
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Nils Bergler

born in Eberbach (Germany)

2025

Testing full-custom SRAM for Neuromorphic Hardware

This Bachelor Thesis has been carried out by
Nils Bergler

at the
Kirchhoff-Institute for Physics in Heidelberg

under the supervision of
Prof. Dr. Johannes Schemmel

Abstract
In this thesis the Static Random Access Memories (SRAMs) of the BrainScaleS-2 neu-
romorphic hardware platform are tested and characterized with respect to the timing
configurations as well as the hyperparameters supply voltage and temperature. A soft-
ware library is presented for testing SRAMs on neuromorphic hardware in general and
in particular the SRAMs of the BrainScaleS-2 platform implemented. Using this library
all SRAMs of the platform are analyzed with respect to the timing configurations and
the impact of the supply voltage and temperature on the reliability of the memory. The
analysis over 14 systems finds a strong impact of the read timing on the reliability for
two of the five tested SRAMs, while the remaining timing parameter show a weaker
impact. Here we also found an anomaly regarding one of the SRAM that showed an
unsuspected behavior under certain timing parameters. Furthermore, bugs in the digital
logic in one of SRAM controllers were found. The tests under varying hyperparameters
found an acceleration regarding the read operations with increasing supply voltage and
temperature.

Zusammenfassung
In dieser Arbeit werden die Static Random Access Memories (SRAMs) Speicher der neu-
romorphen Hardware-Plattform BrainScaleS-2 getestet und charakterisiert. Es werden
Messungen im Bezug auf die Zeitkonfigurationen der Speicher sowie der Hyperparameter
Versorgungsspannung und Temperatur durchgeführt und analysiert. Hierzu wird eine
Softwarebibliothek zum Testen von SRAMs auf neuromorpher Hardware vorgestellt und
die SRAM Speicher der BrainScaleS-2 Plattform implementiert. Die Analyse über 14
Systeme zeigt einen starken Einfluss der Lesezeitkonfiguration auf die Zuverlässigkeit
bei zwei der fünf getesteten SRAMs, während die restlichen Zeitkonfigurationen einen
schwächeren Einfluss aufweisen. Zudem wurde eine Anomalie in einem der SRAM Spe-
icher gefunden, die unter bestimmten Zeitparametern ein unerwartetes Verhalten zeigte.
Darüber hinaus wurden Fehler in der digitalen Logik eines weitern SRAM Speichers ge-
funden. Die Tests unter variierenden Hyperparametern zeigen eine Beschleunigung der
Leseoperationen mit steigender Versorgungsspannung und Temperatur.

Contents

1. Introduction 1

2. Background and Materials 2
2.1. SRAM Theory . 2
2.2. The BrainScaleS-2 Platform . 7

3. Methods 13
3.1. SRAM Tests . 13
3.2. Supply Voltage . 14
3.3. Temperature . 15

4. Software Implementation 17
4.1. Memory Tests . 17
4.2. Sweeps . 19

5. Results 22
5.1. SRAM Timing and Faults . 22
5.2. SRAM Hyperparameters . 39

6. Discussion and Outlook 47
6.1. Summary and Discussion . 47
6.2. Outlook . 49

Bibliography 50

A. Appendix 52
A.1. Glossary . 52
A.2. Software Versions . 53
A.3. Funding Statement . 53
A.4. jBOA heat chamber . 54

vii

Chapter 1.

Introduction

Spiking neural networks (SNNs) are biologically inspired neural networks that mimic
the behavior of the brain. Aside from simulation on classical computers, SNNs can
also be implemented in (neuromorphic) hardware, which can show advantages in energy
efficiency and presents a novel approach to machine intelligence. To realize neuromorphic
hardware there is a need for fast and reliable memory, as it needs to reference definitions
and configurations of the neurons and synapses, which define the behavior of a SNN.
On the BrainScaleS-2 neuromorphic hardware platform, these memories are realized
as multiple Static Random Access Memories, covering different aspects of the system.
They are implemented as full-custom design with tight margins to achieve high energy
and area efficiency, which also makes them unique in regard to the behavior of the
configuration and the impact of hyperparameters. Hence, we need tests of these SRAMs
to ensure the correct operation and characterize them with respect to their configuration
and hyperparameters.
Another aspect is that with complex systems like neuromorphic hardware, we need to be
able to ensure the reliability of all parts of the system. This includes the behavior of the
memory and under different conditions, such as varying supply voltage and temperature.
Thus, necessitating a way to test and analyze the behavior of the SRAMs and give
optimal configurations for the memory.
This thesis aims to test the SRAMs of the BrainScaleS-2 (BSS-2) neuromorphic hardware
platform and characterize them with respect to the timing parameters. Furthermore,
we investigate how reliable the SRAMs are under varying supply voltage and temper-
ature, and how the behavior of the SRAMs changes under these conditions. With this
information we can then determine a stable and reliable configuration for the SRAMs of
the BSS-2 platform and understand the reliability of this configuration under different
conditions.
This work will present an implementation of a software library for testing and char-
acterization of the SRAMs of the BSS-2 chip integrated into the software stack of the
platform.
In Bergler (2024), we already have shown that the synapse memory of the BSS-2 platform
showed faults for certain timing configuration and we devised a calibration algorithm
to ensure fault free operation of the memory. In this thesis we will extend this analysis
to all remaining SRAMs of the BSS-2 platform and carry out the investigation of the
hyperparameter described above.

1

Chapter 2.

Background and Materials

2.1. SRAM Theory
2.1.1. SRAM basics
Static Random Access Memory is used widely in modern computer systems for its speed
and size. It is composed of many identical cells each holding a singular bit of information.
The nowadays most common SRAM cell is the 6T-cell, composed of 6 transistors, 4 of
these form two interlocked CMOS inverters which create a bistable circuit that can be
used to store binary data. The remaining two transistors are the access transistors
connecting each of the CMOS inverters to the two bitlines carrying the data and their
gates connected to the wordline used for selecting a cell (Bosio et al., 2012). There are
other types of SRAM cells, such as the older 4T-cell or less common used cells with more
transistors trading size for increased reliability (Rathi et al., 2023).

WL
WL

BL
BL

Figure 2.1.: The standard 6T SRAM cell. WL is the wordline and BL the bitline value.

To access a specific cell an address decoder is used to convert an address to the correct
word- and bitline to be selected on the SRAM. For simple SRAM the address selects just
row and column, in more complex cases the SRAM may be organized in deeper structures
such as blocks, with multiple stages of the address decoder descending a binary tree.
The read and write operations on a SRAM cell have to be done with special SRAM con-
trollers to ensure the correct operation of the memory, because we need precise timings

2

Chapter 2. Background and Materials

R
ow

D
ec

od
er

Column Decoder

Wordline

Memory Array

B
it

li
ne

pa
ir

Address
Sense Amplifiers

Figure 2.2.: Functional diagram of a SRAM. Adapted from Dounavi and Tsiatouhas
(2023).

of the cells access to ensure the correct operation of the memory. The basic operations
are:

— Write: To write a value to a SRAM cell the bitlines are driven at the desired
logical value and the wordlines activated. On the side of the inverters carrying a
logical “1” a bitline charged to a logical “0” then forces the value onto the inverter,
if the pull-up transistors of the inverter is weaker than the access transistor. The
changed inverter then forces the opposite state onto the other inverter, bringing
the cell into a stable state.

— Read: To read the value in a cell, the bitlines are charged to the supply voltage
and then disconnected from the charging circuit. After the wordline is activated,
the side of the logical “0” starts to discharge the bitline, causing a voltage difference
between the bitlines. A sense amplifier is then used to sense the voltage difference
and determine the read value. Importantly the pull-down transistor of the inverter
must be strong enough to prevent altering the logical value in the cell.

2.1.2. SRAM timings
All SRAM operations need to be timed correctly to ensure correct operations. First
a setup time is needed before the activation of the wordlines to ensure the SRAM has
reached the desired initial state for the operation. For a read operation this would
include the time to charge the bitlines and ensure complete equalization between them.
For a write operation this would include the time until the bitlines have reached the
desired threshold of the driven logical values. Second, the SRAM also needs time during

3

Chapter 2. Background and Materials

wordline activation, which ensures that a sufficient voltage difference is present to create
a well-defined state of the memory, which during a write operation must be long enough
to possibly flip the state of the cell and for a read operation must be long enough to
reach a large enough voltage difference between the bitlines to be sensed. Furthermore,
during all of this, the data and address supplied to the SRAM has to be valid and
constant (Pavlov and Sachdev, 2008).

enable

write

setup

wordline

sense

address

data_in

data_out

addr_setup_time read_delay addr_setup_time write_width

Figure 2.3.: The sequential steps of a SRAM read and write operation, with the timings
of the BSS-2 SRAM controller included.

In linear/small signal approximation for any of these operations the rate to cause a
desired voltage difference ∆V is given by

T = C · ∆V

I
(2.1)

where C is the capacitance in question and I the typical current (Pavlov and Sachdev,
2008). For example, in the case of a read operation C, is large due to the size of the
bitlines and I small due to the size/speed of the transistor, which are designed to be as
small as possible. Therefore, one wants to choose ∆V as small as possible, such that the
sense amplifier can determine the read value as early as possible.
The dynamics of the operation may also vary over the SRAM due to variations in
the parameters of the transistors or not all positions in the array being dynamically
equivalent (e.g., a cell at the start of a bitline vs at the end).
Aside from the sensing threshold of the sense amplifier, one also has to consider the static
noise margin (SNM) of these operations. One can only be certain about the state of a
cell if ∆V has a sufficient distance to the desired value larger than the expected noise.
The SNM is then defined as the maximum distance a voltage can vary under the worst
possible conditions, such that the desired outcome is still achieved. One example where
this is relevant is the write operation, where the SNM is the induced voltage difference
on the cell minus the maximum voltage difference needed to switch the cell. If the SNM
is too small, stochastic faults can occur (Pavlov and Sachdev, 2008).

4

Chapter 2. Background and Materials

As shown, there are many factors that come In with these timings, and can practically
only to be determined by measurement. For this reason the analysis of the behavior of
the SRAM timings will be the main concern of this thesis.

2.1.3. SRAM faults and tests
As can be seen from the previous section SRAMs are highly optimized circuits, especially
regarding transistor size. Thus, small deviations or incorrect operation can cause faulty
read or write operations. Conceptually faults can be assigned to the following operations:

— cell/hold: A faulty cell may change its state over time or be stuck at one value.

— address decoder: The address decoder may select the wrong, multiple or no cell
at all.

— read: A faulty read operation could return the wrong value and/or change the
value inside the cell.

— write: A faulty write operation could fail to write a certain value/transition or
write the wrong value to a cell.

