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Abstract

In the presentwork, we develop a low-energy effective field theory for the far-from-equilibrium
spin-1 Bose gas after a parameter quench from the polar to the easy-plane phase. Inspired by
the rich phase dynamics and self-similar spatio-temporal scaling of the transverse spin den-
sity observed in such a system, we integrate out the density fluctuations to find a theory only
describing the phase degrees of freedom - the spinor phase φS and the Larmor phase φL. Ex-
panding this theory around φS = 2Zπ, we obtain regular, uncoupled effective Lagrangians for
the phases, with a free theory for φL and a sine-Gordon type theory with additional sin2-term
for φS . The mass gap of the latter matches the Bogoliubov result and closely aligns with nu-
merical data. The inclusion of higher-order density fluctuations does not significantly improve
the agreement between the analytical and numerical results for the mass gap. We also perform
an expansion aboutφS = (2Z+1)π by considering a theory set on the spin healingmomentum
scale and again find a free theory for φL and a sine-squared-Gordon theory for φS . In contrast
with the expansion around φS = 2Zπ, the potential for φS expanded around φS = (2Z+1)π
exhibits shallow local minima on top of the global maxima, which are in qualitative agreement
with numerics.

Zusammenfassung

In dieser Arbeit entwickeln wir eine niedrigenergetische effektive Feldtheorie für ein spin-1
Bosegas weit vom Gleichgewicht nach einer rapiden Änderung der Parameter des Hamilto-
nian von der polaren in die Easy-Plane Phase. Von der reichhaltigen Dynamik der Phasen
und dem selbst-ähnlichen raumzeitlichen Skalierungsverhalten der transversalen Spindichte
inspiriert, integrieren wir die Dichtefluktuationen aus um eine Theorie zu erhalten, die nur
die Phasenfreiheitsgrade beschreibt - die Spinorphase φS und die Larmorphase φL. Wenn wir
die Theorie um φS = 2Zπ entwickeln, erhalten wir regularisierte, ungekoppelte effektive La-
grangians für die Phasen, mit einer freien Theorie für φL und einer Theorie des sine-Gordon
Typsmit einem extra sin2-Term fürφS . Die Energielücke letzterer stimmtmit dem Resultat aus
der Bogoliubov-Theorie und näherungsweise auch mit numerischen Daten überein. Die Ein-
beziehung von Termen höherer Ordnung in den Dichtefluktuationen verbessert die Überein-
stimmung von analytischen und numerischen Resultaten für die Energielücke nicht signifikant.
Auf der Energieskala des Healing-Impulses führen wir auch eine Entwicklung der Theorie um
φS = (2Z + 1)π durch und erhalten wieder eine freie Theorie für φL und eine sine-squared-
Gordon Theorie für φS . Im Gegensatz zu der Entwicklung um φS = 2Zπ zeigt das Potential
für φS , das um φS = (2Z + 1)π entwickelt wurde, flache Minima auf den globalen Maxima,
die qualitativ mit der Numerik übereinstimmen.
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1. Introduction

The question of how the universe came to be and how it has evolved to our current state has
baffled humankind for centuries. With cosmological models as well as theories from all physi-
cal subfields, generations of physicists have come closer than ever to potentially understanding
what the universe looked like in its very early stages [1]. However, the more we learn and the-
orize, the more physical questions open up as well. For example, subjects of current research
are the thermalization and hadronization dynamics of the quark-gluon plasma that is hypothe-
sized to be present in the universe before matter as we know it [2, 3], or the phase of reheating
in the universe after the proposed period of inflation [4, 5].

As these phenomena are examples of isolated quantum many-body physics in extreme condi-
tions far from equilibrium [6], this area of physics has gained interest in recent years. While the
aforementioned systems cannot be directly studied, tabletop experiments with cold quantum
gases provide a highly accessible way to probe the far-from-equilibrium dynamics of isolated
quantum many-body systems [7] as these cold atom experiments allow for precise control of
the initial conditions as well as the system parameters and realize almost perfectly isolated
systems [8].

Because quantum many-body systems far from equilibrium in principle have an enormous
number of degrees of freedom, the spectrum of phenomena that have been proposed for and
observed in isolated cold atom systems out of equilibrium is broad [9], including but not lim-
ited to integrable dynamics [10–12], prethermalization [13–17], generalized Gibb’s ensembles
[18–22], many-body localization [23–26], critical and prethermal dynamics [27–30], wave tur-
bulence [31, 32], decoherence and revivals [33], as well as universal spatio-temporal scaling
dynamics [9, 34–41] and prescaling [42]. The beauty of many of these collective phenomena
is, however, that despite the huge number of particles involved, they allow for a description of
the relevant dynamics with only a few quantities.

Especially the universal scaling dynamics proposed for far-from-equilibrium systems and ob-
served in cold atom experiments and numerical simulations of the latter is of interest in the
current work. One can observe that correlation functions in different systems relaxing from an
initial condition far from equilibrium can exhibit self-similar spatio-temporal scaling behavior
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1. Introduction

[34–37]. It is hypothesized that similarly to the notion of renormalization group fixed points
governing universal scaling in equilibrium [43–48], such scaling occurs as a system approaches
non-thermal fixed points in their time evolution to equilibrium [9, 34, 35, 40]. Once near such a
fixed point, the system can then be described by only a small number of scaling exponents and
functions, thus becoming independent of its exact initial conditions and microscopic degrees
of freedom to a certain extent [49]. Similar to the universality classes in equilibrium, one may
also be able to define such universality classes for the non-thermal fixed points [40, 49]. Thus, if
the systems are in the same universality class, one may study the scaling behavior encountered
in early-universe cosmology with tabletop cold atom experiments despite the vastly different
energy scales of those systems.

In the current thesis, we want to contribute to the understanding of the universal scaling be-
havior observed in a spin-1 Bose-Einstein condensate (BEC) quenched far from equilibrium
[37–39, 41]. Such a BEC can be described via three components, corresponding to the three
magnetic sublevels of the spin-1 manifold. As a multi-component Bose gas allowing mixing
between the different components, thus breaking U(3) symmetry, it can exhibit phenomena
not possible in single component gases, such as quantum phase transitions in the rich phase
diagram, spin-mixing dynamics, as well as the formation and coarsening of spin domains [50].
It has been observed both experimentally [37] and numerically [38, 39, 41] that after quenching
a spin-1 Bose gas from the polar to the easy-plane phase of the phase diagram, the transverse
spin F⊥, the order parameter of the easy-plane phase, exhibits self-similar scaling in the in-
frared according to

⟨|F⊥(k)
2|⟩ =: S(k, t) = (t/tref)

αfs

(
[t/tref]

βk
)
, (1.1)

where fs is a universal scaling function

fs ∼ 1/[1 + (k/kΛ)
κ], (1.2)

α, β, and κ are scaling exponents that are related to each other, kΛ is the IR momentum scale,
and tref is some reference time [38]. It has been discussed thoroughly that such self-similar
scaling is due to quasiparticle transport to lower energies and energy transport to higher ones,
as the initial momentum distribution S(k, t) shortly after the quench is approximately a Heav-
iside function, overpopulating momenta around the spin-healing momentum compared to the
equilibrium distribution [9, 38, 40]. However, it is not known which microscopic processes
exactly drive these transport processes in momentum space. In the context of this self-similar
scaling, rich phase dynamics including rogue waves and real-time instantons in the so-called
Larmor phase between them = ±1 components have been observed in one spatial dimension,
as well as coarsening of these phenomena [41].
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1. Introduction

Thus, the goal of this work will be to develop a low-energy effective theory for the phase de-
grees of freedom in the spin-1 BEC in the hope of getting an intuition for the mechanisms
behind the far-from-equilibrium self-similar scaling behavior observed in [38, 41]. Such an ef-
fective theory for the phases is much easier to interpret than the full spin-1 Bose action with
all its degrees of freedom and can also be eventually used for numerical simulations of the far-
from-equilibrium behavior of only the phase degrees of freedom. Especially, we want to use
this effective theory to study the Larmor phase instantons observed in [41].

Moreover, it is worth noting that even though the far-from-equilibrium scaling behavior and
the phase dynamics observed in [38] and [41] are the inspiration behind the effective field the-
ories developed here, these theories could be of interest in general to the study of the phase
degrees of freedom of the spin-1 Bose gas.

The current work is structured as follows: In the first chapter, Ch. 2, we want to give some
background about the spin-1 Bose gas, its symmetries, its phase diagram, and the quench pro-
tocol used to study far-from-equilibrium phenomena in this system. Moreover, we recapitulate
Bogoliubov theory for this system and set up a strategy to compare our results to the exper-
iments carried out in Markus Oberthaler’s group. Subsequently, in Ch. 3, we introduce some
numerical methods used in the investigation of far-from-equilibrium physics and , thus, also
in this work. As a first approach to develop an effective field theory for the spin-1 Bose gas,
we employ the 2PI effective action formalism, deriving an effective action as well as equations
of motion for the field expectation values and the statistical propagator up to leading order
in 1/N in Ch. 4. While this method is useful for including non-equilibrium effects and initial
conditions far from equilibrium, it is not suited well to reduce the degrees of freedom to only
the phases of interest. Thus, in Ch. 5 we use the approach developed in [51], integrating out
density fluctuations around the mean-field in order to obtain a low-energy effective theory
only depending on the phase degrees of freedom of the spin-1 BEC near the easy-plane phase,
i.e. the spinor phase φS of the 0-component and the relative Larmor phase φL between the
m = ±1 components. We see that if we expand this theory for small values of φS , the theories
for φL and φS decouple, yielding a free theory for φL and a sine-Gordon type theory for φS .
These theories are then refined by including higher orders of the density fluctuations in the
effective theory in Ch. 6. However, the theories developed in both chapters have the problem
that they are only valid for values of the spinor phase φS around 2πZ and diverge around the
maxima of the sine-squared-Gordon potential for φS . Thus, in Ch. 7, we introduce a character-
istic momentum for the density fluctuations, regulating the theory and enabling us to expand
the effective theory around the potential maxima for φS , which then gives us a potential that
is shaped as predicted by numerical simulations in the presence of instantons. In Ch. 8, we
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1. Introduction

finally sum up our results and discuss the next possible steps.

Unless otherwise noted, we use the Einstein summation convention throughout this work.
Moreover, for the analytical chapters Ch. 4-7, we drop any explicit factors of h̄ and c and use
natural units h̄ = c = 1.
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2. The spin-1 Bose gas

In this thesis, we want to develop a low-energy effective field theory for a spin-1 Bose-Einstein
condensate (BEC) far from equilibrium after a quench from the polar to the easy-plane phase.
We will use this chapter to lay out some theoretical background for that, discussing the Hamil-
tonian of the spin-1 Bose gas in Sec. 2.1 as well as its symmetries in Sec. 2.2. Thereafter, we
consider the mean-field equation of motion as well as the different possible phases in the mean-
field phase diagram of the condensate in Sec. 2.3, and explain how a quench from the polar to
the easy-plane phase can be realized in Sec. 2.4. Subsequently, we derive the well-known Bo-
goliubov quasiparticle spectra in Sec. 2.5 for these two phases and discuss the emergence of
dynamical instabilities following a quench. Lastly, we focus on how our analytical results can
be reduced to one spatial dimension in order to be compared with a quasi-1d experiment with
87Rb as it is studied in Prof. Markus Oberthaler’s group in Heidelberg [37, 52–57].

For the most part, this chapter will follow [58] unless otherwise noted.

2.1. The spin-1 Hamiltonian

In this work, we consider a spin-1 Bose gas condensed to a BEC at zero temperature. Such
a system of identical Bosons is best described by a three-component spinor of field operators
Ψm with each component corresponding to a bosonic quantum field operator for the magnetic
sublevelsmF ∈ {−1, 0, 1} of the total spin F = 1¹ [58]

Ψ̂ =

 Ψ̂1

Ψ̂0

Ψ̂−1

 , (2.1)

where we assume these operators to satisfy the canonical equal-time commutation relations[
Ψ̂i(x, t), Ψ̂j(y, t)

]
= 0 =

[
Ψ̂†

i (x, t), Ψ̂
†
j(y, t)

]
(2.2)[

Ψ̂i(x, t), Ψ̂
†
j(y, t)

]
= δijδ

d(x− y). (2.3)

¹The notationmF for the magnetic sublevels is chosen as the spinor components in atomic BECs are usually given
by the sublevels of the fine structure manifold with total spin F , with F = 1 in this case.
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2. The spin-1 Bose gas

q

mF = 0

mF = −1 mF = 1

Figure 2.1.: Schematic picture of the energy shifts through the quadratic Zeeman effect.

In 1+d space-time dimensions, the Hamiltonian for the weakly-interacting spin-1 Bose gas in
an external magnetic field and potential is then given by [58–60]

Ĥ =

∫
ddx

{
Ψ̂

†
(x, t)

[
− h̄2

2m
∇2 + V (x) + qf2z

]
Ψ̂(x, t) (2.4)

+
1

2
c0 : n̂

2(x, t) : +
1

2
c1 : F̂

2(x, t) :

}
,

where :: denotes normal ordering of the operators. The quadratic part of this Hamiltonian
involves the non-relativistic kinetic term, in whichm denotes the mass of the bosons, the ex-
ternal trapping potential V (x, t), and a term describing the quadratic Zeeman effect on the
system’s energy. We have already absorbed the linear Zeeman shift into a rotating frame of
the spinors so that the quadratic Zeeman shift describes the lowest-order effect of an external
magnetic field on the energy of the spinor BEC. Unlike the linear Zeeman effect, which shifts
the magnetic sublevelsmF = −1 andmF = 1 in opposite directions, the quadratic Zeeman ef-
fect causes the same shift in both levels withmF = ±1, characterized by the coupling strength
q, which can be experimentally tuned to different values as explained in Sec. 2.4. This effective
detuning of themF = ±1 levels is illustrated in Fig. 2.1.

Moreover, there are two types of interaction terms: U(3)-symmetric density-density interac-
tions governed by two normal-ordered powers of the number density operator

n̂(x, t) = Ψ̂†
i (x, t)Ψ̂i(x, t) (2.5)

as well as spin-spin interactions involving the normal-ordered square of the spin density op-
erator

F̂ =


Ψ̂

†
fxΨ̂

Ψ̂
†
fyΨ̂

Ψ̂
†
fzΨ̂

 . (2.6)
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2. The spin-1 Bose gas

Here, the matrices f = (fx, fy, fz) are the three spin-1 matrices corresponding to the genera-
tors of SO(3) in the three-dimensional irreducible representation in the spin-1 basis |F = 1,mF ⟩

fx =
1√
2

0 1 0

1 0 1

0 1 0

 fy =
1√
2

0 −i 0

i 0 −i
0 i 0

 fz =

1 0 0

0 0 0

0 0 −1

 (2.7)

so that the components of F̂ are given by multiplying these spin matrices by the spinor field
from left and right, yielding scalar operators in each component:

F̂ =


1√
2

(
(Ψ̂∗

1 + Ψ̂∗
−1)Ψ̂0 + Ψ̂∗

0(Ψ̂1 + Ψ̂−1)
)

−i√
2

(
(Ψ̂∗

1 − Ψ̂∗
−1)Ψ̂0 − Ψ̂∗

0(Ψ̂1 − Ψ̂−1)
)

∣∣∣Ψ̂1

∣∣∣2 − ∣∣∣Ψ̂−1

∣∣∣2
 (2.8)

The form of these interaction terms follows from group theory and symmetry arguments com-
bined with the assumption of a dilute, weakly-interacting gas as explained in [58]. In such
a gas, we can model interactions by only assuming s-wave scattering of two particles with
pointlike scattering potential

vF (x,y) = gFδ
d(x− y). (2.9)

The total spin of the particlesF must be conserved and can only be 0 or 2 for s-wave scattering
of two bosons, such that the two scattering channels contribute to the Hamiltonian indepen-
dently. The effective coupling constants gF are related to the s-wave scattering lengths via

gF =
4πh̄2

m
aF . (2.10)

By group-theoretic arguments, the operators corresponding to the 0- and 2-wave scattering
channel can then be split into n̂2 and F̂ 2 via Clebsch-Gordan coefficients, so that the interaction
coefficients c0 and c1 are given by

c0 =
g0 + 2g2

2
c2 =

g2 − g0
3

. (2.11)

In the case of 87Rb atoms experimentally considered in Prof. Dr. Markus Oberthaler’s group
[37, 52–57], the scattering lengths are given by a2 = (100.4 ± 0.1) aB, a0 = (101.8 ± 0.2) aB

[58], where aB is the Bohr radius, such that c1 < 0 and |c0| ≫ |c1|.

The interaction term ∝ c0 consists of products of densities of the different components nm.
Such density-density interactions are the lowest-order U(N) symmetric interaction one can
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2. The spin-1 Bose gas

write down and, thus, appear also for any U(N) symmetric theories. The term ∝ c1 is much
more interesting, as it does not only contain products of component densities. Instead, this
term governs the interaction between the spin densities Eq. (2.6). Consequently, it also allows
for interactions in which the spin of the interacting particles changes and, thus, the different
components mix.

Equivalently to the Hamiltonian, we can describe the spin-1 Bose gas with a partition function

Z =

∫
DΨ1DΨ0DΨ−1e

i
h̄
S[Ψ1,Ψ0,Ψ−1] (2.12)

with the classical action obtained from the Hamiltonian Eq. (2.5) by a Legendre transformation

S =

∫
dtddx

{
iΨ†(x, t)∂tΨ(x, t)−Ψ†(x, t)

[
− h̄2

2m
∇2 + V (x) + qf2z

]
Ψ(x, t) (2.13)

−1

2
c0

(
Ψ†(x, t)Ψ(x, t)

)2
− 1

2
c1

(
Ψ†(x, t)fΨ(x, t)

)(
Ψ†(x, t)fΨ(x, t)

)}
.

or, written out,

S =

∫
dtddx

{
i
(
Ψ†

−1∂tΨ−1 +Ψ†
0∂tΨ0 +Ψ†

1∂tΨ1

)
(2.14)

− q
(
|Ψ−1|2 + |ψ1|2

)
− 1

2m

(
∇Ψ†

−1∇Ψ−1 +∇Ψ†
0∇Ψ0 +∇Ψ†

1∇Ψ1

)
− c0

2

(
|ψ−1|4 + |Ψ0|4 + |Ψ1|4 + 2|Ψ−1|2|Ψ0|2 + 2|Ψ0|2|Ψ1|2 + 2|Ψ−1|2|Ψ1|2

)
−c1

2

(
|Ψ−1|4 + |Ψ1|4 + 2|Ψ−1|2|Ψ0|2 + 2|Ψ0|2|Ψ1|2 − 2|Ψ−1|2|Ψ1|2 + 2Ψ2

0Ψ
†
−1Ψ

†
1 + 2Ψ̄2

0Ψ−1Ψ1

)}
.

Here the Ψi are classical, commuting fields. The functional integral measure is understood as
the continuum limit of

DΨ1DΨ0DΨ−1 = lim
δx,δt→0

Πx,tΠi∈{−1,0,1}dΨi(x, t)dΨ
†
i (x, t) (2.15)

with discretized t and x. The derivation of this formalism, especially for theories out of equi-
librium, will be described in more detail in Sec.4.1.4.

From this written-out action, the mixing of components becomes especially visible. Here,
one can see that there are terms in the interaction ∝ c1 that, for example, allow for two 0-
component particles to become one +1- and one -1-particle in terms∝ Ψ†2

0 Ψ1Ψ−1 as illustrated
in Fig. 2.3 (b).
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2. The spin-1 Bose gas

2.2. Symmetries and Observables

Without the spin-changing interactions and the quadratic Zeeman shift terms, the Hamiltonian
Eq. (2.5) would be invariant under U(3) transformations. This symmetry is broken down to
SO(3)×U(1) by the explicit appearance of the spin-1 matrices Eq. (2.7) in the spin-dependent
interaction term. If, moreover, q ̸= 0, the SO(3) symmetry gets broken by the f2z term such
that the SO(3) invariance reduces to (D∞)fz = SO(2) ⋊ Z2, singling out the z-axis while
preserving invariance under rotations around this axis. Thus, the symmetries of the full spin-1
Hamiltonian can be described as SO(2)⋊ Z2 × U(1).

Despite the Hamiltonian not being invariant under SU(3) in the presence of all relevant terms
to describe the spin-1 Bose gas, the 3-component field still allows us to observe the action of all
SU(3) generators in experiments with a spin-1 BEC, which correspond to the first 8 matrices
in Tab. 2.1.

Subsets of these operators, in addition to some linear combinations, form representations of
the generators for the SU(2) subgroup of SU(3) [62]:

{O1,O2,O3} ∈
{{

F̂x, F̂y, F̂z

}
;
{
F̂x, Q̂yz, Q̂zz − Q̂yy

}
; (2.16){

Q̂xz, Q̂yz, F̂z

}
;
{
F̂y, Q̂xz, Q̂xx − Q̂zz

}
; (2.17){

F̂x, Q̂xz, Q̂xy

}
;
{
F̂z, Q̂xy, Q̂yy − Q̂xx

}
; (2.18){

F̂y, Q̂yz, Q̂xy

}}
(2.19)

fulfilling the defining commutation relations

[Oi,Oj ] = iεijkOk. (2.20)

2.3. Mean-field description

Now that we have discussed the Hamiltonian of the theory, let us get a better understanding
of the system by considering a mean-field approximation. Such an approximation is purely
classical and neglects any quantum and statistical fluctuations, thus only being valid for a gas
made up of a very large number of very dilute weakly interacting atoms at very low tem-
peratures [63]. However, this approximation is insightful for understanding the four phases
with different groundstates we can expect for the theory as well as the relevant observables in
these phases. Moreover, the truncated Wigner approximation (see Sec. 3.3), our main numer-
ical technique, is based on the mean-field Gross-Pitaevskii equation, such that it makes sense
to devote this section to the mean-field description of the spin-1 BEC.
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2. The spin-1 Bose gas

fx = 1√
2

0 1 0
1 0 1
0 1 0

 F̂x = 1√
2
Ψ̂†

0(Ψ̂1 + Ψ̂−1) + h.c.

fy = 1√
2

0 −i 0
i 0 −i
0 i 0

 F̂y = i√
2
Ψ̂†

0(Ψ̂1 − Ψ̂−1) + h.c.

fz =

1 0 0
0 0 0
0 0 −1

 F̂z = n̂1 − n̂−1

qxz =
1√
2

0 1 0
1 0 −1
0 −1 0

 Q̂xz =
1√
2
Ψ̂†

0(Ψ̂1 − Ψ̂−1) + h.c.

qyz =
i√
2

0 −1 0
1 0 1
0 −1 0

 Q̂yz =
i√
2
Ψ̂†

0(Ψ̂1 + Ψ̂−1) + h.c.

qxy =

0 0 −i
0 0 0
i 0 0

 Q̂xy = iΨ̂†
−1Ψ̂1 + h.c.

qxx =

−1
3 0 1
0 2

3 0
1 0 −1

3

 Q̂xx = 1
3(2n̂0 − n̂1 − n̂−1) + Ψ̂†

−1Ψ̂1 + Ψ̂†
1Ψ̂−1

qyy =

−1
3 0 −1
0 2

3 0
−1 0 −1

3

 Q̂yy = 1
3(2n̂0 − n̂1 − n̂−1)− Ψ̂†

−1Ψ̂1 − Ψ̂†
1Ψ̂−1

qzz =

2
3 0 0
0 −4

3 0
0 0 −2

3

 Q̂zz =
2
3(n̂1 + n̂−1 − 2n̂0)

Table 2.1.: Spin-1 operators and the corresponding observables, built via Q̂ = Ψ†qΨ. The
first 8 matrices are linearly independent generators of SU(3), while the last two are linear
combinations. “h.c.” denotes the hermitian conjugate of the previous term. Table modified
from [61].
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2. The spin-1 Bose gas

2.3.1. The Gross-Pitavskii equation

To derive the mean-field description, we replace the fluctuating quantum field operators Ψ̂i in
the Hamiltonian by their expectation value:

ψi ≡ ⟨Ψ̂i⟩, (2.21)

yielding the energy functional

E =

∫
ddxψ†(x, t)

[
− h̄2

2m
∇2 + V (x) + qf2z

]
ψ(x, t) (2.22)

+
1

2
c0n

2(x, t) +
1

2
c1F

2(x, t).

