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This dissertation is concerned with gradient-based optimization or ”learn-
ing” in spiking neural networks and their applications. Based on a method
well known in the optimal control literature, I derive a novel algorithm ”Event-
Prop,” which computes exact gradients for arbitrary loss functions and allows
for the optimization of spiking point neural networks. In the special case of
time-invariant linear systems with jumps, this suggests an exact integration
algorithm. Based on the same starting point, it is also possible to derive ap-
proximate online learning rules for spiking point neurons. More broadly, the
adjoint method with jumps can be applied to structured neurons and other dy-
namical nets. In the case of structured neurons, the adjoint equations couple so
that they can be interpreted as being associated with the same physical struc-
ture. This partially resolves the weight transport problem. Finally, I turn to the
question of how stochastic classical systems, such as networks of deterministic
spiking neurons stimulated by Poissonian noise, can emulate properties of small
quantum systems.

In dieser Dissertation beschäftige ich mit gradienten basierter Optimierung oder
”Lernen” in Spikenden Neuronalen Netzen und deren Anwendung. Anfangend
mit einer Methode die in der Kontrolltheorie Literatur wohlbekannt ist, leite
ich einen neuartigen Algorithmus ”EventProp” her, welcher exakte Gradienten
für beliebige Zielfunktionen berechnet und es erlaubt Spikende Punkt Neuron
Netze zu optimieren. In dem Spezialfall von zeitinvarianten linearen Systemen
mit Sprüngen, erhält man so einen exakten Integrationsalgorithmus. Angefan-
gen vom selben Ausgangspunkt kann man auch genäherte Online Lern Algorith-
men herleiten. In einem weiteren Kontext lässt sich die selbe Methode auch auf
ausgedehnte Neuronen und andere dynamische Netze anwenden. Im Fall von
ausgedehnten Neuronen stellt sich heraus, dass die adjoint Dynamik sich mit
der selben Struktur assoziieren lässt. Dadurch wird zum Teil das ”weight trans-
port” Problem gelöst. Schliesslich wende ich mich der Frage zu wie klassische
stochastische Systeme, wie Netzwerke von deterministischen Spikenden Neuro-
nen, welche von Poisson Noise stimuliert werden, Eigenschaften von kleinen
Quantensystemen emulieren können.
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Chapter 1

Introduction

Understanding computational principles underlying intelligence independent of
the biological examples we are familiar with has been a research goal since the
advent of universal computers in the first half of the 20th century. Indeed early
work by pioneers such as McCulloch and Pitts [110], and von Neumann [157]
used language and metaphors based on the nervous system in some of their work
on computation. An important first question to answer is then how to judge
intelligence independent of the computational realization [153]. Another closely
related one is how intelligence can arise from inanimate matter in the first place.
Here the basic insight is that any intelligent machine would have ”structure”
and ”dynamics.” While the structure would be largely static over the machine’s
existence, the dynamics would need to implement the learning process. In close
analogy to nature, the machine’s structure would be encoded by ”hereditary”
material, and the success of learning determines whether this structure gets
replicated into the future. The use of directed evolutionary algorithms to create
“infant” learners was already suggested in Alan Turing’s work [153] (p. 456)

“Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the child’s?
[...]
There is an obvious connection between this process and evolution,
by the identifications

• Structure of the child machine = hereditary material
• Changes of the child machine = mutation,
• Natural selection = judgment of the experimenter

[...]”

A driving force for this thesis then has been to describe a general way of de-
scribing learning or self-optimizing systems. Such a general description should
ideally be flexible enough to encompass artificial neural networks, open dynam-
ical systems and hybrid open dynamical systems.

In chapter 2, I introduce the notion of a Neural Processing Element (NPE).
The basic intuition behind them is to define a notion of a self-optimizing pro-
cessing element that can be composed with other such processing elements in a
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2 CHAPTER 1. INTRODUCTION

well-defined manner. Importantly they are defined in such a way that they can
have a simple physical realization. From a programming language perspective,
one can regard such processing elements as terms in a programming language.
By introducing lambda abstraction, repetitive substructures can be abstracted
and lead to the identification:

”structure of the machine” = ”term in a certain lambda calculus”.

To generate examples of Neural Processing Elements, I then introduce meth-
ods well known in the control theory literature: adjoint and forward sensitivity
analysis. The basic idea is that it is possible to associate to any open dynam-
ical system or system of equations an ”adjoint” system that allows computing
gradients with respect to parameters and initial conditions with respect to an
arbitrary loss function. This even holds for hybrid systems that undergo discon-
tinuous state transitions at certain hypersurfaces in state-space under certain
natural conditions.

I give an introduction to this method and derive explicit equations for the
jumps in the adjoint state variables in various special cases. I also define (ten-
tatively) a notion of Neural (Event) Processing Element.

One main result of this thesis is then the derivation of explicit adjoint (and
forward) sensitivity equations for neuron models relevant to computational neu-
roscience and neuromorphic engineering. In contrast to so-called surrogate gra-
dient methods, the computed gradients agree exactly with numeric gradients
computed by forward differences. In the particular case of leaky integrate and
fire neurons with or without adaptive threshold, the resulting equations suggest
an efficiently implementable algorithm EventProp, which only propagates error
information at spike events. It subsumes several previously proposed algorithms
that work with exact spike times.

I demonstrate the algorithm’s effectiveness by applying it to several standard
machine learning problems and find that it performs either better or equivalently
to surrogate gradient based training. Since the algorithm admits a purely event-
based implementation, it has memory advantages over surrogate gradients as
well: It is only necessary to store data at events local to each computational
unit (neuron). Moreover, the events during the backward pass can reuse rout-
ing information used during the forward pass. This implies it is possible to
implement the EventProp algorithm on (digital) neuromorphic hardware, such
as Loihi [44], Spinnaker [60], or Tianjic [125], efficiently. It also means it can be
efficiently implemented on a hybrid digital-analog system like BrainScaleS-2.

In the case of linear time-invariant differential equations the adjoint equa-
tions with jumps take a particularly simple form, which I discuss in chapter 4.
Forward and backward dynamics are coupled at jump times. Since quantum
systems with time invariant Hamiltonian are one example of such differential
equations this opens up interesting possibilities of studying classical systems
coupled to quantum systems at events (measurements, photon detection, ...).

While the adjoint sensitivity method itself allows one to compute exact gradi-
ents, it suffers from the fact that it has to be computed in reverse time relative to
the original differential equation. While the forward sensitivity equations don’t
suffer from this problem, a naive implementation scales as a product of dynamic
variables and parameters. Recent work in the context of spiking neurons solved
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this scalability problem for time discretized systems of equations with smoothed
derivatives [15]. In chapter 5 I show that by an analogous process, but without
resorting to discretization or smoothing of derivatives, it is possible to derive
three-factor learning rules from the forward sensitivity equations derived in the
preceding two chapters. Extensions to more general settings based on the for-
ward sensitivity equations and hybrid forward adjoint schemes are left for future
work. I also do not present any numerical experiments on the derived method.

Although (adaptive) LIF neuron models and the slightly more general AdEx
neuron model are typically implemented to conduct network-level simulations
of spiking neural networks, they only crudely approximate biological neurons
and their bewildering diversity of signaling pathways and molecular mechanisms.
A huge advantage of the adjoint method is the applicability to arbitrary com-
plicated hybrid systems of ordinary differential equations. To illustrate this, I
apply in chapter 6 the adjoint method to the multi-compartment neuron model
as implemented in the BrainScaleS-2 neuromorphic chip and a model of CA3
hippocampal Pyramidal neurons. I also derive the general form of the adjoint
equations for an arbitrary multi-compartment neuron model with any number
of ion-channels and a very general synaptse model. The main insight here is
that any such multi-compartment model couples the different compartments
by a symmetric matrix of conductances. Geometrically it means that errors
represented by the adjoint-state variables to the membrane voltage in each com-
partment can be thought to propagate on the same dendritic tree structure.
This resolves in part the ”weight transport problem” assuming that there is a
way to signal from post- to pre-synaptic synapse. Moreover, at each synaptic
density only the adjoint state variables of the pre-synaptic and post-synaptic
density couple under natural assumptions on the jump and transition equations,
this suggests the study of synaptic plasticity mechanism in this framework. In
particular it should be possible to optimize the parameters entering into a plas-
ticity mechanism in this way, leading to a very general notion of metaplasticity.

Roughly speaking, the complex biological processes at each synapse should
implement synaptic plasticity and thereby learning in biological neurons. Ab-
stracted from the details of complicated biochemistry so-called plasticity rules,
such as STDP (spike time dependent plasticity) and others are used to model
the plasticity of synapses in neuron models. In neuromorphic hardware, the
possibility to implement such rules ranges fixed-function implementations of
specific rules, to rules based on a limited set of micro-operations [44], to fully
programmable plasticity as for example in the BrainScaleS-2 and Spinnaker
system.

In the BrainScales-2 system, the plasticity processing unit’s (PPU) role is to
implement any such rule as efficiently as possible. As part of my work, I oversaw
the successful scaling of the existing plasticity processing unit to the full sized
single-chip system HICANN-X and changed the memory architecture to allow
for the execution of instructions from external memory, as well as vector and
scalar read and write access to external memory. Both changes taken together
enable the implementation of plasticity algorithms that take advantage of large
external memory, thereby significantly increasing the modeling capabilities of
the system. Moreover, the change is also crucial for the analog inference ac-
celerator mode as it allows software to be written without being constrained
by the limited on-chip SRAM. I also implemented a fully parallel random num-
ber generator for the plasticity processor’s vector unit to enable applications
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such as random synaptic rewiring, noise terms in plasticity rules and stochastic
rounding. I describe these changes in chapter 7.

One use case of the BrainScaleS-2 chip is stochastic inference with spiking
neurons [114, 116, 30, 99, 22]. In chapter 8 I describe an extension to the
BrainScaleS-2 chip, implemented by Gerd Kiene and jointly desinged by Gerd
Kiene and me, which adds the ability to perform logical operations on the
refractory state. I discuss several use cases for this extension and introduce a
novel training method based on surrogate gradients [117]. Further experiments
and evaluation of the hardware extension, which has been taped out with the
single chip HICANN-X system are left for future work.

I then turn to a slightly more abstract question in chapter 9: There is
a well known way to analyse stochastic optimal control problems by the so-
called Hamilton-Jacobi-Bellmann equation. The key idea now is to regard the
weight parameters in a (spiking) neural networks as dynamic quantities as well,
which vary at a slower time scale. Changing the weight parameters based on
the future expected reward can then be modeled as a control problem. Here
I show that the weight parameters’ optimal control is given by a gradient of
the future expected reward under certain assumptions. As I indicated above
models of biological neurons can also be seen as such parameterised dynamical
systems. The assumed cost for the parameter update in a biological system
(which corresponds to recruitment of addtional ion-channels etc.) most likely
does not satisfy the assumptions on the cost of parameter updates. However
this approach allows in principle to model these more complicated parameter
update costs as well. Based on the seminal work [90, 91], Hamilton-Jacobi-
Bellmann equations of the kind I just discussed admit a change of variables that
linearize them and a path integral interpretation. Future work could specialise
this observation to the case of optimal control of weight parameters.

In the final two chapters I turn to questions related to quantum emulation.
In chapter 10 I demonstrate that small artificial neural networks can learn to
emulate unitary transformations on quatum density matrices. Moreover, by
interpreting the entries of certain real 8×8 as expectation values of classical spins,
one can introduce a ”quantumness” gate, which implements the constraints of
a quantum density matrix on them. Based on the ideas first presented in [159]
a natural second step is then to consider instead of just expectation values,
expectation values and correlations of classical spins. This is done in chapter
11. I demonstrate numerically that the bit-quantum map [159] is complete
for Q = 2 qubits and implement an explicit temporal correlation map from a
system of spiking neurons to density matrices. Finally I show that the minimal
bit-quantum map needs to be extended for Q > 2 and suggest situations in
which only sparse information of all correlations would be necessary.

I conclude this work with a chapter 12 containing an outlook and conclusions.
Many things I did work on in the last five years were not included in this thesis.
Some of them because they turned out to be dead ends, some because of a lack
of time. Nevertheless I believe there is a lot of exciting work to be done based
on the ideas I have presented here. I therefore hope this is not just the end of
a chapter but also the beginning of an exciting new one.



Chapter 2

Neural Processing Elements

The nervous system has besides its complicated dynamics a particular structure.
The working hypothesis of connectionism is that how the primitive components
used to model neurons are connected that is its structure already in large part
determines the (potential) function. The question then becomes to what degree
of fidelity the structure of the biological nervous system needs to be understood
and captured in order to derive useful functional models. Arguably the most
important characteristic of of biological nervous systems is their capability to
”adapt” or ”learn” beyond the innate function they had at birth.

In this chapter I describe a framework based on category theory, which allows
for the description of self-optimizing ”machines”, which I call ”Neural Processing
Elements”. Those machines can be composed and nested to form larger machines.
The category theory perspective on ”wiring diagrams” has been advanced in
several papers [169, 103, 149]. In some ways the description I give here is just a
different perspective on well known results in the literature, which I will point
out along the way. Furthermore I will not actually give any formal defintions
here. This would require the introduction of far more background material.
Rather I include this chapter because the ideas I present here informed my
thinking on the problem of self-optimizing systems.

While I want to consider a more general case later, let me first discuss artifi-
cial neural networks. In the case of artificial neural networks advances in their
computational power significantly derived from structural innovations. While
it is well known that a two layer artificial neural network is in principle already
capable of approximating a large class of functions, in practice restrictions on
connectivity and parameter sharing as in convolutional architectures, residual
neural networks [78], as well as transformer and attention architectures [156],
demonstrate the large impact that choice of structures have.

Moreover choice of structure or network architecture both has an impact on
the feasability of solving a given task, as well as the convergence speed of the
training algorithm. A basic insight is that the choice of structure can already
ensure that a network can be trained to accomplish a wide range of domain
specific tasks (vision, natural language processing, etc.).

The main enabling innovation in the case of artificial neural networks is
the backpropagation algorithm [106, 107, 138]. Briefly speaking it answers the
question how to efficiently compute derivatives of a function composed out of
a set of primitive functions with respect to parameters, in the case that the

5
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space of parameters has much higher dimensionality than the co-domain of the
function. The basic insight is that this problem can be reduced to a two-phase
message passing algorithm: By assumption the function can be computed by
a directed acyclic graph whose nodes are primitives ϕ and edges are variables.
During the forward pass values are propagated along these edges to ultimately
compute the function, while simultaneously the input values to each node (or
more generally a context) is recorded. During the backward pass cotangent
vectors are propagated and at each node the pullback ϕ∗ with respect to the given
primitive at the input computed during the forward pass is computed. While
this algorithm lends itself well to bulk-synchronous parallel implementations
(c.f.[4] and references therein) it exhibits inherent forward-backward locking in
that the backward phase depends on values computed during the forward phase.

From a programming language perspective a curious feature of artificial neu-
ral network models is that their architecture can typically be described very
concisely in terms of few repeating and nested primitives, together with task
specific parameters. This enables the development of hardware accelerators,
which then can focus on implementing this short list of primitives in an efficient
manner. Furthermore to support gradient based training one can associate to
each primitive a way to compute the pullback between the output and input
cotangent spaces, which in practice means that the number of supported oper-
ations has to be doubled. In other words operations come in pairs.

One such pair is addition and copying

+: R×R → R, (x, y) 7→ x+ y, (2.1)
∆: R → R×R, dz 7→ (dz, dz) (2.2)

another is multiplication m and an operation m∗

m : R×R → R, (x, y) 7→ x · y, (2.3)
m∗ : (R×R)×R → R×R, ((x, y), dz) 7→ (y · dz, x · dz). (2.4)

Most generally to any smooth map between (pointed) manifolds

f : (M,p) → (N, f(p)) (2.5)

we can associate the pullback map between cotangent spaces

f∗ : T ∗
f(p)N → T ∗

pM. (2.6)

This turns out to be a contravariant functor.
We now want to associate to each of the primitives ϕ a processing element

e(ϕ) that computes ϕ and to each of the pullback primitives ϕ∗ a processing
element e∗ = e(ϕ∗) that computes ϕ∗. What is meant concretely by ”processing
element” depends on further details. Let us say for example we wanted to
implement primitives as digital circuits. To implement an addition primitive
+: R × R → R for example a choice of value representation must be made,
since digital circuits can’t operate on real numbers and there are then still
multiple options to implement the control and datapath of a digital adder. Other
primitives like matrix multiplication could in principle be regarded as being
composed of elementary operations, but the most efficient implementation of
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Figure 2.1: Composition of two processing elements e1, e2 computing primitives
ϕ1 : X → Y and ϕ2 : Y → Z in sequence. Processing happens time steps,
t0, t1 = t0 + δt, . . .. For simplicity we illustrate the case here, where every
processing element takes one time step to compute its result. During the forward
pass a message with value x ∈ X (solid green circle) is passed into e1 at t0, in
the next timestep t1 it is stored in the associated memory element m1 and an
input message with value y = ϕ1(x) ∈ Y (solid red circle) to e2 is produced,
moreover processing element e1 does not accept new messages until the value
in m1 is consumed. The processing element e2 stores this message at timestep
t2 in m2 and produces an output message to the next processing elements with
value z = ϕ2(y) ∈ Z (solid blue circle). During the backward pass, messages
are passed in reverse order through the directed acyclic graph. This happens
because all processing elements wait for both a valid value in their associated
memory element and a valid error message. For example element e∗2, which
computes the pullback ϕ∗2, waits for an error message dz ∈ T ∗

z Z (open blue
circle) and a valid value in the memory element m2 before it produces an output
error message with value dy = (ϕ∗2)y(dz) ∈ T ∗

y Y (open red circle) passed on to
e∗1, which computes dx = (ϕ∗1)x(dy) ∈ T ∗

xX (open green circle).
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Figure 2.2: Illustration of merging (A) and splitting of (B) implemented by
processing elements. The merge processing element mk,l implements the prim-
itive ϕ : Rk ×Rl → Rk+l, (x, y) 7→ [x1, . . . , xk, y1, . . . , yl] and the element m∗

l,k

implements the pullback ϕ∗ : Rk+l → Rk ×Rl, [x1, . . . , xk, y1, . . . , yl] 7→ (x, y).
Similarly the split processing element sk,l implements the primitive ψ : Rk+l →
Rk × Rl, [x1, . . . , xk, y1, . . . , yl] 7→ (x, y). and the element s∗l,k implements the
pullback ψ∗ : Rk ×Rl → Rk+l, (x, y) 7→ [x1, . . . , xk, y1, . . . , yl].

the overall operation in realistic settings in many cases is not a composition of
implementations of these more primitive operations. In many ways large parts
of neumorphic engineering are concerned with coming up with novel ways of
implementing matrix multiplication primitives in various physical inncarnations.

Once a choice of implementation is made we want to demand that there is a
notion of composition of the implementation of primitives, which is compatible
with the composition of the primitives. In the case of artificial neural network
primitives this is illustrated in fig. 2.1. Each primitive is computed by a pro-
cessing element, during the forward pass the input values need to be stored
in a memory. Assuming the memory can hold only one value, the processing
element has to be blocked until during the backward pass the computation of
the pullback consumes the input value. As it turns out an analogous algorithm
can be derived when each processing element operates in continuous time and
operates either on events or continuous signals. I will explain this in chapter 3.

Informally what we are aiming for is a way of describing the hierachical
composition of time-continuous or discrete time processes, which ”learn” or self-
optimise over time. We want to decompose the problem into two parts: A way
to describe the structure of interconnected systems of elements, that is the legal
”diagrams” without specifying their ”dynamics” and then a way to associate a
”function” or ”dynamics” to a given diagram. These vague notions have been
made precise in several instances by describing the ”structure” of the system by
a suitable operad and the ”function” by an operad algebra [149]. There the brain
is also explicitely mentioned as one example of a complex hierachically composed
system. Running the program we sketched so far to completion would therefore
mean to first desribe an operad of neural processing elements and then define
an operad algebra which exhibits ”self-optimization” or ”learning”, where again
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Figure 2.3: Sequential composition of ”self-optimizing” or ”neural” processing
elements. The processing elements e1, e2 compute parameterised primitive func-
tions ϕ1 : X ×P1 → Y, ϕ2 : Y ×P2 → Z. The parameter values p1, p2 (solid light
and dark pink) are stored in additional parameter memories. During the forward
pass an input message with value x ∈ X arrives for e1 at time t0. The process-
ing element p1 computes a message with value y = ϕ1(x, p1) (solid red circle)
and stores the input and current parameter value (x, p1) in memory m1 at t1.
Similarly at time t2 the processing element e2 computes z = ϕ2(y, p2) and stores
(y, p2) in memory m2. During the backward pass an error signal (open blue cir-
cle) arrives for processing element e∗2 at t2, which implements the pullback ϕ∗2.
It computes (dy, dp2) = (ϕ∗2)(y,p2)(dz), a message with value dy ∈ T ∗

y Y (open red
circle) is passed to e∗1 and a message with value (p2, dp2) ∈ P2×T ∗

p2
P2 (solid dark

pink and open dark pink circle) is passed to the optimizer o2 at t1. Finally at t0
the optimizer o2 computes a new value p′2 = fp2

(dp2) and stores it in the param-
eter memory and the processing element e∗1 computes (dx, dp1) = (ϕ∗1)(x,p1)(dy)
(open green and pink circles).

these terms would need to be defined further.

In the context of artificial neural networks a category theoretic approach has
been pursued by [55, 49]. Without an emphasis on learning, various ”networks”
of components have been described in this framework as well (Event based
systems [169] , hybrid systems [103], open dynamical systems [155, 104, 55]). In
the context of physics such wiring diagrams were of course first considered by
Feynman to describe probability amplitutes in quantum mechanics [53] and later
QED. Specifying Feynman rules corresponds to the specification of an operad
algebra, indeed this algebraic view in the context of Feynman diagrams is well
known [37, 11].

In the case of artificial neural networks we can depict primitive processing
elements by diagrams Dab, Yabc, . . ., where the multi-indices a, b, c, · · · are labels
(from a computer science perspective ”types”, in the context of wiring diagrams
this can be formalised by the notion of C-typed finite sets [155], with C some
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monoidal category) which need to match for them to be composable.

Ja =

a

Dab =

a

b

Yabc =

a b

c

Tabcd =

a b

cd

. . .

(2.7)

Any other processing element is then a composition of primtive processing ele-
ments, which one can write

Bdca = YdcbDba, (2.8)

where repeated indices mean that the corresponding wires are connected.
A concrete specification of the allowed abstract indices or types is dependent

on the implementation of the processing elements. One example is for each index
to be of the form

a(τ) = ((τ,+), (req,+), (ack,−)) or ā(τ) = ((τ,−), (req,−), (ack,+)),

this would correspond to a situation, where processing elements are implemented
by handshake circuits [68]. The signs indicate the directionality of three ”wires”
in the ”bundles” a(τ) and ā(τ) and τ denotes an unspecified ”value type”. The
request (req) and acknowledge (ack) wires implement the control between pro-
cessing elements.

In such situations it is more convenient to track input and output indices
separately by including a bar for output indices (say). The rule is then that two
diagrams can be composed on matching input output index pairs

Bd̄ca = Yd̄cbDb̄a. (2.9)

A more complicated diagram like 2.3 could be also written in the abstract
index notation, but just like with Feynman diagrams this would quickly become
unwieldy, which is why in practice abstractions such as the ones that are present
in libraries like PyTorch [122] are used. There are a few interesting things to
notice in 2.3 though. First the row consisting of processing elements e1, e∗1,
memories and optimiser o1, say, can be abstracted as one diagram

Na(X)b̄(X)c̄(T∗X)d(T∗Y ) (2.10)

which internally contains the optimization loop and parameter memory, where I
indicated in parantheses the type of values the wires will carry. The trace which
implements the optimisation could be explicitely written in terms of an index
contraction over the corresponding primitive diagrams. A similar thing can be
said about fig. 2.1. In particular fig. 2.1 is reminiscent of the matrix model
double line notation first introduced by t’Hooft [82].

There are two additional conceptional advantages of the separation between
structure and implementation, which I will now briefly discuss and elaborate
elsewhere. As described for example in [48], based on earlier work by [100] any
cartesian closed category has an internal logic based on lambda calculus.
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This means that in a programming language which contains diagrams as
primitives and allows their composition in the way I sketched above one can
also introduce lambda abstraction:

λ

(
Dcd̄ : c d̄

)
.Ydēf̄Dcd̄Zabc̄ (2.11)

Concretely they can be thought of as diagrams with holes, into which diagrams
with fitting wires can be pasted in. A hierachical structure can then be assem-
bled by abstracting over several of these diagrams with holes. This view from
the perspective of functional programming is of a particular practical use. In-
deed various (domain specific) languages such as Zélus [26], Modia [20] make
use of this compositionality.