In detail, these faults can be attributed to different parts of the SRAM e.g., faulty
transistors or bad timings of the operations, and can occur as different fault modes. The
most basic fault modes are

— stuck-at fault: A cell is stuck at on value

— stuck-open fault: A cell is not addressable at all

— data-retention fault: A cell changes its logical value after some time

— destructive read fault: A read operation changes the value of a cell

— incorrect read fault: A read operation returns a different value than stored in
the cell

— transition fault: A cell/write fails to switch the logical value

Faults in a cell can also be dependent of the states of other cells (coupled faults) or
depend on the dynamics of multiple operations (dynamic fault) e.g., fast repetition of
the same value. Furthermore, faults may occur only stochastically (Pavlov and Sachdev,
2008).

5

Chapter 2. Background and Materials

2.1.4. Hyperparameters of SRAM
Supply Voltage The supply voltage is the most important electrical hyperparameter
when designing SRAMs. We know from basic transistor theory that a MosFet in sat-
uration i.e. UGS > Uth and UDS > UGS − Uth, obeys the equation (up to polarity for
NMOS/PMOS and ignoring channel length modulation and velocity saturation)

IDS = K

2 (UGS − Uth)2 (2.2)

By changing the supply voltage we directly change the UGS and UDS voltages applied to
the transistor during the operations and which impacts the minimal time for an operation
given by Equation (2.1). We expect the SRAM to become faster with increasing supply
voltage, but usually the design goal is to minimize the supply voltage, to minimize power
consumption (Srinu, Rao, and Sekhar, 2024). If the supply voltage is low enough, the
SRAM may even fail completely the voltage becomes too small relative to the SNM,
causing read, write and cells to flip randomly.

Temperature Temperature is the most important non-electrical hyperparameter for
semiconductor devices, as it is the dominant parameter influencing the solid state physics
and statistics of semiconductors. The most direct effect can be seen in the behavior in
transistors. The coefficient K in Equation (2.2) for a species n of charge carriers is given
by

K = µnCox
W

L
(2.3)

with Cox the gate capacitance, W and L the width and length and µn the carrier mobility
of the transistor. While the former are mainly fixed by geometry the carrier mobility
varies strongly with temperature. It’s given by

µn = qτn

m∗
n

(2.4)

with m∗
n the effective mass and q the charge of the charge carriers and τn the mean

free time (Sze and Lee, 2012). The mean free time is limited by scattering processes,
which are mainly composed of impurity scattering and phonon/lattice scattering of the
charge carriers. Theory shows that in approximation we expect the mean free time due
to impurities to be proportional to τimp ∝ T 3/2 and due to phonons to be proportional
to τph ∝ T −3/2. The rates of these effects combine via Matthiessen’s rule (Hunklinger
and Enss, 2023)

1
τ

= 1
τph

+ 1
τimp

(2.5)

6

Chapter 2. Background and Materials

At operating temperature, phonon scattering dominates, we hence expect the mobility
to become lower with increasing temperature. Hence, SNM also tends to decrease with
increasing temperature (V. Singh, S. K. Singh, and Kapoor, 2020; Arandilla, Alvarez,
and Roque, 2011).
The effect is in competition with the threshold voltage Uth in Equation (2.2) as it is
also temperature dependent, and will typically decrease with increasing temperature.
For UGS near the threshold this could lead to an inversion of the temperature effect and
speed up the transistor with rising temperature (Zu et al., 2016). Other effects may also
be caused by the subthreshold leakage currents i.e, UGS < Uth, as they also increase
with temperature (Wolpert and Ampadu, 2011).
For high fields (high voltages and/or short channel) the mobility is also limited due to
the velocity saturation effect (Wolpert and Ampadu, 2011). The saturation velocity
decreases with increasing temperature, which leads to a decrease of current and hence
speed of the transistor.

2.2. The BrainScaleS-2 Platform
The tests of the SRAMs were performed on the BSS-2 platform, a neuromorphic hard-
ware platform developed by the Electronic Visions group. The BSS-2 platform imple-
ments 2 × 256 on-chip analog neurons which can be interconnected via synaptic connec-
tions to form SNNs in hardware. The neuron and synaptic properties are defined using
multiple parameters and settings, stored on-chip. The information for the synaptic
connections is also defined on the chip, interconnecting the two sets of neurons. Further-
more, there are multiple analog state variables such as the membrane potentials, which
are digitized using a parallel ADC with 1024 channels called column analog-to-digital
converter (CADC) (Pehle et al., 2022).

7

Chapter 2. Background and Materials

Plasticity Processing Unit

Plasticity Processing Unit

Synapse Array

Analog Neuron

Capacitive Memory

Digital Neuron

Sy
na

ps
e

D
ri

ve
rs

CADC

Synapse Array

Analog Neuron

Capacitive Memory

Digital Neuron

Sy
na

ps
e

D
ri

ve
rs

CADC

Synapse Array

Analog Neuron

Capacitive Memory

Digital Neuron

Sy
na

ps
e

D
ri

ve
rs

CADC

Synapse Array

Analog Neuron

Capacitive Memory

Digital Neuron

Sy
na

ps
e

D
ri

ve
rs

CADC

Spike Router

D
ig

it
al

I/
O

,
C

lo
ck

G
en

er
at

io
n,

..
.

M
A

D
C

Figure 2.4.: Schematic structure of the BSS-2 ASIC. There are SRAMs for the synapse
array, synapse driver configuration, CADC offset and capacitive memory as
well as the digital and analog neuron configuration. Adapted from Pehle
et al. (2022).

The chip is organized into 4 quadrants on which each neuron is associated with a column,
by which the SRAMs cells are indexed. The SRAMs are either addressed by quadrant
or hemisphere (north or south).

2.2.1. SRAMs
The BSS-2 chip uses multiple SRAMs memories to store data used for defining SNNs
and the configurations of on-chip functions:

8

Chapter 2. Background and Materials

— synaptic memory (SynRam): Stores the addresses and weights for the synaptic
connections. Per hemisphere there are two 256 × 256 cell SRAMs for storing the
weights and address data for each possible synapse.

— CADC offset: Stores the offsets of the CADC channels. Each of the 1024 channel
is assigned a signed 8 bit integer for setting the offset, arranged in one SRAM.

— digital neuron configuration: Stores the configuration used for the digital parts
of the neuron. For each neuron there are 4 × 6 bits and 2 × 4 bits as local blocks.

— analog neuron configuration: Stores the configuration of the neurons for the
analog operation. Per neuron, there are locally 6 bytes.

— capacitive memory (CapMem): Stores the voltages for a DAC with 24 channels
per neuron and a resolution of 10 bit per channel.

— synapse driver configuration: Stores the configuration of the synapse drivers.
Each driver has a block of 2 bytes and 3 bytes local to each driver, of which 2 bits
are unused.

The SynRam was already investigated during the preceding internship and will no longer
be considered in this thesis. All the SRAMs are accessed using SRAM controllers, with
configurable timings for the access operations. For the considered SRAMs the basic
controllers are identical, realized as a state machine with digital timings between the
steps of an operation. The used timings are:

1. address_setup_time: The number of cycles the logic waits before activating the
wordlines. 4 bits are used for the timing, giving a range of 0 to 15 cycles.

2. read_delay: The number of cycles the wordline is activated after the
address_setup_time for a read operation. 8 bits are used for the timing, giv-
ing a range of 0 to 255 cycles. After this the SRAM goes into idle.

3. write_width: The number of cycles the wordline is activated after the
address_setup_time for a write operation. 4 bits are used for the timing, giving
a range of 0 to 16 cycles. After this the SRAM goes into idle.

The timings can also be seen in Figure 2.3.
From a user/machine-learning perspective the SynRams are the most interesting SRAMs
which get frequently altered during learning. The rest of the configurations are usually
static and only change during setup/calibration of the system. Performance wise we
would therefore be interested in setting the timings of the former SRAMs to the minimum
possible, while the latter SRAMs could be set to a more relaxed timing if it provides a
benefit in reliability.
Considering a clock frequency of 125 MHz one cycle takes 8 ns, a read operation takes at
least two cycles and up to 256 cycles or 2 µs for the maximum timing of a read operation.

9

Chapter 2. Background and Materials

IDLE
BL = BL = 1

WL = 0

PREWRITE
BL = data

SELECT address

PREREAD
SELECT address

WRITE
WL = 1

READ
WL = 1

sense

write

read

after address_setup_time

after address_setup_time

after write_width

after read_delay

Figure 2.5.: State machine handling the read and write operations of the SRAM on the
BSS-2 platform. Each state is held for the duration of the set timings and
sets the according signals for the operation to the SRAM.

2.2.2. SRAM supply voltages
The BSS-2 chip is bonded onto a carrier board which itself is connected to a supply
board called xBoard which delivers voltage and current to the system. The SRAMs are
supplied with nominal 1.2 V by either the digital vdd12 or the analog vdd12a voltage.
These are generated using a low-dropout regulators (LDOs) which will adjust their
voltage to match a fixed voltage on a adjust input. The feedback loop of the output to
the adjust input is a simple voltage divider from output to ground, biased by the output
of a digital-to-analog converter (DAC) over a resistor. Using the DAC the output voltage
of the LDO can be adjusted this way.
The resulting voltage can be measured using an on-board INA219 chip as the bus voltage
VBUS in Figure 2.6a.

10

DAC OUTREF

−
+ 2.5 V

3.3 V

LDO

6 V

ADJ

OUT

INA219

3.3 V

VBUS

ASIC

(a) Control circuit of the SRAM supply voltage. The LDO outputs a voltage at OUT, such that
the ADJ input is at a fixed refrence voltage. The DAC can then adjust the output voltage
by biasing the voltage divider. Using the INA219 the voltage supplied to the SRAM can be
measured at VBUS.

(b) The supply board called xBoard of the BSS-2 platform. The ICs involved in the supply
voltage of the SRAM are highlighted. Original picture by Korbinian Schreiber.

Figure 2.6.: Supply voltage circuit of the SRAM on the BSS-2 platform.

Chapter 2. Background and Materials

2.2.3. Software
The BSS-2 system is accessed using an FPGA for sequentially executing instructions
on the hardware. These instructions are defined by playback programs which are build
using the BSS-2 software stack, which implements an abstraction of the hardware in
CPP (Müller et al., 2020):

— Coordinates: The halco library of the software stack abstracts the structure of
the hardware and provides classes for addressing the compontents of the BSS-2
system. See Electronic Visions (2024a) for more information.

— Containers: The haldls library of the software stack abstracts the data structure
and addresses of the hardware and provides classes representing the data of the
hardware components for each coordinate. See Electronic Visions (2024b) for more
information.

Playback programs are then built using methods for defining write, read or barrier FPGA
instructions on the hardware coordinates, with the data encapsulated by the containers.
There are further libraries in the software stack which for example handle the compilation
of the FPGA instructions or further abstract the hardware. The details of this are not
important for the procedure of this thesis.

12

Chapter 3.