From the energy functional, we can derive the classical equation ofmotion using the variational
principle

ih̄∂tψi =
δE

δψ†
i

. (2.23)

This yields

ih̄∂tψ(x, t) =

[
− h̄2

2M
∇2 + qf2z +

1

2
c0n(x, t) +

1

2
c1F (x, t) · f

]
ψ(x, t), (2.24)

the Gross-Pitaevskii equation (GPE) for the spin-1 BEC.

Similarly, we can obtain this equation as the classical limit of the partition function Eq. (2.15):
If we take h̄ → 0, only the Ψ-configurations for which δS = 0 contribute non-zero Z². Thus,
the mean field ψi follows the classical equations of motion following from δS = 0, the Euler-
Lagrange equations

d

dt

∂L
∂ψ̇i

=
∂L
∂ψi

, (2.25)

which yield Eq. (2.70) as well.

2.3.2. The Mean-Field Phase diagram

Let us now consider a system without external trapping potential. Even without V , the spin-1
Lagrangian allows for a rich phase diagram for the mean-field expectation value as seen in
Fig. 2.2. The different phases are caused by the interplay between the quadratic Zeeman shift

²Note that this is only strictly true if we shift time by a small imaginary part before sending it to infinity t →
∞(1− iε) [64].
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2. The spin-1 Bose gas

Figure 2.2.: Mean-field phase diagram for the spin-1 BEC. Figure taken from [65].

q and the interaction strength c1 for spin-changing interactions. As coupling constants for
the terms breaking the U(3) invariance of the system, these quantities introduce competing
energy scales that determine the ground state configuration of the mean field. In the following,
we will elaborate on the different phases that can occur and what characterizes them.

Antiferromagnetic Phase

In the antiferromagnetic phase, we have q < 0 such that the mF = ±1 levels are shifted
downwards compared to the 0-level. Moreover, the antiferromagnetic interactions c1 > 0

lead to a groundstate that is invariant under the Z2 symmetry of the Hamiltonian under the
exchange ofmF = 1 andmF = −1. Thus, we find a groundstate of the form

ψAF =
√
ρ̃

 eiθ1

0

eiθ−1

 (2.26)

with ρ̃ the homogeneous total density of the condensate. The mean-field expectation value for
the spin density operator is then

⟨F̂ ⟩ = 0. (2.27)
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2. The spin-1 Bose gas

Easy-Axis or Ferromagnetic Phase

In the easy-axis or ferromagnetic phase, q < 0 like in the antiferromagnetic phase such that,
again, themF = ±1 levels are energetically favorable. However, because of the ferromagnetic
interactions c1 < 0, we get spontaneous symmetry breaking of the Z2 phase as it becomes
energetically more favorable to populate only one of the two energy levelsmF = ±1. In that
case, we get a groundstate arbitrarily chosen between

ψF = eiθ
√
ρ̃

1

0

0

 and ψF = eiθ
√
ρ̃

0

0

1

 (2.28)

with θ the global U(1) phase. Thus, the mean-field spin density is of the form

⟨F̂ ⟩ =
√
ρ̃

 0

0

±1

 , (2.29)

i.e. it is completely elongated in the z-direction, which is the name-giving characteristic for
this phase.

Polar Phase

At positive q > 0, the mF = 0 energy state is shifted downwards compared to mF = ±1.
Thus, for antiferromagnetic c1 > 0 corresponding to repulsive spin-changing interactions, it
is energetically most favorable to have all atoms occupying the 0-level, leading to a mean-field
wave function of

ψP =
√
ρ̃eiθ

0

1

0

 . (2.30)

and a spin density expectation value of

⟨F̂ ⟩ = 0 (2.31)

like in the antiferromagnetic phase. Consequently, we need other observables from Tab. 2.1 to
distinguish these two phases experimentally.

Note, however, that q > 0 and c1 > 0 are not the only parameters for which the system occu-
pies the polar phase. For small negative values of c1, the spin-changing interactions compete
with the Zeeman-splitting but they are not strong enough to produce a non-zero mean pop-
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2. The spin-1 Bose gas

q

mF = 0

mF = −1 mF = 1

c1

(a)

m = 0 m = 0

m = 1 m = −1

(b)

Figure 2.3.: (a) Schematic illustration of the Zeeman shift competing with spin-changing colli-
sions. The quadratic Zeeman shift q determines the energy gap between the mF = 0 and the
mF = ±1 components. For q > 0, depending on the strength of the spin-changing collisions,
the latter can still be populated (easy-plane phase) or not (polar phase). (b) Schematic illus-
tration of one possible spin-changing process, in which two mF = 0 particles scatter to one
mF = 1 and onemF = −1 particle.

ulation of the modes mF = ±1 through interactions in which two atoms with mF = 0 turn
into one withmF = 1 and one withmF = −1 through processes as illustrated in Fig. 2.3.

Easy-Plane Phase

Only for c1 < 0 and |c1| > q/2ρ̃, themF = ±1 modes develop a non-zero mean field, leading
to a mean-field spinor that can be parametrized by

ψEP =


√
ne

i
2
(φL+θ)

√
ρ̃− 2ne

i
2
(θ+φS)

√
ne−

i
2
(φL−θ)

 (2.32)

where

n =
ρ̃

4
(1− q/q0) (2.33)

is the density of themF = ±1 modes and

q0 = −2ρ̃c1, (2.34)

such that we can write

q = −2c1(ρ̃− 4n). (2.35)

This mean-field configuration corresponds to a symmetric occupation of mF = ±1 only dif-
fering by a phase factor φL, which we call the Larmor phase, as well as a non-zero occupation
of the 0-mode with phase evolution characterized by the so-called spinor phase φS in addition
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F⊥

ϕS = 0

ϕS = π

ϕS = 2π

Fy

Fx

Fz

ϕL/2

Qyz

Fx

Qzz −Qyy

ϕS/2

Figure 2.4.: Spin sphere spanned by {Fx, Fy, Fz} (right) and spin-nematic sphere spanned by{
Fx, Qyz, Qz2−y2

}
(left) for the spin-1 BEC in the easy-plane phase. The Larmor phase φL

rotates in the spin sphere, while the spinor phase φS rotates in the spin-nematic sphere. A
rotation of the spinor phase affects the length of the spinor F⊥ in the spin-nematic sphere
such that at φS = 0 it is completely elongated, at φS = π it has zero elongation, and at
φS = 2π it is elongated in the other direction. Similarly, a rotation of the Larmor phase affects
the elongation as well as the height of the quantum state in the spin-nematic sphere.

to the global U(1)-phase θ.

The spin density operator has the expectation value

⟨F̂ ⟩ =
√

8n(ρ̃− n) cos φS

2

 cos φL
2

− sin φL
2

0

 , (2.36)

which only has amagnetization in theFx−Fy-planewith nomagnetization in theFz-direction,
therefore naming this the easy-plane phase. The phase rotation in the Fx − Fy-plane is deter-
mined by the Larmor phase φL, while the length of ⟨F̂ ⟩ length is characterized by the spinor
phase φS via

√
8n(ρ̃− n) cos φS

2 . The maximal elongation, thus, occurs for φS = 2πZ with
|Fmax

⊥ | =
√
8n(ρ̃− 2n) = ρ̃

√
1− (q/q0)2.

If we define a further spin component

F̂⊥ = F̂x + iF̂y =
√
2
(
Ψ̂†

1Ψ̂0 + Ψ̂†
0Ψ̂−1

)
(2.37)

we find for its expectation value

⟨F̂⊥⟩ = |F⊥|eiφL/2 (2.38)
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with

|F⊥| =
√
8n(ρ̃− n)

∣∣∣cos φS

2

∣∣∣ (2.39)

where we have absorbed sgn cos φS
2 in the Larmor phase. This rotation of F⊥ in the spin sphere

is illustrated on the right side of Fig 2.4. You can see that once φS crosses π, |F⊥| becomes neg-
ative such that the phase of F⊥ as defined in Eq. (2.38) jumps by 2π.

To illustrate the mean-field dynamics of φS in the easy-plane phase, we consider the spin-
nematic sphere spanned by

{
Fx, Qyz, Qz2−y2

}
as seen on the left side of Fig. 2.4. As

⟨Q̂yz⟩ =
√

8n(ρ̃− n) cos φL

2
sin φS

2
, (2.40)

the spinor phase rotates in the Fx, Qyz plane in this spin-nematic phase with the Larmor phase
determining the elongation in this sphere. Moreover, the Larmor phase determines the expec-
tation value of Q̂z2−y2 via

⟨Q̂z2−y2⟩ = 4n− ρ̃+ 2n cosφL. (2.41)

2.4. Quenching from the polar to the easy-plane phase

In the present work, we want to consider the spin-1 Bose gas driven far from equilibrium by
a quench from the polar to the easy-plane phase. This particular problem has been studied in
various experiments and numerical simulations such as [37–39, 41, 52–56], where c1 < 0. Such
a quench is realized by a sudden change of q from an initial value with q > q0 = −2ρ̃c1 to a
value q < q0, leading the system to undergo a quantum phase transition from the polar to the
easy-plane phase and the order parameter F⊥ of the easy-plane phase to develop a non-zero
value. This is illustrated in Fig. 2.5. For experimental details of how this quench is carried out,
see [37], for example.

2.5. Bogoliubov theory for the spin-1 BEC

One way to go beyond the mean-field is to include small fluctuations in the form of Bogoliubov
modes. In the following, we will show a short derivation of the form of these quasiparticle ex-
citations in the polar and the easy-plane phase. For this section, we will mainly follow [66],
where one can also find a more detailed derivation than we will show here.

The first step for deriving the Bogoliubov spectrum in any phase is to go to momentum space,
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2. The spin-1 Bose gas

Figure 2.5.: Illustration of a quench from the polar to the easy-plane phase of a spin-1 Bose gas.
In the polar phase, ⟨F̂ ⟩ = 0 and, at least in the mean-field approximation, only the mF = 0
component is occupied. If q is tuned such that the energy gap betweenmF = 0 andmF = ±1
gets smaller, also the mF = ±1 components develop a non-zero mean-field value and spin
expectation value F⊥, shown in the spin sphere. Figure taken from [37].

expanding each field operator as

Ψ̂m(x) =
1√
V

∑
k

âk,me
ik·x. (2.42)

With this expansion, the Hamiltonian Eq. (2.5) becomes

Ĥ =
∑
k

(εk + qm2)â†k,mâk,m (2.43)

+
1

2V

∑
k,p,q

[
c0â

†
p,mâ

†
q,m′ âp+k,mâq−k,m′ + c1fmm′ · fµµ′ â†p,mâ

†
q,µâp+k,mâq−k,µ′

]
,

where we have introduced εk = h̄2k2

2m .

In Bogoliubov theory, we assume that most but not all particles are occupying the k = 0-mode
of the groundstate |Φ0⟩ of the Bose gas, which is a coherent state obeying

â0,m |Φ0⟩ =
√
N0ξm |Φ0⟩ (2.44)

where
∑1

mF=−1 |ξm|2 = 1. On top of this groundstate, we assume there to be fluctuations,
with the total particle number fulfilling

N = N0 +
∑

m,k ̸=0

â†k,mâk,m, (2.45)

and the fluctuations so small that we can expand the Hamiltonian to second order in âk ̸=0,m

and â†k ̸=0,m.
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While the full Bogoliubov spectra for all phases of the spin-1 BEC are derived in [66] and listed
in Tab. 7 in [58], we only want to focus on those for the polar and the easy-plane phase. These
are of interest in the current work, where we study a spin-1 BEC quenched from the polar to
the easy-plane phase. Thus we want to consider the Bogoliubov spectrum in the polar phase,
as it can give us some information on how instabilities in the system develop after a quench.
Moreover, we need the Bogoliubov spectrum for our numerical simulations, which are carried
out in the truncatedWigner approximation (see Sec. 3.3). The spectrum in the easy-plane phase
is of interest to us because at late times after the quench, the system’s densities fluctuate closely
around the mean-field equilibrium values as can be seen in Fig. 5.1a.

2.5.1. Bogoliubov spectrum in the polar phase and dynamical instabilities

In the polar phase we have ξ = (0, 1, 0)T . Choosing

âk,d = âk,0 (2.46)

âk,fx =
1√
2
(âk,1 + âk,1) (2.47)

âk,fy =
i√
2
(âk,1 − âk,1) (2.48)

we find the Hamiltonian to second order in the fluctuations as

Ĥ(2) =
V c0ρ̃

2

2
+
∑
k ̸=0

[
(εk + c0ρ̃)â

†
k,dâk,d +

c0ρ̃

2

(
â†k,dâ

†
−k,d + âk,dâ−k,d

)
(2.49)

+
∑

j=fx,fy

(εk + c1ρ̃+ q)â†k,f âk,f +
c1ρ̃

2

(
â†k,f â

†
−k,f + âk,f â−k,f

)
where ρ̃ = N/V . This Hamiltonian is then diagonalized by the Bogoliubov transforms

b̂k,d =

√
εk + c0ρ̃+ Ek,d

2Ek,d
âk,d +

√
εk + c0ρ̃− Ek,d

2Ek,d
â†−k,d (2.50)

b̂k,j =

√
εk + c1ρ̃+ q + Ek,f

2Ek,f
âk,j +

√
εk + c1ρ̃+ q − Ek,f

2Ek,f
â†−k,j (2.51)

such that

Ĥ(2) = EP
0 +

∑
k ̸=0

Ek,db̂
†
k,db̂k,d + Ek,f

(
b̂†k,fx b̂k,fx + b̂†k,fy b̂k,fy

)
(2.52)
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with Bogoliubov spectrum

Ek,d =
√
εk (εk + 2ρ̃c0) (2.53)

Ek,f =
√
(εk + q) (εk + q + 2ρ̃c1). (2.54)

Thus, there is one gapless mode for the Goldstone£ boson corresponding to the spontaneous
breaking of the total U(1) symmetry when choosing a groundstate as Eq. (2.30), as well as two
gapped modes. The gapless mode corresponds to the total phase of the condensate wave func-
tion, while the two gapped modes are related to the population of themF = ±1 modes.

In the polar phase, we have either q > 0 for positive c1 or q > −2ρ̃c1 for negative c1. Thus, for
parameters in the polar phase, the energies Ek,f are always real. However, if we start in the
polar phase and suddenly change q > 0 to be smaller than−2ρ̃c1 for negative c1, corresponding
to a quench of the system to the easy-plane phase, we find that Ek,f becomes imaginary, thus
leading to instabilities of these modes. As the time evolution goes with ∝ e−iEk,f t, themF =

±1 modes get populated exponentially, leading to a development of a non-zero mean field in
mF = ±1. Writing Ek,f = ih̄γk, one finds the occupations evolve in time as [67]

n±(k, t) =

[
cosh2 γkt+

(
εk + q + ρ̃c1

h̄γk

)2

sinh2 γkt
]
n±(k, 0) (2.55)

+

(
ρ̃c1
h̄γk

)2

sinh2 γkt (n∓(−k, 0) + 1) (2.56)

such that non-zero occupations of mF = ±1 can develop even if they are zero at the initial
time.

2.5.2. Bogoliubov spectrum in the easy-plane phase

Now that we have discussed how amplified fluctuations in the polar phase after a quench to the
easy-plane phase can lead to occupations of themF = ±1 components, let us look at the Bo-
goliubov spectrum in the easy-plane phase. In this phase, we have ξ = (sinϑ/

√
2, cosϑ, sinϑ/

√
2)T

with sinϑ = 1√
2

√
1− q/q0. The Bogoliubov transformation is now more complex, but the

procedure of expanding and diagonalizing the Hamiltonian is the same as in the polar phase.
Omitting the details of the derivation, which can be found in [66], we get the diagonal Hamil-
tonian

Ĥ(2) = EBA
0 +

∑
k ̸=0

Ek,fz b̂
†
k,fz

b̂k,fz + Ek,+b̂
†
k,+b̂k,+ + Ek,−b̂

†
k,−b̂k,− (2.57)
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with Bogoliubov spectrum

Ek,fz =
√
εk (εk + q) (2.58)

and

Ek,± =

√
ε2k + (c0 − c1)ρ̃εk + 2(c1ρ̃)2(1−

q2

(2ρ̃|c1|)2
)± Λk (2.59)

where

Λk =

√
[(c0 + 3c1)ρ̃εk + 2c1(c1ρ̃)2(1−

q2

(2ρ̃|c1|)2
)]2 − 4c1(c0 + 2c1)ρ̃2

q2

(2ρ̃|c1|)2
ε2k (2.60)

Note that in this phase, we have two gapless modes, Efz and E−, for the Goldstone bosons
corresponding to the spontaneous breaking of U(1) symmetry and SO(2) symmetry by the
groundstate Eq. (2.32), represented by the total phase and the Larmor phase, respectively. The
gapped mode corresponds to the spinor phase.

2.6. Crossover to 1d

The ultimate goal of any theory is to predict, describe, and explain experimental observations.
For this thesis, the experimental inspiration comes mainly from investigations of far-from-
equilibrium dynamics in a quasi-1d spin-1 Bose gas of 87Rb-atoms in Markus Oberthaler’s
group [37, 52–57], for which the three magnetic sublevels mF = 0,±1 of the F = 1 hy-
perfine manifold form a spin-1 system with ferromagnetic interactions c1 < 0. To achieve a
quasi-1d condensate of these atoms, an anisotropic harmonic trap is applied to the 3d conden-
sate in addition to laser barriers in the longitudinal direction of the gas, resulting in a very thin
cigar-shaped condensate that can be considered as quasi-1d. This is illustrated in Fig. 2.6.

We can incorporate the harmonic trap into our action by including the external potential

V (x) =
ω2
∥

2
x2 +

ω2
⊥
2
(y2 + z2) (2.61)

where the coordinate system is chosen as in Fig. 2.6 and ω⊥ and ω∥ are the trapping frequen-
cies perpendicular and parallel to the relevant dimension, respectively. To obtain a quasi-1d
condensate at zero temperature, ω⊥ has to be chosen such that the interactions are highly
suppressed compared to the trapping energy in the perpendicular direction [68], i.e.

h̄ω⊥ ≫ ρ̃c0, ρ̃|c1|. (2.62)
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Figure 2.6.: Schematic illustration of the trap geometry in the 87Rb in Markus Oberthaler’s
group. Figure taken from [61].

This condition can also be formulated in terms of lengthscales. For the two different interac-
tions in the spin-1 BEC, we can define the density healing length ξ and the spin healing length
ξs according to

ξ =
h̄√

2mρ̃c0
and ξS =

h̄√
2mρ̃|c1|

, (2.63)

which describe the typical lengthscales at which the BEC “heals” from a defect in the mean
density and spin density, respectively. Comparing this with the characteristic lengthscale of
the transverse potential, the oscillation length describing the extent of the trap

a⊥ =
h̄

√
mω⊥

, (2.64)

the condition Eq. (2.62) translates to

a⊥ ≪ ξ, ξS , (2.65)

i.e. the trap size constraining the condensate in y- and z-direction has to be much smaller than
the density and spin healing lengths. This condition then ensures that no significant dynamics
can develop in these directions. Meanwhile,

a∥ ≫ a⊥ (2.66)

has to apply for there to be some significant elongation in x-direction inwhich quasi-1d physics
can be studied.

For the condition Eq. (2.62), we can assume the system to be in the groundstate of the harmonic
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2. The spin-1 Bose gas

oscillator in the perpendicular direction [69][
− h̄2

2m

(
∇2

y +∇2
z

)
+
mω2

⊥
2

(y2 + z2)

]
ϕ(
√
y2 + z2) = µ⊥ϕ(

√
y2 + z2) (2.67)

which is given by

ϕ0(
√
y2 + z2) =

1√
πa2⊥

e
−(y2+z2)

2a2⊥ . (2.68)

We can then decompose the 3d wave function like

Ψm(x, t) = Ψm(x, t)ϕ0(
√
y2 + z2)e−

i
h̄
µ⊥t. (2.69)

Plugging this into the GPE Eq. (2.70) and multiplying both sides by ϕ†0(t,
√
y2 + z2), as well as

integrating out y and z, we find that the resulting effective GPE for only the relevant x-direction
is given by Eq. (2.70) in 1D [69]

ih̄∂tψ(x, t) =

[
− h̄2

2M
∇2

x + qf2z + V (x) +
1

2
c1D0 n(x, t) +

1

2
c1D1 F (x, t) · f

]
ψ(x, t), (2.70)

modified with effective couplings

c1Di =
ci

2πa2⊥
. (2.71)

In the following, we will work with the action in general d dimensions but remember that
in order to compare to experimental quasi-1d results, one just has to modify the couplings
ci → c1Di . For simplicity, we will also assume V = 0 in the following.
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3. Numerical Methods

Before we dig into the analytics of developing an effective field theory for the spin-1 Bose gas,
we want to give an overview of the numerical methods used to study the far-from-equilibrium
dynamics of this system. As detailed in the introduction, far from equilibrium physical systems
exhibit a plethora of dynamical phenomena, from topological defects like real-time instantons
to the general spatial coarsening of Larmor phase domains [41]. Due to this complexity, the
most powerful way to theoretically study such systems is via numerical simulations. For such
simulations, semi-classical truncated Wigner simulations are widely employed in the group of
Thomas Gasenzer, in which noise is added to the GPE in order to perform calculations beyond
the mean-field approximation. Using this method and the phenomenological insights from
the numerical results has led to significant developments in the understanding of far-from-
equilibrium dynamics of ultra-cold Bose gases and especially the spin-1 Bose gas in the past
[38, 39, 41, 70–72].

Thus, even for the present work, which is mainly analytical, numerical simulations are hugely
important. Firstly, due to the high complexity of out-of-equilibrium physics, numerical simu-
lations can be a good guide to see what phenomena are interesting, such that we may make
approximations to the theory based on the numerical results to get rid of irrelevant degrees of
freedom. For example, the effective theories developed in Ch. 5-7 are all inspired by the numer-
ical observation of the interesting phase dynamics of the spin-1 Bose gas including real-time
instantons [41].

Moreover, once we have developed an analytical theory, numerical simulations make for a
good sanity check of whether the analytical results accurately describe observations, and they
will be used as such in this thesis. For these numerical simulations, we have used the spin-1
code developed in Thomas Gasenzer’s group, with improvements in the past few years mainly
attributable to Christian-Marcel Schmied and Ido Siovitz.

In the following chapter, we will sum up the most important methods used in the numerical
simulation of far-from-equilibrium Bose gases in a semi-classical truncated Wigner approxi-
mation, with the first section Sec. 3.1 focusing on how the GPE can be discretized for numerical
analysis, Sec. 3.2 explaining the split-step Fourier algorithm for the numerical time evolution
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3. Numerical Methods

of nonlinear Schroedinger equations like GPEs, and the last section Sec. 3.3 giving some back-
ground on the truncated Wigner approximation.

3.1. Discretizing the GPE

To be able to numerically work with the GPE Eq. (2.70), we need to first discretize the equa-
tion. For that, we define the wave functions Ψ(x) as a vector on a lattice of N points with
lattice spacing ∆x, which determines the length scale of the system and is related to the total
physical length via ∆x = L/N . Moreover, time is discretized and we define the time scale
ω = h̄/m∆x2. With this time and length scale, we can make all numerical quantities (marked
by barring the quantities) dimensionless via

x̄ =
x

∆x
; t̄ = ωt; c̄i =

ci
h̄ω∆x

; ω̄⊥,∥ =
ω⊥,∥

ω
; q̄ =

q

h̄ω
; Ψ̄i =

√
∆xΨi. (3.1)

For the rest of this chapter, we will drop the bar as we will only talk about the dimensionless
quantities.

