
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Kaspar Frieder Haas

born in Karlsruhe (Germany)

2023

Parameterized circuits for accelerated design and simulation

This Bachelor Thesis has been carried out by Kaspar Frieder Haas at the
Kirchhoff Institute for Physics in Heidelberg

under the supervision of PD Dr. Johannes Schemmel

Abstract

In the development of increasingly complex analog neuromorphic chip designs, the
use of flexible and scalable design parts can be of great advantage. This is because
chips created using these so called Parameterized Cells (PCells) can become more
flexible, while at the same time opening the possibility for wider use cases of these
cells.

The work presented here demonstrates this by creating a scalable synapse driver
array for use in the BrainScaleS-2 (BSS-2) system. Here the creation process of
the array, including the creation of a second PCell, an address decoder, as well
as some simulations will be shown. The results produced can even be seen as a
first step towards the creation of a fully scalable BSS-2 core. To achieve this the
described parameterization process has to be expanded to the other parts of the chip.
Furthermore the simulations performed using the created synapse driver array show a
possible speed gain when using the flexibility of PCells, by comparing the simulation
times of the differently instantiated arrays to each other.

Kurzfassung

Bei der Entwicklung immer komplexerer analoger neuromorpher Chips kann die
Verwendung von flexiblen und skalierbaren Designteilen von großem Vorteil sein.
Die Gründe hierfür sind, dass die Chips, welche mit den parametrisierbaren Zellen
erstellt werden, selbst flexibler werden und dass die parametrisierten Zellen in mehr
Anwendungsfällen verwendet werden können.

Die vorliegende Arbeit zeigt dies anhand der Erstellung eines skalierbaren Synapsen
Treiber-Arrays, welches im BrainScaleS-2 (BSS-2) System verwendet wird. Hierbei
werden der Erstellungsprozess des Treiber-Arrays, der auch die Erstellung eines para-
metrisierbaren Adressdekoders enthält, sowie die durchgeführten Simulationen des
Treiber-Arrays präsentiert. Weiter kann die Arbeit als erster Schritt in Richtung eines
vollständig parametrisierbaren BSS-2-Kerns gesehen werden. Um diese vollständige
Parametrisierung zu erreichen, müsste der hier vorgestellte Parametrisierungsprozess
auf die anderen Chipteile angewendet werden. Darüber hinaus zeigen die durchgeführ-
ten Simulationen mögliche Zeitgewinne abhängig von der gewählten Parametrisierung
des Arrays. Diese werden durch einen Vergleich von unterschiedlich parametrisierten
Synapsentreiber-Arrays dargestellt.

Contents

1 Introduction 1

2 Background 1
2.1 Microelectronics and CMOS production . 2
2.2 The BrainScaleS-2 System . 4
2.3 VLSI design flow . 6
2.4 PCells . 8
2.5 Simulation and parasitic extraction . 9

3 Methods 12
3.1 Cadence® Virtuoso® . 12
3.2 Calibre . 13
3.3 SKILL . 13

4 Creation of synapse driver and address decoder PCells 13
4.1 Fixed synapse driver array . 13
4.2 Address decoder . 14

4.2.1 Parameters . 14
4.2.2 Cellviews . 21
4.2.3 Verification of the address decoder PCell 24
4.2.4 Simulation . 25

4.3 Flexible synapse driver array . 25
4.3.1 Layout . 26
4.3.2 Schematic . 28
4.3.3 Symbol . 29
4.3.4 Sparce array for fast simulation . 29
4.3.5 Verification of the synapse driver PCell 30

5 Extraction and Simulation 31
5.1 Extraction . 31
5.2 Simulation . 32

6 Discussion and Outlook 36

7 Appendix 38
7.1 Decoding . 38
7.2 Code fragments . 39
7.3 Reproducibility . 40

1 Introduction

Modern microelectronics and electronic circuits have been experiencing an explosive growth
over the last decades (Razavi, 2013, p. 1). This includes the development of many different
kinds of electronic devices, for example cellphones, digital cameras or computers. One thing
all these devices have in common is the fact that without the rise and rapid development of
integrated circuits, or so called ICs, none of them would be able to exist in their current form.
As developments progressed, these ICs became larger and larger, enabling the creation of
faster and more powerful electronic devices. An example often used to demonstrate this
massive growth is Moore’s law, stating that the complexity of minimum cost components
has and will continue to increase with a factor of two per year (Moore, 2006), resulting in
a doubling of transistors used in integrated circuits every year. Comparing this statement
with the actual number of transistors per microchip, growing from just over 2000 in 1971 to
58.2 billion in 2021 (Our World in Data, 2023), one can easily see that Moore’s prediction
was quite accurate. This also meant that the tools used to create integrated systems had to
change over time. Nowadays most of VLSI, or Very-Large-Scale Integrated Circuit design
is done using software like the design suite provided by Cadence®. Cadence® is one of the
key leaders when it comes to electronic system design, cooperating with manufacturers like
TSMC or UMC.

As these circuits grow in size, the design process is expected to become more and more
complex too. As a result it is desired to break down the different parts of a design into
smaller chunks which then can be used as building blocks or so called cells in larger designs.
When creating these cells with future projects or possible changes in mind it only seems
plausible to wish for Parameterized Cells, so that the created cell is flexible or scalable
and can be reused in different designs. A possible way of creating these flexible cells is the
creation of so called PCells in the design suite of Cadence®, Virtuoso®.

This work shows one possible implementation of such a scalable design in analog
neuromorphic systems, by using the synapse driver array of the BrainScaleS-2 system as an
example. To achieve the mentioned scalability a parameterized address decoder has been
created as a PCell using the programming language SKILL. With this address decoder the
old driver design was modified, now allowing the user to choose a configurable number of
driver outputs.

The second part of this work gives an introduction into physical parasitic effects that must
be taken into account when creating and simulating analog circuits. Here an extraction and
simulation of the driver array in two different configurations will be performed, showing
the difference in speed and accuracy when working with increasingly complex designs.

2 Background

The following sections will give an introduction into the topics covered within this thesis
and will also mention some resources for further reading. After a short introduction into

1

microelectronics and CMOS factoring some information about neuromorphic hardware
with focus on the BrainScaleS-2 (BSS-2) system will follow. Then the concept of VLSI
design using Virtuoso® and creating PCells for this application will be explained. The
introduction will close on information about parasitics in chip design as well as hint at
simulation uses of these parasitics.

2.1 Microelectronics and CMOS production

The rise of electronic devices started about a 100 years ago, arguably with the invention of
the vacuum tube in 1904. This evolution, driven by the extended use of vacuum tubes
and later semiconductors, for example in amplifying circuits, changed the world. While in
the beginning this development seemed quite slow, it picked up speed in the 1940s with
the discovery of the transistor by Shockley, as well as Brattain and Bardeen, working in
the same research group (Riordan, Hoddeson, and Herring, 1999). With this discovery the
foundation for modern semiconductors was laid. Even then, it was not until the 1960s
that the microelectronics and especially ICs really took off (Razavi, 2013). One reason for
this was that early ICs only contained a handful of devices. This changed rapidly with
the invention of the CMOS process in 1967 (Wanlass, 1967), which allowed for larger and
more complex designs to be created.

Talking about the use and implementation of transistors in these ICs the question "What
exactly is a transistor?" may arise. Essentially there are two types of transistors: The
so called bipolar transistor and the metal-oxid-semiconductor transistor (MOS) (Phillip
E. Allen, 1987, p. 29). While the bipolar transistor has been the cheaper transistor for
many years, the MOS transistor has fallen in costs so dramatically, that today it is widely
used in all kinds of applications. Because of this widespread use and the fact that this
work does not touch electronics with bipolar transistors, this introduction will only focus
on the MOS transistors.

Simply put, a transistor can be seen as a controlled current source. Talking about MOS
transistors, this control is achieved by controlling an electric field using a voltage. To
generate this field different doped silicon layers, n+ and p+, are used. If these doped silicon
layers, together with an oxide insulator, are placed in the right geometry, for a PMOS
two p regions placed inside an n substrate as seen in figure 1, they form two pn-junctions
between the n doped substrate and the p doped source and drain contacts.

Additionally, it can be seen that the gate and the substrate are forming the parallel plates
of a capacitor, allowing for the construction of an electric field between these two contacts
(Phillip E. Allen, 1987, p. 49). This electric field can change the sizes of the depletion
regions created by the pn-junctions, allowing for the regulation of a current flowing from
drain to source. In conclusion this means, that a voltage between the substrate, in figure
1 still called source, and the gate can be used to control the current flowing through the
transistor. When using a PMOS as shown in the schematic in figure 2 this means that
when the voltage between the gate and the source is smaller than a certain threshold, the

2

Figure 1: Layout drawing of a PMOS transistor as seen in the patent US3356858A by
Wanlass (1967). The left side shows an overview of the wafer, while the right
side shows the cross section.

current can flow from drain to source. If the potential difference increases, the current
flowing through the transistor will increase accordingly.

Figure 2: Schematic drawing of a PMOS transistor as seen in the patent US3356858A by
Wanlass (1967) with the terminals wired to the according voltage sources.

Looking at an NMOS transistor, the doping of the substrate and therefore the doping of
the connections is switched, see figure 3, resulting in an opposite reaction. For gate-source
voltages below a threshold, the current from drain to source is basically zero. When
increasing the potential difference, the resulting current also increases.

Figure 3: Layout drawing of an NMOS transistor as seen in the patent US3356858A by
Wanlass (1967). The left side shows an overview of the wafer, while the right
side shows the cross section.

For deeper explanations of the different functions and operation options of the transistors
one can refer to different kinds of standard electronic teaching materials. Suggested

3

readings that have already been mentioned would be (Razavi, 2013) and (Phillip E. Allen,
1987) as well as (Jaeger and Blalock, 2011). After briefly introducing the two different
MOS transistors, a short explanation, why it can be beneficial to have PMOS and NMOS
transistors on the same silicon wafer, will be given. One use case utilizing both transistor
types is the inverter. Here an NMOS and a PMOS are wired in parallel to an input, with
the PMOS drain connecting to VDD and the NMOS source connecting to GND. This
configuration essentially creates an output of VDD, if the input is set to GND and vice
versa.

However, creating both of these transistor types in the same silicon is not as easy as it
may sound. When looking at the doping type of the substrate, it’s clearly visible that the
PMOS transistor is sitting in n-doped silicon, while the NMOS transistor is sitting in a
p-doped substrate. The idea of CMOS is to combine these substrates by creating a p-well
inside the n-doped substrate, which allows placing the NMOS next to the PMOS. In most
common processes used today the doping is reversed, resulting in the creation of an n-well
inside a p-doped silicon wafer. But whatever the difference in doping, today’s processes
are based on the patent presented by Wanlass (1967) introducing the CMOS technology.
A sketch of his idea is presented in figure 4.

Figure 4: Cross section of a CMOS layout with an NMOS and a PMOS on the same wafer,
as seen in the patent US3356858A by Wanlass (1967). The shown configuration
represents an inverter.

