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Enabling Delay Learning in a Scalable Machine Learning Framework for Neuromor-

phic Hardware

This thesis explores the implementation of delay learning in Spiking Neural Networks (SNNs)
on the BrainScaleS-2 (BSS-2) neuromorphic hardware. SNNs emulate biological neural
networks and transmit information through discrete spikes, with the timing of these spikes
playing a crucial role in neural computation. A key challenge is the incorporation and opti-
mization of synaptic delays, which are essential for processing temporal information effec-
tively. To address this, we investigate the application of a Gaussian convolution algorithm
for learning delays, which has shown promising results in software, but has not been applied
on neuromorphic hardware yet. The research first reproduces the algorithm in software, en-
suring its learning capabilities. Subsequently, the forward pass of the learning process is
implemented in-the-loop with hxtorch on the BSS-2 system. To do this, we need to approxi-
mate the Gaussian shape, which is used for the backward pass in the learning process. This is
done through duplicating each spike, distributing the duplicated spikes in time around a de-
lay value, and then sending them over differently weighted synapses to the same neuron. The
results demonstrate the successful in-the-loop delay learning on the BSS-2 system, paving

the way for learning delays in more complex networks.

Ermoglichen von Verzogerungs-Lernen in einem skalierbaren Maschinellen Lernen
Framework fiir Neuromorphe Hardware

In dieser Arbeit wird die Implementierung von Verzogerungs-Lernen in SNNs auf der neu-
romorphen Hardware BSS-2 untersucht. SNNs bilden biologische neuronale Netze nach
und iibertragen Informationen durch diskrete Spikes, wobei der genaue Zeitpunkt dieser
Spikes eine entscheidende Rolle bei der neuronalen Berechnung spielt. Eine zentrale Her-
ausforderung ist die Einbeziehung und Optimierung der synaptischen Verzdgerungen, die
fiir eine effektive Verarbeitung zeitlicher Informationen unerldsslich sind. Um dieses Prob-
lem anzugehen, untersuchen wir die Anwendung eines Gauflschen Faltungsalgorithmus zum
Erlernen von Verzogerungen auf neuromorphen Computern, der vielversprechendes Ver-
halten zeigt, aber noch nicht auf neuromorphen Systemen getestet wurde. In dieser Ar-
beit wird der Algorithmus zunichst in Software nachgebildet, um seine Lernfihigkeit zu
bestidtigen. AnschlieBend wird der Vorwirtsdurchlauf des Lernprozesses mit hxtorch auf
dem BSS-2 System in-the-loop implementiert. Dazu wird jeder Spike dupliziert, die du-
plizierten Spikes zeitlich um einen Verzogerungswert verteilt und dann {iber unterschiedlich
gewichtete Synapsen an dasselbe Neuron gesendet. Die Ergebnisse zeigen, dass das Ler-
nen von Verzogerungen im BSS-2-System erfolgreich ist und ebnen somit den Weg fiir das

Lernen von Verzogerungen in komplexeren Netzwerken.
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1 Introduction

Recent advancements in Artificial Intelligence (AI) are leading to transformative changes
across everyday life and entire industries. As the models become increasingly sophisticated,
they consume vast amounts of power and their training time grows sharply [14]. A limiting
factor is the basic architecture of computers, the so-called von-Neumann-architecture. The
separation between the Central Processing Unit (CPU) and memory — also called von Neu-
mann bottleneck — limits its speed, ability for parallel processing, and energy efficiency,
since moving data is very energy intensive [22]. While less pronounced, the same problem
also exists in Graphical Processing Units (GPUs), which are typically used to train modern
Al models [19].

Neuromorphic hardware aims to solve these problems by mimicking biological brains on
silicon hardware. Its processing is event-driven and can be highly parallel, since there is no
separation between memory and computing. Unlike traditional Artificial Neural Network
(ANN), which rely on continuous-valued signals, SNNs utilize discrete spikes to transmit
information. This spiking mechanism introduces the concept of temporal coding, where the
timing of spikes carries crucial information.

One critical aspect of SNNs is the incorporation of delays into the synaptic transmission,
which can significantly influence the network’s ability to learn and process information ef-
fectively [13]. It has been shown that biological brains can learn these delays and that these
plastic delays are needed in order to learn certain tasks [2]. To replicate this on neuromor-
phic systems Machine Learning (ML) algorithms can be used, which proves to be a difficult
endeavor, mainly because of the backpropagation step. The information transport in SNNs is
non-differentiable by nature since the signal spike is a binary event. Therefore, some sort of
continuity needs to be reintroduced into the network while the learning takes place, in order
to calculate the gradient and determine how the delays have to be tweaked to improve the
network’s performance on a given task.

A possible method to do so is shown by Hammouamri, Khalfaoui-Hassani, and Masquelier
[9], who used a Gaussian convolution algorithm to smear out the spike in time around its
delay value in the form of a Gaussian distribution. This algorithm was benchmarked against

the best-performing ML algorithms in SNNs on conventional computers and achieved the
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highest accuracy on the Spiking Heidelberg Digits (SHD) [6] and SSC [23] audio datasets;
two datasets commonly used to evaluate the classification accuracy of SNNs. In this thesis,
the Gaussian convolution algorithm will be recreated and extended to learn delays on the

BSS-2 neuromorphic system.

1.1 Thesis outline

Chapter 2 gives the reader the necessary background information by delving into the theoret-
ical and methodological foundations of the research. It begins with an overview of SNNs and
the role of delays, highlighting how they affect neural computation and learning processes.
A specific focus is given to the use of Gaussian convolution for modeling delays. The ML
library PyTorch and how to use it with SNNs will be explained. Chapter 3 gives an overview
of the BSS-2 system’s architecture and capabilities, along with a discussion of the hxtorch
framework, which will be used to interact with the BSS-2 hardware.

Chapter 4 demonstrates the implementation of the Gaussian delay learning algorithm in soft-
ware and how the delays, used in the learning algorithm, can be realized on the hardware.
The chapter concludes with a demonstration of in-the-loop delay learning on the BSS-2

hardware.



2 Methods

2.1 Spiking Neural Networks

Neurons serve as the fundamental components of SNNs. Their discovery by Golgy and
Cajal [20] in the early 20th century led to the formulation of the Neuron Doctrine, a break-
through that significantly advanced the nascent field of neuroscience. In the 1950s, Hodgkin
and Huxley [10] further explored the dynamics within neurons and synapses, modelling the
electrical activity inside neurons with a series of differential equations. By abstracting away
certain biological details, the model can be simplified into a more general form that pre-
serves the essential dynamics, particularly the relationship between membrane voltage and
ionic currents. It is called the Leaky Integrate-and-Fire (LIF) model [7] and is the most
widely used model in SNNs because of its simplicity and efficiency:
du(t)

TmT = —(u(t) — upest) + RI(). 2.1

This equation describes how the membrane potential evolves over time, balancing the effects
du(t)
dt
membrane potential, with 7, being the membrane time constant that controls how quickly

of natural decay and external input. The term represents the rate of change of the
the neuron responds to changes. The term —(u(t) — ues) models the decay of the potential
towards its resting state .., reflecting the “leaky” nature of the neuron.

The influence of external inputs is represented by R1(t), where I(t) is the input current. A
neuron emits a unitary spike s when its membrane potential exceeds the threshold 4, after

which it instantaneously resets to U ege:

1 ifu >,
s(t) = (2.2)

0 else.