The goal of the next chapter will then be to explain how in the case of spiking
neural networks and more generally ordinary differential equation with jumps a
similar prescription for parameter optimisation as in the case of artificial neural
networks can be implemented, which will turn out to be composable in a similar
way as indicated in figures 2.1, 2.3.

In chapter 6 I will then explain how this approach can be extended to struc-
tured neurons, which again admit composable equations which allow for param-
eter optimisation of synaptic weights and plasticity. A further step would be to
fully regard a biological neuron as many nested biological machines, wich again
could be subject to parameter optimisation, that is to model for instance the
gene expression and active transport in individual cells as well.



12 CHAPTER 2. NEURAL PROCESSING ELEMENTS



Chapter 3

Adjoint Equations of
Spiking Point Neurons

In this chapter I propose a new method that enables parameter optimization
of spiking neural network models. By formulating the problem in a way that
is well known in the optimal control literature [128, 137, 63, 38] and recently
popularized in the machine-learning community [35, 88], I arrive at a set of ordi-
nary differential equations with jumps of so-called adjoint state variables, which
in turn can be used to compute gradients of the parameters with respect to a
given loss functions. By implementing the method numerically, I can demon-
strate, that it can be used to solve a set of standard machine learning benchmark
tasks with comparable or better performance than currently used surrogate gra-
dient methods [51, 171, 17, 147, 117]. Earlier work addressing the challenge of
optimizing spiking neural networks or networks with binary activation functions
includes [43, 39, 24].

While I evaluate the method here in the case of a simple point neuron model,
it is in fact fully general and can in principle be applied to arbitrarily complex
multi-compartment neuron models. I will derive explicit equations for a fairly
general kind of multi-compartment neuron model in chapter 6. The applicability
of the adjoint method to the optimization of non-spiking neuron models was
already pointed out in [84], however there the spike discontinuity was avoided
by replacing the delta distribution with a sharply peaked smooth function. The
work also did not explicitly address reset of the membrane voltage and used
different neuron models than we consider here.

In a recent work [34] the adjoint method with jumps was introduced to the
machine learning community with several interesting experiments, but without
reference to the original work by [137, 63]. Part of the content of this chapter
is joint work with Timo Wunderlich [165]. Here I expand on the work reported
there in several ways: Based on the derivation in [63], I derive explicit equations
for jumps in the adjoint state variables both in the general case and in several
special cases that are of interest. This allows me to introduce a general notion
of Neural Event Processing Element, which specialises to all point neuron mod-
els and synaptic plasticity mechanisms known to me. It also clarifies that the
essence of the EventProp algorithm as presented in [165] is that the system of or-
dinary differential equations under consideration decomposes into many smaller

13



14 CHAPTER 3. ADJOINT EQUATIONS OF SPIKING POINT NEURONS

subsystems (the ”neurons”) only coupled at events. The EventProp algorithm
presents a significant computational advantage over surrogate gradient methods,
since in the case of linear systems such as LIF neurons it only requires storage
at spike events. Even for non-linear neuron equations the adjoint method is
preferable as it does not rely on a discretisation of the dynamics as surrogate
gradient methods do and can make use of established methods of numerically
solving ODEs.

The experimental evaluation is done on the leaky-integrate and fire neuron
model as in [165]. Besides the experiments presented there, I performed ad-
ditional experiments on machine learning datasets. I find that the proposed
method has, given a choice of network architecture and hyperparamters, simi-
lar or better performance compared to surrogate gradient backpropagation on
the MNIST [102], Fashion-MNIST [166] and CIFAR-10 dataset [97]. I do not
achieve state of the art performance in absolute terms, however. I also demon-
state that the method can be applied to a simple regression and reinforcement
learning task. I conclude with some indication how to extend and apply the
adjoint method both in the context of neuromorphic hardware, different neu-
ron models, and outline some further potential theoretical development of the
adjoint method in the context of spiking neuron models.

3.1 Adjoint Equations
The general problem that I want to subsume our method of optimizing spiking
neural networks under can be stated as follows: Given an action S, that is a
functional of a path x(t) and parameters p

S(x, p) =

∫ T

0

l(x, p, t)dt

together with contraints

f(x, ẋ, p, t) = 0, (3.1)
h(x(0), p) = 0, (3.2)

where f and h are differentiable functions, find a set of parameters p, such that
S is minimized. In the case I am interested in, the dynamics of the system
furthermore is allowed to undergo state transitions, when jump conditions are
satisfied: That is we will in addition consider implicitly defined differentiable
jump conditions j(x−, ẋ−, p), which lead to a transition specified implicitely by
differentiable transition functions

T (x+, ẋ+, x−, ẋ−, p).

Here x− and x+ denote the state before and after the transition, that is the left
and right limit of the state variables in time.

Then the total derivative of the action functional S with respect to the
parameters is given by

dS

dp
(x, p) =

∫ T

0

[
∂xl

dx

dp
+ ∂pl

]
dt, (3.3)
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here and in the following I denote by ∂px = ∂x
∂p the partial derivative. One can

introduce Lagrange multipliers λ(t) ∈ Rn, µ ∈ Rn to impose the constraints
given by 3.1, 3.2 directly

S =

∫ T

0

[l(x, p, t) + 〈λ(t), f(x, ẋ, p, t)〉]dt + 〈µ, h(x(0), p)〉,

where 〈v, w〉 = vTw denotes the dot product. Along trajectories x(t), which
satisfy the constraints f = 0, h = 0, these two actions agree and therefore also
their parameter derivatives agree

dS
dp

=
dS

dp
. (3.4)

The total derivative of the augmented action with respect to the parameters p
is given by

dS
dp

=

∫ T

0

[
∂xl

dx

dp
+ ∂pl + 〈λ, (∂xf

dx

dp
+ ∂ẋf

dẋ

dp
+ ∂pf)〉

]
dt (3.5)

+ 〈µ, (∂x(0)h
dx

dp
(0) + ∂ph)〉. (3.6)

Integration by parts of the terms that contain dẋ
dp yields

dS
dp

=

∫ T

0

[(
∂xl + 〈λ, (∂xf − d

dt
∂ẋf))〉 − 〈λ̇, ∂ẋf〉

)
dx

dp
+ ∂pl + 〈λ, ∂pf〉)

]
dt

(3.7)

+ 〈λ, ∂ẋf〉
dx

dp
|T + (−〈λ, ∂ẋf〉+ 〈µ, ∂x(0)h〉)|0

dx

dp
(0) + 〈µ, ∂ph〉 (3.8)

We can eliminate two of the boundary terms by imposing the boundary condition
λ(T ) = 0 and 〈λ, ∂ẋf〉 = 〈µ, ∂x(0)h〉|0dpx(0). Finally to avoid calculating the
forward sensitivities sx = dx

dp we can demand that

∂xl +

⟨
λ,

(
∂xf − d

dt
∂ẋf

)⟩
− 〈λ̇, ∂ẋf〉 = 0. (3.9)

Then parameter derivative of the action S with regard to the parameters p is
therefore given by

dS

dp
=
dS
dp

=

∫ T

0

[∂pl + 〈λ, ∂pf〉]dt + 〈λ, ∂ẋh〉|0∂x(0)h−1∂ph (3.10)

In order to implement these equations numerically several techniques have been
developed and implemented.

Generally speaking the solution is structured in three steps. First the original
ordinary differential equation specified by f is solved from 0 to T . Then the
adjoint equation (3.9) is solved from T to 0. Finally the parameter sensitivity
of the action is computed by carrying out the integral (3.10). The second and
third step can be combined into one numerical procedure. It should be noted
that it can be advantageous to use the discrete adjoint equations associated to
the discretization scheme used during forward integration (e.g. [174, 173]).
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In the case that the loss function l depends on the values of x at discrete
time points one can take those into account by considering the following loss
function

l(x, p, t) =
∑
i

l̄(x, x̃i)δ(t− ti) + l̃(x, p, t), (3.11)

where ti are chosen points in time independent of the parameters p. Such a loss
introduces discontinuities into the implicit equation (3.9). The relevant term is

∂xl(x, p, t) =
∑
i

∂x l̄(x, x̃i)δ(t− ti) + ∂x l̃(x, p, t). (3.12)

In the case that the ODE is in explicit form f(x, ẋ, p, t) = ẋ − f̃(x, p, t), this
contribution to (3.9) introduces jumps by ∂xg(x, x̃i) at times ti. For example a
loss function of the form

l(x, p, t) =
1

2

∑
i

|x− x̃i|2δ(t− ti) (3.13)

would demand that the state variable x is close to x̃i at time ti. Resulting in a
jump of λ by |x− x̃i| at time ti.

3.2 Adjoint Equations of Spiking Neurons
So far we’ve assumed that the dynamics specified by f(x, ẋ, p, t) is continuous.
I now want to consider a situation where instead the dynamics of the system
can change based on events (externally induced state changes) or state events
and in which the system in response either switches to a different mode or the
state variables jump. Any classical physical system can of course not suddenly
change its state in this way, so it is clear that such a situation is always an
approximation to a situation where a continuous transition happens at a faster
timescale (e.g. a bouncing ball). Nevertheless such a viewpoint is very useful
for studying event based neuromorphic hardware and circuits, as there this
approximation is also employed and one does explicitely not want to model the
digital event propagation as a physical process. Similarly in neurobiology action
potentials and neurotransmitter release are typically modelled by events.

To the best of our knowledge the derivation of forward sensitivities in this
situation was first studied (in the case of explicitely specified transition and
jump equations) in [137]. There equations for the forward sensitivities under
discontinuous jumps were derived for explicit ordinary differential equations and
time, velocity indepedent transitions. A recent survey with examples and setting
that includes differential algebraic equations and memory is [38]. Detailed proofs
of a generalisation of the approach in [137] can be found in [63]. I will adopt
the notation of the latter here.

We want to study a situation in which a parametrised dynamical system
can enter various modes [S1, S2, . . . , Sj , . . . , Snj

] at times t(1)f , . . . , t
(nj−1)
f . The

time and the ordering of the occurence of the modes depends on the parameters.
Each mode Sj is specified by explicit ordinary differential equations

ẋ(j) = f (j)(x(j), p, t), f : RN(j)

×RM ×R → RN(j)

(3.14)
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when the state trajectory x(j)(t, p) satisfies a jump condition

j(x(j), ẋ(j), p, t
(j)
f ) = 0 (3.15)

at time tf the mode of the dynamics changes, that is the dynamics is now
determined by

ẋ(j+1) = f (j+1)(x(j+1), p, t
(j+1)
0 ), f : RN(j+1)

×RM ×R → RN(j+1)

where the state and velocities before the transition x(j), ẋ(j) are related to the
state and velocities after the transition x(j+1), ẋ(j+1) by a transition function

T (j)(x(j), ẋ(j), x(j+1), ẋ(j+1), p, t
(j)
f ) = 0. (3.16)

Then the equation for the parameter sensitivity of the action 3.3 has to be
modified by splitting up the integral at the transition times

dpS =

nj∑
j=1

∫ t
(j)
f

t
(j)
0

[
∂xldpx

(j) + ∂pl
]
dt + l(x(j), p, t

(j)
f )

dt(j)

dp
− l(x(j), p, t

(j)
0 )

dt(j−1)

dp

(3.17)
Similarly the adjoint action can be split up at the transition times and the total
derivative with respect to the parameters yields after integration by parts and
use of the equation (3.9)

dpS =

nj∑
j=1

∫ t
(j)
f

t
(j)
0

[
∂pl + 〈λ, ∂pF (j)〉

]
dt (3.18)

+

nj∑
j=1

〈λ(j)(t(j)f ), ∂ẋF
(j)(t

(j)
f )〉dpx(j)(tf )− 〈λ(j)(t(j)0 ), ∂ẋ(j)F (t

(j)
0 )〉dpx(j)(t(j)0 )

=

nj∑
j=1

∫ t
(j)
f

t
(j)
0

[∂pl + λT∂pF
(j)]dt− 〈λ(t(nj)

f ), dpx(t
(nj)
f )〉+ 〈λ(t(0)0 ), dpx(t

(0)
0 )〉

(3.19)

+

nj−1∑
j=1

(l(j)(t
(j)
f )− l(j+1)(t

(j)
f ))τ(t

(j)
f )

+

nj−1∑
j=1

〈λ(j)(t(j)f ), ∂ẋ(j)F (t
(j)
f )〉dpx(j)(t(j)f )

−
nj−1∑
j=1

〈λ(j+1)(t
(j)
f ), ∂ẋ(j+1)F (j+1)(t

(j)
f )〉dpx(j+1)(t

(j)
f ), (3.20)

where I’ve denoted by F (j) = ẋ(j) − f (j)(x(j), p, t). Just as before the goal is
now to eliminate the dependence on the forward sensitivities dpx. The following
theorem gives sufficient conditions under which the forward sensitivities before
and after a transition can be related.

Theorem 3.2.1 (Existence and Uniqueness of Sensitivity Functions [63]). As-
sume that
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1. For all t ∈ [t
(j)
0 , t

(j)
f ] the partial derivatives

∂xf
(j), ∂pf

(j) (3.21)

exist and are continuous in a neighborhood of the solution x(j)(p, t).

2. For all transition times

t
(j)
f , j = 0, . . . , nj − 1

the following four equations define a continuosly differentiable map of an
open set

h : U ⊂ R2N(j)+2N(j+1)+1+M → R2N(j)+2N(j+1)+1

with
h(ẋ−, x−, ẋ+, x+, t

(j)
f ; p) = 0

where h is defined as

x−(tf )− x−(t0)−
∫ tf

t0

f−(x−, p, t)dt = 0 (3.22)

j(ẋ−, x−, p, tf ) = 0 (3.23)

T (ẋ−, x−, ẋ+, x+, p, t
(j)
f ) = 0 (3.24)

ẋ+ − f+(x+, p, t
(j)
f ) = 0 (3.25)

with the abbreviations x− = x(j)(t
(j)
f ), x+ = x(j+1)(t

(j)
f ), f+ = f (j+1), f− =

f (j), etc. And assume that the submatrix formed by the columns of the
Jacobian matrix corresponding to ẋ−, x−, x+, t(j)f is invertible.

Then the partial derivatives ∂px(j) exist for all j = 0, . . . , nj are continuous and
obey the differential equation

∂t(∂px
(j)
i ) = ∂x(j)f

(j)
i ∂px

(j) + ∂pf
(j)
i (3.26)

in (t
(j)
0 , t

(j)
f ).

The paramter sensitivity of the transition time is given by

dt

dp
= −∂ẋ

−j∂pf
− + ∂xjdpx

− + ∂pj

∂ẋ−j∂tf− + ∂xjẋ− + ∂tj
(3.27)

and sensitivities before and after the jump are related by:

dpx
+ = −

[
f+ + (∂x+T )

−1 (
∂ẋ−T∂tf

− + ∂x−Tf− + ∂ẋ+T∂tf
+ + ∂tT

)] dt

dp

− (∂x+T )
−1 (

∂ẋ−T∂pf
− + ∂x−T∂px

− + ∂ẋ+T∂pf
+ + ∂pT

)
(3.28)

Proof. This follows essentially by the implicit function theorem and Gronwalls
theorem [72], for details see [63].

Theorem (3.2.1) also allows us to relate the adjoint state variables as follows.
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Theorem 3.2.2. Given the same assumptions as 3.2.1, the jumps in the adjoint
state variables at a given transition time t(j)f are given by

λ− = λ+
[
CA− (∂x+T )−1∂x−T

]
− (l− − l+)A (3.29)

and the gradient contribution of the transition is given by

ξp = (l− − l+)B − λ+CB + λ+[∂ẋ−T∂pf
− + ∂ẋ+T∂pf + ∂pT ] (3.30)

with

A = − ∂x−j

∂ẋ−j∂tf− + ∂x−jẋ− + ∂tj
(3.31)

B = − ∂ẋ−j∂pf
− + ∂pj

∂ẋ−j∂tf− + ∂x−jẋ− + ∂tj
(3.32)

C = −
[
f+ + (∂x+T )

−1 (
∂ẋ−T∂tf

− + ∂x−Tf− + ∂ẋ+T∂tf
+ + ∂tT

)]
(3.33)

(3.34)

Proof. We can focus on one term in the sum (3.20):

ξ = (l− − l+)
dt

dp
+ λ− · dpx− − λ+ · dpx+ (3.35)

we will use eq. 3.28 and 3.27 to collect terms dpx−. We can write

dt

dp
= Adpx

− +B = − ∂x−j

∂ẋ−j∂tf− + ∂x−jẋ− + ∂tj
dpx

−

− ∂ẋ−j∂pf
− + ∂pj

∂ẋ−j∂tf− + ∂x−jẋ− + ∂tj
(3.36)

and

dpx
+ = −

[
f+ + . . .

]
Adpx

− −
[
f+ + . . .

]
B

− (∂x+T )
−1
∂x−Tdpx

− − (∂x+T )
−1 (

∂ẋ−T∂pf
− + ∂ẋ+T∂pf

+ + ∂pT
)

(3.37)

inserting into eq. 3.35 we get

ξ =
[
(l− − l+)A+ λ− + λ+[f+ + . . .]Adpx

− + λ+[(∂x+T )−1∂x−T ]
]
dpx

−

+ λ+[f+ + . . .]B + λ+[∂ẋ−T∂pf
− + ∂ẋ+T∂pf + ∂pT ] + (l− − l+)B (3.38)

Therefore we derive for the jumps in the adjoint variables

λ− = λ+
[[
f+ + . . .

] ∂x−j

∂ẋ−j∂tf− + ∂x−jẋ− + ∂tj
− (∂x+T )−1∂x−T

]
+ (l− − l+)

∂x−j

∂ẋ−j∂tf− + ∂x−jẋ− + ∂tj
(3.39)

and the gradient contribution

ξp = (l− − l+)B + λ+[f+ + . . .]B + λ+[∂ẋ−T∂pf
− + ∂ẋ+T∂pf + ∂pT ] (3.40)
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These equations simplify further if we make assumptions on the transition
equations. If we assume that the transition equations do not explicitely depend
on time or velocities

T (x+, x−, p) = x+ − θ(x−, p) (3.41)
it follows that

∂x+T (x+, p, t) = I, ∂ẋ−T = 0, ∂ẋ+T = 0, ∂tT = 0 (3.42)

and the transition equations of the adjoint state variables simplify to

λ− = λ+
[[
f+ − ∂x−θf−

] ∂x−j

∂ẋ−j∂tf− + ∂x−jẋ− + ∂tj
+ ∂x−θ

]
+ (l− − l+)

∂x−j

∂ẋ−j∂tf− + ∂x−jẋ− + ∂tj
(3.43)

Moreover the contribution to the gradient simplifies to

ξp = (l− − l+)B + λ+
[
f+ − ∂x−θf−

]
B − λ+∂pθ (3.44)

In the cases we are interested in there are typically two distinct situations:
One where the jump condition j depends only on time, this is the case for
external input and one where the jump condition j only depends on the state
of the system. We also don’t want to consider jump conditions j that depend
on the state velocity. In the first case we have

∂x−j = 0, ∂ẋ−j = 0 (3.45)

and in the second case
∂tj = 0, ∂ẋ−j = 0 (3.46)

and therefore we have in the first case (external events)

λ− = λ+ [∂x−θ] (3.47)

ξp = −
[
(l− − l+) + λ+

[
f+ − ∂x−θf−

]] ∂pj
∂tj

− λ+∂pθ (3.48)

and in the second case

λ− = λ+
[[
f+ − ∂x−θf−

] ∂x−j

∂x−jẋ−
+ ∂x−θ

]
+ (l− − l+)

∂x−j

∂x−jẋ−
(3.49)

ξp = −
[
(l− − l+) + λ+

[
f+ − ∂x−θf−

]] ∂pj

∂x−jẋ−
− λ+∂pθ (3.50)

Now it should be observed that in the case of spiking neuron models the
transition equations are are almost always translations in a subspace of the
state space. Moreover there is are finite sets of transition and jump conditions
associated to each neuron independently. That is we can partition the state
space RN into K copies of L state variables and then there are typically a small
set of jump conditions j(l)k , k = 1, . . . ,K associated to each neuron. One of
them is distinguished as the ”spike” or ”fire” jump condition, which determines
spike propagation to other neurons. Another example would be the end of the
absolute refractory period. The transition equations associated to the ”spike”
jump condition then implements spike propagation. In simple neuron models
the spike jump conditions can be thought of as codimension one hyperplanes in
the membrane-voltage state space. This leads to the following defintion
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Definition 3.2.3 (Neural Event Processing Element (NEPE)). A Neural Event
Processing Element is given by a differentiable function

f : S × P ×R → TS (3.51)

together with a set of differentiable state jump conditions

jk : S × P → R (3.52)

with associated differentiable state transition functions

θk : S × P → S (3.53)

where each of the jump conditions jk only depends on a (small) subset of the
state variables, that is there is a projection πk : S → Sk to some smaller space Sk

and jk = j̄k ◦ (πk × idP ). Here S, P could be manifolds in which case TS would
be the tangent space to S. The dynamics, state jump conditions and transition
functions need to satisfy the assumptions in (3.2.1).

It should be noted that both f, jk, θk can be neural networks, that is com-
positions of parametetrised differentiable functions such as convolutions, linear
maps and non-linearities such as sigmoids or rectifier linear units. The adjoint
dynamics together with the transition equations for the adjoint variables are suf-
ficient for employing standard machine learning optimization techniques in such
a situation. More precisely for systems of equations of this kind an efficient event
based analogue of the Backpropagation algorithm can be implemented, which
uses integrates during the forward dynamics the differential equations specified
by f , together with jumps and transitions given by jk, θk and uses the jump
equations of the adjoint state variables and adjoint equations to compute gradi-
ents. What is less obvious but nevertheless true is the fact that one can easily
compose several of such Neural Processing Elements, in a way that also the
adjoint equations compose.

I will now discuss two simple examples of these kinds of systems: Leaky
Integrate and Fire Neurons and adaptive Leaky Integrate and Fire Neurons.
Both are special cases of linear time invariant ordinary differential equations
with jumps, which I will discuss in chapter 4.

Leaky Integrate and Fire Neuron

We can apply the procedure outlined above to the case of a leaky integrate and
fire neuron with exponential synapses. For simplicity of the derivation we only
track time constants and not membrane capacitances or conductances. The
state variables are x = (V, I), namely the membrane voltage and synaptic input
currents and the parameters are the synaptic weights p =W. The state variables
follow the differential equations

τvV̇ = (Vleak − V ) + I (3.54)
τsİ = −I, (3.55)

here Vleak denotes the leak potential, τv the membrane and τs the synaptic time
constants. Both V and I are N -dimensional vectors, whose components we
denote by Vn, Im, n,m = 1 . . . N .
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The membrane voltage Vn of neuron n jumps and input currents I jump,
when the threshhold voltage (Vth)n is reached. The corresponding jump condi-
tion is given by

jn(V
−) = ((V −)n − (Vth)n). (3.56)

One subtlety to consider is that in a numerical integration scheme multiple of
these jump conditions can be satisfied simultaneously, within one timestep this
can lead to potentially expensive backtracking and root finding. Moreover an
efficient numerical implementation also needs to track the N jump conditions
simultaneously. In the case we are considering the resulting jumps commute as
they are simply translations of the synaptic input currents I, therefore even the
analytical possibility that several jump conditions are satisfied simulataneously
poses no problem.

Assume that the jump condition for neuron n is satisfied, then the state
variables change as follows

V +
n = V −

m − ((Vth)n − (Vreset)n) = V −
m − ϑn (3.57)

V +
m = V −

m (3.58)
I+m = I−m + wnm. (3.59)

In other words the states changes by a euclidean translation x+ = T rec
n (x−).

From a numerical perspective it is much cheaper to implement this translation
compared to a matrix multiplication. Similarly external spike input results in
jumps

V +
m = V −

m (3.60)
I+m = I−m + win

km, (3.61)

which again is a euclidean translation x+ = T in
k (x−).

Based on the equations (3.54) when no jump conditions are satisfied, it is
easy to derive the adjoint equations from (3.9):

λ̇V = λV + ∂V l (3.62)
λ̇I = λI − λV + ∂I l (3.63)

in practice since the boundary condition is given at T , the equation should be
formulated with s = T − t, which leads to

λ′V = −λV − ∂V l (3.64)
λ′I = −λI + λV − ∂I l, (3.65)

where we have denoted the total derivative df
ds by f ′.

