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Closing the loop: High-speed
robotics with accelerated
neuromorphic hardware

Yannik Stradmann* and Johannes Schemmel

Kirchho�-Institute for Physics, Heidelberg University, Heidelberg, Germany

The BrainScaleS-2 system is an established analog neuromorphic platform

with versatile applications in the diverse fields of computational neuroscience

and spike-based machine learning. In this work, we extend the system with

a configurable realtime event interface that enables a tight coupling of its

distinct analog network core to external sensors and actuators. The 1,000-

fold acceleration of the emulated nerve cells allows us to target high-speed

robotic applications that require precise timing on a microsecond scale. As

a showcase, we present a closed-loop setup for commuting brushless DC

motors: we utilize PyTorch to train a spiking neural network emulated on the

analog substrate to control an electric motor from a sensory event stream. The

presented system enables research in the area of event-driven controllers for

high-speed robotics, including self-supervised and biologically inspired online

learning for such applications.

KEYWORDS

analog neuromorphic computing, spiking neural networks, neurorobotics, closed-loop
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1 Introduction

Often perceived to be one of the key features of biological cognitive systems,
embodiment has become subject to increasing interest within the neuroscientific
community (Kiverstein and Miller, 2015; Deng et al., 2019). While state-of-the-art neural
networks often outperform humans in cognitive tasks, artificial agents still severely
lack behind their mammalian counterparts in applications requiring precise control and
coordination of movement. The field of neurorobotics tries to overcome these deficits
by tightly interconnecting physical agents to brain-inspired computing solutions. This
approach promises multiple advantages compared to the classical separation of control
and cognition: on the one hand, it allows research on how to leverage the advantage
biological nervous systems show when executing movement in complex environments. On
the other hand, our understanding for artificial cognitive systems may improve when their
response to a permanent stream of complex real-world stimuli is examined. The required
tight coupling can be achieved by linking simulations of biologically inspired neural
networks to either real-world robots (Hagras et al., 2004) or virtual agents in simulated
environments (Falotico et al., 2017). While the latter in principle allows for arbitrary
complexity in both, the physics and the neural network simulation, runtime constraints
often lead to significant size and fidelity limits for both components. Physical robots, in
contrast, inherently experience the rich dynamics of a real-world environment. This poses
strong timing requirements on the—simulated—nervous system, which needs to interact
with its surroundings in realtime. Especially for biologically inspired spiking neural
networks (SNNs), this prerequisite has led to the deployment of specialized neuromorphic
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accelerators for neurorobotic tasks (Richter et al., 2016; Blum
et al., 2017; Milde et al., 2017; Kreiser et al., 2018; Yan et al.,
2021; DAngelo et al., 2022). These systems integrate specific analog
or digital modules for the efficient simulation—or emulation—of
spiking neurons and are thereby capable of running such networks
at biological realtime. This makes them a versatile tool for robotic
applications operating on time scales similar to those accessible by
their biological example.

In contrast to these established neurorobotic platforms, the
accelerated BrainScaleS-2 (BSS-2) system operates with time
constants that are 1,000-fold accelerated compared to their
biological counterparts, allowing the system to tackle robotic tasks
far beyond human speed (Schreiber, 2021). In this work, we
present a flexible realtime event interface for BSS-2 and showcase
its application with a simple closed-loop controller for brushless
electric motors. This problem is well-studied and has been solved
with a multitude of different algorithms, both for senosored and
sensorless applications (Pillay and Krishnan, 1989; Ko et al., 1993;
Acarnley and Watson, 2006; Rodriguez and Emadi, 2007; Sathyan
et al., 2009; Bosso et al., 2021). While an applicable agent can
be built with affordable off-the-shelf components, it does require
precise timing far beyond human performance and—due to the
ubiquity of electric motors—still has high technological relevance.
To showcase the realtime event interface for BSS-2, we therefore
present a basic controller for sensored brushless motors that
has been trained to mirror the behavior of a classical controller
using standard machine-learning techniques and hardware-in-
the-loop training (Schmitt et al., 2017; Yao et al., 2020). We
envision this setup to be a versatile platform for research on the
interaction of biologically plausible spiking neural networks with
fast physical systems.

