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Abstract

Inspired by nature, spiking neural networks (SNNs) provide a fault-tolerant

and energy-efficient solution for signal processing. Since the internal state of

each neuron in SNNs evolves over time, they are well-suited for processing tem-

poral information, making them ideal for tasks like speech-recognition. Apart

from only training synaptic weights between neurons, additional training pa-

rameters that influence the temporal dynamics of the neuron has been proven

beneficial. The mixed-signal neuromorphic system BrainScales-2 (BSS-2) en-

ables a fast and energy-efficient emulation of the behavior of SNNs on analog

circuits, while also being highly configurable. This work implements an in-

terface for gradient-based training of neuron parameters on the neuromorphic

system. To demonstrate that neuron parameters can be trained on BSS-2, the

hardware parameters are characterized to configure the synaptic and mem-

brane time constant, respectively. Several simulation experiments, analyzing

the effects of model simplification that are required for execution on BSS-2,

simultaneously highlight the performance improvement achieved when these

time constants are trained in addition to the weights. Applying these sim-

plifications, a feedforward and a recurrent SNN are trained on the Spiking

Heidelberg Digits (SHD) dataset on the neuromorphic substrate with time

constants included in the set of learnable parameters.
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Zusammenfassung

Die von der Natur inspirierten spiking neural networks (SNNs) bieten eine

fehlertolerante und energieeffiziente Lösung für die Signalverarbeitung. Da sich

der interne Zustand jedes Neurons in SNNs im zeitlich dynamisch entwickelt,

sind sie gut für die Verarbeitung zeitlicher Informationen geeignet, was sie ideal

für Aufgaben wie Spracherkennung macht. Es hat sich als vorteilhaft erwiesen,

nicht nur synaptische Gewichte zwischen den Neuronen zu trainieren, sondern

auch Parameter, die die zeitliche Dynamik des Neurons beeinflussen. Das neu-

romorphe System BrainScales-2 (BSS-2) ermöglicht eine schnelle und energieef-

fiziente Emulation des Verhaltens von SNNs auf analogen Schaltkreisen und ist

gleichzeitig hoch konfigurierbar. In dieser Arbeit wird eine Schnittstelle für das

gradientenbasierte Training von Neuronenparametern auf dem neuromorphen

System implementiert. Durch die Charakterisierung der Hardware-Parameter

für die Konfiguration der synaptischen und der Membran-Zeitkonstante wird

gezeigt, dass diese Parameter auf BSS-2 trainiert werden können. Mehrere

Simulationsexperimente, in denen die Auswirkungen von Modellvereinfachun-

gen, die für die Ausführung auf BSS-2 erforderlich sind, unterstreichen die Leis-

tungsverbesserungen, die erzielt werden, wenn beide Zeitkonstanten trainiert

werden. Unter Anwendung dieser Vereinfachungen werden ein feedforward

und ein rekurrentes SNN auf dem Spiking Heidelberg Digits (SHD) Datensatz

auf dem neuromorphen Substrat unter Einbeziehung beider Zeitkonstanten

trainiert.
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1 Introduction

Nature has always been a source of inspiration for scientific and technological

progress. Many breakthroughs across disciplines have emerged from observ-

ing and imitating biological systems, which are often the result of millions of

years of optimization through evolution. One of the most fascinating and least

understood examples of such a system is the human brain. A highly complex,

yet remarkably energy-efficient machine capable of solving difficult tasks like

perception, learning, and decision-making.

Motivated by the brain’s capabilities, researchers have developed a wide range

of biologically-inspired learning algorithms. In recent years, artificial neural

networks (ANNs) achieved remarkable success in tasks such as speech and

image recognition (LeCun et al., 2015), reinforcement learning (Silver et al.,

2017) and natural language processing (Radford et al., 2018). ANNs rely on

perceptrons, a basic abstraction of a neuron. Inspired by the structure of the

brain, ANNs are built by connecting these perceptrons to build larger net-

works. As ANNs process information in a dense and synchronous way, these

advances have only been possible with the increase of computational resources

and come with a large energy consumption.

Spiking neural networks (SNNs) not only mimic the structure of brains, but

also replicate their spiking behavior. Base on the biological neuron, neurons

in SNNs only transmit information when their internal state, the membrane

potential, crosses a threshold. This makes SNNs inherently more biologically

plausible and much more energy-efficient, just like the brain, which processes

massive amounts of information using very little energy.

To fully exploit the capabilities of SNNs, neuromorphic hardware provides an

ideal platform. Several research collaborations and companies build neuro-

morphic systems, such as Intel with Loihi (Davies et al., 2018) or SpiNNaker

(Furber et al., 2014). The BrainScales-2 (BSS-2) system is a mixed-signal

neuromorphic chip developed at Heidelberg University (Pehle et al., 2022).

While analog circuits implement the dynamics of adaptive exponential leaky

integrate and fire (AdEx) neurons (Brette and Gerstner, 2005) in continuous
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time, spike events are handled digitally. This enables to emulate the dynamics

of biological neuron and synapse models with high energy efficiency and real-

time processing capabilities. As it is highly configurable, BSS-2 can be used

for a variety of applications, such as emulation of complex neuron dynamics

(Kaiser et al., 2022; Billaudelle et al., 2022) or biologically inspired learning

(Atoui et al., 2024). The possibility of gradient-based learning of neural net-

works on BSS-2 has been demonstrated for various applications (Cramer et al.,

2022; Arnold et al., 2023).

An interesting application of SNNs is the Spiking Heidelberg Digits (SHD)

dataset (Cramer et al., 2020), which is specifically designed for spike-driven

speech recognition. The SHD dataset transforms spoken digits into spike

trains, mimicking the auditory processing of the human ear. In this analogy,

the dataset represents the information processed in the ear, while the SNN

acts as the brain, tasked with recognizing the spoken digits. This biologically-

inspired design highlights the potential of SNNs for solving real-world temporal

tasks.

A further enhancement comes from heterogeneous SNNs, in which neurons ex-

hibit diverse dynamics, such as varying neuron parameters or delays between

neurons. This heterogeneity increases the adaptability of SNNs, enabling them

to better model complex temporal patterns while also improving their robust-

ness (Hammouamri et al., 2023; Golmohammadi and Tetzlaff, 2024). Perez-

Nieves et al. (2021) demonstrate the benefits of learning both the synaptic

and membrane time constants across different datasets. In particular, for the

SHD task, they report a substantial performance improvement and increased

robustness to input speedup when training time constants in addition to synap-

tic weights.

First, this thesis extends the learning framework hxtorch (Spilger et al., 2023),

which interfaces the BSS-2 to enable gradient-based training of neuron param-

eters on the neuromorphic system. Next the hardware parameters necessary

for configuring the synaptic and the membrane time constant are character-

ized, enabling a demonstration of neuron parameter learning on BSS-2. After

reproducing simulation results presented in Perez-Nieves et al. (2021), different
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simulation experiments investigate the effects of model simplification, required

for execution on BSS-2. Under these simplifications, the benefits of learning

time constants in addition to synaptic weights are then demonstrated on BSS-2

by training a feedforward and a recurrent SNN deployed on the neuromorphic

substrate on SHD.
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2 Theoretical Background

This section provides a brief overview of the related theoretical background

as well as the neuromorphic system BSS-2 that is being used for experiments.

First, the biological neuron and its fundamental properties are described. This

is followed by an introduction to mathematical neuron models, an overview of

(spiking) neural networks, and their gradient-based training methods. Finally,

the neuromorphic system, BSS-2 used in this work is presented.

2.1 Biological Neuron

The biological neuron is the fundamental building block of the nervous sys-

tem, forming complex networks that process and transmit information via

synapses. Understanding its structure and function provides the foundation

for mathematical models that abstract its behavior, enabling the development

of spiking neural networks and neuromorphic systems. A biological neuron

consists of three main parts: the soma, dendrites, and an axon. A schematic

of the neuron structure can be seen in Figure 2.1a. The soma, or cell body,

contains essential cellular components such as the nucleus and mitochondria,

which are responsible for the neuron’s vital functions. The dendrites act as

receivers, collecting and integrating signals from upstream neurons. Finally,

extending from the soma, the axon serves as the neuron’s output pathway,

transmitting outgoing electrical signals to other connected neurons. As for all

other cell types, the neuron’s interior is separated from the surroundings by a

membrane. The membrane mainly consists of a semi-permeable lipid bilayer,

which means that uncharged or small polar molecules are able to pass. Large

charge carriers, such as sodium or potassium ions cannot cross the layer at

any location. Therefore, the membrane effectively functions as an insulator,

giving rise to a potential difference across it, referred to as the membrane po-

tential. As neurons are in comparison to other cells, excitable, the membrane

has additional embedded protein structures, that are electrically active. These

protein structures facilitate two processes that enable the passage of particles

that would otherwise be unable to cross. First, ion pumps can transfer specific

ions across the lipid bilayer. For example, the sodium-potassium pump ex-

changes three sodium ions from the interior with two potassium ions from the



2.1 Biological Neuron 5

exterior of the cell. This leads to gradients in the corresponding ion concen-

trations, which in turn guides the second process: diffusion across passive ion

channels. In both processes charge carriers cross the membrane, generating an

electrical potential across the membrane. The resting potential is determined

by the dynamic equilibrium between the diffusion-guided flow through passive

ion channels and the active ion transport through the membrane by ion pumps.

(Gerstner et al., 2014)

a
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(a) Schematics of a neuron. From (US-Federal, 2006)
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Figure 2.1: (a) The schematics of a neuron with “a” being the dendrites, “b”
representing the representing the soma including the cell nucleus
“c”. The axon begins at “d” and spreads out to axon terminals
“h” at the end. The axon is covered by a myelin sheath “e” of
the Schwann cell “f”. Each small part where the axon is not
covered by myelin is called a node of Ranvier “g”. (b) In case
a current stimulus depolarizes the membrane potential, causing
it to pass a certain threshold, an action potential is generated.
Typically, this is followed by a refractory period, where the cell
is not excitable.

Action Potentials Apart from ion pumps and passive ion channels, neurons

also feature voltage-gated ion channels, which are triggered by the membrane

potential. If a high current stimulus reaches the membrane and causes the

membrane potential to exceed a threshold, these channels are responsible for

the membrane potential to further increase. Through this increasing potential

neuron quickly depolarizes and the membrane potential shoots up, followed by

a similarly fast decline often overshooting the resting potential. Afterwards

the membrane potential depolarizes back to its resting potential. This voltage

trajectory is termed an action potential or spike. The trajectory of an action
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potential is depicted in Figure 2.1b. Action potentials usually occur in the ini-

tial segment of the axon (Coombs et al., 1957), from where the signal is then

distributed to synapses, which form the connections between neurons. Pass-

ing the signal to neighboring neurons through synapses is how inter-neuronal

information exchange is generated. In case the current stimulus on the neu-

ron is not strong enough, the membrane potential decays back to its resting

potential, which is referred to as failed initiation in Figure 2.1b.

Synapses The end of the axon branches out into a tree-shaped structure to

connect with dendrites of neighboring neurons. Synapses represent the con-

nection points between these pre- and postsynaptic neurons. Most synapses

rely on neurotransmitters, chemical messenger molecules, that are stored in

synaptic vesicles located in specialized swellings in the presynaptic axon, called

synaptic boutons (Kandel et al., 2021). The process of chemical signal trans-

mission across the synapse is shown in Figure 2.2. When a presynaptic action

potential arrives at the synapse, voltage-gated calcium channels allow for an

influx of calcium ions (A). The resulting high calcium concentration in the

presynaptic axon, causes vesicles to fuse with the presynaptic cell membrane,

releasing neurotransmitters into the synaptic cleft, a small 20-40 nm wide gap

between pre- and postsynaptic neuron (B). The released neurotransmitters

temporally bind to receptor molecules in the post-synaptic neuron, opening

chemically gated channels. These channels allow for ions to pass the membrane

and therefore a change of the post-synaptic membrane potential (C). After the

neurotransmitters break loose from the receptor, they are either reabsorbed by

the presynaptic neuron, where they get repackaged back into vesicles, resetting

the synapse for the next signal or they are removed from the synaptic cleft by

enzymatic degradation. As the amount of neurotransmitters is finite and the

recycling process is comparatively slow, the ion current decreases over time. It

will be shown later that this decrease is often modeled by an exponential decay.

Generally speaking, synapses forward the action potential of a presynaptic

neuron to the postsynaptic neuron, by triggering a postsynaptic potential

(PSP). Depending on the neurotransmitters and corresponding receptors of

the synapse, the post-synaptic potentials can be excitatory or inhibitory. Ex-

citatory PSPs depolarize the postsynaptic membrane potential, increasing the
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Figure 2.2: Process behind a signal transmission of a chemical synapse.
Figure taken from Kandel et al. (2021). Copyright © McGraw-
Hill Education. Reprinted with permission.

likelihood of an action potential in the postsynaptic neuron. An example of an

excitatory postsynaptic output can be seen in the left bottom corner of Fig-

ure 2.2. In contrast, inhibitory PSPs hyperpolarize the post-synaptic mem-

brane potential, thus decreasing the likelihood of an action potential. The

height of the PSP depends on the synaptic strength, which is mainly deter-

mined by factors such as the probability of neurotransmitter release and the

strength of the post-synaptic receptor response.