2.2 The BrainScaleS-2 System

As mentioned in the introduction, this work involves the creation of a scalable synapse driver
array for use in the BrainScaleS-2 (BSS-2) neuromorphic system. The term neuromorphic
describes hardware used to mimic nerve structures, especially those of the human brain
(Billaudelle, 2017). One of these neuromorphic systems is the BSS-2 system created and
maintained by the Electronic Vision(s) group at the University of Heidelberg. The research
group introduced their first mixed-signal neuromorphic chip, Spikey, which was based on a
180nm CMOS technology, with the work by Schemmel et al. (2006). Back then the system
contained 384 neurons and 256 synapses (Pfeil et al., 2013). The latest system is the
already mentioned BSS-2 system, which is manufactured in a 65nm process, containing 512
neurons with 256 synapses per neuron (Pehle et al., 2022). It is based on an analog model

4

of physically implemented neurons and synapses that, when combined, result in an analog
neuromorphic accelerator which uses a continuous-time to emulate the spike-based dynamics
of a neural network. Interestingly, while the number of synapses and neurons falls short
compared to the real world example, the time scales in this system are up to a thousand
times shorter than the real world comparison, resulting in a high acceleration in time
compared to the biological counterparts (Schemmel et al., 2020). A single BrainScaleS-2
core includes the full custom analog part holding a synaptic crossbar combined with neuron
circuits, analog parameter storage, two digital control- and plasticity-processors, and an
event routing network responsible for spike communication. A schematic floorplan is shown
in figure 5. Here you can see that the design was split into four quadrants containing
256 by 128 synapses each.

Figure 5: The left side shows a schematic floorplan of the BrainScaleS-2 system as described
in the work of Pehle et al. (2022), while the right side shows a representation of
a synapse driver schematic. The bus lines are depicted in black, connecting the
drivers shown as triangles. The driver outputs as well as the drivers are colored
green and pink depending on the position (left or right) of the drivers. The right
picture can be understood as zoomed in on the synapse driver on the left.

This floorplan further shows synapse drivers, which are used as the interface between
the event routing bus and the analog core of the chip. In other words, the drivers take
the inputs from the digital part and feed them into the analog part of the chip. Here the
digital event handling logic is used to inject these events into different decoders, acting as
a custom CMOS-level bus and distributing the spike events across the array of synapse
drivers. To achieve this, the synapse drivers derive timing signals for the synapse circuits
and drive them across the synaptic rows using a 6-bit synapse address as well as an enable
signal (Grübl et al., 2020). Four of these 6-bit busses are used to activate the corresponding
synapse drivers. Here each synapse driver manages two synaptic rows per side resulting in

5

four synapse rows per driver (Billaudelle, 2017, p. 12). On focusing only on the top half
of the chip, one can draw a simplified connection plan of the synapse drivers as shown in
figure 5. This is possible since the lower half of the chip is essentially a mirror image of the
upper half.

Furthermore, the synapse drivers also implement the short-term plasticity model (STP),
following the pre-synaptic implementation approach as tested in the previous chip gen-
erations (Grübl et al., 2020). However, with the aim of this work in mind, it can be
concluded that the detailed implementation of this model is not relevant. Therefore no
further information about the STP implementation is given.

A closer look at the floorplan of the BSS-2 system shows that the system is quite complex,
and therefore also quite space consuming, resulting in the need for a large die-area. This
is not a problem in itself, but it does mean that each individual chip, especially when
considering smaller improvements from one generation to the next, is quite expensive to
manufacture. One of the reasons is the direct relation between cost and chip area used.
While these large die-area chips are indispensable in some instances, for example when
scaling up systems, most of the time it is possible to test changes of smaller components
individually. When testing the individual components, the production of small scale chips
or so called mini asics, keeping costs for each iteration at a minimum, would be optimal.
Coming back to the BrainScaleS-2 system, the question on how to achieve these small scale
chips arises. Here the idea was to find a way how the design could be shrunken down for
testing purposes. Based on this, the objective of the work set out in this thesis was to be
able to scale down the system in number of synapses and neurons. To achieve this, the
first three main components that have to become scalable in design are the synapse driver
array, the synapse array and the neuron array. Out of these components the synapse driver
array is dealing with different connections the most. This is the reason why it was chosen
to serve as an example and possibility check for creating a scalable neuromorphic design
using PCells.

2.3 VLSI design flow

To understand what is meant by the term PCell and why it is desirable to use them in
circuit design one first has to understand the design process behind VLSI systems. The term
Very-Large-Scale Integrated Circuit (VLSI) is used to describe the ever growing integrated
circuits (ICs) on a single silicon wafer. These integrated circuits or ICs describe the
realization of a large number of components, mainly transistors, on one wafer with the main
benefit that the devices share quite similar characteristics due to the equal manufacturing
conditions. This ability to create devices with nearly matching characteristics has resulted
in the development of special circuit techniques taking advantage of these similarities
(Jaeger and Blalock, 2011, pp. 1046–1049).

The design process of these integrated circuits is based on many different steps. While
there is no perfect design flow used by everyone, the key steps of these flows will still be

6

quite similar. To showcase a possible design flow, an introduction into 5 crucial steps will
be given. The naming of these steps can be subject to changes depending on the process in
question. In terms of naming and step order, this work is based on the workflow presented
by Cadence®(Cadence Design Systems, 2023b) as a result of the later use of their design
tools.

Following these recommended design steps, all processes should start with an "architec-
tural design" part. This means thinking about what exactly is to be achieved. Furthermore,
all the organizational steps, such as the expected costs and use cases of the IC, are taken
into account. After the requirements as well as the boundaries regarding a specific IC are
fixed, the "logic design" begins. Here one takes the requirements from the "architectural
design" and tries to break them into increasingly smaller blocks. This helps to create a
hierarchical idea of the aspired design. When all small building blocks are determined,
either preexisting similar blocks are used and modified when possible, or new ones, solving
the design challenges are created. This process mainly works on the schematics of a design.
After finishing the schematics of the desired IC, it is advised to perform the first simulation
tests verifying that the idea and function of the desired circuit have been achieved. If these
tests prove successful, the next step is to create the "physical design" of the IC. In this step,
all the small building blocks from the schematics have to be implemented in the layout of
a chip. Here one has to determine the location, size and shape of all the different modules,
effectively drawing the masks used for producing the wafers. It is advisable to re-verify
each small building block against its schematic counterpart to ensure that no mistakes are
made. With increasingly higher hierarchical levels it also becomes increasingly difficult to
find and extract errors.

Combining this "physical design" step with the hierarchical design of the chip also
provides the first strong argument for creating scalable and reusable design parts. One
option to achieve this would be to copy the small design parts each time they shall be used
and then modify them according to the specific needs. But as one can imagine, over a
longer period this becomes space and time consuming, being the reason why this option is
not really desirable. Another reason why this option is not optimal is the fact that the
results are not scalable without a considerable amount of work. For example, if one wanted
to double the size of an old design, one would have to double everything by hand which is
a quite time consuming process. One option to resolve these issues are so called PCells,
or Parameterized Cells, which can be created using Cadence® Virtuoso®. These can then
be used as the small building blocks of the design. Here it is also possible to incorporate
these small parametrizable cells into bigger Parameterized Cells, which finally can result in
a fully scalable and modifiable IC design.

Coming back to the last two steps of the design process, the step after completing the
"physical design" of the IC is to verify the created designs. This process is also called
"physical verification". Here the physical design on the masks for the wafer is primarily

7

tested both for design rule violations, assuring that the design is manufacturable, as well
as for differences between the layout and the schematics from step two. If these tests
are successful, simulations of the actual layout, taking into account real life effects like
crosstalk and resistances, are carried out. Most of the time the design is also tested at the
edges of the manufacturing variations, thereby checking the stability of the design. With
all the desired tests passed, the final step of the process is the "signoff". In this step the
most critical parameters are verified again, including timings, power consumptions and
signal strengths. If all necessary steps are taken, the circuit will be sent to a manufacturer,
where there will be some final testing, followed by the manufacturing of the wafers. This
design flow is also modeled in a flowchart shown in figure 6.

1. Architectural Design

2. Logic Design

3. Physical Design

4. Physical Verification

5. Signoff

Organization steps

Determine IC goals

Determine hierarchy

Implement schematics

Implement layout

Create PCells

DRC and LVS tests

Parasitic tests

Critical parameter tests

Tapeout to manufacturer

Figure 6: Design flow chart for ICs inspired by the explanation from Cadence Design
Systems (2023b) and the work by Patni (2021). The design flow chart shows
the different steps of the process in the colored boxes with short explanations of
these steps on the right.

2.4 PCells

As motivated in the previous paragraphs it can be quite desirable to implement scalable
and reusable designs when creating ICs. Here the PCell from Cadence® Virtuoso®, as
mentioned above, is a powerful tool to achieve this flexibility. In short, a PCell is a layout,
schematic or symbol of a cell used in Virtuoso®. The distinctive feature of these cells is
that they have parameters attached to them, allowing for customized appearances when
inserted into a design. One of the smallest examples for a PCell would be a transistor, most

8

of the times supplied as part of the process design kit belonging to a CMOS technology.
Here some cell parameters would include the length and the width of the gate, as well as
for example the number of fingers or multipliers a transistor holds. When changing these
parameters for instances inside a design, the model of the transistor changes accordingly.
The same holds for the use of the PCell in a layout. Here a parameter change results in
physical change of the drawn transistor. Using the example of the transistor one can easily
show that it is possible to use the same basic design, in this case the transistor, in many
different implementations. Cadence® allows the user to create such PCells on their own,
thereby providing quite a powerful tool for the purpose of IC design.

Working with these PCells, Virtuoso® provides two options on how to create them. One
can either create the PCells graphically, using the options inside the PCell menu, or
textually, using the programming language of Cadence®, SKILL (Cadence Design Systems,
2004). While it might be appealing to create the PCell graphically, the complexity of
the PCells created that way is quite limited. When creating the PCells using SKILL, the
options, and therefore the possible complexity of these PCells, are nearly unlimited. This
is a direct result of the fact that everything the design software Virtuoso® is capable of can
also be achieved using the correct SKILL commands. This for example is reflected in the
parameters, which can be used quite freely, resulting in very little to no boundaries when
creating PCells for own designs. Because of the greater flexibility, and the option to create
schematic and symbol PCells, the method used to create the cells shown in this work is
using SKILL.

In addition to scalability and reusability, PCells carry the following advantages when
used in design processes. They are able to save disk space by using only paths back to
the original cell instead of saving all cells individually, they speed up the layout data
by eliminating the need for duplicated parts, their designs can be maintained way easier
because all changes can be done in the parent cell and finally, they allow for much easier
changes in the designs by using parameters instead of having to go through a stack of
layout layers (Cadence Design Systems, 2004).

2.5 Simulation and parasitic extraction

When looking at the design flow of ICs as explained above, it is visible that in addition
to actually creating the circuits, a big part of designing is simulating and testing the
different designs at varying design stages. When working with schematics, this can be
achieved by creating a so called netlist of the drawn circuits. These netlists are used for
simulating the designs by applying different component models or calculating the different
behaviors according to basic electronic equations. Most of the time the software used
to generate these simulations is based on SPICE (Simulation Program with Integrated
Circuit Emphasis). SPICE in its core is an open source circuit describing language used
for simulations of complex circuits by replacing the used components with different models.
When simulating the circuit all components, as well as their connections, get translated into

9

a netlist which itself is used to generate equations describing the circuit. These detailed
equations are mostly solved numerically, with a precision that is not achievable by hand
in a reasonable time (Jaeger and Blalock, 2011, p. 167). To get an understanding of the
complexity of these component models the level-1 SPICE model of an NMOS is represented
in figure 7.