We can use the jump condition and transition equations to derive relation-
ships between the forward sensitivities before and after the jumps. Taking the
total derivative of the jump condition we get at the spike time tpost

(s−V )n + V̇ −
n

dtpost

dwij
= 0 (3.66)
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and therefore the transition time sensitivity τpost is given by

τpost =
dtpost

dwij
= − 1

V̇ −
n

(
∂V −

∂wij

)
= −

(s−V )n
V̇ −
n

(3.67)

This relation has been previously derived in the context of gradient based learn-
ing in spiking neural networks in [13, 24, 25, 167, 54]. It can also directly be
derived from the general formulas (3.27) [63]. Note that the initial work in the
context of spiking neural networks [24] asserted incorrectly, that it is an approx-
imation. A proof using the implicit function theorem appeared in [168]. The
forward sensitivity equations are given by

τv ṡV = −sV + sI (3.68)
τsṡI = −sI (3.69)

We can similarly derive from the transition equations (3.57, 3.59, 3.58) the
corresponding relationships for the forward sensitivities

(s+V )n = (s−V )n +
1

τv
(ϑ+ wnn)

(s−V )n

(V̇ −)n
(3.70)

(s+V )m = (s−V )m +
1

τv
wnm

(s−V )n

(V̇ −)n
,∀m 6= n (3.71)

(s+I )m = (s−I )m − 1

τs
wnm

(s−V )n

(V̇ −)n
+Anmδinδjm, (3.72)

here I used Anm to denote the adjacency matrix of the neuron connectivity.
Taken together these equations give relationships between s+v , s−v , s+I , s

−
I that

can be used to derive relations for λ+V , λ
−
V , λ

+
I , λ

−
I , by inserting in equation (3.18).

Focussing on one term in the sum, we find

ξk =

[
l− − l+ +

∂lp

∂tpost
k

]
τpost
k

+
[
τv
(
λ+V · s−V − λ+V · s+V

)
+ τs

(
λ−I · s−I − λ+I · s+I

)]
|tpost

k
. (3.73)

Inserting the jump relations for the forward sensitivities (3.70, 3.71, 3.72), the
sensitivity of the transition time (3.67) and collecting terms in s−V , s

−
I (we denote

by n(k) the index of the neuron that has spiked)

ξk =
∑

m ̸=n(k)

[
τv(λ

−
V − λ+V )m(s−V )m + τs(λ

−
I − λ+I )m(s−I )m − τsAnmδin(k)δjm(λ+I )m

]
+ τv

[
(λ−V )n(k) −

(
(λ+V )n(k) +

1

τvV̇
−
n(k)

[
ϑ(λ+V )n(k)

+
∑

m̸=n(k)

wn(k)m(λ+V − λ+I )m +
∂lp

∂tpost
k

+ l− − l+

 (s−V )n(k)

+ τs(λ
−
I − λ+I )n(k)(s

−
I )n(k). (3.74)

to eliminate the dependency on the forward sensitivity, we therefore should
demand the following jumps in the adjoint state variables at the spike time
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Figure 3.1: Contourplot of mebrane voltage in response to a single spike input to
a synapse with time constants τsyn = 5ms and τmem = 20ms. Close to a jump,
the spike time tpost is a smooth function of the weight. The jump condition
v(t, w) − θ = 0 defines an implicit function (the dark blue line marks dv = 0).
The gradient diverges at the red cross, where v̇− = 0. In weight space this
defines a hyperplane wcrit = 0, where the total number of spikes of this neuron
increases by one (see also 3.2)

tpost
k :

λ−I = λ+I (3.75)
(λ−V )m = (λ+V )m,m 6= n(k) (3.76)

(λ−V )n(k) = (λ+V )n(k)

+
1

τv(V̇ −)n(k)

[
ϑ(λ+V )n(k) + (WT (λ+V − λI))n(k) +

∂lp

∂tpost
k

+ l−V − l+V

]
.

(3.77)

Note that naturally we want to relate variables backward in time and that the
state of the forward equations only enters for the neuron that spiked at that
time during forward integration. This means that this state only needs to be
maintained locally. Moreover the adjoint state variables are also coupled only
at spike times and are otherwise local to the neurons.

Using these relations the expression for the total derivative of the action
with respect to the parameters (3.18) reduces to

dpS = dwijS =

∫ T

0

∂pldt− τs
∑
k

An(k)jδin(k)(λ
+
I )j . (3.78)
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Figure 3.2: Contourplot of mebrane voltage in response to two spikes at
0ms, 20ms to a synapse with time constants τsyn = 5ms and τmem = 20ms.
We indicate two out of four total critical points at which additional spikes oc-
cur. There is a well defined spike count function n(w), which can be read of
from the blue horizontal lines in the contourplot at t = T . This observation was
used in the seminal work [76] to derive a learning rule.
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The equations of the jumps in the adjoint variables (3.75), together with the
adjoint equations (3.64), can be numerically implemented. We did so, as well as
derived and implemented the corresponding adjoint equations and jumps for a
number of other point neuron models in a PyTorch [122] based library, as well
as in a custom event-based simulator implemented by Timo Wunderlich.

LIF Neuron with Adaptive Threshold

A slight generalization of the LIF neuron model we considered in the section
before is a neuron model with adaptive threshhold. The continuous equations
are given by

τvV̇ = −V + I (3.79)
τsİ = −I (3.80)
τbḂ = −B (3.81)

The jump conditions for the n-th neuron is given by

jn(V
−, B−) = V −

n − Vth +B−
n . (3.82)

In other words the threshhold of each of the N neurons is modulated indepen-
dently by the state variable Bn. The transition equations are given by

V +
n = V −

n − ϑ (3.83)
B+

n = B+
n + β (3.84)

I+ = I− +Wen (3.85)

where ϑ, β parametrize the jump in the membrane voltage and adaption vari-
able B respectively, W is the synaptic weight matrix and en denotes the n-th
standard basis vector.

The general idea behind this simple modification is to introduce another
longer time constant τb > τv, which enables the neurons to have a ”memory”
of recent spike activity at the time scale τb. Experimental results [17] show
that this suffices to significantly increase the computational capabilities on time-
dependent tasks. We can now go through the same derivation as in the case of a
LIF neuron. Since it is highly similar we will for the most part just state results.
The first observation is that now the jump condition of the n-th neuron now
depends linearly on the two state variables Vn, Bn. We find that the parameter
sensitivity of a transition time tpost is given by

τpost = −
(s−V + s−B)n

(V̇ − + Ḃ−)n
(3.86)
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and we can relate the forward sensitivities s±V , s
±
I , s

±
B as follows:

(s+V )n = (s−V )n +
1

τv
(ϑ+ wnn)

(s−V + s−B)n

(V̇ − + Ḃ−)n
(3.87)

(s+V )m = (s−V )m +
1

τv
wnm

(s−V + s−B)n

(V̇ − + Ḃ−)n
,∀m 6= n (3.88)

(s+I )m = (s−I )m − 1

τs
wnm

(s−V + s−B)n

(V̇ − + Ḃ−)n
+Anmδimδin (3.89)

(s+B)n = (s−B)n − 1

τb
β

(s−V + s−B)n

(V̇ − + Ḃ−)n
(3.90)

(s+B)m = (s−B)m,∀m 6= n (3.91)

here I used Anm to denote the adjacency matrix of the neuron connectivity. The
forward sensitivity equations outside of jumps are given by

τv ṡV = −sV + sI (3.92)
τsṡI = −sI (3.93)
τbṡB = −sB (3.94)

Using these equations we can compute the gradient w.r.t. the loss as

dL

dwij
=

Npost∑
k=0

[∫ tpost
k+1

tpost
k

[
∂l

∂V
· sV +

∂l

∂I
· sI +

∂l

∂B
· sB +

∂l

∂wij

]]

−
Npost∑
k=0

[
∂lp
∂tk

+ l+ − l−
]

(s−V + s−B)n(k)

(V̇ − + Ḃ−)n(k)
(3.95)

where we’ve used n(k) to denote the index of the neuron emitting the k-th spike.
The free dynamics of the adjoint variables is given by

τvλ
′
V = −λV − ∂V l (3.96)

τbλ
′
B = −λB − ∂Bl (3.97)

τsλ
′
I = −λI + λV − ∂I l (3.98)

Therefore the dynamics of the adaptation adjoint variable is fully decoupled
from that of the current and membrane voltage adjoint variables. We can again
restrict our attention to one term ξk in the sum over transitions

ξk =

[
l− − l+ +

∂lp

∂tpost
k

]
τ

+
[
τv
(
λ+V · s−V − λ+V · s+V

)
+ τs

(
λ−I · s−I − λ+I · s+I

)
+ τb

(
λ−B · s−B − λ+B · s+B

)]
|tpost

k

(3.99)

Inserting the relations obtained for the forward sensitivities (3.87-3.91), as well
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as (3.86) and reorganizing yields:

ξk =
∑

m̸=n(k)

[
τv(λ

−
V − λ+V )m(s−V )m + τb(λ

−
B − λ+B)m(s−B)m

]
+

∑
m̸=n(k)

[
τs(λ

−
I − λ+I )m(s−I )m − τsAnmδin(k)δjm(λ+I )m

]
+ τv

[
(λ−V )n(k) −

(
(λ+V )n(k) +

1

τv(V̇
−
n(k) + Ḃ−

n(k))

[
ϑ(λ+V )n(k) − β(λ+B)n(k)

+
∑

m ̸=n(k)

wn(k)m(λ+V − λ+I )m +
∂lp

∂tpost
k

+ l− − l+)

 (s−V )n(k)

+ τb

[
(λ−B)n(k) −

(
(λ+B)n(k) +

1

τb(V̇
−
n(k) + Ḃ−

n(k))

[
ϑ(λ+V )n(k) − β(λ+B)n(k)

+
∑

m ̸=n(k)

wn(k)m(λ+V − λ+I )m +
∂lp

∂tpost
k

+ l− − l+)

 (s−B)n(k)

+ τs(λ
−
I − λ+I )n(k)(s

−
I )n(k). (3.100)

Therefore the transition equations of the adjoint variables are given by

λ−I = λ+I (3.101)
λ−B = λ+B ,m 6= n(k) (3.102)

(λ−B)n(k) = (λ+B)n(k)

+
1

τb(V̇ − + Ḃ−)n(k)

[
ϑ(λ+V )n(k) − β(λ+B)n(k) + (WT (λ+V − λI))n(k) +

∂lp

∂tpost
k

+ l−V − l+V

]
(3.103)

(λ−V )m = (λ+V )m,m 6= n(k) (3.104)
(λ−V )n(k) = (λ+V )n(k)

+
1

τv(V̇ − + Ḃ−)n(k)

[
ϑ(λ+V )n(k) − β(λ+B)n(k) + (WT (λ+V − λI))n(k) +

∂lp

∂tpost
k

+ l−V − l+V

]
.

(3.105)

and the gradient of the loss function is again

dpS = dwijS =

∫ T

0

∂pldt− τs
∑
k

An(k)jδin(k)(λ
+
I )j . (3.106)

One interesting observation is that the issue of critical weight parameters is
better behaved for adaptive LIF neurons, assuming that the adaptation variable
B is initialised with a non-zero value. For large time constants τb the value of
Ḃ− will be sufficiently far from zero for jumps in the λV and λB not to diverge,
as V̇ −

k ≥ 0 for a neuron that spiked. In other words there will be no point in
weight space where V̇ − + Ḃ− = 0 in contrast to the situation of LIF neurons.
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Figure 3.3: Illustration of the scatter and gather pattern of spike communication
(pink) and adjoint error communication (violet) of a given neuron the spikes at
time t and receives error information at s = T − t respectively. Alternatively
each neuron can keep track of the time and source of any spike input it receives
and transmit error information during the adjoint integration accordingly.

3.3 EventProp Algorithm
The forward and adjoint equations with jumps of the LIF and adaptive LIF
neuron respectively suggest an algorithm to compute the gradients (3.78, 3.106)
with respect to the parameters efficiently (see also [165], where this algorithm
is explained in the case of the LIF neuron). The main observation is that both
during forward integration and during integration of the adjoint state dynamics,
the state variables (V, I) or (V, I,B) are only coupled at spike times and so are
the adjoint variables (λV , λI) or (λV , λI , λB). Moreover while during forward
integration a spike at time t results in a broadcast of a message to all neurons
the spiking neuron is a presynaptic partner to, during adjoint integration this
results at time s = T − t in the gathering of errors according to (3.75, 3.101)
at this neuron. This is illustrated in figure 3.3. Such a communication pattern
lends itself well to a distributed implementation both in event-based simulators,
as well as neuromorphic hardware. Finally in the case of the more general
Neural Event Processing elements it suggests an end-to-end training approach
for potentially large systems of Neural ODEs that are coupled through event
based communication.

In the case of digital-analog neuromorphic hardware, such as the BrainScaleS-
2 system the method could be implemented on-chip with the use of the plasticity
processing unit or in-the-loop learning [40], I will discuss those options in chapter
7.

In order to evaluate the method I conducted a number of experiments to ver-
ify its performance and evaluate its behaviour relative to previously established
methods of training spiking neural networks. Two different implementations
were used: A purely event based simulators that uses exact solutions of the
LIF neuron equations and root bracketing to implement arbitrary feed-forward
networks with efficient event communication and high time precision. In a sim-
ilar fashion the adjoint dynamics can be solved exactly based on information
stored at event times during forward integration. This implementation was done
by Timo Wunderlich [165]. I implemented several neuron models besides the
LIF and adaptive LIF neuron model in a PyTorch [121] based library. In that
implementation I replaced the term λ+V − λI by λ−I in in eqs. (3.77), (3.105),
(3.103).
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Figure 3.4: Schematic depiction of the EventProp algorithm implemented by a
Neural (Event) Processing Element. Given a spiking neural network, which can
be implemented by a processing element e1 (for example a neuromorphic chip),
the EventProp algorithm defines an adjoint spiking neural network, whose differ-
ential equations are implemented by a processing element e∗1. During forward
integration the processing element e1 only needs to store the pre-spike times
tpre
k and (tpost

l , v̇−) at the post spike times tpost
l in the memory m1. During

backward integration the processing element e∗1 receives error information at
the post-spike times tpost

l and uses the knowledge of the pre-spike times tpre to
pass on errors to other processing elements. The optimizer o1 integrates weight
changes and applies the weight update at s = 0.

Figure 3.5: Illustration of the compatibility of Neural Event Processing Elements
and other Neural Processing Elements. (A) illustrates the case of a pointwise
(in time) application of a primitive ϕ to the event output of a processing ele-
ment e1, which then gets passed to a processing element e3. (B) illustrates the
same situation but for a parametrised processing element e2. It can be seen as
an illustration of the PyTorch code listing 3.1, with the correspondence e1 =
LIFFeedForwardLayer, e2 = torch.nn.Conv2d, e3 = LIFFeedForwardLayer.
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Figure 3.6: Two leaky integrate and fire neurons are connected by a weight w
in a feed-forward fashion (A). The first neuron receives poissonian input from
100 independent Poisson sources with frequency 200Hz weighted by randomly
initialised static weights. The loss is given by the sum over the spike times
of the second neuron L =

∑
i ti. We show the membrane voltage traces for

one particular trial in (B,C). In the particular trial the upper neuron spikes at
times indicated by the black arrows and the lower neuron spikes twice at times
tpost
1 , tpost

2 . Accordingly the loss has two terms tpost
1 + tpost

2 resulting in jumps
of the adjoint state variable λV , which influences the adjoint state variable λI
of the lower neuron at these times (E). At spike times of the upper neuron its
adjoint state variable λv jumps by w(λV − λI) (G), since integration happens
backwards in time only spikes (dashed arrows) that happen before the last spike
of the lower neuron lead to contributions (D). The gradients get accumulated
at presynaptic spike times at the weights, we show one of the accumulated
gradients of the upper neuron in (F) and the gradients accumulated for w in
(G), both agree with the gradient computed by central differences with an error
of less than 10−7. Figure adapted from [165].
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A PyTorch based implementation has the main advantage that it is fully
compatible with standard machine learning tools. However implementing differ-
ential equations efficiently is an art in itself, so in the long run integration into
either a dedicated event based simulator or a general purpose solver suite such
as [132, 131, 133] seems desirable.

An example how the library can be used to compose models out of PyTorch
modules that implement the feedforward and adjoint equations is shown in 3.1.
It also indicates how ordinary PyTorch modules can be ”lifted” to sequentially
compose with the spiking neuron models. The ”Lift” module is a higher order
module which applies a module pointwise in time.

Listing 3.1: Use of the PyTorch based library implementing the EventProp
algorithm. The example also illustrates the composability of the method.
import torch

data = torch . randn (T, B, IC , W, H)

module = torch . nn . Sequent i a l (
LIFFeedForwardLayer ( )
L i f t ( torch . nn . Conv2d ( IC , OC, F, S ) ) ,
LIFFeedForwardLayer ( ) ,

)

output , _ = module ( data )

In order to be able to compare to existing surrogate gradient methods, I also
implemented corresponding PyTorch modules of the same neuron models. The
implementation of the forward pass can be shared, with the exception of which
information is saved for the backward integration. In the case of surrogate
gradient training this is done automatically. I used a factor of α = 100 in
the super-spike surrogate gradient [171] throughout, recent work [172] suggests
that the method is relatively stable with respect to this hyperparamter, but a
more thourough analysis would need to compare performance across this hyper-
paramter as well.

3.4 Experiments

3.4.1 Single Neuron Tasks

A simple task to consider is a single neuron stimulated at different times by k
fixed poisson distributed spike trains, with synaptic weights distributed accord-
ing to a gaussian distribution. The goal is for the neuron to respond to these
fixed spike trains with a certain number of spikes ntarget within a time T . The
loss in this case is given

l = −ntarget/T +
∑
i

δ(t− ti(p)),
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here the sum is over the times ti(p) at which the neuron fired. The total loss
(action) therefore evaluates to

S =

∫ T

0

(−ntarget/T +
∑
i

δ(t− ti(p)))dt = nactual − ntarget.

As can be seen in figure 3.7 the total loss remains constant for multiple epochs,
but nevertheless the neuron eventually spikes the prescribed number of times.
This is due to the fact that the time course of λi is non-zero and therefore leads
to weight changes at presynaptic spike times.

The second single neuron task I consider demonstrates that it is also possible
to incorporate loss functions dependent on voltage information at pre-defined
points in time. This illustrates equation 3.13. The target is for the membrane
voltage to reach the spike threshhold vth at times t0, t1. This can be expressed
by a loss function

l = |v − vth|2δ(t− t0) + |v − vth|2δ(t− t1). (3.107)

One should note that a priori there is no guarantee that this will result in spikes
only at times t0, t1. This can be mitigated by introducing a regularisation term

lreg =

∫
Θ(v − vth + ϵ)|v − vth|2 (3.108)

Figure 3.8 illustates the opimization progress on a specific example. As in the
first task a single neuron is stimulated with fixed poisson input. In contrast
to the first task the total loss continuosly decreases. This is intuitively clear
because we are optimizing for the square distance of the voltage state at given
points in time. The adjoint state variable λv on the other hand exhibits jumps
at times t0, t1.

3.4.2 Ying-Yang Dataset
The experiment described in this section, as well as the implementation of
the event-based simulator was done by Timo Wunderlich [165]. We trained
a two-layer spiking neural networks using an event-based simulator on a two-
dimensional dataset first described in [71]. We also used the same time-to-first
spike loss as in [71]

L(tpost, l) = − log

[
exp

(
−tpost

l /(ξτsyn)
)∑

k exp
(
−tpost

k /(ξτsyn)
)]+α[exp( tpost

l

βτsyn

)
− 1

]
. (3.109)

The loss is given as a sum of a cross-entropy term, where tpost
k is the first spike

time of neuron k and l is the index of the neuron correponding to the correct label
and a regularization term. Simulation parameters can be found in appendix A
(A.1). In contrast to [71] our method applies to arbitrary ratios of synaptic and
membrane time-constant, as no explicit solution of the spike times depending
on weights is needed. Over 300 training epochs we achieve (95.9± 0.5)% (mean
and standard deviation over 10 runs) accuracy on the validation dataset, which
is comparable to the results reported in [71] (95.9 ± 0.7)% on a comparable
network architecture.
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Figure 3.7: A single LIF neuron receives input from 100 poisson sources. The
optimization goal is for the neuron to spike a certain number of times (n = 6 in
the figure) within the integration window. I show training progress (B) and final
neuron dynamics (A). The voltage dynamics (C-E) belong to different epochs
marked in (B). The associated adjoint-state dynamics can be seen in (F-H).
While the loss, which in this case is an integral over the elicited spikes remains
constant for multiple epochs, the gradient of each weight is computed from the
adjoint dynamics of λI and the occurence of pre-synaptic spikes (not-shown)
according to eq. 3.78. The jumps in the λV occur due to contributions of the
spike times.

3.4.3 MNIST and Fashion-MNIST
To validate the approach I consider an easy machine learning benchmark: Clas-
sifying handwritten digits. I compare with another approach to training spiking
neural networks directly, namely surrogate gradients. More specifically I use the
surrogate gradient introduced in [171]. I evaluate two network architectures: A
recurrent LIF network with leaky-integrator readout neurons and a four-layer
feed-forward convolutional network. I trained the recurrent neural network with
a sequence length T = 32ms and batch size B = 32. I used the ADAM optimizer
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Figure 3.8: A single LIF neuron receives input from 100 poisson sources. The
optimization goal is for the neuron to spike at randomly chosen spike times
t0, t1 and not at any other times. This is realised by a distributional loss L =
1
2

∑
i∈{0,1}|v − vth|2δ(t− ti) + lreg, the regularization term lreg =

∫
Θ(v − vth +

ϵ)|v−vth|2 enforces that no spikes at other spike times occur. I show the loss (A),
final voltage trace (B) and adjoint variable dynamics (C) of one sample run of
this task. The two black dashed lines in (B, C) mark the target spike times t0, t1.
The adjoint state dynamics leads to increases of weights that received input close
to the desired target spike times (with an exponential decay), the regularisation
term in turn decreases any weights that received input close unwanted spike.

with parameters ADAM(lr = 0.002, β = (0.9, 0.999), ϵ = 10−8). To compute the
loss I consider the voltage traces (V1(t), . . . , V10(t)) of the ten readout leaky
integrators (each belong to a class). The maximum accross time of each of the
voltage traces is computed

m = (max(V1), . . . ,max(V10)), (3.110)

and then the cross entropy loss over these voltage peaks is computed

loss(m, c) = − log

(
exp(mc)∑
j exp(mj)

)
. (3.111)

In other words this loss considers the maximal voltage of each of the readout
neurons to be the class label.

The convolutional neural network was trained with a sequence length T =
32ms, batch size B = 32. We used the ADAM optimizer with parameters
ADAM(lr = 0.001, β = (0.9, 0.999), ϵ = 10−8). The resulting accuracies on the
validation data set are visualized in figure 3.10, with the same loss as for the
recurrent network models. The architecture of the convolutional neural network
is given in listing (A.1).

3.4.4 CIFAR-10
I also evaluated our method on a larger image recognition machine learning
dataset CIFAR-10 [98]. The resulting accuracies of five training runs each are
displayed in figure 3.12. I chose to evaluate the network on a sequence length
S = 32ms, batch size B = 256 and used the ADAM optimizer with parameters
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Figure 3.9: We train a two-layer spiking neural network on the two-dimensional
Ying-Yang dataset, with a time to first-spike loss (Dataset and task adopted
from [71]). The three classes of points (red, green, blue) are illustrated in (A),
each point (x, y) is translated in a tuple of spike times (Tx, T (1− x), T y, T (1−
y), tbias) (D), scaled by the experiment time T = tmax − tmin, with tbias being
one fixed additional ”bias” spike. Both the validation loss and validation error
decrease rapidly over 300 training epochs (D,E). We show 10 training runs with
different random initialisation in grey and their mean in blue. The network
performance after training on the validation set is illustrated in (E): Colored
dots encode the time difference ∆t = tspike − tmin when one of the three label
neurons spiked for a given input tspike relative to the first spike any of the label
neurons produced for this input tmin, crosses indicate no spike. Figure adapted
from [165].

ADAM(lr, β = (0.9, 0.999), ϵ = 10−8). I evaluate on a set of learning rates
lr = {0.0001, 0.0005, 0.0006, 0.002}.

As can be seen from figure (3.12), performance of surrogate gradient and
adjoint learning is comparable on the evalutated range of learning rates. To
achieve results closer to the state of the art therefore most likely depends on
better choices of model architecture, encoding, decoding to spikes and loss func-
tion. In particular deeper spiking neural networks are known to yield better re-
sults [51, 145]. Since the method I presented here can accomodate loss function
that depend on arbitrary parameters it enables the same kind of regularisation
techniques currently used to make deep spiking neural networks competitive.