I(t) can theoretically be an arbitrary current, but in SNNs it is typically modeled by weighted
presynaptic spikes or an exponentially decaying current triggered by the presynaptic spikes

which we assume here. This behavior is linear over time and also over synapses meaning
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that the neuron integrates over all incoming signals:

I(t) = Zwij > a(t—t). (2.3)

f

A spike from the presynaptic neuron j is being fired at time t;f . The connection to the
postsynaptic neuron ¢ has a synaptic weight w;;. The synaptic response function «(¢) models

the response of a spike to the input current /;(¢). This is an exponential decay in our case:

alt) = Tlexp <—i> o), (2.4)
where the synaptic time constant 7, decides over the rate of decay and the Heaviside step
function O(t) ensures that the response is zero for ¢ < 0. By summing over all the fired
spikes f of all the neurons whose signals propagate to neuron ¢, the resulting current can be
determined. In fig. 2.1 the dynamic of this model is shown.

Synapses in SNNs transmit spikes from one neuron to another. The neurons are typically
organized in layers and the synapses are arranged as a matrix, connecting neurons of the
pre-synaptic layer to neurons of the post-synaptic layer. Synapses can be excitatory (increas-
ing the likelihood of a postsynaptic neuron firing) or inhibitory (decreasing this likelihood).
Similarly to conventional ANN s the weight of a synapse determines the strength of the inter-
neuron connection and can be adjusted to change the network’s behavior. The weights are
the parameters typically learned in neural networks through ML algorithms like backpropa-
gation.

Since only discrete spikes can be injected into SNNs continuous signals like most real world
data need to be encoded first. This process is called spike encoding [8] and uses the timing,
frequency, and patterns of spikes to convey meaning. The two most commonly used meth-
ods to encode spikes are rate coding (the frequency of spikes represents information) and

temporal coding (the precise timing of spikes conveys information).

2.1.1 Backpropagation in SNNs

To calculate the dynamics of a SNN with a digital computer, the time dimension is dis-
cretized, and the equations in section 2.1 are computed numerically. The SNN can be con-
sidered a recurrent network [16] and backpropagation through time can be applied.

Spikes are binary (either O or 1) and therefore non-differentiable. The absence of a smooth
function to describe the spike generation means that gradient-based methods can not be ap-
plied to SNNs directly. We therefore use a differentiable surrogate function to approximate

the gradient when performing the backward pass [4]. Common choices for this surrogate
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Dynamic of the LIF neuron
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Figure 2.1: The dynamic inside a LIF neuron. The input spike causes an exponentially decay-
ing current. The voltage inside the neuron changes by integrating the incoming
current in time. When the voltage exceeds the threshold ¥ = 1.2, it resets to
Ureset = 0. The neuron ’leaks’ causing its potential to steadily decay towards ey
which equals zero here.
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function include the fast sigmoid or a piecewise linear function to approximate the spike
threshold behavior.

2.2 Delays

When multiple spikes arrive at the same neuron, the difference of their arrival time is a very
important factor for the reaction caused in the neuron. Coincident spikes can interfere con-
structively and are more likely to make the neuron fire compared to spikes spread out in time.
To achieve this, even though the spikes are not emitted simultaneously, the spike propagation

inside synapses can be delayed. Figure 2.2 shows a demonstration of this behavior. Delays

Membrane potential

Input spike trains
putspietrains o Firing Threshold

10ms
s

Sy

ty

S2

Time

0 ty t1+dn

Figure 2.2: An illustration of the delay’s impact. Two spike trains are being propagated
to two neurons. While neuron N; does not spike because of the time delay of
10 ms between the incoming spikes, the membrane potential in N, exceeds the
threshold ¥. This is due to the time delay dy; = 8ms in the synapse from spike
train 57 to neuron Ny, which shortens the arrival time difference to only 2 ms.
Figure taken from [9].

can enable the network to not only detect synchrony patterns, but also complex spatiotempo-
ral spike patterns. In the brain, the delay of a connection is the sum of axonal, synaptic, and
dendritic delays. The axonal delay refers to the time it takes for a signal to leave a neuron and
is identical for all spikes, which are emitted by the same neuron. The synaptic delay happens
between two neurons and can be different for each synapse. The the dendritic delay is the
time it takes for a signal to arrive at a neuron and is identical for all spikes that propagate
to the same neuron. For instance, axonal delays can be shortened through myelination, an
adaptive process essential for learning certain tasks [2]. This highlights that learning in the
brain involves more than just synaptic plasticity; delay learning also plays a crucial role.

The synaptic transmission in SNNs with synaptic delays can be generalized by adding a de-
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lay term d;; to eq. (2.3), which represents the delay in the synapse connecting neuron j to

neuron 7:

J !

2.2.1 Learning through Gaussian convolution

In order to find the optimal delay values for a given task inside a SNN by using backprop-
agation, we need to be able to differentiate a loss function with respect to the delay value.
The method used in this work [9] achieves this by smearing out the delayed spikes in time
around their discrete values by convolving them with a Gaussian kernel.

A spike train S|t] is a sequence of discrete spikes (1 or 0) emitted or received by a neuron.

A synaptic delay d;; delays the transport of a spike train:

J

The spike train S;[t| propagates from the neuron j through the synapse with weight w;; and
is being delayed by d;; before it arrives at neuron 7. This dynamic can also be modeled by a

convolution with a kernel £;;.

J

Wy 5 lf’n,:jﬁd—dz]—l7

0 otherwise.

The kernel has a length of 7; and only one non-zero element whose position decides over the
delay time. This kernel is not yet differentiable, since it only has one discrete value. In order
to approximate the influence of other delay times, we now spread out the non-zero element

in the kernel in the form of a Gaussian distribution centered around its original position:

1(n—T;—dj; +1\°
kijin] = Cijexp (‘5 (n a =y )>, (2.9)

Uij

where Cj; is chosen so that the sum over all kernel elements equals the synaptic weight w;;.
The standard deviation o;; is gradually reduced throughout the learning process for all ker-
nels to initially capture long-term dependencies over large distances and then refine the delay
with greater precision as learning progresses. Indeed, the Gaussian kernel is only used to

train the model; for inference it is converted to a discrete kernel as described in eq. (2.8) by
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rounding the delays. This process is shown in fig. 2.3.
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Figure 2.3: Evolution of eight kernels throughout the learning process. The x-axis refers
to the delay time with a maximum delay of 7; = 24 while the y-axis refers
to the synapse ID. (a) corresponds to the initial phase. The standard deviation
of the Gaussian o is large %, which enables the gradient to incorporate long
temporal dependencies. (b) corresponds to the intermediate phase, (c) is taken
from the final phase where o is at its minimum value (0.5) and the fine-tuning of
the delays is done. (d) represents the kernel after converting to the discrete form

with rounded positions. Figure taken from [9].

2.3 PyTorch

PyTorch [17] is an open-source ML framework which is widely used in both academia and

industry for building and training neural networks in Python. PyTorch uses tensor datatypes,
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which enable accelerated and parallelized operations. It supports automatic differentiation
via its autograd’ system, that simplifies the process of backpropagation by automatically
computing gradients.