G

D

S

B

D

RD

CDB

BCGDG

CGS

RS

S

CSB

CGB

iD
DDB

DSB

Figure 7: The left side shows the symbol of an NMOS transistor as used in modern processes.
The right side shows the Level 1 SPICE representation of this NMOS as seen in
the book by Jaeger and Blalock (2011, p. 167) or Phillip E. Allen (1987, p. 104)

Here it becomes clear that even for a "simple" MOSFET the number of equations
describing the whole system can become a nuisance.

In addition, these netlists used for simulations can be extracted from the layout using the
GDSII data and for example the tool Calibre. Using this functionality it is now possible
to compare these two netlits of layout and schematic against each other. The process of
comparing these two is also known as layout versus schematics (LVS). Here it is possible
to spot differences or errors in the designs, which may have been missed when creating the
layout. Naturally, if it is possible to create a netlist from the layout, it is also possible to
use this netlist for simulations. Interestingly the simulation options for the layout exceed
the ones of the schematics. The reason for this are the so called parasitic extractions of the
layout generating a netlist not only containing the connections, but also the physical effects,
like crosstalk or line capacitance, that the shapes drawn for the wafer masks will likely have
on each other. These extractions are needed, because the extended use of lower resistive
conductors on chips combined with the increasingly tight on chip timing requirements,
resulted in an increased visibility of unwanted effects (Kao et al., 2001). To calculate
these parasitic effects different methods of extracting can be used. Providing a better
understanding of these extractions, some of the widely used models will be introduced in
the following paragraphs.

10

When talking about these parasitic extractions the main contributors are the resistance,
the capacitance and the inductance among the interconnected wires. Of these, the calcu-
lation of the capacitance is playing the most significant role. To extract these parasitic
capacitances, two main processes, the field solver method and the pattern-matching method
(Ma et al., 2023), are used. The field solver works by directly stimulating the electrostatic
field and saving the results, therefore achieving highest accuracy. As always, this accuracy
comes with the penalty of quickly rising computing times as well as massive memory
consumption. It therefore is only suitable for smaller designs or isolated design parts
(Yu, Song, and Yang, 2021).

The method based on pattern-matching is the one used for working with circuits of
increasing size or even full chip extractions. It also is the foundation of most industry
adopted extraction tools like Calibre by Siemens. This method works by combining three
steps of extraction, of which only one is executed on a per design basis. These three steps
are: first the generation of different wire patterns covering a wide range of possible designs,
second the calculation of capacitance models for these structures, and third an extraction
of the actual circuit layout, from which the found wire structures are mapped to the pre
calculated models. The advantage of these pre calculated models is that they only have to
be calculated once for each process technology and therefore are independent of the actual
design. This means that they are supplied with the rest of the technology files. These
pattern capacitance libraries are created using a field solver, as mentioned above, and can
consist of several thousand structure patterns, see the work of Yu, Song, and Yang (2021).

Interestingly there are different models for capacitance field solvers, mainly differing in
the dimensional complexity of the extractions. During the ongoing developments of these
extraction models, they evolved from taking into account the 1-D effects, over 2-D and 2.5-D
to considering 3-D effects. Each of these model revisions surpassed the lower dimension
ones in the accomplished accuracy. While the 1-D extraction only accounted for the area
and perimeter of interconnected geometries, combined with an average environment of
these wires, the 2-D extraction included capacitive effects in relations between wires of
the same lateral metal layer. Because it is not as trivial as it seems to extend these 2-D
extractors into the third dimension, a 2.5-D solver has been developed (Kao et al., 2001).
The 2.5-D extraction works by orthogonally combining two 2-D extractions. To achieve
this, the layout is first extracted horizontally and then vertically. Combining these two
extractions allows for the modeling of most 3-D effects. Examples of how these two views
might look like are shown in figure 8.

Nowadays mostly 3-D solvers are used for the extractions. While there are the traditional
deterministic methods, like the boundary element method (BEM), or the finite difference
method (FDM), numerically solving the maxwell equations and describing all the different
metal layers in three dimensions (SimTech, 2023), current research tries to reduce the
computation time and power as well as the memory space needed for these extractions.
One attempt on completing this task is the implementation of a floating random walk
to generate the dependencies, as shown in Yu, Song, and Yang (2021). This work shows

11

M1
M2

(a) top view

M2

M1

(b) side view

Figure 8: Schematic depiction of 2.5-D modeling for two metal lines in different layers.
Inspired by the work from Kao et al., 2001

the importance of speeding up the extraction and simulation process, without having to
reduce the complexity of the designs. Moreover, this gives a foundation for the second
goal of this work, trying to decrease the simulation times needed for big repetitive designs.
This shall be achieved by configuring the synapse driver array as a PCell in a way that
it becomes possible to replace most of the repeating design parts with extracted models,
essentially speeding up the simulations, while also keeping the accuracy of the simulations
at a reasonable error.

3 Methods

In the process of creating and simulating the PCell of the synapse driver array for the
BrainScaleS-2 system different tools have been used. The following few paragraphs are
going to give a short introduction explaining the tools used as well as their purpose.

3.1 Cadence® Virtuoso®

Most of the work regarding this thesis was done via the Cadence® Virtuoso® software.
Virtuoso® is mainly used to create custom IC designs in schematic and layout. The software
also includes a tool for analysis and circuit simulation. The Virtuoso® studio software is
the world leader regarding circuit and chip design. Regarding the software Cadence® is
cooperating with chip manufacturing companies like TSMC and UMC. The simulation
solution, Spectre, which is integrated into Virtuoso® is capable of performing both analog
and digital simulations, as well as mixed signal simulations. While it is based on SPICE,
Cadence® claims that the simulation speed is up to ten times faster than ordinary SPICE
simulations (Cadence Design Systems, 2023a).

12

3.2 Calibre

The Calibre design solutions portfolio is a piece of software that is maintained by Siemens
and can be used in the IC sign off verification and optimization process. In the context
of this work Calibre was used to perform the layout versus schematic (LVS) and Design
Rule Checks (DRC), as well as to extract the parasitics of the designs using the parasitic
extraction (PEX) tool. The checks were executed using the allowed integration of third
party software into the Virtuoso® design suite by running the Calibre verification tools
directly from the cellviews graphic interface.

3.3 SKILL

As mentioned before, the PCells in this work have been created using the programming
language SKILL. SKILL as a programming language is a dialect based on a dynamic scoped
Lisp interpreter. It was developed to be used as an extension language for CAD systems
with the goal of providing tools and design control for the user on a level unachievable
otherwise. Because it was developed with the user in mind, the actual parser is quite less
restrictive than usual Lisp. This simplified parser for example allows a far more C-like
syntax (Barnes, 1990). Nowadays SKILL is tightly integrated into the Virtuoso® design
suite, allowing for full control over the designs and software by only using the command
line.

4 Creation of synapse driver and address decoder PCells

After introducing the main topics of this thesis, the following chapters will deal with the
parametrization process as well as the challenges and solutions that arose during the process
of creating a parametrized synapse driver array. Here the different steps and decisions
will be discussed, while also giving code examples for implemented solutions. The work
regarding the scalability of the synapse driver was started by taking a dive into the design
blocks of the fixed array, used in the latest BSS-2 system.

4.1 Fixed synapse driver array

The old synapse driver array was designed and constructed following the traditional design
flow as explained before. This means that it was constructed out of many different layers of
instances, used in an ever growing hierarchy. Specifically, this means that all the different
parts of the design, such as the bus, the drivers or the SRAM decoder were all created and
placed by hand. Further this layout was extended using a custom SKILL script creating
the decoding via patterns on top of the instances, as well as using a second custom SKILL
script, creating the labels used for net naming and simulation on top of the layout. In some
places, where the features of the array have been expanded over time, metal shapes, used
for those features, were drawn right on top. Starting from this, the first task in changing
this array into a scalable PCell was trying to replace the via script, creating the decoding

13

pattern in the incoming bus lines, again see figure 5, with a changeable decoder that,
making use of its flexibility, hopefully will be used in many different upcoming designs.
The process of creating this decoder, ultimately achieving the desired functionality, is
highlighted in the following paragraphs.

4.2 Address decoder

Combining the argument of trying to get rid of custom built solutions for each new design
with the almost infinite possibilities provided when creating PCells, the first decision that
had to be made during the creation process of this changeable decoder design was the
parameter selection. Here the parameters one would likely use in the future as well as their
implementation had to be chosen.

4.2.1 Parameters

Addressbits
Deciding on the parameters, the first one to be implemented was the number of address
bits for the input bus. This parameter takes the form of an integer, allowing to choose any
whole number larger than zero. Implementing this parameter was fairly straightforward,
because the usage of an integer meant that it could just be passed into the design. Setting
this parameter defines the number of address lines, hence the naming, while in the same
step also defining the number of routing outputs.

Custom Length and Maximum Bit
To accompany this parameter two further parameters allowing for a smaller number of
outputs have been added. The reason for this was that sometimes one has an input of a
certain number "a" of address bits, but does not need all 2a outputs. If this parameter is not
used, the number of outputs is determined automatically. The first parameter added allows
a reduction in output numbers and therefore is called custom length. It is implemented as
a boolean with the default false (nil). When set to true (t), the second parameter is
revealed. This normally hidden parameter is called maximum bit and is also implemented
as an integer. When used with a value smaller than 2a, the PCell only calculates, and
therefore creates, routing outputs up to the specified number.

During the process of creating these two parameters two challenges arose. The first one
was faced while creating parameters that normally are hidden and uneditable, but turn
into "real" parameters, depending on the values of other parameters. Here the first idea
was to use a callback attached to the custom length parameter, changing the value of the
display option from the maximum bit parameter. Unfortunately, that did not work, which
is the reason why the current implementation is making use of the ?display option directly
attached to the maximum bit parameter. The code used to implement this functionality is
shown below.

14

cdfCreateParam(cdfId
?name "maxBit"
?type "int"
?prompt "Maximum Bit"
?defValue 2**8
?display "cdfgData~>customlength~>value == t"
?editable "cdfgData~>customlength~>value == t"

)

Code 1: Code used for defining the Maximum Bit parameter with the display and
editable option.

The second problem that had to be solved was that in SKILL nil is used for the boolean
false as well as for undefined values. This resulted in a rather strange behavior where, if
the default of a parameter is set to nil, the parameter still gets created and is accessible,
but unfortunately, the changing of the boolean value is not registered internally. To
derive the type of the parameter, a statement defining which nil was meant, by stating
a "boolean" before using nil, has been implemented. Looking at the decoder code, this
can, for example, be seen in the parameter defining part at the beginning of each view
type. (Code 6)

Decoding and Custom Decoder List
Following the parameter creation, the next parameter implemented is the decoding. Here
one can choose between a "standard" backward or forward decoding as shown for example
in figure 19. Further a custom decoding option was added, which stays hidden, using the
same method as the parameter code shown above in Code 1. In this custom decoding
one can enter an arbitrary decoding represented by a list. An example of this, containing
3 address bits, would be (0 2 4 8 1 3 5 7), resulting in a separation of even and odd
addresses. In the actual code this is implemented by calculating the bitwise representation
of each routing output, following the given list, and then using an if query to decide which
input the output should be connected to. This will be explained in more detail in the
layout section later on. Looking only at the schematic and symbol of the decoder these
parameters are the ones actually used inside the PCell. However, for creating the layout of
the decoder further parameters have been created.

