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Summary Recent efforts have fostered significant progress towards deep learning in spiking networks,
both theoretical and in silico. Here, we discuss several different approaches, including a tentative
comparison of the results on BrainScaleS-2, and hint towards future such comparative studies.

Introduction Physical computation directly exploits the intrinsic dynamics of a given substrate to
efficiently process and propagate information. In contrast to numerical computers, physical computers
implicitly obey the dynamics required by certain models of information processing (e.g., neuronal inte-
gration) rather than calculating them explicitly by arithmetically manipulating binary representations
thereof. Neuromorphic computers represent a prominent class of physical systems, drawing inspiration
from the nervous system by mimicking the dynamics of neurons and synapses. They typically involve a
massively parallel and time-continuous implementation of neuro-synaptic dynamics as well as an asyn-
chronous event-based propagation of signals to efficiently emulate spiking neural networks (SNNs).

Physical systems are typically “programmed” by tuning their internal dynamics, such as time con-
stants or coupling strengths. In our case, we employ gradient-based optimization schemes to adapt the
emulated SNNs to a given task. Here, we discuss multiple approaches which all have been demonstrated
on the mixed-signal neuromorphic system BrainScaleS-2 [6]. With this demonstration they have proven
to address both the problems arising from the event-based characteristics of SNNs in general and the
analog nature of the substrate in particular.

In-the-loop training of physical systems With self-adapting, local neuromorphic learning still in
its infancy, we sometimes take inspiration from machine learning when training our neuromorphic de-
vices, in particular from gradient-based optimization. To adopt these for physical computation, we need
differentiable estimates of the system-internal dynamics. In our case of a time-continuous spiking neuro-
morphic system, this model has to capture the propagation and weighting of spikes as well as the neuronal
dynamics. This could be realized as a collection of closed-form expressions for spike times or through a
computation graph describing the propagation of stimuli through the network. An exact match between
model and system dynamics is, however, often unattainable, and in a trade-off between model fidelity
and complexity, higher-order effects are typically neglected. Instead, a continuous synchronization be-
tween model and system can mitigate the propagation of incorrect estimates. For this purpose, gradients
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Figure 1: A In-the-loop approaches evaluate the physical system in the forward pass based on input spikes
(raster plot, top). Combined with recorded observables (e.g., voltages and spikes, bottom), a model of the
internal dynamics is then used to estimate gradients for weight update calculations. B Example data recorded
from BrainScaleS-2 (black), as well as a simulated model trace replicating the core dynamics of the silicon neuron
(red). C Spike-time gradients [1, 2] calculate the spike times’ derivatives ∂T w.r.t. changes in presynaptic spike
times or afferent weights. This quantity is only defined at the spike times and thus extremely sparse in time. D
Surrogate gradients [3] estimate how a parameter change would affect the ‘likeliness’ of a spike at each point in time
by replacing the ‘hard’ threshold θ by the smooth surrogate σ. E The Yin-Yang data set [4] and a corresponding
temporal encoding of a randomly chosen sample. F Comparison of the three methods [1, 2, new results for 5].
Sparse and dense hatching indicate time-to-first-spike and voltage-based output decoding, respectively.



are estimated based on measurements of observables, including spike times or even membrane potential
traces. Generally speaking, precise knowledge of the internal state can often be traded against model
fidelity and vice versa.

Gradient calculation While the time-continuous and highly non-linear nature of SNNs impedes a
straight-forward gradient descent, there exist multiple approaches for the estimation of gradients. These
can be coarsely divided into methods either involving exact derivatives or resorting to inherent approxi-
mations of the spike triggering threshold.

Exact, sparse gradients can be obtained for a leaky integrate-and-fire (LIF) neuron’s output spike
times with respect to both input weights and presynaptic spike times. Analytical expressions for the
gradients can – under certain assumptions – be derived based on differentiable expression for the spike
time T as a function of only the input spikes and weights T ({ti}, {wi}) [1]. The derivatives of this function
allow assignment of credit through multiple layers, and consequently gradient descent in deep networks.
At the expense of an analytical solution but relaxing some assumptions, gradients can also be computed
by relying on a backward evolution of adjoint dynamics [7]. Both approaches give exact relations on how
to change weights to shift the existing spikes to reduce the loss function.

Surrogate gradients [3] offer an alternative approach by considering the output spike train S(t) =∑
i δ(t − Ti) of a neuron, where the individual spike times are given by Ti. In order to estimate useful

gradients not only at the individual output spike times, ∂S(t) can be approximated with the help of a
surrogate derivative σ′(v(t)) based on the membrane potential v(t). In contrast to exact, spike-time-
based approaches, this method also assigns gradients at times where no spikes occur. While leading to
a potential memory and computation overhead, this approach allows explicit awareness of the creation
or deletion of spikes and can hence innately train networks from a quiescent state by specifically recruit
neuronal activity where required.

Results The three approaches outlined above have all been demonstrated on the BrainScaleS-2 system.
Figure 1F shows respective results obtained for the Yin-Yang dataset [4]. All three methods are able to
successfully solve the task and yield comparable classification accuracies. Classifiers based on a time-to-
first-spike output seem to incur a slight performance penalty in comparison to voltage-based outputs.
Further, approaches based on exact spike-time gradients appear to yield accuracies slightly below the ones
reached by surrogate gradient methods. However, inhomogeneous choices of system- and hyperparameters
spoil a direct comparison across publications. In addition to the presented results, BrainScaleS-2 has been
trained on a variety of other datasets, with both feedforward and recurrent network topologies [1, 5]. The
respective training methods were shown to be robust against parameter noise that was artificially induced
to mimic fixed-pattern deviations not uncommon in physical systems.

Discussion The capability to train highly complex, nonlinear dynamical systems, not just in idealized
simulations, but also in practice, represents a fundamental prerequisite for the real-world deployment of
neuromorphic devices. Here, we have reviewed three recently demonstrated methods and their results on
BrainScaleS-2 [1, 2, 5]. This demonstration is a testament to the maturity of this system in particular
as well as to the progress of physical computation in general. It also paves the way for important future
studies including comparisons on a variety of performance metrics such as convergence speed during
training, data efficiency, robustness to noise and parameter changes.
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