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Runtime-dynamic reconfiguration for a time-continuous neuromorphic
system:

Public interest and demand for neural networks is growing worldwide. To meet the
need for greater computational resources to train larger and more precise machine
learning models, different kinds of specialized hardware are being developed. One
approach that takes its cue from nature’s proven success is neuromorphic computing.
The BrainScaleS-2 neuromorphic platform is designed to provide a flexible and
accelerated substrate for emulating spiking neural networks: from neuroscientific
experiments, exploring local plasticity and dynamics in networks with structured
neurons, to machine learning applications focusing on event-driven computation.
To describe these experiments, an intuitive way of thinking about a continuous
experiment flow with discrete time points of changes in the configuration is desired.
In this work, the necessary software changes are implemented, to enable this way
of describing an experiment for users of the BrainScaleS-2 platform. To realize
this feature of dynamically reconfiguring an experiment during runtime, conceptual
changes were required on several layers of the BrainScaleS-2 software stack. This
includes a new kind of program builder and a new way of assembling the experiment
from its different individual parts. Finally, the changes made in this work, are
evaluated with a performance test and proven useful at use case examples.

Laufzeitdynamische Rekonfiguration für ein zeitkontinuierliches neuro-
morphes System:

Das öffentliche Interesse und die Nachfrage nach neuronalen Netzen wächst weltweit.
Um den Bedarf an größeren Rechenressourcen zum Trainieren größerer und präzis-
erer maschineller Lernmodelle zu decken, werden verschiedene Arten spezialisierter
Hardware entwickelt. Ein Ansatz, der sich an der erfolggekrönten Natur orientiert,
ist das neuromorphe Rechnen. Die neuromorphe BrainScaleS-2-Plattform wurde
entwickelt, um ein flexibles und beschleunigtes Substrat für die Emulation von spik-
enden neuronalen Netzen zu bieten: Von neurowissenschaftlichen Experimenten zur
Erforschung der lokalen Plastizität und Dynamik in Netzwerken mit strukturierten
Neuronen bis hin zu Anwendungen des maschinellen Lernens, die sich auf ereignis-
gesteuerte Berechnungen konzentrieren. Um diese Experimente zu beschreiben, ist
eine intuitive Art gewünscht, die mit der Vorstellung von einem kontinuierlichen Ex-
perimentfluss mit Konfigurationsänderungen zu diskreten Zeitpunkten einhergeht.
In dieser Arbeit werden die notwendigen Software-Änderungen implementiert, um
diese Art der Beschreibung eines Experiments für Benutzer der BrainScaleS-2 Plat-
tform zu ermöglichen. Um diese Funktion der dynamischen Rekonfiguration eines
Experiments während der Laufzeit zu implementieren, werden konzeptionelle Än-
derungen auf mehreren Ebenen des BrainScaleS-2 Software-Stacks getätigt. Diese
beinhalten einen neuen Typ von Program Builder und eine neue Art, das Experiment
aus seinen verschiedenen Einzelteilen zusammenzusetzen. Abschließend wurden die
in dieser Arbeit vorgenommenen Änderungen mit einem Performancetest evaluiert
und in Anwendungsbeispielen als nützlich erwiesen.





Contents

1 Introduction 8

2 Methods 10
2.1 The BrainScaleS-2 platform . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Experiment procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Concept of a mergeable program builder . . . . . . . . . . . . . . . . . 22

3 Implementation 28
3.1 The AbsoluteTimePlaybackProgramBuilder . . . . . . . . . . . . . . . 28

3.1.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Retrieval of experiment data . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Building process of the PlaybackProgramBuilder . . . . . . . . . 32
3.1.4 Additional features . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Experiment construction . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Changes to pynn.brainscales . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Changes in experiment description . . . . . . . . . . . . . . . . 40
3.3.2 Changes in experiment evaluation . . . . . . . . . . . . . . . . . 43

4 Evaluation 46
4.1 Demo experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Adaptation of AdEx-neuron experiment . . . . . . . . . . . . . . . . . . 50
4.3 Build performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Conclusion and outlook 58

6 References 62

Acknowledgements (Danksagung) 66

Acronyms 68

A Performance measurement data 69

B Experiment environment 72

7



1 Introduction

Year by year, the demand for neural networks and therefore the amount of necessary
computational resources increases [16]. In comparison to artificial neural networks
(ANNs), spiking neural networks (SNNs) promise to be more energy efficient [4] and
are closer related to their biological equivalent and thus become more and more im-
portant [1]. Neuromorphic Systems try to replicate the behaviour of biological neural
networks by emulating certain neuroscientific models.
The analog neuromorphic hardware platform BrainScaleS-2 (BSS-2) [14, 10], developed
by the Electronic Vision(s) Group in Heidelberg, can emulate spiking and non-spiking
neural networks. The application programming interface (API) of the platform [10]
makes it possible, to control the system with user-frontends, that are commonly used
for working with neural networks, like e.g. PyNN [5] or PyTorch [13]. PyNN is a frame-
work for building neural networks and is used for several different simulator backends
as a frontend, to describe the experiments [5]. PyTorch is a tensor library for deep
learning, whereas hxtorch [18, 19], the BSS-2-adapted PyTorch extension, already dis-
tinguishes itself a little bit from the original PyTorch library. In contrast to ANNs,
SNNs have a time axis, as they evolve continuously in time and the dynamics in the
system can hardly be paused; in case of the BSS-2 system not at all [10], as this
isn’t part of the design goal. Especially for biologically inspired experiments, arbitrary
dynamics of the system shall be recorded. The main challenge is to give the user an
image of a perfectly emulated neural network as it could exist in nature, where among
other things, it is expected to be possible to change the experiment configuration at
discrete points in time during the experiment. Other simulators like NEST [7] and
Brian [20] also allow parameter changes during the runtime of an experiment, which
aims to make the description of neuromorphic experiments more simple and intuitive.

In the current operating mode, the experiment starts with an initial configuration of
the system, where all parameters are set according to the definition of the experiment,
followed by a time evolution of the emulated network with spike stimulus only and the
readout of measured data in the end.
The goal of this bachelor thesis is to enable dynamic reconfiguration of the system in
the realtime section of an experiment, where the external inputs are fed to the system

8



and its reaction on it is recorded. Targeting the frontend PyNN, it shall be possible
to define different experiment configurations and run them one right after another for
individual time durations. The user shall get the feeling of a time-continuous experi-
ment execution, divided into different parts by instant reconfiguration of the simulated
system. These reconfigurations can include parameter changes, changes in the network
topology or changes, on which values are recorded. To put this feature into effect, new
concepts of experiment construction on multiple layers of the software stack are de-
veloped. Some of the opportunities this feature opens up are demonstrated in sample
experiments.

Following an introduction to the BSS-2 platform, these concepts are elaborated in
the methods chapter (chapter 2). There, conceptual solutions tailored for the BSS-2
system are established and justified, regarding the possibilities and restrictions of the
hardware.
In the implementation chapter (chapter 3), the changes to the software of the BSS-2
platform are presented, which are necessary to implement the concepts presented in
chapter 2. There, the newly introduced data structures and procedures are explained,
beginning from the hardware abstraction layer of the software stack up to the modeling
wrapper, where all user-visible changes are explained with generic examples.
In chapter 4, a tutorial demonstrating the new feature is presented, as well as an
application of it in an already existing experiment about the dynamics of the neurons
in the BSS-2 chip. At last, the performance of the new state of the software stack is
tested in terms of the compile time for an experiment.
In the end, the results of the implementation are concluded, followed by an outlook
on future improvements of this feature and possibilities for other projects to build on
this work.
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2 Methods

This chapter gives an introduction to the BrainScaleS-2 (BSS-2) platform and how
it operates in terms of hardware and software. Only the parts relevant to this thesis
are referred to. For a complete presentation of the BSS-2 platform, the papers about
the hardware system [14] and the software [10] can be looked up. Then the necessary
concepts to reach the goal of a reconfigurable experiment will be elaborated and how
the application programming interface (API) can be adapted to these concepts.

In this chapter, some terms are defined, which enable the use of a simple, yet accurate
language throughout this thesis. However, these terms may be associated with other
meanings in other publications.

2.1 The BrainScaleS-2 platform

BSS-2 is a mixed-signal neuromorphic platform, which emulates spiking and non-
spiking neural networks in realtime using analog circuits. The dynamics of the synapse
and neuron circuits develop 1000 faster than their biological equivalent. Users can op-
erate it with frameworks, that are commonly used for neuroscientific, resp. machine
learning applications, like PyNN [5] and PyTorch [12]. All BSS-2 hardware setups are
located at the European Institute for Neuromorphic Computing (EINC), but users
from all over the world can remotely execute their experiments on these machines1.
At the moment, a BSS-2 hardware device consists of a field-programmable gate array
(FPGA) coupled with a custom-made ASIC, which is commonly referred to as the
BSS-2 chip. The FPGA of each of these hardware setups can be linked to an experi-
ment host which is also stationed at the EINC.

The common workflow of building and executing an experiment is:

1. Description of an experiment on a personal computer with one of the provided
frameworks or directly on a lower level of the BSS-2 API.

1https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/BrainScaleS/
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Figure 2.1: A: Picture of the application-specific integrated circuit (ASIC), i.e. the
BSS-2 chip. B: Picture of a hardware setup: The chip is located under
the white plastic cap on the top left. C: Schematic of the chip with its
different components. The components, which are important for this thesis
are explained briefly in sec. 2.1.1. D: A closeup on the chip components
shown in the top right quarter of C. The red arrows illustrate a possible
signal flow. The orange, yellow and blue arrow illustrate the possible read-
and write operations of the plasticity processing unit (PPU).
This figure was taken from [14].

2. Interpretation of the code or alternatively build of an executable and a run on
one of the experiment hosts provided by the EINC.

3. The program(s) are loaded onto the FPGA by the experiment host.

4. The FPGA then interprets the commands of the program and initiates according
operations on the chip or on itself.

5. The specified input signals are generated and processed on the chip to generate
the wanted data. All read out data, except for analog recordings, is buffered
on the FPGA and sent back to the experiment host after the execution, where
it is further processed. Spike recordings or recordings of other parameters are
streamed from the chip directly to the host during an experiment.

6. The high-level data structures used in the user program, to describe the experi-
ment, are re-populated with the read out data and are ready for evaluation.
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2.1.1 Hardware

At the moment, a BSS-2 hardware device consists of a FPGA coupled with a custom-
made ASIC, which is referred to as the BSS-2 chip and several custom PCB, that
aren’t further relevant for this work. Both the chip and the FPGA will be introduced
in this section in order to get an understanding, of how the system works.

The BSS-2 chip

The BSS-2 chip can be divided into different components, which are displayed in fig.
2.1 C.
The upper half and the lower half are roughly symmetrically identical. These are the
so-called top and bottom hemispheres. Each of those contains two synapse arrays
and the according synapse drivers and neuron circuits with their analog storage, that
contains the parameters, which describe the neuron behaviour. The input to each row
of synapses is controlled by an individual synapse driver, whereas all synapses in each
column of an array are linked to a neuron. In total, there are 256 neurons and 256
synapse drivers on each hemisphere. Each neuron is capable of emulating the adaptive
exponential integrate-and-fire (AdEx) [3] equations(2.1)(2.2) and any other model that
can be described with parts of the AdEx model.

C
dV

d t
= −gl (V − El) + gl∆T exp

(
V − VT

∆T

)
− w + Istim (2.1)

τw
dw

d t
= a (V − El) − w (2.2)

In these equations, C is the membrane capacitance, V the membrane potential, gl
the leak conductance, El is the resting potential, ∆T is the exponential slope, VT
the threshold potential, w is the adaptation current, Istim the current stimulus, a the
subthreshold adaptation strength and τw the time constant of the adaptation current.
By default, the neurons emulate the leaky integrate-and-fire (LIF) model, which is fully
described by the terms in eq. (2.1), that are marked by a blue font. Depending on the
signals a neuron receives, it might trigger spikes at certain times, when the membrane
potential crosses a certain threshold. These spikes can optionally be fed back into the
synapse array, by routing the spikes to a specific synapse driver. In the digital parts
of the chip, e.g. the spike router, a spike is nothing else than a time information and
a source label, which is used for filtering during event propagation to targets, like e.g.
the synapse drivers. The spikes of each neuron can also be recorded by routing the
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events off the chip and stream them back to the host during the experiment.
The PPU, which is located at the opposite side of each synapse array (cf. fig. 2.1
D), than the neurons, is responsible for adaptations of the synapses. It has read and
write access to all synapses and also can read out different analog values from the
neurons. Via the columnar analog-to-digital converter (CADC), the PPU can read out
correlations between pre- and post-synaptic spikes or the membrane potential. The
PPU is also capable of changing synaptic weights and neuron parameters according to
a user-defined plasticity-rule.
The membrane analog-to-digital converter (MADC), located in the to left corner in
fig. 2.1 C, can record different analog signals, which are probed at the neurons, e.g.
the membrane potential.