Methods

3.1. SRAM Tests
The basic concept of functional testing is to write a pattern/series of known values to
the memory and compare them to subsequent reads, identifying any deviations from the
previously written values as faults. Due to the various complex fault behaviors that can
arise in n SRAM, there are many possible test patterns, designed to find certain sets of
faults (Bosio et al., 2012). In this thesis I used the following two methods for testing:

1. ValueSweep: This test writes every possible value to segments of the SRAM, e.g.
8-bit integers, across the entire array. This tests for the ability of each block to hold
and read each desired value and detects couple faults within each segment. This
test may miss faults dependent on a more complex sequence of values or coupling
faults between segments, but is very efficient at ensuring the basic functionality of
the memory. The test gets more inefficient the wider the words become, because
the test length increases exponentially. The test can be seen as a type of pseudo
exhaustive test (Cook et al., 2012).

2. PseudoRandom: This test writes a sequence pseudo random values to the memory.
In theory this test can find any fault given enough time, but perform worse at find-
ing faults of low complexity compared to deterministic methods (David, Fuentes,
and Courtois, 1989). The values are pseudo random to make the test repeatable.

It is possible to use these tests during this thesis due to the relative small size of the
SRAM considered. For larger memories usually march tests are employed, as they are
more efficient in terms of total operations used, but are designed for only specific sets of
faults (Bosio et al., 2012). Due to my software implementation in python,tests operating
on arrays are more efficient (by passing the calculations to C libraries), hence I choose
these over the today more common march tests. A more detailed discussion of different
patterns can also be found in my internship report (Bergler, 2024). Aside from functional
tests there also exist parametric test, such as analyzing the current consumption of the
memory (Pavlov and Sachdev, 2008).
To gain an understanding of the behavior of the SRAMs I performed sweeps of the
timings of the SRAMs, recording the amount of faults for each configuration. To analyze
the behavior I did 2D sweeps of write_width and read_delay for all setups and repeated
them for all address_setup_time, recording the amount of faults each cell returned

13

Chapter 3. Methods

for each configuration. Each program executed on the hardware contained at most 25
tests for different read_delay at fixed write_width. Here I used the ValueSweep for
the CADC SRAM as it showed the same behavior for PseudoRandom, but is more
efficient. The PseudoRandom test was used for the remaining SRAMs as for the neuron
configuration and synapse driver SRAMs it was more efficient to implement (due to the
software abstraction having no direct mapping of the memory) and for the CapMem the
ValueSweep pattern did not show all faults.

3.2. Supply Voltage
To analyze the behavior of the SRAM with respect to the supply voltage I performed
sweeps of the SRAM timings at different voltages. The supply voltage was changed with
the DAC to bias the LDOs adjust input and was measured using the INA219 Texas
Instruments, 2015 chip. The voltage is measured before each set of tests run for the
sweeps, which is also read using the FPGA. I choose to fix address_setup_time as it
showed the least impact on the behavior of the SRAM in the previous measurements
and varied read_delay and write_width for the sweeps, to keep the runtime of the
tests manageable.
To make reliable assumptions about the measurement of the voltage supplied to the
SRAM I measured the supply voltages of the SRAM voltage supply circuit. As we
can tell from Figure 2.6a, the interesting voltages are the 6 V xboard supply, the 3.3 V
supply of the DAC and INA219, as well as the 2.5 V reference of the DAC. I measured
the voltages using the Keithley 2100, which offers a high enough accuracy

5 6 7
voltage [V]

0

2

4

6

8

10

12
6V xboard supply

2.4 2.5 2.6
voltage [V]

0

1

2

3

4

5

6
2.5 V DAC reference

3.2 3.3 3.4
voltage [V]

0

1

2

3

4

5
3.3 V INA supply

Figure 3.1.: Distribution of the supply voltages measured over 24 setups.

Figure 3.1 shows the distribution of the measured voltages over all available setups. The
key takeaways are that the Voltages are on average slightly biased above or below their

14

Chapter 3. Methods

nominal value, but the distribution is relatively narrow, except for the xboard supply
which shows singular outliers. The latter seem to be caused by faulty power supplies,
which have been replaced after the measurements.
The INA219 chip has the following specifications according to Texas Instruments (2015):

Offset : 5 mV
Accuracy : 4 mV/LSB ± 0.5%

PSRR : 10 µV/V

Given that the voltage measured is at most 1.3 V we can expect the error for the measure-
ment to be no larger than 10 mV. in the 10 V range to ignore its error for my purposes.
From this I could then estimate the error of the INA219 measurement.

3.3. Temperature
To analyze the behavior of the SRAM with respect to the temperature I, heated the
carrier board ASIC of the BSS-2 system using a hot air gun, which by varying the
distance and setting allows achieving different temperatures. This way we are not re-
stricted by the temperature limits entire setup and do not need to heat it up entirely.
The temperature can be measured using an TMP112 sensor on the carrier board with
0.5 °C accuracy (Texas Instruments, 2024). It is placed under the protective cover of the
chip, and therefore should match the temperature of the chip closely. This experiment
is carried out on the newer jBOA platform as it allows for easier access to the chip.
To ensure better stability of the temperature and thermal equilibrium with the carrier
board I also constructed an enclosure fitted over the chip carrier board with an inlet for
the hot air. A full schematic of the enclosure can be found in Figure A.1.
Again the temperature is measured before each set of tests run for the sweeps, which is
also read using the FPGA. I choose to again fix address_setup_time as it showed the
least impact and only considered the CADC as it was the most sensitive to the timing
configuration in the previous measurements.

15

Chapter 3. Methods

Temperature
Sensor

heat box

(a) Experimental setup for heating the BSS-2 system.

(b) Carrier board of the BSS-2 chip with the TMP112 sensor highlighted.

Figure 3.2.: Temperature sweep setup for the BSS-2 system.

16

Chapter 4.

Software Implementation

In this chapter, the implementation of the memory tests from Section 2.1.3 for the
SRAMs of the BSS-2 platform and the respective implementation of the timing config-
uration sweeps are described.
Due to the wide range of behaviors and faults of SRAM the aim was to take a unified
approach for implementation of the tests, decoupling the actual test methods and pat-
terns from the hardware specific implementation, to allow flexible applications of the
tests to different SRAMs and easy implementation of further SRAMs. Furthermore, the
unified code paths reduce duplicate code and prevent undetected errors in the imple-
mentation of the tests, enhancing the comparability of the results. To achieve this, we
implemented a library for testing the SRAMs of the BSS-2 platform using python to-
gether with numpy (Harris et al., 2020) to handle the construction and evaluation of the
playback programs for testing. To allow for easy implementation of further memories
I used an object-oriented approach, defining abstract classes for the tests and sweeps,
which can be implemented for each memory.

4.1. Memory Tests
The memory tests are implemented using the following classes:

— TestPattern: This class defines the sequence of values to be written to the memory
as an iterator. It has a shape property used during building, to allow the pattern
to be used for any memory shape. But it may also be handled differently in
an implementation if the pattern is shape specific. For example, this could be a
ZeroOne pattern, which returns an array of all 0s and then all 1s in the given
shape.

— TestMethod: This class defines the sequence of operations to be performed with
one array of data. The possible operations are defined in the Enum Actions.

— RamTest: This class represents one instance of a test. It provides a build method
for constructing a playback program using the given pattern and method. It stores
the expected data and the corresponding tickets for the read operations. The
provided evaluate method is used to retrieve the read data and compare it to the
expected data after execution. If a fault is found, the written and read data is
passed to a callback function, which can be supplied to evaluate.

17

Chapter 4. Software Implementation

RamTest

shape: tuple

build(builder, pattern, method)
evaluate(fault_handler)
write(values : Array)
read() : Ticket
get_values(ticket : Ticket) : Array

TestPattern

+ shape: tuple

iter() : Iterator(Array)

TestMethod

next(): Actions

�enum�
Actions

read, write

CADCOffsetMemTest

cadc: CADCOnDLSPseudoRandom Hammer

Figure 4.1.: UML diagram of the memory test library with implementations for RamTest,
TestPattern and TestMethod.

For a specific SRAM, one then has to implement the abstract interfaces which add
the memory specific write and read operations to the playback program as well as a
get_values method for retrieving and reconstructing of the values from the tickets.
With this structure,new SRAM for can be added for testing without needing to reimple-
ment the patterns and methods, allowing for quick implementation of all SRAMs used
in neuromorphic hardware. The methods could also be implemented in other languages
and only be exposed to python, making it possible to improve the performance of the
tests. This was done for converting between the hardware containers and integer arrays
for the CapMem, CADC and synapse driver SRAMs and the methods for adding writes
and reads of arrays to a playback program was completely implemented in C++ for the
two neuron configurations. To achieve this, the fields of the configuration containers
are mapped to an integer in the order defined by the SRAM and then assigned to an
array, see Figure 4.2. This way we can achieve a representation of the SRAM where,
excluding unused bits, the SRAM cells are represented by the bits of the integers, and
can be treated like any other integer SRAM. The downside of this approach is, that
this leads to very wide cells in the array, making it unsuitable for doing for example a
simple sweep of the values, although one could still, e.g. in a pattern, divide the cells
into smaller segments and then sweep these segments instead.

18

Chapter 4. Software Implementation

SRAM

1

0

x

1

1

0

· · ·

Container

en_synin_exc_high_res

en_synin_inh_high_res

en_synin_coba_exec

en_synin_coba_inh

en_readout

...

Integer

1

0

1

1

0

...

Figure 4.2.: Mapping of the fields of the configurations to the integer array. The SRAM
of each configuration is mapped over the container into an integer number
where unused bits are skipped. Each complete configuration then repre-
sented as a field within the integer arrays of a test pattern.

4.2. Sweeps
To further our understanding of the SRAM, we are interested how the timings of the
SRAMs impact the reliability. The implementation of the sweeps is done similarly to
the RamTest class, with an abstract SRAMTimingSweep class. This class defines the
universal functionality of building and running sweeps and method interfaces for creating
the hardware specific tests and setting the timings. Furthermore, SRAMTimingSweep
provides a standard method for plotting the data assuming the timing parameters are
ordered, which may be overwritten if the timings are ordered differently (e.g., SynRam
where the configuration is a set of bitflags activating equivalent transistors, see Bergler
(2024)).
Here, we make use of the abstraction of RamTest, making the implementation of further
memories again relatively easy. The entire library is organized in modules containing
the specific implementations of RamTest and SRAMTimingSweep for each memory, re-
flecting the structure of the BSS-2 hardware and making the SRAMs indepedent of each
other.
The implementations again use the hardware containers and coordinates for the timing
configurations defined in the BSS-2 software stack. As part of this work, the CapMem
timing configuration containers and coordinates were implemented and commissioned,
as it was missing from the software stack.

19

Chapter 4. Software Implementation

CADC

SRAMTimingSweep

shape: tuple

sweep()
plot(result)
write_timings(timings)
create_test() : RamTest

RamTest

CADCSRAMTimingSweepCADCOffsetMemTest

Figure 4.3.: UML diagram of the SRAMTimingSweep class with the implementations for
one memory organized into their own submodule.