Routing Layer, Address Layer and Inverse Address Layer
One big flexibility the design has to account for in the layout are the different metal layers
one can and has to choose from when drawing the conducting metal lines. To achieve this
flexibility three further parameters were added into the design. These parameters allow
the user to choose between different metal options for the routing layer, as well as for the
address and inverse address layer individually. Here one really nice design feature is that

15

the options presented to the user change depending on prior choices. In explicit terms this
means that when for example "metal 3" is chosen for the routing layer, the address and
inverse address lines only can be drawn on the layers "metal 2" or "metal 4". One of the
reasons why this restriction was implemented is that in most use cases the broader option
overcomplicates things by allowing the user to create vias that can connect through more
than one hierarchical metal layer at once. Keeping this in mind the restriction can provide
a bit of support for the user implementing this decoder into a new design. To achieve these
dynamic choices, a callback in the definition of these parameters is used. From there the
options of the other two parameters are altered by creating a list, depending on the own
settings. An example of this code, in this case showing the callback from the routing layer
parameter, looks as follows.

cdfCreateParam(cdfId
?name "routingLayer"
?type "cyclic"
?prompt "Routing Layer"
?defValue ""
?choices list("" "M1" "M2" "M3" "M4" "M5" "M6" "M7" "M8" "M9")
?callback "
layeroptions = list(\"\")
layeroptions = append(layeroptions list(strcat(\"M\" sprintf(nil \"%d\"

atoi(substring(cdfgData~>routingLayer~>value 2))-1))))↪→

layeroptions = append(layeroptions list(strcat(\"M\" sprintf(nil \"%d\"
atoi(substring(cdfgData~>routingLayer~>value 2))+1))))↪→

cdfgData~>addressLayer~>value = \"\"
cdfgData~>addressLayer~>choices = layeroptions
cdfgData~>invaddressLayer~>value = \"\"
cdfgData~>invaddressLayer~>choices = layeroptions
"

)

Code 2: Code used for defining the Routing Layer parameter with the callback option
used to change the values of the Address Layer and Inverse Address Layer
parameters.

Metalwidth
Another parameter used only inside the layout of the decoder is the width of the drawn
metal lines. Here the parameter is implemented as a string, allowing the user to input
values like for example "0.18u". This parameter is used for the width of the address
lines, as well as for the routing lines. Here it would be possible to argue that it may be
beneficial to add a separate width for each type of metal, nevertheless, the decision was
taken to use only one metal width allowing easier via placement, as well as creating a
simpler interface. The other thing that automatically changes with the metal width is the
position and the number of placed vias. This enables a good connection between the ad-
dress and routing lines by increasing the number of placed vias according to the cross section.

16

Address Position, Inverse Address Position, Routing Position and Routing Pitch
Another important parameter added for creating the metal shapes is the position of the
lines in respect to each other. To achieve a flexibility in the changeable pitch between the
lines, four parameters, all implemented as a string, are used. The four parameters that
are used are called "Address Position", "Inverse Address Position", "Routing Position", and
"Routing Pitch". The first three are used to calculate the exact positions on which the
respective metal lines will be centered, while the routing pitch simply is the distance from
the first row of bundled routing outputs to the second row.

In each of these parameters, the user has to specify a simple arithmetic expression.
Fulfilling the purpose of generating the positions, the given strings are evaluated making
use of increasing variables, for the address line "b", and for the routing line "i". This
allows the user to create a wide range of arrangements of pitches, for example by using if
statements for the individual positions, while also maintaining a quite simple interface for
creating "standard" pitches. Examples for these possible pitches are shown in figure 9.

Creating these string interpreters, again different challenges had to be overcome. The
biggest of these challenges was trying to prevent the possibility for malicious attacks
exploiting the strings when evaluated with an evalstring(). When only executing an
evalstring() on the parameter string, it is possible to gain full access to the underlying
system by exploiting the parameter textbox as a command line. To create a defence against
the possibility of exploiting this function, an implementation of the Automate Expression
language (AEL) interpreter from SKILL has been tested.

However, the limited application potential combined with the compatibility problems
between the AEL functions and PCells (Cadence Design Systems, 2004), resulted in the
decision to not use the AEL interpreter. Problematically, this again led back to the use of
a simple evalstring(). To solve this problem, a regular expression checker was added to
the code. Now it is possible to expand the allowed functions or symbols in the parameter
as needed, while still assuring that an attack exploiting this evalstring() is quite unlikely.
The current implementation works by checking the string with a custom SKILL function
given below.

17

procedure(allowedString(input)
let((var res)
rexCompile("mod")
var = rexReplace(input "000" 0)
rexCompile("if")
var = rexReplace(var "00" 0)
rexCompile("then")
var = rexReplace(var "0000" 0)
rexCompile("nth")
var = rexReplace(var "000" 0)
rexCompile("[^0-9*\\.\\+\\/\\ \\(\\)ibunp\\<\\>\\=\\-]\'")
if(rexExecute(var) == nil then

res = t
else

res = nil
)
res
)

)

Code 3: Code defining a function that is used to check an inserted string for words and
characters that are allowed for use in the definition of the layer positions. The
function returns t or nil, depending on the outcome of the check.

This code works by taking a given string and mapping the allowed functions exactly
onto the string. Then these allowed functions are replaced with "0"s, ultimately removing
the allowed functions from checking. This is achieved by making use of the rexReplace()
function. Once the allowed functions are replaced, the string is checked for the allowed
singular characters. In the code example above the allowed singular characters, containing
mathematical symbols such as * or +, as well as some single letters used as units, like u
and n, or as the variables b and i, can be seen. Further the few allowed functions mod(),
if(), then() and nth() can be found.

If the string inserted to the parameter does not contain any illicit characters or functions,
the check function returns a boolean t. Otherwise it returns nil. The function checking the
inserted code is called with a callback attached to the parameter resulting in an execution
each time the value is changed and most importantly before the string is passed into the
different views for evaluation. If nil is returned, the parameter will not be forwarded and
instead an error will be presented inside the text field for the user. The code used in the
callback looks like this.

18

?callback "
if(allowedString(cdfgData~>routingSpace~>value) == nil then

cdfgData~>routingSpace~>value = \"not allowed function detected\"
)

"

Code 4: Code defining the callback of the parameters used for metal positions. The
allowedString() function shown in Code 3 is executed and the string is parsed
according to the return.

To further present the capabilities of this string interpreter some functions generating
different metal arrangements will be shown. This showcase will include some simple
functions like b*1u+0.5u for address placements, as well as some rather complex functions
like nth(i '(0 1 2 3 4 10 9 8))*0.3u for the routing lines. The functions used for this
showcase, as well as the created layout placements, can be seen in figure 9. Here all metal
widths stay fixed at 0.24µm.

Address Lines, Draw, and Inverse Address Lines, Draw
Allowing a reproduction of the via script previously used, the option to turn off the drawing
of the metal lines has been added. Here the user can deactivate the drawing of the address,
inverse address and routing lines individually, ultimately creating a cell that only places
the vias at the positions where the metal lines would cross. At first glance this might seem
like an unnecessary option to add, but when creating cells with repeating designs it can
be the case that the metal lines of the routing are already drawn in the cell of a lower
hierarchy. If this is the case, the metal lines already are part of the design and do not have
to be redrawn in this higher hierarchy.

Help
To guide the user through the process of setting up the via matrix, especially in the
light of the more advanced features, a help button was added as a further parameter.
When pressed, this button opens a file containing an explanation for each parameter,
as well as some examples on how to use them. To achieve this functionality, the file
containing these explanations has to be accessible to every user that implemented the
code in their library. To ensure this, a way to create the file directly through SKILL
was implemented. Here the functions outport1 = outfile("path"), fprintf(outport1
"content"), drain(outport1) and close(outport1) have been used.

Combining all these parameters, the input mask created for this PCell can be seen in
figure 10.

This input mask concludes the main parameter creation process and also provides an
overview of the parameters and functionalities created. While there might be special cases
in which the parameters created here may not be sufficient enough, the further course of

19

(a) Address Position: b · 1u, Inverse Address Position: b · 1u + 0.5u,
Routing Position: i · 0.5u, Routing Pitch: 5u

(b) Address Position: b·2u+mod(b+1 2)·1u, Inverse Address Position: b·2u+mod(b+1 2)·1u+0.5u,
Routing Position: i · 0.5u, Routing Pitch: 5u

(c) Address Position: b · 1u, Inverse Address Position: b · 1u + 0.5u,
Routing Position: nth(i ’(0 1 2 3 4 10 9 8)) · 0.3u, Routing Pitch: 5u

(d) Address Position: b · 1u, Inverse Address Position: b · 1u + 0.5u, Routing Position: i · 0.5u,
Routing Pitch: b = 0 if(mod(i 2) == 0 then b = nth(mod(i 3) ’(5u 7u 10u))) if(mod(i 2) == 1
then b = nth(mod(i 3) ’(8u 6u 9u))) b

Figure 9: The layout of the decoder PCell showcasing some different possibilities in creating
and placing the metal lines. The parameters used for generating the depicted
layouts can be seen in each shown subfigure.

20

Figure 10: Input mask of the address decoder PCell that is opened when the decoder is
inserted into a design in Cadence® Virtuoso®.

this work will hopefully show that using the PCell parameters as implemented all options
the further work requires are sufficiently covered. Before showcasing the use of the decoder
inside the synapse driver array, the creation of the decoder cellviews with their respective
problems, as well as some tests and simulations, will be shown.

4.2.2 Cellviews

Layout
Most of the problems that occurred during the layout creation of the decoder PCell had to
do with calculating the right positions of the metal lines and placing the vias. Concerning
the size of the vias it is important to stick to the design rules, on the one hand, regulating
the size and spacing of the vias, while on the other hand trying to maximize the possible
contact area between the metal layers. To achieve this, an if query was implemented,
handling all metal widths below the size of 0.2 µm. For all vias that have to be placed
on wiring with a metal size wider than 0.2 µm, the positions are calculated by a create
vias function, that given a centerpoint and area fills the given area with as many vias as
allowed by the design rules. This function can be found in the file defining all functions

21

used in different code parts, as well as in Code 8.
Another challenge was the creation of the decoding inside the layout. To solve this

challenge an approach using bit conversion as mentioned before was implemented. Here
the decoding, given as a list of decimals, is iteratively converted into the associated binary
representation. In this process the address bit parameter is used to determine the number
of bits for the binary representation. Using this binary representation the connections
between the metal lines are established. In case of a 0, the output is shorted to an inverse
address bit, and vice versa.

Explaining this concept an example of the number 5 decoded in a 4-bit address system
is shown. When the loop calculating the output decoding reaches the 5 inside the decoding
list, it will be converted into 0101. A second loop will take one character of the 0101 string
for each routing line within that output. This means that the coordinates of the first
routing line will be merged with the ones from the inverse address line 4, the coordinates
from the second will be merged with the ones from the address line 3 and so on. Essentially
this implements a simple binary representation of a given decimal decoding number by
combining the according line positions into via positions.

The remaining implementation of the layout was fairly simple. One thing that was added
at the end of the design process was the creation of error messages drawn directly into the
design, for the cases where the address or routing positions are not specified. If either one
of these position defining parameters is left empty, the decoder will not be drawn. Instead
a label stating the missing parameter will be created.

Schematics
Regarding the creation of the schematics the most challenging part was implementing a
working net naming creating connections between named nets using SKILL. While the
order and net naming of the address inputs stay the same for all parameters, the naming of
the outputs has to be adjusted based on the decoding. To achieve this, a normal forward
decoding is implemented using net naming to create the desired connections. For an 8-bit
decoder this is shown as an example in figure 11.