The FPGA

The FPGA is mainly responsible for the control flow in experiments. It is connected
to the chip via a digital link. It also is connected to the experiment host via the Host-
ARQ [10] protocol using Ethernet. The main component of the FPGA is the so-called
executor, which can process different kinds of commands, e.g. using a timer to wait
until a certain point in time. The FPGA has a memory buffer, off of which it will
process these commands. There is only one timer on the FPGA and it has only a
single computing unit, so it can only process commands serially.
In the beginning of an experiment, the host generates a set of commands and loads
them into this instruction buffer of the FPGA. If this command memory of the FPGA
is not big enough to contain a whole experiment, the command batch is split into
several parts, that fit into the memory. The FPGA then proceeds to interpret these
commands and write data to or read data from the chip. Each command will be
interpreted at a certain point in time, either right after the last command, or at a
specific time. This can be done by a preceding so-called block-until command, that
blocks the execution, until a certain clock cycle count on the timer of the FPGA is
reached. If the current timer value is higher than the requested value to be blocked
until, the command is ignored. Alternatively, the execution can be blocked to wait
for specific events, e.g. until certain access control has finished. When the FPGA
encounters a write-command, it changes properties of the system or supplies input
data, by writing certain digital values at specified addresses on the chip.
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2.1.2 Software

To make the usage of neuromorphic hardware like the BSS-2 system as easy as possible,
an abstract way of describing experiments with the same language and structures used
in scientific models is wanted. Users prefer to work with abstract objects like neuron
populations or projections, which link different populations to each other. To make
the operation of the BSS-2 system as easy as coding the experiments in Python-based
frameworks, there is need for an API, the implementation of which can translate
from such an abstract experiment description to plain serial hardware instructions. In
our case, the task is to translate from our two supported user frontends PyNN and
PyTorch to hardware instructions for the FPGA. The software stack can be divided
into different layers as shown in fig. 2.2, where the top corresponds to the frontend
and the bottom to the backend. In this context, “high layer” and “low layer” need
to be understood as “rather front- or backend” throughout the thesis. The PyNN-
derivate pynn.brainscales [10] and the PyTorch-extension hxtorch [18, 19] appear to
a user pretty similar to the original frameworks, but give the possibility to adjust
these frontends to the BSS-2 system. They handle abstract objects, like for example
populations or projections in PyNN, which are used to describe groups of neurons,
resp. the linkage between these groups.
The translation of the abstract experiment description in form of network graphs to
signal-flow graphs [17] (cf. fig. 2.3) happens in the experiment description layer. These
signal-flow graphs specify the sequence of signal processing steps on the chip, that
correspond to a hardware emulation of the abstractly defined neural network.
With the signal-flow graph describing what should happen where and when on the

chip, the only thing left to do is to construct sequences of FPGA instructions, that lead
to the execution of the signal processing steps specified in the signal-flow-graph (e.g.
write specific words to the spike router, that lead to a spike being routed to a certain
synapse driver). This is done in the hardware abstraction layer, where the information
on changes of all hardware parameters is described with a pair of a coordinate and a
container [11]. A coordinate is a specification on the system component, the parameters
of which are going to be changed. The container holds the values, these parameters
are changed to.

Definition 2.1 A command corresponds to a set of hardware instructions that induce
a certain action in specific components of the BSS-2 system at a certain time. Each
command has a (possibly unknown) time stamp, at which it is released to be processed
on the FPGA. This time is referred to as a property of a command throughout this
thesis.
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PyTorch
hxtorch

pyNN
pyNN.brainscales2

Runtime Control
stadls

Connection
hxcomm

Signal-Flow Graph
grenade

FPGA Instructions
fisch

Coordinate
halco

Co-Simulation
flange

Hardware Database
hwdb

Logical Container
lola

Modeling Wrapper

Communication

HW Container
haldls

Host-ARQ (HW)
sctrltp

Experiment Description

Hardware Abstraction

Early Prototyping

Comissioning /
Expert Experiments

Neuroscience /
Machine Learning

Applications

Place and Route
grenade

Network Graph
grenade

quiggeldy (HW)
hxcomm

Figure 2.2: The software stack [10] of the BSS-2 platform: The different conceptual
layers are marked with different background colors. The white squares
resemble different modules of the software stack and show in their upper
line with what kind of objects the experiment is described with on the
according level of the software stack. On the right side, one can see on
which layer the programs want to be coded, depending on the applications.
Figure taken from [9].
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(a) Neural network representation.
The circles resemble neurons, the arrows
resemble synapses. The different colors re-
semble the different populations.

input crossbar

synapse drivers

synapses

neurons

input crossbar output crossbar

synapse drivers

synapses

neurons

output crossbar

external events

PADI events

labels

synaptic currents

neuron spikes neuron spikes

PADI events external events

labels

synaptic currents

neuron spikes

external events

(b) Possible signal-flow graph representation.
The squares resemble components of the
chip and the labeled arrows resemble the
signal type of the communication between
these components.

Figure 2.3: Example for source- (left) and end representation of the experimental de-
scription layer, adapted from [17].
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In the hardware abstraction layer, these commands can be queued with an instance of
the PlaybackProgramBuilder (PPB) class, which is used for generating an executable
playback program. Such a PPB holds a list of commands and provides different func-
tions to add the three types of commands to this list:

• write(coordinate, container):
Modifies certain hardware parameters on the system.

• read(coordinate):
Reads out certain hardware parameters of the system.

• block_until(coordinate, condition):
Pauses the execution of the playback program on the FPGA until the system
component(s) specified by “coordinate” match a certain condition.

The command sequence can be transformed into a playback program, that contains
a sequence of FPGA instructions, with a call of the member function done(). This
playback program now has to be transferred from the experiment host, where it has
been built, to the FPGA of a certain setup in order to execute it. In the communication
layer of the software stack, the required network headers are added to transfer the
program to the specified FPGA and possibly schedule the individual programs of an
experiment, alternately with other programs, that are being executed on this setup.

2.2 Experiment procedure

Before this bachelor thesis, the typical procedure of an experiment coded in a high-level
interface consisted of:

1. The initialization phase, where all needed chip components are powered up and
the initial configuration, which is persistent over the entire duration of the ex-
periment, is written onto the chip.

2. The realtime phase, in which all necessary commands to perform the experiment
are executed at their according times and all wanted data is recorded. This phase
could optionally consist of multiple batch entries, which can be regarded as
repetitions of the experiment, where each of which would only distinguish itself
from one another by varying external input data. Using multiple batch entries
would be useful for example to present different pictures of the same dataset to
the emulated neural network.
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3. The final phase, where some of the used chip components are powered down and
the system state is read out.

There would also optionally be so-called hooks available, where a more experienced
user could inject their own hardware abstraction layer commands at the according
places in the experiment, which would be:

1. The pre-static-config-hook: At the very beginning, even before the initial config-
uration.

2. The pre-realtime-hook: Between the initialization phase and the realtime phase
of the experiment.

3. The inside-realtime-begin-hook: At the beginning of each batch entry.

4. The inside-realtime-end-hook: At the end of each batch entry.

5. The post-realtime-hook: Between the realtime phase and the final phase of the
experiment.

For a graphic visualization of the former experiment procedure, see fig. 2.4.
So an experiment in the former experiment procedure could only be configured one
single time in the beginning, followed by a realtime section where the actual exper-
iment happens. For problems, that cannot be solved with the functionalities of the
frontends alone, there also could be hooks injected at multiple different places in the
experiment to get the desired results in a more or less “hacky” way.

In a future of functionally complete user frontends, there would be no use for these
hooks anymore. This bachelor thesis is a big step in this direction, as it makes it
possible to realize the imagination of time-continuously evolving experiments with re-
configurations at given points in the experiment flow. Other kinds of neural network
simulators allow for stepping bit by bit through time, possibly with breaks in between
these steps, where new configurations can be made to the system. The feature of mul-
tiple configurations inside an experiment is getting close to this stepping through time,
with the only difference, that all configurations have to be known in the beginning and
the experiment is executed continuously afterwards.

A model experiment, where reconfigurations happen at certain times, can be split
up into individual snippets for each configuration. One can look at such a snippet as
a (re)configuration in the beginning, followed by a time evolution phase, that reaches
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initial
config

pre-static-config-hook

batch entry

realtime sectionpre-realtime-hook

post-realtime-hook

inside-realtime-begin-hook inside-realtime-end-hook

...

...

...

...

...

...
time

Figure 2.4: Generic schematic of the former experiment procedure.
The temporal order of the different bits of the experiment is from left to
right inside each line, whereas the batch entries are ordered from top to
bottom. The playback hooks are PPBs, which can be used by advanced
users to inject their own commands at the according places in the exper-
iment. The realtime section includes the part of the experiments which is
defined in one of the frontends. A realtime section can optionally consist of
multiple batch entries, which are repetitions of the experiment with other
input data.

to the next reconfiguration, i.e. the next snippet. Thus, a batch entry of the emulation
must be further split down into several realtime snippets, that contain a small recon-
figuration step at the beginning followed by a portion of the experiment. This adds a
new dimension to our experiment procedure schematic, as can be seen in fig. 2.5. This
schematic is called the realtime matrix.

There are no hooks depicted in fig. 2.5, because they are not supported anymore for
experiments with reconfigurations. Reasons for that are stated in 3.2.

One might notice in fig. 2.5, that the realtime columns overlap a bit with their
neighboring columns. This has to do with the desire, to create the appearance of an
instant reconfiguration, that takes no time to apply onto the chip. Of course, this
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initial
config

realtime column

batch entry/

realtime row

config resetreconfiguration

realtime snippet

...
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time

Figure 2.5: The generic realtime matrix, a schematic to describe the new experiment
procedure. Each row of the matrix corresponds to a batch entry and each
column to a different chip configuration. The “elements” of the realtime
matrix are the realtime snippets. Another change to the old experiment
configuration is, that at the end of each batch entry, the configuration is
reset to the state of the initial config, i.e. all changes of the reconfigurations
in the according realtime row are reverted. That has to be done, because
the first realtime snippet of the next realtime row demands the chip to be
in the state of the initial configuration again.
The time in this schematic evolves, similarly as in the schematic in fig. 2.4
from left to right in each batch entry and the batch entries are ordered
from top to bottom in time.
Although not depicted explicitly, the duration of each individual realtime
snippet can vary along both axes, i.e. between different realtime columns
as well as different realtime rows.
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is not possible in reality. But to make the most out of what actually can be done,
it is important that the reconfiguration of the chip does not pause the execution of
the program, but that these individual snippets are executed one right after another
and that the absolute time base of the experiment isn’t lost during reconfiguration.
Taking a closer look at the exact operations inside a realtime snippet, these can be
divided into separate parts. Besides the process of feeding input data to the simulated
network and record its reaction to it, some other procedures are required, e.g. starting
and stopping individual recordings of analog parameters, cf. fig. 2.6.

starting procedures

input data

stopping procedures /
reading out dataconfig

time

Figure 2.6: Different sections of a realtime snippet:
The yellow section includes commands, like e.g. starting the event record-
ing, if needed. These commands don’t require precise timing as they are
not directly part of the experiment, but need to be done until the begin-
ning of the input section (blue), so that no data is missed, that is to be
recorded. The same goes for the green section, which contains stopping
procedures, which mustn’t start until the end of the input section. Both
these starting- and stopping sections include only commands, that can be
triggered quickly on the FPGA, but then need some time on the chip to
finalize, so the FPGA is used very sparsely in these sections. The reconfig-
uration (red) is performed at the beginning and inside of an input section.
The reason for that is, that we want to append each input section of a
snippet right after the one of its predecessor, but do not want to reconfig-
ure the chip before the previous input section is finished.

The alignment of two realtime snippets, that results from this targeted constellation,
is depicted in fig. 2.7.