The SRAMTimingSweep class also provides functions to add hooks before the build and
after the execution to make it possible to add operations before the test, which can be
for example used to set or read other parameters of the system (e.g, supply voltage).
This way this library is not restricted to the timings of the SRAMs and can be used for
other sweeps as well.
To make the sweeps more efficient, SRAMTimingSweep runs as many tests in one play-
back program as possible and builds and evaluates these programs in parallel to maximize
the usage of the hardware, see Figure 4.4a. The results from the test are stored in a
shared memory array, to avoid passing big arrays between the processes. The implemen-
tation relies on the multiprocessing library of python. The hardware can only execute
one playback program at a time, hence the steps are synchronized using a lock for access
to the hardware, see Figure 4.4b. With these optimizations and the implementations in
CPP for RamTest, I was able to speed up the sweeps, see Table 4.1.

SRAM arrays/config without parallel parallel + CPP speedup factor
CADC 256 87 min 57 min 20 min 4.3
CapMem 100 – – 117 min –
digital neuron 10 40 min 36 min 3 min 8
analog neuron 10 216 min 42 min 5 min 42
synapse driver 500 433 min 260 min 43 min 10
SynRam 64 75 min 53 min – 1.4

Table 4.1.: Speedup of the read_delay and write_width sweeps at
address_setup_time 15 for the given amount of arrays per configura-
tion. Missing times are due to too long to run times for the CapMem. For
the SynRam an CPP implementation was already provided by haldls and is
applied for all given times.

20

create

pre_run_hook

build

run
data

post_run_hook

evaluate

add fault data

hook data

run_step

post_step_hook

get fault data
data

sweep

result
plot

User Sweep

Array Step Hardware

(a) One sweep spawns multiple Step subprocesses used for building, executing and evaluating
the programs in parallel with hooks for adding further operations. The test results are stored
in a shared memory array to avoid passing big arrays between the processes.

step 3
build run evaluate

lock
wait

step 2
build run evaluate

lock
wait

step 1
build run evaluate

(b) As the hardware can only execute one playback program at a time, the Step processes are
synchronized using a lock for access to the hardware.

Figure 4.4.: Sequence diagram of the SRAMTimingSweep class.

Chapter 5.

Results

5.1. SRAM Timing and Faults
In this section the results of sweeping the SRAM timing configurations from Section 2.2.1
performed on the BSS-2 platform are described and analyzed.

5.1.1. CADC
For the first step of the analysis we consider the behavior of read_delay and write_width
for fixed address_setup_time. We can fix address_setup_time at the maximum value,
because in theory we don’t expect interference from long setup times. For the CADC
SRAM, it was possible to use the ValueSweep test pattern, as it performed equally well
as the PseudoRandom test pattern and the mapping of the SRAM cells to small integers
was already given.
In Figure 5.1, two examples of the sweep of the CADC SRAM are shown, with “good” and
“bad” behavior. The first observation is that a substantial amount of possible configura-
tions are faulty, but with increasing read_delay the amount of faults decreases until it
reaches a critical read_delay setting after which the SRAMs is fault free. In Figure 5.1a
this edge shows only a small decrease with increasing write_width. In Figure 5.1b on
the other hand additionally to the previous behavior, there is an extended area of low
faults (≈ 102), but much higher needed read_delay to be fault free and more variation
along write_width in an alternating pattern. Furthermore, there is a strip of lower
amount of faults stretching from read_delay 3 to 4, which in theory should not be pos-
sible, as the faults in general should on average decrease with increasing read_delay,
but here we see a significant increase after read_delay 4 again. Further investigations
showed that these faults are only dependent on the read_delay and did not alter the
state of the cell, therefore we see incorrect read faults. For the slow singular channels in
particular these faults returned “0” instead of “1” if another bit was set to “1”, hence
this is an instance of a coupled incorrect read fault, which also explains by the amount
of 64 faults these channels returned constantly for the large areas of low faults.
From these observations we can conclude:

— The timings can be too fast for the CADC, but there are functional timings for
almost all setups

— read_delay has the strongest impact on the amount of faults

22

Chapter 5. Results

1 52 103 154 205
read_delay

1

4

7

10

13

w
rit

e_
w

id
th

0

101

102

103

104

105

(a) setup W61F3 north SRAM

1 52 103 154 205
read_delay

1

4

7

10

13

w
rit

e_
w

id
th

0

101

102

103

104

105

(b) setup W61F0 south SRAM

Figure 5.1.: Number of faults found per timing configuration for the CADC SRAM with
maximal address_setup_time for one “good” and “bad” CADC SRAM
with a red line indicating the beginning of the fault free configurations. The
colorbar is adjusted to the maximum of faults that can occur for the test.

— write_width shows some variation, in that for some SRAMs the edge moves
to lower read_delay, but other show an alternating pattern with much more
amplitude than this effect. Sometimes neither of the effects are visible. If the
read_delay is high enough, the SRAM is fault free for all write_width.

— Approaching the fault free settings of the amount faults decrease. This is probably
due to transistor parameter variation and increasing SNM.

— Sometimes there is a low, possibly singular, amount of cells that are significantly
slower than the majority of the cells, which create faults for much longer timings.

— There is an anomaly around read_delay 3 to 4, where the amount of faults is
unexpectedly lower than the trend would suggest.

To extend these observations to all tested systems, now the highest faulty read_delay for
each write_width is considered, this parameter measures the minimal timing for which
the SRAM is fault free for all slower settings and indicates the beginning of the “edge”
of the faulty timings. This parameter is enough to understand the performance of an
SRAM for the CADC as the other timings show no impact for high enough read_delay.
Optimally, one wants to choose the configuration of the SRAM larger than this value
to ensure the memory is fault free under varying conditions. To give an overview of the
required timings for different SRAMs we consider the minimum of the highest faulty

23

Chapter 5. Results

0 50 100 150 200 250
read_delay

0

2

4

6

8
Minium

Faulty cells
≥ 1
> 1

0 10 20 30 40
read_delay

0

2

4

6

Range

Faulty cells
≥ 1
> 1

Figure 5.2.: Distribution over 28 CADC SRAMs of the the highest faulty read_delay
settings along write_width. Per SRAM the minimum and range of the
highest faulty read_delay settings are considered. The red line indicates
the standard read_delay before this thesis.

read_delay along write_width and the range of these highest faulty read_delay be-
tween the write_width timings. This shows how the SRAMs performs in total and how
large the variation along write_width is. The second to last observation can be tested
by ignoring the timings, where only one CADC channel returned faults. If true, this
should remove the large areas of low faults and remove any significant deviation from
the general distribution of the systems. This analysis ignores the behavior for too fast
read_delay settings, but they are not relevant for the reliability of the SRAM.
Figure 5.2 shows the distributions of the considered metrics for the CADC SRAM over
all tested setups. From this we can conclude:

— Most systems are fault free for read_delay higher than 120. But some systems
are significantly slower.

— The variation along write_width is mostly contained below 20, which is relatively
small with respect to the parameter space and typical cutoff. In the left histogram
this variation would only make a difference of 2 bins.

— Slow singular cells limit the speed of the SRAM substantially and show greater
variation along write_width.

— ignoring single faulty channels removes large deviations from the general distribu-
tion. Hence, these seem to stem only from singular slow cells.

24

Chapter 5. Results

1 52 103 154 205
read_delay

1

4

7

10

13

ad
dr

es
s_

se
tu

p_
tim

e

0

101

102

103

104

105

(a) setup W61F3 north SRAM

1 52 103 154 205
read_delay

1

4

7

10

13

ad
dr

es
s_

se
tu

p_
tim

e

0

101

102

103

104

105

(b) setup W61F0 south SRAM

Figure 5.3.: Number of faults found per timing configuration for the CADC SRAM with
maximal write_width for one “good” and “bad” SRAM with a red line
indicating the beginning of the fault free configurations. The colorbar is
adjusted to the maximum of faults that can occur for the test.

These observations show that the CADC SRAM is sensitive to the configuration of
read_delay and to some extent also write_width. Thus, these configurations have to
be considered when commissioning new BSS-2 chips or at least be chosen as slow as
possible per default. Especially so, as there are slow cells that need substantially longer
read_delay than rest of the memory. During the tests there was even one system where
for one cell no read_delay was long enough for any write_width (which can be fixed
by choosing a higher voltage, as we will see in Section 5.2).
To analyze the impact of address_setup_time instead write_width is fixed at the max-
imum value and the same metrics are considered but along address_setup_time. Fixing
write_width is permitted as the previous analysis showed only a small impact on the
behavior of the SRAM. In Figure 5.3 the same SRAMs are shown, but with write_width
fixed at the maximum value. The behavior is similar to the previous sweeps, but the
impact of address_setup_time is even smaller. Again address_setup_time is not crit-
ical for the reliability of the SRAM, as choosing read_delay large enough will make the
SRAM fault free for all address_setup_time. The slow singular cells are also visible
in this plot and seem to have an similar impact, thus they also mainly depend on the
read_delay timing. Lastly, the anomaly around read_delay 3 to 4 is also visible in this
plot, indicating it is also only dependent on the read_delay timing. These observations
prompt us to consider the highest faulty read_delay along address_setup_time with
the same statistics as before.

25

Chapter 5. Results

0 50 100 150 200 250
read_delay

0

2

4

6

8
Minimum

Faulty cells
≥ 1
> 1

0 10 20 30 40
read_delay

0

2

4

6

8
Range

Faulty cells
≥ 1
> 1

Figure 5.4.: Distribution over 28 CADC SRAM of the of the highest faulty read_delay
settings along address_setup_time. Per SRAM the minimum and range of
the highest faulty read_delay settings are considered. The red line indicates
the standard read_delay before this thesis.

In Figure 5.4 one can see that along address_setup_time the highest faulty read_delay
has an even smaller variation than along write_width (mostly only 1 bin in the left his-
togram). Again singular slow cells cause significantly slower behavior and more variation
for some systems, of which we see more than along write_width (probably because of an
alternating pattern being particularly high at 15), hence write_width has more impact
for finding the correct configuration.
From comparing the distributions Figure 5.2 and Figure 5.4 we can see, that
address_setup_time has less impact than write_width because the range of the highest
read_delay is on average lower and the singular slow cells remain hat higher read_delay
timings.
To further investigate the anomaly of lower faults at read_delay 3 we consider the
behavior of the faults along only read_delay timing for the CADC SRAM. This is
permitted because, as we have seen in the previous analysis, the other two timings are
not critical for the reliability of the SRAM and only have a weak impact on the behavior.
For this the amount of faults is summed over all write_width considered at maximal
address_setup_time.
As can be seen in Figure 5.5a, all SRAMs show high a amount of faults for read_delay
1 and 2 and then unexpectedly drop to a very low amount, to then gradually increase
again for higher read_delay until it starts to decrease again for high read_delay. We
can see that the SRAMs are not fault free for read_delay 3 and 4, hence this effect
does not matter for the correct configuration of the SRAM. The rate of decrease of the
amount of faults for high read_delay is similar for all SRAMs but with different rates

26

Chapter 5. Results

100 101 102

read_delay

0.0

0.5

1.0

1.5

Fa
ul

ts
×106

(a) Number of faults found per read_delay for the CADC SRAM summed over all write_width
and at maximal address_setup_time for 28 SRAMs. The red line indicates the standard
read_delay before this thesis.