2.2 Models of Biological Neurons

The aim of a neuron models is to abstract biological features of neurons in

mathematical form. There is a lot of theory on how the brain encodes infor-

mation. A simple approach is to encode information in the rate of incoming

spikes. For example, early work showed that the spike rate of stretch recep-

tor neurons is related to the force with which the muscle is being stretched

(Adrian and Zotterman, 1926). These observations introduced the concept of

rate-based neuron models. However, to measure a rate, averaging over a time

interval has to be done which means an instant reaction to changes is not pos-

sible. More recent research suggests that the information can also be encoded

in the precise timing of spikes (Theunissen and Miller, 1995) leading to the

concept of spiking neurons models.



2.2 Models of Biological Neurons 8

Leaky Integrate and Fire Model There exists a spectrum of spiking neu-

ron models with different complexities. A simplification that most models

apply is to use point-like neurons. This means that the membrane potential

is homogeneous across the whole neuron, so that for example current stimuli

at a dendrite of the neuron has an instant effect on the membrane potential

near the axon. A famous example, the Hodgkin-Huxley model (Hodgkin and

Huxley, 1952) therefore describes the membrane as a single capacitor, where

the voltage-gated sodium and potassium ion channels are represented as indi-

vidual conductances, gNa and gK, while all other contributions are represented

by a single leak conductance gl. The membrane voltage v is described by

Cm
dv

dt
= −gl(v − vl)− gNa(v − vNa)− gK(v − vK), (2.1)

where Cm is the capacitance of the membrane, vNa, vK and vl are the reversal

potential corresponding to each contribution respectively. With each conduc-

tance having its own differential equation to describe the voltage-dependent

opening and closing of the ion channels, the Hodgkin-Huxley model is able to

replicate the dynamics of an action potential as well as sub-threshold dynam-

ics. This work uses the simpler leaky integrate and fire (LIF) model to describe

the dynamics of a neuron, which was first introduced in Lapicque (1907) and

later renamed. Additionally, the LIF model implements only a single passive

leak term to pull the membrane potential to its resting potential. In the LIF

model the resting potential is referred to as leak potential vl. Assuming a

generalized synaptic input Isyn for now, the membrane potential v then follows

Cm
dv

dt
= −gl(v − vl) + Isyn. (2.2)

Instead of using electrical components, simulations often introduce the mem-

brane time constant τm = Cm

gl
to the steepness of the exponential decay and

assume the leak conductance gl to be constant, leading to equation

τm
dv

dt
= −(v − vl) + Ĩsyn, (2.3)

where Ĩsyn = Isyn
gl

represents a voltage. Equation (2.3) only describes the leaky

part and therefore a leaky integrator (LI) neuron. Although recent research

suggests that the shape of mammalian spikes varies between neurons (Bean,
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2007), the model considers spikes to be binary events, therefore saving compute

power by not calculating the exact shape of an action potential. Whenever the

membrane voltage of a LIF neuron crosses the threshold ϑ, it emits an output

spike

z(t) =

1, if v(t) > ϑ.

0, otherwise.
(2.4)

After the spike, the membrane voltage is immediately reset to the reset po-

tential vr. Until now, the description has been limited to the dynamics of the

membrane potential only, while the input current has been assumed to be an

arbitrary function of time.

Synaptic Input Each neuron is exposed to the inputs of its presynaptic

neurons. As described earlier, especially chemical synapses modulate the in-

coming action potentials. Again, there exists a wide range of models to de-

scribe the presynaptic spike propagation by the synapse. The approach used

in this thesis uses a single kernel κ(t) to represent all synaptic dynamics and

weights wi to model the synaptic strength between the postsynaptic neuron i

and presynaptic neurons j:

si(t) =
∑
j

wjzj(t) ∗ κ(t) (2.5)

Implementing an exponential kernel κ(t) ∝ e−t/τs , to capture the closing be-

havior of ion channels and the concept of current-based synapses Isyn ≡ s(t),

the input current on the neuron can be modeled similarly to the membrane:

τs
dI

dt
= −I

∑
j

wjzj(t), (2.6)

where the synaptic time constant τs represents the time constant of the closing

ion channels.

Discretization of Leaky Integrate and Fire Neuron For numerical sim-

ulations, the model described previously needs to be discretized in time. Using

a small simulation time step δt, the differential equation (2.6) for the current

of a postsynaptic neuron i can be well approximated by
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Ii[n+ 1] = αIi[n] +
∑
j

wijzj[n], (2.7)

with α = e−
δt
τs . Here, the sum runs over all spike trains of presynaptic neurons

j. Note that the n-th discrete time step is denoted by the square bracket [n].

Having discrete input currents on the membrane, the membrane dynamics can

now be expressed as

vi[n+ 1] = β(vi[n]− vl) + vl + (1− β)Ii[n]− (ϑ− vr)zi[n], (2.8)

with β = e−
δt
τm .

2.3 Gradient-Based Learning in Spiking Neural Net-

works

Up to this point, the theoretical description was limited to one neuron or

at most the interconnection between two neurons. This section provides an

overview of the extension to larger networks and the frameworks used to train

them. Neural networks, in general, consist of a collection of interconnected

units, each processing inputs received from all afferent neurons by applying a

function φ. Following this line of thought, a network with L layers is effectively

a mapping Φ that maps an input vector x ∈ Rd to an output vector y ∈ Rn:

y = Φ(x) = (ΦL ◦ · · · ◦Φ1)(x), (2.9)

where Φi is the vector of functions φ that are applied by each input unit. All

layers that do not directly interface with the input or output data are referred

to as hidden layers. In standard ANNs, the function φ typically involves

a weighted summation over all its inputs xk with the addition of a bias b,

followed by a non-linear activation function σ:

φl,i(x) = σ

(
bl,i +

∑
k

wi,kxk

)
, (2.10)

where the subscript l, i stands for an arbitrary neuron i in layer l of the network.

The weights wi,k and the bias bi are the learnable parameters corresponding

to this neuron. In biological terms, each term of the summation can be seen
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as one synapse, while the activation function can be understood as the neuron

processing the inputs to an output. A common architecture used is a feed-

forward network, where information flows in a single direction from input to

output. The mapping of layer l can then be easily represented by a matrix

multiplication followed by the activation:

Φl(x) = σ(Wx+ b) (2.11)

An example of a feedforward network with a single hidden layer can be seen

in Figure 2.3.

Input Layer
x

Hidden Layer
o1

Output Layer
y

W1 W2

...
...

...

Figure 2.3: Schematic of a fully connected single layer feedforward architec-
ture. The inputs x are weighted and summed over using the
weight matrix W1. After applying the activation function, the
outputs of the hidden layer are forwarded to the output layer
using the the weights W2, where again an application function
is applied.

Spiking Neural Networks are Recurrent Neural Networks To model

sequential dependencies and dynamic behavior, recurrent neural networks (RNNs)

allow information to be preserved over time. A general definition of RNNs in-

volves that the network state depends not only on the external input but also

on its previous state in time. In the common understanding of RNNs, this

dependency is introduced by explicit recurrent connections, meaning that the

output of a hidden layer is additionally connected to itself or a previous layer.
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Spiking neural networks however use stateful neurons and synapses with inter-

nal dynamics, so that the state of the network always depends on the previous

point in time, even when using a simple feedforward architecture (Neftci et al.,

2019). This can be seen by looking at the computational graph of an SNN in

discrete time in Figure 2.4.

z0[0] z0[1] z0[2]

in
p
u
t

I1[0] I1[1] I1[2]

v1[0] v1[1] v1[2]

z1[0] z1[1] z1[2]

h
id
d
en

la
y
er

W1 W1

α α

β β

vr vr

W2 W2

time

Figure 2.4: Computational graph of an SNN in discrete time. The input
spikes z0 are propagated through the network from bottom to
top. The synaptic temporal updates of the synaptic current I
and membrane potential v are enrolled on the horizontal axis for
two time steps. The topmost layer, represented by the dashed
boxes can either be an additional hidden layer or a readout layer.
The latter is categorized as a single hidden layer spiking neural
network.

Training Spiking Neural Networks From the previous paragraph it can

be concluded that SNNs are only a special case of RNNs. For this reason,

many training methods developed for classical RNNs can be used for training

SNNs. In general, training networks requires two main components. The first

component is an objective function, that evaluates the network’s performance.

There exist many different objective functions for different sets of tasks. This

work mainly focuses on a classification task, where the network needs to predict
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the correct class for a certain input. For this task, the Cross-Entropy-Loss

LCE =
C∑
c=1

log
exp(oL,c)∑C
i=1 exp(oL,i)

yc (2.12)

is typically used (Hastie, 2009). In this equation C represents the number of

classes, oL,c is the output of the readout layer of the network for the class c and

yc ∈ {0; 1} the one-hot encoded target vector, which is 1 for the correct class

and 0 otherwise. The second component needed for training a neural network

is an update mechanism, that updates the network’s parameters to optimize

the objective function. Since a loss function is used to evaluate the network’s

performance, this is a minimization problem and the simple but very powerful

mechanism of gradient descent

θnew = θ − η
∂L
∂θ

(2.13)

can be used. θ represents an arbitrary parameter of the network and η the

learning rate, a hyperparameter to define the step size of the gradient descent.

This thesis uses the Adam optimizer (Kingma and Ba, 2014), which is an

adaptive version of gradient descent. In neural networks, many parameters do

not directly influence the loss. For these parameters the chain rule is applied

to calculate the gradient. An efficient calculation is possible by using the

backpropagation (BP) algorithm (Rumelhart et al., 1986). The algorithm

starts with the gradient calculation at the output of the neural network, since

these gradients are required for updates in the previous layer. For RNNs,

this can be done with the same method, once the recurrence is unrolled, as

seen in Figure 2.4. The application of BP on the unrolled network is termed

backpropagation through time (BPTT) (Werbos, 1990). One major challenge

when training SNNs is that spikes are non-differentiable and therefore gradient

descent can not be used without further modifications. There exist several

ideas to overcome this. Inspired by nature, an idea is to use local learning

rules for hidden units. Wunderlich and Pehle (2021) derived an algorithm,

called EventProp, to compute exact gradients on spike times. For specific

model configurations, where τm = τs or τm = 2τs, there even exist analytical

solutions for the direct calculation of the gradients in a time to first spike

setting (Göltz et al., 2021). However, this work uses the concept of surrogate



2.4 The BrainScaleS-2 System 14

gradients. When using surrogate gradients, each derivative of a spiking non-

linearity is replaced by a derivative of a continuously differentiable function.

Any monotonic function with a sharp increase that peaks at a threshold can be

used since the success of the method is not heavily dependent on the surrogate

derivative that is employed (Neftci et al., 2019). Zenke and Ganguli (2018)

replaced the derivative of the spikes z with respect to the membrane potential

v by the derivative of the negative of the fast sigmoid

dz

dv
= (1 + ρ|v − ϑ|)−2, (2.14)

where ρ describes the steepness of the surrogate gradient and ϑ the spiking

threshold. The huge benefit that surrogate gradients offer is that only the

derivative of the spike is replaced. Therefore, standard BP and BPTT algo-

rithms, already implemented in standard libraries such as PyTorch (Paszke

et al., 2017), can be used and the implementation is straightforward.

2.4 The BrainScaleS-2 System

The BSS-2 system is a mixed-signal neuromorphic chip designed for a vari-

ety of applications, such as faithful emulation of complex neuron dynamics

(Kaiser et al., 2022; Billaudelle et al., 2022), biologically inspired learning

(Atoui et al., 2024) or gradient-based learning of neural networks (Cramer

et al., 2022; Arnold et al., 2023). The system is mixed-signal in the sense that

while analog circuits emulate the dynamics of neurons and synapses in con-

tinuous time, spike events are handled digitally. Compared to the biological

time domain, the model dynamics evolve at a 1000-fold accelerated time scale,

reflecting the characteristic time constants imposed by the semiconductor sub-

strate. This section will only provide an overview of the parts of the system

that are relevant for this thesis. Further insights regarding the hardware can

be found in Billaudelle (2022); Pehle et al. (2022); Schemmel et al. (2021).

The essential software components required to run experiments on BSS-2 are

presented in detail in Müller et al. (2022).

An overview of a mobile BSS-2 can be seen in 2.5. The heart of the system is the

neuromorphic chip, which is divided in four quadrants. Each quadrant contains

128 highly configurable neuron circuits with a corresponding synapse array,
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Figure 2.5: Overview of BrainScaleS-2 system. A: Neuromorphic chip on a
carrier board. B: Abstract schematic of the chip design. C: Sim-
ple schematic of individual neuron circuits and connections. Fig-
ure kindly provided by Jakob Kaiser from (Kaiser et al., 2022).

consisting of 128 columns and 256 rows that project spikes column-wise onto

the neurons. Since each row can be configured as either inhibitory or excitatory,

this enables up to 128 signed inputs on a single neuron circuit. The depicted

digital routing routes and injects the digital events, either external inputs or

spikes of on-chip neurons, into the rows of the synaptic array. Two columnar

analog to digital converters (CADCs), each responsible for one hemisphere,

enable a parallel readout of data from the neurons or synapses. The CADC has

an 8 bit value resolution and a measuring frequency of 1.6MHz. The membrane

analog to digital converter (MADC) can read data of two specific neuron circuit

with 10 bit precision and a higher temporal resolution. Not represented in the

abstract schematic of the chip, there are two single instruction, multiple data

(SIMD) processors with 16KiB of data and instruction memory each, located

at the top and bottom of the chip. These processors provide a way to perform

calculations and handle reconfiguration of the synapse array as well as other

on-chip entities during runtime. Furthermore, they can be used to record on-

chip observables, such as periodic CADC measurements, to external memory.