For a consistent definition of the discretized momenta in Fourier space, we expand the fields
into discrete plane waves and demand that the discrete Laplacian for these plane waves on the
lattice must fulfill

k2Ψi = ∆Ψi =
Ψi+1 − 2Ψj +Ψj−1

∆x2
. (3.2)

Inserting the discrete plane waves into this equation, we find that the discrete momenta have
to obey

kn =
2

N
sin πn

N
(3.3)

with n ∈ [−N/2 + 1, N ]. This means that for small |n|, i.e. in the IR, the momenta are spaced
approximately linearly as sinϕ ≈ ϕ for small values, while the spacing for high |n| in the UV
is denser.

3.2. The split-step Fourier method

To perform a time evolution of our system, we use the split-step Fourier approach [73] to solve
the GPE Eq. (2.70), as this method is shown to conserve energy as well as particle number [73].
The GPE has the form of a non-linear Schrödinger equation

i∂tΨj = HjkΨk, (3.4)
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3. Numerical Methods

where, usually, H consists of a kinetic term, which is diagonal in momentum space, and a
nonlinear term in the fields, which is diagonal in position space. To be able to make use of the
diagonality of the different parts of H in different spaces, we split H into its kinetic and the
interaction part H = K + I such that the time evolution of Ψj is given by

Ψj(t+∆t, x) =
(
e−iH∆t

)
jk
Ψk(x, t) =

(
e−i(K+I)∆t

)
jk
Ψk(x, t) (3.5)

We can then use the Baker-Campbell-Hausdorff formula

e−i(K+I)∆t = e−iK∆te−iI∆t +O(∆t2) (3.6)

to split the time evolution into a multiplication with e−iK∆t, which is diagonal in momentum
space, and one with e−iI∆t, which is diagonal in position space with an error ofO(∆t2). Then,
for small enough ∆t, we can do the time propagation of Ψj via

Ψj(t+∆t, x) = F−1
((
e−iK∆t

)
jl
F
((
e−iI∆t

)
lk
Ψk(x, t)

))
+O(∆t2). (3.7)

where F denotes the Fourier transformation.

3.3. The truncated Wigner Approximation

Finally, to go beyond mean-field simulations, we use the semi-classical truncated Wigner ap-
proximation (TWA). In this approximation, one first samples noise from the Wigner distribu-
tion, a classical (but not generally positive) quasi-probability distribution corresponding to the
initial quantum state. In the following, we want to assume a homogeneous system without
external potential for which most particles are in a coherent state like the ground state of the
system. Moreover, we allow for small occupations of thermalized Bogoliubov quasiparticle
modes. The Wigner distribution of this system is then a product of uncorrelated Gaussians,
and the truncated Wigner noise can be added to the GPE by drawing noise from a Gaussian
distribution, which at T = 0 corresponds to occupying each momentum mode with half a
Bogoliubov quasiparticle

⟨b̂†k,mb̂k′,m′⟩ = 1

2
δmm′δkk′ . (3.8)

on average over many realizations. For a detailed derivation of this, see [74].

This noise is then added on top of the mean field before carrying out a real-time GPE simula-
tion. Averaging over many different runs, one then recovers quantum physics as long as the
condensate fraction stays large enough [74].
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3. Numerical Methods

The discussion about dynamical instabilities in Sec. 2.5 makes it clear why adding this noise is
crucial in order to describe the dynamics of a quantum system out of equilibrium. In a quench
from the polar to the easy-plane phase, the non-zero occupation of the mF = ±1 modes can
only develop with quantum fluctuations in the initial polar state present.
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4. The 2PI action for the spin-1 Bose gas

Now that we have introduced numerical methods to study far-from-equilibrium physics, we
want to start developing an effective field theory for the spin-1 Bose gas far from equilibrium.
A natural formalism for the analytical study of far-from-equilibrium quantum field theories is
the Schwinger-Keldysh formalism and the 2PI effective action [6, 15]. Thus, in this chapter,
we will apply these methods to the spin-1 Bose gas after an explanation of these formalisms in
Sec. 4.1.

With these methods, we will obtain quantum equations of motion for the field expectation
value ψ in Sec. 4.3 as well as the full propagator in Sec. 4.4, all up to a self-consistent 1-loop
approximation. However, we will find that these equations are difficult to interpret and do not
allow for a reduction of the theory to only the phase degrees of freedom.

Note that for the background in Sec. 4.1, we will mainly follow [6, 15], [75], and [76]. For the
calculation thereafter, we have adapted the derivation in [76] from the spin-1/2 to the spin-1
case. In this and the following chapters, we will use natural units such that h̄ = 1 = c.

4.1. Functional methods for nonequilibrium field theories

4.1.1. Notation

In this chapter, we will use a different notation for the complexN -component scalar field. We
define

ϕα =



ψ1

ψ†
1
...
ψN

ψ†
N


and ϕ†α =

(
ψ†
1 ψ1 . . . ψ†

N ψN

)
(4.1)

32



4. The 2PI action for the spin-1 Bose gas

and write convolutions as

J† · ϕ ≡
∫
ddx

∫
C
dtJ†

α(x, t)ϕα(x, t) (4.2)

ϕ† ·R · ϕ ≡
∫ ∫

ddxddy

∫ ∫
C
dtdt′ϕ†α(x, t)Rαβ(x, t;y, t

′)ϕβ(y, t
′) (4.3)

for C the Keldysh time contour defined in the next section [76].

In this notation, the equal-time commutation relations of the quantum fields[
Ψ̂i(x, t), Ψ̂

†
j(y, t)

]
= δijδ(x− y) (4.4)

and [
Ψ̂i(x, t), Ψ̂j(y, t)

]
= 0 =

[
Ψ̂

(
ix, t), Ψ̂

†
j(y, t)

]
(4.5)

become [
ϕ̂α(x, t), ϕ̂

†
β(y, t)

]
= Vαβδ(x− y) (4.6)

with

V =



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1


(4.7)

Note that we use this notation because it gives a natural way to not only study correlation func-
tions like ⟨Ψ̂iΨ̂

†
j⟩ but also anomalous correlators like ⟨Ψ̂iΨ̂j⟩ and ⟨Ψ̂†

i Ψ̂
†
j⟩, all in the notation

of ⟨ϕ̂αϕ̂†β⟩ with the quantum operators ϕ̂ canonically quantizing the fields ϕ.

4.1.2. The generating functional

Consider now a quantum many-body system governed by some Hamiltonian H(t), which at
some time t0 was in a state described by the density matrix ρ(t0) = ρ0. Its unitary time
evolution is completely determined by the Hamiltonian via

ρ(t) = Ut,t0ρ0U
†
t,t0

= Ut,t0ρ0Ut0,t (4.8)
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4. The 2PI action for the spin-1 Bose gas

Figure 4.1.: Closed real-time Keldysh contour [6]. The shift of the curves away from the real
axis is merely to illustrate the time contour better.

with
Ut,t′ = T exp

(
−i
∫ t

t′
H(t̃)dt̃

)
, (4.9)

where T is the time-ordering operator [75]. Observables can then be calculated via

⟨O⟩(t) = Trρ(t)O
Trρ(t) =

Trρ0Ut0,tOUt,t0

Trρ0
, (4.10)

where in the last step we have used that Ut0,tUt,t0 = 1 and the cyclicity of the trace. Because
Trρ0 = 1 for any density matrix, we are left with

⟨O⟩(t) = Trρ0Ut0,tOUt,t0 = Trρ0O(t) (4.11)

if we consider O(t) in the Heisenberg picture.

Note that Eq. (4.11) involves a forward and backward evolution from t0 to t in contrast to the
case of real-time vacuum QFT, where we don’t need the backward evolution because of the
translation invariance of the vacuum. One can now insert 1 = Ut,∞U∞,t into this expectation
value in order to obtain ⟨O⟩(t) = Trρ0Ut0,∞U∞,tOUt,t0 to extend the closed time path C, also
known as the Keldysh contour [77], to t = ∞ in the future (see Fig. 4.1), with an operator
insertion on the forward path C+. Similarly, you could insert the operator on the backward
path or take the average of both.

Let us now specify our considerations for a complex N-component scalar quantum field theory.
To know such a quantum field theory - in as well as out of equilibrium - means knowing all
correlation functions. Thus, we can define the generating functional with respect to the sources
J and R as

Z[J,R; ρ0] = Trρ0TCeiJ
†·ϕ+ i

2
ϕ†·R·ϕ. (4.12)

Here, TC denotes time ordering along the closed time contour, with times on C+ considered
earlier than times on C−. Note that due to the closed time path, Z is already normalized to 1
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4. The 2PI action for the spin-1 Bose gas

in absence of any sources.

4.1.3. Non-equilibrium correlation functions

From the generating functional Eq. (4.28), we can derive non-equilibrium correlation functions
by taking functional derivatives with respect to the sources J and R. For example, the one-
point function is given by

⟨ϕ̂α(x, t)⟩ =
δZ[J,R]

iδJ†
α(x, t)

∣∣∣∣∣
J,R=0

= Φα(x, t) (4.13)

which together with the time-ordered two-point function

⟨TCϕ̂α(x, t)ϕ̂†β(y, t
′)⟩ = δ2Z[J,R]

iδJ†
α(x, t)iδJβ(y, t′)

∣∣∣∣∣
J,R=0

. (4.14)

forms the propagator or connected two-point function

Gαβ(x, t;y, t
′) = ⟨TCϕ̂α(x, t)ϕ̂†β(y, t

′)⟩ − Φα(x, t)Φ
†
β(y, t

′). (4.15)

Defining the commutator and the anticommutator

ραβ(x, t;y, t
′) = i⟨

[
ϕ̂α(x, t), ϕ̂

†
β(y, t

′)
]
⟩ (4.16a)

Fαβ(x, t;y, t
′) =

1

2
⟨
{
ϕ̂α(x, t), ϕ̂

†
β(y, t

′)
}
⟩ − Φα(x, t)Φ

†
β(y, t

′), (4.16b)

we can decompose the propagator

Gαβ(x, t;y, t
′) = Fαβ(x, t;y, t

′)− i

2
ραβ(x, t;y, t

′)sgnC(t− t′). (4.17)

where we call ρ the spectral and F the statistical component of the propagator. As it involves
the commutator, the spectral function contains the terms that are not analytic at t − t′ = 0,
while the statistical part is analytic everywhere. We can interpret ρ as giving information about
the available states of the theory, while F tells us about their occupation [6].

Note that in thermal equilibrium, the spectral and statistical functions are related through the
fluctuation-dissipation relation [6]. Out of equilibrium, this is generally not the case and ρ and
F are independent degrees of freedom. We only use two independent functions F and ρ to
describe non-equilibrium propagators, despite the fields ϕ+ and ϕ− being separate degrees of
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freedom suggesting we have four independent propagators

iG+−(x, t;y, t′) = ⟨ϕ̂+(x, t)ϕ̂†−(y, t′)⟩ (4.18)

iG−+(x, t;y, t′) = ⟨ϕ̂−(x, t)ϕ̂†+(y, t′)⟩ (4.19)

iG++(x, t;y, t′) = ⟨ϕ̂+(x, t)ϕ̂†+(y, t′)⟩

iG−−(x, t;y, t′) = ⟨ϕ̂−(x, t)ϕ̂†−(y, t′)⟩. (4.20)

This is due to the fact that at R = J = 0, these are related via the two relations [6]

G+−(x, t;y, t′) = G−+(y, t′;x, t) (4.21)

and

G++(x, t;y, t′) +G−−(x, t;y, t′) = G+−(x, t;y, t′) +G−+(x, t;y, t′). (4.22)

4.1.4. The functional integral formalism

We can now write the generating functional in terms of a path integral by inserting coherent
states for ϕ at each (x, t) on the contour, taking space and time as continuum limits of discrete
lattices. For details on this construction, see any of the following [6, 15, 75], also for subtleties
about convergence and well-definedness. This construction then yields

Z[J,R; ρ0] =

∫
[dϕ+0 ]

∫
[dϕ−0 ] ⟨ϕ

+
0 | ρ0 |ϕ

−
0 ⟩︸ ︷︷ ︸

initial conditions

∫ ϕ−(t0)=ϕ−
0

ϕ+(t0)=ϕ+
0

D′ϕeiS[ϕ]+iJ†·ϕ+ i
2
ϕ†·R·ϕ

︸ ︷︷ ︸
quantum ddynamics

(4.23)

where ϕ are “classical” fields and S[ϕ] is the classical action determined by a Legendre trans-
form and time integration of the classical Hamiltonian. Moreover, the functional integral mea-
sure is given by

∫ ϕ−(t0)=ϕ−
0

ϕ+(t0)=ϕ+
0

D′ϕ = lim
N→∞

∫ N−1∏
i=1

∏
x,α

dϕα(x, ti)(2πi∆t)
− 1

2 (4.24)

with tC = N∆t discretizing the time along the Keldysh contour and the initial field configura-
tions fixed to ϕ(t0, x) = ϕ+(t0, x) = ϕ+0 (x) as well as ϕ(tN , x) = ϕ−(t0, x) = ϕ−0 (x). In the
initial conditions part of the functional integral, these constraints are also integrated over via∫

[dϕ±0 ] ≡
∫ ∏

x,α

dϕα±0 (x). (4.25)

36



4. The 2PI action for the spin-1 Bose gas

Gaussian initial conditions

If ρ0 is a Gaussian density matrix, which we can assume in many physical cases, the matrix
element ⟨ϕ+0 | ρ0 |ϕ

−
0 ⟩ can be parametrized via

⟨ϕ+0 | ρ
gaussian
0 |ϕ−0 ⟩ = N exp i

(
α0 + α†

1 · ϕ+
1

2
ϕ† · α2 · ϕ

)
, (4.26)

where α1(x, t), α2(x, t;y, t
′) vanish for t ̸= t0 as the initial density matrix is only specified

at t0 [6]. Because this is only quadratic in the fields, we can absorb α1 and α2 in the source
terms. Redefining

J + α1 → J ; R+ α2 → R (4.27)

and including the integrals over ϕ±0 as well as any irrelevant normalizations in the integral
measure

∫
Dϕ, we get

Z[J,R; ρ
gaussian
0 ] → Z[J,R] =

∫
DϕeiS[ϕ]+iJ†·ϕ+ i

2
ϕ†·R·ϕ, (4.28)

where now the initial conditions are encoded in the sources at t = t0 and the integral measure
is given by

∫
Dϕ = N lim

N→∞

∫ N∏
i=0

∏
x,α

dϕα(x, ti)(2πi∆t)
− 1

2 . (4.29)

In this notation, it looks like the contours C± decouple. However, we have to keep in mind
that ϕ±0 are still coupled through the initial conditions, and the kinetic part of S[ϕ] introduces
further coupling between ϕ+ and ϕ− at t→ ∞.

Gaussian density matrices are completely sufficient for our purposes. For example, a box in
momentum space, which is encountered for S(k, t) shortly after a quench from the polar to the
easy-plane phase [38] and which drives the transport processes leading to the scaling is given
by the Gaussian density matrix

ρ0 =
∏
k

1

2π

∫ π

−π
dθ |
√
f0Θ(kξS − k)eiθ⟩ ⟨

√
f0Θ(kξS − k)eiθ| (4.30)

with Θ the Heaviside step function, f0 the constant value for S(k, t) and |
√
f0Θ(kξS − k)eiθ⟩

the coherent state with eigenvalue
√
f0e

iθ for k ≤ kξS and the vacuum for k > kξS [78].
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4.1.5. The 2PI action formalism

In the following, we want to derive an effective action for the complex scalar N-component
field. Such an effective action is useful since effective actions provide a way to obtain a closed
set of evolution equations for correlation functions once an order of approximation is specified
at the level of the effective action [6]. This method then, for example, avoids the appearance of
secular terms, i.e. terms growing polynomially in time, which even for weakly coupled theo-
ries can occur in regular perturbation theory [6]. Moreover, the effective action is formulated
in terms of the correlation functions instead of the sources, for which the initial conditions are
harder to access in an experimental setup.

From vacuum field theory, we are used to dealing with the 1PI effective action, which is ob-
tained as a Legendre transform of the generating function with respect to the linear source J .
In general, for an arbitrary number of sources, this can be generalized to the nPI effective ac-
tion by carrying out n Legendre transforms. In the case of non-equilibrium field theories with
Gaussian initial conditions, the only relevant sources are J and R, such that we only need
n = 2 to obtain the useful 2PI effective action [6].

To obtain the 2PI effective action, we proceed step by step as detailed in [6] and first define the
generating functional for connected diagramsW [J,R] via

W [J,R] = −i logZ[J,R], (4.31)

as well as the expectation values of the field ΦJ,R and the propagator GJ,R in terms of the
sources J,R analogously to Eqs. (4.13) and (4.15) as

Φα;J,R(x, t) ≡
δW [J,R]

δJ†
α(x, t)

(4.32a)

1

2

(
Φβ,J,R(y, t

′)Φ†
α;J,R(x, t) +Gβα;J,R(y, t

′;x, t)
)
≡ δW [J,R]

δRαβ(x, t;y, t′)
(4.32b)

The 1PI effective action can now be derived fromW by a Legendre transform with respect to
J . Assuming that Jϕ,R is invertible with inverse ΦJ,R, we get

ΓR[Φ] =W [Jϕ,R, R]− J†
Φ,R · Φ (4.33)
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which governs the evolution equations

δΓR[Φ]

δΦα(x, t)
= −J†

α,Φ,R(x, t) (4.34a)

δΓR[Φ]

δRαβ(x, t;y, t′)
=

δW [J,R]

δRαβ(x, t;y, t′)
. (4.34b)

Note that for R = 0, this 1PI effective action is well-known from vacuum field theory. In
particular, we know that to 1-loop order, ΓR=0 is given by (see Appendix B.1 for a derivation)

ΓR=0,1−loop = S[Φ] +
i

2
Tr log

[
G−1

0

]
(4.35)

where

(
G−1

0

)
αβ

(x, t;y, t′) = −i δS

δΦ†
α(x, t)Φβ(y, t′)

. (4.36)

We can easily transfer this to R ̸= 0 by defining

SR[Φ] = S[Φ] +
1

2
ϕ† ·R · ϕ (4.37)

such that

ΓR,1−loop = SR[Φ] +
i

2
Tr log

[
GR −1

0

]
(4.38)

with (
GR −1

0

)
αβ

= −i δSR

δΦ†
αΦβ

=
(
G−1

0

)
αβ

− iRαβ (4.39)

such that

ΓR,1−loop = SR[Φ] +
i

2
Tr log

[
G−1

0 − iR
]
. (4.40)

A further Legendre transform with regard to R, assuming invertible RΦ,G with inverse GΦ,R
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then gives us the 2PI effective action:

Γ[Φ, G] = ΓR[Φ]−
∫
x,y,C

δΓR[Φ]

δRαβ(x, t;y, t′)
Rαβ(x, t;y, t

′) (4.41)

= ΓR[Φ]−
∫
x,y,C

1

2

(
Φβ(y, t

′)Φ†
α(x, t) +Gβα(y, t

′;x, t)
)
Rαβ(x, t;y, t

′) (4.42)

=W [J,R]− J† · Φ−
∫
x,y,C

1

2

(
Φβ(y, t

′)Φ†
α(x, t) +Gβα(y, t

′;x, t)
)
Rαβ(x, t;y, t

′)

(4.43)

where we have used Eqs. (4.34b) and (4.32b) in the second and Eq. (4.33) in the last step and we
have dropped explicitly writing the dependence of the sources on the fields. From this, we get
the equations of motion

δΓ[Φ]

δΦα(x, t)
= −J†

α(x, t)−
∫
y,C

Φ†
β(y, t

′)Rβα(y, t
′;x, t) (4.44a)

δΓ[Φ]

δGαβ(x, t;y, t′)
= −1

2
Rβα(y, t

′;x, t). (4.44b)

The 2PI effective action is now a function of the full 1- and 2-point function, such that the equa-
tions of motion Eqs (4.44a) and (4.44b) give the full quantum mechanical equations of motion
for Φ and G.

For the 2PI action, we can use our 1PI 1-loop result to determine

Γ1−loop[Φ, G] = ΓR,1−loop −
∫
x,y,C

1

2

(
Φβ(y, t

′)Φ†
α(x, t) +Gβα(y, t

′;x, t)
)
Rαβ(x, t;y, t

′)

= S[Φ] +
i

2
Tr log

[
G−1

0 − iR
]
− 1

2
TrG ·R (4.45)

where in the last step we have put Eq. (4.38) into the first line. This yields a consistent result
with Eq. (4.44b) if we set

G−1 = G−1
0 − iR (4.46)

to 1-loop order such that

Γ1−loop[Φ, G] = S[Φ] +
i

2
Tr logG−1 +

i

2
TrG−1

0 ·G. (4.47)

Adding a term Γ2[Φ, G] including all higher orders, we finally get

Γ[Φ, G] = S[Φ] +
i

2
Tr logG−1 +

i

2
TrG−1

0 ·G+ Γ2[Φ, G] (4.48)
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4. The 2PI action for the spin-1 Bose gas

where we have now separated out the 1-loop part. For an interpretation of Γ2[Φ, G], we look
at the equation of motion Eq. (4.44b) and find

G−1 = G−1
0 − iR− Σ[Φ, G] (4.49)

where

Σ[Φ, G] ≡ 2i
δΓ2[Φ, G]

δG
. (4.50)

Eq. (4.49) tells us that Σ is the proper self-energy, with which G − G0 can be written as a
geometric sum, which in matrix notation reads (for simplicity at R = 0)

G−G0 = G · Σ[Φ, G] ·G−G · Σ[Φ, G] ·G · Σ[Φ, G] ·G+ . . . (4.51)

with 1-particle irreducibleΣ[Φ, G], meaning that by cutting a single propagator line inΣ[Φ, G]
the diagram cannot be disintegrated. This implies now that Γ2[Φ, G], fromwhichΣ is obtained
by a derivative with respect to the propagator, has to be 2-particle irreducible, i.e. the diagrams
contributing to Γ2[Φ, G] cannot be reduced to two individual diagrams by cutting two propa-
gator lines.

Thus, to determine Γ2, we have to consider all closed diagrams which have at least two loops
and are two-particle irreducible. The latter condition considerably restricts the number of dia-
grams that have to be considered. Moreover, note that instead of the bare propagator entering
diagrams or expansions, in the 2PI formalism, we expand in terms of the full propagator, thus
leading to a self-consistent treatment of the propagator, which is the key to avoiding secular
terms.