3.4.5 Sum of Sines Regression Task
Timo Wunderlich contributed code to this Task. To demonstrate the ability of
the method to work on a long temporal sequence I consider a simple regression
task. A layer of hidden neurons (Nhidden = 100) receives poisson input with
frequency of 100Hz a single leaky-integrator’s voltage trace v(t) should approxi-
mate the given target function s(t). The loss is given by the mean squared error
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Figure 3.10: Comparison of validation accuracy on the MNIST dataset of three
different networks after training for 20 epochs. In (A,B) I compare recurrent
spiking neural networks with 100 hidden neurons with 10 leaky integrators as
readout units. The learning rate of the ADAM optimizer is swept over a range
10−4 . . . 10−2 in logarithmically equally spaced steps and 5 models are trained
for each method. In (A) the greyscale images are encoded by first transforming
them to have zero mean and variance of one and then treating their pixel value
as a constant input current to a leaky integrator. In (B) images are encoded by
transforming the pixel value into a spike latency. Finally the model used in (C)
is a convolutional neural network, that receives inputs encoded according to the
same method used in (A). As can be seen in all cases (A-C) the adjoint method
either outperforms or has equal performance to surrogate gradient training.

Figure 3.11: Comparison of the validation accuracy on the Fashion-MNIST
dataset for three different networks after training for 20 epochs. Data was
encoded by normalising it to have mean zero and variance of one and then
treating the pixel values as a constant input current to a leaky integrator. In
(A, B) I consider 1 and 2 layers of recurrently connected neural LIF neurons with
100 and 100, 50 neurons per layer respectively. Readout is done in all cases by
10 Leaky-Integrators. In (C) the same feed-forward convolutional architecture
as for the MNIST task was used. The learning rate of the ADAM optimizer is
again swept over a range 10−4 . . . 10−2 in logarithmically equally spaced steps
and 5 models are trained for each method. As can be seen in all cases (A-C)
the adjoint method either outperforms or has equal performance to surrogate
gradient training.

over the output voltage trace 1
T

∫ T

0
|v(t)− s(t)|2dt. This illustrates an example

where the loss enters the adjoint dynamics (3.64). Training was done using
ADAM(0.002, β = (0.9, 0.999), ϵ = 10−8), results are shown in Fig. 3.13.
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Figure 3.12: Comparison of validation accuracy obtained over 40 training epochs
on the CIFAR-10 dataset using a feed forward convolutional neural network of
LIF neurons. Encoding was done by normalising the RGB input data to mean
0 and standard deviation of 1 and encoding each channel subsequently using a
6 channels per pixel indexed by sign and color of the input, input values where
then treated as constant input currents to two leaky integrate and fire neuron
with a threshhold of 0.7. Details of the convolutional archticture are given in
listing (A.2). Training was done using the ADAM(lr, β = (0.9, 0.999), ϵ = 10−8)
with learning rates {0.0001, 0.0005, 0.0006, 0.0003}, overall maximum validation
accuracy of 76.43 and 76.24 percent was achieved with a learning rate lr = 0.0005
for adjoint and super-spike training respectively.

3.4.6 Cartpole - Reinforcement Learning Task

I also evaluated the method on a reinforcement task: The task is to balance a
pole connected by a joint to a cart, which moves on a frictionless track (see fig.
3.14 B). This problem was first proposed as a task in [12]. Here I use OpenAI
gym mplementation of the task [28].

The four state variables are the carts position x, velocity v, the poles angle θ
(deviation from vertical orientation) and angular velocity ω. For each trial they
are assigned a random uniform value in [−0.005, 0.005]. The agent can accelerate
(push) the car in either positive or negative x direction at each timestep t.
For each timestep the pole has not tipped over, which is defined as the angle
increasing beyond ± 1

15π and the cart’s position has remained in x ∈ [−2.4, 2.4]
the agent receives a reward of rt = 1. The episode ends when one of these two
conditions is not satisfied or the pole has been balanced for N = 200 timesteps.
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Figure 3.13: Regression loss of sum of sine task (A), shown are the mean over
ten runs (violet), as well as the individual loss curves (grey). Voltage trace of
the readout leaky integrator (B) on the sum of sine regression task, shown are
performance before and after training.

Figure 3.14: Illustration of the cartpole reinforcement learning task: A cart on
a frictionless track is connected to a pole via a hinge (B). The goal is to keep the
pole from tipping over. The angle θ, angular velocity ω, velocity v and position
x are the input to a spiking neural network (A). It produces control output that
pushes the cart. (C) shows reward over episodes of 5 different runs.

The task is considered solved if the agent has received an average return of 495.0
or higher over 100 consecutive trials.

This task is an example of a sequential decision problem, where at each
timestep t ∈ 0, 1, . . . the agent is confronted with a state st ∈ S, chooses an
action at ∈ A and receives a real-valued reward rt ∈ R. In order to solve it with



40 CHAPTER 3. ADJOINT EQUATIONS OF SPIKING POINT NEURONS

a spiking neural network I used a modified version of the REINFORCE policy
gradient algorithm [163] as implemented in [8]. I encode the 4 state variables
as 8 input currents

(relu(x),−relu(x), relu(v),−relu(v), relu(θ),−relu(θ), relu(ω),−relu(ω))
(3.112)

to LIF neurons for 40ms, these encoding neurons are connected to 100 recur-
rently connected LIF neurons, which in turn are connected to 2 readout Leaky
Integrators (fig. 3.14 A). The connection from recurrent neurons to readout
neurons is subject to dropout per timestep with probability p = 0.2. Action
selection is done by sampling from the probability distribution(

exp(m0)∑
j exp(mj)

,
exp(m1)∑
j exp(mj)

)
(3.113)

where mj = maxt(vj(t)), j = 0, 1 are the maximum of the voltage of the two
readout neurons during the integration window of 40ms. Fig. 3.14 C shows for
5 runs the reward after a given number of Epochs (trials).

3.5 Conclusions
In this chapter I have introduced a method well-known in the optimal control
literature to the study of learning in spiking neural networks. In contrast to
recent deep-learning inspired methods the resulting learning dynamics can easily
be formulated in continuous time and depends only on the state variables at
spike times in the case of linear neuron dynamics such as the leaky integrate
and fire neuron. Moreover the dynamics of the adjoint-state variables follows
a similar time course to the forward differential equations, with jumps in the
adjoint-state at spike times in the forward direction.

More generally it suggests the introduction of the notion of Neural Event
Processing Element, which are systems of ordinary differential equations of small
dimension, which are only coupled at events. Because of the general nature
of the method it is possible to treat a whole class of neuron models on an
equal footing. It should be possible to implement them generically while still
retained the advantages of the sparse and event based coupling of gradient
computation, which follow from the restrictions imposed in the definition. These
properties should also make it relatively easy to incorporate the method in event
based simulators such as NEST [67] or arbor [5]. Moreover in the context of
neuromorphic hardware such as [60, 44, 2] it should enable efficient in-the-loop
[40, 142] or even on-chip optimization, because only sparse information about
the state needs to be stored per-neuron.

Another particular attractive avenue of research is then to consider sys-
tems where the equations are partially fixed known from physical considera-
tions up to free adjustable parameters (for example memristive crossbar arrays,
quenched josephson junctions, spin transfer nano-oscillators [135]) and then con-
sider parametrised and event based coupling of such systems. See [109] for a
recent review of such approaches. In particular it would be interesting to find
physical systems that naturally accomodate the adjoint equations.

Clearly the method as presented here can’t be taken as a biologically plau-
sible model of learning. One obvious obstacle is that the time integration of
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the adjoint-variables happens backwards in time with respect to the neuron dy-
namics. One promising research direction is therefore to combine the method
presented here with methods of breaking the forward-backward dependence in
(spiking) deep-neural networks, such as differentiable neural interfaces [86] or
other recent work in that direction such as [16, 14] (based on surrogate gradi-
ents) and dendritic learning rules [154]. I present a derivation of a simple online
learning rule for (adaptive) LIF neurons based on the forward sensitivity equa-
tions with jumps in chapter 5. Another promising direction is to use the adjoint
equations in a Meta-Learning or Learning to Learn setting, we can then optimize
biologically plausible plasticity rules, which typically also depend on discontinu-
ities state evolution, using gradients derived from the adjoint dynamics in the
outer loop. I will discuss this briefly in chapters 6 and 7.

In a theoretical direction several other developments are plausible: The
method as presented here can be related to surrogate gradient based approaches
via the well known concept of a mollifier. Smoothing out the jumps in the for-
ward direction with such mollifiers, yields differential equations to which the
adjoint method without jumps can be applied, the resulting adjoint-equations
depend on derivatives of the mollifier, it should then be possible to show that
solutions converge in the sense of distributions to solutions of the equations
presented here.

The numerical experiments on machine-learning datasets, especially on the
larger CIFAR-10 dataset, don’t reach state of the art performance. Since we
see comparable performance between surrogate gradient and adjoint learning, I
believe this is most likely due to choices in network architecture, as well as how
I encode to and from spikes. Nevertheless further work is needed to achieve
state of the art results in such benchmarks.
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Chapter 4

Linear Adjoint Dynamics
with Jumps

Both the adaptive LIF neuron and LIF neuron dynamics are examples of time-
invariant linear ordinary differential equations. Such equations have explicit
solutions, which can be used to derive exact integration schemes. In the context
of spiking neural networks this was pointed out in [136]. As it turns out the
adjoint dynamics of a linear time invariant system can also be solved analytically.
If one introduces jumps as is necessary for the treatment of the LIF and adaptive
LIF neurons this still hold with the exception that now the adjoint dynamics
jumps at jump times computed during the forward integration. I arrive at
explicit formulas for the gradients of linear time-invariant ordinary differential
equations with jumps with respect to arbitrary loss functions and arbitrarily
specified jump and transition functions. These generalise the explicit formulas
presented in chapter 3.

4.1 Background
Consider a linear ordinary differential equation given by

ẏ = Ay + x, (4.1)

with A an n × n dimensional matrix, y(t) ∈ Rn and x(t) ∈ Rn some time
dependent input vector then an explicit solution is given by

y(t′) = eA(t′−t)y(t) +

∫ t′

t

eA(t′−τ)x(τ)dτ (4.2)

Now assume that the input to the system is given as a (weighted) sum of dirac
delta distributions (weighted spikes)

x(t) =
∑
k

xkδ(t− tk) (4.3)

then

y(t′) = eA(t′−t) +
∑
k

eA(t′−tk)xk (4.4)

43
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This situation can be illustrated by the following diagram

y(t0)

x1 x2 x3

y(t4) (4.5)

That is we can divide the integration into segments interrupted by external
events, since the ODE is linear and time indepedent it can be restarted at each
external event.

If we assume that jump conditions are given by functions
j(y−, p, tf ) = 0 (4.6)

resulting in a transition
y+ = θ(y−, p, tf ) (4.7)

we can split up the integration at the transition times tfj , j = 1 . . . N and get a
recursive formula for the state at time t′

y(t′) = eA(t′−tfj )θ(y−j , p, t
f
j ) +

∑
k,tk>tfj

eA(t′−tfk)xk, t
′ < tfj+1 (4.8)

These internal jumps can be incorporated in a diagram like (4.5) as follows:

y(t0)

x1 x2 x3

y(t4) (4.9)

the open dots indicate the times tfi , when one of the jump conditions is satisfied.
I will now turn to the adjoint dynamics of such a system.

4.2 Adjoint Equations
The adjoint equation of the system (4.1) are given by (with s = T − t) and
f ′ = df

ds :
λ′ = ATλ− ∂yl, (4.10)

which again has the exact solution

y(s′) = eA
T (s′−s)y(s)−

∫ s′

s

eA
T (s′−σ)∂yldσ (4.11)

Now the general formula for the jumps in the adjoint variables that I derived in
chapter 3 and gradients can be specialised to the case at hand:

(λ−)T = (λ+)T
[[
Ay+ − ∂y−θAy−

] ∂y−j

∂y−jAy−
+ ∂y−θ

]
+ (l− − l+ + ∂tk lp)

∂y−j

∂y−jAy−
(4.12)

ξp = −
[
(l− − l+ + ∂tk lp) + λ+

[
Ay+ − ∂y−θAy−

]] ∂pj

∂x−jẋ−
− λ+∂pθ

(4.13)
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Therefore we can write

(λ−)T = θ∗(λ+, y+, y−, A, p) (4.14)

and we can compute in the backward pass the gradient contributions efficiently
by the following recursive formula

λ(s′) = eA
T (s′−sfj+1)θ∗(λ+j+1, y

+
j+1, y

−
j+1, A, p)−

∫ s′

sfj+1

eA
T (s′−σ)∂yldσ (4.15)

with sfj = T − tfj . Since the jump times are known from the forward integration
we only need to compute

λ−(sfj ) = eA
T (sfj −sfj+1)θ∗(λ+j+1, y

+
j+1, y

−
j+1, A, p)−

∫ sfj

sfj+1

eA
T (sfj −σ)∂yldσ (4.16)

and the gradient of the loss with respect to the parameters is given by

dpL =

∫ T

0

∂pl − 〈λ, ∂pA(p)y〉]dt

+
∑
tk

−
[
(l− − l+ + ∂tk lp) + λ+

[
Ay+ − ∂y−θAy−

]] ∂pj

∂x−jẋ−
− λ+∂pθ

(4.17)
Including the adjoint dynamics the diagram 4.9 becomes

y(t0)

x1 x2 x3

y(t4)

λ(t0) λ(t4)

(4.18)

The state dynamics of the adjoint variable is ”backwards” in time and is non-
linear at events in the forward direction. In the spiking neuron models I dis-
cussed in the previous chapter the equations only coupled at the jumps indicated
by dotted lines.

Now assuming that the transition is an affine transformation

y+ = By− + c (4.19)

and the jump condition is given by some other affine map

j(y−, D) = Dy− + e (4.20)

then

(λ−)T = (λ+)T
[[
Ay+ −BAy−

] D

DAy−
+B

]
+ (l− − l+ + ∂tk lp)

D

DAy−

(4.21)

ξp = −
[
(l− − l+ + ∂tk lp) + (λ+)T

[
Ay+ −DAy−

]] ∂pj

∂x−jẋ−
− λ+∂pθ

(4.22)
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and the gradient of the loss with respect to the parameters is given by

dpL =

∫ T

0

∂pl − 〈λ, ∂pA(p)y〉]dt

+
∑
tk

−
[
(l− − l+ + ∂tk lp) + (λ+)T

[
Ay+ −DAy−

]] ∂pj

∂x−jẋ−
− λ+∂pθ

(4.23)

More generally we could both parametrise the affine transformation and the
jump condition by an arbitrary artificial neural network while retaining the
simple form of the exact integration above.

4.3 Conclusions
The results presented in this chapter hopefully clarify the somewhat uninspired
calculations necessary to arrive at the results for the LIF and adaptive LIF
neurons derived in chapter 3. It also makes clear under what circumstances
an efficient implementation of the dynamics using exact integration is possible.
In particular the adjoint dynamics can be iteratively determined by equation
(4.15). Moreover the time evolution of a quantum system with time independent
Hamiltonian is also an example of this kind of ordinary differential equation

ih̄∂tψ = Hψ (4.24)

and so is the von-Neumann equation

ih̄∂tρ = [H, ρ]. (4.25)

This suggests the study quantum systems coupled via events to classical systems.
Measurements lead to some projection Pi of the density matrix

ρ′i =
PiρPi

tr [ρPi]
. (4.26)

which can be considered to a transition of the kind considered above. The use
of analog quantum systems to implement neuromorphic computing was also
recently discussed in [109].



Chapter 5

Online Learning for Spiking
Point Neurons

In the previous chapter I derived an exact method to compute gradients and
optimize point neuron models. During the course of the derivation we also
arrived at equations for forward sensitivity equations and their jumps. While
the adjoint sensitivity method itself allows one to compute exact gradients, it
suffers from the fact that it has to be computed in reverse time relative to
the original differential equation. While the forward sensitivity equations don’t
suffer from this problem, a naive implementation scales as a product of dynamic
variables and parameters. This is prohibitive for large numbers of parameters.

Recent work in the context of spiking neurons solved this scalability problem
for time discretized systems of equations with smoothed derivatives [15]. This
algorithm called ”e-prop 1” is a truncation of the real-time recurrent learning
algorithm (RTRL) [134, 164]. This same truncation had been used before to
train LSTM (c.f. Figure 2 and eq. (10,11,14,15) in [80]), as well as in subsequent
papers [64], where it also was pointed out that the approximation is local in
space and time. The forward sensitivity equations can be seen as a continuous
time analogue of the RTRL equations. The goal in this chapter then is to
derive a truncation similar to the one done in [15] but in continuous time and
without resorting to approximations of spike derivatives. The crucial insight is
that spiking neural network models only couple through events and therefore
the sensitivity equations largely develop independently. In point neuron models
the number of dynamical variables Ki per neuron i = 1 . . . N is small. The
method I will derive has Ki×Ni additional dynamical variables, where Ni is the
number of presynaptic partners of neuron i. Since spiking neural networks are
sparsely connected, this is a dramatic reduction of the N3 additional dynamical
variables that the full forward sensitivity equations track. Without resorting to
discretization or smoothing of derivatives, it is possible to derive three-factor
learning rules from the forward sensitivity equations derived in the preceeding
two chapers.

I will begin with the two explicit models I derived in chapter 3 the LIF neuron
model and the ALIF neuron model. Recall that the gradient contributions for
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the LIF neuron were given by

dL

dwij
=

Npost∑
k=0

[∫ tpost
k+1

tpost
k

[
∂l

∂V
· sV +

∂l

∂I
· sI +

∂l

∂wij

]]
(5.1)

−
Npost∑
k=0

[
∂lp
∂tk

+ l+ − l−
]
(s−V )n(k)

V̇ −
n(k)

(5.2)

where the sum runs over the spike times tk and n(k) is the neuron that spiked
at time tk. In order for that part of the expression to be locally computable we
conclude that

(s−V )n(k) = ((s−V )n(k))ij ≈
{

0 if i 6= n(k), j /∈ Npre(n(k))
((s−V )n(k))n(k)j ∀j ∈ Npre(n(k))

(5.3)
where Npre(n(k)) is the set of all presynaptic neurons of neuron n(k). Then
only gradients of weights wn(k)j are modified on a spike of neuron n(k). We can
then define projections

(eV )n = Pn((sV )) = Pn((sV )ijk) =

{
0 if k 6= n, i 6= n, j /∈ Npre(n(k))
(sV )njn ∀j ∈ Npre(n) ∪ {n}

(5.4)
and P =

⊕
n Pn. Inspired by [15] I call these variables eligibility traces. This

projection defines a new set of equations based on the forward sensitivity equa-
tions

τv ėV = τvP (ṡV ) = −P (sV ) + P (sI) = −eV + eI (5.5)
τsėI = τsP (ṡI) = −P (sI) = −eI (5.6)

Each LIF neuron has Ki = 2 dynamical variables and therefore we get a total
of

K
∑
i

(Npre
i + 1) < 2(N + 1)N (5.7)

additional dynamical variables to track. In sparse networks this bound is very
loose but in any case much better than N3.

Since the projections P are linear, we can also easily apply them to the
transition equations

Pn((s
+
V )n) = Pn

(
Pn((s

−
V )n) +

1

τv
(ϑ+ wnn)Pn

(
(s−V )n

V̇ −
n

))
(5.8)

Pm((s+V )m) = Pm

(
(Pm((s−V )m) +

1

τv
wnmPn

(
(s−V )n

V̇ −
n

))
,∀m 6= n (5.9)

Pm((s+I )m) = Pm

(
Pm((s−I )m)− 1

τs
wnmPn

(
(s−V )n

V̇ −
n

)
+ Pm(Anmδinδjm)

)
,

(5.10)

where Anm denotes the (directed) adjacency matrix. Note that the terms

1

τv
wnmPn

(
(s−V )n

V̇ −
n

)
,− 1

τs
wnmPn

(
(s−V )n

V̇ −
n

)
(5.11)
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Figure 5.1: When a neuron n (indicated by a red circle) fires, the current eligi-
bility traces sI in all post-synaptic neurons are affected (red squares) and jump
by one. At the same time the voltage eligibility traces sV of the neuron n that
fired are changed (blue squares) according to eq. (5.16).

get projected to zero. We are therefore left with

(e+V )n = (e−V )n +
1

τv
(ϑ+ wnn)

(e−V )n

V̇ −
n

(5.12)

(e+V )m = (e−V )m,∀m 6= n (5.13)

(e+I )n = (e−I )n − 1

τs
wnn

(e−V )n

V̇ −
n

+ δinδjn (5.14)

(e+I )m = (e−I )m +Anmδinδjm,∀m 6= n (5.15)

If the neurons have no autapses wnn = 0, Ann = 0, the somatic voltage and
current eligibilities will remain zero if they were zero initially and the equations
simplify even further

(e+V )n = (e−V )n +
1

τv
ϑ
(e−V )n

V̇ −
n

(5.16)

(e+V )m = (e−V )m,∀m 6= n (5.17)
(e+I )m = (e−I )m +Anmδinδjm, (5.18)

This situation is illustrated in figure (5.1). We therefore arrive at the following
approximation of the gradient

dL

dwij
=

Npost∑
k=0

[∫ tpost
k+1

tpost
k

[
∂l

∂V
· eV +

∂l

∂I
· eI +

∂l

∂wij

]]
(5.19)

−
Npost∑
k=0

[
∂lp
∂tk

+ l+ − l−
]
(e−V )n(k)

V̇ −
n(k)

(5.20)
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Starting from the equation for the gradient we can apply the same reasoning
to the adaptive LIF neuron

dL

dwij
=

Npost∑
k=0

[∫ tpost
k+1

tpost
k

[
∂l

∂V
· sV +

∂l

∂I
· sI +

∂l

∂B
· sB +

∂l

∂wij

]]
(5.21)

−
Npost∑
k=0

[
∂lp
∂tk

+ l+ − l−
]

(s−V + s−B)n(k)

(V̇ − + Ḃ−)n(k)
(5.22)

this suggests to again define

eV = P (sV ) (5.23)
eI = P (sI) (5.24)
eB = P (sB) (5.25)

(5.26)

and we immediately obtain from eqs. (3.92), (3.93), (3.94):

τv ėV = −eV + eI (5.27)
τsėI = −eI (5.28)
τbėB = −eB (5.29)

and by the same rationale as before (assuming wnn = 0, Ann = 0), we get

(e+V )n = (e−V )n +
1

τv
ϑ

(e−V + e−B)n

(V̇ − + Ḃ−)n
(5.30)

(e+V )m = (e−V )m,∀m 6= n (5.31)
(e+I )m = (e−I )m +Anmδimδin (5.32)

(e+B)n = (e−B)n − 1

τb
β

(e−V + e−B)n

(V̇ − + Ḃ−)n
(5.33)

(e+B)m = (e−B)m,∀m 6= n (5.34)

Using these equations we can compute the gradient w.r.t. the loss approximately
as

dL

dwij
=

Npost∑
k=0

[∫ tpost
k+1

tpost
k

[
∂l

∂V
· eV +

∂l

∂I
· eI +

∂l

∂B
· eB +

∂l

∂wij

]]
(5.35)

−
Npost∑
k=0

[
∂lp
∂tk

+ l+ − l−
]

(e−V + e−B)n(k)

(V̇ − + Ḃ−)n(k)
(5.36)

Both derivations have in common that in order to derive the approximation
the equations had to only couple at the transition times. In structured neurons
as I will discuss in the next chapter 6 this still holds true for the variables of
the pre- and post-synaptic density. The equations as I have derived them here
have the advantage that they rely only on spike times and synaptic parame-
ter gradients that are computed online. This makes them candidates for an
(approximate) implementation in neuromorphic hardware.
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The eligibility equations as I derived them here have the disadvantage that
error signals only can propagate forward, which necessitates recurrence. One
way of sidestepping this issue and still retain the desirable online-learning capa-
bilities is to proceed in two steps. First we can observe that during the derivation
of the adjoint equations, we could have chosen to only perform partial integra-
tion on some of the variables in (3.5). This leaves us with some variables whose
sensitivities are integrated forward in time and others for which adjoint sensi-
tivities are computed. In a second step we can then attempt to locally predict
the future value of the adjoint variable and thereby again decouple the forward
and backward dynamics.
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Chapter 6

Adjoint Equations of
Structured Neurons

Although the point neuron models I considered in the previous chapter are what
is typically implemented in order to conduct network level simulations of spiking
neural networks, they only crudely approximate biological neurons and their
bewildering diversity of signalling pathways and molecular mechanisms. A huge
advantage of the adjoint method is the applicability to arbitrary complicated
hybrid systems of ordinary differential equations and even partial differential
equations. To illustrate this I turn in this chapter to multicompartment neuron
models, which are a typical way of modelling more biologically realistic neuron
models [66].