In listing 2.1 it is demonstrated how to use PyTorch to create and train a model. A model can
be constructed by instantiating torch.nn.Modules and using them in a forward method
to decide what is supposed to happen to an input fed into the model. Its parameters are trained
to minimize a loss function. This is done by iterating a dataset in small batches, over which
the gradient is averaged. This process is repeated over epochs to gradually approach the
optimal parameter values for a given task. When an input is forwarded through the model,
a computational graph is created. Afterward, the loss can be calculated, which typically
determines the difference between the model’s output and some target values which describe
the wanted behavior. The gradient is computed by traversing the computational backward
from the loss value to each parameter. Those gradients determine the steepest ascend of
the loss value in the high dimensional parameter-space, so by subtracting them from our

parameters we take a step in the direction which decreases our loss value the most.
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import torch
import torch.nn as nn

# Dummy model definition
class SimpleModel (nn.Module) :
def _ _init__ (self):
super () .__init__ ()
self.linear = nn.Linear (1, 1) # A simple linear layer
def forward(self, x):
return self.linear (x)
# Instantiate the model
model = SimpleModel ()
# Dummy data for training
inputs = torch.tensor ([[0.5], [0.1], [0.9]11)
targets = torch.tensor ([[1.0], [0.2], [0.8]1)
learning_rate = 0.01
# Training loop
for epoch in range (100) :
# Forward pass
outputs = model (inputs)
# Loss function
loss = nn.MSELoss (outputs, targets)
# Backward pass (compute gradients)
loss.backward()
# Updating of each parameter
with torch.no_grad(): # Disable gradient tracking
for param in model.parameters() :
param —-= learning_rate *x param.grad
# Set gradients to zero after updating parameters
model.zero_grad ()

Listing 2.1: Code for a simple neural network with one neuron for demonstration
purposes. The torch.no_grad () method disables gradient tracking during
the update step because parameter updating is not supposed to be added to the
computational graph. After parameter updating the gradients are reset to zero
to ensure that each update step reflects only the current state of the model’s
performance, not an accumulation of previous updates.

10




3 The BrainScaleS-2 system

3.1 Overview

The BSS-2 system [18] is a neuromorphic computing platform developed by the Electronic
Vision(s) Group in Heidelberg. BSS-2 has 512 neuron circuits distributed across two hemi-
spheres and 131.072 synapses circuits. Analog circuits are used to recreate the Adaptive
Exponential Integrate and Fire (AdEx) dynamics [3] and can be interconnected to form
multi-compartment neuron morphologies [11] (in this work only the LIF part of the AdEx
model is used and also no multi-compartent neurons). The parameters of the LIF model
and the synaptic weights can be adjusted digitally via a 10-bit on-chip Digital to Analog
Converter (DAC). Therefore, it is possible to calibrate the whole system and compensate
for production-induced variations in the hardware. The neuron dynamics are emulated 1000
times faster than biological real-time due to the characteristic time constants of the semicon-
ductor substrate.

To determine the values inside a neuron over the course of an experiment, the user can utilize
the Columnar Analog to Digital Converter (CADC) and Membrane Analog to Digital Con-
verter (MADC) on the chip. The CADC can measure the potential in parallel for multiple
neurons with a time resolution in the order of 1 MHz and a value resolution of 8 bit. The
MADC can only measure the potential of a single neuron, but with a significantly higher res-
olution (value resolution of 10 bit and sampling frequency of about 29 MHz) [18]. Figure 3.1
depicts the BSS-2 hardware and architecture of the system.

3.2 hxtorch

When developing neuromorphic hardware, it is important to provide software solutions to
allow non-expert users to execute their experiments. Indeed, it is important to abstract the
hardware through layers to provide an interface for different hardware-close tasks. The BSS-
2 system uses multiple abstraction levels, from low-level chip communication to the repre-

sentation of whole experiments in software. These different layers in the stack are depicted

11
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Figure 3.1: Overview of the BSS-2 architecture. (A) A picture of the BSS-2 chip. (B) Test
setup with the chip on a carrier board. (C) A schematic plan of the chip with its
elements is shown. The MADC is used for accurate voltage readout of a single
neuron, while the CADC can read multiple neurons but with less precision. (D)

A conceptual view of the signal routing through the synapse array. Figure taken
from [18].

in fig. 3.2. For ML tasks the hxtorch [21] framework is used. It integrates the possibility to
implicitly execute and model experiments on the BSS-2 hardware into the PyTorch ecosys-
tem.

To perform an experiment on BSS-2 with hxtorch, we first create the elements which our
network consists of. These elements are called modules in hxtorch and can either be a pop-
ulations (nodes) or projections (connections of nodes). All modules that belong to the same
experiment register themselves in a shared Experiment object.

To establish an order in the network, a placeholder handle is passed down through the mod-
ules to create a network graph. The handle is empty before the execution of the experiment
and is filled with neuron dynamics data like the spike train and voltage after. The hardware
execution is initiated by calling hxtorch.snn. run.

When creating a LIF neuron, we can configure its dynamics with various parameters like the
threshold potential or the membrane time constant (see section 2.1). To make sure the neuron
behaves according to these parameters, the system needs to be calibrated in the beginning.
The first module in the network graph can not be a projection. When trying to inject
our input via a synapse module into the network, hxtorch therefore implicitly creates an
InputNeuron. This module enables external input propagation to the chip and is added at
the beginning of the graph (it also can be added explicitly by the user).

hxtorch directly communicates with grenade which is in the next lower level of the stack as

can be seen in fig. 3.2. It manages the placing and routing of the modules inside the network

12
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Figure 3.2: The software stack of the BSS-2 platform with distinct conceptual layers, each
represented by different background colors. The white squares indicate various
modules within the software stack. On the right side, it is shown which layer the
programs are intended to be coded on, depending on the specific applications.
In the yellow section the hxtorch framework is shown which will be used in our
work. Figure taken from [15].
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graph. To do so, a grenade graph is created from the network graph when the experiment is
executed through hxtorch. snn. run. By changing how the grenade graph is created, it is
possible to modify the structure of the network on hardware and how the signal is propagated
in it — this will later be used to facilitate delays on hardware.

To make backpropagation possible, every module needs to hold a func attribute with a
PyTorch-differentiable function that represents the module’s behavior on hardware, allowing

to propagate gradients. Listing 3.1 demonstrates the code for a basic experiment in hxtorch.

import hxtorch.snn as hxsnn
import hxtorch.snn.functional as F

# Defining a simple model
class SNN (torch.nn.Module) :
def _ _init__ (self):
super () ._ _init__ ()
# Assigning values to the LIF parameters
1if _params = F.CalibratedCUBALIFParams (
tau_mem=5e-6, # membrane time constant
tau_syn=le-5, # synaptic time constant
leak=80,
reset=80,
threshold=100,
)
# Experiment creation
self.experiment = hxsnn.Experiment (mock=False, dt=1le-06)
# Creation of the modules
self.syn = hxsnn.Synapse (3, 2, experiment=self.experiment)
self.lif = hxsnn.Neuron (
2,
experiment=self.experiment,
func=F.cuba_lif_integration,
params=1if_params,
c.l)
def forward(self, inputs) :
x0 = hxsnn.NeuronHandle (inputs)

x1 = self.syn (x0)
X2 self.lif (x1)
# Execute experiment

hxsnn.run (self.experiment, 100)
return x2

Listing 3.1: Demonstration of the code for a basic model in hxtorch. 3 inputs are sent
to 2 LIF neurons. The 11 f_params variable holds the parameters for the LIF
neuron. The mock argument can be used to numerically simulate the experiment
in software. All modules are added to a shared experiment object.