Allowing for different decodings the select net is renamed according to the desired
order. So for example when the decoding is set to backward, the name is changed to
select<2047:0>. Accordingly for custom decodings a large net name following the net
naming conventions as well as the decoding requirements is created. To achieve these
connections and finally create these nets of different names, the problem of attaching the
net names to the wires had to be solved. When creating schematics by hand including
nets of different names, a viable option often used to connect these is the so called patch
cord "instance". Here an incoming net can be connected to an outgoing net in differing
orders by stating a patch cord expression defining the connections. These patch cords are
working without any problems when implemented by hand, but can not be used in PCells
in a straightforward fashion. The reason for this is that patch cords are not real instances,
but rather components that provide hints to the schematic editor to generate the right

22

Figure 11: Schematic view of the implemented decoder including the net names used when
creating the connections.

underlying connections (Beckett, 2023). This meant that to create the connections between
the nets, representing the decoding, the easiest solution was to name the nets in such a
fashion that the decoding aimed for arose from the naming order. Generating these net
names attached to the wires turned out to be the next challenge. To achieve the creation of
these so called wire labels, which save the net name for connections, different options were
explored. In the end three possible implementations were found. Interestingly all three
implementations create labels that look exactly the same to the GUI user, with only one
implementation actually working in PCells. These three implementations look like this.

net = dbCreateNet(cv "name")
wire = dbCreateLine(cv list("wire" "drawing") list(x1:y1 x2:y1))
dbAddFigToNet(wire net)

; Option 1
dbCreateTextDisplay(net wire list("wire" "label") t x1:y1 "lowerLeft" "R0" "stick" 0.0625 nil nil t

nil t)↪→

; Option 2
schCreateWireLabel(cv wire x1:y1 "name" "lowerLeft" "R0" "stick" 0.0625 nil)

; Option 3
text = dbCreateLabel(cv '("wire" "label") x1:y1 "name" "lowerLeft" "R0" "stick" 0.0625)
text~>parent = wire

Code 5: Different code options trying to implement the net naming in the schematic. Only
option 3 is working inside PCells.

Of these implementations only the third works in combination with the PCell require-
ments. While the first option displays the net name as expected, all name information is
lost during the check and save process of a design.

The second implementation is a direct representation of the function that is executed

23

when using the "add name" option for wires in the schematic cellview. This function works
without problems as long as the PCell is not leaving the schematic design environment.
But as soon as the PCell leaves this environment, for example when executing an LVS
check, an error complaining about an unknown function appears.

Using the third option all labels and connections are created and all tested simulations
complete without errors. This option is also check and save compatible, resulting in no
further problems when reusing this PCell in other designs.

Symbol
When it comes to the creation of a symbol for this decoder some terminal names had to be
matched with the ones already calculated in the schematic. Because the code creating these
pin names was already created, the implementation went rather smooth without further
problems. Now that a layout, a schematic and a symbol of the decoder were created, the
designs were subject to testing.

4.2.3 Verification of the address decoder PCell

Regarding the design tests, the first test executed has been a DRC of the layout for the
created decoder placement. Here the PCell passes the test successfully. To verify that the
PCell is DRC clean for more than some cherry picked values, the tests were repeated with
a lot of different parameters. Tests at the parameter boundaries have been carried out as
well, thereby demonstrating that for the normal use cases of a decoder the design appears
to be stable and stays DRC clean.

After verifying the design rules for the layout, the next step was to execute an LVS check.
Here the next problem surfaced. While the netlisting of the schematic, now containing
the right net names, worked without any problems, the LVS aborted as soon as Calibre
tried to generate a netlist of the layout representation. The created error reported that the
netlisting did not find any instances in the layout, or in other words that the layout was
empty. As a short look revealed that the layout in fact was not empty and that the metal
lines had labels and pins attached, the LVS was restarted. Surprisingly the extraction
aborted with the same error.

To finally fix this problem, resistors were added in front of the input of the decoder. The
layout netlisting then was able to identify some instances and compared these with the ones
in the schematic. Now the LVS completed without any errors and reported no differences
when comparing the design views. Again different parameters as well as different decodings
were tested to ensure that the layout and the schematic match. After this verification
process of the PCell first with Calibre DRC and then with Calibre LVS the next step was
to simulate the design using the schematics with the purpose of validating the connections.

24

4.2.4 Simulation

Creating the simulations which are used for checking the connections, a cellview with
multiple voltage sources has been put together. After that these voltage sources were
connected to some of the inputs. The rise and fall time of these voltages were defined in
a way, that the voltage of each input would rise at a different point in time. Selecting
different in and outputs allowed the simulation of different connections inside the decoder.
One of these simulations is shown in figure 12.

Figure 12: Simulation results for digital signals passing the decoder. Nets that are related
to each other are plotted next to each other.

Here the connections as shown in figure 19 can be seen. The selection of the plotted
output is based on the idea of only showing the most interesting results. Therefore the
first select output, which is connected to each address input, has been plotted. In this
simulation the metal length differences between outputs of lower and higher numbers in
the layout, which could result in for example longer signal times, could not be shown.
The reason for this is that this simulation only was executed on the schematic without
considering any parasitic effects.

4.3 Flexible synapse driver array

Now that a working replacement for the via pattern in the fixed synapse driver array was
created, the transformation of the driver array into a flexible PCell was executed. The goal
of this transformation was to allow the user to choose a number of synapse driver outputs
from a list while simultaneously allowing them to choose if they should be instantiated
starting from the top or from the bottom of the array. Besides, an additional option
allowing for the instantiation of a single driver row surrounded by parasitic model cells,
used for faster simulations, has been implemented. The following chapters will provide
insight into the creation process of this PCell. For this the explanation is divided into the
different cellviews, highlighting the thought processes that went into solving the different
challenges that had to be overcome during the creation process. Because the creation of

25

this PCell did not require as many parameters as the decoder, the parameters implemented
here are discussed in less detail than before. Keeping this in mind, the order of cellviews
that are going to be explained will stay the same, starting with the explanation of the
layout creation.

4.3.1 Layout

The creation of the scalable layout started by using the newly created decoder cell to replace
the vias, previously placed in an extra step using SKILL. Here the different parameters
were tested by fitting the cell to the vias and then noted for the instantiation process in
the PCell. In this step the possibility of defining the routing position using mathematical
expressions proved to be advantageous because the connections of the SRAM address bits
are placed in a quite challenging order. For example the function defining the routing
position of these addresses looks rather complex "if(i<7 then b=0.2u*i) if(i==4 then
b=2u) if(i==5 then b=1.8u) if(i==6 then b=1.6u) b". After figuring out the right
parameters, all vias from the previous SKILL script that were used for decoding purposes
could be replaced using the newly created decoder PCell. Interestingly some further vias,
not used for decoding purposes but located in fixed places, were found. Because the purpose
of the decoder was not to replace vias placed in a fixed pattern, the code generating these
vias has been reused for the PCell creation.

Finishing the move of these vias, the next step was to move the different design parts of
the driver into the PCell. To achieve this, the various designs used in the creation of the
fixed driver array were inspected and instantiated inside the PCell by using the according
SKILL functions. Deleting the moved designs from the old layout revealed some remaining
shapes that previously had not been part of any hierarchical designs. This meant that
these shapes could not be accounted for by simply moving the design parts from the old
cell into the PCell. The leftovers included some metal shapes at the top and bottom of the
design as well as at the sides. Here the pieces at the top and bottom were bundled up in
two layout designs, one containing all the metal left at the bottom, and one containing all
the metal left at the top. These leftover cells then could be instantiated from inside the
PCell, while the metal lines drawn at the side were integrated directly into the PCell code,
allowing for a later needed length scaling.

The last thing that had to be moved from the old layout to the new one created by the
PCell were the connection labels. Here the script creating these labels for the old design
was picked apart so that the labels needed were transferred into the new design. Once
this transfer was completed, an LVS against the old schematic proved that everything was
migrated successfully. After moving the old layout into the PCell the parameterization
process began.

To achieve this, a parameter specifying the number of output synapses was added.
A scaling of four drivers per step has been chosen, resulting in 8 output rows, driving
16 synapses per step. Why this decoding seemed intuitive will become clear when looking

26

at figure 5. Here it is shown that the drivers are connected to the busses in such a fashion,
that if the address of each bus increases by one, the number of instantiated drivers goes
up by four. While it would be possible to only add one additional driver to one bus, this
seems quite unsensible considering the symmetry of the design.

To achieve the desired scaling, the number of synapse outputs is used to calculate
different parameters used throughout the design. In the decoder for example it is used to
calculate the maximum number of routing outputs. Implementing this directly results in a
shrinking of the decoder depending on the chosen number of outputs. A challenge faced at
this point was the implementation of the option for shrinking the synapse driver array, and
therefore shrinking the decoder, not only from the top down but also from the bottom up.

Because the option restricting the maximum number of outputs for the decoder always
starts shrinking from the highest output, meaning the output that is only connected to
the address lines, the shrinking from the bottom up, resulting in a cutting of the lowest
outputs, had to be implemented using a small trick. If the decoding is switched from
forward to backward, the highest and lowest output essentially switch places, output 0
is now connected to address, instead of inverse address. If the expressions stating the
positions of the address and inverse address lines are swapped, the via placement in the
layout appears to be the same. The difference however is that for the decoder the highest
output now is at the bottom, and not at the top, because all address lines are connected
to the output at the bottom, while all inverse address lines are connected to the output at
the top. Implementing this switch between forward and backward decoding, while also
switching the positions of the address and inverse address lines, therefore allows the decoder
to skip the lowest outputs, instead of the highest, when limiting the number of outputs.
Using this trick when shrinking the array from the bottom up, an offset in the y-direction
had to be applied to the cells, essentially moving the decoder to a new starting position in
the layout.

This offset in the y-direction had to be implemented into nearly all inserted designs
subject to change in the shrinking of the array. For the static vias the shrinking process
has been implemented by changing the remnants of the old SKILL procedure, in such a
way that the boundaries of the loops change with the parameter, therefore only creating
the vias at the right positions. For the instances that have been implemented as simple
mosaics, see Code 7, the number of created instances is altered according to the number
of desired outputs. Similarly, the sizes of all previously non scaling designs, mainly the
metal lines at the sides, are changed. With the scaling of the vias and cells implemented,
the labels were changed too. Again the implementation was quite challenging mainly due
to the naming scheme used for the corren and corenres addresses. These labels and
additionally created ones, as well as their numbering scheme, can be observed in figure 13.