As the operations in these two parts of a realtime snippet require only a few sparsely
distributed trigger commands from the FPGA, the input section would hardly be
affected at all by such a merge, as this will only cause few and short delays of a
few FPGA clock cycles in the worst case. But as we know from section 2.1.1, playback
programs can be executed only serially. Thus, we need to merge the individual realtime
snippets together to one singular playback program, which the PPB cannot do - there’s
need for a mergeable program builder.
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time⇒
time

Figure 2.7: Conceptual merge of two realtime snippets:
The yellow block of starting procedures is merged into the previous input
section and the green block of stopping procedures with the subsequent
input section.

2.3 Concept of a mergeable program builder

To fulfill a merge like shown in fig. 2.7, we need to create a command sequence, that
unites the contents of both original command sequences. There can be defined certain
rules for this process, which are elaborated in the following paragraphs.

Definition 2.2 The beginning of a command sequence is the time of the first com-
mand. This point in time is called t0 throughout this thesis.

t0 is a fundamental property of a command sequence, as the execution of a command
sequence is going to start at some point in time.
In the context of combining realtime snippets together, merging means to create one
command sequence out of two and bypass a parallel execution by “shuffling” the com-
mands in a such way together, that all events of both command sequences are still
executed at the originally intended times (cf. def. 2.1). A more clear way of expressing
our demands for merging two sequences of commands would be the following:

Definition 2.3 A proper pairwise merge leaves the time interval between each com-
mand of a command sequence and its respective t0 unchanged.

In the realtime section of an experiment, it is wanted to execute commands at spe-
cific times. This involves usually waiting between two commands, which is done with
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the block-until command. But apart from waiting on certain events on the chip, e.g.
the completion of some operation, it is also possible to block the execution until the
timer on the FPGA has reached a certain value, cf. sec 2.1.1. This can be used to
wait a fixed time duration between successive commands, e.g. to write input spikes
at a certain rate. There are also commands to modify the value of the FPGA timer.
By resetting it, one can also wait a relative time duration between two commands. A
command sequence, that is mergeable according to def. 2.3 must only contain block-
until commands, that block the execution until a fixed point in time, that is already
known at construction time of the experiment. Blocking commands, that pause the
execution for an unknown time duration might lead to unknown delays of commands,
that are scheduled right after these blocking commands. These commands are still
guaranteed to be executed, but not at the intended times, which can possibly ruin an
experiment. Also, such occurrences of time delays can be hardly detected by a user, as
delays are only measurable by reading out the current time before execution of every
instruction and comparing against the expected execution times. This is possible, as
there is another non-editable timer on the FPGA, as well as on the chip, that is used
for time-annotating measurements. It can be read out indirectly by annotating simply
nothing with the current time value of this timer. With this, the user can search the
whole experiment for the delayed commands by trial and error and fix the problem
manually by adjusting the timings. In principle, this check could be implemented au-
tomatically for every command by injecting the readout of this timer in front of each
command, so any delays would be tracked, but this wouldn’t be feasible in terms of
runtime and evaluation time costs.
Using the PPB, this problem, is prevented by resetting the timer of the FPGA right
after the blocking command. This which makes it possible to schedule commands
intentionally after it. But the timer reset leads to a reference problem of the timer
values, when merging such command sequences, as an absolute time reference can-
not be found. A general example for an erroneous merge is illustrated in fig. 2.8. For
this example, a merge according to def. 2.3 is not possible. And most important: An
arbitrary command sequence, that can include a block-until command, the blocking
duration of which is unknown at build time of the experiment, cannot be merged ac-
cording to def. 2.3.

In case, that a command sequence is planned to not be merged with any other com-
mand sequence, blocking commands with unknown blocking durations are no problem
even without using a timer reset, as their occurrences are known inside the command
sequence. Therefore, one is aware that absolutely timed commands scheduled right
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after these blocking commands are likely to be significantly delayed, if put too close
after the time, where the blocking command is initiated, i.e. scheduled for. But for
command sequences that are being merged together with other command sequences,
that might have scheduled a command right after the time, the blocking command
is scheduled in the one sequence, this would lead to an unforeseeable delay of this
command and thus is a problem for modular experiment construction.

For merging command sequences into each other, it is necessary, that both of them
contain only commands, of each of which the scheduled time (cf. def. 2.1) is known.
This would principally also include commands that are timed relatively to another
command of which the time is known, if the relative time difference is also known
at compile time. In practice, this would be possible by making a timer reset after a
command and block until a certain timer value, or schedule several commands, the
execution duration of which is known, right after another. But this is unnecessary, as
the same command sequence could be scheduled without any relative timing in any
such case. Looking again at the example in fig. 2.9, scheduling the timer reset relatively
to the blocking command with the unknown execution duration led to the problem of
losing the time reference to the part before the blocking command, i.e. to the begin-
ning of the command sequence. Thus, to guarantee, that a command sequence can be
merged with another arbitrary command sequence, it is sensible to ban any relative
timing inside command sequences. Without allowing relative timing, modifications of
the FPGA timer would also be unnecessary, as they simply create a known offset to
all scheduled times, which can also be added by simple calculations in the software.
But having it as part of a command sequence would still take additional computing
effort when merging. The merging process would namely be much more complicated,
if it would have to account for timer modifications with according offsets for the times
of all commands of the other command sequence coming after the timer reset.

But functionalities like blocking commands and relative timing can’t just be thrown
overboard, as they are required for operating some components of the chip, e.g. the
PPU. The duration of the startup of the PPU for example varies depending on the
initialized global data structures, as it has to make several external memory accesses,
if necessary. The PPB still has its right to exist. Thus, we need a new builder pattern
that excludes all forms of relative timing, including blocking commands with unknown
blocking duration and timer modifications: The AbsoluteTimePlaybackProgramBuilder
(ATPPB).
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blocking command
(duration unknown)

timer reset

time

Desired merge:

time

Possible merge:

time

Figure 2.8: Example for two command sequences, that cannot be merged according
to Def. 2.3. The vertical lines on the time scale resemble commands exe-
cuted at the according times. Line thickness resembles the time it takes
to process the command. According to def. 2.3, an execution like shown
in the upper right command sequence would want to be seen, where each
command of both sequences would still be executed at its scheduled time,
where it initially was meant to be executed. But that is not possible for two
reasons: The FPGA has only one single execution unit, that can process
the commands one at a time. Thus, the commands can only be processed
sequentially and not at the same time, as wanted for the first two com-
mands right at the beginning. Secondly, to account for the timer reset,
all numbers of FPGA clock cycles in the block-until statements coming
before the write commands according to the green lines in fig. 2.8 have to
be adjusted by a certain offset.
To keep the lines at the same distance to the beginning of the command
sequence, as before the merge, the duration between the FPGA timer reset
and the beginning of the sequence has to be subtracted from the original
values in the block-until commands. But this duration depends on the du-
ration of the preceding blocking command, which is unknown before the
experiment execution. However, these merges of command sequences hap-
pen while building the experiment, i.e. before the duration of the blocking
command can be known.
In reality, a merged command sequence could possibly look like the one on
the bottom right. One could call this the naive merge, as the blocking com-
mands that regard the FPGA timer are just ordered by the magnitude of
their argument, i.e. the FPGA timer value, until they block the execution.
All other commands are scheduled after the same block-until command as
before (cf. fig. 2.9). But this solution violates def. 2.3 and isn’t practicable,
as the delays of all green commands after the timer reset can be too large
that the constructed experiment still can work.
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Base sequence 1:
write(spike)
block_until(21)
write(spike)
block_until(29)
write(spike)
block_until(34)
write(spike)

time0 22 30 35

Base sequence 2:
write(spike)
block_until(4)
block_until(omnibus_is_ready)
write(timer_reset)
block_until(5)
write(spike)
block_until(25)
write(spike)
block_until(35)
write(spike)

time0 5 ? ?+6 ?+26 ?+36

Merged sequence:
write(spike)
write(spike)
block_until(4)
block_until(omnibus_is_ready)
write(timer_reset)
block_until(5)
write(spike)
block_until(21)
write(spike)
block_until(25)
write(spike)
block_until(29)
write(spike)
block_until(34)
write(spike)
block_until(35)
write(spike)

time1 ? ?+22

?+30

?+35

Figure 2.9: Naive merge of two command sequences. Base sequence 1 is merged into
base sequence 2. The naive result is shown at the bottom.
On the left, the sequences are shown in form of a list of pseudocode on
the hardware abstraction layer, as they might be scheduled by a user.
To get this result, each block_until command together with the next
subsequent command of base sequence 1 is inserted in the according place
in base sequence 2, so that in the resulting command sequence all occurring
block_until statements are sorted by the value of their argument.
On the right, you can see the according timeline of the actual execution.
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The conceptual differences of the ATPPB compared to the PPB allow for some
changes in the handling of the command timings. As now the times of all commands
(cf. def. 2.1) are known due to their absolute timing, this information can be strictly
coupled to each command as a mandatory property. This makes the block-until com-
mands that block until a certain FPGA timer value unnecessary. Thus, the ATPPB
can be limited to just the other two remaining kinds of commands:

• write(time, coordinate, container):
Modifies certain hardware parameters on the system at a certain time.

• read(time, coordinate):
Reads out certain hardware parameters of the system at a certain time.

A short comparison of the two different ways of scheduling the commands is shown in
fig. 2.10 by a merge of two command sequences, that contain only absolutely timed
commands.

Old command
representation:

New command
representation:

Command sequence:

block_until(4)
write(spike)
block_until(14)
write(spike)

write(5, spike)
write(15, spike)

time

write(spike)
block_until(29)
write(spike)

write(0, spike)
write(30, spike)

time

write(spike)
block_until(4)
write(spike)
block_until(14)
write(spike)
block_until(29)
write(spike)

write(0, spike)
write(30, spike)
write(5, spike)
write(15, spike) time

Figure 2.10: Comparison of old and new semantic for scheduling commands on an
example of a successful merge.
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3 Implementation

This chapter will focus on the concrete changes to the implementation of the BSS-2
API, that are made in order to implement the concepts elaborated in the previous
chapter. All created and used data structures, as well as important implementation
details are presented, beginning with the ATPPB in the hardware abstraction, over
the GRaph-based Experiment Notation And Data-flow Execution (grenade) layer to
the user-frontend pynn.brainscales.

3.1 The AbsoluteTimePlaybackProgramBuilder

For scheduling a command at a certain point in time, the PPB already offers the nec-
essary tools: The block_until() command, that blocks the execution of the playback
program on the FPGA until the count of clock cycles that passed since the last timer
reset reaches the given argument.

Example 1:
To write a spike to be released at the 1000th FPGA clock cycle after the latest
timer reset, one can code:

ppb.block_until(999);

ppb.write(SpikePack1ToChipOnDLS(),

SpikePack1ToChip({SpikeLabel(0)}));

where ppb is the name of the PPB object, to the command list of which these
two commands are added to.

So by scheduling all commands in that manner and not modifying the value of the
FPGA timer after its initial reset in the beginning, all commands in a command list
are - at least in the context of an individual experiment - absolutely timed. So our
ATPPB-commands, that have their additional time argument (cf. sec. 2.3), could be
translated to just such a pair of commands, as shown in example 1. Thus, the ATPPB
isn’t an entirely new builder class standing on the same layer of software as the PPB,
but rather can be seen as an interface of the PPB, that accepts and holds data in a
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different structure and passes its commands restructured to a PPB instance to create
an executable playback program. In the following paragraphs, this new structure is
firstly presented and then the process of restructuring the data and feeding it to an
instance of the PPB is looked at.

3.1.1 Data structure

The most important piece of data, each ATPPB object holds, is the set of commands,
that are fed into the builder. This is implemented as a vector named m_commands

containing elements of the type CommandData, which by itself is a struct that holds all
data according to one call of a write or read function (see fig. 3.1).

std::vector<CommandData> m_commands;
struct CommandData
{

Timer::Value time;
std::unique_ptr<Container::Coordinate> coord;
std::unique_ptr<Container> write_config = nullptr;
std::unique_ptr<Container> write_config_reference = nullptr;
std::shared_ptr<AbsoluteTimePlaybackProgramContainerTicketStorage>

read_ticket_storage = nullptr;

.

...
};
bool m_is_write_only = true;

Figure 3.1: Extract from the header file of the ATPPB showing the most impor-
tant member variable m_commands containing all information on the
scheduled commands. Each instance of CommandData holds the accord-
ing data for one command, which includes the time it is scheduled for,
a coordinate and optionally a container, a reference container or an
AbsoluteTimePlaybackProgramContainerTicketStorage (ATPPCTS). The
coordinate specifies the addresses on the system, to which the data con-
tained in the container is written to, or read from, depending on the com-
mand (see below).