14
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3.2.1 In-the-Loop Learning

In order to use gradient-based learning algorithms to learn parameters in neuromorphic hard-
ware, we need to create a model of the hardware on a conventional computer. It is possible
to now train the hardware entirely with this numerical model and then later apply the learned
parameters to the hardware; this is called offline learning, since it happens separated from
the hardware. The problem with this is that the model and the real hardware are not identical.
It is possible that gradients used in software result in parameters, which, while minimizing
the loss in software, do lead to a completely different result on hardware.

To solve this, we incorporate the neuromorphic hardware into the loop between forward and
backward pass during the learning process (in-the-loop learning [5]) by moving the forward
pass from the software model onto the neuromorphic hardware. The learning process now
incorporates the deviations between the hardware and the software model, since the loss

value is calculated with the behavior of the network on the hardware.

15



4 Implementation

In this chapter, I will present the implementation of the Gaussian convolution learning al-
gorithm step by step culminating in the successful in-the-loop delay learning on the BSS-2
hardware.

The correct functionality of the algorithm in PyTorch is vital here, since it will be used for
the backward pass of our learning process, when we use it with the hardware later on. We
therefore start by implementing the delay learning entirely in software, to confirm its learning

capabilities and examine its behavior.

4.1 Learning Delays in Software

4.1.1 Integrating Delays into the Synapse

We start by implementing Gaussian delays into the synapse. In order to do this, we create
an additional torch module called DelayedSynapse, which is supposed to extend the
standard Synapse-type to incorporate synaptic delays. PyTorch’s torch.nn.convld
function is used to implement the convolution operation into our new class. This implemen-
tation is shown in fig. 4.1 for two different kernels. When creating a vectorized implementa-
tion with multiple synapses, every synapse has its own kernel deciding over how a spike that
arrives at a certain synapse is being delayed. The code to implement this behavior is shown

in listing 4.1.

4.1.2 Creating a Simple Model

We now integrate the DelayedSynapse class into a simple SNN. The LIF dynamics are
not implemented into PyTorch, so we use a numerical LIF implementation provided by hx-
torch. Listing 4.2 shows the code for the model. Figure 4.2 demonstrates a vectorized

implementation of the model with three input signals arriving at two output neurons.
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Figure 4.1: This figure demonstrates how a spike train is being delayed by convolving it with

a discrete and a Gaussian kernel. The input spike train has spikes after 10, 20 and
25 milliseconds and a resolution of one millisecond. The maximum delay value
for the kernel with 20 elements is therefore d.,,x = 19ms. The discrete kernel
with value one at position 7 causes a delay in the signal by d = dp, — 7ms =
12ms. This delay is also achieved by the Gaussian kernel, but it additionally
smears out the signal in the form of a Gaussian with ¢ = 1.5 ms. It is important
to do so in a way that the sum over all the kernel elements is equal to the weight
of the synapse. This ensures that the sum of spike values which leave the synapse
is the same for both kernels (on a physical level, this means the amount of charge
arriving at the post-synaptic neuron is identical).
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class DelayedSynapse (nn.Module) :
def _ _init__ (self):

super () .__init_ ()

self.input_len = 3

self.output_len = 2

self.max_delay = 20

# 3 inputs, 2 outputs

self.weights = torch.tensor([[1,0], [0,0], [0,01])

self.delays = torch.tensor([[7,0], [0,0], [0,0]11)

self.sigma = 1.5

def forward(self, inputs):
# Create Gaussian kernel for each synapse
kernel = torch.zeros(self.output_len, self.input_len, self.
max_delay)
for 1 in range(self.output_len) :
for j in range(self.input_len) :

# Create the Gaussian distribution in the kernel
kernel[i, j,:] = torch.exp(-1/2 * (((torch.arange (
self.max_delay, dtype=torch.float32)
- self.max_delay + self.delays[j,1] + 1)

/ self.sigma)) ** 2)

# Normalizing and weight integration

kernel[i, j,:] /= torch.sum(kernell[i,j,:])

kernel[i, j,:] *= self.weights[]j, 1]
# Input dimensions: (batchs, in_size, in_length)
# kernel dimensions: (out_size, batchs, kernel_ length)
output = nn.functional.convld(nn.functional.pad (inputs.

transpose (0,1) .transpose(0,2), (self.max _delay - 1, 0)),
kernel)

return output.transpose(0,1) .transpose (0, 2)

Listing 4.1: The code for our DelayedSynapse class. All relevant values for
the Gaussian delaying are stored as attributes when creating an instance
of DelayedSynapse. Inside the forward function we first create
the Gaussian kernel and then convolve the input with it. Since
the nn.functional.convld function accepts tensors with different
dimensions compared to the tensors used in the other modules, we need to
transpose them before and after the convolution. We apply a padding before
the convolution with nn. functional . pad, which ensures that the length of
our tensor stays the same after the convolution.
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Figure 4.2: Vectorized implementation of a simple SNN. Six delayed synapses connect three

inputs to two LIF neurons. The synaptic weights are equal for the synapses
which propagate the signal of input 2 (purple) and input 3 (gray) and twice as
strong for those of input 1 (yellow). The input spikes occur at time ¢; = 10 ms,
to = 40ms and t3 = 60ms. The first and last arriving spike at output neuron
1 (delay of 10 ms and 20 ms) illustrate the general influence of the Gaussian on
current and voltage in the LIF neuron, where they arrive. Instead of jumping
to a high value immediately like at fig. 2.1, the current increases earlier and for
longer, but slower, which also causes the voltage to increase more steadily.

The second arriving spike at output neuron 1 and the last arriving spike at output
neuron 2 demonstrate what happens if the delay value (1.5 ms and 49 ms, respec-
tively) is near the edges of the kernel (zero or the kernel length, which is 50 here).
The Gaussian cuts off at a delay of 0 ms and 49 ms, which causes an increase in
the value of the other elements of the Gaussian spike. This happens because of
the normalization since the sum of Gaussian spikes needs to equal the synaptic
weight in order to not distort the strength of the spike’s effect.

Input 1 and 3 at output neuron 2 are being brought together because of the delay
values (45 ms and 3 ms). The current increases more strongly for longer, which
causes the voltage to exceed the threshold two times causing the firing of two
spikes in output neuron 2 compared to one spike at output neuron 1, where all
inputs arrive spread out in time.
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class Model (nn.Module) :

def __ _init__ (self):
super () ._ _init__ ()
self.syn DelayedSynapse ()
self.lif LIF ()

def forward(self, inputs) :
x1 = self.syn (inputs)
x2 = self.lif (output)
return x2

Listing 4.2: A simple model using PyTorch, the LIF class and our DelayedSynapse.
This will also later be used for the delay learning.