The communication between host computer and the BSS-2 chip is handled

by a field programmable gate array (FPGA) which is also responsible for the

runtime control of an experiment. The FPGA allows for a cycle-accurate

experiment control, ensuring precise timing for on-chip experiments. It is

furthermore equipped with additional memory buffers for arbitrary data from
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the host or the BSS-2 chip. Additionally, the two SIMD processors can also

access dynamic random access memory (DRAM) connected to the FPGA for

larger storage space. As can be seen in later sections this proves especially

beneficial when conducting longer experiments that require more storage for

measurements of the membrane potentials.

Neuron Circuit A single neuron circuit on BSS-2 employs AdEx neuron

model (Brette and Gerstner, 2005). However, the circuit can be configured

digitally so that the implemented model is reduced to the LIF model (Sec-

tion 2.2), which is used in this thesis. The parts of the neuron circuit relevant

for the LIF model are shown in a block schematic in Figure 2.6.

Figure 2.6: Block schematic of a neuron circuit implementing the LIF model.
Figure adapted from Billaudelle et al. (2022)

The capacitor is the electric counterpart to the membrane of the neuron and

gets charged by the incoming synaptic current Isyn. A configurable switch, that

is set when emulating the LIF model, connects the capacitor via a resistor to

the leak or reset potential. The leak behavior of a neuron is implemented

using an operational transconductance amplifier (OTA). An OTA generally

translates a voltage difference between a non-inverting v+ and inverting input

v− into a proportional output current

Io = g · (v+ − v−), (2.15)
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where the transconductance g can be controlled by a bias current. Connecting

the output potential back to the inverting input of the OTA allows emulate

the leak behavior of a neuron, as in this configuration the generated output

current tries to equalize the voltage difference between both inputs. In case

the voltage over the capacitor exceeds the threshold set in the voltage com-

parator, a digital signal is sent to the flip-flop, and which sets Q. Setting Q

starts the refractory counter and the spike gets registered by the event counter

to be further processed by the digital event router. Additionally, the event

triggers a reparameterization of the OTA, which also governs the leaky behav-

ior, resetting the membrane potential. Once the refractory time is reached, the

refractory counter sets R, un-setting Q, upon which the OTA responsible for

the leak reset behavior is parameterized back to its leak operating mode. This

allows for the membrane to evolve freely again. A neuron circuit on BSS-2

is highly configurable. A local 80 bit static random access memory (SRAM)

allows to e.g. enable or disable the threshold comparator to switch between

a LIF and LI model or to digitally set the capacitance Cm of the membrane

capacitor to also change the dynamic behavior of the membrane. A further 24

analog parameters control potentials and conductances of the circuit. Each of

these parameters can be set digitally by a 10 bit value. The analog values are

realized as an array of capacitive cells, containing a small capacitor as well as

10 bit of local SRAM to store the digital value. To store the digital values as

analog voltages, a periodically cycling voltage ramp, combined with a 10 bit

counter is used. Each cell compares the counter value to its stored memory,

and when a match is detected, the capacitor is momentarily connected to the

voltage ramp (Hock, 2014). As a result, the capacitor acquires the potential

of the voltage ramp at that specific moment in time. Since this functions as

a form of capacitive memory, the stored 10 bit values will be referred to as

capacitative memory (CapMem) values in upcoming sections. Figure 2.5 C

shows that multiple neuron circuits can also be connected via a short circuit

or a resistor. This can be done to model more complex neuron dynamics or to

enable a neuron to have for more afferent connections.

Synapses Each synapse in the synapse array stores a 6 bit weight, that mod-

ulates the amplitude of the emitted current. Two integrator circuits, associ-

ated with a single neuron circuit, are located at the end of each column of the
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synaptic array. Each circuit integrates the afferent stimuli, implementing an

exponential kernel with an individually configurable time constant τs. Finally,

the circuit stimulates the membrane potential depending on the filtered input

stimuli. On BSS-2 this stimulation can happen conductance- or current-based.

For current-based synapse, used in this thesis, one of the two circuits processes

inhibitory inputs, while the other handles excitatory inputs. The integration

and filtering of input stimuli is realized similarly to the membrane: A capacitor

integrates the incoming currents, while a resistor connected in parallel repli-

cates the exponential kernel in equation (2.5). Similar to the neuron circuit

the conductance can be set by a CapMem value, to achieve a large range of

synaptic time constants. For current-based synapses an OTA outputs a current

proportional to the voltage over the capacitor.

Calibration of BrainScaleS-2 A calibration framework, calix (Müller et al.,

2022; Weis, 2020), provides a simple way to configure all parameters of the ana-

log circuits. Not only can the calibration framework be employed to set the

hardware parameters to emulate a specific model behavior, but it also coun-

teracts the inherent mismatch of circuits due to manufacturing. A simple to

operate interface is provided to set target values for a specific neuron configu-

ration. For example, in order to calibrate a LIF neuron, the target threshold,

reset and leak potential, target values for the synaptic and membrane time

constant and further non-model parameters can be set by the user. A model

parameter is then calibrated by iteratively adjusting the relevant part of the

hardware configuration. After one adjustment, a simple parameter-specific ex-

periment is run and the model parameter is measured. The measured value

is then compared to the target value to adjust the hardware configuration

accordingly. This process is repeated several times until the desired model

parameter is calibrated. As the parameters are calibrated one at a time, a full

LIF neuron calibration of all 512 neurons on the chip takes roughly 5min.

2.5 Gradient-Based Training on BrainScaleS-2

In order to train spiking neural networks on analog hardware in a gradient-

based fashion, a learning framework based on PyTorch (Paszke et al., 2017),

hxtorch (Spilger et al., 2023), is used. The idea behind hxtorch is to integrate
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the modeling on BSS-2 into the PyTorch ecosystem, which provides state of

the art optimizers and performs automatic backpropagation for gradient cal-

culation.

class Model(torch.nn.Module):

def __init__(self, n_hidden, n_out, ...):

self.exp = hxsnn.Experiment()

self.syn1 = hxsnn.Synapse(n_in, n_hidden, ...)

self.hidden_neuron = hxsnn.LIF(n_hidden, ...)

self.syn2 = hxsnn.Synapse(n_hidden, n_out, ...)

self.output_neuron = hxsnn.LI(n_out, ...)

def forward(self, input):

x1 = self.syn1(input)

x2 = self.hidden_neuron(x1)

x3 = self.syn2(x2)

output = self.output_neuron(x3)

hxsnn.run(self.exp, time_steps)

return output

Listing 1: Construction of an arbitrary spiking feedforward network using
hxtorch. The construction works similar to PyTorch: The model
inherits from torch.nn.Module and initializes all required lay-
ers in the constructor. The forward method defines, how inputs
are propagated through the network. When called, the first four
lines of code create a graph representation of the network in the
experiment instance, required for execution on BSS-2. Calling
hxsnn.run(...), then emulates the network on BSS-2 and or sim-
ulates the dynamics the network.

In hxtorch, the user can easily combine different neuron types, e.g. LIF, LI

or refractory LIF neurons, with synapses that connect the neurons, to form a

network. In Listing 1, the construction of a spiking single hidden layer feed-

forward network can be seen. The application programming interface (API)

of hxtorch is designed so that the neural network construction is similar to

PyTorch. In addition to its size, each neuron layer holds its parameteriza-

tion, e.g. τs and vleak. Each parameter is held internally as an instance of a

HXBaseParameter class.
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class HXBaseParameter:

def __init__(self, hardware_value, model_value):

self._hardware_value = hardware_value

self._model_value = model_value

@property

def hardware_value(self):

return self._hardware_value

@property

def model_value(self):

return self._model_value

Listing 2: Class definition of an HXBaseParameter. The HXBaseParameter

is initialized with its BSS-2 and model representation and holds
these as properties.

The HXBaseParameter exposes its representation on BSS-2 through the prop-

erty hardware value. In case a hardware emulation is performed, the value is

used as target value for the chip calibration (c.f. Section 2.4). For simulation

and gradient computation the model value is used. The definition is shown

in Listing 2. This separation of model and hardware values proves useful for

various reasons. At the time of writing this thesis the calibration of the leak,

threshold, and reset potential requires desired values in least significant bits

(LSBs) of the CADC measurement, which are integer values in the range from

0 to 255. In simulation, a dynamic range typically between 0 and 1 is chosen,

which is why it is useful to have this separation. Another benefit is that the

model value, required for simulation, of a time constant does not have to be

a the true time constant in SI units, but can be arbitrarily transformed in

simulation for better numeric stability. The forward method defines, how in-

puts are propagated through the network. Calling hxsnn.run(...) can then

either only simulate the network in software or place and route the network

onto BSS-2 to additionally emulate the network on hardware.

Training using hxtorch For training a network on hardware using hxtorch,

a so called hardware-in-the-loop training methodology is applied (Schmitt

et al., 2017). The general idea of this methodology is to replace estimated
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values of state variables of the neurons from the simulation with actual mea-

surements of the state variables on hardware. This is done to account for

parameter mismatch of the hardware in the gradient calculation. To illustrate

in more detail how the training works, the procedure of a single update step is

described. The input spikes, stemming from the dataset, are fed through the

analog network that was placed on BSS-2. When using surrogate gradients,

the membrane trace and the spike times are required for gradient calculation.

For this reason, the membrane potential, as well as the spikes of each neu-

ron, are recorded during the emulation. After emulation, a simulation of the

network model is run on the host computer to generate the computational

graph which is required for the backpropagation. To account for the param-

eter mismatch between the analog system and the software model, the spikes

and membrane potentials that were recorded during hardware emulation are

normalized and injected at each time step of the simulation. In this case,

normalization involves mapping the membrane potential from the measured

CADC values to the corresponding range used in simulation. If the measure-

ment timestamps do not align with the simulation time grid, the values are

interpolated accordingly. For the membrane potential, an auxiliary identity

function ṽ[t] = f(v[t], ṽ[t]) ≡ v[t] is used to inject the data. ṽ[t] represents

the simulated estimation of the hardware dynamics calculated with an update

step from the value at time step t − 1, while v[t] is the normalized recorded

data at time t. The surrogate derivatives of the auxiliary function are defined

as ∂f/∂v[t] = 0 and ∂f/∂ṽ[t] = 1 for the membrane potential (Cramer et al.,

2022). Similarly, an auxiliary function S̃[t](S[t], ṽ[t]) ≡ S[t] is implemented to

replace the estimated spikes S̃ from simulation by the actual recorded spikes S.

The corresponding derivatives are defined using the surrogate gradient from

equation (2.14):

∂S̃[t]

∂S[t]
= 0,

∂S̃[t]

∂ṽ[t]
= (ρ|ṽ[t]− ϑ|)−2, (2.16)

where ρ describes the steepness of the surrogate gradient while ϑ is the thresh-

old potential at which the LIF neuron spikes. Using the updated simulation

and the automatic backpropagation and optimizers implemented in PyTorch,

the weight updates are calculated and applied to the software model. To close

the loop, the updated model parameters are scaled to the required 6 bit integer
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weight resolution and written back on the BSS-2-chip. The scaling factor will

be referred to as weight scale in later sections. As already described, the mea-

surements recorded from the hardware need to be normalized, as the CADC

outputs 8 bit integers while the simulation works with normalized floating-

point numbers to ensure numerical precision and stability. In hxtorch, nor-

malization involves two operations. First, an offset is applied to the original

CADC values. This offset can either be a fixed value specified by the user

or a dynamic offset based on the first measured CADC value. When setting

the leak potential to 0V, as commonly done in simulations, the dynamic off-

set conveniently aligns the measured leak potential with zero for each neuron

individually. This works because, during the first CADC measurement, no

input currents are present, and the membrane remains at its leak potential.

After shifting, a trace scale is applied to adjust the CADC measurements in

accordance with the simulation. Given a well-calibrated leak potential vl and

threshold ϑ, the trace scale can be calculated:

strace =
ϑSW − vl,SW

ϑBSS-2 − vl,BSS-2

, (2.17)

where the subscript SW is used for the values used in simulation and the

subscript BSS-2 corresponds to the hardware values set in the calibration.

This method therefore allows for training models on BSS-2 with arbitrary

loss functions based on the membrane potential as well as spike times of the

neurons.

2.6 Spiking Heidelberg Digits Dataset

When benchmarking SNNs on different visual datasets or benchmarks of ANNs

(e.g. MNIST), the transformation to spike times often mitigates the compa-

rability between performances of SNNs. To avoid this issue, Cramer et al.