Having thoroughly discussed the equation of motion Eq. (4.44b), we want to close this subsec-
tion by giving an explicit expression for Eq. (4.44a). Using the form of the effective action in
Eq. (4.48), we find

δΓ2[Φ, G]

δΦ
= −δS[Φ]

δΦ
− i

2

δTrG−1
0 (Φ)G

δΦ
− J† − Φ† ·R (4.52)

4.1.6. Propagator evoluation equations

Eq. (4.49) gives us an integral equation for the propagator, which in the following we want to
turn into partial differential equations for the spectral and the statistical part of G, which can
then be solved together with the initial conditions at t = t0. For these derivations, we will
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4. The 2PI action for the spin-1 Bose gas

mainly follow [76]. Rewriting Eq. (4.49), we find∫
y,C

[(
G−1

0

)
αβ

(x, t;y, t′)− iRαβ(x, t;y, t
′)− Σαβ(x, t;y, t

′)
]
Gβγ(y, t

′; z, t′′)

= δαγδ(t− t′′)δ(x− z). (4.53)

We can now split the propagator according to Eq. (4.17) Moreover, because J and R are only
non-vanishing at t = t0, they have vanishing support in the integral and can be neglected in
the following. Furthermore, we can split G−1

0 into the part involving time derivatives and the
“mass” (including the spatial derivatives) according to

(
G−1

0

)
αβ

(x, t;y, t′) = δ(t− t′)δ(x− y) [Vαβ∂t + iMαβ(x, t)] . (4.54)

Thus, Eq (4.53) becomes∫
y,C

[
δ(t− t′)δ(x− y) [Vαβ∂t + iMαβ(x, t)]− Σαβ(x, t;y, t

′)
]

·
[
Fβγ(y, t

′; z, t′′)− i

2
ρβγ(y, t

′; z, t′′)sgnC(t
′ − t′′)

]
= δαγδ(t− t′′)δ(x− z). (4.55)

Applying the time derivative and using the product rule along with

∂t′sgnC(t
′ − t′′) = δ(t′ − t′′) (4.56)

and the equal-time commutation

ρβγ(t
′, y; t′, z) = iδ(y − z)Vβγ , (4.57)

we find

0 =

∫
y,C

[
δ(t− t′)δ(x− y) [Vαβ∂t + iMαβ(x, t)]− Σαβ(x, t;y, t

′)
]
Fβγ(y, t

′; z, t′′) (4.58)

− i

2
sgnC(t

′ − t′′)
[(
δ(t− t′)δ(x− y) [Vαβ∂t + iMαβ(x, t)]− Σαβ(x, t;y, t

′)
]
ρβγ(y, t

′; z, t′′)

as the derivative term involving sgnC cancels the right hand side. For further simplification,
we can now also decompose Σ into a local Σ0 and a non-local part Σ̄

Σαβ(x, t;y, t
′) = −iδ(x− y)δ(t− t′)Σ0(x, t) + Σ̄(x, t;y, t′) (4.59)

and further split Σ̄ similarly to the propagator

Σαβ(x, t;y, t
′) = ΣF

αβ(x, t;y, t
′)− i

2
sgnC(t− t′)Σρ

αβ . (4.60)
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4. The 2PI action for the spin-1 Bose gas

Moreover, we find that integrating functions regular in time over a closed time contour with
insertions of sgnC simplifies the expressions to∫

C
dtf(t)dt = 0 (4.61)∫

C
dtf(t)sgnC(t− t1)dt = −2

∫ t1

0
f(t)dt (4.62)∫

C
dtf(t)sgnC(t− t1)sgnC(t− t2)dt = −2sgnC(t1 − t2)

∫ t2

t1

f(t)dt (4.63)

Using all this as well as carrying out the delta-functions in Eq. (4.59), we get

0 =
[
Vαβ∂t + iMαβ(x, t) + iΣ0

αβ(x, t)
]
Fβγ(x, t; z, t

′′)

+ i

∫ t

t0

dt′
∫
ddyΣρ

αβ(x, t;y, t
′)Fβγ(y, t

′; z, t′′)

− i

2
sgnC(t− t′′)

[
Vαβ∂t + iMαβ(x, t) + iΣ0

αβ(x, t)
]
ρβγ(x, t; z, t

′′)

− i

∫ t′′

t0

dt′
∫
ddyΣF

αβ(x, t;y, t
′)ρβγ(y, t

′; z, t′′)

− 1

2
sgnC(t− t′′)

∫ t′′

t
dt′
∫
ddyΣρ

αβ(x, t;y, t
′)ρβγ(y, t

′; z, t′′). (4.64)

Finally, we can also decompose this equation into the parts multiplying sgnC(t− t′′) and those
that don’t, yielding the coupled equations

iVαβ∂tFβγ(y, t
′; z, t′′) =

[
Mαβ(x, t) + Σ0

αβ(x, t)
]
Fβγ(x, t; z, t

′′) (4.65)

+

∫ t

t0

dt′
∫ ′

Σρ
αβ(x, t;y, t

′)Fβγ(y, t
′; z, t′′) (4.66)

−
∫ t′′

t0

dt′
∫ ′

ΣF
αβ(x, t;y, t

′)ρβγ(y, t
′; z, t′′) (4.67)

and

iVαβ∂tρβγ(y, t
′; z, t′′) =

[
Mαβ(x, t) + Σ0

αβ(x, t)
]
ρβγ(x, t; z, t

′′) (4.68)

+

∫ t′′

t
dt′
∫ ′

Σρ
αβ(x, t;y, t

′)ρβγ(y, t
′; z, t′′). (4.69)

Note that now there are no integrals over the time contour left, and we have transformed
Eq. (4.49) to an ordinary set of coupled partial differential equations only involving “normal”
integrals. These integrals remain due to the fact that even though we start with a Gaussian
matrix at t0, out-of-equilibrium non-Gaussianities will develop such that these equations do
not hold for a different starting time. Thus, the integrals preserve the “memory” of the system
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4. The 2PI action for the spin-1 Bose gas

at earlier times.

4.1.7. The 1/N expansion

So far, all formulas have been exact to all orders. However, to actually be able to calculate
anything with this formalism, we have to make approximations by only including certain di-
agrams in the 2PI effective action Γ2. One could simply do a loop expansion - however, such
an expansion is not valid in the vicinity of phase transitions with high fluctuations [6].

Another possible way of approximating Γ2 without this shortcoming is the 1/N expansion
[15, 79, 80], which is valid for sufficiently symmetric symmetricN -component models withN
large enough. For this approximation, instead of expanding in powers of a weak coupling, we
expand in orders of 1/N , such that

Γ2[Φ, G] = ΓLO
2 [Φ, G]
∝N1

+ ΓNLO
2 [Φ, G]

∝N0

+ ΓNNLO
2 [Φ, G]

∝N−1

+ ... (4.70)

This formalism is mainly useful for O(N) invariant theories, for which we know that O(N)

irreducible invariants like TrG or ϕ†ϕ all scale ∝ N . Moreover, to obtain β-functions for c0
and c1 that are independent of N , each bare coupling has to scale with 1/N such that every
vertex carries a factor of 1/N . Thus, the order in 1/N for a given diagram in Γ2 is given by

O(1/N) =
#vertices

#irreducible invariants (4.71)

in an O(N) invariant theory [6].

4.2. The 2PI action for the spin-1 Bose gas

We can now apply the 2PI action formalism to the spin-1 Bose gas. For that, we first need to
convert the action Eq. (2.14) to the notation in Sec. 4.1.1. This yields

S =

∫
x,C

i

2
ϕ†α(V )αβ∂tϕβ − 1

4m
∇ϕ†α∇ϕα − q

2
ϕ†α(f̃

2
z )αβϕβ

− c0
8
(ϕ†αϕα)

2 − c1
8
(ϕ†α(f̃a)αβϕβ)(ϕ

†
γ(f̃a)γδϕδ) (4.72)
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where

f̃x =
1√
2



0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0


; f̃y =

1√
2



0 0 −i 0 0 0

0 0 0 −i 0 0

i 0 0 0 −i 0

0 i 0 0 0 −i
0 0 i 0 0 0

0 0 0 i 0 0


; (4.73)

f̃z =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1


(4.74)

are 6 × 6 matrices and we have adjusted the prefactors of all terms to keep the equations of
motion unchanged compared to the formulation in Eq. (2.14).

From this, we can now compute the effective action Γ in Eq. (4.48) as well as the equations of
motion Eq. (4.44). In the following, we want to do this to leading order in 1/N . For q = 0,
the 1/N expansion is valid as we then have a SO(3)-symmetric theory, and though N = 3 is
not particularly large, the 1/N expansion has been show to lead to reasonable results even for
moderate N [81]. According to [82], a large N expansion may be interpreted as an approxi-
mation on the quasiparticle level, mainly taking into account the Goldstone modes in a given
theory. As such, we will, therefore, also employ the 1/N expansion for our parameters in the
easy-plane phase with non-zero q.

Let us first look at the 1-loop terms. While Tr logG−1, is purely of leading order in 1/N , this
is not so simple for Tr(G−1

0 G). The inverse free propagator for the spin-1 action amounts to

(G−1
0 )αβ(x, t, y, t

′) = δ(x− y)δ(t− t′)

[
(V )αβ∂t −

i

2m
∂2xδαβ + iq(f̃z)αβ

+
ic0
4

(
δαβΦ

†
γΦγ + 2Φ†

βΦα

)
+
ic1
4

(
(f̃a)αβΦ

†
γ(f̃a)γδΦδ + 2(f̃a)αγΦγΦ

†
δ(f̃a)δβ

)]
(4.75)

where we have used that

(f̃a)αγΦγ = Φ†
γ(f̃a)γα. (4.76)
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Φα

α

Φβ

β

Φα

β

Φα

β
∝ c0 ∝ c0

Figure 4.2.: Index structure of the 1-loop contributions to the effective action with density-
density interaction vertices ∝ c0. The lines correspond to the full propagator G and the full
quantum fields Φ are denoted as such.

Thus, Tr(G−1
0 G) yields

Tr(G−1
0 [Φ]G) (4.77)

=

∫
x,y,C

δ(x− y)δ(t− t′)

[
(V )αβ∂t −

i

2m
∂2xδαβ

]
Gβα(x, t;y, t

′) +

∫
x,C

iqTrF (x, t;x, t)

+

∫
x,C

ic0
4

(
Tr(F (x, t;x, t))Φ†

α(x, t)Φα(x, t) + 2Φ†
α(x, t)Fαγ(x, t;x, t)Φγ(x, t)

)
+

∫
x,C

ic1
4

(
Tr(f̃aF (x, t;x, t))Φ†

α(x, t)(f̃a)αγΦγ(x, t)

+2Φ†
α(x, t)(f̃a)αβFβγ(x, t;x, t)(f̃a)γδΦδ(x, t)

)
.

Note that here, we have explicitly included the integrals over space and time instead of absorb-
ing them in “Tr”. Moreover, we have neglected the spectral function component of G. This
was done because at equal time and space, the spectral function is trivially determined by the
commutator relation, such that it does not influence the evolution equations. We follow [76]
in defining G(x, t;x, t) ≡ 1

2 (limt′↘tG(x, t;x, t
′) + limt′↗tG(x, t;x, t

′)) = F (x, t;x, t) to
avoid the contributions from ρ in the equal-time 2-point function in the following. Note that for
both c0 and c1, the first term always in Tr(G−1

0 G) involves twoO(3) invariants, while the sec-
ond term only involves one. Thus, the first terms are of leading order, while the second terms
are both next-to-leading order. For c0, this is illustrated in Fig. 4.2, and for the spin-density
interactions, the same arguments apply, just with an additional factor of the spin matrices f at
the vertex.

Now we consider Γ2. For the 2-loop contribution, there are also both leading and next-to-
leading order contributions. Fig. 4.3 shows this once more for the example of the c0 interac-
tion. For the double-bubble with two vertices, the indexing of the diagram matters, as the left
diagram traces over both loops separately, such that it is leading order in 1/N , while the right
diagram only involves one trace, therefore being next to leading order. As the diagram with
two vertices gets an additional factor of 1/N through the additional vertex, it is next-to-leading
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αα

ββ

αβ

αβ∝ c0 ∝ c0

∝ c0 ∝ c0

Φ Φ

Figure 4.3.: 2-loop contributions to the effective action, limited to those with only density-
density interaction vertices ∝ c0. Again, the lines correspond to the full propagator G. The
double bubble diagram is shown with the two possible index structures.

or higher order for all indexing [15]. The same is also true for all diagrams with more than two
loops, such that we can neglect them here. Again, these arguments also apply to the diagrams
involving the spin-density vertices or, in the case of more than one vertex, a mix of both inter-
actions. If we only consider the LO term in Γ2, we get from the diagrams involving two traces
for both our interactions

ΓLO
2 = −i

∫
x,t
(−ic0

8
)(TrG(x, t;x, t))2 + (−ic1

8
)TrG(x, t;x, t)f̃aTrG(x, t;x, t)f̃a (4.78)

which is independent of the field expectation value Φ

ΓLO
2 [Φ, G] = ΓLO

2 [G]. (4.79)

Thus, we find the effective action with Γ2 to leading order

ΓLO =

∫
C,x

{
i

2
Φ†
α(x, t)(V )αβ∂tΦβ(x, t)−

1

4M
∇Φ†

α(x, t)∇Φα(x, t)−
q

2
Φ†
α(x, t)(f̃

2
z )αβΦβ(x, t)

− c0
8
(Φ†

α(x, t)Φα(x, t))
2 − c1

8
(Φ†

α(x, t)(f̃a)αβΦβ(x, t))(Φ
†
γ(x, t)(f̃a)γδΦδ(x, t))

+

∫
y,C

{
δ(x− y)δ(t− t′)

[
(V )αβ∂t −

i

2m
∂2xδαβ

]
Gβα(x, t;y, t

′)

}
+ iqTrF (x, t;x, t) + i

2
Tr logG−1

+
ic0
4

(
Tr(F (x, t;x, t))Φ†

α(x, t)Φα(x, t) + 2Φ†
α(x, t)Fαγ(x, t;x, t)Φγ(x, t)

)
+
ic1
4

(
Tr(f̃aF (x, t;x, t))Φ†

α(x, t)(f̃a)αγΦγ(x, t) + 2Φ†
α(x, t)(f̃a)αβFβγ(x, t;x, t)(f̃a)γδΦδ(x, t)

)
−c0

8
(TrF (x, t;x, t))2 − c1

8
TrF (x, t;x, t)f̃aTrF (x, t;x, t)f̃a

}
(4.80)
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4.3. The equation of motion for the field expectation value

With these ingredients, we can now calculate the equation of motion for the field expectation
value according to Eq. (4.44a). As there is no field-dependence of Γ2 to leading order, we find

i(V )αβ∂tΦβ =− 1

2M
∂2xΦα + q(f̃2z )αβΦβ +

c0
4
Φα(Φ

†
βΦβ) +

c1
4
(f̃a)αβΦβ(Φ

†
γ(f̃a)γδΦδ)

− i

2

δTrG−1
0 (Φ)G

δΦ† − J −R · Φ (4.81)

=− 1

2M
∂2xΦα + q(f̃2z )αβΦβ +

c0
4
Φα(Φ

†
βΦβ) +

c1
4
(f̃a)αβΦβ(Φ

†
γ(f̃a)γδΦδ)

+
c0
2
(Tr(F )Φα + 2FαγΦγ)

+
c1
2

(
Tr(f̃aF )(f̃a)αγΦγ + 2(f̃a)

αβF βγ(f̃a)
γδΦδ

)
(4.82)

where we have omitted the explicit space- and time-dependencies and where the second equa-
tion is true for all t > t0 as the sources vanish for those times. They have to be considered,
however, in the form of initial conditions. Let us now take a closer look at what the traces of
the statistical propagator look like. In Eq. (4.16b), the statistical propagator is defined via the
anticommutator of the fields

Fαβ(x, t;y, t
′) =

1

2
⟨ϕα(x, t)ϕ†β(y, t

′) + ϕ†β(y, t
′)ϕα(x, t)⟩conn

=



f11 h11 f10 h10 f1−1 h1−1

h∗11 f∗11 h∗10 f∗10 h∗1−1 f∗1−1

f01 h01 f00 h00 f0−1 h0−1

h∗01 f∗01 h∗00 f∗00 h∗0−1 f∗0−1

f−11 h−11 f−10 h−10 f−1−1 h−1−1

h∗−11 f∗−11 h∗−10 f∗−10 h∗−1−1 f∗−1−1


(4.83)

where

fij(x, t;y, t
′) =

1

2
⟨ψi(x, t)ψ

†
j(y, t

′) + ψ†
j(y, t

′)ψi(x, t)⟩conn = f∗ji(y, t
′;x, t) (4.84)

hij(x, t;y, t
′) =

1

2
⟨ψi(x, t)ψj(y, t

′) + ψj(y, t
′)ψi(x, t)⟩conn = hji(y, t

′;x, t). (4.85)
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At equal time and place, fii describe the densities of excitations above the condensate, while
the hij correspond to anomalous averages. We define

nij(x⃗) ≡ fij(x, t;x, t) (4.86)

mij(x⃗) ≡ hij(x, t;x, t) (4.87)

N(x⃗) ≡
∑
i

nii(x⃗) (4.88)

such that the relations

nij = n∗ji (4.89)

mij = mji (4.90)

apply. Then, the traces occuring in Eq. (4.80) yield

Tr(F ) = 2N (4.91)

Tr(f̃xF ) =
√
2 (n10 + n01 + n0−1 + n−10) (4.92)

Tr(f̃yF ) = 0 (4.93)

Tr(f̃zF ) = 2(n11 − n−1−1) (4.94)

and the matrices f̃a multiplied with F (x⃗) are given by

f̃x · F · f̃x = (4.95)

1

2



n00 m00 n01 + n0−1 m10 + m0−1 n00 m00

m∗
00 n00 m∗

10 + m∗
0−1 n10 + n−10 m∗

00 n00

n10 + n−10 m10 + m0−1 n11 + n1−1 + n−11 + n−1−1 m11 + 2m1−1 + m−1−1 n10 + n−10 m10 + m0−1

m∗
10 + m∗

0−1 n01 + n0−1 m∗
11 + 2m∗

1−1 + m∗
−1−1 n11 + n1−1 + n−11 + n−1−1 m∗

10 + m∗
0−1 n01 + n0−1

n00 m00 n01 + n0−1 m10 + m0−1 n00 m00

m∗
00 n00 m∗

10 + m∗
0−1 n10 + n−10 m∗

00 n00


f̃y · F · f̃y = (4.96)

1

2



n00 m00 n0−1 − n01 m0−1 − m10 −n00 −m00

m∗
00 n00 m∗

0−1 − m∗
10 n−10 − n10 −m∗

00 −n00

n−10 − n10 m0−1 − m10 n11 − n1−1 − n−11 + n−1−1 m11 − 2m1−1 + m−1−1 n−10 − n10 m10 − m0−1

m∗
0−1 − m∗

10 n0−1 − n01 m∗
11 − 2m∗

1−1 + m∗
−1−1 n11 − n1−1 − n−11 + n−1−1 m∗

10 − m∗
0−1 n01 − n0−1

−n00 −m00 n01 − n0−1 m10 − m0−1 n00 m00

−m∗
00 −n00 m∗

10 − m∗
0−1 n10 − n−10 m∗

00 n00


f̃z · F · f̃z =

n11 m11 0 0 −n1−1 −m1−1

m∗
11 n11 0 0 −m∗

1−1 −n1−1

0 0 0 0 0 0

0 0 0 0 0 0

−n−11 −m1−1 0 0 n−1−1 m−1−1

−m∗
1−1 −n1−1 0 0 m∗

−1−1 n−1−1


. (4.97)

4.3.1. The Hartree-Fock-Bogoliubov-Popov approximation

We can now assume that only the diagonal terms nii in F are non-zero, corresponding to the
Hartree-Fock-Bogoliubov-Popov approximation as in [75, 83]. In that special case, the matrix
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4. The 2PI action for the spin-1 Bose gas

products are reduced to

f̃x · F · f̃x =
1

2



n00 0 0 0 n00 0

0 n00 0 0 0 n00

0 0 n11 + n−1−1 0 0 0

0 0 0 n11 + n−1−1 0 0

n00 0 0 0 n00 0

0 n00 0 0 0 n00



f̃y · F · f̃y =
1

2



n00 0 0 0 −n00 0

0 n00 0 0 0 −n00
0 0 n11 + n−1−1 0 0 0

0 0 0 n11 + n−1−1 0 0

−n00 0 0 0 n00 0

0 −n00 0 0 0 n00



f̃z · F · f̃z =



n11 0 0 0 0 0

0 n11 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 n−1−1 0

0 0 0 0 0 n−1−1


(4.98)

Thus, the equation of motion Eq. (4.82) becomes

i(V )αβ∂tΦβ = − 1

2M
∂2xΦα + q(f̃2z )αβΦβ +

c0
4
Φα(Φ

†
βΦβ) +

c1
4
(f̃a)αβΦβ(Φ

†
γ(f̃a)γδΦδ)

+
c0
2
diag (2N + 2n11, 2N + 2n11, 2N + 2n00, 2N + 2n00, 2N + 2n−1−1, 2N + 2n−1−1)

α
β Φ

β

+
c1
2
diag (2(n11 − n−1−1) + 2n00 + 2n11, 2(n11 − n−1−1) + 2n00 + 2n11, 2n11 + 2n−1−1,

2n11 + 2n−1−1, 2(n−1−1 − n11) + 2n00 + 2n−1−1, 2(n−1−1 − n11) + 2n00 + 2n−1−1)
α
β Φ

β

= − 1

2M
∂2xΦα + q(f̃2z )αβΦβ +

c0
4
Φα(Φ

†
βΦβ) +

c1
4
(f̃a)αβΦβ(Φ

†
γ(f̃a)γδΦδ) +KαβΦβ

=
δH

δϕ†α
+KαβΦβ (4.99)
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4. The 2PI action for the spin-1 Bose gas

where

K =



K1 0 0 0 0 0

0 K1 0 0 0 0

0 0 K2 0 0 0

0 0 0 K2 0 0

0 0 0 0 K3 0

0 0 0 0 0 K3


(4.100)

with

K1 = (c0 + c1)(2n11 + n00) + (c0 − c1)n−1−1 (4.101)

K2 = (c0 + c1)N + (c0 − c1)n00 (4.102)

K3 = (2n−1−1 + n00) + (c0 − c1)n11 (4.103)

In the last line of Eq. (4.99), we have written the equation of motion in terms of the classical
Hamiltonian, the Legendre transform of the Lagrangian Eq. (4.72). From this line, it becomes
obvious that in this approximation, the quantum equation of motion for the field expectation
value is given by the usual GPE in addition to an extra term KαβΦβ , effectively shifting the
quadratic term in the action by some mF -dependent values that involve the statistical propa-
gator.

4.4. Evolution equation for the statistical propagator

Thus, to solve the equation of motion for the condensate fields, we need an equation governing
the evolution of the statistical propagator as well. In our case, Γ2 Eq. (4.78) leads to a completely
local self-energy

Σ(x, t;y, t
′) = −iδ(x− y)δ(t− t′)Σ(0)(x, t). (4.104)

with

(Σ0)αβ =
c0
2
Tr (F (x, t;x, t)) δαβ +

c1
2
Tr
(
F (x, t;x, t)f̃a

)
(f̃a)αβ (4.105)

Using this, the evolution of F according to Eq. (4.67) is just given by

i(V )αβ∂tFβγ(x, t;y, t
′) = [Mαβ(x, t) + Σ

(0)
αβ(x, t)]Fβγ(x, t;y, t

′) (4.106)
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4. The 2PI action for the spin-1 Bose gas

with

Mαβ(x, t) =− 1

2m
∂2xδαβ + q(f̃z)αβ

+
c0
4

(
δαβΦ

†
γΦγ + 2Φ†

βΦα

)
+
c1
4

(
(f̃a)αβΦ

†
γ(f̃a)γδΦδ + 2(f̃a)αγΦγΦ

†
δ(f̃a)δβ )

(4.107)

For densities at equal time, the evolution is governed by the commutator

iV ∂tF (x, t;x, t) =
[
M +Σ(0), F (x, t;x, t)

]
(4.108)

as

iV ∂t′F (x, t;y, t
′)
∣∣
x=y

(4.83)
=

[
−iV ∂t′F (y, t′;x, t)

]†∣∣∣
x=y

(4.109)

(4.106)
= −

[(
M +Σ(0)

)
F (y, t′;x, t)

]†∣∣∣∣
x=y

(4.110)

= −F (x, t;x, t)(M +Σ0) (4.111)

With Eqs (4.82) and (4.108), we now have a self-consistent set of equations to leading order
describing the spin-1 Bose gas out of equilibrium with the full field expectation value Φ and
propagator G. These are extremely helpful in order to compare to numerical simulations of
the far-from-equilibrium dynamics of the system and to determine how big a role higher-order
terms than we have included in the analytic equations play. All these investigations are subject
to future work.

However, these equations are still written in terms of all the degrees of freedom of our system
and now that we have formulated everything in terms of the expectation values of the fields
and the propagator, it is not possible anymore to integrate out any degrees of freedom not of
interest to us. Thus, in the next chapters, wewill use a different approach to develop low-energy
effective theories only dependent on the phase degrees of freedom that interest us following
the numerical observations in [41].
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5. A first low-energy effective field theory
for the phase degrees of freedom

In the last chapter, we developed a theory to describe the spin-1 Bose gas in a setting out of
equilibrium to leading order. These considerations are certainly very useful to make compar-
isons with numerical truncatedWigner simulations of the spin-1 Bose gas far from equilibrium
and to determine how much higher-order terms actually play a role in its dynamics.

However, the results from Ch. 4 are still not easy to interpret, as we get equations for three
complex fields, as well as the full statistical propagator F . These of course have physical inter-
pretations like the condensate wave function and the matrix containing occupation numbers.
Nevertheless, they are not particularly useful for making sense of the rich phase dynamics in
the spinor and Larmor phase shown to appear in numerical simulations of the spin-1 Bose gas
after a quench from the polar to the easy-plane phase as seen in [41].