While this labeling may look a bit confusing at first, it has been created for the four-part
design, where the addresses 0 to 255 are allocated for the upper left quadrant. Looking at
it from this perspective the numbering makes much more sense. Using this information one
can hopefully understand what happens to the labels if for example the first 8 drivers are

27

shrink from bottom

shrink from top

corenres< 0 >

corren< 0 >

corenres< 255 >

corren< 255 >

corenres< 256 >

corren< 256 >

adr1...5< 0 >

dacen< 0 >

adren< 0 >

seni< 0 >

senx< 0 >

seni< 1 >

senx< 1 >

corenres< 257 >

corren< 257 >

corenres< 510 >

corren< 510 >

adr1...5< 127 >

dacen< 127 >

adren< 127 >

seni< 154 >

senx< 254 >

seni< 255 >

senx< 255 >

corenres< 511 >

corren< 511 >

Figure 13: Names and order of the output labels used in the layout. The label position is
shown in correspondence to the label number.

excluded from the design. It would be convenient when the counting in the corren and
corenres address labels would start at 16 on the left and at 272 on the right. Similarly
the seni and senx labels would start at 16 on the right while the adr labels would start
at 8. The reason for this would be the possibility to investigate simulated signals of
different arrays without the need to rename the simulation outputs for each array size. For
implementing this behavior into the PCell the boundaries of the loops used to create these
labels were changed similar to the ones placing the fixed vias. Problematically, some legacy
loops used here were implemented counting down, starting with the creation of the highest
label, while other loops were counting up, starting with the creation of the lowest label.

Adding the labels, the layout as described so far is capable of creating a full array as
used in previous designs, as well as a shrunken array, allowing for small scale chips in the
possible future.

4.3.2 Schematic

For the creation of the schematic the steps taken have been very similar to the ones in the
layout. To realize the implementation of the scaling capabilities, the old schematic has
been redrawn as a PCell. Here the net and wire names had to be created using the same

28

method already explained in the decoder section with Code 5. Further, the parts of the
design that stay fixed for an arbitrary number of drivers were combined into one instance
summarizing the functionality of these parts. To verify the recreation and preparation
of the schematic for the purpose of scalability, an LVS against the old design has been
executed thereby proving once more that the connectivity implemented in the different
design views stayed the same after moving to a PCell. Being able to utilize the working
PCell, the parameterization process started. The parameterization process of the schematic
has been easier than the one of the layout, mainly because the change in driver numbers
did not result in any position or instance size changes.

To implement the shrinking functionality of the array into this PCell, the driver schematic
has been altered, so that the number of instantiated driver cells changes according to the
number of drivers, again in packs of 4. This has been achieved by renaming the driver
instance, previously instantiated several times using the array notation, according to the
"number of outputs" parameter and therefore creating a scalable number of drivers. Because
of this changing number of instances the connections of the incoming and outgoing wires
also have to change size. Not implementing this size change would result in mismatching
connection widths between terminals and wires. For the driver inputs this is achieved
by simply changing the names of the input nets according to the shrinking direction by
lowering the highest or raising the lowest address number. As a result the nets inside
the schematic change in size. For the outputs the naming process has been quite similar
with the difference that now the output pins in the schematic had to be renamed too.
Implementing these net names the option of connecting nets by name in the schematic
was used, allowing a connection between the pins and terminals without the need to draw
wires everywhere.

4.3.3 Symbol

For the process of creating the symbol of the synapse driver array the same arguments made
during the creation of the decoder symbol can be applied. Reusing the pin labels created
in the schematic resulted in already scalable outputs without the need for additional work
to complete the creation of the symbol.

4.3.4 Sparce array for fast simulation

After the scaling options from the top and bottom had been implemented into the designs,
the next step was the addition of the option to only instantiate a single output driver block.
To achieve this, a parameter specifying which individual instance should be placed has
been added.

Starting with the layout this single instance parameter defines which driver block
containing 4 drivers is inserted into the layout. It is also used to calculate the position
where this driver normally would sit in the full design. Using this information, the single
driver block is instantiated. Keeping the goal of replacing the other drivers with different

29

extraction models in mind, it is possible to fill the other driver slots with different designs.
Here the option to specify different models, replacing the drivers, has been added to the
layout. To allow this choice three string parameters specifying the library, cell and view
of the desired model have been added. To simulate the instantiation of a single instance
without any parasitic models a "modelcell" for replacing these drivers has been created.
This so called "noinst" cell only contains the metal lines needed for net connections inside
the array.

In the future this cell can also be used as a starting point for creating model cells by
showcasing the net connections inside the layout. These connections have to be implemented
when creating the cells containing different parasitic models. Finishing the implementation
of this single instance in the layout, the option to shrink the array with only one instantiated
instance has been added. Here the output labels are changed in the same fashion as before,
creating all labels according to the size of the full array. While this may seem contradicting
to the option of creating only labels for the single instance, it becomes a reasonable choice
when keeping in mind that the model cells, to be used in the future, may be utilizing the
outputs as well.

The process of adding this single driver block functionality into the schematic has been
quite easy. This came as a result of the array notation, where by simply changing the
instance name it was possible to instantiate only one driver block. By changing the number
of drivers the nets inside the schematic had to change as well. Currently only the nets
belonging to the driver block are connected. Here the possibility to connect the other nets
to an arbitrary model cell has been established for future use. However, these model cells
did not exist at the time of this work, resulting in currently floating outputs only used for
LVS purposes.

Adding this functionality to the symbol has been achieved by simply reusing the pin
labels from the schematic as before.

With these functionalities added to the driver PCell, the implementation process of the
design was completed. The PCell is now able to create the full array, a shrunken array, for
small scale chips in the future, and an array with only one instance for use in parasitic
simulations.

4.3.5 Verification of the synapse driver PCell

To verify these PCells for the three different cellviews, some tests have been executed.
The DRC tests of the layout, carried out for different array sizes and scaling directions,
returned positive as expected. With all of these tests returning positive for different types
of arrays the layout PCell seems to not be violating any design rules.

Further LVS tests were carried out for different array sizes. These were executed by
instantiating the array as a symbol followed by the creation of the according layout view.
While these tests return positive, one thing that has to be kept in mind during the execution
are the labels in the layout view. The reason for this is that the labels used for net naming

30

inside the layout are created inside the PCell. This means that they are not visible at
the top layer from which the netlist is extracted. As a direct result the PCell has to be
flattened to expose these labels to Calibre. While this might seem like a problem at this
point it should not make any difference in the testing process of the whole chip. The reason
for this is that all nets created here are routed to internal connections and therefore will be
named at a higher hierarchy in the completed chip design, ultimately solving this problem.

Showcasing that DRC and LVS return positive has been the last step in the process
of creating the driver array PCell. Looking at the results one can conclude that the
created designs, when instantiated without shrinking, are a recreation of the old schematic
and layout. It has also been shown that as long there are no identical mistakes made in
schematic and layout, the shrinking of the array, as well as the instantiation of a single
driver block, is possible. Trying to showcase the simulation capabilities as well as some
small extractions of this PCell the next logical step has been to execute some simulations
on the created designs. These simulations as well as parasitic extractions are shown in the
following chapter.

5 Extraction and Simulation

Utilizing the PCells created in the course of this work, the following chapters will showcase
an extraction of different possible designs by comparing the extraction times. Using some
of these designs, as well as the according parasitic extractions, a comparison between a
small, fully instantiated driver array and an array of the same size containing only the last
four driver instances will be performed using simulations. Here it will be shown that the
smaller array speeds up the extraction and simulation times, while still generating similar
results.

5.1 Extraction

To perform the parasitic layout extractions of the different designs the Calibre parasitic
extraction (PEX) tool was used. This tool generates a netlist containing not only all the
different components, but also adding the extracted resistances and capacitances into the
netlist. This netlist then is used to generate a schematic of the design containing all the
extracted parasitics. Here the first speed improvements, created by extracting a smaller
array, or even one with only one driver, become visible. A comparison of the different
extraction times shows that the extraction time for a small array, with the size of 64 driver
outputs, containing only the last four drivers is the fastest (00:08:21). The second fastest
extraction time is the one seen for extracting the big array, again with only the last four
drivers (00:08:50). Unsurprisingly the small array with all 64 driver outputs takes the
second longest time to extract (01:03:51), while the full array takes the longest (04:20:28).
The extraction times for each of these configurations as well as a small picture of the
extracted layout can be seen in figure 14.

31

Full Array
Small Array

Full Array Single Instace

Small Array Single Instance

0

50

100

150

200

250

300

350
ex

tr
ac

tio
n

tim
e

in
m

in
ut

es

260.47

63.85

8.83 8.35

Parasitic extraction times for different driver array layouts

Figure 14: Parasitic extraction times for different driver array layouts. The X-Axis shows
the extracted layout, while the Y-Axis shows the required extraction time. Each
extraction time is plotted as a point at which the extraction time, as well as a
small picture of the extracted layout can be seen.

Looking at the extraction times the case for creating faster extraction and simulation
times by utilizing the flexibilities of a PCell can be strengthened. Further the goal is that
it will become possible to replace the drivers in the full array with extracted parasitics to
only simulate one instance, while still keeping the advantage of the sped up extraction as
seen in the single instance array. With these parasitic models the goal is to further achieve
a comparable accuracy.

Using the extractions from the small synapse driver array, schematics including the
parasitics have been created. These schematics will be used in simulations showing an
increased simulation speed for the sparse array. The four different configurations used
in these simulations were the full and sparse arrays, both with and without annotated
parasitics. The simulation times as well as the simulation results will be presented in the
next chapter.

5.2 Simulation

In order to simulate the different synapse driver array configurations, a test bench schematic
has been used. Using this schematic in combination with a simulation interface in Python,

32

which in its core starts a Spectre simulation, allowed for a programmatic test description
and complex data analysis. In this case the test bench was used with two different array
configurations, first a small array, containing 32 drivers, and second a sparse small array,
in which only the last four of these 32 drivers have been instantiated. For both of these
instances the extracted parasitics from the previous chapter have been used too. To allow
for the simulation of these drivers, their schematics, either with or without the parasitics,
have been placed in the test bench one after another.

As the schematic containing the array to be simulated was placed inside the test bench,
the simulation was started by importing the according netlist. The test bench code
furthermore generated a series of stimuli. These included patterns to access the synapse
drivers’ internal SRAM in order to configure their addresses to accept and output synaptic
events. The main stimulus sequence then injected randomized events into the PADI bus
interface triggering the synapse drivers. After defining and pre calculating the stimuli and
SRAM writes, operating parameters, like the chip voltages and on chip simulation times
had to be set. Furthermore, the nets to be recorded had to be defined. If all parameters
mentioned above are defined, the simulation can be executed. Regarding the simulation
and especially the speed of these simulations the first differences between the arrays can
be seen in figure 15.

Sparse Array
Full Array

Sparse Array Parasitic

Full Array Parasitic
101

102

103

104

105

106

CP
U

tim
e

in
se

co
nd

s

104s

629s

17100s

358000s

CPU time elapsed for full simulation

Figure 15: This plot shows a comparison of CPU time required to complete the full
simulation of the different array configurations. The X-Axis is used to separate
the different arrays, the Y-Axis shows the time required for the simulation in
seconds logarithmically.

33

Looking at these simulation times it is visible, that the simulations containing the
parasitic effects increase the required time drastically. This effect can be seen in both the
sparse array as well as the full array. The increase in required computing time and memory
usage further can be observed when looking at the real world times of the simulations as
well as the peak memory usage during these simulations. The plots used to compare the
different designs can be seen in figure 16.

Sparse Array
Full Array

Sparse Array Parasitic

Full Array Parasitic

1

10

100

1000

W
al

lcl
oc

k
tim

e
in

M
in

ut
es

0.35min

1min

25min

1308min

Wallclock time elapsed for full simulation

(a) Here the wallclock time of the whole sim-
ulation in minutes is shown.

Sparse Array
Full Array

Sparse Array Parasitic

Full Array Parasitic

0.3

1.0

3.0

10.0

30.0

M
em

or
y

us
ed

in
Gi

ga
by

te

0.35GB

1.01GB

6.06GB

45.5GB

Peak memory usage during simulation

(b) Here the peak memory usage during the
simulation in Gigabyte is shown.