2 A realtime event interface for
BrainScaleS-2

BSS-2 is a hybrid neuromorphic system that has primarily
been designed to facilitate research of biologically inspired SNNs
(Figures 1A, B; Pehle et al., 2022). In its core, it features 512
individually configurable analog neurons, each of which is capable
of reproducing the rich dynamics of the adaptive-exponential
(AdEx) neuronmodel with high fidelity (Brette and Gerstner, 2005;
Billaudelle et al., 2022). Multiple of these neuron circuits can be
combined to implement multi-compartment neurons and thereby
resemble the spatial structure of biological dendrites (Kaiser et al.,
2022). The neurons receive input from a total of 131,072 synapses
per chip, each featuring a digitally programmable weight of 6 bit
resolution. These synapses can be plastic on various different
time scales: while short-term plasticity is natively integrated into
the analog synapse array, spike-timing-dependent plasticity is
implemented through the combination of synapse-local correlation
sensors with two embedded SIMD processors. These plasticity
processing units (PPUs) can be programmed to execute arbitrary
C++ code at runtime and therefore be used to realize user-
defined plasticity rules on-chip. To do so, they have access to
various different observables in the analog and digital domain,
e.g., event counters, membrane potentials or the correlation signals
mentioned previously.

Experiments on the BSS-2 system can be formulated using two
different software frontends: for SNNs focussing on the complex
dynamics found in biological systems, a backend for the PyNN
meta-language (Davison et al., 2009) is provided. Workloads with
a focus on computational neuroscience and machine learning
can rely on native integration into PyTorch (Paszke et al.,
2019), which especially allows for hardware-in-the loop training
paradigms (Müller et al., 2022). In both cases, the experiment
can be formulated in the Python programming language—the
BSS-2 software stack will then compile a stream of instructions
on a host computer and transfer it to the neuromorphic
system.

Due to the tight realtime requirements of the system, these
instructions are executed on an intermittent FPGA, which is
accessible via Gigabit Ethernet. It buffers the instruction stream
compiled on the host computer, streams the data to the BSS-2
ASIC, buffers network responses from the neuromorphic chip
and sends them back to the host (Figure 1E, white components).
As part of this work, we have extended this FPGA by a second
event interface, which allows for event injection and extraction
in realtime (Figure 1E, yellow components) and thereby enables
robotic applications with the BSS-2 system.

To allow for a substantial amount of (virtual) spike channels
without excessive I/O pin demands, we have chosen a serial
protocol for receiving and transmitting sensor and motor
events. Specifically, we integrate an Universal Asynchronous
Receiver/Transmitter (UART), which is widely supported across
all classes of embedded devices. Since the realtime nature of
the application does not require time-stamped events, any word
communicated over this interface represents the channel ID of an
event happening at the current time. The word size—and therefore
the amount of virtual event channels—can be configured at build
time, while the bitrate is a runtime parameter that can be adapted
to the requirements of different external spike sources and sinks.
For the data link layer we rely on an open-source implementation,1

which uses octuple oversampling to decode events received via
the asynchronous interface. With a system clock of 125MHz and
a single start and stop bit, we therefore expect a serialization
latency of

tserial =

(
125MHz

8

)−1

· (w+ 2 bit) = 640 ns, (1)

where we have set an exemplary interface width of w = 8 bit
(256 event channels). Correspondingly, the link layer is expected
to saturate at Bmax = t−1

serial = 1.56MEv s−1. The measurements
depicted in Figures 1C, D indicate that these values are reached
in the physical implementation: while the measured saturated
event rate of 1.5MEv s−1 directly matches the expected Bmax, the
measured median loopback latency of t̃lb = 1.2 µs results from the
sum of tserial and the serialization latency between FPGA and ASIC.
The latter is expected to add an additional delay of at least 268 ns in
each direction.

For translation between external events and the BSS-2 spike
format, individual routing tables for the sending and receiving
directions are connected to the UART module. These tables utilize

1 Alex Forencich: Verilog UART, https://github.com/alexforencich/verilog-

uart.
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FIGURE 1

(A) Photograph of a BrainScaleS-2 (BSS-2) ASIC. (B) Schematic diagram of the BSS-2 ASIC with its distinctive analog network core. Figure adapted

from Billaudelle et al. (2020). (C) Bandwidth measurement of the BSS-2 event interface. The presented realtime interface saturates at 1.5MEv s−1 (full

duplex), allowing for significant event tra�c to/from external sensor and motor signals. (D) Loopback latency measurement of the presented BSS-2

event interface. We observe a mean roundtrip time of 1.2 µs for a spike to travel from the ASIC, through the realtime event interface and back into

the ASIC. (E) Block-level diagram of the FPGA which accompanies the BSS-2 ASIC. The additions presented in this work have been highlighted in

yellow: a bidirectional serial interface allows events from sensor and motor neurons to be injected/extracted in realtime. Routing tables for mapping

events to/from the ASIC to virtual spike channels are configurable at runtime.