Bogoliubov theory tells us (see Sec. 2.5) that in the easy-plane phase, the mass gaps for the den-
sity fluctuations aremuch higher than those of the phase degrees of freedom. Therefore, we can
assume that at least at times in the dynamics when we are close to the equilibrium easy-plane
phase, the relevant degrees of freedom at low energies are the Larmor and the spinor phase, as
the overall phase is not physically relevant. Thus, we want to spend the remainder of this the-
sis developing a low-energy effective field theory for these two phases, thereby dramatically
decreasing the number of degrees of freedom we consider from 6 real degrees of freedom (or
12 if we count the doubling of degrees of freedom out of equilibrium) to only 2.

To develop such an effective field theory, we cannot continue down the 2PI path. Because in
the 2PI formalism, the number of degrees of freedom is kept the same and the sources are re-
placed by the full quantum field and propagator, the evolution equations Eqs (4.82) and (4.108)
we have obtained also still include all degrees of freedom, and there is no way of isolating the
phase dynamics.

Instead, to obtain a theory only for the phase degrees of freedom, we will follow another pro-
cedure, which is inspired by [51]. For that, we will expand our theory around constant, ho-
mogeneous mean-field values for the densities. Then, we integrate out the density fluctuations
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5. A first low-energy effective field theory for the phase degrees of freedom

using Gaussian integrals to obtain a theory in which the only variables are the phases. Note
that for these considerations, we will also abolish the Keldysh time path used in the previous
chapter. This is justified because for the theory developed in this and the following chapters,
we assume that we are in the scaling regime, where there is supposed to be little dependence
on the initial condition, and numerical simulations show the fields to be near their equilibrium
values (see Fig. 5.1).

To lowest order, this calculation has already been performed by Ido Siovitz [84], such that the
first section of this chapter, Sec. 5.1, is mainly a recap of his results, with the addition of the
imaginary part of the effective action. In Sec. 5.1.3 it will turn out that for small spinor phases
φS , the theories for the Larmor and the spinor phases decouple, resulting in a free theory for
the Larmor phase and a modified sine-Gordon model for the spinor phase. For a first sanity
check for these effective theories, we then compare the analytical result for the mass gap of
φS to numerical simulations in Sec. 5.2.

In this and the following chapters, we will assume that we are in the parameter regime of the
easy-plane phase with c1 < 0 and in any numerical simulations, we work with the parameters
for the 87Rb experiment by Markus Oberthaler as seen in Tab. A.1 in App. A.

5.1. Lowest order LEEFT

5.1.1. A coordinate transformation of the action

Like in [51], we work in the path integral formalism and start out with the spin-1 action
Eq. (2.14). At this point, the theory is written in terms of the fundamental fields Eq. (2.1) with
six real degrees of freedom, given by the three complex fields Ψi. Equivalently, we can write
the theory in terms of densities and phases, splitting

Ψi =
√
ρie

iϕi . (5.1)

Inspired by the mean-field spinor in the easy-plane phase Eq. (2.32), we can further transform
these coordinates via

ρ =
ρ1 + ρ−1

2
; ε =

ρ1 − ρ−1

2
; θ = ϕ1 + ϕ−1; φL = ϕ1 − ϕ−1; φS = 2ϕ0 − θ (5.2)

such that

Ψ−1 =
√
ρ− εe

i
2
(θ−φL); Ψ1 =

√
ρ+ εe

i
2
(θ+φL); Ψ0 =

√
ρ̃− 2ρe

i
2
(θ+φS). (5.3)
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5. A first low-energy effective field theory for the phase degrees of freedom

Here, ρ̃ has the intuitive interpretation of the total density, while ρ is the density that depletes
themF = 0 component symetrically in favor of themF = ±1 components, and ε is the density
difference between the mF = 1 and mF = −1 component. Moreover, θ plays the role of the
total U(1) phase, the spinor phase φS describes the phase rotation of themF = 0-component,
and the Larmor phase φL is the relative phase between themF = 1 andmF = −1 component.
In these new variables, the Lagrangian of Eq. (2.14) becomes

L =− εφ̇L + ρφ̇S − ρ̃

2

(
φ̇S + θ̇

)
− 2qρ (5.4)

− 1

8m

[
(ρ− ε)(∇ log (ρ− ε))2 + (ρ+ ε)(∇ log (ρ+ ε))2 + (ρ̃− 2ρ)(∇ log (ρ̃− 2ρ))2

]
− ρ

4m
(∇φL)

2 − ρ̃− 2ρ

8m
(∇φS)

2 − ρ̃

8m
(∇θ)2 − 1

2m

(
ε∇θ∇φL +

ρ̃− 2ρ

2
∇θ∇φS

)
− c0

2
ρ̃2 − 2c1

[
ε2 − 2ρ2 + ρρ̃+

√
ρ2 − ε2(ρ̃− 2ρ) cosφS

]
.

Note that through the spin-density interactions ∝ c1, a term ∝ cosφS enters the Lagrangian,
stemming from the part of the action ∝ c1(Ψ

2
0Ψ

†
−1Ψ

†
1 +Ψ†2

0 Ψ−1Ψ1) that encodes the part of
the interaction involving the spin-changing collisions in which twomF = 0 particles become
a pair ofmF = ± particles or vice versa as illustrated in Fig. 2.3.

5.1.2. Integrating out density fluctuations

Numerical simulations of a quench from the polar to the easy-plane phase via TWA show the
fluctuations of the densities ρ and ε to be small compared to the dynamics of the phase at
the energies considered in experiment, as can be seen in Fig. 5.1b. Moreover, they show the
fluctuations to be mainly about a homogeneous background corresponding to the easy-plane
mean-field configuration (see Fig. 5.1a). Thus, we want to integrate out the density fluctuations
in order to develop an effective theory only for φS and φL. The strategy for that is to first
expand ρ and ε around the homogeneous mean-field background with

ρ = n+ δρ ε = 0 + δε, (5.5)

and

ρ̃ = const.; n = const.; ⟨δρ⟩ = 0 = ⟨δε⟩. (5.6)
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ρ

(a) ρ̃, ρ, and ε in units of the initial density ρ̃(t =
0) in a (1+1)d spin-1 Bose gas after a quench
from the polar to the easy-plane phase with q =
−0.9c1ρ̃. The values are shown at a time t = 140tS ,
which is right in the scaling regime according to
[41]. One can see that all quantities only fluctuate
slightly around the homogeneous mean-field values
predicted for the easy-plane phase in equilibrium,
which are shown in black.

ρ̃ ρ ε ϕL ϕS

4

2

0

2

4

(b) Means and standard deviations of the den-
sity and phase degrees of freedom over time and
space in a (1+1)d spin-1 Bose gas after a quench
from the polar to the easy-plane phase with q =
−0.9c1ρ̃. The values for the densities are given
in terms of ρ̃. As can be seen, the standard de-
viations for the density degrees of freedom are
significantly smaller than those for the phases,
justifying our approximation to integrate out the
density fluctuations.

Figure 5.1.: Numerical results for the fluctuations of the density degrees of freedom. Data taken
from the truncated Wigner simulations carried out in [41].
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We then expand the Lagrangian to second order in these fluctuations δρ = (δρ, δε)T ¹:

L = L0 + L1 + L2 +O(δ3) = L0 + δρTJ0 +
1

2
δρTG−1

0 δρ+O(δ3), (5.7)

such that the partition function approximately becomes

Z =

∫
DρDεDθDφSDφLe

iS[ρ,ε,φS ,φL] (5.8)

=

∫
DδρDδεDθDφSDφLe

i
∫
t,x L0+δρTJ0+

1
2
δρTG−1

0 ·δρ+O(δ3) (5.9)

Then, through Gaussian integration of the density fluctuations, using the Fresnel integral

∫
exp

(
i

2
x ·A · x+ iJ · x

)
dnx =

√
(2πi)n

detA exp
(
− i

2
J ·A−1 · J

)
(5.10)

for a symmetric, real n× n matrix A without singularities, we get

Z ≈
∫

DδρDδεDθDφSDφLe
i
∫
t,x L0+δρTJ0+

1
2
δρTG−1

0 ·δρ (5.11)

= C

∫
DθDφSDφL e

i
∫
t,x[L

0− 1
2
JT
0 G0J0]− 1

2
log detG−1

0︸ ︷︷ ︸
eiSeff

(5.12)

such that we obtain the effective action

Seff =

∫
t,x

[
L0 − 1

2
JT
0 G0J0

]
+
i

2
log detG−1

0 . (5.13)

Comparing to Eq. (4.35), we find that such a Gaussian integration corresponds to a 1-loop ap-
proximation of the action. Note, however, that we have the extra term−1

2J
T
0 G0J0 in Eq. (5.13)

compared to Eq. (4.35). This is due to the fact that in the derivation of Eq. (4.35) in App. B.1, the
linear term cancels with the term stemming from the Legendre transformation to 1-loop order.

For our low-energy effective action, however, instead of performing a Legendre transforma-
tion and getting a theory that depends on ⟨ρ⟩ and ⟨ε⟩ fulfilling an equation of motion like
δΓ
δρ = −JT , we just assume that at zero external sources, we have the constant, homogeneous
mean-field values ⟨ρ⟩ = n and ⟨ε⟩ = 0 and no mean fluctuations. Consequently, we cannot
make a similar cancellation to what is done in App. B.1 and are left with the linear term in δρ,
which then gives −1

2J
T
0 G0J0 upon Gaussian integration.

¹Note that we have defined G−1
0 = δ2S

δδρδδρ
without the factor of −i in Eq. (4.36) such that G−1

0 is real. As for a
purely real positive number a, log−ia = a+ i 3π

2
= log a+ const., this does not matter in the log det term of

the effective action and we get the same log det term as in Eq. (4.35).
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Let us now apply this strategy to our Lagrangian Eq. (5.4). After expanding ρ and ε according
to Eq. (5.5), we obtain

L = −δεφ̇L + δρφ̇S − ρ̃

2

(
θ̇ + φ̇S

)
− 2qδρ− c0

2
ρ̃2 (5.14)

− 1

8m

[
(n+ δρ− δε)(∇ log (n+ δρ− δε))2 + (n+ δρ+ δε)(∇ log (ρ+ ε))2

+(ρ̃− 2n− 2δρ)(∇ log (ρ̃− 2n− 2δρ))2
]
− n+ δρ

4m
(∇φL)

2 − ρ̃− 2n− 2δρ

8m
(∇φS)

2

− ρ̃

8m
(∇θ)2 − 1

2m
(δε∇θ∇φL − (n+ δρ)∇θ∇φS)

− 2c1

[
δε2 − 2n2 − 2δρ2 − 4nδρ+ nρ̃+ δρρ̃+

√
n2 + δρ2 + 2nδρ− δε2(ρ̃− 2n− 2δρ) cosφS

]
.

We then expand this Lagrangian Eq. (5.14) to second order in the fluctuations to obtain an
effective action like in Eq. (5.9). If we carry out this expansion, we find (details about this
expansion in App. B.2):

L0 =− n

4m
(∇φL)

2 − ρ̃− 2n

8m
(∇φS)

2 − ρ̃

8m
(∇θ)2 − ρ̃− 2n

4m
∇θ∇φS (5.15)

− 2c1n(ρ̃− 2n)(1 + cosφS)

J0 =

(
φ̇S − 2q − 1

4m

(
(∇φL)

2 − (∇φS)
2 − 2∇θ∇φS

)
− 2c1(ρ̃− 4n)(1 + cosφS)

−φ̇L − 1
2m∇θ∇φL

)
(5.16)

G−1
0 =

 ρ̃
2m

∇2

n(ρ̃−2n) + 8c1(1 + cosφS) 0

0 ∇2

2mn − 2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
.

 (5.17)

Note that here, we have neglected terms such as c0
2 ρ̃

2, 4c1n2 or ρ̃
2

(
θ̇ + φ̇S

)
, which are just

constants or a total derivative, respectively, if we assume ρ̃ and n to be constant.

So far, the Lagrangian includes terms involving the spatial derivative of the total phase ∇θ,
as they do not automatically vanish in the above approximations. However, as θ is not even
dynamical if we assume ρ̃ = const. and we are not interested in the total phase anyway, we
can assume a spatially constant total phase and in the following neglect all terms involving∇θ.

In the following, we also want to neglect the ∇2 terms in the inverse free propagator for two
reasons. Firstly, we want to look at a low-energy effective theory, corresponding to small val-
ues of k. And indeed, even momenta at the spin healing length kξS = 1/ξS =

√
2mρ̃|c1| lead

to a small kinetic term compared to the prefactor ∝ 8c1 of the other term in G−1
0 . Moreover,

even if we wanted to include these terms, we would have a non-diagonal inverse propagator
as the terms∝ ∇2 are diagonal in Fourier space, while the other terms are diagonal in position
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space.

Neglecting these derivative terms, we get

1

2
JT
0 G0J0 =

1

2

[
n3φ̇2

L

−2n2c1(2n+ (2n− ρ̃) cosφS)
(5.18)

+

(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS)
)2

8c1(1 + cosφS)


and

log detG−1
0 = tr logG−1

0 (5.19)

=
1

∆t(∆x)d

∫
t,x

log(8c1(1 + cosφS)

16c1

)
+ log

−2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
2c1

(
ρ̃
n − 4

)
 .

where∆t and∆x are the time- and lengthscales relevant for regularization, defined by
∑

t,x =
1

∆t(∆x)d

∫
t,x [85]. As such, they are related to the system’s volume in Fourier space. Moreover,

we have normalized the log terms to vanish for φS = 0. Combining all terms as in Eq. (5.13),
we find for the effective Lagrangian

Leff =− n

4m
(∇φL)

2 − ρ̃− 2n

8m
(∇φS)

2 − 2c1n(ρ̃− 2n)(1 + cosφS) (5.20)

− 1

2

[
n3φ̇2

L

−2n2c1(2n+ (2n− ρ̃) cosφS)

+

(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS)
)2

8c1(1 + cosφS)


+

i

2∆t(∆x)d

log(8c1(1 + cosφS)

16c1

)
+ log

−2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
2c1

(
ρ̃
n − 4

)
 .

Note that for φS = (2Z+ 1)π, the effective action diverges as the term ∝ (1 + cosφS) in the
numerator of the second term in 1

2J
T
0 G0J0 goes to zero. The reason for this is that because we

have neglected the derivative terms, the inverse free propagatorG−1
0 has a zero eigenvalue at

φS = (2Z+ 1)π, making the Gaussian integral divergent. However, if we are nowhere near
φS = (2Z+ 1)π, we can still use this theory as an approximation.

Note also that due to the Gaussian integration yielding an effective action quadratic in J0, the
non-relativistic theory in the densities becomes a relativistic theory in the phases φL and φS
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as J0 ∝ φ̇. For this effective theory, we can interpret the fact that the derivative terms in φL

are divided by φS-dependent terms as φS influencing the speed of sound for the dispersion of
φL. We can also see that only the coupling c1 appears in this action, which makes sense as
this is the coupling for the spin-density interactions, which, contrary to the density-density
interactions, affect the complex phases of the quantum fields describing the spin-1 Bose gas.

5.1.3. Expansion around φS = 2πZ

We see in numerical simulations that φS mostly lies around multiples of 2π, φS ≈ 2πN for
N ∈ Z (see Fig. 5.2b). This makes sense as φS is predicted to be a gapped mode by Bogoliubov
theory, with minimal energy at φS = 2πZ. For φS around 2πZ, we can use

1 + cosφS = 2
(
1− sin2 φS

2

)
(5.21)

to expand our effective action around small values of sin2 φS
2 .

For the real part, we expand 1
1+cosφS

up to O(sin4 φS
2 )

1

1 + cosφS
=

1

2

(
1 + sin2 φS

2
+ sin4 φS

2

)
+O(sin6), (5.22)

and for the imaginary part, we do the same using

log
(
1 + a sin2 φS

2

)
= a sin2 φS

2
− a2

2
sin4 φS

2
+O(sin6). (5.23)

If we, moreover, use q = −2c1(ρ̃−4n), which holds in the groundstate of the easy-plane phase
(see Eq. (2.35)) and neglect any terms involving φ̇ sin2, ∇2φ sin2 and higher, as well as higher
than second order derivative terms, we find that the Lagrangians for φS and φL decouple and
we get

Leff
φL

=
φ̇L

2n

2q
− n

4m
(∇φL)

2 +O
(
φ̇ sin2,∇φ sin2, φ̇∇2φ,∇3φ

)
(5.24)

and

Leff
φS

=− 1

32c1
φ̇2
S − ρ̃− 2n

8m
(∇φS)

2 − 2c1n(ρ̃− 2n) cosφS (5.25)

+ Ã sin2 φS

2
+ B̃ sin4 φS

2
+O

(
sin6, φ̇ sin2,∇φ sin2, φ̇∇2φ,∇3φ

)
.

where

Ã = − i

2∆t(∆x)d

(
1 + 2

ρ̃− 2n

ρ̃− 4n

)
(5.26)
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and

B̃ = − q2

8c1
− i

2∆t(∆x)d

(
1

2
+ 2

(
ρ̃− 2n

ρ̃− 4n

)2
)
. (5.27)

For the final step, we want to write the theory for φS such that the trigonometric functions all
take the same argument. For that, we use the relations

sin2(φ/2) = −1

2
cos(φ) + 1

2
(5.28)

and
sin4(φ/2) = −1

2
cos(φ)− 1

4
sin2(φ) + 1

2
, (5.29)

and find for the effective Lagrangian for the spinor phase

Leff
φS

=− 1

32c1
φ̇2
S − ρ̃− 2n

8m
(∇φS)

2 −A cosφS +B sin2 φS (5.30)

+O
(
sin6, φ̇ sin2,∇φ sin2, φ̇∇2φ,∇3φ

)
with

A = 2c1n(ρ̃− 2n)− q2

16c1
− i

4∆t(∆x)d

(
3

2
+

2(ρ̃− 2n)

(ρ̃− 4n)
+

2(ρ̃− 2n)2

(ρ̃− 4n)2

)
(5.31)

and

B =
q2

32c1
+

i

8∆t(∆x)d

(
1

2
+

2(ρ̃− 2n)2

(ρ̃− 4n)2

)
. (5.32)

Let us take a closer look and interpret the theories we have obtained for φS and φL. The La-
grangian for the Larmor phase Eq. (5.24) is that of a free theory. This makes sense as φL is the
Goldstone boson corresponding to the spontaneous symmetry breaking of the SO(2) symme-
try by Eq. (2.32), and we can associate the massless Bogoliubov mode E− (see Eq. (2.59)) with
it. Thus, if we go back to Fig. 2.4, a free theory for φL means a free rotation of F⊥ in the spin
sphere.

The Lagrangian for φS Eq. (5.31) is more complicated. In the approximation of small φS , the
periodic potential with divergences atφS = π+2πZ turns into a sine-Gordon type theory with
a sin2-term in the potential along with the cos-term. This theory is regular as for φS ≈ 2πZ,
the theory does not “see” the divergences. The real part of the potential for φS as in Eq. (5.31)
is pictured in Fig. 5.2a. As this figure shows the potential not only near φS = 2πZ but also for
values of φS for which the approximations made in the derivation do not hold, this illustration
should be taken with a grain of salt. However, it gives a good intuition of the periodicity of
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(a) Real part of the potential for φS as in Eq. (5.31)
in units of |c1|ρ̃2. We have used q = −0.9ρ̃c1 to
compare with the experiment and numerical simu-
lations.
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(b) Experimental and numerical data showing
the potential of φS . For the numerical simula-
tion, q = −0.9ρ̃c1 was used [84].

Figure 5.2.: Comparison of the analytical form of the potential for φs as in Eq. (5.31) with nu-
merical and experimental results of the (1+1)d spin-1 Bose gas.

the potential for φS .

If we compare this potential to results from the experiment as well as numerical simulations
[84], which are shown in Fig. 5.2b, we see the same 2π periodicity, and as most numerical dat-
apoints are around φS = 2πZwith close to none at φS = (2Z+ 1)π, our assumption of small
φS seems to describe most of the dynamics well².

However, there has to be some mechanism allowing to hop between the minima, as several
minima are populated in the experiment and the simulations and this hopping of 2π in the
phase φS then also causes the phase of F⊥, or the Larmor phase as defined in Eq. (2.38), to
jump by 2π, as can be seen in Fig. 2.4. Thus, jumps between the minima of the periodic poten-
tial of φS correspond to the (anti)-instantons seen in the numerical simulations in [41]. As the
theory developed in this chapter loses its validity around the maxima, we cannot use it, how-
ever, to study what exactly happens for the phase degrees of freedom at these (anti)-instantons.
Thus, the next two chapters will focus on improving the low-energy effective theory developed
here in order to also describe what is happening at the maxima of the potential.

Before we get into this, we want to make one more comment about the imaginary part of the
effective action. In Fig. 5.2a, we have only shown the real part of the potential. However, as

²Note that the plateaus in the experimental data around φS = (2Z+ 1)π are only due to the experiment not
purely measuring the phase φS but the orientation of the field in the F̂x − Q̂yz-plane, which leads to plateaus
at the minima.
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Eq. (5.31) shows, there is a non-negligible part to Leff, namely

ℑLeff
φS

=
1

4∆t(∆x)d

[(
3

2
+

2(ρ̃− 2n)

(ρ̃− 4n)
+

2(ρ̃− 2n)2

(ρ̃− 4n)2

)
cosφS +

(
1

4
+

(ρ̃− 2n)2

(ρ̃− 4n)2

)
sin2 φS

]
+ const.+O(sin6). (5.33)

For |φS | mod 2π < π/2, which holds in the approximation of small sin2 φS , this imaginary
part is strictly positive, such that multiplied with i this term simply gives a damping of the
partition function. In the following, we will, therefore, mainly focus on the real part of the
effective action.

5.2. Mass gap of the effective theory

For even more sanity checks on the applicability of our low-energy effective field theory, we
want to compare the dispersion relation and specifically the mass gap of our effective theory
for φS with numerical results from truncated Wigner simulations of the full spin-1 Bose gas
in (1+1)d. To derive the analytical form for the dispersion relation, let us first consider the
equations of motion that follow from just the real part of the action

ℜLeff
φS

=− 1

32c1
φ̇2
S − ρ̃− 2n

8m
(∇φS)

2 −
[
2c1n(ρ̃− 2n)− q2

16c1

]
cosφS +

q2

32c1
sin2 φS ,

which are given by

− φ̈S

16c1
=
ρ̃− 2n

4m
∇2φS +

[
2c1n(ρ̃− 2n)− q2

16c1

]
sinφS +

q2

16c1
sinφS cosφS . (5.34)

To obtain a dispersion relation from this equation, we first expand sine and cosine to the first
order in φS :

− φ̈S

16c1
=
ρ̃− 2n

4m
∇2φS + 2c1n(ρ̃− 2n)φS . (5.35)

Now we perform a 2d Fourier transform, yielding the following dispersion relation:

ω2

16c1
= − ρ̃− 2n

4m
k2 + 2c1n(ρ̃− 2n) (5.36)

Thus, for k = 0 we obtain the mass gap

mGAP =
√
32c21n(ρ̃− 2n) (5.37)
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(b) Numerical results (red) for the mass gap of the
spinor phase dispersion relation compared to the
analytic result from the Bogoliubov relation as well
as the effective theory (blue). The numerical values
have been computed with truncated Wigner simu-
lations of the full spin-1 gas, while the analytical
curve follows Eq. (5.37). The inset shows the dif-
ference between analytic and numerical results.

Figure 5.3.: Mass gap of the spinor phase in the (1+1)d spin-1 Bose gas.

This coincides with the mass gap from the E+ Bogoliubov dispersion relation Eq. (2.59), which
for k = 0 becomes

E+1 = 2

√
1− q2

(2ρ̃|c1|)2
|c1|ρ̃. (5.38)

Using q = −2c1(ρ̃− 4n) (Eq. (2.35)), this exactly gives our analytical mass gap Eq. (5.37).