(2020) introduced SHD, which is a spike-based classification dataset. This

dataset is based on an audio dataset, named Heidelberg Digits (HD). HD con-

sists of 10420 high-quality aligned studio recordings with durations of around

1 s. These recordings include spoken digits from zero to nine in German and

English stemming from a total of 12 different speakers. Two of these speakers

are only present in the test set to ensure generalizability of a trained network.
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For SHD, these high-quality recordings are transformed into spike times over

700 channels using a biologically inspired artificial model of the cochlea, called

Lauscher (Cramer et al., 2020). Figure 2.7 shows the spikes over these 700

different input channels for a spoken “eins”, which is German for “one”, from

the SHD dataset. The huge advantage of the SHD dataset is that these spikes

directly serve as input for the SNN.
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Figure 2.7: Transformed audio of a spoken “eins”, a spoken “one” in German,
into spike times.

2.7 Related Work

This work is originally motivated by Perez-Nieves et al. (2021), a paper on

how neural heterogeneity improves learning training, which investigates how

learning the synaptic and the membrane constants in addition to the synaptic

weights influences a network’s performance. Regarding the SHD classification

task, they use a recurrent spiking neural network (RSNN) with a single hid-

den layer consisting of 128 LIF neurons. The readout layer included 20 LI

neurons, of which each neuron corresponds to one class of the dataset. For

the classification task, they use the a max-over-time decoder, that takes the

maximal membrane potential of each readout neuron throughout the experi-
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ment’s duration as input for the cross-entropy loss defined in equation (2.12).

The class corresponding to the neuron with the highest membrane potential is

predicted. Note that data augmentation, in form of adding spikes following a

Poisson process of 1.2Hz and randomly removing spikes with a probability of

1× 10−3, is added to the training data. The time constants are also clipped to

be in range of [3δt, 100ms], for numeric stability and biological plausibility. All

parameters used in training are listed in Table 1. The weights are initialized

by sampling from a uniform distribution U(−n−1/2, n−1/2) with n being the

number of afferent connections. The inputs from the SHD dataset are aligned

to the same temporal grid used in the simulation. Learning weights and time

constants of the RSNN, Perez-Nieves et al. (2021) reported a test accuracy of

(82.7 ± 0.8)% when initializing the time constants with the values from Ta-

ble 1. When only learning weights, they achieved a classification accuracy of

(71.1± 1.0)% with the same initialization.

Table 1: Network parameters from Perez-Nieves et al. (2021).

Parameter Value Description

δt 0.5ms Simulation time step
τm 20ms Initial membrane time constant
τs 10ms Initial synaptic time constant
ϑ 1 Membrane threshold
vl 0 Leak potential
vr 0 Reset potential
ρ 100 Surrogate steepness
optimizer Adam Chosen optimizer
η 1× 10−3 Learning rate
nhidden 128 Number of hidden neurons



LEARNING NEURON PARAMETERS 25

3 Learning Neuron Parameters

When using analog hardware, multiple steps are required to implement the

training of neuron parameters. This section describes the required steps from

the implementation for simulation models only, to the full integration into the

software framework, to function on BSS-2.

3.1 Implementation for Simulation

Learning the neuron parameters is first implemented in software for simula-

tion. In this case, the implementation is straight forward, since the parameters

that are trained only have to be held as torch.nn.Parameter with automatic

gradient calculation enabled. Therefore, when running the simulation, the

computational graph in PyTorch captures all calculations that occur on the

corresponding parameters. Calling the automatic backpropagation of the loss

determines the gradients of the neuron parameters from which the parameter

updates can easily be applied using the optimizers implemented in PyTorch.

Listing 3 shows the extension of the HXBaseParameter class. For the training

to work, HXBaseParameter inherits from torch.nn.Module. This ensures that

trainable parameters are recognized by PyTorch and updates can be applied.

The API is chosen, so that make trainable() can be called on the parameter,

instantiating the model value as a torch.nn.Parameter.

As can be seen from Listing 4 there are no breaking changes introduced and

the training of parameters is only an optional extension.

3.1.1 Training on Neuron Trace in Software

To show that the implemented learning of neuron parameters works, a small

dummy experiment is performed. Spike trains which follow a Bernoulli pro-

cess with p = 0.03 are sent on a single LI with manually chosen parameters.

This is done for 100 different spike trains, generating one target trace each.

Subsequently, the parameters are randomized. The goal of the training is for

the originally differently parameterized neuron to reproduce the target trace,

meaning the target neuron and the neuron have the same parameters describ-

ing their dynamics after training. To achieve this, the Adam optimizer in
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class HXBaseParameter(torch.nn.Module):

def __init__(self, hardware_value, model_value):

self._hardware_value = hardware_value

self._model_value = model_value

def hardware_value(self):

return self._hardware_value

def model_value(self):

return self._model_value

def make_trainable():

self._model_value =

torch.nn.Parameter(self._model_value)

Listing 3: Extension of HXBaseParameter for training parameters in soft-
ware. The HXBaseParameter inherits from torch.nn.Module

so that trainable parameters are recognized by the optimizer.
The make trainable() instantiates the model parameter as
torch.nn.Parameter.

model = Model(n_hidden, n_out, ...)

model.lif_h.tau_mem.make_trainable()

Listing 4: Example on how to achieve trainability of neuron parameters us-
ing the model from listing 1. After initializing the model, the
make trainable() function can be called on the parameter that
should be trained. In this case the membrane time constant is
trained. This call can already happen in the model initialization.
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combination with a simple mean squared error (MSE) loss function

l =
∑
n

(vtargetn − vn)
2 (3.1)

is used. Here, n iterates over the simulation time, while vtargetn and vn are the

membrane voltages at the corresponding time step. Using this simple task,

each neuron parameter can be tested separately if trained correctly. As every

parameter has a different influence on the dynamics of the membrane potential,

the training of multiple parameters can also be tested simultaneously. This is

done by training both time constants, τs and τm, as shown in Figure 3.1. After

50 epochs of training the trace almost perfectly aligns with the target trace

and the trained neuron parameters are close to reaching the target parameters.

From these results it is safe to assume that the training of parameters works

in simulation and indicating that it can be tried to achieve the same results

on BSS-2.
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Figure 3.1: Training run of time constants on a neuron trace: Neuron trace
at different training epochs (left). Loss-landscape with the time
constant evolution during training (right). For the training, a
batch of 100 different target membrane traces are simulated using
the parameters τs = 20 µs and τm = 10 µs, of which one trace is
shown on the left. In the right figure, these target parameters
are represented by the green dot. At epoch 0, the training starts
with parameters τs = 17 µs and τm = 3 µs, represented by the
black dot on the right. During training the time constants are
then optimized according to equation (3.1).
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3.2 From Simulation to Emulation on BrainScaleS-2

The next step involves translating our working software model to the hardware.

As described in Section 2.5, the aim is to train the network using the hardware-

in-the-loop framework. In comparison to the original framework, not only are

the weights updated on hardware, but also the other neuron parameters which

are learned during training. However, the translation of neuron parameters

is often not a simple scaling as for the weights. This is due to more complex

dependencies that arise on hardware. Therefore, the easiest method would be

to recalibrate the system with the model parameters after each training step.

However, every single calibration run takes approximately 5 minutes. For a

simple training with e.g. 100 epochs each containing 100 batches, this would

lead to a duration of approximately 3×106 s, which corresponds to roughly 35

days. As this is not feasible, another approach is needed.

Following this approach, each hardware parameter corresponding to a train-

able model parameter is characterized. Then an ideal parameter translation,

which translates the model parameter to the corresponding hardware param-

eter is defined. Since the parameter translation is not used in the PyTorch

model computational graph, it does not need to be differentiable.

As seen in Listing 5, the HXBaseParameter must be further extended to sup-

port the training of parameters on BSS-2. For greater flexibility, the ideal

translation is provided by the user in form of the set on chip function. This

takes the chip configuration as well as the coordinates of neurons on the chip

and sets the configuration corresponding to the parameter translation on the

chip. With the ideal translation, the updated parameters can easily be calcu-

lated. This method of updating the parameters is much faster than performing

a recalibration after each training step. The only downside of this approach is

that every circuit on the analog substrate is different. Consequently, a single

ideal translation does not fit every neuron circuit, introducing further param-

eter mismatch between the software model and the emulation on hardware.

Based on the results presented by Perez-Nieves et al. (2021), the character-

ization of both time constants is performed first. In order to find the ideal
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class HXBaseParameter(torch.nn.Module):

def __init__(self, hardware_value, model_value):

self._hardware_value = hardware_value

self._model_value = model_value

def hardware_value(self):

return self._hardware_value

def model_value(self):

return self._model_value

def make_trainable(set_on_chip_func=None):

self.set_on_chip_func = set_on_chip_func

self._model_value =

torch.nn.Parameter(self._model_value)

def set_on_chip(chip, neuron_coordinates):

if self.set_on_chip_func is None:

raise ValueError(

'When executing on HW, '

+'set_on_chip_func needs '

+'to be provided'

)

self.set_on_chip_func(self.hardware_value,

chip,

neuron_coordinates)

Listing 5: Extension of HXBaseParameter for training parameters on BSS-
2. The ideal translation is provided by the user in form of the
set on chip function, that sets the configuration corresponding
to the parameter translation.
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translation, a desired hardware parameter is set to then measure the corre-

sponding model parameter. Then, either a function can be fitted to the pairs

of parameters or some interpolation scheme can be used to obtain the values

of parameters not represented on the measured grid.

3.2.1 Characterization of the Membrane Time Constant

Following the equations for the LI dynamics on hardware,

Cm

gl

∂u

∂t
= −(u− uleak) +

1

gl
I (3.2)

and in software

τm
∂u

∂t
= −(u− uleak) +

1

gl︸︷︷︸
const.

I (3.3)

a direct relation between the model parameter and the configurable hardware

parameters τm = Cm

gl
can be derived. While the membrane capacitance Cm can

be configured by a 6 bit integer, the leak conductance gl can be varied by setting

a 10 bit CapMem value (c.f. Section 2.4). Before these hardware parameters are

characterized, the method with which to measure the membrane time constant

is presented.

Measuring the Membrane Time Constant In general, there are multiple

possibilities to measure the membrane time constant τm of a certain hardware

configuration. In this work, the membrane time constant is measured using the

method, that is also employed by the current calibration routine (Weis, 2020).

The idea is to put an offset current on the membrane to shift the potential

above the leak potential. At a certain point in time, the offset current is

switched off, so that the membrane potential exponentially decays towards its

leak potential. The membrane potential can be measured with e.g. the MADC

and an exponential decay v(t) = ae−
t

τm + b can be fit to the measured data.

An example of a single measurement with the corresponding fit can be seen in

Figure 3.2.

Variation of Leak Conductance As derived from (3.2) and (3.3), the

membrane time constant can be varied by setting the leak conductance gl.
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Figure 3.2: Measurement of the membrane time constant τm using an offset
current. The membrane potential is offset by the offset current
until it is switched off at 50µs leading to an exponential decay
of the membrane potential.

The hardware is designed such that the circuits are able to generate conduc-

tances spanning three orders of magnitude (Billaudelle, 2022). To achieve this

range, there are two separate switches that can be set apart from the CapMem

values for the leak conductance. One of the switches allows to multiply the

leak conductance by a factor of 9 and therefore shorten the time constants to

0.26 µs. This switch is mainly used to achieve a nearly instant reset of the

membrane potential to a desired potential after a neuron has spiked. The

other switch, which is more relevant for this work, allows to divide the leak

conductance by a factor of 9, which extends the achievable range of time con-

stants up to 950 µs. Typical applications of SNNs require time constants in

the order of 10µs. For this reason, the measurements were only made for the

case where no switch is set and for the case where division of the leak con-

ductance is enabled. A sweep of all configurations mentioned regarding the

leak conductance for a single neuron can be seen in Figure 3.3. For a single

measurement point, the membrane potential following the dynamics described

in the previous paragraph, is recorded 10 times. To reduce membrane noise,

the mean of all 10 membrane traces is calculated. In the end, the exponential
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equation is fit to the mean trace over these 10 trials, to obtain the measured

time constant for a single configuration of the leak conductance.
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CapMem values - gc
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s]
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Figure 3.3: Measurement of the membrane time constant τm for a leak con-
ductance sweep with and without enabling conductance division.
When division is enabled longer time constants for the same Cap-
Mem value can be observed.

From Figure 3.3 a seamless transition between both operating modes can be

observed, meaning that any time constant between the minimum time con-

stant without division and the maximum time constant with division can be

achieved. Additionally, the relationship between the configurable CapMem

values and the membrane time constant appears to be linear in the log-log

plot, revealing the dependency

τm ∝ gxc , (3.4)

where gc represents the CapMem value used to set the actual leak conductance

and x is an arbitrary parameter. Since the ideal translation is the one that fits

the best to all neurons on a chip, it is obtained by fitting equation (3.4) to the

measurements of all neurons with and without division. Figure 3.4 shows these

measurements with the corresponding fits. Especially at the lower time con-

stant tails it can be observed that the ideal translation strongly deviates from
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the measured values. However, since the membrane time constant at which

division is enabled can be chosen and the measurements have an overlapping

time constant range, this discrepancy does not pose a severe problem. For

example, for time constants greater than 30 µs leak division can be used and

then switched off for smaller time constants thereby acquiring an overall better

translation. Regarding the tail, where division is not enabled, the mismatch

is mainly observed at time constants lower than 1 µs, which are not typical

for machine learning applications or even biological networks, considering the

speed-up factor of 1000.