100 101

read_delay

0

50

100

150

200

250

Fa
ul

ts

(b) Distribution of the amount of faults along read_delay for 28 setups over all CADC channels
with write_width and address_setup_time fixed at the maximum value. The dashed lines
indicate the maximum and minimum faults observed. The plot is cutoff at read_delay 10,
working configurations can still be found, but at higher settings not shown in the plot.

Figure 5.5.: Analysis of the faults along read_delay for the CADC SRAM.

27

Chapter 5. Results

1 52 103 154 205
read_delay

1

4

7

10

13

w
rit

e_
w

id
th

0

101

102

103

104

(a) setup W66F0 north SRAM

1 52 103 154 205
read_delay

1

4

7

10

13

w
rit

e_
w

id
th

0

101

102

103

104

(b) setup W63F0 north SRAM

Figure 5.6.: Number of faults found per timing configuration for the synapse driver con-
figuration SRAM with maximal address_setup_time for one “good” and
“bad” SRAM with a red line indicating the beginning of the fault free con-
figurations. The colorbar is adjusted to the maximum number of faults that
can occur for the test.

depending on the setup, until they all reach their highest faulty read_delay. To see if
the increase of faults after the anomaly at read_delay 3 is systematic or just shows the
distribution of the SRAM cells that are also fault free for read_delay 4 (as we only see
the sum over the entire SRAM), we now consider the distribution of the faults along
read_delay per CADC channel of all setups. In Figure 5.5b boxplots for each of the
read_delay settings are shown. The boxplots show that the increase after read_delay
4 is in fact systematic as the quantiles are effectively identical to the median, thus the
majority of the channels show similar behavior at his point.

5.1.2. Synapse Driver
For the synapse driver config SRAM the same evaluation as before is repeated. Here the
PseudoRandom test pattern was used due to the mapping of the memory employed in
software, which does not allow for efficient use of the ValueSweep pattern. In Figure 5.6
one particularly “good” and one “bad” behaving SRAM is shown. The result from the
sweeps are similar to Figure 5.1 but with less variation along write_width. In Fig-
ure 5.6a the highest faulty read_delay is relatively low, while in Figure 5.6b, similarly
to the CADC, there is an additional area of lower faults with a higher read_delay cutoff.
Here we see no anomaly around read_delay 3 to 4, which makes the CADC unique in
this regard.

28

Chapter 5. Results

0 100 200
read_delay

0

2

4

6

8

10
Minium

Faulty cells
≥ 1
> 1

0 10 20 30 40
read_delay

0

5

10

15

Range

Faulty cells
≥ 1
> 1

Figure 5.7.: Distribution over 28 synapse driver SRAMs of the of the highest faulty
read_delay along write_width at maximal address_setup_time. Per
SRAM the minimum and range of the highest faulty read_delay settings
are considered. The red line indicates the standard read_delay before this
thesis.

From the observations of the sweeps we can conclude:

— The timings can be too fast for the synapse driver configuration, but there are
functional timings for all setups

— The highest faulty read_delay is typically lower for setups without slow singular
cells compared to the CADC

— The variation along write_width is relatively small compared to the CADC

— Slow singular cells are present, but seem to have less impact than for the CADC
and don’t return a constant amount of faults. Again we see a coupled incorrect
read fault for these cells, but sometimes with two bits instead of one coupling bit
set high for the fault to occur.

These observations indicate that the synapse driver configuration SRAM is slightly faster
with respect to the timings as the read_delay cutoff is lower and the variation along
write_width is smaller.
Considering the distributions of the highest faulty read_delay along write_width with
and without singular faulty cells in Figure 5.7 we can conclude:

— read_delay can be too short, but the minimum for most systems is below 120. So
far no setup has occurred where no timing is long enough for the synapse driver
SRAM.

29

Chapter 5. Results

1 52 103 154 205
read_delay

1

4

7

10

13

ad
dr

es
s_

se
tu

p_
tim

e

0

101

102

103

104

(a) setup W66F0 north SRAM

1 52 103 154 205
read_delay

1

4

7

10

13

ad
dr

es
s_

se
tu

p_
tim

e

0

101

102

103

104

(b) setup W63F0 north SRAM

Figure 5.8.: Number of faults found per timing configuration for the synapse driver
SRAM with maximal write_width with a red line indicating the begin of
the fault free configurations. The colorbar is adjusted to the maximum of
faults that can occur for the test.

— The variation along write_width is relatively small. Making up at most 1 bin
difference in Figure 5.7.

— There are singular slow cells that need higher read_delay timings to work than
the majority of the cells. The variation along write_width is not significantly
affected by them.

For analysis of the address_setup_time again write_width is fixed at the maximum
value, which is justified by the previous analysis. In Figure 5.8 we see the same SRAMs
as before, but with write_width fixed at the maximum value. We see in fact a very
similar behavior to the write_width sweeps, indicating that for the synapse driver both
configurations are not critical for the reliability of the SRAM. The slow singular cells
are also visible in this plot and seem to have a similar impact, thus they also mainly
depend on the read_delay timing.
The histograms of the highest faulty read_delay along address_setup_time are shown
in Figure 5.9. Here we see, that the variation along address_setup_time is relatively
small (1 bin). Fixing write_width instead also causes more SRAMs to need read_delay
above 120, hence write_width is more important for finding the correct configuration
of the SRAM. The conclusion that write_width has more impact is less strong here,
because the distributions are quite similar, but again we see that fixing write_width
causes more setups to be broken by singular slow cells.

30

Chapter 5. Results

0 100 200
read_delay

0

2

4

6

8

10

12
Minimum

Faulty cells
≥ 1
> 1

0 10 20 30 40
read_delay

0

5

10

15

Range

Faulty cells
≥ 1
> 1

Figure 5.9.: Distribution over 28 synapse driver SRAMs of the the highest faulty
read_delay along address_setup_time. Per SRAM the minimum and
range of the highest faulty read_delay settings are considered. The red
line indicates the standard read_delay before this thesis.

Last we consider the behavior of the faults along only read_delay for the synapse driver
configuration SRAM, as we, like for the CADC, have seen that the other timings are
not critical for the reliability of the SRAM.
In Figure 5.10 the amount of faults along read_delay summed over all write_width
at maximum address_setup_time for the synapse driver SRAM is shown. Here we see
exactly the behavior one would expect as the SRAMs starts at a high amount of faults
for low read_delay and with increasing read_delay the faults monotonously decrease
until the highest faulty read_delay is reached. This matches with the structure we see
in Figure 5.6. Most importantly we do not see an anomaly around read_delay 3 to 4.

31

Chapter 5. Results

100 101 102

read_delay

0

2

4

6

8

Fa
ul

ts
×105

Figure 5.10.: Number of faults found per read_delay for the synapse driver con-
figuration SRAM summed over all write_width and at maximal
address_setup_time for 28 SRAMs. The red line indicates the standard
read_delay before this thesis.

5.1.3. Analog neuron configuration
Continuing with the analog neuron configuration, we again first fix address_setup_time
at the maximum value and consider the sum of faults over the entire SRAM. In Fig-
ure 5.11a we can see that the SRAM shows practically ideal behavior, as it is fault free
for any timing with read_delay greater 1. As a matter of fact the sweep looks exactly
identical for all setups. The address_setup_time sweeps look identical and are also the
same for all setups, therfore the plots will be omitted here. We can not determine if
the anomaly at low read_delay would occur here as we see already no faults for lower
read_delay.
With both these observations we can again consider the same statistic as before, the
highest faulty read_delay along write_width and address_setup_time with other re-
spectively fixed at the maximal setting. Considering the distribution of the highest
faulty read_delay over the setups in Figure 5.12a, all setups are equal in their behav-
ior along read_delay and have no variation along write_width. The statistics along
address_setup_time are identical as Figure 5.12b shows. With this we can conclude
that the digital neuron configuration SRAM is functional for any read_delay timing
greater 1, and is not sensitive to write_width nor address_setup_time.

32

Chapter 5. Results

100 101 102

read_delay

2

4

6

8

10

12

14

w
rit

e_
w

id
th

0

101

102

103

104

(a) analog neuron configuration block 0

100 101 102

read_delay

2

4

6

8

10

12

14

w
rit

e_
w

id
th

0

101

102

103

104

(b) digital neuron configuration north

Figure 5.11.: Number of faults found per timing configuration for the neuron configu-
ration SRAMs with maximal address_setup_time on setup W61F0 with
a red line indicating the beginning of the fault free configurations. The
colorbar is adjusted to the maximum number of faults that can occur for
the test.

5.1.4. Digital neuron config
Repeating the analysis for the digital neuron config, in Figure 5.11b we see an example
sweep with similar behavior to the analog neuron configuration, with the only difference
being that the SRAM is only fault free for read_delay greater 3 instead of 1 and
has a small transition region with a slightly reduced amount of faults. The transition
region could also be of the same origin as the anomaly observed for the CADC, but
we can not distinguish this as the SRAM transitions into fault free behavior for higher
read_delay timings at this point. Again the sweep looks the same for all setups and
the address_setup_time sweeps look identical.
Once again considering the statistic of the highest fault free read_delay along write_width
and address_setup_time in an analogous analysis to the digital neuron config in Fig-
ure 5.13a and Figure 5.13b, we can see that again the metrics are equal for all systems
and are fault free for read_delay greater 3 with no variation along write_width nor
address_setup_time.

33

Chapter 5. Results

0 100 200
read_delay

0

10

20

30

40

50

Minium

Faulty cells
≥ 1

0 10 20 30 40
read_delay

0

10

20

30

40

50

Range

Faulty cells
≥ 1

(a) read_delay

0 100 200
read_delay

0

10

20

30

40

50

highest faulty read_delay

Faulty cells
≥ 1

0 10 20 30
read_delay

0

10

20

30

40

50

range of highest faulty read_delay

Faulty cells
≥ 1

(b) address_setup_time

Figure 5.12.: Distribution over 56 analog neuron config SRAMs of the highest faulty
read_delay along write_width and address_setup_time. Per SRAM
the minimum and range of the highest faulty read_delay settings are con-
sidered. The red line indicates the standard read_delay before this thesis.

34

Chapter 5. Results

0 100 200
read_delay

0

5

10

15

20

25

Minium

Faulty cells
≥ 1

0 10 20 30 40
read_delay

0

5

10

15

20

25

Range

Faulty cells
≥ 1

(a) read_delay

0 100 200
read_delay

0

5

10

15

20

25

Minimum

Faulty cells
≥ 1

0 10 20 30 40
read_delay

0

5

10

15

20

25

Range

Faulty cells
≥ 1

(b) address_setup_time

Figure 5.13.: Distribution over 28 digital neuron SRAMs of the highest faulty
read_delay along write_width and address_setup_time. Per SRAM
the minimum and range of the highest faulty read_delay settings are con-
sidered. The red line indicates the standard read_delay before this thesis.