The ATPPB supports three different types of commands, that each correspond to
a slightly different set of data, which has to be stored in their according CommandData

instance:

1. (normal) write:
void write(Timer::Value time, Container::Coordinate coord,

Container config)
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is executed on the FPGA at time time and overrides words at the addresses
specified by coord with the according values specified in config.
Thus, a corresponding CommandData Object holds time, coord and config.

2. differential write:
void write(Timer::Value time, Container::Coordinate coord,

Container config, Container config_reference)

is executed on the FPGA at time time and overrides only certain words at the
addresses specified by coord, where the values of config and config_reference

differ (cf. fig. 3.2). Thus, a corresponding CommandData Object holds time,
coord, config and config_reference.

3. read:
AbsoluteTimePlaybackProgramContainerTicket read(Timer::Value time,

Container::Coordinate coord)

is executed on the FPGA at time time and reads out the words at the addresses
specified by coord. At the end of the execution, where all expected data is
collected and has arrived at the host, the read out data can be identified with the
according AbsoluteTimePlaybackProgramContainerTicket (ATPPCT), which
then can be used to retrieve the data (cf. sec. 3.1.2). Thus, a corresponding
CommandData Object holds time, coord and config.

From that, it can be seen, that not every command needs the members write_config,
write_config_reference or read_ticket_storage to store all its information in a
CommandData instance. Thus, these members are nullptr by default, which can be
used to identify their type later on when building the program. There’s also a boolean
m_is_write_only for an ATPPB, that holds the information on whether m_commands
contains any elements corresponding to a read command. This decides, whether an
ATPPB instance can be copied or not, cf. sec. 3.1.4.

3.1.2 Retrieval of experiment data

Obviously, parameters can only be measured as soon as the experiment is running
on hardware and thus, they aren’t available to be returned directly by the read()

function, when called. But there has to be some immediate return value, because
otherwise there is no way to identify this read() statement or the API user, that
induced this read with the returning data after the experiment.
The solution for that is a so-called container ticket, that can access the data, when
it is retrieved from the experiment. This container ticket is returned when calling the
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Arguments of differential write:

coord: addr. 1 addr. 2 addr. 3

config: some word 1 some word 2 some word 3

config reference: some word 1 some word 4 some word 3

⇒

Performed write:

coord: addr. 2

config: some word 2

Figure 3.2: Example for a differential write: The container config consists of 3 words,
so the coordinate coord holds the three according addresses where each of
these words shall be written to. The only word differing between config
and config_reference is the word according to addr. 2. Thus, only
some_word_2 needs to be written to addr. 2, to get the container config
written at the coordinate coord.

31



read() function of the PPB.
But when calling read() on the ATPPB, the according container ticket is not existent
yet. It will be created in done(), cf. sec. 3.1.3, so the same problem as with the real
container data, that is to be measured arises now for the container ticket.
This is where the AbsoluteTimePlaybackProgramContainerTicket (ATPPCT) comes
into play. When calling read() on an ATPPB an instance of the ATPPCTS class is
constructed. The ATPPCTS can optionally hold a container ticket, which it initially
doesn’t, because it can’t out of the reasons described above. But when done() is called
on the ATPPB, a container ticket is generated from the emerging PPB (cf. sec. 3.1.3
and filled into the ATPPCTS. Both the ATPPB and the freshly generated ATPPCT,
that is going to be returned by the read() function, hold a shared pointer to this
newly constructed ATPPCTS instance. The ATPPB holds the shared pointer on the
ATPPCTS inside the CommandData object belonging to the read() statement and the
ATPPCT holds it as a private member.
When the ATPPCTS is finally filled with a container ticket, the ATPPCT can access
the measured data via the container ticket, by calling the get() function on the
ATPPCT. However, this process will fail, before the underlying container ticket isn’t
valid, i.e. doesn’t hold yet the according data, because the experiment hasn’t already
terminated. If the data is already ready for retrieval can be checked by using the
valid() function of the ATPPCT. Besides these two functions, the entire interface of
the ATPPCT is identical to the interface of the underlying container ticket, which is
used when handling read commands of a PPB.

3.1.3 Building process of the PlaybackProgramBuilder

To generate a PPB out of the vector m_commands that contains all command data, the
function done() is called.
The first thing that is done after the call of the function is to sort all elements of
m_commands by the magnitude of their time attribute. The approach to sort the
m_commands vector one single time in the end was made over the approach of in-
serting each newly added command at the right place into m_commands, as it is overall
more performant. Then, a PPB is created and one initial timer reset is written, yield-
ing a FPGA timer value of 0 as our time reference for the beginning of the command
queue.
Then, iterating over each CommandData instance in m_commands, blocking commands
and write or read commands take turns to be scheduled on the PPB in a similar fash-
ion to ex. 1. There is a Timer::Value, that keeps track of the currently expected value
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AbsoluteTimePlaybackProgramContainerTicketStorage:
std::optional<ContainerTicket>

AbsoluteTimePlaybackProgramContainerTicket:
std::shared_ptr<AbsoluteTimePlaybackProgramContainerTicketStorage>

holds
pointer on

ATPPB::read()
generates

AbsoluteTimePlaybackProgramBuilder:
std::shared_ptr<AbsoluteTimePlaybackProgramContainerTicketStorage>

holds
pointer on

ATPPB::done()
generates

fills generated
container ticket

into

ATPPB::read()
generates

PlaybackProgramBuilder

Figure 3.3: Necessary data structures and processes to make data, measured due to a
certain read() statement, accessible via an ATPPCT. The read() func-
tion of the ATPPB generates an ATPPCTS and an ATPPCT pointing
on it, which is returned for the retrieval of the measured data after the
experiment is run. The retrieval works internally via retrieving the data
from a container ticket, which is generated and put into the ATPPCTS
during the process of generating a PPB out of the ATPPB in done(), see
sec. 3.1.3.

of the FPGA timer, whereby it accounts one FPGA clock cycle for each write or read
command. If the value of this timer isn’t exceeded by the time of the following com-
mand, the block_until command is omitted, as it is unnecessary. This provides the
benefit, that the execution on the FPGA happens quicker at passages of the sequence,
where the commands are packed densely, as the FPGA doesn’t need to interpret ad-
ditional block_until statements, that wouldn’t block the execution anyway. In the
other case, that the currently expected value of the FPGA timer is lower, than the
time the current command is scheduled for, the according blocking statement is made
and the Timer::Value, that keeps track of the currently expected value of the FPGA
timer is updated.
As explained in sec. 3.1.1, the type of command according to a CommandData object
can be identified by looking at which of the member variables are set. Depending on
this, a write, a differential write or a read command is called on the PPB. If the latter
is the case, the new container ticket, which is returned by the read function of the
PPB, is filled into the ATPPCTS, which validates the issued ATPPCT.
For the purpose of sorting the vector m_commands in the beginning, std::stable_sort1

1https://en.cppreference.com/w/cpp/algorithm/stable_sort
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is used. As the name of this function intends, it uses a stable sorting algorithm, which
keeps commands that are scheduled for the same time in their original order, regarding
each other. This is a useful feature, as it provides the possibility to execute multiple
commands right after each other by passing the same time argument for every com-
mand, while the predefined order is retained.
After the PPB is created and filled up with all the command data, the m_commands

vector is emptied to release the acquired resources as quickly as possible. Any ATPPB,
that contains a read command cannot be used twice either way, due to reasons stated
in sec. 3.1.4. In other words, the call of done() “consumes” the ATPPB to create the
according PPB and all that remains is just an empty instance of the ATPPB. Thus,
it is usually the last step in the lifetime of an ATPPB.

3.1.4 Additional features

Until now all data structures and the basic working principle of the ATPPB got to
be known, but the main feature which the ATPPB was developed for is yet to be
presented:
The functionality of merging the contents of two ATPPBs. This can be done with the
merge() function, which combines the m_commands vectors from both ATPPBs. To be
more precise, it moves all elements from the command list of the ATPPB instance,
which was passed as a function argument into the m_commands vector of the ATPPB,
on which merge() was called on. The movement of the commands leaves the other
ATPPB empty, which can be avoided by using the copy() function. This function
copies all entries from the other ATPPB’s command list and appends them to the
m_commands member of the own ATPPB. So, the only difference between merge()

and copy() is, that contents of the merged ATPPB are copied or emptied.
Thanks to the data structure of the ATPPB and the way, done() works, merging is as
simple as throwing both sets of command data together into one, without considering
the content of any CommandData instance. The only thing, that has to be recalculated
is the m_is_write_onlymember of the ATPPB into which is merged, which is a pretty
quick and simple task.
Another difference between merge() and copy() is, that the copy() function restricts
the other ATPPB to be write-only, as a duplication of an ATPPB, that includes read
statements is problematic. Because if both these ATPPBs will be converted into a
PPB, two container tickets are created and tried to be stored in the ATPPCTS of the
according ATPPCT, that was created in the initial read statement, which happened
only once. But each ATPPCTS stores only one container ticket, so providing two, that
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possibly contain different data is ambiguous. Therefore, it is prohibited by banning
the usage of the copy() function on ATPPBs, that aren’t write only.

Having the time information of a command stored in CommandData allows for oper-
ations on the time attribute of all CommandData instances stored inside of an ATPPB.
The ATPPB offers four operators in this matter:

1. += operator:
adds a certain Timer::Value onto the time attribute of all CommandData in-
stances inside the ATPPB

2. + operator:
makes a copy of the ATPPB and then applies the += operator on the copy

3. *= operator:
multiplies the time attributes of all CommandData instances inside the ATPPB
by a floating point number.

4. * operator: makes a copy of the ATPPB and then applies the *= operator on the
copy

Especially the += and + operators are handy tools for assembling an experiment out
of several ATPPBs, as they are a shift of t0 of the command sequence of the according
ATPPB. This can be used, to move the individual ATPPBs to their correct place in
an experiment, while constructing it out of its individual parts, see sec. 3.2.

3.2 Experiment construction

As described in sec 2.2, the key to a reconfigurable experiment is a new modular way
of putting these experiments together. For reconfiguring an experiment, the user just
needs to provide a list of different experiment configurations and an information, on
how long they want to run the experiment in this configuration. That corresponds to
a list of realtime columns, as described in sec. 2.2. As a short repetition: A realtime
column is the entirety of all realtime snippets of the realtime matrix, that belong to
the same system configuration. A realtime column contains the realtime snippets of
all batch entries, that share the same temporal index inside each batch entry.
In the grenade layer, such an experiment configuration is described by an IODataMap

object containing the input data of this realtime column, a signal flow graph describing
the realization of the network topology on hardware (cf. sec. 2.1.2) and a Chip object
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that holds the information on the required settings of all chip components. The output
data, that was returned from the system as a result of this realtime column is also
contained in an IODataMap.
In the old experiment procedure, the entire realtime section of the experiment con-
sisted of a singular realtime column, so for the description of the entire experiment,
only a singular of each of these objects was required as an argument, resp. returned.
In order to get the additional dimension of the consecutive realtime columns, these
four data structures have to be vectorized. In other words, instead of single objects,
there will be vectors containing possibly multiple of these objects as a replacement in
all parts of the experiment description layer of the software stack, that handle these
objects in the process of experiment construction.
To initiate an experiment run, the data necessary for the experiment construction is
passed through the function grenade::network::run(), which among others, takes
vectors of IO-data-maps, network graphs, from which the signal-flow graphs can be
extracted and chip objects as arguments and returns the generated output data also
in form of a vector of IO-data-maps, which matches the vector size of the other three
vectors, i.e. one per realtime column.