Figure 3.4: Measurement of the membrane time constant for a leak conduc-
tance sweep with and without enabling conductance division for
all 512 neurons. A fit is performed on the measurements of all
512 neurons to find the ideal translation.

Training of Leak Conductance Similar to the simulation, it is shown that

the training of the membrane time constant BSS-2 works by setting the leak

conductance. A closer look at equation (3.2) reveals that on hardware not only

does the membrane time constant depend on the leak conductance, but also

the contribution of the input current to the change of the membrane potential.

In simulation the leak conductance is normally set to a constant value of 1 S.

Therefore, the modeling has to account for this scaling of inputs. This can be
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implemented by adjusting the differential equations using a scaling factor

τm
∂u

∂t
= −(u− uleak) +

τm
τm,0

1

gl,0
I (3.5)

represented in blue, where τm,0 is the membrane time constant at the start

of the training. The scaling can only be used when the membrane capacity

Cm remains constant. With the ideal translation and the adjusted model, the

same training as already done in simulation (c.f. Section 3.1.1) is implemented

on hardware. For the training the target trace is created using a calibrated

chip. In the training example shown in Figure 3.5 the chip is calibrated to

have a membrane time constant of 10 µs and a target trace is recorded. Then,

the time constant is altered to some arbitrary value already using the ideal

translation.
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Figure 3.5: Training of membrane time constant on neuron trace using the
leak conductance: neuron trace at different training epochs (left)
and the evolution of the model value of the membrane time con-
stant (right).

With this as a starting point, the model has to adjust the time constant using

the translated leak conductance on hardware to replicate the recorded mem-

brane target trace. From Figure 3.5 it can be observed that this training also

works very well, even on the noisy hardware trace. The actual time constant

that is found by the optimization is different from the one that was set for

the calibration. The in-the-loop training is thus able to compensate for the

mismatch resulting from the ideal translation.
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Variation of the Membrane Capacitance The second option to alter the

membrane time constant on hardware is to vary the membrane capacitance Cm.

The advantage of using the capacitance to change the membrane time constant

is that is does not have significant side effects like the input scaling of the leak

conductance. However, the membrane capacitance can only be configured us-

ing a 6 bit integer, allowing for values from 0 to 63. This results in a much

lower resolution of time constants compared to the leak conductance. Addi-

tionally, the range in which time constants can be reached heavily depends

on the leak conductance of the neuron. For that reason, the ideal translation

also depends on the configured leak conductance. As the calibration routine

usually sets the maximum value for the capacitance and adjusts the leak con-

ductance to achieve the desired membrane time constant, the maximum time

constant for the ideal translation is fixed by the original translation. In Fig-

ure 3.6, the membrane time constant is measured for all configurable capacitor

sizes using two different calibrations. The time constants set in the calibra-

tion can be read directly from the measurement at the highest capacitor size

c = 63 and are 50 µs and 10µs, respectively. On the left, the measurement for

a single neuron with these two calibrations is depicted, whereas on the right

the measurements for all neurons, including the ideal translation fit is shown.

The range differences depending on the used calibrations and therefore differ-

ent leak conductances can be directly observed. The ideal translation fits the

measured data considerably better than the ideal translation using the leak

conductance (cf. Figure 3.4).

Figure 3.6: Measurement of the membrane time constant for a membrane
capacitance sweep for a single neuron (left) and all 512 neurons
(right). This is done for two different calibrations of the mem-
brane time constant.
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Training of the Membrane Capacitance As previously done, the train-

ing of the membrane time constant on a target trace using the capacitance is

performed, to see if the framework and the ideal translation work properly.

The training should be tested from both sides, e.g. starting from a time con-

stant both smaller and greater than the target time constant of the calibration.

Here, it is only shown from one side. Consequently, for this training, a cali-

bration is used in which the capacitor size is set to the value of 32 instead of

the usual 63. The target membrane time constant is set to 25 µs, so that the

ideal translation for the calibration to 50 µs could be used, since the range and

capacitor steps are roughly similar for both of these calibrations. In Figure 3.7

the results of a training run are shown. After training the membrane trace

almost perfectly fits the recorded target trace. When looking at the evolu-

tion of the membrane time constant over the different epochs, it seems that

the actual minimum of the loss is not at the original target membrane time

constant of 25µs, but slightly higher. This is expected, since on the one hand

the calibration routine does not yield a perfectly calibrated chip and on the

other hand the ideal translation also does not fit every neuron on the chip

perfectly. Following this line of arguments, the training-in-the-loop framework

is also able to compensate for a slight mismatch of parameters introduced by

the ideal translation. Furthermore, dampened oscillations in the evolution of

the membrane time constant can be observed. These oscillations stem from

the optimizer overshooting the local minima slightly less every time the local

minima is crossed.
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Figure 3.7: Training membrane time constant on trace with membrane ca-
pacitance: membrane trace for different epochs (left). Membrane
time constant evolution over epochs (right).
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3.2.2 Characterization of the Synaptic Time Constant

In this work current-based synapses are used. The model current I follows the

differential equation

τs
∂I

∂t
= −I +

∑
j

wjSj (3.6)

where the last term sums over all spikes of the presynaptic neurons Sj and

weighs them with a corresponding weight wj. As the differential equation

(3.6) is similar to equation (3.3) a similar circuitry is used for the emulation

on hardware. Since at the end a current is needed, the potential over a synap-

tic membrane serves as input for an OTA, which converts the potential to

a current. Assuming linearity of the OTA, the synaptic input currents then

follow

1

ginh/exc

∂I

∂t
∝ −I +

∑
j

wjSj (3.7)

on hardware, where the conductance ginh/exc can be individually configured for

inhibitory and excitatory synapses.

The capacitance for the synaptic input is not as configurable as the capacitance

for the membrane of the neuronal circuits. Apart from the normal mode, there

is also a small-capacitance-mode for very small synaptic time constants, which

is not relevant in this work. Therefore the synaptic time constant is only set

by the conductance:

τs ∝
1

ginh/exc
. (3.8)

Measuring the Synaptic Time Constant Unfortunately, the synaptic

current that charges the membrane of the neuron cannot be measured di-

rectly. Only the potential over the capacitor, that serves as input of the OTA

can be measured, so that non-linearities of the OTA are not included in this

characterization. Similarly to the membrane time constant, the measurement

routine, employed in the current calibration framework, is used to measure

the synaptic time constant. For this, a spike event is created to charge the
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capacitor of the synaptic input. In order to extract τs, an exponential decay

is fit to the measurements in Figure 3.8.
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Figure 3.8: Measurement of the synaptic time constant τs. A spike event hap-
pens at 8 µs, after which the capacitor relaxes towards its resting
potential, following an exponential decay with the synaptic time
constant τs. An exponential decay is fit to the measurements.

Variation of the Synaptic Conductance In order to find the ideal trans-

lation for the synaptic time constant, the conductance controlling it is varied,

measuring the synaptic time constant for each configuration. Similarly to the

neuron circuits representing the membrane, the conductance can be set using

a 10 bit CapMem value. On BSS-2 there are different circuits for excitatory

and inhibitory synapses. Consequently, the measurements are performed on

both input types individually.

In Figure 3.9 measurements of the synaptic time constants for a sweep of all

possible conductances can be seen for a single excitatory and a single inhibitory

synapse. It is observed that the synapses behave approximately equal, meaning

the synaptic time constants are only offset by a small amount for the same set

of CapMem values responsible for the conductance. However, the relationship

in the log-log plot does not appear to be as linear as for the neuron membrane
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Figure 3.9: Measurement of the synaptic time constant τs for different con-
ductance configurations of a single synapse. The inhibitory and
excitatory circuit exhibit approximately the same synaptic time
constant for the same CapMem values.

circuits. Still, a function following τs ∝ gxinh/exc is fit to all synapses to acquire

the ideal translation used to train the synaptic time constant in experiments.

The ideal translation as well as the corresponding measurements can be seen

in Figure 3.10. As already observed for the single synapse in Figure 3.9 the

excitatory and inhibitory synapses behave quite similar overall, meaning the

ideal translation has nearly the same fit parameters. However, the discrepancy

between individual synapses is quite big. Especially at low conductances there

is a spread of approximately 70µs between the synaptic time constants for the

same conductance configuration. Additionally, the ideal translation does not

fit the measurements well at lower time constants.

Training of the Synaptic Time Constant Lastly, the same experiment as

before can be used to check whether the training of the synaptic time constant

works as expected. For this experiment the target trace is recorded using a

LI neuron with a synaptic time constant of 10 µs. The starting point of the

training is a time constant of 40 µs. As can be seen in Figure 3.11, after

training, the membrane trace almost perfectly fits the target. However, when
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Figure 3.10: Measurement of the synaptic time constant τs for different con-
ductance configurations of all synapses with corresponding ideal
translation: excitatory synapses (left) and inhibitory synapses
(right).

looking at the evolution of the synaptic time constant, it can be observed that

the time constant converges to approximately 20µs and not to the targeted

10 us. This is probably due to the discrepancy between the ideal translation

and the actual measured values, as seen in Figure 3.10. Therefore hardware-in-

the-loop training is once again able to compensate for the parameter mismatch

in this experiment.
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Figure 3.11: Training of the synaptic time constant on hardware: membrane
trace at different epochs (left) and evolution of the synaptic
time constant over the training epochs with the target model
value (right).
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4 Learning Time Constants on SHD

As Perez-Nieves et al. (2021) have shown, especially in tasks where the time

domain is important, learning time constants is beneficial. An example of such

a task is the SHD classification task, introduced in Section 2.6. In this section,

experiments that reproduce the simulation results of the SHD classification

task shown in Perez-Nieves et al. (2021) are presented. Next, the entire process

to implement this task on BSS-2 is outlined.

4.1 Learning Time Constants in Simulation

With the confirmation that time constants can be learned in the hxtorch frame-

work (c.f. Section 3.1.1), the simulation results related to the SHD dataset from

Perez-Nieves et al. (2021) are reproduced. For this purpose training runs in

simulation, using the same network parameters listed in Table 1, are performed.

As these experiments are primarily performed to provide a proof of concept,

the data augmentation used in the work from Perez-Nieves et al. (2021) is

not implemented here. Figure 4.1 shows the mean and standard deviation of

the test accuracy of during training over 50 epochs across 10 different seeds.

When only training weights the network reaches a classification accuracy of

(70.5 ± 3.0)%. Additionally, training the synaptic and membrane time con-

stants of each individual neuron proves beneficial, resulting in an accuracy

of (75.9 ± 2.5)%. Unfortunately, the accuracy reported in Perez-Nieves et al.

(2021) is not reached when time constants are trained. This discrepancy could

however stem from the data augmentation, as it proves very useful for SHD

(Nowotny et al., 2025; Cramer et al., 2022).

The distribution of the time constants after training is depicted in Figure 4.2.

The membrane time constant distribution after training looks similar to the

distribution shown in Perez-Nieves et al. (2021). Unfortunately, they do not

provide the distribution of the synaptic time constant. The small peak at

100ms is due to the clipping of the time constants at this point.
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Figure 4.1: SHD classification mean test accuracies during training of a
RSNN when training only the weights (red curve) and when
training weights and neuron parameters (blue curve) across 10
seeds. The shaded area represents the standard deviation. The
reported results achieved by Perez-Nieves et al. (2021) of the
corresponding models are shown as dashed lines in the respec-
tive color.
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the readout layer after training for both the membrane time con-
stant τm and the synaptic time constant τs for one random seed.
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4.2 Simulation Tests for Hardware Emulation

With these simulation results in mind, planning the implementation on hard-

ware can be started. Unfortunately, at the time of writing this thesis it is not

yet possible to use the exact same network topology as used in Perez-Nieves

et al. (2021) in an effective fashion.

The first limitation that was encountered is that a single neuron circuit BSS-2

can only have a maximum of 128 signed inputs (see Section 2.4). However,

in the network used in Perez-Nieves et al. (2021), there are 700 inputs from

the SHD dataset in addition to 128 recurrent connections between the hidden

neurons. This leads to a total of 828 inputs per single hidden neuron, a number

that is not feasible for a single neuron circuit. In order to achieve this fan-in

on BSS-2 seven neuron circuits could be short-circuited to reach a maximum

fan-in of 896. However, when operating on a single chip accommodating 512

neuron circuits in total, this would have the consequence of only 73 neurons

being able to use.

Additionally, there arises a second challenge when using surrogate gradients

in emulation on BSS-2: the hardware-in-the-loop methodology (Schmitt et al.,

2017; Cramer et al., 2022) using surrogate gradients requires the membrane

voltage to be measured at best at every simulation time step. The CADC is

used to record the membrane trace of every neuron and then send the recorded

data to memory. As mentioned in Section 2.4, the SIMD processor, respon-

sible for the CADC measurement has two different memories that can store

the data. The fast but small storage option is an SRAM. This option writes

a sample approximately every 2µs, however, as the SRAM is relatively small,

only 100 samples per neuron can be saved. This leads to a maximum recording

time of 200 µs, which is not sufficient for the 1ms of inputs in the SHD dataset,

when accounting for the speed-up factor of 1000. Therefore using the SRAM

is not feasible for the problem at hand and the other option, the DRAM con-

nected to the FPGA, must be used. As it is significantly larger, it can record

and save the entire experiment duration of 1ms. However, the DRAM, with

a sampling frequency of around 6µs significantly slower than the time step of

0.5 µs originally used in simulation.