To compare this to numerical results, we have carried out truncated Wigner simulations of the
(1+1)d spin-1 Bose gas in the easy-plane phase with q = −0.9c1ρ̃. To introduce a small per-
turbation to the system, we performed a rotation of the spinor phase Ψ±1 → Ψ±1e

±iα with
α = 0.032π, giving rise to an oscillatory behavior of the spinor phase as shown in the inlay of
Fig. 5.3a. The Fourier spectrum shown in the same figure exhibits two clear peaks correspond-
ing to the oscillation frequency ω = 1.78193(25)ρ̃|c1| as well as its negative. The frequency
was determined to this precision via a fit to the data with the function f(t) = a sinωt up until
t = 2.4 tS . This value is only slightly smaller than the analytically determined mass gap for
q = −0.9c1ρ̃, which is given by ω = 1.78606ρ̃|c1|.

Repeating this numerical determination of ωGAP for different q, we also find good agreement
with the functional q-dependence of the theoretical prediction Eq. (5.37) as shown in Fig. 5.3b.
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5. A first low-energy effective field theory for the phase degrees of freedom

Note, however, that the inset in Fig. 5.3b shows the numerical values to be systematically lower
than the theoretical prediction. Though this systematic shift is still within the error bars of
the numerical values, it is interesting to examine whether this shift could be compensated by
including higher-order density fluctuation corrections to the effective action.

65



6. Including higher-order density
fluctuations

Given the problem that at k = 0 and φS = (2Z + 1)π our low-energy effective field theory
becomes divergent, wewant to investigate in this chapterwhether this divergence is intrinsic to
the theory or if this issue can be fixed by including higher orders in the fluctuations, whichmay
stabilize the theory. Thus, in Sec. 6.1, we include higher orders of the density fluctuations δρ
and δε into our theory in the spirit of the Hartree-Fock-Bogoliubov-Popov approximation. This
then leads us to a self-consistent equation for the fluctuation correlations ⟨δρ(x, t)δρ(x, t)⟩ and
⟨δε(x, t)δε(x, t)⟩ in Sec. 6.3. However, as it turns out, including higher orders of fluctuations
like that will not rid our effective theory of the divergences at k = 0 and φs = (2Z+ 1)π. This
will be discussed in Sec. 6.1.1. Still, the density fluctuation corrections lead to a change in our
theory for small angles φS , which will be derived in Sec. 6.2. For this theory, we again calculate
the mass gap analytically in Sec. 6.4, which we compare to the numerical results from Ch. 5 in
Sec. 6.6 after numerically investigating the density fluctuation correlations ⟨δρ(x, t)δρ(x, t)⟩
and ⟨δε(x, t)δε(x, t)⟩ in Sec. 6.5. We find that, while the density fluctuation corrections cause
a slight shift of the analytic values for the mass gap towards the numerical ones at high q, the
effect is not significant.

6.1. A higher-order expansion in the density fluctuations

In order to obtain a low-energy effective field theory for φS including higher orders in the den-
sity fluctuations, we again perform the coordinate transformation and expansion as in Sec. 5.1
at first. However, instead of just expanding to the second order in the density fluctuations as
in Eq. (5.7), we expand the Lagrangian to the fourth order

L = L0 + L1 + L2 + L3 + L4 +O(δρ5) (6.1)
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with

L0 = − n

4m
(∇φL)

2 − ρ̃− 2n

8m
(∇φS)

2

− 2c1n(ρ̃− 2n)(1 + cosφS) (6.2)

L1 =

(
φ̇S − 2q − 1

4m

(
(∇φL)

2 − (∇φS)
2
)
− 2c1(ρ̃− 4n)(1 + cosφS)

−φ̇L

)(
δρ

δε

)
(6.3)

L2 =
(
δρ δε

) ρ̃
ρ̃−2n

∇2

4mn + 4c1(1 + cosφS) 0

0 ∇2

4mn − c1

(
2 +

(
2− ρ̃

n

)
cosφS

)(δρ
δε

)
(6.4)

L3 = −c1ρ̃
n2

δρδε2 cosφS (6.5)

L4 =
c1
4

ρ̃− 2n

n3
δε4 cosφS +

c1ρ̃

n3
δρ2δε2 cosφS , (6.6)

where we have again neglected terms involving ∇θ as well as all terms the order of ∇2δ3

and ∇2δ4 in L3 and L4, respectively, that appear when expanding the density derivative
parts as shown in AppB.2. The argument for the latter is again that the low momenta we
consider make these terms irrelevant, as even the spin healing momentum only amounts to
kξS = 1/ξS =

√
2mρ̃|c1|.

To still be able to perform a Gaussian integration and get rid of the functional dependence on
δρ and δε, we further expand the terms of third and fourth order in the fluctuations around the
average density-density correlations

δρδε2 = δρ⟨δεδε⟩+ 2δε⟨δρδε⟩ (6.7)

δε4 = 6⟨δεδε⟩δε2 (6.8)

δρ2δε2 = ⟨δρδρ⟩δε2 + ⟨δεδε⟩δρ2 + 4⟨δρδε⟩δρδε. (6.9)

For an interpretation of these correlators, let us remind ourselves that δε describes the differ-
ence between the densities of themF = −1 andmF = 1 component while δρ corresponds to
the fluctuation of the depletion of themF = 0 component around the mean-field value. Thus,
the correlators that appear in the expansions Eq. (6.9) are the expectation values of products of
these differences and depletions at some space-time point (x, t). This space-time dependence
comes from the s-wave interactions being local in space and time.

Carrying out this expansion around the correlators, we again have a quadratic Lagrangian

L = L0 + L1
fluc + L2

fluc +O(δρ5) = L0 + δρTJ0fluc +
1

2
δρTG0

−1
fluc · δρ (6.10)
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with

J0fluc =

(
φ̇S − 2q − 1

4m

(
(∇φL)

2 − (∇φS)
2
)
− 2c1(ρ̃− 4n)(1 + cosφS)− c1ρ̃

n2 ⟨δεδε⟩ cosφS

−φ̇L − 2c1ρ̃
n2 ⟨δρδε⟩ cosφS

)
(6.11)

and

G0
−1
fluc =

(
G11 G12

G21 G22

)
(6.12)

with

G11 =
ρ̃

ρ̃− 2n

∇2

2mn
+ 8c1(1 + cosφS) +

2c1ρ̃

n3
⟨δεδε⟩ cosφS (6.13)

G22 =
∇2

4mn
− 2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
+

2c1ρ̃

n3
⟨δρδρ⟩ cosφS + 3c1

ρ̃− 2n

n3
⟨δεδε⟩ cosφS

G12 = G21 =
4c1ρ̃

n3
⟨δρδε⟩ cosφS .

Note that against our hopes,G0fluc is not regularized by ⟨δεδε⟩ and ⟨δρδρ⟩ for k = 0. Instead,
G0fluc now becomes singular at twice as many points places if k = 0, namely at

φ
divergence
S = ± arccos

(
−1− ρ̃

4n3
⟨δεδε⟩

)−1

+ 2Zπ. (6.14)

Moreover, as all density fluctuation corrections entering the action like thiswill multiply cosφS ,
no order of such corrections will stabilize the theory at the divergences.

6.1.1. A note on the divergences

To make sense of these divergences, let us look at mean-field dynamics on the spin-nematic
sphere spanned by

{
Fx, Qyz, Qz2−y2

}
. Of course the mean-field dynamics on this sphere, for

which we will assume Fz = 0 and φL = 0 for simplicity, cannot give us a full picture of what
is happening. However, it can help us develop an intuition about why the divergences occur
at φS = (2Z+ 1)π if we ignore the kinetic part of the inverse free propagator.

In Fig. 6.1, the mean-field dynamics on a sphere spanned by {Fx, Qyz, Q0}, whereQ0 only dif-
fers by a constant term fromQz2−y2 in the mean-field approximation and for φL = 0[86]¹. We
see in the right panel of Fig. 6.1 that the Hamiltonian generates dynamics of the mean field in
which either the system stays in a self-trapping region (red), in which φS fluctuates around 0,
or it has a wrap-around trajectory on which the spinor phase can change by 2π. Experimental

¹Note that in the easy-plane phase, {Fx, Qyz, Q0} also span a representation of SU(2) as long as φL = 0 and
the system is in the easy-plane phase.
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Figure 6.1.: Mean-field dynamics on the spin-nematic sphere, taken from [86]. Neglecting the
kinetic terms in Eq. (2.5), we find that, up to irrelevant constants ∝ qρ̃ and ∝ c0/2ρ̃

2, the
Hamiltonian is given by Ĥ = −qQ̂0 + c1/2 :

(
F̂ 2
x + F̂ 2

y + F̂ 2
z

)
: where we have defined

Q̂0 = n̂0 − n̂1 − n̂−1. If we are in the easy-plane phase such that Fz = 0 and assume zero
Larmor phase, i.e. Fy = 0, we find that the mean-field dynamics can be illustrated on this
spin-nematic sphere, with the quadratic Zeeman shift generating rotations around theQ0-axis
and the c1/2F 2

x term rotations around the Fx-axis. Thus, in total, the mean-field dynamics
in the easy-plane phase can be illustrated as the trajectories on the right sphere, with some
self-trapping regions (red) and wrap-around modes (blue) separated by a separatrix (black).

and numerical data showing us that the spinor phase φS is around multiples of 2π for most
of the time corresponds to the system and, especially, the mean field being located in one of
the self-trapping regions. We also note that in the mean-field approximation, ⟨Q̂0⟩ = ρ̃− 4n.
Given this information combined with the picture of the dynamics on the nematic sphere, it
makes sense that fluctuation modes δρ(k) with k ̸= 0 above the mean field are necessary to
leave the self-trapping region and go into a wrap-around trajectory and, thus, enable φS to
cross (2Z+ 1)π as such a fluctuation can lower Q0.

Thus, the divergence of the theory simply tells us that we require non-zero momentum for
the density fluctuation δρ to populate a wrap-around trajectory and “hop” from one potential
minimum to the other.

6.2. Expansion around φS = 2πZ

Let us still continue to investigate this improved theory around φS = 2πZ for the sake of in-
cluding higher-order density fluctuation corrections in the coefficients of Eqs. (5.24) and (5.31),
which could potentially diminish the differences between analytics and numerical simulations
in Fig. 5.3b.
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As we assume small φS around φS = 2πZ, we can again neglect all terms O(k2δ2) as we are
far from the divergences, such that the ∇2-terms in G−1

0 vanish. Moreover, because numer-
ical simulations show that the cross-density correlator ⟨δεδρ⟩ is several orders of magnitude
smaller than the already small ⟨δεδε⟩ and ⟨δρδρ⟩, we will also neglect the off-diagonal parts
of G0

−1
fluc (note that approximation is very similar to the Hartree-Fock-Bogoliubov-Popov ap-

proximation in Sec. 4.3.1). With these approximations, we find

1

2
JT
0 flucG0flucJ0fluc (6.15)

=
1

2

[
n3 (φ̇L)

2

−2n2c1(2n+ (2n− ρ̃) cosφS) + 3c1(ρ̃− 2n)⟨δεδε⟩ cosφS + 2c1ρ̃⟨δρδρ⟩ cosφS

+

(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS)− c1ρ̃
n2 ⟨δεδε⟩ cosφS)

2

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

 ,
and, thus,

ℜLeff = − n

4m
(∇φL)

2 −
(
ρ̃− 2n

8m

)
(∇φS)

2 − 2c1n(ρ̃− 2n) cosφS (6.16)

− 1

2

[
n3φ̇2

L

−2n2c1(2n+ (2n− ρ̃) cosφS) + 3c1(ρ̃− 2n)⟨δεδε⟩ cosφS + 2c1ρ̃⟨δρδρ⟩ cosφS

+

(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS)− c1ρ̃
n2 ⟨δεδε⟩ cosφS)

2

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

 .
Here, we have omitted the imaginary part because, just like in the last chapter, we want to
focus on the real part as the imaginary part only contributes to a damping of the partition
function. A detailed discussion of the imaginary part can be found in App. C.1.

We will now expand around φS ≈ 2πZ again up to order sin4 φS
2 and neglect any terms of the

order of φ̇i sin2 φS
2 and (∇φi)

2 sin2 φS
2 aswell as any terms involving three ormore derivatives.

Moreover, we will only include linear orders in the fluctuations. Performing this expansion, as
well as using the relations Eqs. (5.28) and (5.29), we again find that the theories for φL and φS

decouple. The effective Lagrangian for φL is obtained as

Leff
φL

= − φ̇L
2

−2 q
n + 6c1

ρ̃−2n
n3 ⟨δεδε⟩+ 4c1

ρ̃
n3 ⟨δρδρ⟩

−
[
n

4m
+

ρ̃

64mn2c1
⟨δεδε⟩

]
(∇φL)

2

+O(⟨δδ⟩2, φ̇ sin2,∇φ sin2, φ̇∇2φ,∇3φ). (6.17)
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6. Including higher-order density fluctuations

Meanwhile, the real part of the effective Lagrangian for φS is given by

ℜLeff
φS

=−
φ̇2
S

32c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) +

ρ̃

16n2
⟨δεδε⟩φ̇S

−
[
ρ̃− 2n

8m
− ρ̃

64mn2
⟨δεδε⟩

]
(∇φS)

2 −AR cosφS +BR sin2 φS

+ const.+O(⟨δδ⟩2, sin6, φ̇ sin2,∇φ sin2, φ̇∇2φ,∇3φ) (6.18)

where

AR = 2c1n(ρ̃− 2n)− q2

16c1
− q2ρ̃

128c1n3
⟨δεδε⟩ (6.19)

and

BR =
q2

32c1
− q2ρ̃

128c1n3
⟨δεδε⟩ − qρ̃

32n2
⟨δεδε⟩ (6.20)

The details of this calculation can be found in App. B.3.

These Lagrangians of course reduce to Eqs. (5.24) and Eq. (5.31), respectively, when we set
⟨δεδε⟩ and ⟨δρδρ⟩ to zero. Moreover, the type of Lagrangians has not changed, with Leff

φL

still describing a free theory and Leff
φS

a sine-squared-Gordon model. Nevertheless, if suffi-
ciently large, the density fluctuation expectation values may significantly change the order of
magnitude of the coefficients of the Lagrangian, and, therefore, also change the non-thermal
RG flow of the theory.

6.3. Self-consistent equations for the density fluctuations

We note that for our expansion Eq. (6.9) and the effective theories Eq. (6.17) and (6.18) to be
self-consistent, the correlation functions involving δρ and δε at equal space and time have to
fulfill the equation

⟨δρiδρj⟩ =
δ2

iδJiiδJj

Z̃[J ]

Z̃[0]

∣∣∣∣∣
J=0

(6.21)

with

Z̃[J ] =

∫
DδρDδεDφSDφLe

i
∫
t,x L0

fluc+δρTJ0fluc+
1
2
δρTG0

−1
flucδρ+JT δρ (6.22)

= C

∫
DφSDφLe

i
∫
t,x[L−

1
2
(J0fluc+J)TG0fluc(J0fluc+J)]− 1

2
log detG0

−1
fluc , (6.23)
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6. Including higher-order density fluctuations

where we have again used the notation δρ = (δρ, δε)T .

Applying the functional derivatives to this, we find for the self-consistent equations

G0fluc,ij(⟨δρδρ⟩) = ⟨δρiδρj⟩. (6.24)

As G0fluc also includes ⟨δρiδρj⟩, Eq. (6.24) can only be solved perturbatively, and such a so-
lution would exceed the scope of this work. Instead, we turn to numerical simulations to
determine the numerical values for the full propagators ⟨δρδρ⟩ and ⟨δεδε⟩ in Sec. 6.5.

6.4. Mass Gap of the Effective Theory

Like in Ch. 5, we again want to compare the mass gap of the effective theory for φS against nu-
merical simulations. Including the ⟨δεδε⟩ corrections but still neglecting the imaginary parts,
the equation of motion for φS with density fluctuation corrections becomes, neglecting the
time dependence for ⟨δεδε⟩ as it is very slow (see Sec. 6.5),

− φ̈S

16c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) (6.25)

=

(
ρ̃− 2n

4m
− ρ̃

32mn2
⟨δεδε⟩

)
∇2φS +AR sinφS + 2BR sinφS cosφS

≈
(
ρ̃− 2n

4m
− ρ̃

32mn2
⟨δεδε⟩

)
∇2φS + [AR + 2BR]φS

=

(
ρ̃− 2n

4m
− ρ̃

32mn2
⟨δεδε⟩

)
∇2φS +

[
2c1n(ρ̃− 2n)− 3q2ρ̃

128c1n3
⟨δεδε⟩ − qρ̃

16n2
⟨δεδε⟩

]
φS ,

where we have again linearized the equation of motion in the second step. Thus, the mass gap
corrected by fluctuations to leading order in the latter is given by

mGAP =

√
32c21n(ρ̃− 2n) + 6

ρ̃2c21
n2

⟨δεδε⟩ − 16
ρ̃c21
n

⟨δεδε⟩ − 3

8

ρ̃q2

n3
⟨δεδε⟩, (6.26)

or, as a function of only q and ⟨δεδε⟩,

mGAP =

√√√√4

(
1− q2

(2ρ̃|c1|)2

)
− 64⟨δεδε⟩

ρ̃2
(
1− q

2ρ̃|c1|

) +
96⟨δεδε⟩

ρ̃2
(
1− q

2ρ̃|c1|

)2 − 24q2⟨δεδε⟩

ρ̃4c21

(
1− q

2ρ̃|c1|

)3 ρ̃|c1|
(6.27)
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Figure 6.2.: (a) Fluctuation correlation function ⟨δε(x, t)δε(x, t)⟩ in (1+1)d after a quench from
the polar phase to the easy-plane phase with q = −0.9ρ̃c1. The numerical data stems from
1000 independent truncated Wigner simulations of the full spin-1 Bose gas. (b) Numerical
Fourier transform ⟨δεδε⟩(k, t) =

∫
dxeikx⟨δε(x, t)δε(x, t)⟩ of the same fluctuation correlation

function at different times.

6.5. Numerical results for the density fluctuation corrections

To determine how much the density fluctuation correlators ⟨δεδε⟩ and ⟨δρδρ⟩ change the nu-
merical value of the analytical mass gap Eq. (6.26) and the effective Lagrangians Eqs. (6.17) and
(6.18), we must first know the order of magnitude of those fluctuations. As we do not solve
the self-consistent equation in Sec. 6.3 in the current work, we study the density fluctuation
correlators numerically. In this section, we will present the results for ⟨δεδε⟩ and ⟨δρδρ⟩ from
(1+1)d TWA simulations.

⟨δε(x, t)δε(x, t)⟩ has the biggest influence on the effective actions for φS and φL, as this cor-
relator renormalizes every part of the Lagrangians while ⟨δρ(x, t)δρ(x, t)⟩ only appears in
the imaginary parts of the sine-squared-Gordon potential for φS (see App. C.1). Fig. 6.2 shows
⟨δε(x, t)δε(x, t)⟩ after a quench from the polar to the easy-plane phase with q = −0.9ρ̃c1. The
fluctuations are quite spatially homogeneous for each timeslice, while in the Fourier space, they
plateau for kΛ ≲ k ≲ kξS , with significantly lower values for even higher k. Moreover, it is ap-
parent from this figure that the ε-fluctuation corrections are very small, with values no greater
than 2 × 10−8ρ̃2. It can also be seen that the fluctuations increase in time at first, as they are
several orders of magnitude smaller in the beginning, and then get slightly smaller over time.
This is also illustrated well in Fig. 6.4a, where the spatial average of ⟨δε(x, t)δε(x, t)⟩ is plot-
ted over time. There, we see that starting around t = 2tS and throughout the entire period
in which the spin-1 Bose gas shows self-similar scaling [41], also the ε-fluctuation corrections
decrease with a power law with scaling exponent σε = −0.12850(33).

The correlations ⟨δρ(x, t)δρ(x, t)⟩ behave similarly to ⟨δε(x, t)δε(x, t)⟩, as Fig. 6.3 shows. The
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Figure 6.3.: (a) Fluctuation correlation function ⟨δρ(x, t)δρ(x, t)⟩ in (1+1)d after a quench from
the polar phase to the easy-plane phase with q = −0.9ρ̃c1. The numerical data stems from 1000
independent truncated Wigner simulations of the full spin-1 Bose gas. (b) Numerical Fourier
transform ⟨δρδρ⟩(k, t) =

∫
dxeikx⟨δρ(x, t)δρ(x, t)⟩ of the same fluctuation correlation func-

tion at different times.

main difference is that the fluctuation correlations of δρ are generally smaller than those for
δε, except at very early times where |δρ| is rather large due to our definition of δρ as the fluc-
tuation around the easy-plane mean-field value n, which has not developed shortly after the
quench. Moreover, ⟨δρ(x, t)δρ(x, t)⟩ already starts at quite high values, such that over time,
⟨δρ(x, t)δρ(x, t)⟩ only exhibits a decreasing trend, with a power law behavior after around
t = 2tS as Fig. 6.4b shows. The scaling exponent for this power law is slightly higher than for
⟨δε(x, t)δε(x, t)⟩ with σρ = −0.14538(31).

So far, we have looked at correlators at equal time and space, as they are what corrects our
effective action. If we consider ⟨δε(x, t)δε(y, t)⟩ and ⟨δρ(x, t)δρ(y, t)⟩ as shown in Figs. 6.5a
and 6.5b, we see no big difference in the spectra of the correlators at late times. However, at
early times, the spectrum of the fluctuations ⟨δε(x, t)δε(y, t)⟩, ⟨|δε(k, t)|2⟩, has a clear peak
at ξS , while ⟨|δρ(k, t)|2⟩ has a similar “plateau-spectrum” form at all times. The dominance of
kξS for ⟨δε(x, t)δε(y, t)⟩ at early times could be related to the overpopulation of that mode in
the initial spin density occupation S(k, t).

6.6. Numerical results for the fluctuation-corrected mass gap

Now that we know how big the density fluctuation correlation functions are for the quench
scenario of interest in the current work, we want to look at whether they have a big quan-
titative impact on the effective action parameters. For that, let us consider the mass gap of
the theory, as analytically determined in Eq. (6.26). We have compared this analytical for-
mula with the same numerical simulations as in Fig. 5.3b, now using the maximal value of
⟨δε(x, t)δε(x, t)⟩ ≈ 2 × 10−8ρ̃2. If we do this, we see that for low values of q, there is no
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Figure 6.4.: Time dependence of ⟨δρ(x, t)δρ(x, t)⟩ averaged over space in (1+1)d after a quench
from the polar phase to the easy-plane phase with q = −0.9ρ̃c1. The numerical data stems from
1000 independent truncated Wigner simulations of the full spin-1 Bose gas. For times greater
than 2tS , the fluctuations decay following a power law according to ⟨δεδε⟩ = aε × (t/tS)

σε

and ⟨δρδρ⟩ = aρ × (t/tS)
σρ .
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Figure 6.5.: (a) Fluctuation correlation function ⟨|δε(k, t)|2⟩ and ⟨|δρ(k, t)|2⟩ in (1+1)d after
a quench from the polar phase to the easy-plane phase with q = −0.9ρ̃c1. Note that com-
pared to Figs. 6.2b and 6.3b, these are the Fourier transforms of the full equal-time correlators
⟨δε(x, t)δε(y, t)⟩ and ⟨δρ(x, t)δρ(y, t)⟩. The numerical data stems from 1000 independent
truncated Wigner simulations of the full spin-1 Bose gas. (b) Numerical Fourier transform of
the same fluctuation correlation function at different times.
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Figure 6.6.: Difference between the analytical results for the mass gap for φS according to
Eqs. (5.37) and (6.26) and the numerical results detailed in Sec. 5.2. For the density fluctuation
corrections ⟨δεδε⟩ in the analytical formula, we have used the maximal value encountered in
Fig. 6.2. As can be seen, there is no big difference for low values of q, but the mass gap with
fluctuations is slightly closer to what is observed in numerical simulations than if the additional
density fluctuation corrections are not taken into account. The horizontal lines are given by
the mean of the data points.

visible difference between the mass gap with and without including the density fluctuation
corrections. However, for high values of q, it does make a small difference, and in fact it de-
creases the difference between numerics and analytics. Because this decrease is much smaller
than the errors from determining the mass gap via fit, we cannot speak of a significant effect
due to the low values of ⟨δε(x, t)δε(x, t)⟩, however.