Ideally, one would expect, that an experiment with multiple realtime columns still
would support playback hooks and plasticity, i.e. the usage of the PPU. Especially the
usage of the PPU in combination with the multi-configuration feature is highly desir-
able. However, when having an experiment with multiple realtime columns, playback
hooks which are nothing else than PPBs, cannot be implemented into the experiment
procedure at their intended places, as they cannot be merged. In general, they also
could break the absolute time reference, as they can contain modifications of the FPGA
timer. Also, everything PPU related is forbidden in experiments with reconfigurations,
because it is mostly based on relative timing of commands, like executing most com-
mands right after another without knowing the execution durations of any of them.
As the old experiment procedure still has applications, playback hooks and the usage
of the PPU must still be supported. Thus, these the two scenarios of having only a
singular realtime column, where the old experiment procedure can be applied, or the
new experiment procedure with multiple realtime columns have to be distinguished
with checks, that assure that neither the PPU nor any playback hooks are used, when
having multiple realtime columns.
However, this doesn’t mean that it is impossible to support the use of the PPU in
experiments with multiple realtime columns. This only requires some additional fea-
tures of the software and the FPGA, that enable the PPU to stream the measured
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results to the FPGA, where for each realtime snippet, a dedicated area in the memory
is reserved. Same goes for the management of the different plasticity rules as input
for the PPU, according to the different realtime columns in the FPGA memory, that
would all together have to be pre-loaded before the realtime section of the experiment.
In terms of software, a memory management system would be needed for that to work
out and in terms of hardware, an effort to make the memory used for the PPU data
quicker, so that it is no bottle neck to the process of streaming the measured data
from the PPU to the FPGA. This prevents long durations for writing data to the host
between different realtime snippets. The data transfer to the host could then happen
between different batch entries, where timing is no crucial factor.

After the grenade::network::run() procedure is called, the process of construct-
ing the experiment is triggered. There, one realtime column at a time, the ATPPBs
of the individual realtime snippets are generated out of the input data, the signal-flow
graph and elements of the configuration. In the process of scheduling the commands
of each realtime snippet into an ATPPB, a Timer::Value counts the current time
by accounting for most commands the number of FPGA clock cycles needed for the
FPGA to execute the commands. In some occasions, this duration is not known and
a fix time interval in the order of a few µs is added to the current time value. These
basically replace the former blocking commands, but were manually tuned to achieve
the best possible performance without blocking commands, while still waiting long
enough for the previously scheduled commands to finish.
This Timer::Value is passed as the time argument of each command, that is added
to the ATPPB, excluding commands of the input section of a realtime snippet (cf. sec.
2.2), as they are generated separately. This ensures, that all commands are packed as
tightly together as possible. Also, the value of this timer right before the injection of
the input data into the command queue is stored separately, as it is used later in the
assembly of the different realtime snippets to shift them accordingly in time, cf. ex. 2.

Then, all parts of the experiment can be combined. The first step for that is to
assemble all individual batch entries, i.e. realtime rows, which is very simple for the
case of a singular realtime column, as the inside realtime begin and inside realtime
end hooks only have to be prepended, resp. appended to the delivered ATPPB, after
converting it to a PPB. In the case of a multi-configuration experiment however, the
individual snippets have to be merged according to the concepts developed in sec. 2.2,
which is done snippet by snippet as shown in ex. 2.
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Example 2:
The following code paragraph shows how a realtime snippet snippet is merged
into the already assembled part of a batch entry, i.e. an ATPPB, which is called
program_builder in this example.
Let j be the index of this snippet inside the batch entry, i.e. the index of the
according configuration. Each RealtimeSnippet object that is provided for as-
sembly, holds an ATPPB named builder where all commands are scheduled
and the previously described Timer::Value named pre_realtime_duration,
cf. fig 3.4, as well as a Timer::Value named realtime_duration, which is the
duration from the beginning of the realtime snippet until the end of the input
section, depicted blue in fig. 3.4. Let config_time be the time of the end of the
yet assembled part of the batch entry. Then this process looks like this:

program_builder.write(config_time, ChipOnDLS(),

configs[j], configs[j-1]);

snippet.builder += (config_time - snippet.pre_realtime_duration);

program_builder.merge(snippet.builder);

config_time += snippet.realtime_duration;

In reality, this of course is done by iterating over all the snippets from the dif-
ferent batch entries and realtime columns, but the process is the same. One can
see, that the differential write function of the ATPPB is used for writing the
new configuration of each realtime snippet, as it saves a lot of time to only write
the usually small changes in the configuration, compared to the overall size of a
configuration.

After combining all realtime snippets into a batch entry, the configuration has to be
reset to the state of the initial configuration, as the first realtime snippet of the next
batch entry needs to run on the initial configuration. This is simply done by using the
differential write again in a similar fashion to how it is used in ex. 2.
The resulting ATPPB, that contains all commands of the whole batch entry, can
then be converted to a PPB. The only pieces of the experiment, that still have to be
mounted to the already constructed part of the experiment, are PPBs, that need to be
concatenated according to fig. 2.4 resp. 2.5, depending on whether there are multiple
realtime columns given from the higher layers.
Because the FPGA has a limited buffer for the playback program, i.e. the instructions
it has to process, there is a maximal size for each playback program. Therefore, all the
available PPBs cannot be put together at once, but have to appended one by one to

38



. . .

configs[j]

timeconfig time

(initial state)

pre realtime duration

realtime duration

Figure 3.4: Graphic explanatory support for ex. 2. The realtime snippet snippet,
which is shown in the middle, is to be merged into the already constructed
part of the batch entry, depicted at the bottom of this image. For this
purpose, the time reference t0 (cf. def. 2.2) of snippet is shifted by a
Timer::Value of config_time - snippet.pre_realtime_duration, cf.
ex. 2, by using the += operator of the ATPPB (cf. sec. 3.1.4). In addition
to that, the configuration configs[j], that belongs to this snippet, is in-
jected at the beginning of its input section (blue), as intended in sec. 2.2.
A schematic of the result can be seen in fig. 2.7.

a PPB, that is filled up until it cannot take another pre-built PPB without exceeding
the size limit for the resulting playback program. Sometimes it might be, that some
bigger PPBs, e.g. the ones containing a whole batch entry, exceed the size limit, even
if they aren’t combined with any other PPBs. In that case, the part of the playback
program, that doesn’t fit into the instruction memory of the FPGA must be streamed
from the host to the FPGA while the buffer is already emptied during execution, in
hope of managing to never let the FPGA run out of commands until the end of the
playback program, as this would cause delays in the experiment, which would violate
correct experiment execution requirements.
After the playback programs are generated, the hardware run is triggered and the
playback programs are executed, returning all measured data of the experiment. This
data is then postprocessed for each individual realtime column. There, the data is
brought into the shape, which it is expected to be of higher level procedures.
The last step in the experiment description layer is to return the bundled output data
to the frontends via detours as the return value of the grenade::network::run()

function.
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3.3 Changes to pynn.brainscales

As pynn.brainscales is coded in Python, we deal with lists instead of vectors on this
layer of the software stack, which are converted to std::vector by the Python wrap-
ping, when calling grenade::network::run().
To supply the experiment description layer with lists of input data, signal-flow graphs
and chip objects, we need to acquire the different configurations and temporarily store
them, until the hardware run is performed. The aim is to change the operation of
pynn.brainscales as little as possible by implementing this new feature.
Until now, a typical experiment in pynn.brainscales consists of these three parts:

1. In the beginning after the initialization of a simulator object, which is done by
calling pynn.setup(), the experiment is configured. This includes the definition
of so-called populations, which each is a set of neurons with customizable prop-
erties and projections, that hold the information about which populations are
connected to each other in which way. External input events for example can
be encoded in the population, by using a neuron type, which fires spikes at the
given times.

2. When the configuration is finished, the experiment can be run on the BSS-2
hardware for a certain time duration, which can be passed as an argument to
the pynn.run() function.

3. After the run, all measured neuron data is stored in the population objects and
labeled with information on the index of the neuron, to which the measured data
belongs.

3.3.1 Changes in experiment description

To gather a list of experiment configurations, the first of these three steps, i.e. the
network configuration, has to be repeated in some way, followed each time by some
function call, which takes care of caching the currently defined configuration into lists
of network graphs, lists of IO-data-maps for the input data and lists of chip objects.
Every defined configuration state corresponds to a triplet of these objects, so the num-
ber of different configurations corresponds to the length of these lists, i.e. the number
of realtime columns.
For the purpose of filling these lists, the new function pynn.add(runtime) is in-
troduced, which appends the experiment by a phase with a duration of runtime,
that runs in the currently defined configuration. How this works is, that the function
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preprocess() is called, which generates the according network graph out of the cur-
rently defined configuration. Out of the network graph, the input data can be extracted
in form of a IODataMap. The chip object is created when initializing or changing model
parameters of a calibrated HXNeuron, or injected manually by the user once in the be-
ginning and updated in each call of preprocess(). The current states of all three
objects are appended to their according lists, whereas the chip object and the network
graph have to be copied explicitly, as they might be modified in the upcoming sections
of the experiment. The runtime argument of the add() function is passed as a floating
point number of milliseconds, adhering to the PyNN upstream time unitization. Then,
it is converted to the according duration in FPGA clock cycles and injected as runtime
information into the IO-data-map of the inputs. It also is cached in a list, as it is later
after the execution needed for the preparation of the measurement data.

This updating and making a snapshot of the current configuration state inside the
add() function, ensures that the user can define the network topology and the initial
configuration once in the beginning, but then only has to modify the configuration
between the add() calls. Instead of writing the complete definition of the populations
and projections again, only according parameters need to be adjusted, e.g. which pa-
rameters are to be recorded in this phase of the experiment.
After the last reconfiguration, instead of calling add() for a last time, run() can be
called directly, as the add() function is called inside of the run() function, if a non-
zero value is passed as a time argument. On first thought, this might seem a little
confusing, as it would be more logical to have pairs of configurations and add() calls
until the end and call run() afterwards to only trigger the hardware run. This is done
for reasons of backward compatibility, as also here in pynn.brainscales, the support
for working the same as in the past must not be lost to prevent all formerly created
experiments from failing. Also, the API conventions of upstream PyNN must not be
broken, which they would with the necessity to call add(), in order to execute an ex-
periment. In this PyNN-conform case, writing a program like shown in the enumerated
list above is still possible.

The code for scheduling multiple configurations for an experiment in pynn.brainscales
can for example look like this:

Example 3:
In this example, a population input_pop of one neuron sends spikes at certain
rates to another population pop of one single neuron, that switches the recording
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of its spikes on and off during the experiment. In this instance, the experiment
is split into realtime columns with an equally long time duration for simplicity,
where the number of spikes sent out from input_pop is increased between the
different realtime columns.

pynn.setup(enable_neuron_bypass=True)

runtime = 10 # ms, runtime of each realtime column / config

pop = pynn.Population(1, pynn.cells.HXNeuron())

# initial config (spike recording on, 1000 spikes):

n_spikes = 1000

pop.record('spikes')

# Inject spikes

spikes_1 = np.linspace(0, runtime, n_spikes)

input_pop = pynn.Population(1, pynn.cells.SpikeSourceArray(

spike_times=spikes_1))

pynn.Projection(input_pop, pop, pynn.AllToAllConnector(),

synapse_type=StaticSynapse(weight=63))

pynn.add(runtime)

# second config (spike recording off, 2000 spikes):

n_spikes = 2000

pop.record(None)

# Inject spikes

spikes_2 = np.linspace(0, runtime, n_spikes)

input_pop.set(spike_times=spikes_2)

pynn.add(runtime)

# third config (spike recording on, 3000 spikes)

n_spikes = 3000

pop.record('spikes')

# Inject spikes

spikes_3 = np.linspace(0, runtime, n_spikes)

input_pop.set(spike_times=spikes_3)

pynn.run(runtime)
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One can see in the code, that these minor changes in the experiment config-
uration can be done using little code and stating only the concrete parameter
changes, without having to initialize input_pop and especially pop and the pro-
jection between those two over and over again after each call of add().

3.3.2 Changes in experiment evaluation

Since the measured data of each realtime column is stored in an own IO-data-map,
the data of each realtime column can be managed separately. The output data can be
divided into different parts, that need to be handled differently:

• spike recordings

• MADC recordings

• PPU observables

The spike recordings and the MADC recordings are both stored inside a recordings

object. These objects are already created in the process of constructing the experiment,
when calling preprocess() and are filled with all information about the experiment
configuration. Thus, all measured data can be identified with the according hardware
instance, where it was measured at, e.g. which spikes correspond to which neuron.
The recordings objects are updated in the preprocess() function and appended to
a list in the add() function, so there is already a list of recordings objects with the
right length, to inject the spike recordings and the MADC recordings of each realtime
column into the according object.
Regarding the PPU observables, no changes were made to the API, as they can only
contain data when using the PPU, or to be more precise, a plasticity rule. In other
words, they only can contain data if there is an experiment with only one realtime
column, and then the data can be handled in the same way as in the past.
In PyNN, all measurement data that was recorded at hardware components, that
are associated with a certain population, can be retrieved by calling the function
get_data() on this according population, as shown in ex. 4. This returns all recorded
data of this population, or only specific observables, if specified in the function ar-
gument. The entirety of the data of a population can be divided into segments, each
of which contains all data of one hardware run. These segments are filled with the
according experiment data in the function get_current_segment, which is called for
each segment inside of get_data(). There, all data is either associated with the cate-
gory “spiketrains” [5], which only includes recorded spikes, or the category “irregularly
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sampled signals” [5], which includes all other measured parameters.
Iterating over all recordings objects, i.e. all realtime columns, the recorded spikes,
which are nothing else than times, where a spike was recorded at a specific neuron, are
filled for each neuron inside the population into different neo.SpikeTrain [6] objects,
which contain not only the times of the individual spikes, but also the beginning and
end times of the spiketrain and other information like e.g. the neuron id. In this way,
a neo.SpikeTrain object is created for each neuron and each realtime snippet and
collected in a list of spiketrains. How this list of spiketrains can be retrieved is also
shown in ex. 4.
For the irregularly sampled signals, it works almost the same. There is also a list of
neo.IrregularlySampledSignal [6] objects created, but the list of irregularly sam-
pled signals is only appended by an object, if there was data measured in the according
snippets. The list of spiketrains however can also contain empty spiketrains for realtime
columns, where the spike recording was disabled intermittently.