4.1.3 Learning of the Delay

Since we want to learn the values inside the delay tensor, we turn them into parameters with
torch.nn.Parameters to enable the gradient flow back to each parameter. The loss L
is calculated by summing the squared differences between the spike times ¢pjie,; Of spike ¢

and its target times fire,; tO test the learning capabilities:

L= Z(ttarget,i - tspike,i)Q- “4.1)
=1

To get the spike time values of our neuron in a way that does not disable the possibility of
gradient calculation, the class ToSpikeTimes [1]is used. Listing 4.3 shows the code used

to achieve delay learning in PyTorch. A demonstration for the learning of two synaptic de-

target_times = torch.tensor ([15, 80])
learning _rate = 5.
for epoch in range (100) :
spike_times = model (input)
loss = torch.sum((target_times - spike_times) xx2
loss.backward ()
with torch.no_grad() :
model.syn.delays —-= learning rate x
model.syn.delays.grad
torch.clamp_(model.syn.delays, min=0, max=49)
model.syn.delays.grad.zero_ ()

Listing 4.3: The PyTorch code for the learning procedure. We update the parameters over
100 epochs. After each epoch we clamp the delay values to ensure they fit in the
kernel with length 50. The values used in this code are the same as in fig. 4.3.

lays is shown in fig. 4.3. A thing I considered was that the learning near the minimum and

maximum delay values does not work as intended, since the Gaussian cuts off here and be-
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comes strongly distorted. The second spike in the lower picture in fig. 4.3 shows that this is
not the case and the delay value continues to approach the desired position. One hypothesis
for why this works correctly is that only the part of the Gaussian inside the kernel counts
anyway, since this is the only direction in which the delay values can change. Values where
the cut-off occurs are outside the kernel’s range and can therefore not be a delay value to
begin with.

Figure 4.4 shows the learning process in detail for a single neuron over 200 epochs. Ad-
ditionally to what is plotted in fig. 4.4, I also implemented an exponential decrease in the
standard deviation of the Gaussian distribution inside the kernel, since this resulted in an im-
proved learning performance in [9]. No consistent difference in the learning behavior could
be determined compared to a constant o value. The influence of this method though can not
be determined with the delay learning inside only one neuron and needs to be assessed at
a later point of time, when applying it on a real task with a more complex SNN. This also
goes for other hyperparameters of the learning process like learning rate, value of standard

deviation, number of epochs and loss function.

4.2 Implementing Gaussian Delays in hxtorch

4.2.1 Challenges

To learn delays in-the-loop with hxtorch, we need to implement the forward pass on the
BSS-2 hardware, in addition to the numerical representation in software, which is used for
the backward pass. The hardware behavior needs to closely resemble the delayed Gaussian
distribution in the numerical representation inside the func attribute. In theory, the more
the numerical representation of a module matches the real hardware behavior, the better
the calculated gradient matches the real gradient and the results of the learning process are
optimized.

On BSS-2 only delta shaped spikes, without meaningful temporal extent compared to the
emulation time, can propagate through the synapses; the shape of these spikes can not be
changed.! Synaptic delays are not supported and also the delaying of the spike after a neuron
(axonal delays) is not supported initially, but will be implemented later on.

One approach to recreating the delayed Gaussian distribution is to use multiple presynaptic
neurons, each of which fires a spike at different points in time to the same postsynaptic
neuron. By tweaking the synaptic weights in a way that spikes which are fired further away

in time from the intended delay value are less pronounced, we can theoretically recreate the

1'Under certain circumstances, events can be configured to have 6 bit graded values, however, this case will
not be considered here.
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Figure 4.3: This figure shows the dynamics inside a LIF neuron before and after learning

has taken place (this is the same setup as in fig. 4.2, but only neuron 1 is plotted
and two input signals arrive; all weights are equal). The incoming spikes arrive
at Oms and at 25 ms, and are both initially delayed by 25 ms. The kernel has a
length of 50.

The top plot shows the dynamics of the neuron before learning and the bottom
plot after learning has taken place. Target and spike time now match precisely
for the first spike, and the second spike occurs later. This minimizes the loss in
both cases, since the d,,x = 49 ms and the second spike can therefore not further
match its target time. The delay values after the learning are d; = 9.537 ms and
dy = 49.0ms.
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Figure 4.4: Demonstration of the learning behavior over a long period of time (500 ms). The
input time is O ms and the target time is 400 ms for both f; and f,. For f; the
input time is 100 ms and target time is 505 ms. The kernel length is 500 enabling
the delay learning over the whole time sequence.
f2 has the same squared loss function as used in the previous example facilitating
a fast learning in the beginning, which becomes slower as the spike time matches
more closely with the target time. For f;, I have taken the absolute value of the
difference between spike and target time to calculate the loss, which results in
a linear-like approaching and a slight overshooting before it reaches the target
time. Furthermore, the learning rate needed to be increased from 1 for f5 to 200
for f; to make the two methods converge after a similar number of epochs.
f3 demonstrates what happens when the spike time tries to approach a time out-
side the time period. Since the dynamic inside the neuron is never instantaneous,
there always is some delay between incoming spike and emitted spike. There-
fore, it is possible that the experiment stops before a spike can be emitted. This
results in the problem that loss as well as gradient can not be calculated anymore,
preventing the system from correcting itself, making it stuck in that state.
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exact same behavior, which results from our Gaussian convolution algorithm. This neuron
duplication concept is demonstrated in fig. 4.5.

Each spike that is used for the approximation is routed from an external input neuron through
a synapse. On the BSS-2 hardware, each hardware neuron can have 256 synaptic inputs on a
single chip instance. When we approximate the Gaussian with & values this number shrinks
t0 Npax = L%GJ , resulting in a decreased fan-in (means of partitioning the input layer could
be applied to achieve larger fan-ins).

The duplication method only enables axonal delays, since the spikes are delayed after the
neuron before they are forwarded to the synapses. It would be possible to achieve synaptic
delays with neuron duplication, by having each synapse has its own Gaussian approximating
input neurons whose delays could be individually tweaked, but this would further decrease
the possible network size.

To ensure reasonable possible layer size, I decided to only implement axonal delays and a
Gaussian approximation with 3 and 5 values. The time difference of the spikes is the standard
deviation o of the Gaussian in the numerical representation.

Figure 4.6 shows a comparison between the standard approximation with the Gaussian kernel
used in the numerical representation of the module and the approximation of it with 3 and
5 spikes. The overall neural dynamics are similar, but since there are fewer spikes for the
approximation with 3 and 5 values, the current and therefore also the membrane voltage
increase in leaps. The spike time is only identical for the standard approximation and the
one using 5 spikes, and 1ms earlier for the approximation with 3 values. The curve of
the voltage is more similar for the standard Gaussian and the approximation with 5 spikes —
especially its strength after the spiking has taken place. These points justify the consideration

to approximate the Gaussian with 5 spikes, even though this implies a smaller maximal SNN.