I indicate how to generalise adjoint equations to arbitrary multi-compartment
neuron models. This allows the computation of parameter gradients of all pa-
rameters appearing in a multi-compartment model according to arbitrary loss
functions. In particular I make only very weak assumptions on the coupling
of the dynamics in the pre- and post-synaptic density. That way the adjoint
dynamics and parameter gradients I derive are applicable to a very general class
of synaptic transmission models, including models incorporating plasticity. As
one would expect coupling of the adjoint dynamics at jumps is in the reverse
direction that is from post- to pre-synaptic density and very weak assumptions
on the jump condition in the forward integration. Using the approach presented
here one can therefore study meta-plasticity or optimise synapse models based
on experimentally observed data.

While point neuron models model the membrane potential by a single ca-
pacitor, multi-compartment neuron models take into account the morphology of
the cell and assign varying conductances to segments of the cell. Each segment
is taken to be a cylindrical shape with constant trans-membrane conductance
with the exeption of potentially present voltage-dependent Ion channels.

The main insight is that any such multi-compartment model couples the
different compartments by a symmetric matrix of conductances. Geometrically
it means that errors represented by the adjoint-state variables to the membrane
voltage in each compartment can be thought to propagate along the same den-
dritic tree structure. This resolves in part the ”weight transport problem” as-
suming that there is a way to signal from post- to pre-synaptic synapse. I
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illustrate the approach on the multi-compartment model implemented in the
BrainScaleS-2 neuromorphic chip and a model of CA3 hippocampal Pyramidal
neurons.

6.1 From Neuron Morphology to Equations
A discretised cable equation is formulated by considering a subdivision of the
dendritic tree into N sections [66]. The currents flowing between sections are
determined by Kirchoff’s law. A sparse N ×N matrix g of conductances deter-
mines the coupling between the sections:

Ck
dVk
dt

=
∑
i ̸=k

gki(Vi − Vk)− I ion
k − Isyn(Vk). (6.1)

Here Ck is the sections capacitance (summation over the capacitance is never
implied), which just as the conductances gij are determined by the properties
of this section of the neuron (for the most part its geometry).

The current I ion
k (V ) is a sum of contributions over the different Ion channels

and current contributions from the synapses at this neuron section. Dendritic
trees have only branch points with at most three branching sections. So for a
given neuron segment k the row gki has 1, 2 or 3 non-zero entries.

In order to simplify the differential equation for the voltage above we can
introduce the following symmetric matrix

Gij = gij − δij
∑
k

gik, (6.2)

then we can write the equation above more compactly as

Ck
dVk
dt

= GikVi − I ion(Vk)− Isyn(Vk). (6.3)

Ion channels are typically modelled in the following way: The Ion current is
given by

Ic = gcp(x)(V − ec) (6.4)
where p(x) describes the fraction of open channels of this type in the given
segment, depending on state variables x = (x1, . . . , xn). Each of the state
variables evolves according to a differential equation

ẋ = αx(V, S) · (1− x)− βx(V, S) · x. (6.5)

The gating functions α and β depend on the voltage V of the segment and
potentially on concentrations Si of other Ions or molecules. The functions α
and β are chosen in such a way, that the fraction

x∞(V, S) =
αx(V, S)

αx(V, S) + βx(V, S)
(6.6)

lies between 0 and 1. That way the fraction of open channels is typically ex-
pressed as a monomial

p(x1, . . . , xn) = xk1
1 . . . xkn

n . (6.7)
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The synapse currents are assumed to be of the form

Isyn = gsyn(V syn, A)(V syn − esyn) (6.8)

with some synapse type specific ordinary differential equations

Ȧ = f(V,A, p) (6.9)

here A is a vector of synapse state variables and the function f might depend
on the post- and pre-synaptic voltage. Before we discuss the adjoint equations
of such a model, we will give a concrete example in the next section.

6.2 Model of a Pyramidal Neuron
To ground the discussion we will now consider a concrete model first put forward
by [152] and recently used in modified form in [69]. Here the Ion currents at the
somatic compartment (where action potentials are invoked) are given by

I ion(V ) = gNahm
2(V − eNa) + gKn(V − eK) + gL(V − eL) (6.10)

with gating variables

ṁ = αm(V )(1−m)− βm(V )m (6.11)
ḣ = αh(V )(1− h)− βh(V )h (6.12)
ṅ = αn(V )(1− n)− βn(V )n (6.13)

If one defines the characteristic time τx and equilibrium quantities x∞ by

τx(v) =
1

αx(v) + βx(v)
(6.14)

x∞(v) =
αx(v)

αx(v) + βx(v)
(6.15)

the three equations can alternatively be written as

ṁ = (m∞(v)−m)/τm(v) (6.16)
ḣ = (h∞(v)− h)/τh(v) (6.17)
ṅ = (n∞(v)− n)/τn(v). (6.18)

The shape of the gating functions αx, βx is experimentally determined. Con-
ceptually each of them models a particular Ion channel. At the soma [69] uses
a subset of the numerical values presented in [152], we summarize them in table
6.1. The gating variables n,m, h are used to determine the conductances and
ion currents at the soma

gNa = gNahm
2 INa = gNa(v − eNa) (6.19)

gK = gKn IK = gK(v − eK) (6.20)
IL = gL(v − eL) (6.21)
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Figure 6.1: Morphology of a human pyramidial neuron in the neocortex (A).
Proximal dendrites are colored in red, distal dedrites in violet, the axon in blue
and the soma is indicated by a black dot. Data obtained from [9, 10], based on
original data published by the Allen Institute [95]. The morphology is stored in
discretised form, in total this particular neuron morphology has 9500 sections.
Their connectivity results in adjacency matrix of a directed acyclic graph, which
is visualised in (B). Most of the sections are directionally connected to their
nearest neighbor, this explains the diagonal entries. Each column has at most
two non-zero entries. The columns that contain two entries correspond to branch
points.

Channel / Variable Forward (αx(v)) Backward (βx(v))
gNa/m

13.1−vt
exp((13.1−vt)/4)−1 0.28 vt−40.1

exp((vt−40.1)/5)−1

gNa/h 0.128 exp((17− vt)/18) 4
(1+exp((40−vt)/5)

gK/n 0.016 35.1−vt
exp((35.1−vt)/5)−1 1/4 exp((20− vt)/40

Table 6.1: Numerical values for the voltage dependence of the Ion channel gating
variables. Table adapted from [152].

Ion Channel (x) Conductance gx[mS/cm2] Reversal Potential ex[mV]

Na 30 90
K 15 −80
L 0.14 −62

Table 6.2: Summary of Ion Channel reversal potentials and conductances,
adapted from [69].
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Figure 6.2: Equilibrium values x∞ and time constants τx or the three Ion chan-
nel state variables used in the model.

Figure 6.3: Gating variables αx, βx used in the model.
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The total currents and conductance at the somatic segment are therefore given
by

I = IL + IK + INa (6.22)
g = gNa + gK + gL (6.23)

The model takes into account three kinds of chemical synapses: AMPA,
NMDA and GABA. All three types of synapses are modelled with two state
variables A,B, we omit the voltage dependent homeostatic term in [69].

These determine voltage dependent conductances and synaptic currents given
by

αs(V ) =
1

1 + (mg/mgdep) exp(−γV )
(6.24)

gs = gs(B −A)αs(V ) (6.25)
Is = gs(V )(V − es). (6.26)

The constants appearing in αs are specific to each of the types of chemical
synapses, as are the values of gs and the value of the reversal potential es.
Numerical values for them are summarized in table 6.3.

The dimensionless state variables A,B undergo exponential decays with two
different time constants τf , τs, which are also specific to each synapse type

Ȧ = −A/τf (6.27)
Ḃ = −B/τs (6.28)

with initial conditions

A(0) = 0 (6.29)
B(0) = 0. (6.30)

Whenever a presynaptic spike arrives the state variables jump

A = A+ wf(τf , τs) (6.31)
B = B + wf(τf , τs) (6.32)

here w is the synaptic weight and the factor f(τf , τs) is given by

tp = (τfτs)/(τs − τf log(τs/τf )) (6.33)

f(τf , τs) =
1

exp(−tp/τs)− exp(−tp/τf )
, (6.34)

it normalises the maximal amplitude of B −A to w.

6.3 Adjoint Equations
As already pointed out in the introduction of this chapter the main observation
is that for multi-compartment models the structure of the adjoint equations is
determined by the morphology of the neuron just as the forward dynamics is.
More precisely to each compartmental membrane voltage Vk the adjoint method
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x gx[nS] τf [ms] τs [ms] mg [mM] e [mV] γ [1/mV] mgdep [mM]
AMPA 0.7 0.3 1.8 0 0 0 0
NMDA 1.3 8 35 1 0 0.077 3.57
GABA1 0.5 0.5 5 0 −75 0 0
GABA2 0.5 2 23 0 −75 0 0

Table 6.3: Numerical constants that determine the synapse dynamics. AMPA,
NMDA are excitatory synapse types, GABA an inhibitory synapse types. Data
adapted from [69]. The NMDA channel is voltage gated.

Figure 6.4: Illustration of the adjoint dynamics in a structured neuron, voltage
adjoint state variables λV are coupled by the same conductance matrix and
section state variables couple only locally. We therefore can think of the adjoint
equations as being implemented in an overlayed identical structure.

introduces an adjoint variable λVk
, whose coupling structure is determined by

the same adjacency matrix.

Another observation is that depending on where the structure of the loss func-
tion error signals can be injected at different places in the neuron morphology
and the adjoint equation determines how that error signal is propagated along
the neuron morphology. In biological neurons a working hypothesis for how er-
ror assignment happens are backpropagating action potentials based on calcium
currents. The idea is that errors are communicated to proximal dendrites and
backpropagated to the distal dendrites via backpropagating action potentials
and potentially other signalling mechanisms based on the endo-plasmatic retic-
ulum (see e.g. [69] and references therein). The adjoint state dynamics predicts
precise dynamics based on errors injected at these proximal dendrites. This
suggests an association between the adjoint state variables and experimentally
observed mechanisms.

Recall that adjoint equation was given by

(λ′)T = λT∂xf − ∂xl. (6.35)
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Here ∂xf denotes the Jacobian matrix J given by

J =

[
∂f

∂x1
· · · ∂f

∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂xn... . . . ...

∂fm
∂x1

· · · ∂fm
∂xn

 . (6.36)

Therefore the adjoint equations of multi-compartment neuron model will
have the general form

Ckλ
′
Vk

= λVk

[
Gik − ∂Vk

(I ion(Vk) + Isyn(Vk))
]

(6.37)

+
∑
l

λxlk
∂Vk

[αlk(Vk, S)(1− xlk)− βlk(V, S)xlk] (6.38)

+
∑
l

λAlk
∂Vk

flk(V,A, p) (6.39)

+ ∂Vk
L (6.40)

= λVk

[
Gik −

∑
gcp(x)−

∑
gsyn(V syn, A)

]
(6.41)

+ λVk
∂Vk

gsyn(V syn, A) [V syn − esyn] (6.42)

+
∑
l

λxlk
∂Vk

[αlk(Vk, S)(1− xlk)− βlk(V, S)xlk] (6.43)

+
∑
l

λAlk
∂Vk

flk(V,A, p) (6.44)

− ∂Vk
l (6.45)

The partial derivative ∂Vk
I ion
k (V ) captures the dependence on the state variables

of Ion channels. Since the matrix Gik is symmetric by construction, the adjoint
state dynamics is coupled in the same way as the voltage state variables are. This
indicates that error information within a neuron might be propagated according
to a version of the adjoint state dynamics.

τlk = αlk(V, S) + βlk(V, S) (6.46)

λ′xlk
= −λxlk

/τlk − λVk
/Ck∂xlk

∑
c

gion
c pc(x)(Vk − eion

c ) (6.47)

λ′Alk
= λAlk

∂Alk
f(V,A, p)− λVk

/Ck∂Alk
gsyn(V syn, A)(V syn

k − esyn
lk ) (6.48)

Now let me assume that synaptic transmission is triggered by a jump condition
that only depends on variables in the presynaptic compartment (voltage, etc.)
in other words

j(Vpre, Apre, p) = 0 (6.49)
and the transition equation similarly only affect pre- and post-synaptic variables

V +
pre = θVpre(V

−
pre, A

−
pre, p) (6.50)

A+
pre = θApre(V

−
pre, A

−
pre, p) (6.51)

V +
post = θVpost(V

−
post, A

−
post, p) (6.52)

A+
post = θApost(V

−
post, A

−
post, p) (6.53)
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where I dropped the synaptic and neuron compartment indices for clarity. Recall
the general equation for the jumps in the adjoint state variables (eq. (3.49)):

(λ−)T = (λ+)T
[[
f+ − ∂x−θf−

] ∂x−j

∂x−jẋ−
+ ∂x−θ

]
+ (l− − l+)

∂x−j

∂x−jẋ−
(6.54)

then

∂x−θ =



∂θVpre

∂V −
pre

∂θVpre

∂A−
pre

0 0

∂θApre

∂V −
pre

∂θApre

∂A−
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0 0

0 0
∂θVpost

∂V −
post

∂θVpost

∂A−
post

0 0
∂θApost

∂V −
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∂θApost

∂A−
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. (6.55)

and
∂x−j =

[
∂j

∂V −
pre
,
∂j

∂A−
pre
, 0, 0

]
. (6.56)

Therefore we arrive at the equations for the jumps in the adjoint state variables

λV −
pre

=
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pre
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pre
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−
pre)]

+ λV +
post

[V̇ +
post − (∂V −

post
ΘVpost V̇

−
post + ∂A−

post
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−
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pre
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pre
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pre
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pre
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ΘApre
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pre
j
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(6.57)
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(6.58)

λV −
post

= λV +
post

∂V −
post

ΘVpost + λT
A+

post
∂V −

post
ΘApost (6.59)

λT
A−

post
= λV +

post
∂A−

post
ΘVpost + λTApost∂A−

post
ΘApost (6.60)

We conclude that the post-synaptic adjoint state variables influence the presy-
naptic adjoint state variables of a synapse on synaptic transmission. Note that
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the equations simplify further if for example the transition equations do not de-
pend on the pre-synaptic voltage. The form of the equations is general enough to
capture a wide variety of common synaptic plasticity and transmission models.
Together with the corresponding equations for the parameter gradients, which
can be derived starting from eq. (3.50) in a similar way this allows for applica-
tions such as metaplasticity and parameter estimation of synaptic transmission
mechanism based on observations of membrane dynamics.

6.3.1 Traub Model
We can specialise the calculation we just did to the Traub model. Then we find
for the voltage adjoint state variable

λ′Vk
= λVk

(Gkj − (gNahk ·m2
k + gKnk + gL)− ∂Vk

Isyn
k (V )) (6.61)

+
∑

x∈{n,m,h}

λxk
[α′

x(Vk)(1− xk)− β′
x(Vk)xk] (6.62)

− ∂Vk
l (6.63)

since the Ion channel equations only depend on the voltage of the neuron seg-
ment they are in. The adjoint variables to the Ion channel state variables follow
the equations

λ′mk
= −λm/τm + λVk

(2gNahm(V − eNa) + gK(V − eK)) (6.64)
λ′hk

= −λh/τh + gNaλVk
m2(V − eNa) (6.65)

λ′nk
= −λnk

/τn + gKλVk
(V − eK). (6.66)

Similarly the adjoint state variables of the synapses follow the equations

λ′Ak
= −λAk

/τf − gsλVk
αs(V )(Vk − es) (6.67)

λ′Bk
= −λBk

/τs + gsλVk
αs(V )(Vk − es). (6.68)

We can therefore specialise eqs. (6.57), (6.58), (6.59) (6.60) to
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(6.69)

λT
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pre
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post] + λT
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(6.70)

λV −
post

= λV +
post

(6.71)

λT
A−

post
= λT

A+
post

(6.72)

Here λA±
post

= (λA± , λB±) and we could use (6.31), (6.32) and (6.24) to further
simplify the expression.
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6.3.2 Model on BrainScaleS-2
The multi-compartment neuron model implemented on the BrainScaleS-2 neu-
romorphic chip features current based synapses and three operating modes of
each of the neuron compartment meant to model NMDA, Ca2+ and Na spikes.
Compared to the neuron model I described in the previous sections, most of the
non-trivial dynamics is implemented by switching of the dynamics, whenever
one of the neuron compartments reaches a certain threshhold. Depending on
the compartment type this results in either a reset to a reset potential or a tran-
sition to a plateau potential. This mode is maintained for a digitally set period
of time. A conceptual motivation and implementation details can be found in
[140]. Here I want to focus on a derivation of the adjoint sensitivity equations
of the implemented circuitry. Since it also involves switching, it is well suited
to the method presented in the previous chapter. When one of the neuron com-
partments crosses a configurable threshold voltage VT a digital switch triggers a
transition from the configurable leak conductance gL to a reset (maximal) con-
ductance gR or a ”NMDA” conductance gN as well as a reset ER or ”NMDA”
potential EN . The multi-compartment neuron equations are given by

CkV̇k = GlkVl + gx(Ex − V )k + Ik (6.73)
τrṘk = −δkl (6.74)
τsİk = −Ik (6.75)

the jump conditions are
jk(V ) = V − VT (6.76)

and
qk(R) = −Rk (6.77)

with transition equations

Vl = Vl (6.78)
Il = Il +Wkl (6.79)
Rl = Rl + δkl (6.80)

In reality spike transport takes time, so the transition in the current variables
is temporally shifted compared to when a neuron crosses a threshold. It is
relatively easy to take delays into account, but I will not do so here. The
adjoint equations are

Ck(λ
′
V )k = (λV )lGlk − gx(λV )k − ∂Vk

l (6.81)
λ′R = 0 (6.82)

(λ′I)k = −(λI)k/τs + λV /Ck (6.83)

The current flow before and after neuron compartment n crossed the threshhold
are

(V̇ +)k = 1/Ck[GlkVl + g−(E− − V )k + I−k ] (6.84)
(V̇ −)k = 1/Ck[GlkVl + g+(E+ − V )k + I+k ] (6.85)
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where I’ve denoted by g+ ∈ {gN, gR} the conductance and by E+ ∈ {VR, VN}
the potential after the switch. A treshold crossing of neuron compartment n
results in the following transition equations for the adjoint variables

(λ−V )l = (λ+V )k

[[
1

Ck
(g+E+ − g−E−)kδkn +Wkn

]
δnl

V̇n
+ δkl

]
+ (λ+R)k

[
1

τr
δkn

δnl

V̇n

]
+ (λ+I )k

[
−Wkn

δnl

V̇n

]
+ (l− − l+)

δnl

V̇n
(6.86)

(λ−I )l = (λ+I )l (6.87)
(λ−R)l = (λ+R)l (6.88)

(summation over n not implied).
At the end of a refractory period of neuron compartment n ends the conduc-

tance g− changes to g+ = gL and the potential E− changes to E+ = EL

(f+V )k = 1/Ck[GlkVl + g+(E+ − V )k + Ik] (6.89)
(f−V )k = 1/Ck[GlkVl + g−(E− − V )k + Ik] (6.90)

and this leads to corresponding changes

(λ−V )l = (λ+V )l (6.91)
(λ−I )l = (λ+I )l (6.92)

(λ−R)l = (λ+R)kδkl + (λ+V )k

[
1

Ck
(g+E+ − g−E−)kδkn

]
δnl

Ṙn

(6.93)

(summation over n not implied). Starting from eq. eq. (3.50) we could also
derive parameter gradients.

6.4 Conclusions
In this chapter I’ve derived explicit formulas for the adjoint dynamics and there-
fore gradients of structured neurons with respect to arbitrary loss functions.

The next immediate step would be to use these equations in some task.
Since the ordinary differential equations that appear here are harder to solve
this would need the use of an ODE solver library such as [132, 131, 133]. The
striking result is that the adjoint dynamics uses the same dendritic structure
(as encoded by the conductance matrix) to propagate the error information and
that coupling of the adjoint equation between structured neurons happens only
locally at each synapse. This presents a different perspective on what is usually
understood as the ”weight transport” problem (see e.g. [41, 73] and [6] for
a recent attack on the problem), namely that the Backpropagation algorithm
needs weight symmetry between the connections in the forward and backward
pass, which is not biologically plausible. The symmetry of the weight matrices
for the forward and backward pass is naturally encoded by the dendritic tree.
Among the remaining mysteries are rather the reversal of the time direction
between adjoint and forward dynamics and that there is only weak evidence for
a bi-directional coupling at synapses.

Nevertheless various known mechanisms of backpropagating action-potentials,
retrograde transmission [119] and retrograde transport in the endo-plasmatic
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reticulum could be analysed as approximations to the exact adjoint dynamics.
One thing to investigate would be the chemical reaction networks that determine
synaptic plasticity and transmission. Ultimately biological neurons employ of
course many mechanisms that aren’t cleanly captured by simple ordinary differ-
ential equations. Among them is the continuous expression and production of
proteins by the cell nucleus and their transport to and from synaptic densities.
For example axonal transport [75] involves active transport of precursors for
synaptic vesicles, mitochondria and other structures along micotubules. A fasci-
nating question then becomes how to incorporate gene-expression networks and
substructures and dynamics of biological neurons, such as the endoplasmatic
reticulum and microtubule transport into functional models.

An alternative view on structured neurons abandons the discretisation into
neuron segments and instead uses a 1-dimensional cable equation to model the
voltage dynamics. Even more generally one could consider a two-dimensional
version of the cable equation, the shape of the neuron would then be captured by
an appropriate rieammanian metric and the observation that the conductance
matrix is symmetric corresponds to the fact that the laplace beltrami-operator
is self-adjoint.

In the context of the mutli-compartment neuron circuitry as implemented
on BrainScaleS-2 the results derived in this chapter are of immediate use for
training multi-compartment neuron circuits in an hardware-in-the-loop setting.
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Chapter 7

Modifications to Plasticity
Processing Unit

Roughly speaking the complex biological processes at each synapse should imple-
ment synaptic plasticity and thereby learning in biological neurons. Abstracted
from the details of complicated bio-chemistry so called plasticity rules, such as
STDP (spike time dependent plasticity) and others are used to model the plas-
ticity of synapses in neuron models. In neuromorphic hardware the possibility
to implement such rules ranges fixed function implementations of specific rules,
to rules based on a limited set of micro-operations [44], to fully programmable
plasticity as for example in the BrainScaleS-2 and Spinnaker system.

In the BrainScales-2 system it is the role of the plasticity processing unit
(PPU) to implement any such rule in an efficient fashion as possible [57]. As part
of my work I oversaw the successful scaling of the existing plasticity processing
unit to the full sized single chip system HICANN-X and changed the memory
architecture to allow for the execution of instructions from external memory,
as well as vector and scalar read and write access to external memory. Both
changes taken together enable the implementation of plasticity algorithms that
take advantage of large external memory, thereby significantly increasing the
modelling capabilities of the system. Moreover the change is also crucial for the
analog inference accelerator mode as it allows software to be written without
being constrained by the on-chip memory. Finally it enables use of the same
software and hardware abstraction layers, because memory limitations are not
an issue. I also implemented a fully parallel random number generator for the
vector unit of the plasticity processor to enable applications such as random
synaptic rewiring, noise terms in plasiticity rules and stochastic rounding.

The rest of the chapter is structured as follows: I will begin with a brief
description of the implemented additional hardware features. Then I discuss
results that have already obtained and enabled by these features. Finally I will
discuss some future experiments that are made possible by these features in
particular with reference to the Eventprop algorithm for both the structured
and unstructured neuron configuration possible on HICANN-X.

67
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Figure 7.1: Schematic diagram of parts of the HICANN-X neuromorphic pro-
cessor. Additions to the plasticity processor and FPGA carried out in this
thesis are highlighed in light green. The synapse I/O unit and vector unit was
scaled to accomodate the larger number of 256 synapse columns. A random
number generator was added which generates 128 8 bit random numbers at a
time. Parts of the omnibus tree (in green) was modified in such a way that it
is 128 bit wide, such that loading and storing data from the vector unit is sped
up by a factor of 4. In addition both the scalar, as well as the vector unit are
now ARQ clients via the omnibus tree, enabling communication to the exter-
nal FPGA. Separately the instruction cache can now load data from either the
local SRAM or external FPGA connected memory (block or DRAM). On the
FPGA a simple ARQ client was implemented that arbitrates instruction and
data requests and connects to Block RAM memory.
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7.1 Implementation
In this setion I will describe in more detail the different additional components
I implemented for the HICANN-X single chip system. A schematic summary is
given in figure 7.1. I will describe in turn the parallel random number generator,
extensions to the memory datapath and improvements to the verification process.
The plasticity processing unit itself is described in [57].