Example 4:
Let pop be the population from ex. 3, which contains one single neuron, for which
spikes were recorded in an experiment with three different realtime columns.
However, the spikes were only recorded for this neuron in the first and third
realtime column, but not in the second one. Thus, the second spiketrain, which
belongs to the second realtime snippet, is empty, i.e. doesn’t contain any spikes.
The following code snippet shows the data retrieval after the already happened
experiment execution:

spiketrains = pop.get_data().segments[0].spiketrains

assert(len(spiketrains) = 3) # one spiketrain per realtime column

assert(len(spiketrains[0] > 0)) # spikes were recorded

assert(len(spiketrains[1] = 0)) # empty spiketrain

assert(len(spiketrains[2] > 0)) # spikes were recorded

For many applications however, it is more practical to receive one singular spiketrain
per neuron, instead of one per realtime column per neuron. But this can be easily
achieved by concatenating all spiketrains, which contain the same neuron id as an
identifier. merging these different data snippets together is a lot more convenient and
quicker, than tearing apart a singular large spiketrain, which contains all spikes of
one neuron, in case one wants to examine these parts separately. Thus, it was decided
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for the more modular and transparent way of returning the data by gaining access to
the data of the individual realtime columns separately. An example for merging the
different spiketrains together into one, can be seen in the demo experiment presented
in sec. 4.1.

45



4 Evaluation

In this chapter, two sample applications are presented. The first one is a simple
demonstration of the changes in the API, which doesn’t focus on gaining new sci-
entific knowledge modelling-wise, but rather on the new possibilities in the operation
of pynn.brainscales. The second experiment is an adaptation of an already existing
experiment, exploring the neuron dynamics of the neuron model implemented on the
BSS-2 chip. The experiment is remade by using the newly implemented features in
such a way, that the usage of complex low-level routines can be renounced on.
At last, a performance test of the compiling process of an experiment is examined,
which experienced fundamental changes in the course of this thesis, cf. sec. 3.2. The
goal of this is to get a feeling for the wall clock time spent on compiling in relation to
the actual experiment runtime.

4.1 Demo experiment

The goal of the sample experiment, which is presented in the following, is to demon-
strate a use case for the multi-configuration feature. It also can be used as a tutorial
on how to operate the newly integrated add() function. This tutorial is in a way de-
signed, that it can be used as an ipython notebook [15], so users can try out the new
feature by themself. The idea of the experiment is quite simple and not of any scientific
use, but showcases both the new way of describing the experiment and processing the
experiment data.
A black and white image of 64 by 64 pixels, which is shown in fig. 4.1 is taken as input.

The goal is, to feed signals with the pixel values of this image through the synapse
array and record the according values with the neurons to recreate the image in the
end. This is done, by sending spikes at a certain rate to 64 different synapses, which in
turn have set their synaptic weights according to the pixel values of a certain column of
the pixel array of the picture. Then, 64 different neurons each recording spikes coming
from a different synapse will have their spikes recorded, which of course only will occur,
if their according synapse has set the synaptic weight to a high value, corresponding
to a white pixel in the original picture.
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Figure 4.1: A black and white image of the logo of the ElectronicVision(s) Group,
which is used as input for the experiment.

The following function is used to get the according values for the synaptic weights out
of the pixel array:

from os.path import join

import numpy as np

import matplotlib.pyplot as plt

import pynn_brainscales.brainscales2 as pynn

def read_image(path: str) -> np.array:

image = np.asarray(plt.imread(path))

# Scale to weight range [0, 63]

image = image / image.max() * hal.SynapseWeightQuad.Value.max

return np.flipud(image).T # has to be adjusted to account for weird

# choice of origin in np.asarray() and to

# allow for taking the value row-wise

# instead of column wise

After that, we apply this function on our picture to get a numpy array with the
according synaptic weights. The only two values image contains, are the lowest and
highest possible values 0 resp. 63, as we used a black and white picture as an input.

image = read_image(join("_static", "tutorial", "visions.png"))

Then, we define our experiment with a population input_population of one neuron,
that constantly outputs spikes at a rate of 10kHz, which are transferred to a population
recording_population of 64 neurons, that have spike recording enabled.
In the construction of the pynn.simulator object with pynn.setup(), we pass as an
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argument, that neuron bypass shall be enabled, which means in other words, that a
neuron will automatically spike on each pre-synaptic spike, if the synaptic weight is
greater than zero:

pynn.setup(enable_neuron_bypass=True)

runtime = 10 # runtime per configuration in ms

n_spikes = 100

spikes = np.linspace(0, runtime, n_spikes)

input_population = pynn.Population(1, pynn.cells.\

SpikeSourceArray(spike_times = spikes))

recording_population = pynn.Population(64, pynn.cells.HXNeuron())

recording_population.record('spikes')

synapse = pynn.standardmodels.synapses.StaticSynapse(weight=32)

projection = pynn.Projection(input_population,

recording_population,

pynn.AllToAllConnector(),

receptor_type="excitatory",

synapse_type=synapse)

What has to be done now, is to add 64 short sequences to the experiment, in each
of which, the synaptic weights of our projection are configured differently, according
to the current row image[i] of our image array. To trigger the hardware execution,
run() has to be called instead of add() in the last iteration.

for i in range(64):

projection.set(weight=image[i])

if i < 63:

# add() will let this configuration run for a duration of

"runtime" when executing

pynn.add(runtime)

else:

# run() calls add() a last time and performs hardware run

pynn.run(runtime)

The only thing now left to do is to get the returned data into according shape. In
this case, we want to have one singular spiketrain per neuron, that contains all spike
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times out of the overall experiment. Thus, the individual spiketrains of the different
realtime columns have to be concatenated in time for each neuron, as already described
in sec. 3.3.2. This is because our spiketrains list contains a spiketrain per realtime
column per neuron. The concatenation is done by initializing a list of 64 empty lists,
into each of which all spiketrains of the neuron with the according index are appended
to.
Because all the spiketrains already come correctly ordered by the temporal order of
the realtime columns, the spiketrains don’t need to be reordered.

#read out results

spiketrains =

recording_population.get_data('spikes').segments[0].spiketrains

spiketrains_concatenated = [ [] for _ in range(64) ]

for spiketrain in spiketrains:

spiketrains_concatenated[spiketrain.annotations["source_id"]-1].\

extend(spiketrain.times)

With plt.eventplot the concatenated spiketrain of each neuron can be plotted in
a way, that a red line is inserted at every spike time. The result is, that the plot is
colored in places, where the neuron received spikes. The spiketrains of the different
neurons are plotted above each other, so that each neuron represents a line in the plot:

#plot results

fig = plt.gcf()

fig.set_size_inches(4, 4)

plt.eventplot(spiketrains_concatenated, color='#990000')

plt.xlim(0,640)

plt.ylim(0,63)

plt.xlabel("time [ms]")

plt.ylabel("neuron index")

fig.show()

This gives us the desired result, as shown in fig. 4.2.
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Figure 4.2: Plot of the spike times of the different neurons. For each time, a certain
neuron triggered a spike, the plot shows a thin red line at the according
spike time and the according neuron index. The experiment time, corre-
sponding to the different realtime columns, is plotted along the horizontal
axis and the neuron indices along the vertical axis. This results in the
recreation of the logo of the ElectronicVision(s) Group.

4.2 Adaptation of AdEx-neuron experiment

As one of the last things done in the course of this bachelor thesis, the code of the
experiment in the already existent tutorial on the AdEx dynamics of the neurons on
the chip1 [2] is simplified by using the reconfiguration feature.
In the tutorial, the AdEx model, which is also briefly explained in sec. 2.1.1 is pre-
sented in form of the model equations, a schematic of the circuit of an AdEx neuron
and an interactive experiment. In the tutorial, the membrane trace and the adaption
state are shown in dependency of several parameters, that can manually be adjusted
with sliding bars. For each change in the parameter configuration, the experiment is
executed on hardware and returns the newly measured data.

A fundamental part of this experiment is the so-called current stimulus, which is
described as Istim in eq. (2.1), which has to be applied in a certain interval of the
experiment. This is done, by activating an on-chip current source 100 µs after the

1https://github.com/electronicvisions/brainscales2-demos/blob/master/ts_08-adex_
complex_dynamics.rst
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beginning of the experiment and deactivating it 600 µs later again.
Without the multi-configuration feature, this is no easy task, as it isn’t possible to
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Figure 4.3: Plots taken from the AdExTurorial [2], which show the membrane poten-
tial and the adaption state in dependency of the experiment time for a
certain set of parameters. One can clearly see the influence of the current
stimulus, as the membrane potential quickly increases at 0.1 s in biological
time, which corresponds to 100 µs in emulation time, where the current is
enabled. At 0.7 s biological time, i.e. 600 µs later, the potential drops again
and relaxes to the resting potential. A similar influence of the current stim-
ulus can be recognized in the plot of the adaption state.

change this on-chip current with the pynn.brainscales API without it. So the only
way to still make it work was to manually construct a PPB that switches this current
on and off, which can be injected as a playback hook into the experiment. However,
this is fairly complicated to pull off for a standard PyNN user, as this requires expert
knowledge in many different areas of the hardware abstraction layer of the API. With
the new reconfiguration feature, this can be done easily in a few lines of code, by just
switching this on-chip current by setting the parameter constant_current_enable

of the according population to true or false in between some add() calls with the
according runtime, like so:

pop[0:1].set(constant_current_enable=False)

pynn.add(0.1) # deactivated in the first 0.1ms

pop[0:1].set(constant_current_enable=True)

pynn.add(0.6) # activated for 0.6ms

pop[0:1].set(constant_current_enable=False)

pynn.run(0.3) # deactivated in the last 0.3ms

This method only uses elements of PyNN and is also a bit shorter in the implementa-
tion.
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4.3 Build performance

At last, the performance of the experiment compilation is to be examined in depen-
dency of the size of the experiment to get a measure of how much wall-clock time it
takes to build the experiments with the new way of generating the playback programs.
The performance test, which triggers the execution and thus the compilation of the ex-
periment, is written with pynn.brainscales. It features a sweep over different numbers
of realtime columns, as well as different amounts of commands inside each realtime
snippet, in this case different numbers of spikes. The code for the experiment is ex-
plained in fig. 4.4.
Each experiment consists of only one single batch entry, as PyNN doesn’t support
the use of multiple batch entries in one experiment. For simplicity reasons, no changes
were made to the experiment configuration between the different realtime columns.
Thus, each realtime column has the same configuration, the same input data and the
same network graph as base products. This is sufficient to test the performance of the
API, as the individual portions of the experiment corresponding to different realtime
columns, are still generated and assembled individually. The only difference to a case
with varying configurations for each realtime column is, that no differential write has
to be applied for each reconfiguration. For each of the scheduled experiments, the
times for different parts of the compilation process are measured:

• The time required for preprocessing the provided objects. This includes the final-
ization of the configuration and checking, which hardware components responsi-
ble for recordings and readouts have to be enabled for which realtime columns
in the experiment, depending on the signal-flow graphs.

• The time required for generating the individual realtime snippets in dependency
of the according signal-flow graphs and input data.

• The time required for assembling the different pieces of the program together to
one large executable on the hardware.

• The total time needed for the entire compile process of the experiment

The timer used for measuring the time durations is the hate::Timer2, an API-internal
tool for measuring times, which in turn uses gettimeofday of the Linux operating sys-
tem3 as a timer.