4.2.2 Delaying the Input Signal

We start by implementing the delay and duplication to the input spikes, because this is the
more straight-forward task as opposed to interneuron delay and can be used to test the func-
tionality of our neuron duplication concept on BSS-2. We want to integrate this seamlessly
into hxtorch. Users should not need to change the input themselves in order to implement
delays and neuron duplication, but it should be done automatically. Listing 4.4 demon-
strates how we want to integrate our changes into the existing hxtorch Application Program-
ming Interface (API). The shape of the synapses and neurons stays the same as it would
be when using the standard InputNeuron module. The duplication and delay are done

inside our new DelayedInputNeuron, for which we provide the necessary information
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Figure 4.5: Example of the neuron duplication concept to estimate the Gaussian. A spike
(red) occurs in neuron ¢ in layer (I —1). The spike is delayed by d; and duplicated
four times. Each new spike is moved to an additional neuron and postponed
around the post-delay spike time of neuron i. After that, each spike is routed
to the same neuron j in layer (1) through synapses. The synaptic weights are
adjusted in a way that results in an approximation of a Gaussian, when the spikes
arrive at neuron j.
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Figure 4.6: An input spike at 10 ms is being delayed with a Gaussian kernel of length 100
in the top plot. We try to recreate the same dynamics with 3 and 5 values in the
middle and bottom plot, respectively. The spike in the top and bottom plot occurs
at 37ms, and 1 ms earlier for the middle plot. The sum of the ’delayed input’ is

one in all plots.
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class DelaySNN (nn.Module) :
def __init__ (self):

super () ._ _init__ ()
1lif params = F.CalibratedCUBALIFParams(...)
self.exp = hxsnn.Experiment (mock=False, dt=le-6)
# Creating modules
self.inp = DelayedInputNeuron (2, experiment=self.exp,
delay=[10,20], std=5, hw_dup=3)
self.syn = Synapse (2, 3, experiment=self.exp)
self.syn.weight.data = torch.tensor([[63,40],[0,0],[20,0]1)
self.lif = Neuron (
3,

experiment=self.exp
func=F.cuba_lif_integration,
params=1if_params,
c.l)

def forward(self, input):

x0 = hxtorch.snn.NeuronHandle (input)
x1l = self.inp (x0)
x2 = self.syn(x1)
x3 = self.lif (x2)

hxsnn.run (self.experiment, 100)
return x3

Listing 4.4: Code demonstration for the API for our DelayedInputNeuron class.
Additionally to the arguments, also needed to create an InputNeuron object,
DelayedInputNeuron has arguments which determine the delay values
(delay), the standard deviation of the Gaussian (std), and the amount of
spikes used to approximate the Gaussian (hw_dup).

like the delay value through new arguments when creating an instance. We do this by mak-
ing DelayedInputNeuron a child class of InputNeuron and overwrite the modules’
methods that are used to add it to the grenade graph. Inside our new class, we need to change
how the input signal is added to the grenade graph, since this decides how the inputs are
placed onto the BSS-2 hardware. In detail, we overwrite the add_to_input_generator
method which takes in the input spikes as a handle, determines the spike events and appends
them to grenade’s input generator. In the standard InputNeuron, this is done by creating
a list of all the spike times for each input. We now duplicate the list by the amount of spikes
used to approximate the Gaussian and change the spike times inside the new list by multiples
of 0. Listing 4.5 shows the code for our overwritten add_to_input_generator method.
Listing 4.6 shows a comparison of the list object which is used to pass the input spikes to
grenade. Since the amount of signals which are supposed to be forwarded onto the hard-
ware changes through the implementations in add_to_input_generator, we also need

to make sure the grenade population which transports these signals has the same increased
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class DelayedInputNeuron (InputNeuron) :
def _ init_ (delay, std, hw_dup, ...):
self.delays = delay
self.sigma = std
self.hw_dup = hw_dup

def add_to_input_generator (

self, input: NeuronHandle, builder) -> None:

# Initializing necessary values

inp = input.spikes.clone ()

delays = self.delays.clone.astype(np.int32)

sig = int (self.sigma)

dt = self.experiment.dt / le-3

# Extracting the spike times in the input signal to a list

spike_times = tensor_to_spike_times(
input.spikes, dt=dt) [0]

# Duplicating spike times

for i1, synapse in enumerate (spike_times.copy()) :

spike_timest[i] = [k + delays[i]xdt for k in synapse]
spike_times.append([k + (delays[i] - sig) = dt for k in
synapse])

spike_times.append([k + (delays[i] + sig) = dt for k in
synapse])
if self.hw_dup ==

spike_times.append([k + (delays[i] - sigx2) = dt
for k in synapse])

spike_times.append([k + (delays[i] + sig*x2) % dt
)

for k in synapse]
# Adding spike times to grenade
builder.add (spike_times, self.descriptor)

Listing 4.5: Code for the delay and duplication of spikes. The spike_times list is
extended by additional elements which correspond to spike times of additional
input neurons. For this to work the standard deviation as well as the delay values
need to be integers.

# spike_times list before duplication and delay
[[0.01, 0.02],

[0.05]1]
# spike_times list after duplication and delay
[[0.02, 0.03],
[0.071,
[0.018, 0.028], [0.022, 0.032],
[0.068], [0.072]]

Listing 4.6: Example for the spike_t imes list before and after delay and duplication
(std=2,delays = (10, 20), hw_dup = 3).
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shape. We therefore also overwrite the method add_to_network_graph and increase the

size of the grenade population, which is added to the grenade graph:

gpopulation = grenade.network.ExternalSourcePopulation (

self.size % self.hw_dup)

Since we now have increased the number of input signals, we need to add additional synapses
to forward those signals into the network. We therefore need to change how the synapse is
added to the grenade graph by modifying the add_to_network_graph method inside the
Synapse class.

Every synapse module has a weight tensor, whose values decide over the connection strengths
of each synaptic connection of the module. More importantly, the shape of this weight tensor
also decides over the amount of synapses, meaning the amount of input neurons which this
synapse module connects to on-chip neurons. The shape of the weight tensor normally is
determined by the first two arguments, when creating the Synapse object, after which the
weight values can be accessed and assigned through the weight . data attribute as can be
seen in listing 4.4.

We now simply increase the shape of our weight tensor in order to match its input dimension
with the amount of spikes from the DelayedInputNeuron module. We do not only ac-
cept the additional signals though, but also adjust their strengths to approximate the Gaussian
shape. Furthermore, we do this in a way that the effect strength of one spike is distributed in
time to the spikes used to approximate the Gaussian to ensure that the same amount of charge
arrives at each post synaptic neuron. We implement this by making sure that the sum of the
weight values of the post distribution synapses equals the weight of the original synapse w.
Furthermore, the weight ratios of the post duplication synapses are the same as the ratio of
values of a Gaussian distribution at multiples of the standard deviation o. The formula to

calculate the post distribution weights w; is the following:

exp(—%)
(O IS
Zk:fn eXp<_7)

Each synapse is duplicated to 2n + 1 to synapses, and n is the number of additonal weights

4.2)

Ww; =

needed for this. The index 7 declares which of the distributed weights is calculated with w
being the biggest weight (at the mean of the Guassian) and w,, the smallest (n multiples of
o away of the mean in the Gaussian). Weight values with n > 2 are too small to make an
impact with this equation and use up hardware resources unnecessarily, so we did not imple-
ment them. To approximate the Gaussian with more than the maximum of 5 values which
was implemented here, we would need to implement a different algorithm, but this was not

further pursued in this work.
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An example for this is shown in listing 4.7. As can be seen, the new input dimension (number
of rows) is three times as big because each input is duplicated to 3 DelayedInputNeurons.
The weight distribution follows the same concept as in listing 4.6 to match the correct weight
values with delay values in order to approximate the Gaussian. The first column recreates the
strongest weight values, since they belong to the center of the Gaussian and the precise time
of the delay values. After that, the next 2 columns for a duplication to 3 spikes (4 columns
for a duplication to 5 spikes) belong to the delay times, which are multiples of the standard
deviation away from the center. We need to make sure that after the original synaptic weight
is distributed onto the additional synapses, the weight of each synapse does not exceed 63,
since this is the maximal value supported by the hardware. The maximum weight value
before the weight distribution is 139.4229 for a duplication to 3 spikes and 156.4751 for a
duplication to 5 spikes.