35

Chapter 5. Results

5.1.5. CapMem
For the CapMem first results indicated that the configuration for CapMem SRAM be-
haves different from the other, as the sweeps showed no systematic structure in the
parameter space. Further investigations showed, that a bug in the digital control logic
of the CapMem SRAM caused the configuration to be gray coded before being written
to the SRAM controller1. To account for this we had to apply reverse gray coding in
software, which this thesis also implemented into the hardware container of the CapMem
timing configuration, to fix the issue permanently. In this particular case the Pseudo-
Random pattern was used, because the ValueSweep pattern did not find all faults.
In Figure 5.14 sweeps with the applied reverse gray coding are shown for the lowest
4 address_setup_time configurations. For low address_setup_time and read_delay
the SRAM shows a behavior similar to the neuron configurations, with faults only at very
low read_delay timings, but with increasing write_width or address_setup_time the
SRAM starts returning faults for all read_delay settings. In particular the combined
value of write_width and address_setup_time must be smaller than 4 to show the
behavior of the neuron configurations and for fault free configurations to exist. Again
the sweeps are identical for all setups. Furthermore, if just the ValueSweep pattern was
employed only one CapMem field showed this behavior, while using the PseudoRandom
pattern almost all fields returned faults, indicating that there are different sequences of
operations that can cause the SRAM to return faults, depending on the field.
This behavior seems to be caused by a bug in the digital control logic of the CapMem
SRAM that causes the SRAM to return other values than the last written2. For example
for one particular field this caused the SRAM to return a previously written “old” value
instead of the most recent, if a read on any SRAM cell was done after writing both,
see Listing 1. Other fields seem to show a similar behavior for more complex sequences.
This bug was also reproduced in a digital simulation of the SRAM controller, hence it’s
certainly a bug in the digital control logic.

1see Issue 4047
2see Issue 4049

36

https://brainscales-r.kip.uni-heidelberg.de/projects/hicann-dls/work_packages/4047/activity
https://brainscales-r.kip.uni-heidelberg.de/projects/hicann-dls/work_packages/4049/activity

Chapter 5. Results

1 52 103 154 205
read_delay

1

4

7

10

13

w
rit

e_
w

id
th

0

101

102

103

104

105

(a) address_setup_time = 1

1 52 103 154 205
read_delay

1

4

7

10

13

w
rit

e_
w

id
th

0

101

102

103

104

105

(b) address_setup_time = 2

1 52 103 154 205
read_delay

1

4

7

10

13

w
rit

e_
w

id
th

0

101

102

103

104

105

(c) address_setup_time = 3

1 52 103 154 205
read_delay

1

4

7

10

13

w
rit

e_
w

id
th

0

101

102

103

104

105

(d) address_setup_time = 4

Figure 5.14.: Number of faults found per timing configuration for the CapMem SRAM
with the 4 lowest address_setup_time on setup W61F0 SRAM block 0.
The sweep looks identical for all 56 tested SRAMs. The colorbar is adjusted
to the maximum number of faults that can occur for the test.

37

Chapter 5. Results

cell0 = CapMemCellOnDLS(5, 10) # arbitary
cell1 = CapMemCellOnDLS(1, 23)

builder = PlaybackProgramBuilder()

builder.write(cell1, x)

builder.write(cell1, y)

builder.read(cell0)
ticket = builder.read(cell1)

run(builder)

print(ticket.get()) # reads x instead of y

Listing 1: Pseudo code that produces one example of the bug in the digital control logic
of the CapMem SRAM.

5.1.6. Summary
Summarizing the results of the sweeps we can conclude:

— read_delay has the greatest impact on most SRAMs on BSS-2

— In comparison write_width and address_setup_time have small impact, with
that of the former being slightly larger

— CADC and Synapse Driver SRAM have a large area of too “slow” timings and
thus need to be set sufficiently, which depends on the SRAM

— CADC and Synapse Driver SRAM sometimes have singular cells that are signif-
icantly slower than the rest of the SRAM, which need to be considered for the
correct configuration

— the CADC shows an anomaly around read_delay 3 at which the amount of faults
is significantly reduced. In contrast, the synapse driver SRAM show the expected
behavior with increasing read_delay

— both digital and analog neuron configuration work for almost all settings and are
much less critical with regard to the timing configuration

— The CapMem behaves similarly to the neuron configurations for low timing config-
urations but stops working entirely if address_setup_time and/or write_width
become too large

38

Chapter 5. Results

Due to these observations it was decided to default to the most conservative timings
in the software for all SRAM except for the CapMem. For the latter we decided to
employ the hardware standard configuration read_delay = 8, write_width = 1 and
address_setup_time = 1.

5.2. SRAM Hyperparameters
In this section the tests carried out for determining the impact of the hyperparameters
supply voltage and temperature on the fault and timing behavior of the SRAMs are
described.

5.2.1. Supply Voltage
First results showed that the behavior of the two neuron configuration SRAMs and the
CapMem SRAM was not altered by the supply voltage. This could be explained by
their already very fast timing behavior, such that we don’t see the speed impact of the
voltage changes in the considered range. Furthermore, the faulty settings of the CapMem
are due to a bug in the digital logic which is presumably not influenced by the supply
voltage. For this reason, only the CADC and synapse driver SRAMs are considered in
the following.

CADC

In Figure 5.15, we can see a selection of the sweeps for different voltages, including the
lowest and highest tested voltage. The obvious trend is that with rising voltage the
SRAM becomes faster along read_delay which is shown by the left moving edge of
the faulty area. Furthermore, a slow singular cell shows an alternating pattern along
write_width with the “amplitude” decreasing with increasing voltage. Both of these
observations support the fact, that the voltage acts as a scaling factor to the speed of the
SRAM, which influences the timing mainly via the current I in Equation (2.1), but we do
not go low enough with the voltages to see a complete failure of the SRAM. To better
visualize the evolution of the speed of the SRAM the minimum of the highest faulty
read_delay along write_width per voltage is considered, this again is the minimum
read_delay that can be chosen for a stable configuration.
In Figure 5.16, we see the evolution of the minimum of highest faulty read_delay with
the supply voltage for one setup. The data is fitted with an inverse square relationship,
which is expected from the equation for the charge time Equation (2.1) and current Equa-
tion (2.2). We can see that depending on the SRAM we need a critical minimal voltage
for fault free configurations to exist, after which the SRAM becomes faster with increas-
ing voltage, with an approximate inverse square law, which deviates from the data at the
higher voltages for one of the SRAM. The difference in the behavior of the hemispheres
is due to a slow singular cell.
To understand the impact of the supply voltage on the functionality across the systems,
the minimum supply voltage needed, such that the highest faulty read_delay is below

39

Chapter 5. Results

1 100 200

1

6

11w
rit

e_
w

id
th

1.12(1) V

1 100 200

1.14(1) V

1 100 200

1.19(1) V

1 100 200

1.3(1) V

0

101

102

103

104

105

1 100 200
read_delay

1

6

11w
rit

e_
w

id
th

1 100 200
read_delay

1 100 200
read_delay

1 100 200
read_delay

0

101

102

103

104

Figure 5.15.: Selection of CADC (top) and synapse driver (bottom) SRAM read_delay
and write_width sweeps at maximal address_setup_time at different
supply voltages. The colorbar is adjusted to the maximum number of
faults that can occur for the test.

the maximum value, is considered. The distribution of these voltages is shown in Fig-
ure 5.17. All but one system have fault free configurations at the current supply voltage
and most of them expect3 3 even under the nominal voltage of 1.2 V. Furthermore,
looking at the statistics excluding singular faulty cells, we see that without them all
systems have functional timing configurations below the nominal value. Hence, slow
singular cells need also to be considered when setting the supply voltage, as they may
scale stronger with the voltage than the majority of the cells.
In Figure 5.18 the faults per read_delay summed over all write_width and maximum
address_setup_time are shown all for the measured voltages. It can be seen that for
large read_delay the decay of faults becomes faster with increasing voltage, which is
in line with the previous observations. Interestingly, we also see a transition of the
read_delay anomaly from 3 to 2 with rising voltage, where the amount of faults at
3 increases while the amount of faults at 2 decreases and at read_delay 4 we see an
inversion of the voltage behavior where the amount of faults increases with increasing
voltage.

3see Issue 4048

40

https://brainscales-r.kip.uni-heidelberg.de/projects/hicann-dls/work_packages/4048/activity

Chapter 5. Results

1.15 1.20 1.25 1.30
Voltage [V]

25

26

27

28
re

ad
_

de
la

y
CADC

1.15 1.20 1.25 1.30
Voltage [V]

Synapse Driver

north
south

Figure 5.16.: Evolution of the minimum of the highest faulty read_delay along
read_delay with supply voltage for the CADC and synapse driver SRAMs
of setup W61F0 with fits of an inverse square relationship given by Equa-
tion (2.1) and Equation (2.2). Voltages that have no working configuration
are greyed out. The error bars show the 0.5 % accuracy of the INA219.
There can also be up to 5 mV equal offset of all voltages (Texas Instru-
ments, 2015).

Synapse Driver

Figure 5.19 shows a selection of sweeps for different voltages for one synapse driver
SRAM. Similar to the CADC the SRAM becomes quicker with increasing voltage and
a decrease of variation along write_width can be observed, thus again we see a scaling
effect of the voltage. Again we consider the minimal supply voltage per SRAM needed
for a fault free configuration to exist, to investigate how the supply voltage impacts
the reliability among the SRAMs. The distribution of the minimum supply voltage
in Figure 5.17b shows that for the synapse driver SRAM all setups have a working state
with the current supply voltage of 1.25 V and there are only 2 SRAMs that would not
work with the nominal voltage of 1.2 V. Both of the setups that do not have a fault
free configuration at nominal voltage have a singular slow cell, which is the reason for
the higher supply voltage needed. Among the setups the slow singular cells are less of a
problem for the synapse driver SRAM than for the CADC, but should also be considered
when one wants to lower the supply voltage.
In Figure 5.16 we see the evolution of the minimum of the highest faulty read_delay
along write_width with the supply voltage for one setup. The data is fitted with
an inverse square relationship as before, which deviates from the data for the highest
voltages. Furthermore, we see a very similar behavior for both hemispheres, which is

41

Chapter 5. Results

1.10 1.15 1.20 1.25
supply voltage [V]

0

2

4

6

8
Faulty

n ≥ 1
n > 1

(a) CADC Offset

1.10 1.15 1.20 1.25
supply voltage [V]

0

2

4

6

8

10

12 Faulty
n ≥ 1
n > 1

(b) synapse driver configuration

Figure 5.17.: Distribution of the minimum supply voltage for CADC and synapse driver
SRAM. The red line indicates the standard supply voltage at the point of
this thesis.

expected in absence of slow cells, and validates the the highest faulty read_delay as a
metric for the speed of the SRAM. In conclusion, we see an approximate inverse square
law for the speed of the SRAM with the supply voltage, but our model underestimates
the speed of the SRAM at the highest voltages for both SRAMs. This could either be
due to the model not being accurate for high voltages, or we underestimated the trend in
general, which for example could be due to short channel effects such as channel length
modulation (Dimitrijev, 2012).
Figure 5.19 shows the faults per read_delay over all write_width and maximum
address_setup_time for the measured voltages. The behavior here as before is ex-
actly what we would expect, as we see an increase in speed with increasing voltage and
again no anomaly at low read_delay.

