differences.

Lastly, the next obvious step is to expand the transformation to more parameters of the
neuron circuit. For this, the developed software structure for measuring the model parameters
as a function of hardware parameter can be used. It would just require implementations of
the respective measurement method and the setting of the hardware parameter, as well as
finding out which parameters exhibit interdependencies. An important parameter one could
look at next is the synaptic input, since it might have an impact on the transformation of
τmem and Vleak.
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Ultimately, if a transformation model for all parameters would be developed, numerous
experiments could benefit from shorter calibration times.
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Acronyms

ADC analog-to-digital converters

AdEx adaptive exponential integrate-and-fire

ANN artificial neural networks

BSS-2 BrainScaleS-2

CADC columnar analog-to-digital converters

CapMem capacitive memory

DAC analog-to-digital converter

FPGA field programmable gate array

HICANN High Input Count Analog Neural Network

LIF leaky integrate-and-fire

MADC membrane analog-to-digital converter

OTA operational transconductance amplifier

PPU programmable plasticity unit

SI International System of Units

SNN spiking neural networks
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