2https://github.com/electronicvisions/hate/blob/master/include/hate/timer.h
3https://linux.die.net/man/2/gettimeofday

52

https://github.com/electronicvisions/hate/blob/master/include/hate/timer.h
https://linux.die.net/man/2/gettimeofday


import numpy as np
import pynn_brainscales.brainscales2 as pynn

max_power_add = 10 # maximal 1024 realtime columns
max_power_spikes = 17 # maximal 131072 spikes pre realtime column

pynn.setup(enable_neuron_bypass=True)

input_population = pynn.Population(1, pynn.cells.SpikeSourceArray())
recording_population = pynn.Population(1, pynn.cells.HXNeuron())
synapse = pynn.standardmodels.synapses.StaticSynapse(weight=32)
projection = pynn.Projection(input_population,

recording_population,
pynn.OneToOneConnector(),
synapse_type=synapse)

for power_spikes in range(max_power_spikes + 1):
number_spikes = pow(2, power_spikes)
runtime = number_spikes*0.01 # Choose a spike rate of 100kHz
spikes = np.linspace(0, runtime, number_spikes)
input_population.set(spike_times=spikes)
for power_add in range(max_power_add + 1):

number_add = pow(2, power_add)
for i in range(number_add-1):

pynn.add(runtime)
pynn.run(runtime)
pynn.reset()

Figure 4.4: Performance test, written in PyNN:
The network consists of a population of one single neuron sending spikes at
a rate of 100 kHz, which corresponds to a spike rate of 100 Hz in biological
terms, to another population containing only a single neuron, which has
spike recording enabled. Then, the number of realtime columns and spikes
per realtime column is iteratively increased by factors of two, starting
from one. The limit for the number of realtime columns or add() calls
in this case is set to 210 and the maximal number of spikes per realtime
column is set to 217. As a fix spike rate of 100 kHz is chosen, the runtime
is proportionally adapted to the number of spikes in each iteration. To call
the add() function as many times, as actually intended by number_add,
the one final call of add() inside the run() function has to be included.
Thus, there’s one explicit add() call less than number_add.
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(d) Time needed for the entire compilation

Figure 4.5: Wall-clock time required for the different compiling steps of the experiment
in ms using an AMD EPYC 7543 as a processor. n_spikes is the number
of spikes per realtime column and n_realtime_columns the number of the
realtime columns in the experiment.
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The results are shown in fig. 4.5. What can be seen in any of these four figures,
is that all compiling processes scale uniformly for an increasing number of realtime
columns. One can see from the concrete values (see app. A), that the duration approx-
imately doubles, for each doubling step of the number of realtime columns for any of
the measurements, which can be seen especially well for higher numbers of realtime
columns. This behaviour is also independent of the number of spikes per realtime col-
umn.
This seems pretty logical, as all realtime columns are exactly the same, so scheduling
more of them just multiplies the compiling effort, as the preprocessing, the genera-
tion of the realtime columns, as well as the assembly are all done realtime column
by realtime column. Due to this, a double in the number of add() calls just doubles
the number of which the code of the compiling process is run and thus the total time
duration for any of the subparts of the compiling process.

The number of spikes per realtime column doesn’t seem to have a great effect for
small numbers, but the time it takes to generate the realtime columns seems to start
scaling at roughly 26 spikes in some dependency of the number of spikes per realtime
column. Looking at the numerical data, the measured durations start to approximately
double beginning roughly at 210 spikes per realtime snippet, for each doubling step of
the number of spikes. However, in the first five doubling steps of the spike number, the
duration seems to stay roughly constant. Between these areas of constant and linear
scaling, there seems to be some continuous transition.
The linear scaling in the number of spike times arises from the rising number of
write() statements made on each ATPPB, when generating the realtime snippets.
However, the process involves also other commands like enabling the event recording
for the spikes and checks for almost every chip component, whether it is used or not,
which also takes time. This is dominant over the time to add the spikes to the ATPPB
command queue for low amounts of spikes, but for higher amounts of spikes, the effort
for adding the spikes is dominating, which is reflected in the behaviour, which can be
observed above in fig. 4.5 (b).
The plot in fig. 4.5 (a) of the times needed for preprocessing shows a larger area of
a constant time duration in dependency of the number of spikes, but also has a lin-
ear component for large numbers. In principle, the preprocessing of the experiment
is independent of the input data and thus should be independent of the number of
spikes. But at one place in this procedure, a copy of the input data is made, which
explains the linear scaling for very large numbers of spikes, as this copy operation gets
increasingly more expensive.
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A similar behaviour can be recognized in fig. 4.5 (c) for the time needed for the as-
sembly of the experiment. It also scales linearly for a great number of spikes, which
is due to the effort of shifting the many commands of the individual ATPPBs in time
and having to sort larger vectors of commands in the end, when the final ATPPB is
converted into a PPB. This effort is only dominant for larger number of spikes and is
surpassed by the only effort of this process, that is not dependent from the number of
spikes, which is the differential write of the configuration. The default configuration
is in fact a quite large container translating to over one hundred thousand FPGA
instructions, half of which have to be compared in the differential write against the
according instructions of the other configuration.

One can also see from the plots, that the assembly of the playback programs is
the most time-consuming procedure. This is due to the fact, that so many ATPPBs
have to be shifted in time, which happens command by command, as explained in sec.
3.1.4. The most time-consuming process is the sorting of the commands in the finally
assembled, large ATPPB, when converting it to an PPB.
Because the total time duration of the compilation is just the sum of the other three
sub-processes and the computing effort of the sub-process of assembling the experiment
is dominant, the total compile duration shows a similar behaviour as the duration for
assembling the playback programs.

As we don’t have multiple batch entries, the experiment consists, apart from the
initial configuration, only of one singular playback program. The limit, to which size
a playback program fits entirely into the command buffer of the FPGA is 222 instruc-
tions, which corresponds to a total number of 221 spikes per realtime row and in this
case also of the total experiment due to the fact, that everything is put into one single
playback program. Even an overrun by a factor of two of the size of the instruction
memory FPGA would for most experiments already result in failure, as the rest of
the playback program most of the time cannot be streamed quickly enough to the
FPGA and many commands would miss their timing4. Thus, the time durations of
the compilation measured for a total amount of spikes greater than 221 are likely to
never be encountered, when using pynn.brainscales in a serious way - at least for the
current state of the hardware.
The longest total compile times measured for a total number of spikes of 221 or lower
is roughly 16.6 seconds, which is the case for 210 realtime columns, which was the
maximum in our test. For our chosen spike rate of 100 kHz, this corresponds to an

4The data link between the host and the FPGA can transfer data at a rate of 1 Gbit/s, but the
FPGA works off its instructions with a corresponding rate of up to 8 Gbit/s.
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experiment duration of roughly 21 seconds. So in case of many reconfigurations per
batch entry, a user has to account for some additional time to the actual experiment
duration, for compiling the experiment. In case of actually reconfiguring the experi-
ment in between the different add() calls, the compiling process would take even a
little bit longer. But the only thing, that would take longer is the calculation of the
differential config, the computing effort of which is negligible against most other op-
erations inside the compiling process.
For the compilation of experiments with fewer reconfigurations, which are more com-
mon, the duration to compile the experiment takes up less and less wall-clock time
compared to the total experiment runtime.
Based on the above observed linear behaviour for a large number of total spikes and
realtime columns, an estimate about the expected compile time per spike and per real-
time column can be drawn from the measurement data (cf. fig. A.4: The time taken to
compile the experiment, i.e. to produce the playback programs takes 0.90 µs per spike
in the whole experiment and 10.7 ms per realtime column. For the estimate of the time
per spike, only the time differences according to a differing spike count per realtime
snippet were regarded. For the estimate of the time per realtime column, the time dif-
ferences between measurements with the same total number of spikes, but a different
amount of realtime columns, were taken. For sufficient precision, the measurements
featuring the six greatest differences in the total number of spikes were looked at.
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5 Conclusion and outlook

In this thesis, the application programming interface (API) of the BrainScaleS-2 (BSS-
2) platform [14, 10] was extended by the possibility to redefine an experiment’s con-
figuration at any point in time. Now, any experiment can abstractly be described as a
system evolving continuously in time, where at discrete points in time certain changes
are applied to the configuration.
To make this feature available in the user frontend pynn.brainscales [10], new concepts
in command timing and experiment assembly were developed, cf. sec. 2.2, resp. sec.
2.3. To implement these concepts into the software stack [10], changes and additions
were made on several different abstraction layers:
At first, a new kind of playback program builder, which is used to schedule com-
mands for the system at the according times, was developed. In comparison to the old
PlaybackProgramBuilder (PPB), this new builder handles only absolute times, i.e. a
certain time after the start of an experiment, at which a command is to be executed.
Thus, the name AbsoluteTimePlaybackProgramBuilder (ATPPB). Another difference
between the PPB and the ATPPB is, that the latter one links each command directly
to the time at which it shall be scheduled (cf. sec. 3.1.1), which makes it easy, to merge
command queues of different ATPPBs into each other (cf. sec. 3.1.4), instead of only
being able to concatenate them which is the case for the PPB.
This feature is the base for the implementation of the changes in the experiment pro-
cedure, which require different pieces of the experiment, i.e. different ATPPB objects
that partly have to be executed in the same time intervals, being merged together
into one single ATPPB, cf. sec. 3.2. This has to be done to retain an absolute time
base over the entire course of a batch entry, which ensures an immediate transition
between sections of the experiment with different configurations, the so-called realtime
snippets, cf. sec. 2.2. Handling an experiment as different pieces, that include a recon-
figuration as a first step and then a evolution of the system for a certain time duration,
opens up a new dimension in the experiment procedure, cf. fig. 2.5. To account for this
additional dimension, many objects in the experiment description layer of the software
stack and upwards were sequentialized.
This includes some objects in the user frontend pynn.brainscales, in which this multi-
configuration feature is available now. To integrate this feature well into the PyNN [5]
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environment, the new function pynn.add() was introduced, with which one can ex-
tend the currently defined experiment by a section of a given runtime with the current
configuration. This additional dimension was also made visible in the readout of ob-
servable data (cf. sec. 3.3.2) to grant the user maximal modularity and transparency.

The new multi-configuration feature makes the description of experiments with a
dynamically changing configuration a lot easier. This is shown by the example of the
experiment in the interactive adaptive exponential integrate-and-fire (AdEx) demo [2],
presented in sec. 4.2, which is one of many experiment profiting from this new fea-
ture. At the same time, all formerly valid experiment descriptions are still supported
and function the same as before. This challenge of finding the right balance between
innovation and the support of former concepts was also present in the implementa-
tion of the new experiment procedure, which now distinguishes between the case of a
singular initial configuration and an experiment with multiple configurations. In the
former case, playback hooks and the usage of the plasticity processing unit (PPU) are
supported, to let the API lose no other features in the process of implementing a new
one.
Finally, the performance of the compile procedure was examined, which experienced
changes due to the new way of constructing an experiment. The observed qualitative
behaviour of the time it took for different sub-processes of the experiment compilation
met the expectations, cf. sec. 4.3. Looking at the actual numbers, total time for the
compilation never exceeds 80% of the actual runtime of an experiment, which is still
bearable, as these processes still happen on a scale of seconds. However, for experi-
ments, that aren’t reconfigured hundreds and thousands of times, the compile duration
in relation to the experiment runtime is fairly lower.

Looking ahead, one of the greatest improvements, that can be made on the multi-
configuration feature is the support of the PPU in experiments with multiple different
configuration states, which is currently not possible, as explained in sec. 3.2. This how-
ever is no problem that can be solved entirely in software, but also requires the hard-
ware to support real time streaming of data from the PPU to the field-programmable
gate array (FPGA), so that no longer breaks with unknown duration would occur
during two different realtime snippets, which currently would ruin the absolute time
base and delay successive realtime snippets too much. This however requires memory
management on the FPGA for the data received from the PPU.

Another thing, which builds on the multi-configuration feature, would be an event-
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driven machine learning API that uses this feature for batch support in large hyperpa-
rameter sweeps, as an instant reconfiguration would save lots of time by just writing
the differential configuration, compared to executing individual experiments with dif-
ferent configurations after another, which was the only possibility for a parameter
sweep in the past.
Similar to that, analog parameter sweeps for the calibration algorithms, which could
be used to get the chip calibrated according to the wishes of a user in a single hardware
run, can be implemented on a high level with the multi-configuration feature. Some
other appliances, that are helpful for experiment description, are the reconfiguration
of background sources, e.g. rate shaping or dynamic changes in the amplitude of the
external current to a neuron.
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A Performance measurement data

These are the files with the measured performance data. The different columns resem-
ble the different amounts of realtime columns increasing from left to right in doubling
steps and the different lines correspond to different number of spikes per realtime col-
umn, increasing from top to bottom in doubling steps.
The data was recorded with the application programming interface (API) intern
hate::Timer, which by itself uses gettimeofday of the Linux operating system1 for
measuring the time.