In order to handle all of these hardware limitations, simplifications of the model

are developed and simulation tests are performed to investigate the impact on



4.2 Simulation Tests for Hardware Emulation 44

the network performance. To address the problem of the large input numbers

of the neurons, the number of inputs of each hidden neuron is reduced. It is

first tested if, instead of a recurrent network architecture a feed-forward net-

work can be implemented to remove all recurrent connections and simplify the

model. Then, to achieve an even further reduction of the number of inputs

for each hidden neuron, the influence of subsampling the inputs on the clas-

sification accuracies is analyzed. Next, as a final simulation test to check if

the DRAM can be used without any disadvantages, the network performance

is investigated using different simulation and input time resolutions. For all

of these experiments, all candidate models are run using 10 different random

seeds. If not specified otherwise, each model uses the parameters shown in Ta-

ble 1. To assess the results, the mean validation accuracy during the training

of the network is used to see the impacts of the implemented simplifications.

An important remark is that instead of using the test set of SHD as a vali-

dation set, as it is done in Perez-Nieves et al. (2021) and other papers (e.g.

Cramer et al., 2020 and Bittar and Garner, 2022), another approach for train-

ing and validating neural networks is chosen. During training, the training set

is randomly split in two subsets where 80% of the data in the training set is

used for training while the remaining 20% serves as the validation set. This

is common machine learning practice, as the test set should only be used once

at the very end to estimate how your final model will perform on completely

new data.

Feedforward and Recurrent Neural Network The first simplification

that is tested is the use of a simpler feedforward network instead of a recurrent

network. This is done to reduce the number of inputs per hidden neuron since

all recurrent connections are removed while also simplifying the model and its

numerics. For this purpose four different models are tested:

• recurrent with weight training

• recurrent with neuron parameter and weight training

• feedforward only with weight training

• feedforward with neuron parameter and weight training
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Figure 4.3: Validation accuracy during training on the SHD task for a feed-
forward (red) and a recurrent (blue) network when training only
weights (top) and when training weights and time constants (bot-
tom) in simulation. The mean validation accuracy of runs across
10 different seeds is represented by the curve, while the shaded
area around the curve corresponds to the standard deviation.
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As can be seen in Figure 4.3, when only the weights are trained the recurrent

network clearly outperforms the feedforward network. Intuitively, the recur-

rent network is able to hold information over a longer period of time, which

is important for a language recognition task and therefore achieves a higher

classification accuracy. However, when also training the time constants of the

neuron, the feedforward network is able to achieve similar accuracies, since the

neurons are able to capture the time dependency with the variable dynamics.

In Figure 4.3, two drops in mean accuracy at epochs 12 and 22 coupled with

a rise of the standard deviation over the 10 different seeds can be observed for

the recurrent network training. This can be explained by looking at the indi-

vidual accuracy of each seed, shown in Figure 4.4, in which two different seeds

are having a huge drop in accuracy during training at these epochs, respec-

tively. This consequently results in an observable drop in the mean accuracy.

Given these results, the feedforward architecture is used for first experiments

on BSS-2, since it achieves a similar performance as the recurrent network

when training weights and time constants, while also clearly outperforming

the network in which only weights are trained. Additionally, for initial exper-

iments on BSS-2 it is easier to handle a network that is less complex.

A comparison of the learned time constant distributions between the feed-

forward and the recurrent network is shown in Figure 4.5. While the time

constant distribution in the hidden layer looks similar for both models, both

time constants in the neurons of the readout layer in the feedforward network

shift to longer time constants. After training almost all time constants of the

neurons in the readout layer are above 50ms.

Reduction of the Number of Inputs Apart from changing the network

architecture from a complex recurrent network to a simpler feedforward archi-

tecture, the influence of the number of input channels from the SHD dataset

is investigated. This is done to further reduce the inputs per hidden neuron to

accommodate the attainable 128 inputs per neuron circuit. Here, the subsam-

pling method, which is already employed for experiments on BSS-2 in Cramer

et al. (2022), is implemented, so that the same data are used in both experi-

ments and a fair comparison of results can be done. Following the subsampling

method, only certain input channels of the SHD dataset function as inputs of



4.2 Simulation Tests for Hardware Emulation 47

0 10 20 30 40 50

epochs

0.0

0.2

0.4

0.6

0.8
ac

cu
ra

cy

Figure 4.4: Validation accuracy during a training of a recurrent network
when training weights and neuron parameters for each of the
ten seeds separately.

the network. Specifically, the input channels from 0 to 70 are omitted and then

every 9th channel is taken as input. This reduces the number of inputs per

neuron to 70 instead of 700 in the hidden layer, and therefore enables the use

of one neuron circuit per hidden neuron. To test the effect of this subsampling

on the network performance, a feedforward network with 128 hidden layers is

used. The network is trained in four different configurations:

• 700 inputs with neuron parameter and weight training (green)

• 700 inputs only with weight training (yellow)

• 70 inputs with neuron parameter and weight training (blue)

• 70 inputs only with weight training (red)

In Figure 4.6, the validation accuracies during training for the different num-

bers of inputs with their respective standard deviation over 10 different seeds

can be seen. An obvious observation that can be made is that, independent

of the employed training method, the network with 700 inputs outperforms
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Figure 4.5: Comparison of learned time constant distributions after training
between recurrent and feedforward network architecture for one
random seed.

the network with 70 inputs from the SHD dataset. This makes sense, be-

cause on the one hand, the network with 700 inputs has many more parame-

ters, while on the other hand it does not loose any information from omitting

specific channels. However, there are also two remarkable observations that

can be made. Firstly, despite the network with 700 inputs that only trains

weights, having nearly 8 times more parameters (128 · (700 + 20) = 92160)

than the network with 70 inputs that trains weights and neuron parameters

(128 · (70 + 20 + 2) + 40 = 11816), the latter network clearly outperforms the

first network. This is because the network with subsampled inputs that also

trains neuron parameters is able to capture the time domain of the inherent

problem which can not be compensated by the increased number of parame-

ters resulting from the input increase. Secondly, the differences between the



4.2 Simulation Tests for Hardware Emulation 49

networks using the same training method but different numbers of inputs are

investigated. For the network that only trains weights, increasing the num-

ber of inputs results in a much larger increase in accuracy (approximately 20

%) compared to the accuracy gain (approximately 10 %) that the network

which additionally trains its neuron parameters experiences upon increasing

its number of inputs. This is the case even though both networks have the

same information loss through the decrease of inputs.
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Figure 4.6: Comparison of the validation accuracy between different numbers
of inputs (70 and 700) when training only weights (red, yellow)
and when training weights and neuron parameters (blue, green).

Time Resolution Using all previous simplifications from, namely a feedfor-

ward network using the subsampled SHD dataset with 70 inputs, the impact

of the time resolution used for the input coding as well the simulation time

step is investigated. Note that for these experiments the inputs from SHD are

again aligned to the same temporal grid used in simulation. All input spikes

that are inside the same time step are regarded as one spike on the grid in

simulation. Furthermore, the range of allowed time constants is adjusted for

the time step at hand. The smallest allowed time constant is set to be equal

to three times the duration of a simulation time step, while the upper limit
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is held constant at 100ms for all time resolutions. The mean and standard

deviation of the accuracy from training across 10 different seeds is shown in

Figure 4.7. The networks are trained again over 50 epochs. While a small de-

cline in mean accuracy can be observed when only training weights, the chosen

time resolution does not have any impact on the validation accuracy when the

time constants are trained in addition to the weights.
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Figure 4.7: Comparison of the mean validation accuracy for different time
resolutions when training weights (orange) and when training
neuron parameters in addition to the weights (blue). The stan-
dard deviation across 10 seeds is shown as the black error bar.

The distributions of time constants are shown in Figure 4.8. The distribution

of δt = 2ms is chosen as this is the chosen simulation time step for experiment

on BSS-2 (c.f. Section 4.3.4). Once again this time, for larger time steps, a shift

to larger time constants for the neurons in the readout layer can be observed.

From these simulation results it can be concluded, that any time step in the

range of 0.5ms to 10ms can be chosen, while still achieving the same valida-

tion accuracy. Choosing a larger simulation time step has a few advantages

especially when training on BSS-2. For one, the time step can be chosen such

that it approximately matches the sampling frequency of the CADC record-

ing, so that only minimal interpolation on the simulation time grid must be
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performed. Additionally, a larger time step significantly reduces the compu-

tational cost of the simulation for the calculation of gradients, leading to the

training being much faster.
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Figure 4.8: Comparison of learned time constant distributions after training
between different time steps for one seed, shown for the hidden
and readout layer separately.

4.3 Emulation on the SHD Dataset

This section outlines the process of training the model on BSS-2 using in-the-

loop training introduced in Section 2.5. First, the challenges encountered and

their corresponding work-arounds are discussed. Finally, the achieved results

are presented.
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4.3.1 Shifting Leak Potential

As already described in Section 3.2.1, the membrane time constant can be

trained using two hardware parameters - the leak conductance and the mem-

brane capacitance. Even though training using the membrane capacitance

does not require any software model adjustment, initially the leak conduc-

tance is used for training of the membrane time constant. There are two main

reasons that support this decision. First, the leak conductance can be set

using a 10 bit CapMem value. Additionally, switches that multiply or divide

the leak conductance by a certain factor can be used to enlarge the achievable

range. These configuration options can set a large range of time constants,

without compromising the resolution. Secondly, if the membrane capacitance

is set to its maximum value, the recording of a membrane trace has the best

signal-to-noise ratio (SNR). Apart from the scaling of inputs, which can be ac-

counted for by the simulation model in training, varying the leak conductance

has another side effect: not only does it alter the membrane time constant,

but it also influences the leak potential. This change in the leak potential

is induced by offset currents in the OTA controlling the leakage. When cal-

ibrating the chip, the offset currents are usually compensated for by shifting

the potential provided for the non-inverting input of the OTA (Billaudelle,

2022). This however is only possible, if the transconductance is held constant.

When changing the transconductance of the OTA to vary the membrane time

constant, the output currents of the OTA and therefore also leak potential

shifts. An extensive analysis on the interplay between leak potential and the

transconductance setting has been performed in parallel to this work in Hinter-

ding (2025). Hinterding (2025) further elaborates on how this problem can be

handled using a multi-dimensional parameter transformation model. Unfortu-

nately, this is still a work in progress at the time of writing this thesis. It has

to be noted that the shift in the leak potential is only a problem when using

LIF neurons, as the leak potential is shifted relative to the threshold and reset

potential. When using LI neurons, as in Section 3, this shift does not matter

as long as the CADC or membrane capacitor do not saturate. Since spiking

neural networks require spiking neurons, the membrane capacitance is used

for training the membrane time constant for the final results (Section 4.3.4).

Consequently, the trainable range of the membrane time constant is fixed by
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the calibration of the chip and has to be adjusted according to the problem at

hand. In this case, a maximum membrane time constant of 100µs is required
for the experiment. However, the calibration framework, calix, allows only for

values up to 60µs for the membrane time constant. To circumvent this, the

chip is calibrated to have a membrane time constant of 50µs and two neuron

circuits are short-circuited to double the capacitance of a neuron, increasing

the range of time constants up to 100 µs. This also enables a higher fan-in for

each neuron and therefore using a recurrent model.

4.3.2 CapMem Crosstalk

A second issue involves the analog values being stored in the capacitive mem-

ory. Both the bias current defining the leak conductance and the bias current

defining the synaptic time constant are stored as analog CapMem values. As

described in Section 2.4, a CapMem stores a digital value as analog voltage

using a periodically cycling voltage ramp. For each quadrant on BSS-2 there

is one voltage ramp responsible for all its CapMems. If many CapMem val-

ues are identical, all of these capacitors are connected to the voltage ramp

at the same time leading to a momentary voltage swing of the voltage ramp.

This voltage swing causes the CapMems to store a voltage which is smaller

or higher than the desired value. This crosstalk effect then leads to the neu-

ron circuits exhibiting undesired behavior. When using a calibrated chip, the

crosstalk does not pose a problem, as the calibration routine does not typically

set many identical CapMem values, due to the circuit mismatch introduced by

manufacturing. However, since a calibration is too time consuming one ideal

transformation is used for all neurons in the network, which becomes a prob-

lem. First, initializing the network homogeneously leads to all neurons having

the same CapMem values. This can be circumvented by either initializing

the model values, that are represented by CapMem values on BSS-2, hetero-

geneously. In the following results (Section 4.3.4), a small amount of noise

is added to the affected CapMem values during initialization. Secondly, the

trained time constants are capped to biologically plausible values (c.f. Sec-

tion 2.7). During training with a feedforward architecture using the reduced

amount of inputs, presented in Section 4.2, it can be observed that in simu-

lation especially the time constants in the output layer saturate at the upper
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bound of the limit. This also happens, when performing in-the-loop training

on BSS-2, causing CapMem crosstalk. A general approach to circumvent this

would again be to add random noise onto each CapMem value. However, noise

should only be added when the saturation of multiple time constants occurs

to prevent additional mismatch between simulation and emulation on BSS-2.