Briefly the processor implements a subset of the 32 bit POWER instruc-
tion set architecture, together with a custom vector extension that operators
on 8 and 16-bit vectors of implementation defined length. The processor is
structured into a frontend, which handles instruction fetching, decoding and
branch-control and a backend with several functional units. Instructions are
dispatched to the functional units in order but can retire out of order, with
data dependencies being tracked by scoreboards. The vector-unit is treated as
an additional functional unit by the frontend, but instructions are executed by
the vector-unit asynchronously, with an implementation defined number of pos-
sible outstanding instructions. Within the vector-unit, instructions are again
dispatched to several functional units (load-store, arithmetic and parallel-load-
store), with each being organized into slices. Execution happens again in or-
der, but instructions can retire out of order which is particularly important for
parallel-load-store instructions that can take more than 40 cycles to complete.
With out-of-order retirement, arithmetic instructions (such as plasticity calcu-
lations) can execute while the parallel-load-store unit waits for a result of for
example a CADC (column ADC) measurement. Dependencies are again tracked
by a scoreboard mechanism. Synchronisation between the scalar unit and the
vector-unit happens explicitely by a dedicated ”sync” instruction. The imple-
mentation used for the HICANN-X single chip system uses 8 vector slices, with
16 wide 8-bit or 8-wide 16-bit vectors each. This results in 1 : 2 ratio of vector
entries to synapse columns. Up to 32 instructions to the vector unit can be
enqueued. The parallel-load-store unit of the vector unit handles load and store
instructions that operate on full-width vectors at a time. In the implementation
used in the HICANN-X chip this unit interfaces with the synapse-access mod-
ule (called synapse i/o in figure 7.1), which in turn handles different kinds of
transactions based on the memory region that is accessed. It is also connected
to the Omnibus [57] tree, which we we will describe in more detail below.

The possible transactions handled by the synapse access unit are

1. Synapse Array raw load / store

2. Synapse Array address load / store

3. Synapse Array weight load / store

4. Synapse Array config load / store

5. CADC causal/acausal read

6. Correlation causal/acausal reset

7. Random Number Generator (RNG) load / store

the first four of these transaction types concern access to the digital configura-
tion, weight and address bits stored in each synapse. Access is done column-wise
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in an even-odd pattern with respect to the slices. The CADC read operation
triggers an analog to digital conversion of a full row of causal- or anti-causal
state variables in the synapse array or of the membrane voltage of all 256 neu-
rons, the result is buffered and can be read back consecutively into two vector
registers. Finally the Random Number Generator load transaction triggers an
update of the accessed linear-feedback shift registers (LFSR) state and returns
a vector of 8-bit random numbers. A Random Number Generator write trans-
action sets the lower 8 bits of the 16-bit state of the accessed random number
generator columns.

7.1.1 Random Number Generator Array
The random number generator module is implemented as 256 independent 16-bit
linear-feedback shift registers (LFSR), this implementation was chosen because
it is simple to implement and (relatively) resource efficient. A n-bit LFSR is
specified by a polynomial of degree n−1 in F2[x]. For a LFSR to have maximal
cycle length 2n the polynomial needs to be primitive. Two such examples for
n = 16 are

p1 = x15 + x4 + x2 + x1 + 1 (7.1)
p2 = x15 + x4 + x3 + x2 + 1. (7.2)

In total there are 2048 primitive polynomials of degree 15. In order to implement
the 256 linear-feedback shift registers of each random number generator arrays
on the HICANN-X chip, I chose 256 different of these primitive polynomials
(from [96]). While it is well known that LSFR don’t provide high quality random
numbers, the samples associated with different primitives polynomials should be
independent. One limitation of the design is that only the lower 8-bit of each of
the LSFR states are returned during a read transaction and only the lower 8-bit
can be initialised as well. This was done because the primary envisioned use
case of the random number output is its use in plasticity algorithms, which we
assume to mostly employ 8-bit arithmetic and operations on synapse columns.
We turn to a description of such potential applications in the discussion section
7.3.

7.1.2 Memory Interface
I now turn to the modifications made to the memory architecture of the plas-
ticity processing unit. I begin with a description of the architecture before the
modifications were made. The plasticity processor has access to a local memory
via three datapaths:

The instruction cache loads instructions from a local memory, the scalar
read-write unit loads and writes data to local memory and finally the vector
unit has a load-store unit that can read and write local memory. All of these
use 32-bit wide addresses and byte-wise addressing.

The main goal of the modifications to the memory path I made were to
enable access via the ARQ data transport layer [92] to the FPGA. To that end I
implemented two ARQ clients, one for instruction and one for data access. The
interface consists of a data and command queue and a response queue. The
protocol guarantees in-order reliable delivery so that minimal logic is needed
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for interfacing it with omnibus transactions. The instruction cache is connected
via an omnibus split on the highest bit to the internal SRAM and the new
ARQ client. That way any instruction fetch traffic can’t block data read-write
operations or vice versa.

Both the parallel-load store unit and the load-store unit of the vector unit can
access the data ARQ client. This client operates on 128 bit wide words, which is
the width of one slice of the vector unit. A serialisation and deserialisation mod-
ule implements the conversion from 1024 bit used by the parallel-load store unit
to 8×128 bit words and back. By interfacing the parallel-load store unit directly
with external memory, the vector unit can be reused as an asynchronously op-
erating data-mover, while the scalar unit is executing other operations. Finally
load-store unit of the Scalar unit is also connected via the Omnibus tree to the
data ARQ client.

On the FPGA the ARQ transport is again terminated in several queues
which correspond to the ones instatiated on the ASIC side. To verify initial
functionality both in simulation and initial FPGA bringup I implemented a
simple interface of the two sets of ARQ queues to a synthesisable Block Ram
memory module.

7.1.3 Verification
Verification of the functionality was done in several steps: A Universal Verifi-
cation Methodology (UVM) [85] based verification workflow was used to verify
correct functionality of the processor scale-up and modifications to the Omnibus
hierachy. For this purpose I implemented PPU specific UVM sequences and a
large set of instruction level unit tests. This setup also allowed for arbitrary C
programs to be executed. After the first tapeout I contributed to a different
verification flow based on a DPI-C interface. Based on this approach described
in [74], end to end integration tests could be run, including use of the full C++
software stack [115]. Of particular importance was the ability to also simulate
the backannotated physical design, as this revealed a critical bug in the vector
unit register file.

7.2 Results
In this section I will discuss technical results directly related to the memory
interface implementation and then some experiments that are enabled by it.

7.2.1 Performance Measurements
Using the software integration performance measurements of the memory in-
terface could be made before tape-out. On current silicon an integration test
implemented by Philip Spilger yields results summarized in table (7.1). Simi-
larly the performance of the external instruction access could be quantified by
running a standard benchmark that tests performance of embedded processors
Coremark. This was done pre-tapeout by Eric Müller to quantify the impact
of the size of the instruction fetch queue. With instructions and data in lo-
cal SRAM the HXv2 core achieved in simulation a Coremark score of 335.91
and with data in local SRAM and instruction fetching from external memory a
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Operation Cycles ± Min/Max
Memory Load 344 35
Memory Store 38 4
Memory Store ×2 175 18
Memory Store ×4 306 31
Memory Store ×8 684 69
Memory Store ×16 1408 141

Table 7.1: Summary of external memory load store performance for 1024 [bit]
load and 1, 2, 4, 8, 16 consecutive stores to and from the vector unit. Measure-
ments are in performance counter cycles, second column gives min/max devia-
tion.

Coremark score of 321.22 (with an instruction queue fetch depth of 16). Further
increasing the instruction queue fetch depth to 32, 64 would yield Coreamark
scores of 324.32, 326.05.

7.2.2 SuperSpike Experiment
An experiment that already has made use of the memory extension presented
here is [40]. Generally speaking any use of the plasticity processing unit that
makes use of non-trivial programs and has large memory storage requirements
is enabled by the extension presented in this chapter.

7.3 Outlook and Discussion
A number of further experiments making use of the memory extension and
random number generators can be envisioned. The approach presented in [23]
of parametrising plasticity rules by artificial neural networks can be extended to
use instead of training by evolutionary strategies, training by the adjoint method.
This represents a general approach to metaplasticity in particular if recurrent
neural networks are allowed. Such a more complicated plasticity artificial neural
network can only feasably be implemented given the larger memory available.

In a similar fashion as [40] one could also attempt to implement the Event-
Prop training algorithm in the loop. The main advantage would be that only the
voltage trace around a spike needs to be stored. Since the method is also compat-
ible with the multi-compartment neuron model implemented on BrainScaleS-2
as explained in chapter 6.

Finally the online learning algorithm presented in chapter 5 is a promising
candidate for implementation using the correlation sensors. There synaptic
rewiring as in [21] could use random number generator array to learn sparse
feature maps online.



Chapter 8

Stochastic Inference with a
Neuromorphic System

With the end of Moore’s law and recent successes in deep learning [101, 141]
novel domain specific computer architectures have come to the forefront of at-
tention [47, 79]. Just like deep learning model architectures are sometimes
partially inspired by what neuroscientist have learned about the brain [77], neu-
romorphic computing [112, 61] draws inspiration from physical aspects of the
human nervous system. Going back to the beginning of digital computing, par-
allels were drawn between logical circuits and wiring of neurons in the nervous
system [158, 111]. With the advent of neurophysiological measurements of the
electrical properties of neurons [81], attempts where made to solve the result-
ing phenomenological differential equations on contemporary analog computers.
Neuromorphic systems continue this tradition in that they typically involve an
analog core [129, 130, 19, 139] or at least a low power digital implementation
of neuron and synapse dynamics [45, 113, 62]. These cores are then digitally
connected by routing spike event packets thereby avoiding the bad scalability of
purely analog implementations with current technology. Applications of such
systems range from (low-power) inference [51, 50, 142] to the emulation of bi-
ological brain-circuits [7]. The BrainScaleS 2 systems stand out in that they
are the first to combine fully-programmable hybrid plasticity with emulation
of spiking neural networks with time constants 103 faster than biological time.
Other systems, such as SpiNNaker, allow even more flexible plasticity rules but
can realistically only simulate spiking networks in real-time or, like Loihi, can
carry out only a limited number of algebraic manipulations on a per synapse
level.

Recent interest in stochastic computing has been motivated, among other
reasons, by the prospects of using novel devices for computation (see e.g. [151,
127] and references therein). Such nano-devices have unreliable or noisy be-
haviour, which needs to be mitigated and ideally harnessed. Using unreliable
logic circuits for computation was already of interest in the early time of mod-
ern computing [158]. Already then parallels to the operation of the nervous
system were drawn. Among recent approaches to stochastic computing are
dedicated machines for approximate bayesian inference [52]. It has also been
established recently [56] that MULLER-C elements can be used for Bayesian in-
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Figure 8.1: Overview of the BrainScaleS-2 neuromorphic core (A). It features a
synaptic crossbar, each synapse stores an event address it listens to (indicated
by colors here) and a synaptic strength. Input events are broadcast row-wise
and integrated in columns that have matching synapse addresses. Each synapse
column connects to a dedicated neuron circuit, which has an analog and digital
part. The digital part of each of the neuron circuits were modified to allow for
the stochastic extension we discuss in this chapter (B). When the configured
neuron threshold is crossed in the analog neuron circuit a digital fire signal
is emitted. After a neuron has fired it is refractory for a certain period, this
boolean refractory signal is implemented by a refractory counter. The output of
this refractory counter is used to generate the signal termed post-pulse, which
gets converted into an event and is used as input to the correlation circuit at
each synapse. The Bayesian extension gates the generation of the post-pulse
based on a binary logic gate (MULLER-C, Xor, And) the left or right neu-
ron’s refractory state. In that way neighboring neurons both can be connected
together to perform logical operations on their refractory state and influence
plasticity algorithms.
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ference. While several special purpose stochastic computing systems have been
build, conventional digital systems have prevailed so far.

In this chapter we describe an extension to the BrainScaleS-2 system (8.1),
which enables it to carry out some of the stochastic computations in those
specialised systems in the context of a neuromorphic chip (8.1 B). It works on the
same interpretation of the refractory state of leaky-integrate and fire neurons as
a binary random variable (illustrated in 8.3 B) that has been successfully used for
stochastic inference [114, 116, 30]. In particular spike-based bayesian inference
using the high conductance state has been already demonstrated in the chip
architecture the modifications discussed in this chapter were made for (see fig.
3 and section 3b in [22]). Beyond that the extension also enables simple temporal
computations like coincidence detection. Moreover this extension can be used in
conjunction with the correlation circuitry, which enables novel plasticity rules.

The rest of the chapter is organized as follows: We begin with a brief review
of spike-based sampling. Leaky integrate and fire neurons are subjected to
weighted noise sources, which turns their state variables into stochastic processes.
In turn their refractory state can then be interpreted as a binary random variable.
Beyond the typical contrastive divergence learning, we propose here that the
such a spiking neural network can be trained directly through either surrogate
gradient or adjoint learning. In particular it is possible to define surrogate
gradients that make it possible to differentiate through the logical operations
introduced here.

We then present the newly implemented additions to the digital neuron back-
end carried out by Gerd Kiene in section 8.3 in the context of the BrainScaleS-2
single chip system. These modifications enable the new additional operating
modes complementary to the existing features. The remainder of this chapter
outlines four such use cases.

One of the key distinguishing features of the BrainScaleS 2 system is its fully
programmable implementation of hybrid plasticity. The newly implemented
digital functionality allows for interesting interactions with the correlation and
rate counter functionality in the synapse crossbar and neuron array respectively.
We present a way of using digital coincidence detection to implemented a gated
form of STDP in section 8.4.1 and propose a circuit for implementing online
error backpropagation in section 8.4.2.

8.1 Background
In this section I will recall some background on neural sampling as pioneered
by [114, 116, 30] and recently implemented in neuromorphic hardware [99, 22].
We want to think of the membrane potential of a neuron as implementing a
stochastic process vθ(t) parametrised by the weights θ of its synapses. Since the
circuit dynamics of both the synapses and neurons we want to consider, with
the exception of thermal noise, is deterministic in itself, this is only possible
if the circuit’s input are samples from some random process. To an observer
the membrane voltage process itself typically not observable itself, instead it
can observe for each neuron a binary random variable derived from this process.
This binary random variable is one, when the neuron is active (refractory) and
zero, when it is quiet.

In the case of conductance based leaky-integrate and fire neurons it was
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demonstrated in [114] that certain parametrisations of such neurons allow an
interpretation of their refractory state as samples from a Boltzmann distribution

p(z,W, b) =
1

Z
exp(−zTWz − bT z), (8.1)

there also an explicit translation to and from the parameters θ of the correspond-
ing LIF neuron equations was given. This allows optimization of the Boltzmann
distributions parameters W and b independent of the substrate and subsequent
transfer to a neuromorphic hardware parameters for fast and efficient sampling
[99, 22]. However it also has a number of drawbacks: The correspondence holds
only approximately and it is well known that the training method typically used
to train Boltzmann machines called Contrastive Divergence (CD) scales poorly
for deep restricted Boltzmann machines.

8.2 Neural Sampling by Surrogate Gradients
I therefore want to advance here a different perspective, which contains Boltz-
mann machines as a special case, but has not been discussed in this form in the
context of neuromorphic computing to the best of my knowledge.

The concrete model I want to consider in the following is the leaky-integrate
and fire model with current based synapses and an absolute refractory period.
There are three n-dimensional state variables v, i, r ∈ Rn, the membrane voltage
v, synaptic input current i and refractory state r. The continuous part of the
time evolution is given by

v̇ = 1/τmem(1−Θ(r)) · (vleak − v + i) (8.2)
i̇ = −1/τsyni (8.3)
ṙ = −1/τrefracΘ(r), (8.4)

with τmem, τsyn, τrefrac the membrane, synaptic and refractory time constants
respectively. The Heaviside function Θ ensures that neuron membrane voltages
remain clamped to the reset potential during the refractory period. The k-th
neuron spikes if the jump condition

j(v−) = v−k − (vth)k (8.5)

is satisfied. The transition equations resulting from such a jump condition can
be summarised by

v+ = (1− z) · v− + z · vreset (8.6)
i+ = i− + winzin + wreczrec (8.7)
r+ = (1− z) · r− + z · r−reset (8.8)

where zrec and zin are the recurrent and input spikes respectively. Given these
equations the binary random variable associated to each LIF neuron can there-
fore be defined by

zk = Θ(rk), k = 1, . . . , n (8.9)
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Figure 8.2: Five leaky-integrate and fire neurons with current based synapses
and refractory periods of 10ms are recurrently connected with initial weights
wrec ∼ N(1/

√
5) sampled from a normal distribution. They receive poisso-

nian input (300Hz) from K = 256 independent noise sources weighted by a
input matrix with initial weights win ∼ N(1/

√
256) sampled from a normal

distribution. As explained in the main text, the refractory state of each of
the neurons is interpreted as a binary random variable zi, i = 1 . . . 5. Train-
ing uses mini-batch stochastic gradient descent in batches of B = 16 using
the ADAM(lr = 10−3, β = (0.9, 0.999), ε = 10−8) optimizer [94], with a sam-
pling time of T = 104 ms and the batch-averaged Kullback-Leibler divergence
KL(ps|pt) as loss. I indicate the state zi = 1 by grey boxes in (A), together
with the voltage traces during a time window of 200ms. (B) compares sampling
distribution ps(z) and target distribution pt(z), black bars indicate minimum
and maximum over one batch of 16 sample inputs. Training converges over
1000 epochs to a Kulback-Leibler divergence KL(ps|pt) of close to 10−2 (C),
this is consistent with the performance reported in [114] for a sampling period
of 104 ms (cf. fig. 3 C).
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z0(t) z1(t) c(t)
0 0 0
1 0 c(t− 1)
0 1 c(t− 1)
1 1 1

Table 8.1: MULLER-C element state table.

This definition also immediately suggests equations to compute the AND and
XOR gates

AND(zk, zl) = zkzl = Θ(rk)Θ(rl) (8.10)
XOR(zk, zl) = |zk − zl| = |Θ(rk)−Θ(rl)|. (8.11)

The MULLER-C gate involves an additional state variable c with two states
0, 1, there are two jump conditions for c given by

j1(c
−, rk, rl) = ((1−Θ(rk)) + (1−Θ(rl)))c

−

j2(c
−, rk, rl) = (Θ(rk) + Θ(rl))c

− (8.12)

and transition equations

c+1 = c−1 + 1 (8.13)
c+2 = c−2 − 1 (8.14)

A simulation of the LIF neuron equations and the computation of the logic gates
on refractory states is shown in Figure (8.3 B). This corresponds to the usual
state table of the MULLER-C element in discrete time (see 8.1).

For a given integration period T (for example T = 104 ms) we can then
define the joint probability distribution defined by sampling the binary random
variables z1, . . . , zn as

ps(z;w) =
1

T

∫ T

0

n⊗
i=1

[1−Θ(ri),Θ(ri)]dt, (8.15)

the tensor product compactly expresses the 2n different entries. Given a target
probability distribution pt(z), we can then pose the optimization problem

min
w

KL(ps|pt), (8.16)

in other words we can ask for sampling distribution ps to be close to the target
distribution pt.

The Kullback-Leibler divergence in this case is defined as

KL(ps|pt) = −
∑
z

ps(z;w) log pt(z) +
∑
z

ps(z;w) log ps(z;w), (8.17)

that is it is the difference between the cross entropy of ps and pt and the entropy
of ps

KL(ps|pt) = H(ps, pt)−H(ps). (8.18)
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Now to solve this optimisation problem I want to employ gradient descent with
respect to the paremters w on the Kullback-Leibler divergence. The funda-
mental obstacle to this is again that the Heaviside function does only have a
distributional derivative. Instead of the strategy used in previous chapters, I
want to introduce here an alternative approach, based on a relaxation of the
gradient computation. The basic idea is to interpret the Heaviside function as
the cumulative distribution of the point mass probability density given by the
Dirac delta distribution. Then the concept of Friedrichs Mollifier [59] provides
a rigorous way of talking about smoothed solutions and convergence to weak
solutions of equations involving Heaviside step functions and delta distributions.
From a physics perspective the idea can be explained in terms of a temperature
limit T → 0 as follows: Consider a two-state system of distinguishable ”atoms”
with energy levels E0, E1. The partition function of such a system is

Z = exp(−βE0) + exp(−βE1) = exp(−βE1)[1 + exp(−βE)], β =
1

kBT
(8.19)

here kB is the Boltzmann constant and T the temperature. The probability to
encounter the system at equilibrium in either of the states is

p0 =
exp(−βE)

1 + exp(−βE)
(8.20)

p1 =
1

1 + exp(−βE)
. (8.21)

In the case under consideration the membrane and threshold potential define
two energy states E0 = qv and E1 = qvth, with q the charge of the ”ion”
mediating the switching (actual biological situations are more complicated and
will be briefly addressed in another chapter). Therefore

E = q(v − vth) (8.22)

and
p1(v, β) =

1

1 + exp(−βq(v − vth))
(8.23)

In the limit β → ∞ or T → 0, the deterministic situation is recovered

p1(v,∞) = Θ(v − vth), p0(v) = (1−Θ(v − vth)) (8.24)

In the context of spiking neural networks surrogate gradient training as reviewed
in [117] replaces the derivative of Heaviside function, which only exists in a
distributional sense, by a scaled positive symmetric mollifier ϕ′, for example

ϕ′(v, β) = αp′1(v, β) (8.25)

with α some normalisation factor. Choice of β ∼ 1/T then allows one to ad-
just how much gradient information is propagated backward in time, when the
threshold isn’t reached.

In fig. 8.2 I show training results on the first task used in [114] to demonstrate
neural sampling using the surrogate gradient function first described in [171]. As
can be seen, a similar performance can be achieved without explicitely enforcing
weight symmetry or conditions on the input matrix. In the experiment I set
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Figure 8.3: Schematic diagram of the analog core with specific choices of digital
connections between neighboring neuron circuits (A). From left to right neigh-
boring neurons are connected by AND, XOR and MULLER-C gates. Figure (B)
shows a computer simulated response to excitatory poisson input. Each neuron
has a refractory period set to 100ms, after it has fired during which the neuron
is clamped to the reset potential. The logic gates operate on the refractory
signal, I indicate where their output is one as grey boxes and show in color
the analog voltage traces of the corresponding neurons. The output spikes are
indicated by black lines. At a given point in time the refractory output defines
a binary vector, I indicate one such value at the grey vertical line.

the leak potential of the neurons identical to the threshold vleak = vth = 1.0.
Combined with the expressions for the MULLER-C (8.12), AND (8.10) and
XOR gate (8.11) by Heaviside functions, surrogate gradient training can also be
used to train networks that use the additional digital gates I’ve introduced in
this section.

8.3 Implementation
On the BrainScaleS 2 system the neuron digital backend is used to distinguish
and control the different operating modes of the neuron, in particular in order
to allow it both to function as a dendritic compartment and as a standalone
neuron. Gerd Kiene extended the digital backend with the functionality needed
to implement the Bayesian inference primitives explained in the previous section.
The conceptual placement of the circuitry within the digital neuron was done
jointly.

The refractory time of each neuron is controlled by an asynchronous 7 bit
counter, during the refractory period one of a few different alternatives happen,
depending on which mode the neuron is in. A 1-bit event register is set to one at
the beginning of the refractory time and cleared by the priority encoder circuit
once it has been serviced. As indicated in Fig. 8.1 (B) the post-pulse and event
counter start signal generation was modified. The post-pulse and event-counter
start signals can now be generated in one of the following ways (selectable
by digital switches): Either by the neuron fire signal, which is generated by an
analog comparator with the neuron’s threshhold voltage or as a boolean function
f of the neuron’s refractory and the refractory pulse of neighboring neurons.
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The boolean function f can be either AND, XOR or MULLER-C gate between
the two refractory pulses. The refractory pulse used in this computation can
be routed to the neuron from left or right and can bypass neurons for routing
the pulse. In this new mode the event output and counter are only activated,
when the function f evaluates to 1. Similarly the synapses corresponding to the
neuron only receive a post-pulse affecting the correlation circuitry [58], if the
function evaluates to 1.

8.4 Learning Rules
The BrainScaleS 2 system includes a “plasticity processing unit” (PPU) [58].
Relevant to biological learning rules are the synapse weights, which have 63
levels of strength and can be either inhibitory or excitatory, the rate counters
of each neuron and finally local correlation sensors in each synapse, which are
meant to enable the implementation of STDP like rules [58].