42

Chapter 5. Results

100 101 102

read_delay

0.0

0.5

1.0

1.5

Fa
ul

ts
×106

1.15

1.20

1.25

Su
pp

ly
Vo

lta
ge

[V
]

Figure 5.18.: Faults per read_delay for one CADC SRAM summed over all
write_width and at maximal address_setup_time for the measured volt-
ages. We see a transition of the read_delay anomaly from 3 to 2 with rising
voltage. The red line indicates the standard read_delay before this thesis.

100 101 102

read_delay

0

2

4

6

8

Fa
ul

ts

×105

1.15

1.20

1.25
Su

pp
ly

Vo
lta

ge
[V

]

Figure 5.19.: Faults on synapse driver SRAM per read_delay summed over all
write_width and at address_setup_time 15 for the measured voltages.
The red line indicates the standard read_delay before this thesis.

43

Chapter 5. Results

5.2.2. Temperature
Last we investigated of the impact of the temperature on the fault and timing behavior
of the SRAMs. Here only sweeps for the two CADC SRAMs on one chip were done,
of which we see a selection for different temperatures in Figure 5.21. As one can see
in Figure 5.20, the SRAM does in fact speed up with increasing temperature and similarly
to the supply voltage reduces the variation along write_width. For once, we would
expect the mobility and SNM to decrease with increasing temperature, which would
necessitate slower timings. Furthermore, the saturation velocity also decreases with
increasing temperature, which could also slow down the SRAM if it is a limiting factor
for the current, which is the case for high voltages. On the contrary the threshold voltage
of the transistors decreases with increasing temperature, which would increase the read
current, allowing for faster timings (Wolpert and Ampadu, 2011). As we measure the
fastest timing for the slowest cells, it may also be that leakage currents play a role, as
they increase with temperature, which may allow for slow cells to work with shorter
timings. Lastly, it could also be the case, that the SRAM does in fact slow down,
but the SRAM controller/digital logic slows down more, such that the SRAM appears
faster. Which effect dominates is not clear, but the results show that the speed of the
SRAM increases with increasing temperature. The main conclusion is here, that setting
the timing configuration of the SRAM above the highest faulty read_delay from the
previous analysis should be sufficient to ensure the functionality of the SRAM under
increasing temperature in the tested operating ranges. By the discussion above, we also
have to pay attention to the temperature if the supply voltage was to be increased, as
this could lead to an inversion of the observed behavior, because it weakens the impact
of the threshold voltage and may increase the impact of velocity saturation (Wolpert
and Ampadu, 2011).

44

Chapter 5. Results

40 45 50 55 60 65 70 75
mean temperature [°C]

50

100

150

200

re
ad

_
de

la
y

North
South

Figure 5.20.: Evolution of the minimum of the highest faulty read_delay along
write_width against average temperature during the sweep for the CADC
SRAM at maximal address_setup_time. The error bars show the ob-
served range of the temperature during the sweep.

1 100 200
read_delay

1

3

5

7

9

11

w
rit

e_
w

id
th

39.8 ± 0.5 °C

1 100 200
read_delay

54.6 ± 0.2 °C

1 100 200
read_delay

64.5 ± 0.4 °C

1 100 200
read_delay

72.9 ± 0.4 °C

0

101

102

103

104

105

Figure 5.21.: Selection of the sweeps on the CADC SRAM for different voltages. The
average temperature during the sweep T is given with 0.5 °C accuracy of
the TMP112 sensor, see Texas Instruments (2024). The given deviations
indicate the total range of the temperature during the sweep.

45

Chapter 5. Results

5.2.3. Summary
We have seen that both the supply voltage and temperature have an impact on the timing
behavior of the SRAMs of the BSS-2 platform, both increasing the speed of the SRAM
when they are increased. Considering the distributions of the minimum supply voltage
(which is trivial for the not considered SRAM in the tested region), we can conclude
that the current supply voltage is sufficient for almost all SRAMs, but should not be
lowered to ensure the functionality of the CADC and synapse driver SRAMs. We have
also seen that anomaly of the CADC SRAM at low read_delay also moves towards
lower read_delay with increasing supply voltage, gradually increasing the faults at
read_delay 3 and decreasing the faults at read_delay 2 with increasing supply voltage.
In conclusion, setting the timing configuration of the SRAM above the highest faulty
read_delay for all write_width should be sufficient to ensure the functionality of the
SRAM with increasing temperature conditions. If supply voltage or temperature would
be lowered, one has to pay particular attention to the slow singular cells, which may fail
earlier than anticipated. Also increasing the supply voltage may lead to an inversion of
the observed temperature behavior, which could cause faults if the temperature rises.

46

Chapter 6.

Discussion and Outlook

6.1. Summary and Discussion
The goal of this thesis was to develop a testing framework for the SRAM of the BSS-2
platform and use it to investigate the reliability and behavior of the SRAM with respect
to the timing configuration and under varying supply voltage and temperature.
I have developed a testing library that allows treating the SRAM in a unified way and
apply tests and patterns universally to all memories. This was achieved by abstracting
the hardware specific details of the SRAMs into a common interface and providing a
set of patterns and methods that can be applied to all memories using that interface.
Furthermore, I also abstracted the creation of timing configuration sweeps employing the
implemented tests. This allows for a quick implementation of tests and sweeps for new
memories and made it able to quickly cover all SRAMs of the BSS-2 platform. Further-
more, the unified code paths reduce duplicate code and avoid errors due to differences
in the implementation. We employed parallelization of the sweeps and partial imple-
mentation in CPP to speed up the testing process, which showed to be very effective.
The timing configuration sweeps also offers the possibility to add further instructions
using hooks to the sweep, which can be used to test the behavior of the SRAMs under
different conditions, such as the supply voltage or temperature.
The testing framework was then used to investigate the reliability and behavior of the
SRAMs with respect to the timing configuration. This was done by applying sweeps of
the timing configuration and analyzing the occurrence of faults for different timings. The
results showed that the CADC and synapse driver SRAMs are sensitive to the timing
configuration and can fail if the read_delay configuration is set too low, the remaining
timing configurations, write_width and address_setup_time, showed only a small im-
pact on the behavior of the memory. Furthermore, the CADC and synapse driver SRAMs
showed singular cells that are significantly slower and need higher read_delay timings to
work, and showed more dependence on the write_width and address_setup_time for
the CADC. Increasing supply voltage showed an increase of read speed and a decrease
of variation along write_width and address_setup_time. One instance of a setup
where under the current operating voltage no stable configuration was found, could be
operated fault free at an increased supply voltage. The sweeps of the CADC SRAM
under different temperatures also showed an increase of read speed with increasing tem-
perature. Multiple effects that play a role in the speed of the SRAM with increasing
temperature were discussed and it was noted that increasing supply voltage may lead to

47

Chapter 6. Discussion and Outlook

an inversion of the observed temperature behavior. The CADC exhibited an anomaly
at read_delay 3 where the amount of faults was significantly reduced in comparison to
the overall trend. With increasing supply voltage the anomaly gradually transitioned
to read_delay 2. The synapse driver memory did not show such an anomaly, which
makes it unlikely that the anomaly is due to a bug in the SRAM controller. The analog
and digital neuron configuration SRAMs showed to be much less sensitive to the timing
configuration and work for all read_delay timings greater 1 or 3 respectively and are
not sensitive to write_width nor address_setup_time. The CapMem SRAM showed
a different behavior, it was found that the configuration was gray coded and had to
be reverse gray coded to apply the correct configuration. Furthermore, the memory
showed a bug in the digital control logic that caused the SRAM to return wrong values,
if write_width and address_setup_time were set too high. Otherwise, it was found
to be functional for any read_delay timing greater 1 if the other timings were set cor-
rectly. For these remaining SRAMs the read speed was not significantly influenced by
the supply voltage. From these observations we concluded, by choosing long enough
timings for the SRAMs, we can ensure the functionality of the memory and ensure that
the SRAMs are reliable under varying supply voltage and temperature conditions in the
tested ranges.

SRAM faulty setups before faulty setups after
CADC 4 11

synapse driver 4 0
SynRam 3 0
neuron configurations 0 0
CapMem 0 0

Table 6.1.: Number of faulty setups before the internship and after the thesis by applying
the suggested configurations.

In summary, I can conclude with this thesis, that with the actions taken the SRAM
of the BSS-2 are now well understood and reliable. The impact of the supply voltage
and temperature have been investigated and have showed to not be critical for the
functionality of the memories in the current state of the BSS-2 platform. The developed
testing framework can be used in the future to commission new chips and investigate
occurring faults, and may even be used to do further investigations on the behavior of
the SRAM under different conditions.

1the faulty setup would be fixed by increasing the supply voltage from 1.25 V to 1.27 V

48

Chapter 6. Discussion and Outlook

6.2. Outlook
In conclusion, the tests and characterization of the memory of the BSS-2 platform have
covered SRAMs and provided a good understanding of the behavior understand different
conditions and basis for reliable operation of the memory on platform. However, there are
possibilities to extend the application of the testing framework and open issues regarding
the higher level software that depends on the timing configuration of the SRAM.

— The sweeps of the timing configurations could be included in the continuous inte-
gration pipeline to detect long-term changes in the behavior of the SRAM such as
degradation of the SRAM cells. Using this faulty setups could be detected before
they cause problems in the operation of the BSS-2 platform.

— One could, to better understand the impact of temperature, set up a temperature
control system using a peltier element on the back of the chip carrier. With this
variation of the temperatures below the room temperature could be investigated
and also automatically collect data over all setups, to get statistical data on the
impact of the temperature on the SRAM.

— Future hardware iterations could feature build-in self-test (BIST) for the SRAM to
detect faults automatically and even could implement an automatic tuning of the
timing configuration. This would make the platform more self-sufficient and reduce
the need for manual testing. Furthermore, this could become more important if
the hardware would mover to a smaller process node, where the SRAM is more
prone to parametric faults (Sharma and Ravi, 2016).

— There have been issues regarding user-level software if the timings are set to the
maximum value. In particular some calibration routines have been reported to
fail, for at this moment unknown reasons. One likely cause is that the calibration
routines assume some minimal speed of the SRAM, hence one next step would be
to investigate this further and possibly adapt the calibration routines to be timing
configuration agnostic.