This makes implementation challenging. Additionally, at the time of writing

this thesis, a fast lookup-based calibration, which would mitigate this problem,

is on its way (Hinterding, 2025). For this reason, this work focused on other

difficulties that arose during emulation on BSS-2. However, this in turn means

that in the results (Section 4.3.4), CapMem crosstalk still poses a problem.

4.3.3 Saturation of the Readout Neurons

The third problem occurring during training runs on BSS-2 involves saturation

of the CADC. The saturation can be observed when comparing the membrane

trace of a simulation to the recorded trace during the emulation on BSS-2.

The main reason for this is the use of a max-over-time decoding scheme in

combination with the cross entropy loss. The cross entropy loss is minimized

by the divergence of the difference between the output of the correct target

neuron and the other neurons. In the case of the max-over-time decoding

scheme, this happens when the maximum of the membrane trace of the target

readout neuron

vreadout, t → ∞, (4.1)

approaches infinity, while the maxima of all other readout neurons

vreadout, t̄ → −∞ (4.2)

approach negative infinity. Therefore, the loss function generally pushes the

membrane traces of the output layer towards extreme values. This can also

be observed when training in simulation. If no regularization is applied the

loss pushes the membrane traces of the readout neurons to values up to 40.

When emulating on hardware, the leak potential is calibrated to a CADC

value of 80 LSBs, while the threshold is chosen at a CADC value of 150 LSBs.

With the simulation leak at 0 and the threshold at 1, this results in a trace
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scale strace =
1

70 LSBs
, according to equation (2.17). As the CADC has a 8 bit

resolution, CADC saturation occurs in normalized simulation values at

vs = (vmax − vshift) · strace ≈ 2.65, (4.3)

where vmax corresponds to the maximal CADC output of 256 LSBs, while

vshift = 70 LSBs is the leak potential shift to 0. Therefore without any fur-

ther modifications, eventually the CADC of many readout neurons saturate in

training on BSS-2, leading to possibly wrong predictions. Again, there are a

few ways to minimize the problem. The first solution that comes to mind is

adjusting the calibrated threshold value such that the maximum normalized

CADC measurement is 40. This would however strongly reduce the dynamic

range and resolution on BSS-2, as this would require strace ≈ 1
5 LSBs

and there-

fore also only 5 LSBs between leak and threshold on hardware. For this reason

this idea is not used. This also means that the entire dynamic range of the

software representation cannot be represented with a desirable resolution. The

readout layer needs another representation on hardware than the hidden layer.

Therefore, a second approach is to simply use the trace scale required for these

high normalized values in the readout layer, while using the actual trace scale

only in the hidden layer. This approach was implemented and tried, but un-

fortunately it did not prove beneficial, as the saturation of readout neurons

still has a strong influence on the achieved accuracy. The trace scaling of the

readout neuron can also be adjusted in combination with the weight scale.

Dividing the weight scale with the same factor as multiplying the trace scale

of the readout neurons leads to an effective way to scale the synaptic efficacy

of readout layer neurons against hidden neurons. This approach is able to

significantly improve the accuracy on the training task and is therefore used

for the final results. Two other approaches involve changing the loss function

by adding regularizing terms. Instead of adjusting the hardware to the model,

the training process is adjusted to accommodate for the dynamic range of the

hardware. An extra loss term

l
readout

=
ρr

Nreadout

Nreadout∑
i=1

(max
t

vr,i[t])
2 (4.4)

penalizes high readout membrane traces. The hyperparameter ρr controls how



4.3 Emulation on the SHD Dataset 56

strong the maximal values of the readout membrane traces are penalized. This

extra loss term is able to significantly push the maximal readout traces down

to lower values with a small loss in accuracy in simulation. Implementing the

loss term when training on BSS-2 did not improve accuracy, for reasons that

could not yet be resolved. Lastly, another loss term in the hidden layer is

introduced: a loss on the mean spike rate in the hidden layer zh:

lhidden = ρhmax(0,
∑
i,t

zh,i[t]− ζ) (4.5)

which penalizes spike numbers higher than the threshold ζ, therefore favoring

sparse firing activities, a crucial benefit regarding power efficiency of SNNs.

Furthermore, it reduces the amount of spikes being forwarded to the readout

layer, affecting the maximal values of the membrane trace. In simulations this

regularization term did not harm accuracy significantly, while providing the

mentioned benefits. Therefore, it is implemented in the final model. Note, that

saturation occurs also at the lower limit. This does affect the loss value in the

end, it is however not relevant for the correct prediction using a max-over-time

decoder. Unfortunately, these adjustments of the model and the hardware con-

figuration are only able to mitigate but not fully solve the saturation problem.

4.3.4 Results on BrainScaleS-2

As discussed in the previous sections, the original model from Perez-Nieves

et al. (2021) is not suited for emulation. Thus, the model is simplified in

many aspects. As a starting point, two feedforward networks implementing a

single hidden layer with 128 neurons are trained on the SHD task. One model

only trains the synaptic weights (homogeneous model), while the second model

trains the synaptic and the membrane time constant in addition (heterogeneous

model). Afterwards, the same is done for a recurrent model that has one layer

with 128 neurons. The number of inputs is reduced to 70 instead of using

the original 700 input channels from the SHD dataset. Similar to Cramer

et al. (2022) a simulation time step of 2 µs is chosen, while a speedup factor

of 2000 is employed. This means that the input from the SHD dataset is

time-gridded with a time bin-width of 4ms. Using a speedup factor of 2000

also means that the time constants must be clipped at the upper limit of
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50 µs to maintain the corresponding original limit of 100ms. Derived from

the simulation time step, the lower limit of allowed time constants is 6µs
(c.f. Section 2.7). The weights are clipped as well to accommodate for the

6 bit weight resolution on BSS-2. As described earlier, a scaling factor sh→r =

10, which scales the readout layer against the hidden layer is employed to

mitigate the problem of saturation in the readout neurons. Additionally, the

regularization term introduced in equation (4.5) is implemented. All model

parameters are summarized in Table 2. The target parameters that are used

for the calibration of the chip when training the time constants are shown in

Table 3, otherwise the nightly calibration “spiking” is used.

Table 2: Used model network parameters on BrainScaleS-2.

Parameter Value Description

δt 2 µs Simulation time step
∆t 4ms Bin size for SHD
τm 10 µs Initial membrane time constant
τs 10 µs Initial synaptic time constant
ϑ 1 Membrane threshold in simulation
vl 0 Leak potential in simulation
vr 0 Reset potential in simulation
ρ 100 Surrogate steepness
optimizer Adam Chosen optimizer
η 1× 10−3 Learning rate
ζ 500 Threshold of rate regularization
ρh 1.5× 10−3 strength of rate regularization
nhidden 128 Number of hidden neurons

Feedforward Model The validation accuracy over 70 epochs of training

the feedforward model for 13 different seed is shown in Figure 4.9. It can

be observed that the model where time constants are trained in addition to

the weights clearly outperforms the model, where only weights are trained.

At the last epoch, the heterogeneous model achieves a validation accuracy of

(65.0± 2.5)%, while the homogeneous model reached a validation accuracy of

(40.9± 3.0)%, with the dataset having a chance level of 5%.

Unfortunately, both models are not able to achieve the same results as in

simulation. This could have multiple reasons. For one, through the scaling
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Figure 4.9: Mean validation accuracies across 13 different seeds, when train-
ing weights only (red) and when training weights and time con-
stants (blue). The training of each seed is shown as a shaded
line.

factor sh→r, mismatch that cannot be compensated by the in-the-loop training

may be introduced. Additionally, the described problem of the saturation of

readout neurons could not be solved completely, especially when training the

heterogeneous model. Interestingly, a correlation between the maximum volt-

age in the readout layer and the validation accuracy at the last epoch training

can be observed (see Figure 4.10). This suggests that the handling of satura-

tion is either insufficient or induces further effects.

The distribution of time constants is depicted in Figure 4.11. Once again

it can be observed that many time constants in the readout layer reach the

upper limit. These long time constants in the readout layer in combination

with a max-over-time loss essentially reproduce a sum-over-time loss, which

integrates the membrane trace instead of using the maximum operation. As

the sum-over-time decoder is inherently better suited for the SHD classifica-

tion task (Nowotny et al., 2025), it makes sense that the heterogeneous model

outperforms the homogeneous model. In the training on BSS-2, the time con-

stants in the hidden layer also shift strongly towards the upper, but also the
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Figure 4.10: Maximum voltage of the membrane in the readout layer over
all training epochs for the different seeds (left) and a scatter
plot of the maximum voltage and the validation accuracy at
the last epoch of training for all seeds (right). The maximum
voltage rises during training for both models. Especially for
the homogeneous network a correlation between the maximal
voltage and the validation accuracy can be observed.

lower, limit. As, however, both time constants in the hidden and in the read-

out layer are rather homogeneous after training, CapMem crosstalk, discussed

in Section 4.3.2, remains a problem with the use of the same transformation

function for all neurons. Additionally, as the time constants are rather ho-

mogeneous after training it is not clear that the training of time constants is

really beneficial. For this reason, it is investigated whether a homogeneous

model with the membrane time constant initialized at the upper limit of 50µs
and the synaptic time constant at the maximum allowed value of calix at 30 µs
can perform similarly. Achieving an accuracy of (48.7±1.4)%, the model with

long time constants shows a clear improvement over the variant with short

time constants. Nonetheless, it does not match the performance of the model

where time constants are optimized during training.

The weight distribution in the respective layers are shown in Figure 4.12. Both

distributions approximately follow a gaussian distribution. However, especially

in the hidden layer a large peak at the lower limit can be observed. This

strongly inhibits the neurons in the hidden layer and most probably stems

from the rate regularization term in equation (4.5).
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Figure 4.11: Distribution of time constants after training in the hidden as
well as the readout layer for one seed.
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Figure 4.12: Distribution of weights after training in the hidden as well as
the readout layer for one seed.

Recurrent Model Since Perez-Nieves et al. (2021) used a recurrent model,

a recurrent model is also run on BSS-2. The validation accuracy of the re-

current model across 10 different seeds is shown in Figure 4.13. At the last

epoch, the model with time constant training reaches a validation accuracy of

(57± 14)%, while the model where only synaptic weights are trained achieves

(57 ± 7)%. Comparing this to the results of the feedforward network, it can

be seen that the model implementing only weight training strongly benefits
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from the recurrent connections even though training the recurrent model on

BSS-2 is very unstable. Independent of whether time constants are trained or

not, some seeds exhibit accuracy drops during training. Similar drops can be

observed in simulation (Figure 4.4).
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Figure 4.13: Mean validation accuracy of the recurrent model for 10 differ-
ent seeds, when training weights only (red) and when training
weights and time constants (blue). The training of each seed is
shown as a shaded line.

When looking at the validation accuracy in combination with the maximum

observed membrane voltage in the readout layer for a seed where these drops

can be observed (Figure 4.10), it can be seen that these drops in accuracy

are heavily correlated with the maximum voltage in the readout layer. Even

though this correlation is observed, at the time of writing this thesis, the rea-

sons for these drops in accuracy are not yet understood.

The time constant distribution after training for one seed is depicted in Fig-

ure 4.15. Large peaks at both limits are still observed. Both time constants in

the readout layer are trained towards the maximum value. This again suggests

that, despite the explicit recurrent connections, the max-over-time decoder in

combination with the long time constants in the readout layer rather functions
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Figure 4.14: Validation accuracy and maximum voltage in output layer for
one seed where accuracy drops can be observed.

as a sum-over-time decoder.
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Figure 4.15: Distribution of time constants after training the recurrent
model in the hidden as well as the readout layer for one seed.
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5 Discussion

This work explores the possibility of gradient-based learning not only the

synaptic weights, but also the neuron parameters on the mixed-signal neuro-

morphic system BSS-2. The training framework hxtorch (Spilger et al., 2023),

that is based on PyTorch (Paszke et al., 2017) can be used to train models on

the BSS-2 system as well as only in simulation.

This work extends the framework to enable the training of any neuron param-

eter. The experiment presented in Section 3.1.1, which involves identifying the

correct parameterization of a target neuron trace, demonstrates the successful

learning of the synaptic and the membrane time constant in simulation. With

this confirmation, the results from Perez-Nieves et al. (2021) are reproduced.

They demonstrate the benefits of learning both the synaptic and membrane

time constants in addition to weights across different datasets. However, the

reported test accuracy of (82.7± 0.8)% on the SHD dataset is not reached for

the model that trains the time constants in addition to the weights. After 50

epochs of training this work reaches a test accuracy of (75.9 ± 2.5)% for this

model. A reason for this may be, that the data augmentation used by Perez-

Nieves et al. (2021) is not implemented in this work and data augmentation

proves very useful for the test accuracy on the SHD dataset (Nowotny et al.,

2025; Cramer et al., 2022). The results are in line with the results presented

by Nowotny et al. (2025), who instead of surrogate gradients use the Event-

Prop algorithm (Wunderlich and Pehle, 2021) to determine the gradients. The

membrane time constant distribution after training looks qualitatively similar

to Perez-Nieves et al. (2021), leading to the assumption that the training of

time constants also works for a machine learning task in the hxtorch framework.