block RAM on the FPGA to provide a dense, runtime-configurable
mapping between external event addresses and those used by the
neuromorphic system. Users can query the BSS-2 software for the
spike labels assigned to their sensor andmotor neuron populations.
These values can then be used to program an arbitrary mapping to
external event channel IDs.

3 Showcase: BLDC motor control

To showcase the application of the presented realtime event
interface in a real-world scenario, we have selected the task of
commuting an electric brushless DC (BLDC) motor. We have
chosen this problem due to the simplicity of the physical setup
and its precise timing requirements: BLDC motors—together
with sensor and power electronics—are widely available off-the-
shelf components, yet they rely on precisely controlled currents
to operate reliably. With typical rotational speeds far above
10,000min–1, the timing requirements for enabling individual coils
are in the sub-millisecond regime and therefore go far beyond
human capabilities (Kemp, 1973). At the same time, the task
is particularly suitable for biologically-inspired spiking neural
networks (SNNs), since the bipolar interaction of a permanent
magnet with the current-induced electromagnetic field of the coils
matches the concept of antagonistic muscle pairs in vertebrates.

For the particular demonstration, we use a small gimbal
motor with 12N14P configuration and a nominal rotation rate
of 205min−1. Its current rotational angle is read out with 10 bit

resolution by a magnetic sensor, which communicates these values
via I2C to a microcontroller (Figure 2A, top). The latter serves as
a bridge between the sensor and the BSS-2 event interface and is
primarily used for encoding the current rotational angle into spikes.
Algorithmically, we choose a value-unit representation, for which
we pool the 1,024 available raw states into 256 sensor neurons.
The resulting events are then injected into the analog network
emulation on BSS-2 and processed by a single feed-forward layer of
six leaky integrate-and-fire (LIF) neurons. Taking inspiration from
biology, we utilize pulse-density modulation for the efferent motor
signals. Similar to aforementioned antagonistic muscle pairs in
biology, the activity of the output neuronsMi

j directly corresponds
to the state of the six transistors controlling the motor: each of
the three phases i can either be driven high (only Mi

high active),

driven low (only Mi
low active), or left floating. The decoding of the

output event stream is handled by a second microcontroller, which
momentarily enables the corresponding signal in a 6 bit parallel
bus whenever a motor neuron spikes (Figure 2A, bottom). These
signals are used by the output stage of a commercial motor driver
to control an internal 3-phase H-bridge. Any activity of the motor
neurons emulated on BSS-2 thereby creates physical movement,
which in turn results in a change of the rotational angle and
therefore potentially different inputs to the SNN.

We trained this SNN-based motor controller using standard
machine-learning techniques in PyTorch. To do so, we have
recorded the behavior of an open-source reference BLDC motor
controller (Skuric et al., 2022), lowpass-filtered the PWM outputs,
and created a mapping of the current rotational angle to the
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FIGURE 2

(A) Block diagram of the implemented closed-loop motor controller. The rotational angle is measured, converted to events and sent to the BSS-2

system in realtime. These sensory inputs are then processed by the spiking motor controller. Its motor outputs are converted to control signals for an

H-bridge driver, which controls the coils of a BLDC motor. (B) Experimental setup for running the closed-loop experiment. The neuromorphic

system is depicted on the right, with the BSS-2 ASIC hidden below the red dust cap. It controlls the small electric motor at the top, which drives a

green propeller. The oscilloscope displays the membrane potential of two analog motor neurons on BSS-2. (C) Network weights before (left) and

after (right) supervised training. The mapping between sensory input (vertical dimension) to motor output (horizontal dimension) is clearly visible

after training. (D) Mapping from rotational angle to motor output. The blue data depicts a measurement of the behavior shown by a classical

controller for BLDC motors. The orange curves represent spike rates measured on BSS-2 with simulated input after training. They have been

normalized to 1/τref. (E) Rasterplot of the spiking motor controller during the closed-loop experiment. The motor neurons directly map to the six

controllables of an H-bridge, while the sensory neurons represent the rotational angle of the motor. The transition phase for a single state shift is

highlighted through magnification.