Figure 16: These plots show a comparison of the wallclock time and peak memory usage
between the different array configurations when simulating. The X-Axis is
used to separate the different arrays, the Y-Axis shows the time required for
the simulation in minutes or the memory used during simulation in Gigabyte
logarithmically.

Further comparing the different parts of the simulation one can see that both the search
for an operating point of the simulator, as well as the transient part of the simulation
increased in computing time. Interestingly the time required for the transient simulation
part increased by a factor of ∼ 177 and ∼ 603 between the parasitic and non parasitic
simulation, while the time elapsed for solving the initial conditions only increased by a
factor of ∼ 21 and ∼ 279 respectively. This difference can be seen in figure 17.

Comparing the CPU times required when simulating the arrays without parasitics it
should be noted that the time difference between the sparse and full array is of a factor ∼ 6.
Interestingly the time of the transient part increases by a similar factor ∼ 6.3, while the
time required to solve the initial conditions increases by a factor of ∼ 13. This means,
that when increasing the size and therefore the complexity of a design, the search for the
operation point becomes more complex faster than the actual transient simulation. This
is in agreement with the array containing the parasitics, where the transient simulation
time from sparse to full increased by a factor of ∼ 21, while the time required to solve the
initial conditions increased by a factor of ∼ 169.

Taking a look at the output signals from these simulations (figure 18), one can see
that full and sparse arrays, divided into the ones with and without parasitics, generate
nearly identical signal forms. From these signals it can be concluded that the number of

34

Sparse Array
Full Array

Sparse Array Parasitic

Full Array Parasitic
101

102

103

104

105

106

CP
U

tim
e

in
se

co
nd

s

94s

590s

16600s

355768s

CPU time elapsed for transient part of simulation

(a) Here the CPU time of the transient simu-
lation part is shown.

Sparse Array
Full Array

Sparse Array Parasitic

Full Array Parasitic

101

102

103

104

105

CP
U

tim
e

in
se

co
nd

s

14s

182s
300s

50707s
CPU time elapsed for solving the initial condition

(b) Here the CPU time required for solving
the initial conditions is shown.

Figure 17: These plots show a comparison of the CPU time required for the transient
simulation part and the solving of initial conditions between the different array
configurations when simulating. The X-Axis is used to separate the different
arrays, the Y-Axis shows the time required for the simulation parts in seconds
logarithmically.

instantiated drivers has next to no effect on the signals. However, there is a noticeable
difference between the simulations executed with and without taking the parasitics into
consideration. Looking at the DAC enable (dacen) signal of the driver output, the parasitic
effects mentioned above become visible. The delayed increase, as well as the delayed
decrease of the output signal can be explained by the fact that the signal generally takes
more time traveling through the chip. The reasons for these effects are resistors and
capacitors that can form between shapes created in the chip layout. Using these capacitors
the gentler incline of the signal can also be explained. When the output signal is turned
on, the parasitic model accounts for the capacitive load on for example the transistor gates.
A section of this signal for all four simulated configurations can be seen in figure 18.

Looking at the address enable (adren) output of the driver a similar behaviour can
be observed. The difference between the simulation of the arrays with and without the
consideration of parasitic effects is clearly visible, while the difference between the two
array sizes is negligible.

To further analyse the form of these signals and investigate possible input capacitances,
more and different simulations are needed. These simulations are also required when
possibly comparing different models for the synapse driver.

However, what can be concluded from the results shown here is that it is possible to use
a PCell to generate differing implementations of a design for simulations. It further was
shown that the simulation result from a synapse driver array containing only the last four
drivers behaves similarly to an array of the same size containing all drivers. Here a definite
speed improvement regarding the simulation and extraction times could be observed. The
simulations therefore prove that the approach of simulating only parts of the design by
using PCells is feasible and valid.

35

270 272 274 276 278 280
on chip time in ns

0.0

0.5

1.0
vo

lta
ge

in
V

dacen output signal of driver 28
Sparse Array
Full Array
Sparse Array Parasitic
Full Array Parasitic

Figure 18: This plot shows the dacen output signal from the 28th driver in the simulated
array. The X-Axis shows the on chip time in nanoseconds, the Y-Axis shows
the voltage of the signal in volts.

6 Discussion and Outlook

This work shows the creation and simulation of a PCell of the synapse driver array used in
the BrainScaleS-2 system, which is developed and maintained by the Electronic Vision(s)
group. The synapse driver has been implemented as a PCell to allow for scaling of the
array. Furthermore the option to create an array containing only one driver block has
been implemented. As part of the creation process of this PCell another PCell, an address
decoder, was created. This address decoder PCell is capable of creating a selectable
decoding for a choosable number of address bits in layout schematic and symbol. One of
the main features of this decoder PCell is the possibility to choose the layout positions
of the metal lines by defining them as an expression. This functionality has been shown
in great detail in figure 9. Utilizing the decoder PCell the synapse driver array has been
parameterized. Here the options to shrink the array either from the top or from the bottom
have been implemented. In addition to this scaling the option to use only one driver block
has been added. Using this functionality it now is possible to not only instantiate one
driver, but to also choose a model cell to replace the not instantiated driver cells. To allow
for simple simulations a connection cell, consisting of only vertical metal lines has been
created and used. This cell simply connects the instantiated driver cell to the corresponding
signals at the top and bottom of the array.

One future goal continuing the work shown here would be to create different model cells
that could replace the metal connection cell. Using these model cells, it would become
possible to test different parasitic models for their extraction and simulation times, as well
as compare the results for different extracted driver models. While adding this functionality
into the layout now only is a question of creating these model cells, a further goal could
be to allow models to be used in the schematics. Here the model cells would have to be
connected to each other, simulating the different metal lengths between the drivers in

36

the layout. This could be achieved by creating model cells representing the according
layout model with predefined pin requirements. These schematic model cells then could
be processed by a PCell, generating the wanted connections. Using these models the
simulations shown in the second part of this work could be revisited.

Talking about the simulations shown in this work, it was demonstrated that using the
created PCell it is possible to achieve a speedup in extraction and simulation times by
comparing the fully instantiated small array against the small array with only one driver
block. Here it was shown that the simulation results already are quite similar. However,
using the already mentioned models the hope is that it will become possible to further
investigate the accuracy of the simulations while keeping the increased simulation speed
of the single instance array. Thus a future goal is to revisit the simulations comparing
different driver models.

Taking a step back and looking at the bigger picture, this work may also be seen as a first
step towards a fully scalable BrainScaleS-2 core. To achieve this goal, the parameterization
as shown here has to be applied to the whole BSS-2 core. Following this route, the next
step would be to create a PCell of the synapses and the neurons with parameters similar
to the ones seen here in the synapse driver array. If this can be achieved, the hope is to
combine these PCells into increasingly larger PCells. If that parameterization works, it
would become possible to create a BSS-2 PCell that after simply asking for the number of
synapses in x- and y-direction would generate the complete analog core of the chip.

37

7 Appendix

7.1 Decoding

select7

select6

select5

select4

select3

select2

select1

select0

select15

select14

select13

select12

select11

select10

select9

select8

select23

select22

select21

select20

select19

select18

select17

select16

select31

select30

select29

select28

select27

select26

select25

select24
addressb

0

address0
addressb

1

address1
addressb

2

address2
addressb

3

address3
addressb

4

address4
addressb

5

address5
addressb

6

address6
addressb

7

address7

Figure 19: Decoding schematic of the decoder PCell that is created when selecting forward
decoding. This is implemented in the layout and the schematic.

38

7.2 Code fragments

The full code is located in the Gerrit of the Electronic Vision(s) Group: hicann-dls-fc/units/pcells
https://gerrit.bioai.eu:9443/plugins/gitiles/hicann-dls-fc/+/3f523d5dbc49426b20541ad26bcbbd32e1996f4e/units/pcells/

; define the Layout
PCellLayoutId = pcDefinePCell(

list(library cell "layout" "maskLayout")
(

(adBit 8)
(customlength "boolean" nil)
(maxBit 2**8)
(decoding "Forward")
(customdecoding "(0 1 2 3 4 5 6 7)")
(metalWidth "0.18u")
(routingLayer "M3")
(drawAddressBus "draw")
(addressLayer "M4")
(addressPosition "")
(drawInvAddressBus "draw")
(invaddressLayer "M4")
(invaddressPosition "")
(drawLocalRouting "draw")
(routingPosition "")
(routingSpace "")

)
let(()

; here code generating the layout would be written
)

) ; define PCell

dbSave(PCellLayoutId)
dbClose(PCellLayoutId)

Code 6: This code showcases the parameter definition at the beginning of each decoder cellview.

syndrv_top_buffered_sram = dbOpenCellViewByType("hx_synapse_driver" "syndrv_top_buffered_sram" "layout"
"maskLayout" "r")↪→

dbCreateSimpleMosaic(cv syndrv_top_buffered_sram nil 15:5+y_bottom "MY" 64-(2*sFac) 1 32 69.39)
dbCreateSimpleMosaic(cv syndrv_top_buffered_sram nil 85:5+y_bottom "R0" 64-(2*sFac) 1 32 69.39)

Code 7: This code is used inside the creation of the synapse driver layout. It shows the instantia-
tion of two buffered SRAM mosaics.

39

https://gerrit.bioai.eu:9443/plugins/gitiles/hicann-dls-fc/+/3f523d5dbc49426b20541ad26bcbbd32e1996f4e/units/pcells/

; create a viapattern for given rectangle
procedure(createVias(xLength yLength xPos yPos layer cv)

let((y nY i x nX k)
y = yPos+0.5*yLength-space_to_edge_y
nY = round((yLength-2*space_to_edge_y)/viaspace_y)
i = 0
while(i<nY

x = xPos-0.5*xLength+space_to_edge_x
nX = round((xLength-2*space_to_edge_x)/viaspace_x)
k = 0
while(k<nX

dbCreateRect(cv list(layer "drawing") list(x:y x+min_via_width:y-min_via_height))
x = x+viaspace_x
k+=1

)
y = y-viaspace_y
i+=1

)
)

)

Code 8: This code defines a function used to create a viapattern on metallcrossings with a
crossection greater than 0.2 µm

7.3 Reproducibility

To allow for reproducibility of the work shown in this thesis, the states of the used software are
given below.

hicann-dls-fc 3f523d5
teststand b89eec3
container /containers/testing/asic_c20219p37_2023-07-05_1.img

40

https://gerrit.bioai.eu:9443/plugins/gitiles/hicann-dls-fc/+/3f523d5dbc49426b20541ad26bcbbd32e1996f4e
https://gerrit.bioai.eu:9443/plugins/gitiles/chip-teststand/+/b89eec313509499219d63bc29f6cb877224e3f80

Acronyms

adren address enable.

AEL Automate Expression language.

BSS-2 BrainScaleS-2.

CMOS Complementary Metal-Oxide-Semiconductor.

dacen DAC enable.

DRC Design Rule Check.

IC integrated circuit.

LVS Layout Versus Schematic.

NMOS n-type Metal-Oxide-Semiconductor.

PCell Parameterized Cell.

PEX parasitic extraction.

PMOS p-type Metal-Oxide-Semiconductor.

SPICE Simulation Program with Integrated Circuit Emphasis.

SRAM static random-access memory.

TSMC Taiwan Semiconductor Manufacturing Company Limited.

