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Multi-Single-Chip Training of Spiking Neural Networks with
BrainScaleS-2

Spiking neural networks (SNNs) on analog neuromorphic hardware are often lim-
ited by the properties of the underlying system. Despite being a promising approach
to machine learning (ML) tasks with high energy efficiency, this often disables the
opportunity to challenge problems of higher complexity due to the necessary network
sizes. The idea of partitioning networks into independently executable parts defines a
possibility to overcome this problem. An algorithm on how to find suitable partitions
for feedforward networks given a set of limitations is developed and implemented
within this thesis. Additionally, methods are designed to deal with further limitations
of the neuromorphic hardware system BrainScaleS-2 (BSS-2) when approaching the
training of SNNs with back propagation through time (BPTT) and surrogate gradient
methods. The scalability of BSS-2 is shown by demonstrating how a larger scale
network can be trained with the MNIST data set. For a network topology of 22× 22
→ 256 leaky integrate-and-fire (LIF) neurons → 10 leaky integrator (LI) neurons, the
simulations reached accuracies of 98.42%± 0.06%, the hardware in the loop training
reached 97.22%. This thesis builds the basis for further development and research
regarding larger scale networks on limited hardware, e.g. optimization with multi
chip setups or other network structures such as convolutions.

Multi-Single-Chip Training von spikenden neuronalen Netzwerken mit
BrainScaleS-2

Spikende neuronale Netzwerke (SNNs) auf analoger neuromorpher Hardware sind
oft durch die Eigenschaften des verwendeten Systems begrenzt. Obwohl sie einen
vielversprechenden Ansatz darstellen, Machine-Learning-Aufgaben mit hoher Ener-
ieeffizienz zu bearbeiten, erlaubt diese Begrenzheit oft nicht, Aufgaben höherer
Komplexität anzugehen. Die Idee, Netzwerke in voneinander unabhängige Teile zu
partitionieren, bietet eine Möglichkeit, dieses Problem zu umgehen. In dieser Arbeit
wird ein Algorithmus entwickelt und implementiert, der für feedforward-Netzwerke
passende Partitionierungen bereitstellt. Darüber hinaus werden Methoden entwickelt,
um mit weiteren Einschränkungen des neuromorphen Hardwaresystems BSS-2 beim
Trainieren von SNNs mit BPTT und Surrogate-Gradient-Methoden umzugehen. Die
Skalierbarkeit des BSS-2-Systems wird anhand des Trainings eines Netzwerks mit
größerer Topologie auf dem MNIST Datensatz gezeigt. Mit einer Netzwerk-Topologie
von 22 × 22 → 256 LIF Neuonen → 10 LI Neuronen erreichen die Simulationen
Genauigkeiten von 98.42%± 0.06%, das Hardware-Training erreichte 97.22%. Diese
Arbeit legt damit den Grundstein für Weiterentwicklungen in diesem Bereich, die sich
mit der Optimierung durch multi-Chip-Systeme oder anderen Netzwerkstrukturen
wie Convolutions beschäftigen könnten.
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1 Introduction

Inspired by the capabilities of the human brain, the field of ML has developed artificial
neural networks (ANNs) and SNNs in an effort to achieve proficiency in a variety of
complex tasks that the human brain has proven to be very capable of. Image and
pattern recognition as well as language processing are just a few topics of modern
ML-research. With the applications of artificial intelligence reaching far beyond
the mentioned examples and tasks getting increasingly complex, optimizations in
many ways are of great interest to the research progress. SNNs, particularly in
combination with neuromorphic hardware [9], have proven themselves to be an energy
efficient method to solve ML-tasks due to their sparse event-driven information flow.
However, modern neuromorphic computing platforms such as the BSS-2 system [15,
19], developed by Electronic Vision(s) in Heidelberg, are limited in the resources
of a chip, and thus prevent from addressing complex tasks that involve larger scale
networks. With the training of SNNs fitting on one BSS-2-chip already shown [19],
this thesis introduces multi single-chip learning with the BSS-2 system, allowing
for the training of larger scale networks by partitioning. Therefore, a partitioning
algorithm for feedforward network topologies was developed and implemented with
the software framework hxtorch.snn [20]. Furthermore, this algorithm was integrated
in setting up network structures. Including additional regularization methods for
training with neuromorphic hardware, this is demonstrated with the example of the
MNIST data set [1] for which simulations reach accuracies of 98.42%± 0.06% and
hardware trained models 97.22%.

1.1 Thesis Outline

Chapter 2 gives an overview on the workwise of SNNs. The LIF neuron model and
numerical solutions to the dynamical equations are covered as well as which steps
are necessary when training SNNs.
In Chapter 3, the neuromorphic hardware system BSS-2 is introduced with the
necessary feeatures that are used in this work.
In Chapter 4, I derive how partitioning enables handling larger scale feedforward
networks and present an algorithm that determines the necessary partitions for given
network structures.
Chapter 5 covers the training process on BSS-2 using the MNIST data set. A set
of methods that were involved in the process are presented and after two basic
experiments to investigate the hardware, the results of models trained in simulation
and with the hardware are shown and inspected.
Chapter 6 concludes the work by discussing the results, contemplating further
improvements and giving an outlook on research topics that might follow.
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2 Theoretical Background

Before addressing how partitioning of networks can be accomplished and how training
on BSS-2 can be approached, this chapter covers the fundamentals of SNNs. Starting
with most basic component of a neural network, the neuron, this chapter introduces
to learning in SNNs and walks through the necessary steps.