resulting target activity per motor neuron Mi
j (Figure 2D, blue

curves). With this dataset at hand, we were able to train the
SNN emulated on BSS-2 with the established hardware-in-the-
loop paradigm: during training, the forward pass is evaluated
on the analog neuromorphic substrate, while the gradients are
computed on an idealized, differentiable model for the neuron’s
behavior. The presented results have been trained for 5 epochs
against a L2 loss function with the Adam optimizer (Kingma
and Ba, 2014), all parameters are summarized in Table 1.
The orange curves in Figure 2D show the response of the
hardware neurons for equal test stimuli across 20 trials post
training. The strength of the neuronal response has been
normalized to the inverse of the neuron’s refractory time τref,
as this poses an—unreachable—upper limit for the firing rate
of every cell. Figure 2C shows the weight matrix of the feed-
forward layer before (left) and after (right) training: when
training from an initially random weight matrix, the correct
mapping between the current angular position (vertical axis)
and the corresponding active motor neuron (horizontal axis)
clearly emerges.

The full system in operation is depicted in Figure 2B, where
the BSS-2 system (right side, with the ASIC hidden under a
red dust cap) controls a small BLDC motor. The oscilloscope
shows membrane recordings of the two motor neurons M0

low
and M0

high, the areas of high activity are clearly separated from

those with strong inhibition. Figure 2E shows a corresponding
rasterplot with all involved signals. The linearly ascending sensory
inputs indicate the continuous rotational motion of the motor,
while the motor neurons show the expected repetitive six-phase
commutation pattern.

4 Discussion

This work introduced a realtime spike interface for the
accelerated neuromorphic BSS-2 platform, paving the way for high-
speed robotic applications. Honoring the system’s fast dynamics,
it has been optimized for low latency, moderate bandwidth and
high compatibility with embedded components for sensor inputs
and motor outputs. Similar to Romero Bermudez et al. (2023),
we have aimed for a generic interface, which we envision to
be suitable for a cornucopia of robotic experiments. Its low
latency allows users to tackle tasks requiring timing precision on
microsecond-level.

As an initial application, we have shown an SNN-based
controller for BLDC motors and thereby join the rank of
neuromorphic control units for motor tasks that reaches
back multiple decades (DeWeerth et al., 1991). The particular
application has been made possible by the 1,000-fold acceleration
factor of the BSS-2 system, which enables research on the
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TABLE 1 Parameters for the presented SNN-based BLDC controller.

Neuron model Leaky integrate-and-fire

Membrane time constant τmem 20 µs

Refractory time τrefr 32 µs

Synaptic time constant τsyn 20 µs

Network architecture Single layer feed-forward SNN, 6 units

Sensory input coding Value-unit, rate-based

Motoric output coding Value-unit, pulse-density modulated

Training Stochastic gradient decent

Loss function L2

Optimizer Adam

Learning rate 0.1

β 0.9, 0.999

Weight decay 0

Weight initialization 0.5± 0.1

All time constants are given in wall-clock time, illustrating the accelerated nature of the analog
substrate.

unexplored grounds of biologically inspired controllers for
high-speed robotic tasks. While the presented application relies
on supervised training to mimic a classical controller, the setup
allows for the exploration of self-supervised and—in combination
with the on-chip plasticity processors—online learning. In these
cases, the acceleration factor will not only enable the application
of SNNs to robotic tasks with superhuman timing requirements,
but also greatly reduce their training time. For the particular
example of BLDC commutation, more complex networks would
benefit from additional controllables and input quantities: in
the afferent path, a rich sensory event stream encoding system
properties like temperatures, coil currents and voltages is possible.
For the motor neurons, the implemented biologically inspired
pulse-density modulation might benefit from additional efferent
signals for a more refined control of the coil currents. Since we
implement both, the encoding and decoding between spikes and
physical quantities in microcontrollers, such alterations to the
system are possible without physical access. Together with the
native integration of the presented realtime event interface into
the BSS-2 software stack, this allows for the remote development
of high-speed robotic applications through the EBRAINS
platform.2
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