The correlation circuit in each synapse measures the exponentially weighted
time a+ and a− between the most recent pre-post or post-pre pair of events. On
the chip this is implemented by the “post pulse” signal line from each neuron
digital part to its synapse column.

The inclusion of a boolean circuit between the digital part of two adjacent
neuron circuits allows in principle a dissociation of the post pulse of the individ-
ual neurons with the spike event of the neurons themselves. Instead post pulse
generation of one digital compartment can be made dependent on the spike gen-
eration of the other digital compartment. This means that the content of the
rate counters of one neuron can now depend on the spike activity of a neighbor-
ing neuron, similarly the pre-post correlation measurements are now influenced
by the spike activity of a neighboring neuron. On a high level the and-gate
computes a coincidence of spikes within the refractory period of a neighboring
neuron. Since the correlation post-pulse is gated as well, the correlation sensors
also only detect correlation when spikes coincide within the refractory window.

The purpose of the following two sections then is to discuss how this could
be used in learning rules implementable on the PPU.

8.4.1 Digital Dendrites
Another application of the additional circuitry described above is in the realiza-
tion of a limited form of multi-compartment neuron, here neighbouring neuron
compartments can be thought of as being digitally connected into a simple
multi-compartment neuron. Thinking of individual neuron-compartments as
performing an overall logical operation was for example suggested in [108]. Be-
cause of the purely digital realization, we will refer to this kind of configuration
as digital dendrites.

Introducing such a logical relation between neighbouring neuron circuits
in the case of the neuromorphic hardware under discussion has the additional
advantage of obtaining more state variables for a single neuron. As a concrete
application we will discuss the case that two neighbouring neuron circuits are
connected by an ”and”-gate. Together with the on-chip plasticity processing
unit [58] this allows for a gated variant of spike time dependent plasticity STDP
[65] to be implemented, which enables association of spatio-temporal patterns
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to a label. For a detailed description of the on-chip plasticity processing unit
and the specific correlation anti-correlation sensors present in each synapse, we
refer to [58].

The idea for this use case is very simple: Consider two neuron compartments
A and B. Neuron compartment A is will be considered to be ”label” compartment
and neuron compartment B will be considered the ”classification” compartment.
The output and post-pulse generation of neuron compartment B is gated via
an ”and”-gate by the output of neuron compartment A. This means that only
while the label neuron compartment A is refractory a spike of the classification
neuron compartment B can result in an increase in the correlation trace of its
synapses. Application of the standard STDP update rule

dw = α(a+ − a−),

where a+ and a− are the correlation traces of a given synapse and α some factor,
will therefore result in an increase of those synaptic weights that receive input
during the desired labelled input pattern and a decrease for those whose input
is not correlated with it. Because the synaptic weights are quantized stochastic
rounding has to be used, so that the weight updates are unbiased:

dw̄ = bdwc+
{

1 with probability p = dw − bdwc
0 with probability 1− p

8.4.2 Error Backpropagation
The considerations of the last section can be extended to the case of a multilayer
network. The new circuitry allows for an implementation of an approximate
form of error backpropagation as follows: Consider again neighbouring neuron
compartments in pairs, one for the forward direction and one for the backward
direction. For simplicity we will consider a simple feed forward network with N
layers. Denote by Wi the weights of layer i = 1 . . . N . The response of a LIF
neuron to an input current I is given by [46, 70]:

f(I) =

{ [
τ log

(
E+RI−Vr

E+RI−Vth

)
+ tref

]−1

, if E +RI > Vth

0 , if E +RI ≤ Vth

here Vth is the threshhold potential, Vrest is the resting potential, τ is the mem-
brane time constant, tref is the refractory time, R is the membrane resistance,
E the membrane potential and I the input current. Close to the onset of firing
this response can be approximated by a so called rectified linear unit (see e.g.
[70] for this rationale): That is the response of a LIF-neuron to stimulation with
an average rate vector x is roughly

f(x) = max(x · w − β(θ), 0),

where β is a monotone increasing function of the threshhold θ, and w is the
weight vector of the neuron. The derivative of this approximate response func-
tion is a heavyside step function

f ′(x) = Θ(x · w − β(θ))
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in other words the derivative is 1 if the input reached the threshhold or zero
otherwise. The backpropagated error is then

dx = f ′(x)dy = Θ(x · w − β(θ))dy. (8.26)

Consider now a specific layer i of the feed forward network. The backprop-
agated error needs to be determined for both the weights dW (i), as well as the
error backpropagated to the inputs dx(i) and optionally to the threshhold dθ(i).

To compute the error dx(i) backpropagated to the inputs x(i) we use the
following prescription: As we said above we associate to each neuron compart-
ment A in the forward direction in layer i, a neurite B in the backward direction.
The output of neurite B is gated by an ”and”-gate with the output of neuron
compartment A. This gating mechanism approximates the multiplication with
the derivative of the response of neurite A in the forward direction, because the
derivative of the forward activation function is approximately a step function
as explained above.

For this to fully conform to the backpropagation algorithm, the weights of
neurite B need to be the (transpose) of the synaptic weights with which neurite
A connects to layer i+1.

To compute the error dW (i) the average spike rate r(i)B for each of the back-
ward neurites B in layer i is measured over a time T , this will again be propor-
tional to the derivative of the response function of neurite A, by the rationale
given above. The weight update after a time T is then given by

dW (i) = −αr(i)B · sign(W (i)) · (a(i)+ − a
(i)
− ),

here as above a
(i)
+ and a

(i)
− are the correlation and anti-correlation measure-

ments of all synapses of layer i after the given time period T , which serve as
an approximation to the overall input received at this synapse, α is a scaling
factor and sign(W (i)) computes whether the synapse is inhibitory or excitatory.
The relationship between negative STDP and gradient descent in spiking neural
networks was suggested in [18] and in lectures by Hinton.

The output layer of the feed-forward neural network needs to be treated
differently: Again consider pairwise neurites A and B, B is again the ”label”
neurite and A is the ”output” neurite. By connecting the output neurite with
a ”xor”-Gate to the label the output of the label neurite, it will only produce
an output if the label neurites activity differs from that of the output neurite.
Indeed for correlated input bitstreams X,Y the xor gate computes

Z = |X − Y | (8.27)

This is precisely the desired behaviour for producing an error signal, as it is the
derivative of the l2 distance.

Because the synapse array of the BrainScaleS 2 system only has quantized
weights, stochastic rounding can again be used to implement this weight update
rule. That is the update rule will be

dW̄ (i) = bdW (i)c+
{

1 with probability p = dW (i) − bdW (i)c
0 with probability 1− p

To facilitate this kind of stochastic operation the plasticity processing unit has
a vectorized pseudo-random number generator.
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8.5 Conclusions
In this chapter I’ve introduced an extension to the BrainScaleS-2 architecture
jointly developed with Gerd Kiene, which allows one to combine primitives used
for stochastic computing directly with the neuron and correlation circuitry. Sep-
arately I also introduced a novel way of training deterministic spiking neurons
to model binary probability distributions. Directly training on the output of
the spiking neural network via either surrogate gradient training (as done in
this chapter) or the adjoint method. This is a conceptual advantage since it
does not presuppose an underlying probability distribution but instead allows
one to directly approximate stochastic processes with deterministic neurons and
simple noise sources. And interesting theoretical consideration would be to find
results on which stochastic processes can be approximated in this way. The case
where the stochastic process has a stable distribution is then a special case. The
circuits presented in this chapter have not been experimentally used so far, but
I hope the suggestions made in this chapter, together with the training method
I presented can lead to interesting results.



Chapter 9

Learning as Optimal
Control

In previous chapters I have discussed several approaches to optimisation in spik-
ing neural networks, all centered around the hypothesis that the problem can
be posed as the minimisation of some loss over time. With the exception of the
online learning approximations I presented in chapter 5 the optimisation, while
also being governed by a dynamical system (the adjoint equations), can’t read-
ily be interpreted as ”biologically” or physically plausible since the equations
are solved in reverse time and the separation of learning in separate ”forward”
and ”backward” phases is not observed in this fashion. Moreover it is unclear
why some form of gradient descent should happen in the first place and how to
decide when parameters should be updated. In this chapter I want to partially
address these issues by formulating the ”parameter update” as an optimal con-
trol problem. That is instead of considering the parameters to be static, they
are now considered to be part of the dynamics and instead there are temporally
varying controls that influence them. I find that under the assumption of linear
controls (but non-linear) dynamic and a quadratic contribution of the control
to the cost, the optimal weight dynamics can be derived explicitely.

9.1 Background
This section follows closely the exposition presented in [91]. We want to under-
stand the learning dynamics in terms of a stochastic optimal control problem
of the following form:

dx = b(x(t), u(t), t)dt+ dξ. (9.1)
Here x, b, dξ are n-dimensional vectors and u is an m-dimensional control vector.
The noise term dξ is a Wiener process with correlation 〈dξkdξl〉 = νkl(u, x, t)dt.
We are given an initial state x(t0) = x0 and are looking for a solution until some
final time tf .

The Hamilton-Jacobi Bellman equations are a way to find optimal controls
u(t) such that the cost

C(x, t) =

⟨
ϕ(x(tf )) +

∫ tf

t0

l(x, u, t)dt

⟩
x(t)

(9.2)

85
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is minimized, here the expectation value is formed over all realisations x(t) of
the stochastic process. Define the optimal cost to go function

J(x, t) = min
u(t→tf )

⟨
ϕ(x(tf )) +

∫ tf

t

l(x, u, t)dt

⟩
x(t)

(9.3)

Then the Hamilton-Jacobi Bellman equation for J is given by [91]

−∂tJ(x, t) = min
u

(
l(x, u, t) + b(x, u, t)T∂xJ(x, t) +

1

2
Tr
[
ν(x, u, t)∂2xJ(x, t)

])
,∀t, x

(9.4)
with boundary condition

J(x, tf ) = ϕ(x). (9.5)

Now assume that the control is linear, that is

dx = b(x(t), t)dt+Bu(t)dt+ dξ. (9.6)

and the cost l(x, u, t) quadratic in u:

l(x, u, t) =
1

2
(uTRu) + V (x, t) (9.7)

then the stochastic Hamilton-Jacobi Bellmann equations simplify to [91]

− ∂tJ = min
u

(
uTRu+ V + (b+Bu)T∂xJ +

1

2
Tr
[
ν∂2xJ

])
(9.8)

The minimization over u can be carried out [91]

u = −R−1BT∂xJ(x, t). (9.9)

9.2 Learning
I now want to distinguish two kinds of variables in our stochastic model: Param-
eters w ∈ Rl and state variables y ∈ Rk. The idea is to find optimal changes of
the parameters based on a linear control u. Therefore assume B = PT

w , where
Pw : Rk×l → Rl projects to the parameter space. In other words the control
can only affect the parameters of the system. Inserting into equation we find
that

dw = Pwb(x(t), t)dt−R−1∂wJ(x, t)dt+ dξ (9.10)

if we furthermore assume that Pwb = 0, that is w has no other deterministic
dynamics, this implies that the parameters w should change according to the
gradient of the cost to go function with respect to the parameters

dw = −gradwJ(x, t)dt+ dξ, (9.11)

where I’ve identified R−1 as the inverse of a (constant) Riemannian metric on
the parameter space Rl. This demonstrates that under the assumptions I’ve
made the optimal learning strategy is indeed gradient descent according to the
future cost-to-go function. The problem then becomes how to estimate this
gradient.
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9.3 Conclusion
The perspective of learning as optimal control can be fruitfully expanded be-
yond the admittedly limited observation I have made here. In particular [91,
90] goes on to linearise equation (9.8) and derive a pathintegral representation.
Stochastic weight update equations like (9.11) were also used in [89], the per-
spective from the Hamilton-Jacobi-Bellmann equation might shed further light
on ”optimal” synaptic rewiring.
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Chapter 10

Emulating quantum
computation with ANN

10.1 Introduction
This chapter is based on [124]. Most of the preceding chapters were motivated
by the question how physical systems (such as the biological nervous system or
neuromorphic hardware) can learn to implement certain classical computations
(classification, regression, markov decision processes). In this chapter I will
consider how classical artificial neural networks (ANN) can learn to emulate
quantum operations. This is done in order to prepare for the more challenging
question of how a neuromorphic computing system could implement quantum
operations, which I will discuss in the next chapter. Both questions are moti-
vated by a change of perspective on quatum systems as being realised in certain
classical statistical systems [162] obeying constraints. Quantum states in this
case are represented by probabilistic information on macroscopic observables.
Quantum gates then correspond to transformations of the probabilistic informa-
tion at ”layer” t to t + ϵ in a certain way. Here t can correspond to a layer in
an artificial neural network, time or space.

Implementation of the necessary constraints on the classical system take
different forms. Here I implement aspects of quantum computation by small ar-
tificial neural networks. They can perform arbitrary sequences of unitary trans-
formations on the density matrix of two entangled qubits, by composing a small
a set of trained gates (Hadamard, CNOT and π/8-rotation). The necessary con-
strains are then that the complex structure, hermiticity of the transformation
are implemented by the ANN, as well as proper normalisation and positivity
of the output matrix. Finally the network also needs to implement the unitary
transformation (see fig. 10.1, 10.2). Once a basic set of gates has been trained,
non-computing sequences of gates can be implemented by composition (see fig.
10.3).

For a given network structure the learnable parameters represented the re-
maining degrees of freedom that have to be adjusted to implement the task. In
the networks that are typically considered, one curious feature is that they are
overparametrised relative to the number of training samples that are available.
One view on the results in presented in this chapter is as a demonstration, how
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such an overparametrisation can help to implement constraints in the transfor-
mations imposed by the data. The space of N × N density matrices, that is
positive hermitean matrices ρ with trace one tr ρ = 1, can be seen as a submani-
fold in the space of all 2N×2N real matrices, once a choice of complex structure
and hermitean inner product has been made, as I will explain in more detail
below. I will denote the image of a given density matrix ρ under this embedding
by ρ̄. While the artificial neural network operates on the space of all 2N × 2N
matrices, only on the subspace of density matrices (the ”quantum subsystem”)
[162] the transformation by the ANN implements the unitary transformation

ρ(t+ ϵ) = U(t)ρ(t)U†(t), (10.1)

that is relates the density matrix at layer t to the density matrix at layer t+ ϵ.
The real valued entries of ρ̄ can be considered to be (a function of) the

expectation value of some macroscopic probabilistic observable, which could also
include correlations, that is expectation values of products of ”basis observables”.
One choice is to use two-level observables s = ±1, which could for example
correspond to a ”active” or ”refractory” state of a spiking neuron [31, 126]. This
kind of two-state system was also discussed in chapter 8.1 and will be explicitely
used in the following chapter 11. Since the publication of the preprint [124]
this chapter is based on, low-dimensional quantum states were also realised on
neuromorphic hardware using a similar interpretation of the refractory state of
a LIF neuron [42].

A quantum system with Q quantum spins or qubits has a density matrix
ρ that is defined by 22Q − 1 independent real numbers. Positivity implies fur-
ther ”quantum constraints” on these real numbers, which imply the uncertainty
relation [162]. Clearly already for moderate numbers of qubits (say Q = 20)
it becomes impractical to use a representation which uses a one-to-one cor-
respondence to classical expectation values, since this would require 22Q − 1
independent classical basis observables.

This changes, if instead the elements of ρ can be represented as a function of
correlations of basis observables. A minimal example is to use the expectation
values and correlations of 3Q classical Ising spins to describe a density matrix for
Q qubits [162]. In this approach one uses 3Q Ising spins s(i)k , with i = 1, . . . , Q
running over the different qubits and k = 1 . . . 3 are the cartesian directions
of the quantum spins. One then considers up to Q-point correlation functions,
denoted by

χµ1µ2...µQ
= 〈s(1)µ1

s(2)µ2
. . . s(Q)

µQ
〉, (10.2)

with µl = 0, . . . , 3 and s
(i)
0 = 1. The minimal correlation map then defines the

density matrix as
ρ = 2−Qχµ1µ2...µQ

Lµ1µ2...µQ
, (10.3)

here Lµ1µ2...µQ
are the generators of the unitary group SU(2Q) given by

Lµ1µ2...µQ
= τµ1

⊗ τµ2
⊗ . . .⊗ τµQ

, (10.4)

with the Pauli-matrices τµ explicitely given by

τ0 =

(
1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (10.5)
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By definition ρ is normalized tr(ρ) = 1 and hermitean ρ† = ρ. This minimal
correlation map is complete if every positive quantum density matrix ρ can be
represented by classical correlation functions (10.2) via (10.3). Denote this map
by

q : 〈s(1)µ1
s(2)µ2

. . . s(Q)
µQ

〉 7→ ρ. (10.6)
and the correlation map by

c : (s(1)µ1
, s(2)µ2

, . . . , s(Q)
µQ

) 7→ 〈s(1)µ1
s(2)µ2

. . . s(Q)
µQ

〉. (10.7)

A given unitary transformation U acts on density matrices by adU (ρ) = UρU†.
If q were complete then for a given U it might be possible to find a function fU ,
such that

q ◦ c ◦ fU = adU ◦ q ◦ c (10.8)
In other words the unitary transformation might be realised by a change of the
classical probability distribution, which realises the change of expectation values
(10.2).

10.2 Implementation
In order to implement the transformation (10.1) of a given density matrix ρ(t)
by a unitary matrix U , one can start in the case of 2 qubits with a real 8 × 8
matrix A(t) as input to a network that produces an 8 × 8 matrix B(t + ϵ) as
output. The matrix elements of A(t) correspond therefore to 64 input ”neurons”
and the matrix output elements B(t + ϵ) to 64 output ”neurons”. The overall
network architecture has a ”bottleneck” layer of m hidden neurons, all realised
as real linear units. The overall network architecture is therefore 64 −m − 64.
Since a density matrix is specified by only 15 real numbers, the network has to
learn that only those degrees of freedom are relevant, the remaining 64−15 = 49
dimension can be considered to be the ”probabilistic environment”.

I first implement a ”quantumness gate” which maps a 8 × 8 real matrix
A(t) with entries in the interval [−1, 1] (thought to be the expectation values
of two-level system), to a density matrix ρ(t). This is done in two steps, first
define

Ã = −IAI, I =

(
0 −14
14 0

)
(10.9)

with 14 denoting the 4× 4 unit matrix. Then define

Ā =
1

2
(A+ Ã). (10.10)

The entries of Ā can by construction be written as

Ā =

(
CR −CI

CI CR

)
(10.11)

with CR and CI the real and imaginary part of a complex matrix C = CR+ iCI .
This map establishes an R algebra isomorphism between 8× 8 real matrices of
this form and 4×4 complex matrices. In a second step one can obtain a density
matrix by

ρ =
CC†

trCC† , (10.12)
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Figure 10.1: From top to bottom: Loss function, residual trace (|tr(ρ) − 1|)
and norm of the anti-hermitian part of the output matrix as a function of
the training epoch for supervised training on the CNOT gate with bottleneck
dimension m = 15. Figure adapted from [124].

which is by definition hermitian, has norm one and is positive. The combination
of these steps maps a matrix real 8× 8 matrix A(t) to a density matrix ρ(t+ ϵ).
This ”quantumness gate” has been realised so far with a mean-squared error loss
of 10−5 by training a small ANN with rectify linear non-lineraties with increasing
batch sizes of 32, 64, ..., 512 on 106 training samples. Training samples were
generated by uniformly sampling entries of A(t) from [−1, 1]. The AdaDelta
[170] optimizer was used for training. All neural networks were implemented in
TensorFlow [3] and used the Keras library [36] for training.

A complex valued 4× 4 density matrix for a 2-qubit system can be in turn
be regarded as a real 8× 8 matrix

ρ̄(t) =

(
ρR −ρI
ρI ρR

)
. (10.13)
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Such matrices are used as input to the training of an artificial neural network
to perform a unitary transformation. Similarly the mean squared error loss is
imposed on the real representation of the output density matrix ρ̄(t + ϵ), that
is the loss is given by

L =
1

N

N∑
i=0

|ρ̄i(t+ ϵ)−Bi(t+ ϵ)|2 (10.14)

where i = 0, . . . , N runs over one mini-batch of training samples, ρ̄i(t+ ϵ) is the
real representation of ρi(t+ ϵ) in eq. (10.1) for a given unitary transformation
U(t) (for example the CNOT-gate) and Bi(t+ ϵ) is the output of the ANN on
Ai(t) = ρ̄i(t). The norm in (10.14) is the Frobenius norm on matrices. Training
was implemented by generating 105 input density matrices and performing mini-
batch stochastic gradient descent with batch-size of 103 using the AdaDelta [170]
optimizer. Before training the ANN produces for a given real representation of a
density matrix an arbitrary real matrix B(t+ϵ), during training it subsequently
learns to implement the complex structure, hermiticity and norm condition, as
well as the desired unitary transformation on ρ̄(t). More precisely the matrix
B(t+ ϵ) can be decomposed into 4× 4 block matrices

B(t+ ϵ) =

(
BR(t+ ϵ) −BI(t+ ϵ)
B′

I(t+ ϵ) B′
R(t+ ϵ)

)
. (10.15)

implementation of the complex structure means that |BI −B′
I | � 1 and |BR −

B′
R| � 1. That is it can approximately represent a complex matrix F (t + ϵ).

Moreover this complex matrix is hermitian, has trace one trF (t+ ϵ) = trB(t+
ϵ) = 1 and F (t+ ϵ) is positive (all eigenvalues of F are positive).

Once training has completed the parameters of the ANN have adapted in
such a way that a real representation of an arbitrary density matrix ρ̄(t) is
transformed to real representation ρ̄(t + ϵ) of the unitary transformed density
matrix ρ(t+ ϵ) with high precision.

10.3 Results
In Fig. 10.1 I show training results of an ANN with bottleneck dimensionm = 15
(number of intermediate neurons) on the CNOT gate. The loss (10.14) decreases
over 4000 epochs to a value below 10−11. Furthermore the residual trace |trF−1|
and the anti-hermitean part |F (t+ ϵ)F †(t+ ϵ)| are shown. Already after a brief
initial training period these two quantities decrease rapidly, implying that the
output of the ANN while not faithfully reproducing the unitary transformation,
already maps to the submanifold of hermitean, normalized matrices with good
precision. This is both true for individual training examples (I indicate the
maximal values across the training set for a given epoch), as well as on average
over 105 independent samples.

I then evaluate the training performance as a function of the bottelneck
dimension m (see fig. 10.2). For m > 16 training converges already after
training for 1000 epochs. Training with m = 15 takes considerably longer to
converge and completely breaks down for m < 15. This corresponds to the
fact that a normalized hermitian 4× 4 matrix (and therefore a 2-qubit density
matrix) has 15 independent real degrees of freedom.
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Figure 10.2: Loss values for training on the CNOT gate as a function the number
of intermediate neurons m. Shown are the values for 1000, 3000 and 10000
epochs. The training converges for m ≥ 15, which corresponds to the real
dimension of the space of 2-qubit density matrices. Figure adapted from [124].

Varying the bottleneck dimension therefore gives one a way to determine
the minimal number of necessary degrees of freedom. This could generalise to
situations where this dimension is less obvious than in the present case. If the
input to the network is not a real representation of a density matrix ¯rho(t), but
an an arbitrary 8 × 8 matrix A(t), the resulting matrix will not be hermitean
or normalised, exept for m = 15.

To evaluate the composition of several trained ANNs, I first train one ANN
on the CNOT gate UC and a second one on an application of the Hadamard on
the first spin and a rotation by π/8 on the second spin UHR = UH ⊗C UR (see
also inset in fig. 10.3). The gates are given explicitely by

UC =

(
1 0
0 τ1

)
, UH =

1√
2

(
1 1
1 −1

)
, UR =

(
1 0
0 eiπ/8

)
(10.16)

Given an initial density matrix ρ(t) and its corresponding real representation
¯rho(t) the composition U(t) = UHRUC is applied n-times to ρ, yielding a final

density matrix ρ(t+ nϵ), that is

ρ(t+ nϵ) = U(t+ nϵ)ρ(t)U†(t+ nϵ), U(t+ nϵ) = (UHRUC)
n (10.17)

Similarly the two corresponding trained ANN can be applied in sequence n-times
yielding a matrix B(t + nϵ). As can be seen in fig. 10.3 the resulting matrix
B(t + nϵ) approximates the density matrix ρ̄(t + nϵ) with a mean-squared er-
ror of less than 10−6 for n ≤ 215. Since composition of UHR and UC densely



10.4. SUMMARY AND OUTLOOK 95

approximate arbitrary unitary transformations for varying n this also demon-
strates the feasibility of implementing arbitrary unitary transformations with
only two trained networks. Similarly non-commutativity of the gates can be
demonstrated by changing the order in the sequence of composition of the net-
works.