We integrate this into the standard synapse module of hxtorch, so it is important to only

# Weight tensor before weight distribution

[[139.4229, 40.00007,
[ 0.0000, 0.00007,
[ 20.0000, 0.000011)

# Weight tensor after weight distribution

[[63.0000, 18.0745, 38.2114, 38.2114, 10.9627, 10.9627],
[ 0.0000, 0.0000, O0.0000, O0.0000, 0.0000, O0.00007,
[ 9.0373, 0.0000, 5.4814, 5.4814, 0.0000, 0.00001]

Listing 4.7: Weight tensor before and after weight distribution.

do this weight distribution if the module before the synapse is a DelayedInputNeuron.
Since we can not access the presynaptic module inside the add_to_network_graph method
in the standard hxtorch implementation of the synapse, we add it as an argument when call-
ing the method while the experiment is being executed. Listing 4.8 demonstrates the code

for the weight distribution inside the Synapse class.

Figure 4.7 demonstrates how the signal is delayed and duplicated after aDelayedInputNeuron

and the dynamics inside the standard hxtorch neuron where the signal arrives.

4.2.3 Delay between Neuron Layers

In the previous section, we could access the spikes through the torch tensor, which was used
as the input spike train. By modifying this tensor, we duplicated and delayed the spikes.

After the input is sent to the hardware, we can not access the spike train in any way, and
only after the whole experiment is completed the spike information is moved back to the

host computer in the form of a torch tensor. Therefore, we need a new approach to duplicate
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def add_to_network_graph (pre_pop, ...):
pre_count, post_count = self.weight.data.shape[l], selt.weight.
data.shape[0]
if isinstance (pre_pop, DelayedInputNeuron) :
if pre_pop.hw_dup ==
# Make sure each synaptic weights do not exceed 63.
weight_transformed = torch.min(self.weight.data.clone ()
, torch.tensor (139.4229)).T
gaussian_extension = torch.zeros (
pre_count x 2, post_count)
for 1 in range (pre_count) :

gaussian_extension[2 * i] = weight_transformed[i]
gaussian_extension[2 x 1 + 1] = weight_transformed]
i]
weight_transformed = (torch.cat ((weight_transformed,

gaussian_extension x np.exp(-0.5)),
dim=0) / (np.exp(-0.5) » 2 + 1).T
elif pre_pop.hw_dup ==
# weight distribution to five values is analogous

else:
raise Exception ( )
# After that, the synapse module is added to grenade

Listing 4.8: The code to increase the number of synapses and distribute the original weights
onto them. We check if the presynaptic population pre_pop is an instance of
the DelayedInputNeuron to determine if the weights need to be distributed.
If this is the case we determine its hw_dup attribute to check how many values
need to be added.
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Figure 4.7: Dynamics inside DelayedInputNeuron and the hxtorch neuron where the
duplicated and delayed spikes arrive. Both MADC and CADC measured po-
tentials are plotted. In addition to the current in the numerical representation
(yellow), the current on the hardware is shown (pink). We used a large value for
the standard deviation of the Gaussian (o = 8 ms) to emphasize the implications

of the Gaussian approximation.
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and delay the spikes when they are on the hardware.

When running an experiment with hxtorch every module is assigned to an execution instance.
This is normally done automatically, but can also be done through an argument when cre-
ating the module. Only modules with the same execution instance can be executed in one
hardware session without host-computer interaction. If the execution instance of a neuron is
different to that of the subsequent synapse, it is needed to recreate the neuron, but with the
same execution instance as the synapse, in order to further propagate the signal. To transport
the spikes from the first execution instance to the second, we route each neuron from the first
to one from the second. This routing is normally done one to one, copying the behavior of
the first neuron module to the second.

This workaround can be used to route the signal from one neuron to multiple neurons, effec-
tively duplicating the spike train, similarly as done in the previous section, where this was
achieved by increasing the size of the input tensor. To approximate the Gaussian distribution
of the spikes in time, we additionally need to be able to precisely delay the spike trains. We
achieve this by making the projection from the neurons on the first execution instance to the
neurons on the second not instantaneous but delayed. Since a controllable inter-execution-
instance delay was not supported initially, it needed to first be implemented and tested.

The inter-execution-instance projection is done inside the synapse and realized through a
connection array that indicates what neuron from the first execution instance is routed to
which from the second. A comparison between the standard connection array and the altered
version to duplicate and delay the spikes is shown in listing 4.9. The code to create and
correctly handle this array is shown in listing 4.10.

The DelayedNeuron is a new child class of the standard neuron in hxtorch and is used
to store the values relevant for the delayed Gaussian duplication as well as indicate if and
how the connection array needs to be altered. It has the same numerical representation inside
the func attribute as the DelayedInputNeuron. The synapses used to route the new
neurons are also identical to the ones we implemented in section 4.2.2. Figure 4.7 shows a
demonstration of the signal propagation through a network withaDelayedInputNeuron

and a DelayedNeuron.

4.3 In-the-Loop Delay Learning

In the previous two chapters, we extended the hxtorch framework to support the duplication
and delaying of input and inter-neuron spikes on BSS-2. This was done in order to approxi-
mate the behavior of the Gaussian distribution, used in the learning algorithm in section 4.1.3
and make it possible to move the forward pass on the hardware.

The code used for the in-the-loop delay learning is the same as used for the delay learning
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# Standard connection array
(ro, o, o, 01,

i, ©, 1, 01,

(2, 0, 2, 011

# Duplicated connection array with delays

[fo, o, 0, 0, 25001,
(1, 0, 1, 0, 50001,
[2, 0, 2, 0, 112507,
[0, 0, 3, 0, 15001,
[0, 0, 4, 0, 35001,
[1, 0, 5, 0, 40007,
[1, 0, 6, 0, 60001,
[2, 0, 7, 0, 102501,
[2, 0, 8, 0, 12250]]

~
~
~
~

Listing 4.9: Comparison between standard and altered connection array. The first and third
column indicate which neuron on the first execution instance is projected to
which on the second. While this projection is one-to-one in the first array, in
the second array each neuron is projected to three neurons, tripling the neurons,
preparing the approximation of the Gaussian with three values. To additionally
delay the projections a fifth column is added which indicates the delay time in
FPGA clock cycle units. Since a ms in the accelerated emulated time of the
system takes 125 clock cycles, the delay values therefore are 20 ms for the first,
40 ms for the second and 90 ms for the third neuron projection and the standard
deviation is 8 ms. The second and fourth column can be used to indicate the

compartment in each neuron and are not needed here.
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# Check if execution instances differ
if pre.toExecutionInstanceID () != post.toExecutionInstancelID() :
c_c = 125 # clock cycles per ms of emulated time
# Check 1f previous population is DelayedNeuron
if isinstance (pre_pop, DelayedNeuron) :
# Create input population for second execution instance
# Size needs to be multiplied by duplication amount
iei_pre = builder.add(grenade.network.
ExternalSourcePopulation (
pre_count+*pre_poph.hw_dup), self.execution_instance.ID)
# Change units in delay and standard deviation from ms to
clock cylces
delays = pre_pop.delays.detach () .numpy () [0]*c_c
sig = pre_pop.sigmax*c_c
# Creating connections array
connections = np.zeros ((pre_count*pre_pop.hw_dup,5))
for 1 in range (pre_count) :
connections[i] = [1,0,1,0,max(delays[i],0)]
for j in range (mul-1):
connections[pre_count + (pre_pop.hw_dup)*i + Jj] = [
i,0,pre_count
(pre_pop.hw_dup-1)+i + j,0,max(delays[i]
(3 // 2 + 1)xsig*x(=1)**(3 + 1),0)]