UMC United Microelectronics Corporation.

VLSI Very-Large-Scale Integrated Circuit.

41

References

Barnes, T.J. (1990). “SKILL: a CAD system extension language”. In: 27th ACM/IEEE Design
Automation Conference. ISSN: 0738-100X, pp. 266–271. doi: 10.1109/DAC.1990.114865. url:
https://ieeexplore.ieee.org/document/114865 (visited on 11/10/2023).

Beckett, Andrew (2023). (10) Error while using LVS on a Schematic PCell - Custom IC SKILL
- Cadence Technology Forums - Cadence Community. en. url: https://community.cadence.
com/cadence_technology_forums/f/custom-ic-skill/58124/error-while-using-lvs-
on-a-schematic-pcell (visited on 11/12/2023).

Billaudelle, Sebastian (2017). “Design and Implementation of a Short Term Plasticity Circuit for
a 65 nm Neuromorphic Hardware System”. Masterarbeit. Universität Heidelberg.

Cadence Design Systems, Inc. (2004). Virtuoso Parameterized Cell Reference. 5.0. Cadence
Design Systems, Inc. 555 River Oaks Parkway, San Jose, CA 95134, USA.

Cadence Design Systems, Inc. (2023a). Circuit Simulation. en. url: https://www.cadence.com/
en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html (visited on
11/09/2023).

Cadence Design Systems, Inc. (2023b). Integrated Circuit (IC) Design. en. url: https://www.
cadence.com/en_US/home/explore/what-is-ic-design.html (visited on 11/07/2023).

Grübl, Andreas et al. (2020). “Verification and Design Methods for the BrainScaleS Neuromorphic
Hardware System”. In: Journal of Signal Processing Systems 92.11, pp. 1277–1292. doi:
10.1007/s11265-020-01558-7. url: https://doi.org/10.1007/s11265-020-01558-7.

Jaeger, Richard C. and Travis N. Blalock (2011). Microelectronic Circuit Design. Ed. by Marty
Lange. fourth. McGrawn-Hill. isbn: 978-0-07-122199-3.

Kao, W.H. et al. (2001). “Parasitic extraction: current state of the art and future trends”. In:
Proceedings of the IEEE 89.5, pp. 729–739. doi: 10.1109/5.929651.

Ma, Yaoyao et al. (2023). “Extraction of Interconnect Parasitic Capacitance Matrix Based on
Deep Neural Network”. en. In: Electronics 12.6, p. 1440. issn: 2079-9292. doi: 10.3390/
electronics12061440. url: https://www.mdpi.com/2079-9292/12/6/1440 (visited on
11/09/2023).

Moore, Gordon E. (2006). “Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE Solid-State Circuits
Society Newsletter 11.3, pp. 33–35. issn: 1098-4232. doi: 10.1109/N-SSC.2006.4785860. url:
https://ieeexplore.ieee.org/document/4785860 (visited on 10/31/2023).

Our World in Data (2023). Moore’s law: The number of transistors per microprocessor. url: https:
//ourworldindata.org/grapher/transistors- per- microprocessor?time=earliest.
.2021 (visited on 10/31/2023).

Patni, Ashish (2021). Virtuosity: Custom IC Design Flow – Introduction - Analog/Custom Design
- Cadence Blogs - Cadence Community. en. url: https://community.cadence.com/cadence_
blogs_8/b/cic/posts/custom-ic-design-flow-methodology-introduction-737044421
(visited on 11/07/2023).

Pehle, Christian et al. (2022). “The BrainScaleS-2 Accelerated Neuromorphic System With
Hybrid Plasticity”. In: Frontiers in Neuroscience 16. issn: 1662-453X. url: https://www.
frontiersin.org/articles/10.3389/fnins.2022.795876 (visited on 11/06/2023).

42

https://doi.org/10.1109/DAC.1990.114865
https://ieeexplore.ieee.org/document/114865
https://community.cadence.com/cadence_technology_forums/f/custom-ic-skill/58124/error-while-using-lvs-on-a-schematic-pcell
https://community.cadence.com/cadence_technology_forums/f/custom-ic-skill/58124/error-while-using-lvs-on-a-schematic-pcell
https://community.cadence.com/cadence_technology_forums/f/custom-ic-skill/58124/error-while-using-lvs-on-a-schematic-pcell
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://www.cadence.com/en_US/home/explore/what-is-ic-design.html
https://www.cadence.com/en_US/home/explore/what-is-ic-design.html
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1109/5.929651
https://doi.org/10.3390/electronics12061440
https://doi.org/10.3390/electronics12061440
https://www.mdpi.com/2079-9292/12/6/1440
https://doi.org/10.1109/N-SSC.2006.4785860
https://ieeexplore.ieee.org/document/4785860
https://ourworldindata.org/grapher/transistors-per-microprocessor?time=earliest..2021
https://ourworldindata.org/grapher/transistors-per-microprocessor?time=earliest..2021
https://ourworldindata.org/grapher/transistors-per-microprocessor?time=earliest..2021
https://community.cadence.com/cadence_blogs_8/b/cic/posts/custom-ic-design-flow-methodology-introduction-737044421
https://community.cadence.com/cadence_blogs_8/b/cic/posts/custom-ic-design-flow-methodology-introduction-737044421
https://www.frontiersin.org/articles/10.3389/fnins.2022.795876
https://www.frontiersin.org/articles/10.3389/fnins.2022.795876

Pfeil, Thomas et al. (2013). “Six Networks on a Universal Neuromorphic Computing Substrate”.
In: Frontiers in Neuroscience 7. issn: 1662-453X. url: https://www.frontiersin.org/
articles/10.3389/fnins.2013.00011 (visited on 11/06/2023).

Phillip E. Allen, Douglas R. Holberg (1987). CMOS Analog Circuit Design. Oxford University
Press, Inc. 198 Madison Avenue, New York, New York 10016. isbn: 0-19-510720-9.

Razavi, Behzad (2013). Fundamentals of Microelectronics. en. Google-Books-ID: zpMYAgAAQBAJ.
John Wiley & Sons. isbn: 9781118156322.

Riordan, Michael, Lillian Hoddeson, and Conyers Herring (1999). “The invention of the transistor”.
In: Reviews of Modern Physics 71.2, S336–S345. doi: 10.1103/RevModPhys.71.S336. url:
https://link.aps.org/doi/10.1103/RevModPhys.71.S336 (visited on 10/31/2023).

Schemmel, J. et al. (2006). “Implementing Synaptic Plasticity in a VLSI Spiking Neural Network
Model”. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings.
ISSN: 2161-4407, pp. 1–6. doi: 10.1109/IJCNN.2006.246651. url: https://ieeexplore.
ieee.org/document/1716062 (visited on 11/06/2023).

Schemmel, Johannes et al. (2020). Accelerated Analog Neuromorphic Computing. Tech. rep.
arXiv:2003.11996 [cond-mat, q-bio] type: article. arXiv. doi: 10.48550/arXiv.2003.11996.
url: http://arxiv.org/abs/2003.11996 (visited on 11/07/2023).

SimTech Cadence Design Systems, Inc. (2023). EM Extraction and Finite Element Method (FEM)
in Clarity 3D Solver. en. url: https://community.cadence.com/cadence_technology_
forums/system-analysis/f/clarity-3d-solver/50917/em-extraction-and-finite-
element-method-fem-in-clarity-3d-solver (visited on 11/09/2023).

Wanlass, Frank M. (1967). “Low stand-by power complementary field effect circuitry”. US3356858A.
url: https://patents.google.com/patent/US3356858A/en#patentCitations (visited on
10/31/2023).

Yu, Wenjian, Mingye Song, and Ming Yang (2021). “Advancements and Challenges on Parasitic
Extraction for Advanced Process Technologies”. In: Proceedings of the 26th Asia and South
Pacific Design Automation Conference. ASPDAC ’21. New York, NY, USA: Association for
Computing Machinery, pp. 841–846. isbn: 9781450379991. doi: 10.1145/3394885.3431626.
url: https://doi.org/10.1145/3394885.3431626 (visited on 11/09/2023).

43

https://www.frontiersin.org/articles/10.3389/fnins.2013.00011
https://www.frontiersin.org/articles/10.3389/fnins.2013.00011
https://doi.org/10.1103/RevModPhys.71.S336
https://link.aps.org/doi/10.1103/RevModPhys.71.S336
https://doi.org/10.1109/IJCNN.2006.246651
https://ieeexplore.ieee.org/document/1716062
https://ieeexplore.ieee.org/document/1716062
https://doi.org/10.48550/arXiv.2003.11996
http://arxiv.org/abs/2003.11996
https://community.cadence.com/cadence_technology_forums/system-analysis/f/clarity-3d-solver/50917/em-extraction-and-finite-element-method-fem-in-clarity-3d-solver
https://community.cadence.com/cadence_technology_forums/system-analysis/f/clarity-3d-solver/50917/em-extraction-and-finite-element-method-fem-in-clarity-3d-solver
https://community.cadence.com/cadence_technology_forums/system-analysis/f/clarity-3d-solver/50917/em-extraction-and-finite-element-method-fem-in-clarity-3d-solver
https://patents.google.com/patent/US3356858A/en#patentCitations
https://doi.org/10.1145/3394885.3431626
https://doi.org/10.1145/3394885.3431626

Acknowledgements

To start of my acknowledgements I would like to thank PD Dr. Johannes Schemmel for providing
the opportunity to write my Bachelor’s thesis in the Electronic Vision(s) Group under his
supervision. Regarding the supervision, I would also like to thank Prof. Dr. Peter Fischer for
conducting the second review of this thesis.

Special thanks go to Sebastian Billaudelle, who supported me during my work and introduced
me to the world of chip design. Similarly I would like to thank Philipp Dauer and Yannik
Stradmann, for helping with all different kinds of questions.

Further I would like to thank Laura Arnold and Philip Quicker, for any support since the first
semester, and especially for proofreading this thesis. On the topic of proofreading I also have to
thank Penelope Hoffmann, and Heike Schlatterer.

I would like to thank Jakob Kaiser, Philipp Spilger, Josha Ilmberger and Eric Müller, for the
amazing learning opportunities regarding the backend hardware of the BSS systems, as well as
the whole Electronic Vision(s) Group for an amazing work environment.

Finally, I would like to thank my family, especially my parents Brigitte Arth-Haas and Georg
Haas, who supported and encouraged me through the course of my studies.

The work carried out in this Bachelor Thesis used systems, which received funding from the
European Union’s Horizon 2020 Framework Programme for Research and Innovation under the
Specific Grant Agreements Nos. 720270, 785907 and 945539 (Human Brain Project, HBP).

44

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 29.11.23, Kaspar Frieder Haas

45

	Introduction
	Background
	Microelectronics and CMOS production
	The BrainScaleS-2 System
	VLSI design flow
	PCells
	Simulation and parasitic extraction

	Methods
	Cadence® Virtuoso®
	Calibre
	SKILL

	Creation of synapse driver and address decoder PCells
	Fixed synapse driver array
	Address decoder
	Parameters
	Cellviews
	Verification of the address decoder PCell
	Simulation

	Flexible synapse driver array
	Layout
	Schematic
	Symbol
	Sparce array for fast simulation
	Verification of the synapse driver PCell

	Extraction and Simulation
	Extraction
	Simulation

	Discussion and Outlook
	Appendix
	Decoding
	Code fragments
	Reproducibility