4.9140 3.1520 5.7270 10.626 19.959 37.140 71.080 144.10 285.35 564.33 1135.3
1.2150 2.1140 3.5100 6.7720 11.873 24.569 47.000 96.698 192.62 389.37 1165.9
1.2830 2.4860 3.9770 7.1360 12.723 24.100 48.259 93.545 191.77 413.12 1158.6
1.2360 1.8800 3.5410 6.6840 12.335 23.590 48.703 93.174 194.97 584.51 1160.2
1.3990 2.0610 3.6240 6.4520 12.200 25.285 72.444 100.39 195.82 584.75 1155.6
1.3800 2.1120 3.6330 6.6570 13.358 25.051 49.773 99.178 192.92 579.88 1164.0
1.4550 2.0350 3.5710 6.5870 12.163 23.820 47.424 99.316 195.37 586.55 1170.0
2.0760 2.8200 5.6790 8.0600 13.388 25.993 51.166 97.196 196.59 586.08 1168.7
1.3730 1.8390 3.5440 6.7300 13.098 25.172 51.231 99.599 295.69 394.45 1186.0
1.3900 2.2430 4.0480 7.5690 13.083 25.893 50.835 101.45 205.72 603.65 1201.7
1.3380 2.0950 3.7780 7.2400 13.581 25.580 53.884 107.39 310.76 637.02 1245.9
1.8190 2.3690 3.9490 6.8990 13.316 26.409 52.497 104.15 209.38 634.89 1281.5
1.7150 2.7120 4.4940 8.5170 16.407 31.917 61.081 116.77 351.73 699.39 1394.4
1.6710 2.8390 5.2470 10.055 18.080 35.026 68.934 138.65 409.74 836.10 1695.4
2.6720 3.7530 6.5980 12.597 23.917 45.098 89.390 180.54 469.48 1059.8 2200.5
3.1800 5.1900 9.4330 17.631 34.250 66.632 138.20 362.86 728.77 1494.0 3366.6
5.0770 7.6920 15.016 28.931 57.521 113.61 236.28 504.60 1021.0 2309.3 4293.2
8.1690 14.106 27.598 53.585 109.16 221.00 476.11 932.06 1777.5 3874.1 8965.1

Figure A.1: Time taken to preprocess the experiment in ms.

1https://linux.die.net/man/2/gettimeofday
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0.4080 0.2270 0.3400 0.4840 0.6450 0.9580 1.5230 2.5880 5.1580 9.6730 19.547
0.2820 0.2100 0.3190 0.4170 0.6040 0.8680 1.6520 2.9370 5.4610 9.9510 19.795
0.1500 0.1700 0.2200 0.4650 0.6340 0.8510 1.6570 3.1310 5.5830 10.651 20.955
0.2040 0.2250 0.6060 0.4110 0.6980 1.1660 1.9210 3.2940 5.8800 11.225 22.434
0.2480 0.2190 0.3150 0.4030 0.8190 1.2500 2.0950 3.6030 6.5960 12.068 24.684
0.2360 0.2660 0.5210 0.6770 0.9310 1.3050 2.5260 4.3060 7.9260 14.299 28.882
0.3180 0.2930 0.5630 0.6420 1.0470 1.7300 2.8890 5.4570 10.112 18.898 37.339
0.2860 0.4820 0.6550 0.9020 1.5020 2.6230 4.4930 8.0020 14.923 26.285 53.778
0.3590 0.5970 0.9870 1.3430 2.2720 3.5840 6.6950 12.249 23.079 43.823 88.314
0.5270 1.0840 1.5690 2.6070 3.7980 6.7910 11.803 21.877 40.798 78.825 160.46
0.7500 1.8070 2.9520 4.2910 7.2500 11.953 21.337 38.661 74.736 147.00 287.15
1.4180 3.0720 4.6720 7.3520 12.530 21.813 39.081 70.182 130.97 272.76 552.95
2.6770 5.4770 9.7800 17.959 33.333 54.861 80.274 145.88 279.06 571.57 1121.2
4.9530 9.8540 17.945 34.465 62.583 107.33 169.99 302.00 577.07 1165.8 2278.0
9.0210 17.549 33.141 61.926 115.49 203.08 344.29 630.54 1222.7 2452.0 4496.1
16.514 30.663 59.327 111.60 209.95 390.85 687.75 1324.8 2560.7 4991.7 9175.5
30.792 58.463 110.86 206.56 396.26 746.09 1390.6 2672.6 5106.4 9909.5 17241.
61.817 115.30 222.73 412.15 799.61 1532.1 3235.1 5886.9 10726. 19659. 34579.

Figure A.2: Time taken to generate the realtime snippets in ms.

0.3320 11.390 34.500 82.115 175.87 371.97 758.12 1541.7 3219.3 6406.6 12807.
0.1650 9.0280 28.593 68.879 149.63 315.03 639.64 1307.3 3013.5 6550.2 13176.
0.1450 9.3750 29.757 70.435 156.48 321.12 681.78 1361.4 2657.5 6345.1 13273.
0.1830 9.4530 28.481 69.175 152.99 313.18 646.17 1295.5 3226.3 6651.8 13417.
0.2130 9.3070 28.820 69.208 150.66 313.24 776.78 1546.7 3209.3 6703.3 13225.
0.2510 9.3650 29.240 72.762 155.54 334.54 666.16 1361.3 3261.8 6607.1 13351.
0.2020 9.5230 29.101 70.401 152.08 315.36 646.07 1368.1 3323.4 6633.0 13265.
0.2500 10.834 35.078 72.903 158.62 328.10 674.57 1375.9 3244.5 6595.6 13441.
0.2810 9.7860 30.334 72.624 156.49 323.21 657.65 1337.6 3085.4 6785.7 13479.
0.5320 10.347 31.993 75.926 165.32 340.09 691.16 1409.5 3325.1 6726.2 13475.
0.6740 10.740 32.834 77.598 169.21 350.80 694.13 1382.4 3374.6 6740.5 13303.
1.1290 11.872 34.944 81.084 175.12 361.77 714.12 1415.1 3402.2 6866.3 14786.
1.6920 13.765 40.723 97.100 209.23 415.79 800.55 1583.8 3712.8 7364.9 14973.
2.8030 17.577 48.863 117.42 231.08 471.66 923.27 1868.3 4188.0 8551.2 16809.
5.7180 25.035 67.483 148.76 316.47 591.80 1176.3 2355.2 5150.6 10512. 21169.
10.451 40.738 102.61 219.44 433.11 845.50 1726.6 3650.2 7354.3 14444. 31179.
21.773 68.989 169.24 344.14 692.82 1369.9 2894.0 5683.0 11879. 22785. 48884.
40.778 125.17 292.05 583.42 1217.9 2544.1 5282.7 10213. 21117. 42113. 92856.

Figure A.3: Time taken to assemble the playback programs out of the different pieces
in ms.
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25.952 17.889 44.206 96.299 199.58 423.83 850.96 1691.3 3549.4 6984.0 13992.
22.077 13.622 35.866 78.646 180.60 361.84 721.25 1434.9 3232.6 7010.3 14408.
18.261 13.446 35.737 80.514 172.05 348.18 734.29 1479.9 2894.8 6797.4 14481.
4.2160 14.001 35.293 79.039 193.13 366.21 699.89 1414.5 3480.9 7314.9 14629.
33.125 13.903 35.348 78.712 182.38 361.03 854.53 1653.7 3440.3 7348.0 14452.
37.583 14.525 36.356 82.613 188.66 405.76 759.25 1486.7 3506.1 7205.2 14563.
30.003 14.188 35.348 80.387 185.12 344.21 731.91 1498.0 3576.4 7260.3 14494.
5.5060 16.966 44.431 85.044 194.40 382.52 733.82 1526.6 3478.3 7211.7 14685.
23.358 14.328 37.285 82.856 191.86 373.51 759.96 1453.0 3460.6 7253.8 14783.
32.181 16.214 39.751 89.355 203.28 408.40 800.94 1547.1 3609.8 7442.9 14842.
5.0790 16.672 41.944 126.48 220.85 391.89 796.04 1570.4 3780.8 7560.7 14885.
34.311 20.388 48.695 97.503 204.23 431.66 850.64 1633.4 3820.8 7822.2 16646.
57.844 25.004 57.914 126.66 262.01 574.39 970.35 1865.0 4373.5 8664.4 17534.
48.875 32.924 75.303 182.16 314.84 625.17 1182.2 2313.1 5205.0 10621. 20868.
20.576 49.654 136.84 255.11 485.26 885.46 1638.9 3196.1 6942.3 14079. 27896.
61.825 80.341 192.86 353.03 711.58 1358.8 2612.4 5424.4 10685. 20961. 43812.
88.766 153.28 299.19 584.00 1182.9 2286.4 4551.6 8943.5 18091. 35061. 70475.
143.66 316.27 583.60 1113.1 2173.1 4354.8 9010.7 17093. 33635. 65761. 136406

Figure A.4: Time taken to for the entire experiment compilation in ms
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B Experiment environment

The demo experiment (cf. sec. 4.1), the experiment of the adaptive exponential integrate-
and-fire (AdEx) tutorial (cf. sec. 4.2) and the performance test (cf. sec. 4.3) were run
on the same software state, which is documented in the following. To be able to iden-
tify the exact state, the commit hashes of each repository are listed in table B.1 and
additionally the numbers of the changesets on Gerrit, if the software state was ahead
of the remote master branch at the time.

To track the used third-party software, the necessary data to identify the used
singularity container [8] is shown in tab. B.2. This singularity container contains all
shell tools, libraries and other software that is not from the Electronic Vision(s) Group
itself, but was available to use for all conducted experiments in chapter 4.
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repository git hash changeset

haldls a887e8a678556a3dcf11a29570ab6d3c5858748d
code-format e718d56928d006669376fde991bb9b4605a6818a
logger 9457eb8031dd902780f1aa695438ac2d18ed2f3f
halco 8129637b2612b1559eb0ab441c7cb55057b0172b
hate e8b4bf7a7be4d99911f66b9c1681b20d28866e3c
fisch 0d877547b5021da78b82753b1b3428c0639e1ad7
libnux f98f962d848c0338f1bc5a9f184c05b9f3ee31a9
hxcomm 5f8e49f89a954c551d51ff22f8381d8b83cbc766
rant 0d494ce6eedfb74889cf7cee09105258819acb35
ztl 773660f435e56b1ee7b962e8babfe004ff487cdd
pywrap 536c5fc5e102c5f9c3a8eb404ffa55ec40b3d75e
lib-boost-patches ed89665b4c066629b69617ede2e8b1fbe65822d9
sctrltp 1d854f953f7e8c8ead44406a22bb80421ca3857c
nhtl-extoll a140dc1ae3114bda0ae08f1cd67833887fc0bd17
hwdb 40e8627e64219a5c5e7ade49b5d738c07965aa94
visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3
flange 28e729d59df3b4ff380f84351c40d4da3086bed8
lib-rcf af6fc768c1735b67c3bf189de7c1fca58e67c0e3
bss-hw-params be3c6c33fc3a85bf296be779c9b4cd5b96f4ae29
librma 3fae4e359b8cbb2760b32046aff93a3da24a3943
extoll-driver fcfad13745f2434ee63834478d67b1141b62da2f
pynn-brainscales 9faef5492844ae04b87be36722feef845642416e 22131
grenade 08c27c2ddc22bafef2babdd464bbb744df2b3812 22133
calix 9bfe424a107494cb9e2ab1a585bd4995c93241f0
much-demos-such-wow 8e906b1008d56b4f4274f2b3128cc97aa7a43044 22115
hxtorch 071c183bda155e1b0c7bc7ea6ff526f5519692dd

Table B.1: Software state used for the execution of both sample experiments and the
performance test in chapter 4.

key value

path /containers/stable/2024-01-03_1.img
fingerprint 07b48f8c-ee00-4560-bb20-a6fa21895084
app dls

Table B.2: Data of the singularity container used for all experiments, that are pre-
sented in this thesis.
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