We must note, though, that in the derivation of Eq. (6.26), we have neglected the time de-
pendence of ⟨δε(x, t)δε(x, t)⟩, despite the fluctuation correlations varying in time. However,
because the time evolution follows a scaling law with a very low exponent, not making this
assumption would not make big quantitative differences in Fig. 6.6.

Even though the quantitative difference that the density fluctuation corrections make for the
mass gap is not huge, the fact that the coupling constants of the sine-squared-Gordon model
scale with time could make a qualitative difference influencing the scaling behavior observed
of that theory. This will be further discussed in the conclusion.
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7. A not-so-low-energy effective field
theory

In the past two chapters, we have developed effective field theories for the phase degrees of
freedom of the spin-1 Bose gas expanded around φS = 2πZ as numerical simulations and ex-
periments show φS to be close to these values for most of the dynamics after a quench from
the polar to the easy-plane phase. In doing so, we have seen that if we neglect the kinetic part
in the inverse free propagatorG−1

0 , the effective theories diverge around φS = (2Z+ 1)π and
no inclusion of density fluctuation corrections can fix this. This has led us to the conclusion
that in order for φS to jump between the minima of the periodic potential, there needs to be
non-zero momentum of the fluctuations δρ.

As these jumps are seen in numerical simulations of a quench from the polar to the easy-plane
phase in the form of real-time (anti)-instantons [41], we want to develop a theory that can
describe what happens for the phases at these jumps in this chapter. We find that if we assume
a characteristic momentum kI for the density fluctuations, the effective field theory for φS and
φL becomes regular around the φS = (2Z+ 1)π. Moreover, if we expand this theory around
φS = (2Z+ 1)π for a characteristic momentum kI = kξS , the potential for φS shows shallow
local minima on top of the global maxima. These qualitatively match numerical observations
of φS at times of instanton occurrences.

7.1. A characteristic momentum

If we want to consider what happens around φS = (2Z+ 1)π, we must not neglect the ∇2-
terms inG−1

0 (Eq. (6.12)). If we include these terms, however, we face another problem: With-
out the ∇2-terms, G−1

0 is diagonal in position space, allowing us the analytical evaluation of
1
2J

T
0G0J0 pointwise at each x and immensely simplifying the evaluation of the log det terms

in the imaginary part of the effective action. Meanwhile, the ∇2-terms are only diagonal in
momentum space, where the x-dependent other parts ofG0 are non-diagonal. To invertG−1

0 ,
we would, therefore, have to find the general Green’s functionG0 such that∫

z
G−1

0 (x− z)G0(z − y) = δ(x− y) (7.1)
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which involves solving differential equations like[
ρ̃

ρ̃− 2n

∇2

2mn
+ 8c1(1 + cosφS(x)) +

2c1ρ̃

n3
⟨δε(x)δε(x)⟩ cosφS(x)

]
G11(x− y) = δ(x− y)

(7.2)

or, without the density fluctuation corrections,[
ρ̃

ρ̃− 2n

∇2

2mn
+ 8c1(1 + cosφS(x))

]
G11(x− y) = δ(x− y), (7.3)

which do not have solutions for a general function φS .

Thus, we cannot analytically include the full momentum-dependence ofG−1
0 . However, if we

assume that the fluctuations δρi have support mainly in a narrow region of k centered around
some characteristic tunneling momentum kI , we can approximate∫

x
δρi(x)∇2δρi(x) = −

∫
k
k2δρi(k)δρi(−k)

≈ −k2I
∫
k
δρi(k)δρi(−k)

= −k2I
∫
x
δρi(x)

2, (7.4)

where we explicitly do not use the Einstein sum convention. Consequently, we obtain

G0
−1
fluc =

(
G11 0

0 G22

)
(7.5)

with

G11 = −
k2I
2mn

ρ̃

(ρ̃− 2n)
+ 8c1(1 + cosφS) +

2c1ρ̃

n3
⟨δεδε⟩ cosφS (7.6)

G22 = −
k2I
2mn

− 2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
+

2c1ρ̃

n3
⟨δρδρ⟩ cosφS + 3c1

ρ̃− 2n

n3
⟨δεδε⟩ cosφS

(7.7)

which now, again, is diagonal in position space for a constant kI .

The kI -terms then act as a regulator for the theory and the real part of the effective Lagrangian
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Figure 7.1.: Terms in ℜLeff (Eq. (7.9)) involving no derivatives for different values of the reg-
ularization momentum kI in units of ρ̃2|c1|. For kI = 0, this pseudopotential exhibits two
divergences (blue curve). For − k2I

2mn
ρ̃

(ρ̃−2n) = − k2crit
2mn

ρ̃
(ρ̃−2n) = 2c1ρ̃

n3 ⟨δεδε⟩, there is only one
divergence left (red curve). If kI is increased further, the divergences disappear completely
(indigo curve). For this plot, we have assumed q = −0.9ρ̃|c1|

and ⟨δεδε⟩ = 2× 10−8.

becomes

ℜLeff = − n

4m
(∇φL)

2 −
(
ρ̃− 2n

8m

)
(∇φS)

2 − 2c1n(ρ̃− 2n) cosφS (7.8)

− 1

2

[
n3φ̇2

L

− k2I
2mn − 2n2c1(2n+ (2n− ρ̃) cosφS) + 3c1(ρ̃− 2n)⟨δεδε⟩ cosφS + 2c1ρ̃⟨δρδρ⟩ cosφS

+

(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS)− c1ρ̃
n2 ⟨δεδε⟩ cosφS)

2

− k2I
2mn

ρ̃
(ρ̃−2n) + 8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

 .
Fig. 7.1 shows that as we increase kI , the two divergences that occur in the effective Lagrangian
around π first become one and then disappear completely.

After the theory is regularized, the density fluctuation corrections play no crucial role anymore
as they are numerically small, so that in the following, we will work with the theory without
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those corrections, leaving us with

ℜLeff = − n

4m
(∇φL)

2 −
(
ρ̃− 2n

8m

)
(∇φS)

2 − 2c1n(ρ̃− 2n) cosφS (7.9)

− 1

2

[
n3 (φ̇L)

2

−k2In
2

2m − 2n2c1(2n+ (2n− ρ̃) cosφS)

+

(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS))
2

− k2I
2mn

ρ̃
(ρ̃−2n) + 8c1(1 + cosφS)

 .
Note that we have again omitted the imaginary part of the effective action, as our analysis
in this work concentrates on the real part. Discussion of the imaginary part can be found in
App. C.2.

7.2. Expansion around φS = π

As the assumption of a characteristic momentum for δρ is only really valid for instantons
and, thus, around φS = (2Z + 1)π, we can now proceed similarly to before and perform an
expansion of Leff around small absolute values of 1 + cosφs up to O(1 + cosφs)

2. If we also
again neglect any terms of the order φ̇i(1 + cosφs) and (∇φi)

2(1 + cosφs) as well as higher
than quadratic terms in the derivatives, the theories for φS and φL decouple again and we get
(see details in App. B.4)

Leff
φL

= −
φ̇2
L

4c1ρ̃
n +

k2I
mn

−

 n

4m
+

q
k2I

2mn
ρ̃

ρ̃−2n

1

2m

 (∇φL)
2 +O (φ̇(1 + cos),∇φ(1 + cos))

(7.10)

for the Lagrangian for φL and

ℜLeff
φS

=−
φ̇2
S

k2I
mn

ρ̃
ρ̃−2n

−

 ρ̃− 2n

8m
− q

k2I
2mn

ρ̃
ρ̃−2n

1

2m

 (∇φS)
2 (7.11)

−AR cosφS −BR sin2 φS + const. +O
(
(1 + cos)3, φ̇(1 + cos),∇φ(1 + cos)

)
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for the real part of the Lagrangian for φS with

A =2c1n(ρ̃− 2n) +
4q2

k2I
mn

ρ̃
ρ̃−2n

1
2
+

8c1
k2I

2mn
ρ̃

ρ̃−2n

− 2

 8c1
k2I

2mn
ρ̃

ρ̃−2n

2 (7.12)

B =
4q2

k2I
mn

ρ̃
ρ̃−2n

1
4
− 8c1

k2I
2mn

ρ̃
ρ̃−2n

+

 8c1
k2I

2mn
ρ̃

ρ̃−2n

2 . (7.13)

In this calculation, we have used (1 + cosφS)
2 = 2+ 2 cosφS − sin2 φS as well as the Taylor

expansion 1
1+x = 1− x+ x2 +O(x3) and neglected any constant terms. The imaginary part

can be found in App. C.2.

Note that the prefactor of the time derivative for the Larmor phase in Eq. (7.10) diverges for
twice the spin healing momentum kI = 2kξS , such that the Larmor phase becomes static. Be-
cause at φS = (2Z+1)π, which we assume approximately in this expansion, the Larmor phase
is not well-defined anymore as there is no elongation of F⊥ in the spin sphere (see Fig. 2.4),
this is not a problem, however.

In the following, we will now use the spin healing momentum kI = kξS =
√
−2c1ρ̃m =√

2|c1|ρ̃m as the characteristic momentum for two reasons. Firstly, ξS is generally the char-
acteristic lengthscale for defects in the system to occur. Secondly, it was found in [38] that
the healing momentum is overpopulated, especially shortly after the quench. Thus, the (anti)-
instantons atmomentum kξS could be associatedwith the cascades driving the scaling observed
in [38, 41]. If we insert kξ into Eqs. (7.10) and (7.12), we find

Leff
φL

=
nφ̇2

L

2c1ρ̃
−
[
n

4m
− qn(ρ̃− 2n)

c1ρ̃2
1

2m

]
(∇φL)

2 +O (φ̇(1 + cos),∇φ(1 + cos)) (7.14)

and

ℜLeff
φS

=−
φ̇2
Ln(ρ̃− 2n)

2c1ρ̃2
−
[
ρ̃− 2n

8m
+
qn(ρ̃− 2n)

c1ρ̃2
1

2m

]
(∇φS)

2 (7.15)

−AR cosφS +BR sin2 φS + const. +O
(
⟨δδ⟩2, (1 + cos)3, φ̇(1 + cos),∇φ(1 + cos)

)
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Figure 7.2.: Sine-squared-Gordon potentials for φS after expansion of the effective action
around φS = 2πZ assuming ∇2 = 0 and φS = (2Z + 1)π assuming regulator momen-
tum kξS . For both, we have once again used q = −0.9ρ̃c1 and shown the potentials in units of
ρ̃2|c1|. The inset shows a histogram of the spinor phase φS at the occurrence of an instanton.
The data for this comes from [41] It can be clearly seen that at the time of the instanton, there
is a non-zero population at φS = (2Z+1)π, with the structure of the histogram corresponding
to the potential stemming from the expansion around φS = π.

where

AR =2c1n(ρ̃− 2n)− 2q2n(ρ̃− 2n)

c1ρ̃2

[
1

2
− 8(ρ̃− 2n)n

ρ̃2
− 128(ρ̃− 2n)2n2

ρ̃4

]
(7.16)

BR =
2q2n(ρ̃− 2n)

c1ρ̃2

[
1

4
+

8(ρ̃− 2n)n

ρ̃2
+

64(ρ̃− 2n)2n2

ρ̃4

]
(7.17)

(7.18)

In Fig. 7.2, this sine-squared-Gordon potential is compared to the one obtained from the expan-
sion around φS = 2πZ in Sec. 5.1.3. Of course, this figure again has to be taken with a grain of
salt as the two expansions are only valid around φS = (2Z+ 1)π and φS = 2πZ, respectively.

The main takeaway of this figure is, of course, that there is no divergence around φS =

(2Z+ 1)π anymore if we include a cutoff momentum. Moreover, it is worth noting that the
expansion around φS = (2Z+ 1)π leads to broader maxima and narrower minima as well as
higher potential barriers compared to the expansion around 2πZ, which may further explain
why numerical simulations show φS to be so centered around φS = 2πZ (see Fig. 5.2b). In
addition, the potential for this expansion shows small dips in the global potential maxima at
φS = (2Z+ 1)π. These perfectly coincide with the histograms of φS around an instanton
seen in numerical simulations [84] in the inlay in Fig. 7.2.
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7. A not-so-low-energy effective field theory

Figure 7.3.: Globalmaxima for the spinor phase potential expanded aroundπ assuming different
characteristic momenta kI . The potential is normalized by its value at π and we have used
q = −0.9ρ̃c1 for plotting.

The fact that the expansion around (2Z+ 1)π is regular at all manifests our discussion from
Sec. 6.1.1 that we need non-zero momenta for the fluctuations δρ to be able to see any hopping
between the periodic potential minima. Moreover, this form of the potential including flat dips
on top of the potential peaks implies that it should be possible for the spinor phase to stay in
the local minimum at (2Z+ 1)π for a while, leading to an elongated dip in F⊥ before jumping
to the next global minimum, causing a phase jump in the Larmor phase Eq. (2.38), r jumping
back into the original minimum. However, this is of course limited by the shallowness of the
minimum at (2Z+ 1)π, with the (anti)-instantons being subject to false vacuum decay as de-
tailed in [51].

It is interesting to consider what happens if, against our original assumptions, the characteris-
tic momentum is not in the realm of kξS . If we look at the potentials for different characteristic
momenta as plotted in Fig. 7.3, we see that for low values of kI , there also only is a shallow
minimum on top of the global maxima as if the characteristic momentum for δρ was that low,
there would not be many tunneling occurrences, thus not many quasiparticles even seeing the
maximum. The local minimum at (2Z+ 1)π then first grows deeper with higher characteris-
tic momentum, as more and more occurrences of quasiparticles hopping the maximum would
be possible with increasing kI but they would get stuck at the top, not being able to escape
anymore. Then, for kI = kξ the momentum of δρ is high enough that most quasiparticles tun-
nel directly without getting stuck on top, again leading to a shallow minimum. Lastly, if the
characteristic momentum for δρ was even higher, the minimum on top of the global maxima
would vanish as no quasiparticles would get stuck on top of the maximum anymore.

Fig. 7.2 captures the essence of this work: We now have two theories describing the phase
degrees of freedom of the spin-1 Bose gas near the easy-plane phase - one valid for small
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7. A not-so-low-energy effective field theory

angles and small momenta, and one that is valid around the maxima of the potential where
we have assumed the hopping between the potential wells to take place with the spin healing
momentum kI = kξS . In future works, one could interpolate between these potentials in order
to perform numerical simulations of the dynamics of φS in a potential that is as realistic as
possible.
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8. Conclusion

In this work, we have developed different effective field theories for the spin-1 Bose gas far
from equilibrium after a quench from the polar to the easy-plane phase. At first, we have used
the 2PI effective action formalism to derive an effective action, as well as a closed set of evo-
lution equations for both the field expectation value and the full propagator to leading order.
While this formalism is useful for including far from equilibrium initial conditions, it does not
allow us to reduce the degrees of freedom of the theory. Moreover, as we have seen the im-
portance of the gapped spinor phase in the effective theories developed in Ch. 5-7, we could
question whether the large N expansion, which we have argued to be applicable also in the
spin-1 Bose gas for describing mostly the Goldstone modes, should be used in the way done in
Ch. 4. Further analytical investigation of this formalism is subject to future work.

For the remainder of the thesis, we have used a different approach, integrating out the density
fluctuations around the mean-field values of the easy-plane phase, leaving us with a theory
only for the phase degrees of freedom in the easy-plane phase: the spinor phase φS and the
Larmor phase φL. We have found that if we neglect the kinetic part of the density fluctuations,
our effective theory diverges periodically at φS around (2Z+ 1)π. We could explain this fact
by considering the mean-field trajectories of the spin-1 Bose gas on the spin-nematic sphere,
which illustrate that density fluctuations at non-zero momentum are necessary for the system
to leave closed, self-trapping trajectories around φS = 2πZ.

For φS around these values, we have been able to expand this divergent effective theory into a
regular one, finding that under some reasonable approximations, φL and φS decouple, yield-
ing a free theory for φL and a sine-Gordon theory with additional sin2 φ-term for φS . This
sine-squared-Gordon theory qualitatively agrees with the form of the periodic potential for φS

observed in numerical simulations as well as the experiment. Moreover, the mass gap for this
effective theory for φS agrees with the Bogoliubov prediction.

Using this method, we have also included higher orders in the density fluctuation by expanding
the Lagrangian up to fourth order in the density fluctuations and then expanding higher than
quadratic terms in δρ and δε around correlations like ⟨δρδρ⟩ and ⟨δεδε⟩ at equal space and
time. We have found that such terms do not regularize the effective theory at k = 0 and due
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to small numerical values of the correlators after a quench far from equilibrium, they do not
have a large qualitative impact on the parameters of the effective theory if we expand around
φS = 2πZ. However, for high q, they seem to move the analytical mass gap slightly closer to
the numerics compared to the Bogoliubov result.

In the last chapter, we have been able to regularize the effective theory around φS = (2Z+1)π

by introducing a characteristic momentum for the fluctuations δρ. Expanding around the max-
ima of the periodic potential for φS at φS = (2Z + 1)π, we have once more found that the
theories forφL andφS decouple, yielding again a free theory forφS and a sine-squared-Gordon
theory for φS . Compared to the theories found before by expanding around φS = 2Zπ and not
including the kinetic terms for the density fluctuations, the potential for φS in this theory has
narrower minima as well as broader and higher global potential maxima that include a shallow
local minimum at φS = (2Z+ 1)π if we assume the characteristic momentum to be the spin
healing momentum kI = kξS .

With this theory, we could explain the instantons observed in [84] despite the initial effective
theories seeming not to allow for these defects. The form of the potential for φS around the
maxima has even been found to qualitatively correspond to the numerical spinor phase his-
togram around the time that an instanton occurs. Moreover, due to the shallow minimum at
the top of the global maxima, we could connect the instantons to false vacuum decay.

In this work, we have mostly focussed our discussion on the real part of the effective field
theories. The imaginary parts are considered in the Appendix. We have found for the theo-
ries expanded around φS = 2Zπ that the imaginary part of the effective action simply leads
to a damping of the partition function in the relevant region of φS . For the theory expanded
around φS = (2Z + 1)π, this is also the case except when the system gets very near to the
quantum phase transition. In this case, we hypothesize that defects such as instantons can lead
to exponentially growing modes during the small time that they spend around the potential
maxima of φS . A thorough investigation of the imaginary parts is subject to future works.

Of course, the theories developed in this work have their limitations. In general, we have ne-
glected any terms that could lead to potentials dependent on the derivatives of the Larmor and
the spinor phase, which is only valid for lowmomenta and energies. Moreover, becausewe can-
not include the full momentum dependence of the density fluctuations in our effective theory,
we had to make approximations, neglecting the kinetic part for these fluctuations when we ex-
panded around φS = 2Zπ and assuming a characteristic momentum corresponding to the spin
healingmomentumwhenwe expanded around the potential maxima atφS = (2Z+1)π. While
these approximations are inspired by numerical observations and the typically low momenta
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present in ultra-cold Bose gases, they still limit the applicability of the theories. It would be
interesting to combine the theories expanded around φS = 2Zπ and around φS = (2Z+1)π,
for example through interpolation between the two, to obtain a theory that is approximately
valid for all values of φS .

In future works, it would also be highly interesting to use the effective theories developed
in this thesis in numerical investigations of their respective scaling behavior. First numerical
simulations of the effective theory for φS in Ch. 5 have already been carried out [84]. As-
suming far-from-equilibrium initial conditions, it has been observed that the phase correlator
⟨|φS(k)|2⟩ in (1+1)d can exhibit spatio-temporal self-similar scaling with the same scaling ex-
ponent α ≈ 1/4 ≈ β as numerically observed for S(k, t) in the full (1+1)d spin-1 Bose gas
[38]. Moreover, for the (2+1)d effective theory, the results of [9] for the (2+1)d spin-1 Bose gas
with β ≈ 1/2 and α ≈ 1 could be reproduced [84]. Furthermore, scaling in the (1+1)d sine-
squared Gordon model with α ≈ 1/3 ≈ β could be observed as well, as it has been analytically
predicted for the sine-Gordon model using the 2PI action formalism [87].

We could now investigate how the theories developed in this work would influence these
numerical results. It would, for example, be interesting to numerically study how includ-
ing the scaling density fluctuation corrections affects the scaling behavior observed in the
sine-squared Gordon model. Moreover, one could interpolate between the potential expanded
around φS = 2Zπ and that expanded around φS = (2Z+ 1)π, including the small dips at the
global maxima to obtain a more realistic effective theory for φS and to probe this theory nu-
merically. Using this interpolated theory for a scaling analysis, we could possibly make some
conclusions about the instantons’ effect on the scaling of the theory, as only they “see” the
global potential maxima.

It is well-known that the pure sine-Gordon model effectively describes or can be mapped to
a plethora of different condensed matter systems, from two coupled condensates [88] to the
BKT transition in superfluids and superconductors [89, 90]. Thus, we hope that, similarly, the
considerations of the sine-squared Gordon model in the current work may help develop effec-
tive theories for systems beyond those considered in the present work and in [51], either as
improved effective theories for systems approximately described by the sine-Gordon model or
as effective theories for systems with more complex interactions.

One such example has been seen in [51], where they have found that a 2-component BEC can
also be described via a sine-squared-Gordon theory, allowing for quantum simulation of false
vacuum decaywith such a system. According to our results showing periodic false vacuums for
φS in Ch. 7 for appropriate momenta of the fluctuations δρ, such a study of false vacuum decay

87



8. Conclusion

could also be a possibility in the 3-component BEC. However, due to the approximations made
in our theory and the fact that the false vacuum of the potential seems to depend on the mo-
mentum of the density fluctuations, it is not clear whether an experimental realization would
be feasible. Regardless, it would be interesting to investigate in the future whether higher-
spin BECs can also be described by a sine-squared Gordon theory under certain conditions,
potentially also allowing for quantum simulations of false vacuum decay.
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A. Numerical parameters

For the numerical simulations in the present work, we have used the following parameters
unless otherwise stated:

Quantity Numerical value Physical value
Particle number 3× 106 3× 106

Lattice spacing ∆x 1.00 5.371× 10−8 µm
c0 1.233× 10−3 1.768× 10−39 Jm
c1 −5.702× 10−6 −8.181× 10−42 Jm

Healing length ξ 0.7442 3.997× 10−8 µm
Spin healing length ξS 10.94 5.87× 10−7 µm

System length L 4096 374.4 ξS

Total density ρ̃ 732.4 8014 ξ−1
S

Spin healing time tS 1504 5.939× 10−3 s

Table A.1.: Values used in the numerical simulations of the (1+1)d spin-1 Bose gas, given to
four significant digits. Numerical values in dimensionless units as defined in Sec. 3.1

For c0 and c1 specifically, these are the values for 87Rb adjusted to quasi-1d as in Eq. (2.71)
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B. Derivations and Expansions

In the following, we provide somemore derivations and the details of some tedious calculations
that have been omitted in the main text for brevity.

B.1. The 1PI effective action

In this section, we will demonstrate the derivation of the 1PI effective action to 1-loop order,
explaining the result Eq. (4.35). We will follow [91] for this and set R = 0 in this section.

As explained in Sec. 4.1.5, we find the quantum equations of motion Eqs. (4.34a) and (4.34b) for
the effective action ΓR=0. Using the definition Eq.(4.33), we can write

eiΓ
R=0[Φ] = ei(W [J ]−J†·Φ) =

∫
Dϕei(S[ϕ]+J†·(ϕ−Φ)) (B.1)

=

∫
Dfei(S[Φ+f ]+J†·f) (B.2)

where we have defined f = ϕ− Φ. To get ΓR=0 to 1-loop order, we can now expand

S[Φ + f ] = S[Φ] +
δS

δΦ
· f +

1

2
f · δ2S

δΦδΦ
· f +O(f3) (B.3)

and use Eq. (4.34a) to obtain

eiΓ
R=0[Φ] =

∫
Dfei

(
S[Φ]+

(
δS
δΦ

− δΓR=0

δΦ

)
·f+ 1

2
f · δ2S

δΦδΦ
·f+O(f3)

)
(B.4)

Using now that

ΓR=0 = S + 1− loop, (B.5)

we find that to 1-loop order

δΓR=0

δΦ
=
δS

δΦ
+ 1− loop (B.6)
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such that to this order, the linear term in Eq. (B.4) cancels and we are left with

eiΓ
R=0,1−loop[Φ] =

∫
Dfei

(
S[Φ]+ 1

2
f · δ2S

δΦδΦ
·f+O(f3)

)
(B.7)

∝ det
(
G−1

0

)−1/2
eiS[Φ] (B.8)

where we have used Eq. (4.36) and, thus,

ΓR=0,1−loop = S[Φ] +
i

2
log det

[
G−1

0

]
(B.9)

= S[Φ] +
i

2
Tr log

[
G−1

0

]
(B.10)

up to irrelevant constants.