Figure 10.3: Sequential composition ANNs trained on H⊗Rπ/8 and the CNOT -
gate. Shown is the error, that is the mean-squared Frobenius norm between the
real representation ρ̄(t+nϵ) of the density matrix and output B(t+nϵ) obtained
by composing the ANNs, for different numbers of layers n. Figure adapted from
[124].

10.4 Summary and Outlook
In this chapter I discussed emulation of quantum operations by artificial neural
networks, without any explicit use of the probabilistic interpretation introduced
in section 10.1. In the next chapter I will explain how the refractory states of
deterministic spiking neurons connected in a recurrent network and subjected to
noise can serve as a classical two-state observable, whose time-averaged expec-
tation value and correlation can be used to compute (10.2) and the correlation
map (10.3). Just like explained here the coupling parameters of the network ad-
just to represent the quantum state. In scaling beyond a small number of qubits
it will be an interesting challenge to find efficient representations for restricted
problems based on a subset of the correlations, analogous to the autoregressive
models pioneered in [146], where the state entering the optimisation can only
depend on a restricted subset of the correlations.
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Chapter 11

Neuromorphic Quantum
Computing

11.1 Introduction
This chapter corresponds to the results reported in [123]. Given the fact that
spiking neural networks can approximately sample binary probability distribu-
tions by associating their quiet and active state to binary random variables as
discussed in chapter 8.1 the question arises whether it would be possible to
realise the correlation map as introduced in [162] and explained in 10 by a spik-
ing neural network. This question wass raised in [162, 124]. In the context
of artificial neural networks recent progress has already demonstrated impor-
tant aspects of quantum computation with artificial neural networks [32, 150,
105]. See also [29] and references therein for a comprehensive review of com-
putational approaches using artificial neural networks on quantum problems.
The time continuous nature and natural event processing capabilites of spiking
neural networks make them compelling candidates for exploring both quantum
state approximation by sampling and hybrid neuromorphic quantum systems
(a recent survey of approaches to ”quantum neuromorphic computing” is [109]).
This is in particular interesting in the context of the adjoint dynamics discussed
in chapter 4. In this chapter however I focus on four steps which continue the
approach formulated in [162, 124]

1. Using a parametrised network of spiking neurons and given an arbitrary
2-qubit density matrix ρ, parameters W can be found such that the ex-
pectation values and correlations of the binary refractory state variables
interpreted as Ising spins, produce under the correlation map the desired
density matrix ρ.

2. We demonstrate that the minimal correlation map [162] is complete in the
case of 2-qubits by numerically implementing a procedure which allows
me to find for a given density matrix ρ a probability distribution p, which
maps to ρ through the correlation map.

3. We show how an arbitrary unitary transformation on density matrices ρ
results in a corresponding change of probability distributions p.
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Figure 11.1: Probabilities corresponding to the density matrices of the pure
state ψ+ = 1√

2
(|00〉 + |11〉) (blue) and a randomly generated density matrix

ρ (A) (green). We also indicate their transformation under a CNOT gate (B).
The labels 0 . . . 63 correspond to the states of 6 classical spins s(i)k , i = 1, 2, k =
1 . . . 3. For example the label 3 corresponds to the spin state [−1,−1,−1,−1, 1, 1].
Figure adapted from [123].

4. Finally we show that the minimal correlation map is not complete for Q >
2, while numerical experiments suggests that it is capable of producing
random density matrices ρ it fails on density matrices associated with
maximally entangled pure states. An updated version of [123] will suggest
an extended correlation map.

11.2 Correlation map for two qubits
Recall from the previous chapter 10, that the minimal correlation map for Q-
qubits is given by

ρ = 2−Qχµ1µ2...µQ
Lµ1µ2...µQ

, (11.1)

here Lµ1µ2...µQ
are the generators of the unitary group SU(2Q) given by

Lµ1µ2...µQ
= τµ1

⊗ τµ2
⊗ . . .⊗ τµQ

, (11.2)

with the Pauli-matrices τµ explicitely given by

τ0 =

(
1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (11.3)

in the case of two qubits, this simplifies to

ρ =
1

4
χµ1µ2

Lµ1µ2
, (11.4)

with
Lµ1µ2

= τµ1
⊗ τµ2

. (11.5)
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That is for two qubits the correlation map is given by a function

f : R4×4 → C4×4, χµ1µ2
7→ 1

4
χµ1µ2

Lµ1µ2
(11.6)

The coefficients χµ1µ2
are then

χ00 = 1, χ0k = 〈s(1)k 〉, χl0 = 〈s(2)l 〉, χkl = 〈s(1)k s
(2)
l 〉. (11.7)

The classical spins s(1)k , s
(2)
k , k = 1, 2, 3 can take on values ±1, overall the 64 = 26

can therefore be assigned a probability distribution pτ with τ running over all
64 different states. The expectation values and correlations in (11.7) can be
obtained in the standard way by summing overall state values and multiplying
by the probability pτ . That is

χk0 = σ(k0)
τ pτ , χ0k = σ(0k)

τ pτ , χkl = σ(kl)
τ pτ , (11.8)

where the signs σ(a)
τ = ±1 are given by

σ(k0)
τ = (−1)1+bin(τ)[k], (11.9)
σ(0k)
τ = (−1)1+bin(τ)[3+k], (11.10)
σ(kl)
τ = (−1)1+bin(τ)[k](−1)1+bin(τ)[3+l]. (11.11)

Here I denote by bin(τ) the binary representation of the state For example
bin((−1,−1,−1, 1, 1,−1)) = (0, 0, 0, 1, 1, 0) and bin(τ)[k] takes the k-th entry,
for example bin((−1,−1,−1, 1, 1,−1))[3] = 1. This defines a map

g : R64 → R4×4, p 7→ χ. (11.12)

The bit-quantum map b is then a map from the classical binary probability
distribution p to the quantum density matrix ρ

b = f ◦ g : R64 → C4×4, p 7→ ρ. (11.13)

It maps certain classical expectation values and correlations (11.8) to the ex-
pectation values and correlations of quantum spins in the cartesian directions.
This construction is in some ways analogous to the reconstruction of the density
matrix of photons from appropriate correlations [87, 120, 93]. In fig. ?? I show
examples of classical probability distributions associated with certain quantum
density matrices and in fig. 11.2 the corresponding expectation values and cor-
relations. The goal of the next section is to explain how these can be optained
by a simple optimization procedure.

11.3 Completeness of the correlation map for
Q = 2

In order to demonstrate the completeness of the bit quantum map (11.13), I
performed two numerical experiments. The aim is to show that to every postive
hermintian normalized quantum density matrix ρ, there exists a classical binary
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Figure 11.2: We show the 15 = 2 × 3 + 9 spin expectation values 〈s(1)k 〉 and
correlations 〈s(1)k s

(2)
l 〉 corresponding to ψ+ (A) and ρ (B). The first row contains

the three expectation values 〈s(1)k 〉, the first column the three expectation values
〈s(2)k 〉. The remaining 3 × 3 entries are made up of the correlations 〈s(1)k s

(2)
l 〉.

The transformed spin expectation values and correlations related to the density
matrices CNOT(ψ+) and CNOT(ρ) are shown in (C) and (D) respectively. Note
the different color scale between (A)(B) and (C)(D). Figure adapted from [123].

probability distribution p, such that ρ is the image of p under equation (11.13).
We introduce a ”classical wave function” qτ , which is related to pτ according to

h : R64 → R64qτ 7→ pτ =
q2τ∑
τ q

2
τ

. (11.14)

The goal is therefore to find for a given density matrix ρ ∈ C4×4 a vector
q ∈ R64, such that ρ = (b ◦ h)(q). Clearly such a q is not unique, as changing
the sign of any of the components of q doesn’t change the image. To find one
such q we introduce the loss function

lρ(q) = |(b ◦ h)(q)− ρ|22. (11.15)

We can then perform gradient descent with respect q according to this loss. In
order to verify the effectiveness of this method of finding q we start with a ran-
domly chosen density matrix ρ0 and apply a sequence of random combinations
of CNOT, Hadamard and rotations by π/8 to it, in order to obtain density ma-
trices ρi. For growing i the sequence of unitary transformations densely covers
the space of all possible unitary transformations. We then perform gradient de-
scent optimization according to (11.15) to find qi (and therefore pi) associated
to the density matrices ρi = (b◦h)(qi). As can be seen in fig. 11.3 the optimiza-
tion succeeds to find appropriate qi after few iterations in all recorded cases.
We generated many initial density matrices ρ0 as well. This lends numerical
support to the conclusion that for Q = 2 the bit quantum is complete.
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Figure 11.3: Optimization results for finding suitable ”classical wave functions”
qi ∈ R64 for given density matrices ρi. We generate 103 samples by performing
sequences of unitary transformations as described in the main text starting
from a random initial density matrix ρ0. Optimization is stopped once the loss
lρ(q) falls below 10−10. (A) shows a histograma of final loss values and (B) a
histogram of the required number of iterations. Figure adapted from [123].

We then ask a related question: How to find the transformation of q associ-
ated to a given transformation of ρ = (b ◦ h)(q). In other words we ask how a
classical probabilistic object is transformed to implement a quantum operation
on the associated density matrix. More precisely the goal is to find for a given
vector q ∈ R64 associated to a density matrix ρ = (b ◦h)(q) and a given unitary
transformation U a matrix M ∈ R64×64, such that the transformed vector Mq
is related to the transformed density matrix ρ′ = UρU† = (b ◦ h)(Mq). This
can again be regarded as a minimization problem, with loss given by

lU (M) =|adU ((b ◦ h)(q))− (b ◦ h)(Mq)|22 (11.16)

and the adjoint action given by adU (ρ) = UρU†. The minimization of this loss
can be again carried out by gradient descent, now with respect to M . Example
results of this procedure are shown in fig. 11.1 as well as the resulting expec-
tation values and correlations before and after the transformation in fig. 11.2.
In this case we chose as the unitary transformation U = CNOT and investi-
gated both the density matrix associated to a maximally entangled Bell-state
ψ+ = 1√

2
(|00〉+ |11〉), as well as several randomly generated density matrices ρ.

It is important to realise that M found in this way depends on q, that is it is a
non-linear map Mq =M(q)q [159].

11.4 Quantum computing with spiking neurons
So far we explicitely determined given a density matrix ρ a classical probabil-
ity distribution pτ which is mapped to ρ via the bit quantum map. We now
want to turn to an implementation based on neuromorphic computing which di-
rectly realises classical Ising spin state variables, whose expectation values and
correlations are given by temporal averages and can be used to implement the
correlation map (11.4) directly. I already described the general idea of how to
associate to a deterministic spiking neuron with refractory period a binary ran-
dom variable in chapter 8.1. A neuron is considered active (or refractory) after
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Figure 11.4: Fidelity as a function of training epoch of the representation of
the density matrix of the Bell-state ψ+ = 1√

2
(|00〉+ |11〉) and a random density

matrix ρ by a recurrent spiking neural network via the correlation map (11.4)
Figure adapted from [123].

it has spiked for a certain refractory period trefrac and silent otherwise. Using
this framework pairwise correlations in biological neurons (e.g. [143, 118]) and
relationships to spin-glass models [83] have been considered in the literature.

We consider a network of leaky-integrate and fire neurons with an absolute
refractory period of trefrac. The dynamical variables are the membrane voltage
V , synaptic input current I and the refractory state variable R

V̇ = (1−Θ(R))(Vl − V + I) (11.17)
İ = −I + Iin (11.18)

Ṙ = − 1

trefrac
Θ(R). (11.19)

Here Vl is the leak potential and the input current is given by

(Iin)j =
∑
l

(Win)j,qlδ(t− tl) ql ∈ 1, . . . ,m. (11.20)

Just as in previous chapters the neuron dynamic of neuron i jumps if the jump
condition

Vi − (Vth)i = 0 (11.21)

is satisfied. The transition equations are then given by

V +
j = V −

j + (Vr − Vth)δij , (11.22)
I+j = I−j + (Wrec)ij , (11.23)
R+

j = R−
j + δij , (11.24)
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We can then define the refractory state as

zi(t) = Θ(Ri(t)), (11.25)

where Θ denotes the Heaviside function and the classical spins are given by

si(t) = 2zi(t)− 1. (11.26)

We can then select 6 of the n spin variables to be the classical Ising spins we
want to consider. For example we can take

π : Rn → R6, (s1, . . . , sn) 7→ (s
(1)
1 , . . . , s

(2)
3 ). (11.27)

The time averages entering into (11.4) can then be computed by

〈s(i)k 〉 = 1

T

∫ T

0

s
(i)
k (t)dt, (11.28)

〈s(1)k s
(2)
l 〉 = 1

T

∫ T

0

s
(1)
k (t)s

(2)
l (t)dt. (11.29)

Given a density matrix ρ, we can then define the loss

lρ(Wrec,Win) = |ρ− f(χ(π(s)))|22, (11.30)

which defines an optimization problem for the recurrent and input weights
Wrec,Win. This can again be solved by gradient descent by either using a sur-
rogate gradient as explained in chapter 8 or by using the adjoint method. Here
we choose to use the surrogate gradient introduced in [171] with smoothing
parameter α = 100.

We show the results of the optimization process for the spin expectation
and correlation matrices in figures 11.4, 11.5. The resulting recurrent weights
restricted to the 6 Ising spins entering the correlation maps are shown in 11.6.

We considered a network with n = 64 recurrently connected neurons and
128 poisson input sources. We set the leak potential and threshhold to Vl = 0
and Vth = 1. We use simple forward euler integration with time step dt = 0.001
and also set the refractory time to 1ms, which eliminates the refractory variable
from the integration. The numerical implementation is done in JAX [27]. The
poisson input spike frequency is chosen to be 700Hz and the gradient descent
starts with a learning rate of 10 and decreases with a decay constant of 1/100.

We choose to evaluate the method both on a density matrix of a maximally
entangled pure state ψ+ = 1√

2
(|00〉 + |11〉) and randomly generated density

matrices ρ. In figure 11.4 the fidelity

F (ρ, σ) = (tr
√√

ρσ
√
ρ)2 (11.31)

is shown as a function of the training iterations. By the Fuchs–van de Graaf
inequalities the trace norm bounds the Fidelity in the following way

1−
√
F (ρ, σ) ≤ 1

2
|ρ− σ|1 ≤

√
1− F (ρ, σ) . (11.32)

We therefore expect the fidelity of the representation to increase as the loss
decreases. As can be seen from the figure the fidelity increases somewhat slower
for the pure state but nevertheless reaches acceptable levels after a modest
amount of iterations.
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Figure 11.5: Spin expectation and correlation matrices χ corresponding to the
pure state ψ+ (A) and ρ (B) respectively. Figure adapted from [123].

Figure 11.6: Final recurrent weight matrices Wrec or the 6 recurrently connected
neurons, whose refractory state corresponds to the spins s(i)k of the pure state
ψ+ (A) and ρ (B) respectively. Figure adapted from [123].

11.5 Generalisations to many qubits

A natural question is whether the minimal bit-quantum map with the correlation
map given by eq. (11.4) remains for Q > 2. In this section I demonstrate that
this is not true in general. This can be demonstrated by a simple experiment.
Consider the one-parameter family of density matrices

ρ(p) = pρghz + (1− p)ρ̄, p ∈ [0, 1], (11.33)

with ρghz the density matrix of the GHZ state

ψ =
1√
2
(|+++〉+| − −−〉). (11.34)

Then by the same procedure as described in section 11.3 we can hope to find
for given density matrix ρ ∈ C8×8 a vector q ∈ R512 such that it is mapped to
ρ under a generalisation of the bit quantum map ρ = (b ◦h)(q). Then using the
same loss as in section 11.3, we perform gradient descent w.r.t. q.

In figure 11.7 and 11.8 we plot the final loss, fidelity and relative entropy as
a function of p, as can be seen the final fidelity of the bit-quantum map after
104 optimization epochs is rather low for the density matrix ρghz. We conclude
that the minimal bit quantum map is not complete for Q > 2. An extended
quantum map will be proposed in a revised version of [123].
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Figure 11.7: Final loss after training up to 104 epochs to approximate ρ(p) =
pρghz + (1 − p)ρ̄, where ρ is a randomly chosen density matrix and ρghz is the
density matrix of the GHZ-state in dimension 3. Figure adapted from [123].

Figure 11.8: Final fidelity (A) and relative entropy (B) after training up to 104

epochs to approximate ρ(p) = pρghz + (1 − p)ρ̄, where ρ is a randomly chosen
density matrix and ρghz is the density matrix of the GHZ-state in dimension 3.
Figure adapted from [123].
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11.6 Incomplete probabilistic information
The use of a (spiking) neural network allows us to define correlation maps which
are defined through multiple layers and the specific connectivity between the
layers.

First recall the minimal correlation map [162] (already introduced in the
previous chapter). Define the generators

Lµ1...µn =

n⊗
i=1

τµi µi = 0 . . . 3, (11.35)

then a 2n dimensional density matrix can be written as

ρ =
1

2n
χµ1...µn

Lµ1...µn
. (11.36)

The coefficients χµ1...µn
are determined through expectation values and correla-

tions of 3n spins as follows: Let

σµ1...µn
(t) = s(1)µ1

(t) . . . s(n)µn
(t), (11.37)

where s(i)µ (t) = (1, s
(i)
k (t)) with i = 1..n, k = 1..3 and µ = 0 . . . 3. Then the

coefficients are given by time-averaged expectation values:

χµ1...µn
=

1

T

∫ T

0

σµ1...µn
(t)dt. (11.38)

Even if this minimal correlation map were complete, the number of correlations
to be computed would still increase rapidly as 22n with the number of qubits n.
In many instances it seems unlikely that one needs to use the full information
contained in the quantum density matrix ρ to do useful computations.

For example finding the ground state energy of a Hamiltonian typically in-
volves only sparse information (see for example [33, 146]). In the case of the
one-dimensional quantum Ising model with Hamiltonian

H = −J
∑

i=1,...,n

τ
(i)
3 τ

(i+1)
3 − h

∑
i

τ
(i)
1 , (11.39)

the trace tr(Hρ) will only make use of few entries in eq. (11.36). Namely those
two point functions χ0...0µkµk+1...0, µk = µk+1 = 3 and the expectation values
χ0...0µk...0, µk = 1. It might be the case that already the minimal correlation
map can be used to represent this ground state with good fidelity.

In analogy to [146] one could also consider multiple layers of spiking neurons
whose expectation values and correlations then enter based on a more general
prescription than (11.37). That is some of the entries of χµ1...µn

with more
than one non-zero µk, would be represented by the expectation value of a single
classical spin, others as correlations. It remains to be seen whether this would
result in successful implementation.

Since the computation of the expectation values χµ1...µn is performed purely
classically no special degree of isolation or low temperature is needed to imple-
ment the quantum properties. From the perspective of biological systems the
realisation of correlations that (approximately) obey the quantum constraints
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across already a moderate number of neurons, could present computational
advantages, since such correlated states then allow for transformations which
preserve information. The results presented in this chapter are an example how
quantum evolution can be implemented in classical probabilistic systems [160,
162, 161].
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Chapter 12

Outlook and Discussion

The results presented in this thesis leave open a mutlitude of avenues for fu-
ture research. Broadly speaking my interest is to better understand ”learning”,
”intelligence” or ”self-adaptation” under the constraints of physical systems as
opposed to simply algorithmically. Biological brains are examples of physical
systems which exhibit these admittedly somewhat ill-defined properties. Con-
ceptionally one would hope however that the principles underlying this capabil-
ity are substrate and model independent. The discussion of ”Neural Processing
Elements” in chapter 2 is an incomplete attempt of finding a way to concep-
tionally describe self-optimising hierachically composed networks of machines.
Further work is needed to both fully work out the mathematical formalism along
the lines outlined there and then to find practical ways of implementing it.

I restricted myself in this work for the most part to the simpler problem of
gradient based parameter optimisation with respect to arbitrary loss function.
By varying the loss function and the task this can nevertheless result in excellent
performance on a wide variety of tasks as recent successes in Deep Learning have
convincingly demonstrated. While the adjoint method itself cannot be regarded
as a biologically plausible mechanism of parameter optimisation in itself, it can
both serve as the starting point for approximations (as done in chapter 5) and
as the outer loop in a meta-learning task with biologically plausible synaptic
plasticity in the inner loop. By restricting oneself to plasticity rules based on
”realistic” chemical reaction networks and using loss functions that compare
to experimental stimulation protocols on real neurons one might be able to fit
plasticity rules from biological data.

In neuromorphic hardware the EventProp algorithm has a clear advantage
over surrogate gradient methods in that it only requires very sparse information
about the dynamics in the forward pass to compute the gradients and adjoint
dynamics in the backwards pass. This should allow for an efficient implemen-
tation in particular in digital neuromorphic hardware. Similarly it should be
possible to implement the algorithm in digital-analog neuromorphic hardware
by using an in-the-loop training approach [40]. Since the adjoint method ex-
tends to structured neuron models it also allows one to train structured neuron
models such as the one realised on BrainScaleS-2 by gradient based methods.
It therefore is also a natural candidate for inclusion in neuron simulators of
structured neurons such as arbor [5].

Looking beyond spiking neural networks, the adjoint dynamics with jumps
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can also be applied to other dynamical nets. In particular approaches to novel
computing based on often unreliable nano-devices can make use of it. This then
opens the question under which circumstances a physical system can naturally
accomodate the adjoint dynamics. I think this could be of particular interest in
the context of ”quantum neuromorphic computing” as reviewed in [109].

Finally I think there are still many interesting ways to explore the relation-
ship between classical stochastic systems and quantum systems as discussed in
chapter 11.
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Appendix A

Supplementary Material:
Adjoint Equations of Point
Neurons

Listing A.1: Convolutional architecture used in the Fashin-MNIST and MNIST
task. Input dimensionality of one batch of examples is T ×B×1×28×28, with
T the sequence length and B the batch size. Here Sequential, Conv2d, Flatten,
MaxPool2d are standard PyTorch modules and LILayer, LIFFeedForwardLayer
implement either the adjoint method or a surrogate gradient method for Leaky
Integrators and feedforward LIF neurons respectively. Lift is applies a module
pointwise accross time.

Sequent i a l ( [
L i f t (Conv2d (1 , 20 , 5 , 1 ) ) ,
LIFFeedForwardLayer ( ) ,
L i f t ( MaxPool2d ( 2 , 2 ) ) ,
L i f t (Conv2d (20 , 50 , 5 , 1 ) ) ,
LIFFeedForwardLayer ( ) ,

L i f t ( MaxPool2d ( 2 , 2 ) ) ,
L i f t ( F lat ten ( ) ) ,
L i f t ( Linear (800 , 500) ) ,
LIFFeedForwardLayer ( ) ,
LILayer (500 , 10) ,

] )

Listing A.2: Convolutional architecture used for the CIFAR-10 task.
Sequent i a l ( [

L i f t (Conv2d (6 , 32 , 5 , 1 ) ) ,
LIFFeedForwardLayer ( ) ,
L i f t ( MaxPool2d ( 2 , 2 ) ) ,
L i f t (Conv2d (32 , 64 , 5 , 1 ) ) ,
LIFFeedForwardLayer ( ) ,
L i f t ( MaxPool2d ( 2 , 2 ) ) ,
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L i f t ( F lat ten ( ) ) ,
L i f t ( Linear (1600 , 1024) ) ,
LIFFeedForwardLayer ( ) ,
LILayer (1024 , 10) ,

] )

Symbol Description Value
τmem Membrane Time Constant 20ms
τsyn Synaptic Time Constant 5ms
ϑ Threshold 1

Input Size 5
Hidden Size 200
Output Size 3

tbias Bias Time 20ms
tmin Minimum Time 10ms
tmax Maximum Time 40ms

Hidden Weights Mean 2
Hidden Weights Standard Deviation 1
Output Weights Mean 0.4
Output Weights Standard Deviation 0.4
Minibatch Size 200
Optimizer Adam

β1 Adam Parameter 0.9
β2 Adam Parameter 0.999
ϵ Adam Parameter 1× 10−8

η Learning Rate 1× 10−3

Allowed Ratio of Missing Spikes in Hidden Layer 0.15
Allowed Ratio of Missing Spikes in Output Layer 0

∆wbump Weight Bump Value 1× 10−4

α Regularization Factor 1× 10−2

ξ First Time Constant Factor 0.4
β Second Time Constant Factor 2

Table A.1: Simulation parameters used for the Ying-Yang time to first spike
experiment, table adapted from [165].
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