49

Bibliography

Arandilla, Christiensen D.C., Anastacia B. Alvarez, and Christian Raymund K. Roque
(2011). “Static Noise Margin of 6T SRAM Cell in 90-nm CMOS”. In: 2011 UkSim
13th International Conference on Computer Modelling and Simulation, pp. 534–539.
doi: 10.1109/UKSIM.2011.108.

Bergler, Nils (2024). SRAM tests of synapse weight memory on neuromorphic hardware.
https://www.kip.uni-heidelberg.de/vision/publications/reports/report_
nbergler.pdf.

Bosio, A. et al. (2012). “Advanced test methods for SRAMs”. In: 2012 IEEE 30th VLSI
Test Symposium (VTS), pp. 300–301. doi: 10.1109/VTS.2012.6231070.

Cook, Alejandro et al. (2012). “Built-in self-diagnosis targeting arbitrary defects with
partial pseudo-exhaustive test”. In: 2012 13th Latin American Test Workshop (LATW),
pp. 1–4. doi: 10.1109/LATW.2012.6261229.

David, R., A. Fuentes, and B. Courtois (1989). “Random pattern testing versus deter-
ministic testing of RAMs”. In: IEEE Transactions on Computers 38.5, pp. 637–650.
doi: 10.1109/12.24267.

Dimitrijev, S. (2012). Principles of Semiconductor Devices. Oxford series in electrical
and computer engineering. Oxford University Press. isbn: 9780195388039.

Dounavi, Helen-Maria and Yiorgos Tsiatouhas (2023). “An aging monitoring scheme
for SRAM decoders”. In: Integration 88, pp. 108–115. issn: 0167-9260. doi: https:
//doi.org/10.1016/j.vlsi.2022.09.009.

Electronic Visions (2024a). Coordinate Systems for BrainScaleS architectures. url: https:
//github.com/electronicvisions/halco.

Electronic Visions (2024b). Hardware Abstraction Layer (and STAteful encapsulation)
for the HICANN-DLS Hardware. url: https://github.com/electronicvisions/
haldls.

Harris, Charles R. et al. (Sept. 2020). “Array programming with NumPy”. In: Nature
585.7825, pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/
10.1038/s41586-020-2649-2.

Hunklinger, Siegfried and Christian Enss (2023). Festkörperphysik. Berlin, Boston: De
Gruyter Oldenbourg. isbn: 9783111027227. doi: doi:10.1515/9783111027227. url:
https://doi.org/10.1515/9783111027227.

Müller, Eric et al. (2020). Extending BrainScaleS OS for BrainScaleS-2. arXiv: 2003.
13750 [cs.NE]. url: https://arxiv.org/abs/2003.13750.

Pavlov, Andrei and Manoj Sachdev (2008). CMOS SRAM Circuit Design and Parametric
Test in Nano-Scaled Technologies: Process-Aware SRAM Design and Test. Springer
Publishing Company, Incorporated. isbn: 1402083629.

50

https://doi.org/10.1109/UKSIM.2011.108
https://www.kip.uni-heidelberg.de/vision/publications/reports/report_nbergler.pdf
https://www.kip.uni-heidelberg.de/vision/publications/reports/report_nbergler.pdf
https://doi.org/10.1109/VTS.2012.6231070
https://doi.org/10.1109/LATW.2012.6261229
https://doi.org/10.1109/12.24267
https://doi.org/https://doi.org/10.1016/j.vlsi.2022.09.009
https://doi.org/https://doi.org/10.1016/j.vlsi.2022.09.009
https://github.com/electronicvisions/halco
https://github.com/electronicvisions/halco
https://github.com/electronicvisions/haldls
https://github.com/electronicvisions/haldls
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/doi:10.1515/9783111027227
https://doi.org/10.1515/9783111027227
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13750

Bibliography

Pehle, C. et al. (Feb. 2022). “The BrainScaleS-2 Accelerated Neuromorphic System With
Hybrid Plasticity”. In: Front. Neurosci. 16.795876. doi: 10.3389/fnins.2022.795876.

Rathi, Neetu et al. (2023). “A Review of Low-Power Static Random Access Memory
(SRAM) Designs”. In: 2023 IEEE Devices for Integrated Circuit (DevIC), pp. 455–
459. doi: 10.1109/DevIC57758.2023.10134887.

Sharma, Abhinav and V. Ravi (2016). “Built in self-test scheme for SRAM memories”.
In: 2016 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), pp. 1266–1270. doi: 10.1109/ICACCI.2016.7732220.

Singh, Vijay, Sanjay Kumar Singh, and Raman Kapoor (2020). “Static Noise Margin
Analysis of 6T SRAM”. In: 2020 IEEE International Conference for Innovation in
Technology (INOCON), pp. 1–4. doi: 10.1109/INOCON50539.2020.9298431.

Srinu, M., E. Sreenivasa Rao, and P. Chandra Sekhar (2024). “Design of low power
SRAM cells with increased read and write performance using Read - Write assist
technique”. In: e-Prime - Advances in Electrical Engineering, Electronics and Energy 7,
p. 100381. issn: 2772-6711. doi: https://doi.org/10.1016/j.prime.2023.100381.

Sze, S.M. and M.K. Lee (2012). Semiconductor Devices: Physics and Technology. Semi-
conductor Devices, Physics and Technology. Wiley. isbn: 9780470537947.

Texas Instruments (2015). INA219 Zerø-Drift, Bidirectional Current/Power Monitor
With I2C Interface. INA219. url: https://www.ti.com/lit/ds/symlink/ina219.
pdf.

Texas Instruments (2024). TMP112x High-Accuracy, Low-Power, Digital Temperature
Sensors With SMBus and Two-Wire Serial Interface in SOT563 and X2SON Package.
TMP112. url: https://www.ti.com/lit/ds/symlink/tmp112.pdf.

Wolpert, David and Paul Ampadu (Jan. 2011). Managing Temperature Effects in Nanoscale
Adaptive Systems. isbn: 9781461407485. doi: 10.1007/978-1-4614-0748-5.

Zu, Yazhou et al. (2016). “Ti-states: Processor power management in the temperature
inversion region”. In: 2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pp. 1–13. url: https://ieeexplore.ieee.org/document/
7783758.

51

https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.1109/DevIC57758.2023.10134887
https://doi.org/10.1109/ICACCI.2016.7732220
https://doi.org/10.1109/INOCON50539.2020.9298431
https://doi.org/https://doi.org/10.1016/j.prime.2023.100381
https://www.ti.com/lit/ds/symlink/ina219.pdf
https://www.ti.com/lit/ds/symlink/ina219.pdf
https://www.ti.com/lit/ds/symlink/tmp112.pdf
https://doi.org/10.1007/978-1-4614-0748-5
https://ieeexplore.ieee.org/document/7783758
https://ieeexplore.ieee.org/document/7783758

Appendix A.

Appendix

A.1. Glossary
SRAM Static Random Access Memory

SynRam synaptic memory

SNN Spiking neural network

BSS-2 BrainScaleS-2

CADC column analog-to-digital converter

CapMem capacitive memory

SNM static noise margin

LDO low-dropout regulator

DAC digital-to-analog converter

jBOA just a bunch of ASICs

52

Appendix A. Appendix

A.2. Software Versions

Name Version/Git Hash
container 2024-04-17
bitfile 156, built on 2024-08-21
code-format 09f3a985a6f264359b10a6a129dd6dce7e55c9e8
halco 91d128d591d89ef25a45c07f3ec59277fc65a719
haldls 6c5881f7f27d980f611206779e1300f820485976
fisch a67fc99215f038f09a33fd09ff85c0bb594f9f8c
rant 722edd57c9e42462a660db8a1febb0211ffad07c
ztl b6745261d8bfdce44516d58d632c3c73834839d2
pywrap 5e2af30e9593882b471d3cd02df00b93f13ff479
lib-boost-patches 136c5b41cb046afe2c726aa4646928bf5190622e
libnux fc3b137384596ea5adbd5d4ee1ddfc9761a2aabc
hate 35b3cb211cabbbc5c01036ae7878a73e338166c4
logger 73dadb3ce413c521845ef7d36f818073eee4fefa
hxcomm 95abf25670bd8cb7cc5b499cde56f653130cf20c
sctrltp 1d854f953f7e8c8ead44406a22bb80421ca3857c
visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3
flange 28e729d59df3b4ff380f84351c40d4da3086bed8
lib-rcf 21fbcb0a7c30efed98278ee997754f28092b9736
bss-hw-params b7be7827b51536804f0bda76f8ba4be693df23a8
hwdb f7262189b0e55b686896a3dea952065c2f1a3789
bss2-devops aaefdfdf11099ce21f651013de098ebc26b25056
calix a706868c6ba285b1f8fd7cdef1a19d7328e02912

Table A.1.: Software versions used in this thesis

A.3. Funding Statement
The work carried out in this Bachelor Thesis used systems, which received funding from
the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under the Specific Grant Agreements Nos. 720270, 785907 and 945539 (Human Brain
Project, HBP) and Horizon Europe grant agreement No. 101147319 (EBRAINS 2.0)

53

Appendix A. Appendix

A.4. jBOA heat chamber

1
A4

JBOA heat chamber

Status Änderungen Datum Name

Gezeich

Kontroll

Norm

Datum Name
17.12.2024 Nils Bergler

105,00

60
,0
0

2,00

2,
00

2,00

n13,00

15
,0
0

12
,0
0

8,
00

12
,0
0

8,
00

16
,0
0

8,
00

8,00

32,00
16,00

Figure A.1.: Schematic of the heat chamber for the jBOA system.

54

Appendix A. Appendix

Acknowledgements
I would like to thank my supervisor Yannik for his guidance and support during the
thesis and the internship, and the great feedback for me to improve my work. I thank
Joscha for his expertise and help with the just a bunch of ASICs (jBOA) hardware.
I also thank Arik and Florian for their excellent feedback on my bachelor thesis and
keeping up with my weird sentences. Furthermore, I would also like to thank the rest of
the Electronic Visions group for their support and the great working atmosphere, and
for keeping everything running. Lastly, I would like to thank my girlfriend and family
for her support and understanding during the thesis.
An honorable mention goes to the Electronic Visions espresso machine, which kept me
awake during the long days, and is unfortunately broken at the time of writing.

To find fault is easy; to do better
may be difficult.

(Plutarch)

55

Appendix A. Appendix

Erklärung
Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 29. 01. 2025,

56

	Introduction
	Background and Materials
	SRAM Theory
	The BrainScaleS-2 Platform

	Methods
	SRAM Tests
	Supply Voltage
	Temperature

	Software Implementation
	Memory Tests
	Sweeps

	Results
	SRAM Timing and Faults
	SRAM Hyperparameters

	Discussion and Outlook
	Summary and Discussion
	Outlook

	Bibliography
	Appendix
	Glossary
	Software Versions
	Funding Statement
	jBOA heat chamber