After this result, first steps towards emulation of the model on BSS-2 are per-

formed. The model that is used on BSS-2 has to be adjusted to meet the

hardware limitations. The fan-in of the hidden neurons must be reduced to

enable the use of 128 neurons in the hidden layer. In order to do so, the recur-

rent model is simplified to a feedforward model. This reduces the fan-in of each

hidden neuron and additionally reduces the complexity of the network. The

simulation results show that this can be done without a large loss in accuracy,

when learning weights and time constants on the SHD task. Additionally, the
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benefit of learning time constants is even more apparent when using a feedfor-

ward network. Next, the input channels stemming from the SHD dataset are

subsampled from 700 to only 70 remaining channels. This enables the place-

ment of a feedforward, as well as a recurrent network with 128 neurons in the

hidden layer on a single BSS-2 chip. Despite the accuracy loss induced by input

subsampling, heterogeneity of the time constants proves effective in narrowing

the resulting performance gap. Lastly, simulation tests regarding the time res-

olution are performed. From these results, it can be concluded that the chosen

simulation time step and the binning interval of the spike grid do not have an

impact on the performance of the model. For this reason, these two hyperpa-

rameters are chosen similarly to Cramer et al. (2022) for the training on BSS-2.

To further be able to train in-the-loop on BSS-2, the synaptic and the mem-

brane time constant are characterized, since recalibrating the system every

training step would not be feasible. The characterization of the membrane

time constant includes measuring the individual membrane time constants for

different leak conductances or capacitances on one chip. Then, a function is fit

to the measurements to enable a fast mechanism to set the correct hardware

parameter for the corresponding model value. Varying the leak conductance,

unfortunately has side-effects on the leak potential due to imperfect manufac-

turing of the circuits. There is a solution that still uses the leak conductance

as a hardware parameter to train the membrane time constant. This involves

a two-dimensional translation function, incorporating both the CapMem value

for the leak conductance as well as the CapMem value for the leak potential.

This is being explored in parallel to this thesis in a greater context of a fast

look-up based calibration (Hinterding, 2025). The other solution involving the

characterization of the membrane capacitance does not exhibit such side-effects

and is used in training.

The measurements of the synaptic time constant exhibit a huge inter-neuronal

spread especially for low CapMem values corresponding to low conductances

and large synaptic time constants. The ideal translation therefore cannot fit

all neurons on the chip, which may be one of the problems that is responsible

for the difference in validation accuracy between simulation and emulation on

BSS-2 when training time constants on the SHD task. Additionally, the model
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values are capped to stay within a certain range. Using the ideal translation,

this means that the CapMem values, responsible for the synaptic time constant

are also capped. As high synaptic time constants in the readout layer seem

to be important for the validation accuracy, this poses a problem for example

when neurons on BSS-2 only exhibit a time constant of 30µs instead of the

50 µs used in simulation.

The second challenge that, unfortunately, is not completely solved, is the sat-

uration of the membrane trace in the readout neurons on BSS-2. These high

membrane traces are primarily caused by the max-over-time loss that is used.

Another option would be to use a sum-over-time loss, which was already used

when training on BSS-2 using the SHD dataset (Cramer et al., 2022). With-

out data augmentation and a model with 186 recurrently connected hidden

neurons, Cramer et al. (2022) achieved a test accuracy of (76.2 ± 1.3)% on

BSS-2, which is significantly higher than the achieved validation accuracy of

(65.0 ± 2.5)% for the feedforward network with neuron training in this work.

Here it must be noted, that this work uses the validation accuracy to estimate

the accuracy on the test set, as the test set should only be used once at the

very end to estimate how your final model will perform on completely new

data. The sum-over-time loss has a few advantages over the max-over-time

loss. Nowotny et al. (2025) show that the sum-over-time loss is inherently bet-

ter suited for the SHD task. This can also be concluded from the results in this

work: when training time constants, primarily in the case of the feedforward

network, both time constants of all neurons in the readout layer shift towards

the upper limit. This allows the membrane of each readout neuron to inte-

grate all incoming spikes without much leakage. Combining this with taking

the maximum value over the whole integration time, effectively replicates a

sum-over-time loss. A second advantage of the sum-over-time loss is that the

membrane traces in the readout layer are not necessarily pulled towards these

high values as in the case of the max-over-time loss. Consequently, the mem-

brane voltages in the hidden and readout layer stay within the same range.

This allows to use similar configurations of all neurons without any further

modification on BSS-2. This direction is not further explored in this work, as

the motivation is not to reach state-of-the-art performance on the SHD task,

but rather to enable learning of neuron parameters on BSS-2 and confirming
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the result presented by Perez-Nieves et al. (2021) using the max-over-time loss.

Despite the fact that neural heterogeneity improves performance on the SHD

task, Perez-Nieves et al. (2021) further show that neural heterogeneity also im-

proves robustness of the network. The robustness of networks with this kind

of neural heterogeneity is further supported by Golmohammadi and Tetzlaff

(2024). Unfortunately, the robustness of the networks is not investigated on

BSS-2 in this work, as it requires a stable training that reaches accuracies that

are comparable to those reached in simulation.

In conclusion, this work enables the learning of neuronal parameters on BSS-2.

This is demonstrated by training the synaptic and the membrane time constant

using an imperfect ideal translation function in a simple learning example on a

neuron trace (Section 3). Furthermore, the benefits of training time constants

on the SHD task are demonstrated. Several simulation experiments, analyzing

the effects of model simplification, highlight the performance improvements

achieved when both time constants are trained. Even though both models on

BSS-2 are not able to reach the performance achieved in simulation, training

neuron parameters proves beneficial on BSS-2 as well.
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6 Outlook

This thesis should be considered as a first investigation of learning neuron pa-

rameters on the BSS-2. Therefore, many aspects presented in this thesis have

the potential to be improved upon. This section discusses feature wishes for

hxtorch, that help debugging a model when training on BSS-2. Additionally, it

provides an outlook on ongoing work within the Electronic Vision(s) research

group that is able to improve parameter learning, as well as explores additional

capabilities enabled by learning parameters.

Even though hxtorch provides an accessible approach to gradient-based train-

ing of SNNs on the neuromorphic BSS-2 chip, it is still difficult to train a new

model on BSS-2 without expert knowledge. This work involved many steps on

figuring out the transition from a working model in simulation to a working

model on BSS-2, as the large configurability of the hardware also comes with

a large amount of parameters that influence this transition. Despite exten-

sive investigation, the discrepancy between the performance in simulation and

on BSS-2 could not be explained completely. As the model parameters are

used for the calculation of gradients during backpropagation and the model

in simulation trains correctly, it is best if the hardware emulation matches

the simulation. Therefore, it is useful to investigate the discrepancy between

hardware emulation when debugging the model. For this reason, the following

part will explain typical debugging steps when training a SNN on BSS-2 and

then continue with features that would facilitate debugging the training on

BSS-2. The first step involves plotting both traces for each neuron exposed

to a single spike to investigate whether they are identical, i.e. the trace and

weight scaling are chosen correctly, according to the hardware configuration.

This step does not have to happen manually, but can also be automatized for

a provided hardware configuration before each training. This is already a work

in progress. Assuming that weight and trace scaling are correct, this compar-

ison of emulation and simulation trace is also useful during training. From

this, three things can be observed directly: CapMem crosstalk, which causes

both traces to no longer match anymore, saturation of the membrane traces on

BSS-2 and side-effects, when changing a hardware parameter affects another

parameter. An example of the latter is the shift of the leak potential due to a
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change in the leak conductance which can be seen in a LIF neuron that fires,

as there is a relative change between leak, threshold and reset potential. Ad-

ditionally, it can be interesting to plot the voltage in the synaptic integrator

circuits to see if these saturate. This can happen especially for long synaptic

time constants. Unfortunately, it is not possible to record both the membrane

trace and the synaptic input at once. Therefore, a slower debugging mode for

training on BSS-2 is proposed. This records and plots all mentioned traces

in multiple hardware runs to give feedback to the user. Another interesting

feature for hxtorch would be an automatic-range neuron, that configures the

hardware parameters according to the simulation. In this work a considerable

amount of effort was invested into trying to scale the readout layer against

the hidden layer on BSS-2. This was motivated by the fact that in simula-

tion, without any regularizing terms, the maximum membrane potential in

the readout layer is approximately 40 times higher than the threshold voltage

in the hidden layer at the end of training. In the used hardware configura-

tion, without further modifications, a factor of approximately 2.5 is possible

on BSS-2. The synaptic strength on BSS-2 is however not only influenced

by the 6 bit weight, but also by two other hardware parameters. Instead of

using the trace and weight scale to adjust the range on hardware, as it is done

in this work, these two parameters can be adjusted in combination with the

trace scale, to define the range of readout neurons according to the simulation.

This would enable users to utilize the entire dynamic range of the system with

the highest possible resolution without detailed knowledge about the hardware.

As already mentioned in earlier sections, there is an on-going investigation in a

fast lookup-based calibration. Hinterding (2025) investigates the dependencies

between the leak potential and leak conductance, creating a multi-dimensional

transformation from model value to hardware configuration. Other parameters

will follow. In future work, this can be used instead of the imperfect transla-

tion function, presented in this thesis. As the leak conductance could be used

without side-effects on the training, the capacitor could be held at maximum

capacity for the lowest SNR, while still allowing for the parameter range de-

fined by the capabilities of the hardware. Furthermore, this would decrease the

parameter mismatch between hardware emulation and simulation and there-

fore also negate the problem of synaptic time constants being trained towards
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the upper limit. With this fast calibration, it would then also be interesting

to train a best-effort model on SHD, including training of the time constants

on BSS-2. From the results presented in this work, this would imply using

the sum-over-time loss instead of the max-over-time loss, as it is better suited

for the task and the hardware limitations. Nonetheless, this direction was not

pursued further, as the focus was on reproducing the results of Perez-Nieves

et al. (2021) on BSS-2. Another interesting direction for future work would

be to apply neuron parameter learning to other tasks with temporal structure.

The DVS128 Gesture dataset (Amir et al., 2017), featuring visual stimuli from

a neuromorphic vision sensor, represents a suitable benchmark for such inves-

tigations.

This thesis primarily focused on demonstrating the benefits of training neuron

parameters on a machine learning task. However, there are additional sce-

narios where learning parameters can be advantageous. In particular, further

extending the set of learnable parameters in BSS-2 would enable the system

to be calibrated through gradient-based learning. Examples of how such a

calibration can be performed are demonstrated in this thesis by learning time

constants from a given neuron trace. Since this approach involves finding an

appropriate parameterization for a specific neuron response, gradient-descent

could also be applied to more complex, i.e. experimentally recorded, neuron

traces (Vanier and Bower, 1999). A parameter search for traces of an AdEx

neuron has already been carried out in the Electronic Vision(s) group using

simulation-based inference (Kaiser et al., 2023; Huhle et al., 2024).
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SIMD single instruction, multiple data. 15, 16, 43

SNN spiking neural network. i, iii, 1–3, 12, 13, 22, 23, 31, 56, 67, 82

SNR signal-to-noise ratio. 52, 68

SRAM static random access memory. 17, 43



Appendices

A Hardware Parameters

The experiments with time constant training conducted in the Section 4 used

the target parameters shown in Table 3 for the underlying calibration. They

used the setup W70F0.

Table 3: Target parameters used for calibration on BrainScaleS-2 as well as
calibration specific parameters used in training.

Parameter Value

tau mem 50 µs
tau syn 10 µs
threshold 150
leak 80
reset 80
i synin gm 50
synapse dac bias 1000
membrane capacitance 63
refractory time 2 µs
trace scale 1× 10−3

weight scale 500

B Software State

Experiments conducted in this thesis used to the software state in Table 4.

The used container is given in Table 5.



Table 4: Software state

Repository Commit-Hash
hxtorch 699e4a9fd42a0fc12498c45482e17865eed42341

hxcomm 8fa8bdb90076249e639b6ec06c7754161f69d14b

haldls 8a58083ad384ceea6a026a20ad07a4395252db3f

grenade 5702a628eea32b9dd01474949626ddb288f4e4ce

hate 35b3cb211cabbbc5c01036ae7878a73e338166c4

calix a706868c6ba285b1f8fd7cdef1a19d7328e02912

sctrltp 1d854f953f7e8c8ead44406a22bb80421ca3857c

rant 53199ee94cae1e1c2e4db10e88d570a761b14e0f

hwdb 21643473ceafa07f38eb2f40e9312fb6a520cdb9

code-format f4ef916fde2ca6d67e27fe9b3b5807ba69704e93

logger 73dadb3ce413c521845ef7d36f818073eee4fefa

visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3

flange 28e729d59df3b4ff380f84351c40d4da3086bed8

lib-rcf 000185eb11db4d54cb6b12b09af54cf742741036

bss-hw-params b7be7827b51536804f0bda76f8ba4be693df23a8

halco d03f343231644067e41bdd0fda267c4070123664

fisch f83c5f658eebf574a738e0d00441f66c27ad9cbe

libnux 31b76437ff4754bcdaaaecffc3d24aecd3b9fa5a
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