B.2. Expansion in the density fluctuations

Here, we carry out the expansion of Lagrangian Eq. (⁇) up to the fourth order in the density
fluctuations. This Lagrangian has two terms where the δρ and δε appear non-linearly: For
once, they are found in the potential in the prefactor of the cosine term, which involves√

n2 + δρ2 + 2nδρ− δε2 (B.11)

= n

(
1 +

δρ

n
− δε2

2n2
+
δρδε2

2n3
− δρ2δε2

2n4
− δε4

8n4

)
+O(δ5). (B.12)

Moreover, the spatial derivative terms of the densities can be expanded as

(n+ δρ− δε)(∇ log (n+ δρ− δε))2 + (n+ δρ+ δε)(∇ log (ρ+ ε))2 (B.13)

+ (ρ̃− 2n− 2δρ)(∇ log (ρ̃− 2n− 2δρ))2

=2

(
1

n
− δρ

n2
+
δρ2 + δε2

n3

)(
(∇δρ)2 + (∇δε)2

)
+ 4

(
−δε
n

+
2δεδρ

n2

)
∇δε∇δρ

+
4

ρ̃− 2n

(
1 +

2δρ

ρ̃− 2n
+

4δρ2

(ρ̃− 2n)2

)
(∇δρ)2 +O(δ5) (B.14)

if we use that n and ρ̃ are approximately constant.

B.3. Expanding the real part of the effective Lagrangian for
small φS including density fluctuation corrections

In this section, we want to detail the expansion of the effective Lagrangian in Sec. 6.1 for small
angles to obtain the effective theory in Sec. 6.2. For that, we first consider its real part involving
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the 1
2J

TGJ term Eq. (6.16)

1

2
JTGJ (B.15)

=
1

2

[
n3φ̇2

L

−2n2c1(2n+ (2n− ρ̃) cosφS) + 3c1(ρ̃− 2n)⟨δεδε⟩ cosφS + 2c1ρ̃⟨δρδρ⟩ cosφS

+

(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS)− c1ρ̃
n2 ⟨δεδε⟩ cosφS

)2
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

 ,
Neglecting the terms O(φ̇ sin2,∇2 sin2,∇3, φ̇∇2) and higher, we have

n3φ̇2
L

−2n2c1(2n+ (2n− ρ̃) cosφS) + 3c1(ρ̃− 2n)⟨δεδε⟩ cosφS + 2c1ρ̃⟨δρδρ⟩ cosφS
(B.16)

=
φ̇L

2

− q
n + 3c1

ρ̃−2n
n3 ⟨δεδε⟩+ 2c1

ρ̃
n3 ⟨δρδρ⟩

+O(φ̇ sin2,∇3, φ̇∇2))

and(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS)− c1ρ̃
n2 ⟨δεδε⟩

)2
cosφS

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.17)

=
φ̇2
S

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

+
2φ̇S

(
−2q − 2c1(ρ̃− 4n)(1 + cosφS)− c1ρ̃

n2 ⟨δεδε⟩ cosφS

)
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

+

(∇φL)
2−(∇φS)

2

2m

(
2q + 2c1(ρ̃− 4n)(1 + cosφS) +

c1ρ̃
n2 ⟨δεδε⟩ cosφS

)
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

+

(
2q + c1ρ̃

n2 ⟨δεδε⟩ cosφS

)2
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

+
4c21(ρ̃− 4n)2(1 + cosφS)

2

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

+
4c1(ρ̃− 4n)(1 + cosφS)

(
2q + c1ρ̃

n2 ⟨δεδε⟩ cosφS

)
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

+O(∇3, φ̇∇2)

We now want to expand terms now for small φS up to to order sin4 φS
2 . Moreover, assuming

that sin2 φS
2 is small, we also neglect any terms of the order of φ̇i sin2 φS

2 and (∇φi)
2 sin2 φS

2

and only include linear orders in the fluctuations.

To carry out this expansion, the following reoccurring approximations are helpful, in which
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we have included ⟨δεδε⟩ up to linear order:

1

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.18)

=
1

16c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
)(

1−
1+ ρ̃

4n3 ⟨δεδε⟩
1+ ρ̃

8n3 ⟨δεδε⟩
sin2 φS

2

)
≈ 1

16c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) ∞∑

k=0

sin2k(φS

2
)

(
1 +

kρ̃

8n3
⟨δεδε⟩

)

=
1

16c1

∞∑
k=0

sin2k(φS

2
)

(
1 +

(k − 1)ρ̃

8n3
⟨δεδε⟩

)
1 + cosφS

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.19)

≈
2(1− sin2 φS

2 )

16c1

∞∑
k=0

sin2k(φS

2
)

(
1 +

(k − 1)ρ̃

8n3
⟨δεδε⟩

)

=
1

8c1

(
1− ρ̃

8n3
⟨δεδε⟩+

∞∑
k=1

[
1 +

(k − 1)ρ̃

8n3
⟨δεδε⟩ − 1− (k − 2)ρ̃

8n3
⟨δεδε⟩

]
sin2k(φS

2
)

)

≈ 1

8c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) +

∞∑
k=1

sin2k(φS
2 )

8c1

ρ̃

8n3
⟨δεδε⟩

(1 + cosφS)
2

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.20)

≈ 2(1− sin2 φS

2
)

 1

8c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) +

∞∑
k=1

sin2k(φS
2 )

8c1

ρ̃

8n3
⟨δεδε⟩


=

1

4c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) −

sin2(φS
2 )

4c1
+

sin2(φS
2 )

16c1

ρ̃

n3
⟨δεδε⟩

(1 + cosφS) cosφS

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.21)

≈ (1− 2 sin2 φS

2
)

 1

8c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) +

∞∑
k=1

sin2k(φS
2 )

8c1

ρ̃

8n3
⟨δεδε⟩


=

1

8c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) −

sin2 φS
2

8c1

(
1 + 3ρ̃

16n3 ⟨δεδε⟩
) −

∞∑
k=2

sin2k(φS
2 )

8c1

ρ̃

8n3
⟨δεδε⟩ (B.22)
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Moreover, through linear combinations of these we find

cosφS

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.23)

≈ 1

8c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) +

∞∑
k=1

sin2k(φS
2 )

8c1

ρ̃

8n3
⟨δεδε⟩

− 1

16c1

∞∑
k=0

sin2k(φS

2
)

(
1 +

(k − 1)ρ̃

8n3
⟨δεδε⟩

)

=
1

16c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) − 1

16c1

∞∑
k=1

sin2k(φS

2
)

(
1− (k + 1)ρ̃

8n3
⟨δεδε⟩

)
. (B.24)

With these approximations, we can then expand the different terms in Eq. (6.16) up to order

94



B. Derivations and Expansions

sin4 φ/2, yielding

φ̇2
S

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.25)

=
φ̇2
S

16c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) +O(φ̇S sin2)

2φ̇S

(
−2q − 2c1(ρ̃− 4n)(1 + cosφS)− c1ρ̃

n2 ⟨δεδε⟩ cosφS

)
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.26)

= −
2φ̇S

c1ρ̃
n2 ⟨δεδε⟩

16c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) +O(φ̇S sin2)

= − ρ̃

8n2
⟨δεδε⟩φ̇S +O(φ̇S sin2, ⟨δδ⟩2)

(∇φL)
2−(∇φS)

2

2m

(
2q + 2c1(ρ̃− 4n)(1 + cosφS) +

c1ρ̃
n2 ⟨δεδε⟩ cosφS

)
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.27)

=

(∇φL)
2−(∇φS)

2

2m
c1ρ̃
n2 ⟨δεδε⟩

16c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) +O(∇φS sin2)

=
ρ̃

32mn2
⟨δεδε⟩

[
(∇φL)

2 − (∇φS)
2
]
+O(∇φS sin2, ⟨δδ⟩2)

(
2q + c1ρ̃

n2 ⟨δεδε⟩ cosφS

)2
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.28)

= 4q2
(sin2(φS

2 )

16c1
+

sin4(φS
2 )

16c1

(
1 +

ρ̃

8n3
⟨δεδε⟩

))
+

4qc1ρ̃

n2
⟨δεδε⟩

(
−
sin2(φS

2 )

16c1
−

sin4(φS
2 )

16c1

)
+ const.+O(sin6, ⟨δδ⟩2)

4c21(ρ̃− 4n)2(1 + cosφS)
2

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.29)

= q2
sin2(φS

2 )

16c1

ρ̃

n3
⟨δεδε⟩+ const.+O(⟨δδ⟩2)

4c1(ρ̃− 4n)(1 + cosφS)
(
2q + c1ρ̃

n2 ⟨δεδε⟩ cosφS

)
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

(B.30)

=
−4q2(1 + cosφS)− 2 qc1ρ̃

n2 ⟨δεδε⟩ cosφS(1 + cosφS)

8c1(1 + cosφS) +
2c1ρ̃
n3 ⟨δεδε⟩ cosφS

= − q2

16c1

ρ̃

n3
⟨δεδε⟩

(
sin2 φS

2
+ sin4 φS

2

)
+

qρ̃

2n2
⟨δεδε⟩ sin2(φS

2
) + const.+O(⟨δδ⟩2)
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where we have always used the mean-field relation q = −2c1(ρ̃− 4n). Thus, we get

1

2
JT
flucGflucJfluc =

φ̇2
S

32c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) − ρ̃

16n2
⟨δεδε⟩φ̇S (B.31)

+
ρ̃

64mn2
⟨δεδε⟩

[
(∇φL)

2 − (∇φS)
2
]

+ sin2(φS

2
)

[
qρ̃

8n2
⟨δεδε⟩+ q2ρ̃

64n3c1
⟨δεδε⟩

]
+ sin4(φS

2
)

[
q2

8c1
− qρ̃

8n2
⟨δεδε⟩ − q2ρ̃

32n3c1
⟨δεδε⟩

]
(B.32)

+
φ̇L

2

−4 q
n + 6c1

ρ̃−2n
n3 ⟨δεδε⟩+ 4c1

ρ̃
n3 ⟨δρδρ⟩

+ const.+O
(
⟨δδ⟩2, sin6, φ̇ sin2,∇φ sin2, φ̇∇2φ,∇3φ

)
We can now use the trigonometric identities

sin2(φ/2) = −1

2
cos(φ) + const. (B.33)

and
sin4(φ/2) = −1

2
cos(φ)− 1

4
sin2(φ) + const., (B.34)

finding

1

2
JT
0 flucG0flucJ0fluc =

φ̇2
S

32c1

(
1 + ρ̃

8n3 ⟨δεδε⟩
) − ρ̃

16n2
⟨δεδε⟩φ̇S (B.35)

+
ρ̃

64mn2
⟨δεδε⟩

[
(∇φL)

2 − (∇φS)
2
]

+ sin2 φS

2

[
qρ̃

8n2
⟨δεδε⟩+ q2ρ̃

64n3c1
⟨δεδε⟩

]
+ sin4 φS

2

[
q2

8c1
− qρ̃

8n2
⟨δεδε⟩ − q2ρ̃

32n3c1
⟨δεδε⟩

]
(B.36)

+
φ̇L

2

−2 q
n + 6c1

ρ̃−2n
n3 ⟨δεδε⟩+ 4c1

ρ̃
n3 ⟨δρδρ⟩

+ const.+O
(
⟨δδ⟩2, sin6, φ̇ sin2,∇φ sin2, φ̇∇2φ,∇3φ

)
.

This then just has to be inserted in Eq. (5.13) in order to obtain the real part of the effective
actions for φS and φL.
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B.4. Expanding the real part of the effective Lagrangian around
φS = π including a momentum cutoff

In this section, we want to detail the expansion of the effective Lagrangian in Ch. 7 for φS

around (2Z + 1)π to obtain the effective theory in Sec. 7.2. Around φS = (2Z + 1)π, we can
expand

1

2
JTG−1

0 J =
1

2

[
n3 (φ̇L)

2

− k2I
2mn − 2n2c1(2n+ (2n− ρ̃) cosφS)

(B.37)

+

(
φ̇S − 2q − (∇φL)

2−(∇φS)
2

4m − 2c1(ρ̃− 4n)(1 + cosφS))
2

− k2I
2mn

ρ̃
(ρ̃−2n) + 8c1(1 + cosφS)


to second order in 1+ cosφS . We find, neglecting terms of the order φ̇(1+ cos),∇φ(1+ cos),
as well as any terms involving more than 2 derivatives

1

2
JTG−1

0 J =−
φ̇2
S

k2I
mn + 4c1ρ̃

n

−
φ̇2
L

k2I
mn

ρ̃
˜ρ−2n

− (∇φL)
2 − (∇φS)

2

4m

1
k2I
mn

ρ̃
˜ρ−2n

(B.38)

+
1

2

(2q − q(1 + cosφS))

− k2I
2mn

ρ̃
(ρ̃−2n) + 8c1(1 + cosφS)

+O(φ̇(1 + cos),∇2φ(1 + cos), φ̇∇2φ+∇3φ).

Expanding the second line, we find

1

2

(2q − q(1 + cosφS))

− k2I
2mn

ρ̃
(ρ̃−2n) + 8c1(1 + cosφS)

(B.39)

=− 4q2

k2I
2mn

ρ̃
(ρ̃−2n)

(
1− (1 + cosφS) +

1

4
(1 + cosφS)

2

)
(B.40)

×

1 +
8c1

k2I
2mn

ρ̃
(ρ̃−2n)

(1 + cosφS) +

 8c1
k2I

2mn
ρ̃

(ρ̃−2n)

2

(1 + cosφS)
2

 (B.41)

=
4q2

k2I
2mn

ρ̃
(ρ̃−2n)

1

2
+

8c1
k2I

2mn
ρ̃

(ρ̃−2n)

− 2

 8c1
k2I

2mn
ρ̃

(ρ̃−2n)

2 cosφS (B.42)

− 4q2

k2I
2mn

1

4
− 8c1

k2I
2mn

ρ̃
(ρ̃−2n)

+

 8c1
k2I

2mn
ρ̃

(ρ̃−2n)

2 cos2 φS + const.+O((1 + cosφS)
3)

(B.43)
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Using cos2 = − sin2+const., we find the Lagrangians Eq. (7.10) and (7.12).
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C. Imaginary parts

In the main text, we have mainly focussed on the real parts of the effective Lagrangians. Here,
we will go into some more detail on the imaginary parts of the theories developed in Ch. 6 and
Ch. 7.

C.1. Imaginary part of the effective Lagrangian for small φS
including density fluctuation corrections

After having derived the real part of the effective Lagrangian for φS shown in Sec. 5.1.3 in
App. B.3, we now want to show the expansion of the imaginary part, which is given by

ℑSeff =
1

2
log detG0

−1
fluc =

1

2
tr logG0

−1
fluc

=
1

2∆t(∆x)d

∫
t,x

[
log
(
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

16c1 +
2c1ρ̃
n3 ⟨δεδε⟩

)

+ log

−2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
+ 2c1ρ̃

n3 ⟨δρδρ⟩ cosφS + 3c1
ρ̃−2n
n3 ⟨δεδε⟩ cosφS

2c1

(
ρ̃
n − 4

)
+ 2c1ρ̃

n3 ⟨δρδρ⟩+ 3c1
ρ̃−2n
n3 ⟨δεδε⟩

 ,
where again ∆t and ∆x are the time- and lengthscales relevant for regularization, defined by∑

t,x = 1
∆t(∆x)d

∫
t,x and we have normalized the term to vanish for φS = 0.

Using that log(1 + x) = x− x2

2 +O(x3), we can expand the first of these terms as

log
(
8c1(1 + cosφS) +

2c1ρ̃
n3 ⟨δεδε⟩ cosφS

16c1 +
2c1ρ̃
n3 ⟨δεδε⟩

)
(C.1)

= log
(
1− 2 sin2 φS

2

8c1 +
2c1
n2 ⟨δεδε⟩

16c1 +
2c1ρ̃
n3 ⟨δεδε⟩

)

= log
(
1− sin2 φS

2

(
1 +

ρ̃

8n3
⟨δεδε⟩

))
+O

(
⟨δδ⟩2

)
= − sin2 φS

2

(
1 +

ρ̃

8n3
⟨δεδε⟩

)
− sin4 φS

2

(
1

2
+

ρ̃

8n3
⟨δεδε⟩

)
+ const.+O

(
⟨δδ⟩2, sin6

)
where in the last step we have only included fluctuations ⟨δεδε⟩ to linear order, just like for
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the real part. Moreover,

log

−2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
+ 2c1ρ̃

n3 ⟨δρδρ⟩ cosφS + 3c1
ρ̃−2n
n3 ⟨δεδε⟩ cosφS

2c1

(
ρ̃
n − 4

)
+ 2c1ρ̃

n3 ⟨δρδρ⟩+ 3c1
ρ̃−2n
n3 ⟨δεδε⟩

 (C.2)

= log
(
1− sin2 φS

2

4(ρ̃− 2n) + 4ρ̃
n2 ⟨δρδρ⟩+ 6 ρ̃−2n

n2 ⟨δεδε⟩
2(ρ̃− 4n) + 2ρ̃

n2 ⟨δρδρ⟩+ 3 ρ̃−2n
n2 ⟨δεδε⟩

)

= − sin2 φS

2

[
2
ρ̃− 2n

ρ̃− 4n
+

(
2

ρ̃

ρ̃− 4n
− 1

2

ρ̃

ρ̃− 2n

)
⟨δρδρ⟩
n2

+

(
3
ρ̃− 2n

ρ̃− 4n
− 3

4

)
⟨δεδε⟩
n2

]
− sin4 φS

2

[
2

(
ρ̃− 2n

ρ̃− 4n

)2

+

(
2

ρ̃

ρ̃− 4n
− 1

2

ρ̃

ρ̃− 2n

)
ρ̃− 2n

ρ̃− 4n

⟨δρδρ⟩
n2

+

(
3
ρ̃− 2n

ρ̃− 4n
− 3

4

)
ρ̃− 2n

ρ̃− 4n

⟨δεδε⟩
n2

]
+O

(
⟨δδ⟩2, sin6

)
.

We can now use
sin2(φ/2) = −1

2
cos(φ) + const. (C.3)

and
sin4(φ/2) = −1

2
cos(φ)− 1

4
sin2(φ) + const. (C.4)

to find for the imaginary part of the effective Lagrangian for φS

ℑLeff =
1

4∆t(∆x)d
[
AI cosφS +BI sin2 φS

]
+ const.+O(⟨δδ⟩2, sin6) (C.5)

where

AI =

[
3

2
+ 2

ρ̃− 2n

ρ̃− 4n
+ 2

(
ρ̃− 2n

ρ̃− 4n

)2

+

(
ρ̃

4n
+

9

4

ρ̃− 2n

ρ̃− 4n
+ 3

(
ρ̃− 2n

ρ̃− 4n

)2

− 3

4

)
⟨δεδε⟩
n2

+

(
3

2

ρ̃

ρ̃− 4n
− 1

2

ρ̃

ρ̃− 2n
+

2ρ̃(ρ̃− 2n)

(ρ̃− 4n)2

)
⟨δρδρ⟩
n2

]
and

BI =

[
1

4
+

(
ρ̃− 2n

ρ̃− 4n

)2

+
1

2

(
ρ̃

8n
− 3

4

ρ̃− 2n

ρ̃− 4n
+ 3

(
ρ̃− 2n

ρ̃− 4n

)2
)

⟨δεδε⟩
n2

+

(
ρ̃(ρ̃− 2n)

(ρ̃− 4n)2
− 1

4

ρ̃

ρ̃− 4n

)
⟨δρδρ⟩
n2

]
.

For the small fluctuations shown in Sec. 6.5, the positivity of the imaginary part in the theory
without fluctuations discussed in Sec. 5.1.3 translates to the case with fluctuations, such that
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also here, the imaginary part only accounts for a damping of the partition function.

C.2. Imaginary part of the effective Lagrangian around φS = π

including a momentum cutoff

The imaginary part of the effective Lagrangian in Sec. 7.1 is given by

ℑLeff =
1

2∆t(∆x)d
log

− k2I
2mn

ρ̃
(ρ̃−2n) + 8c1(1 + cosφS)

− k2I
2mn

ρ̃
(ρ̃−2n)

·
− k2I

2mn − 2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
− k2I

2mn − 2c1
ρ̃
n

 ,

(C.6)

where again ∆t and ∆x are the time- and lengthscales relevant for regularization, defined by∑
t,x = 1

∆t(∆x)d

∫
t,x and we have now normalized the term to vanish for φS = π. Expanding

these logarithms for small (1 + cosφS) using log(1 + x) = x− x2

2 +O(x3), we get

log

− k2I
2mn

ρ̃
(ρ̃−2n) + 8c1(1 + cosφS)

− k2I
2mn

ρ̃
(ρ̃−2n)

 (C.7)

= − 8c1
k2I

2mn
ρ̃

(ρ̃−2n)

(1 + cosφS)−
1

2

 8c1
k2I

2mn
ρ̃

(ρ̃−2n)

2

(1 + cosφS)
2 +O((1 + cosφS)

3) (C.8)

and

log

− k2I
2mn − 2c1

(
2 +

(
2− ρ̃

n

)
cosφS

)
− k2I

2mn − 2c1
ρ̃
n

 (C.9)

= −
2c1

(
ρ̃
n − 2

)
k2I

2mn + 2c1
ρ̃
n

(1 + cosφS)−
1

2

2c1

(
ρ̃
n − 2

)
k2I

2mn + 2c1
ρ̃
n

2

(1 + cosφS)
2 +O((1 + cosφS)

3)

(C.10)

Using sin2 φ+ cos2 φ = 1 and ignoring any constants, we then find

ℑLeff
φS

=
1

2∆t(∆x)d
[
−AI cosφS +BI sin2 φS

]
+ const.+O

(
(1 + cos)3

)
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with

AI =
8c1

k2I
2mn

ρ̃
ρ̃−2n

+

 8c1
k2I

2mn
ρ̃

ρ̃−2n

2

+
2c1

(
ρ̃
n − 2

)
k2I

2mn + 2c1
ρ̃
n

+

2c1

(
ρ̃
n − 2

)
k2I

2mn + 2c1
ρ̃
n

2

(C.11)

BI =

1
2

 8c1
k2I

2mn
ρ̃

ρ̃−2n

2

+
1

2

2c1

(
ρ̃
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Inserting kI = kξS , the coefficients become

AI =− 8(ρ̃− 2n)n

ρ̃2
+

64(ρ̃− 2n)2n2

ρ̃4
+

2 (ρ̃− 2n)

ρ̃
+

(
2 (ρ̃− 2n)

ρ̃

)2

(C.12)

BI =

[
32(ρ̃− 2n)2n2

ρ̃4
+

2 (ρ̃− 2n)2

ρ̃2

]
.

Note that this leads to a positive imaginary part for |φS − π| mod 2π < π/2 and q >

0.188ρ̃|c1|, such that if we are far enough away from the quantum phase transition at q = 0

and in the range in which our approximation is valid, the imaginary part is again only a damp-
ing of the partition function. If q gets smaller than that, the imaginary part becomes negative,
first only at φS = (2Z+ 1)π and then also in an increasingly bigger area around the maxima.

Thus, for small q, the partition function growing exponentially is possible whenever φS is
around φS = (2Z+ 1)π. This could be interpreted as the instantons leading to exponentially
growing modes in the vicinity of the phase transition where the description with φS and φL

breaks down.
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