+ +

else:
iei_pre = builder.add(grenade.network.
ExternalSourcePopulation (
pre_count), self.execution_instance.ID)
connections = np.array([[i, 0, i, 0, 0] for i in range
pre_count) ])
# Create projection and routing in grenade
iei_projection = grenade.network.
InterExecutionInstanceProjection ()
iei_projection.from_numpy (connections, pre, iei_pre)
builder.add (iei_projection)
# replace neuron on first execution instance
pre = iei_pre

Listing 4.10: The code for the creation of the inter-execution-instance projection. We only
want to alter the projection if the previous population is a DelayedNeuron.
If that is the case, we create an input population with increased size according to
our hw_dup attribute of the DelayedNeuron object. Afterward, we change
the units in the delay and standard deviation to clock cycles and use them
to create the connection array. In the end, the new routing is added to the
grenade graph and the previous population is replaced with the one on the
second execution instance.
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Figure 4.8: Dynamics inside a SNN with both new classes. The input spike arrives at

10 ms through a DelayedInputNeuron (neuron 0). It propagates through a
DelayedNeuron (neuron 1) and then through a standard hxtorch neuron (neu-
ron 2). The delay for both neuron 0 and 1 is 20 ms and the standard deviation
value for the Gaussians is 8 ms. This demonstrates the successful implementa-
tion of axonal delays and the Gaussian approximation in hxtorch on BSS-2.
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in PyTorch (listing 4.3), and also the loss function again is the squared difference between the
spike arrival time and a target time. We use a model consisting of aDelayedInputNeuron,
a DelayedNeuron and a normal output neuron to demonstrate the learning capabilities
for both new classes. Figure 4.9 shows the simultaneous learning of the delay value in the
DelayedInputNeuron (dy) and the DelayedNeuron (d;). Delay d; influences the
loss more directly compared to d because it is closer to the spike time calculation inside Py-
Torch’s computational graph. Indeed, the gradient of d; is more than 4 orders of magnitude
bigger than of dy, and we had to use different learning rates to show the learning of both

delay values simultaneously (learning rate for dy = 4 - 10%, learning rate for d; = 1 - 10°).
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In-the-loop learning behavior
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Figure 4.9: Demonstration of in-the-loop learning. A single spike enters the network af-

ter 20 ms through a DelayedInputNeuron (neuron 0), propagates through a
DelayedNeuron (neuron 1) and then through a standard hxtorch neuron (neu-
ron 2). The initial delay for neuron 0 and 1 is 6 ms and 15 ms, respectively.
Only the spike time of neuron 2 is used for the learning with the target time be-
ing 90 ms. (a) Change of delay times, spike arrival times as well as loss value
throughout the 200 epochs of the learning process. (b) Dynamic inside the net-
works’ neurons during an experiment before the learning has happened. The
spikes are only slightly delayed in each neuron, which results in a spike at 51 ms
in neuron 2. (¢) Dynamic inside the neurons after the learning process has fin-
ished. The learning caused the delays in neuron 0 and 1 to increase which results
in a matching of target time and spike time in neuron 2.
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5 Discussion

The goal of this work was to enable the training of delays in a BSS-2 software ecosystem.
This was done through the implementation of a Gaussian convolution algorithm which delays
the spikes and spreads them out in time in the shape of a Gaussian and therefore makes the
gradient computation in the backward pass of the learning process possible. This algorithm
showed promising results on conventional computers, but was not yet tested on neuromor-
phic hardware [9].

We started by recreating the algorithm in software with PyTorch to examine and test its
behavior and learning capabilities. After that, we moved the forward pass of the learning
process onto the BSS-2 system. We did this with the hxtorch framework, which integrates
PyTorch with BSS-2. This was a major challenge since it is not possible to directly delay
spikes on the BSS-2 chip and also the shape of the spike can not be altered to imitate the
spread out spikes. We therefore decided to route the signal from the on-chip neuron back to
the host computer, digitally delay it with the intended delay value d, and then send it back to
a neuron on the hardware. This delays every spike that leaves a neuron by the same value and
therefore implements axonal delays. To approximate the Gaussian additionally to delaying
the spikes, we decided to duplicate each spike in the host computer, delay each duplicated
spike, distributed around d, and send them over synapses to the same neuron ¢. The synaptic
weights can be set in a way that results in an approximation of the Gaussian in neuron <.
With this implementation, we were able to successfully learn delays on the BSS-2 hardware.
The Gaussian shape is pivotal for the implementation of the algorithm, but our approximation
of this on hardware was not the only possible option. For example, instead of changing the
strength of the spikes by routing them through multiple synapses and changing the weight
of those synapses, we could have used hardware resources, which are normally used to route
the spikes, to change their strengths. This though would limit the options to route the spikes
and also would not spread them out in time, like it is needed for the Gaussian approximation,
and therefore a different approach would be needed to realize this. Another consideration
was to not approximate the Gaussian at all on the hardware and only delay the spikes, sug-
gesting that the difference between the hardware and software behavior can be neglected.

We chose not to pursue this approach because maintaining a close similarity between the
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software model and the hardware is a crucial factor in machine learning on external systems.
However, in-the-loop learning could potentially enable this approach to work for delays.
Also the duplication method we used could have been implemented differently. We approx-
imated the Gaussian with 3 or 5 spikes, with each spike having a time difference of the
standard deviation value of the Gaussian, which is used for the backward pass. It is possible
that these spikes are not sufficient or should be placed differently to minimize the difference
between the behavior of backward and forward pass while not using up too many resources
of the hardware.

Before this work, delays between two neurons on the BSS-2 hardware were not implemented.
We integrated them in hxtorch into the rerouting of spikes through the host computer. While
this was done to implement the Gaussian convolution algorithm, these delays can also be
used to test different methods to learn delays in-the-loop.

The implemented changes are done in two new classes: The DelayedInputNeuron class
is used to learn the delays of input spikes, and the DelayedNeuron class is used to learn
delays between two neuron layers. These classes are seamlessly integrated in the hxtorch
framework and can be used by users to build up on my thesis by using them to create a
bigger neural network and train the delay values on a dataset like SHD [6] or YinYang [12].
The algorithm can then be benchmarked against existing algorithms on these datasets. Fur-
thermore, also the exponential decrease of the standard deviation of the Gaussian throughout
the learning could be compared to a static standard deviation value, since this resulted in
improved performance in [9]. If the in-the-loop delay learning shows promising results in
the benchmark, it can be fine-tuned and optimized by testing other implementation for the
Gaussian approximation. Further work could make the duplication more generic to easily
test many ways to duplicate the spikes and use a parameter sweep to decide which configu-
ration works the best.

SNNs have a strongly increased amount of parameters compared to conventional neural net-
works. To be able to fully leverage this advantage with neuromorphic hardware, it is needed
to be able to train all the parameters. Synaptic weight learning on BSS-2 is already imple-
mented and our work adds the possibility to learn delays. Future work could implement
methods to learn the AdEx parameters, as well as multi-compartment morphologies to make
the whole parameter space of BSS-2 learnable. This can then be used to assess and test how
much each parameter contributes to the network’s performance, which is especially impor-

tant to decide how to improve and design optimized neuromorphic hardware substrates.
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