2.1 Biological Neurons

The main components of a neuron cell are its body (soma), its dendrites and its axon.
The left image of figure 1 shows the general structure of a typical neuron. Via its
dendrites, a neuron can receive electrical signals from other neurons causing a change
of the neurons membrane voltage: With the membrane being impermeable to ions
and polar molecules, the transport of which are only possible with particular proteins,
the membrane voltage is defined as the voltage across this membrane. Without inputs
from other neurons, the membrane voltage approaches a resting state of around
−70mV. However, when it reaches a certain threshold ϑ due to incoming signals, an
action potential (’spike’) is triggered: A phase of depolarization is entered where the
membrane voltage rises quickly followed by a repolarization or even hyperpolarization
(figure 1, right). In the latter case the neuron enters a refractory period where it is
unlikely to spike again. Spikes are transmitted along the axon and can be passed on

Figure 1: Left: Sketch of a biological neuron. Image taken from [5]. Right: Action
potential of a neuron, image taken from [3].

to other neurons via the axon terminals. The connection between axon terminals and
the dendrites of other neurons are called synapses, the synaptic weight determining
the impact of an incoming signal on the membrane voltage of the postsynaptic neuron,
which is referred to as PSP.

2.2 The LIF model

The foundation of modern machine learning with ANNs and SNNs are neuron models,
captured mathematically. The relevant model for this work is the LIF model, a
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spiking neuron model that describes the dynamics of the membrane voltage Vm(t) over
time in a simplified manner [2]. The idea is that a biological neuron can be modeled
with a capacitor with capacitance Cm. Incoming signals can then be represented by a
synaptic input current I(t). When the membrane voltage reaches a threshold ϑ, the
membrane voltage is reset to a value Vr and a spike is emitted. The output spikes
can be described by a so called spike train z(t):

z(t) =
∑
k

δ(t− tk), (1)

using the Dirac delta distribution δ in units of 1/time. Vm(t) will also approach a
leak potential Vl if there is no input signal for a period of time. With the membrane
conductance gm, these ideas are united in the following differential equation:

Cm
dVm(t)

dt
= I(t)− gm (Vm(t)− Vl)− Cmz(t) (ϑ− Vr) (2)

⇔ dVm(t)

dt
=

1

τmem

(
I(t)

gm
− (Vm(t)− Vl)

)
− z(t)(ϑ− Vr), (3)

where in the second step, we introduced the quantity τmem = Cm/gm which is a
measure for the time scale with which the voltage decays and is therefore known as
the membrane time constant.

The synaptic input current I(t) usually depends on presynaptic spike trains,
meaning the outputs of neurons that are connected to the neuron in question via a
synapse. The shape of I(t) is a property of the synapse and can be modeled via a
convolution of a kernel ϵ with the respective spike train [16]. On top of that, the
synaptic strength is implemented by a scaling factor w, which in the context of neural
networks is referred to as a weight. The contribution of the output of a neuron j to
the synaptic current of a neuron i then is:

Iji(t) =
∑
k

wji(ϵ ∗ zj(t)). (4)

While for later applications, the units of most quantities are dropped, it can be
mentioned that one can think of the kernel or the weights as having the unit of
a charge to prevent unit inconsistencies. The most commonly used kernel is a
single-exponential kernel (see [16])

ϵsingle(t) = AΘ(t)e−t/τsyn , (5)

with an arbitrary scaling factor A ∈ R+, the Heaviside step-function Θ and the

3



synaptic time constant τsyn. With this kernel, we get

Iji(t) =
∑
k

wji(ϵsingle ∗ zj(t)) = wij

∞∫
−∞

ϵsingle(t
′)zj(t− t′)dt′ (6)

= Awij

∞∫
−∞

Θ(t′)e−t′/τsyn
∑
k

δ((t− t′)− tk)dt
′ (7)

= Awij

∑
k

Θ(t− tk)e
−(t−tk)/τsyn . (8)

With the choice of A = 1, the total input current Ii(t) at neuron i with presynaptic
neurons j is therefore:

Ii(t) =
∑
j

∑
kj

wjiΘ(t− tkj )e
−(t−tkj )/τsyn . (9)

As will be apparent in the following section, it is also useful to write this as a
differential equation:

d

dt
Ii(t) = − 1

τsyn
Ii(t) +

∑
j

∑
kj

wjiδ(t− tkj ). (10)

When discussing the LIF model, also the non spiking version, the LI should be
mentioned. For this type of neuron, there is no threshold and therefore no spiking
mechanism. Incoming signals are accumulated linearly and the membrane voltage
converges back to the leaking potential when there are no current signals. This can
be achieved by dropping the term z(t)(ϑ− Vr) in the differential equation 3.

2.2.1 Numerical Solution

Often, a numerical solution of the dynamics described by differential equations is
very helpful, as it allows an investigation of the behaviour without deriving analytical
solutions. When it comes to LIF neurons, numerical solutions allow an easy and
computationally efficient implementation of the dynamics. The training that has
been done in this work depends on a numerical and therefore discrete integration
of the differential equations. With n ∈ N representing the n-th time step defined
by t = n∆t, ∆t being the step size with which time is being discretized, a suitable
approximation is given by ([17]):

Ii[n+ 1] = αIi[n] +
∑
j

wijZj [n], and (11)

Vi[n+ 1] =

{
Vi[n] +

1
gm

Ii[n+ 1] if Vi[n] +
1
gm

Ii[n] ≤ ϑ

Vr else
(12)

with α ≡ exp
(
− ∆t

τsyn

)
, β ≡ exp

(
− ∆t

τmem

)
, Zj [n] ≡

∑
kj
δnkj (using the Kronecker-δ

and the spike times now being kj∆t). The use of exponential Rosenbrock integrators
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[4] leaves the exponential form of α and β. Alternatively, Euler integration can be
applied in which case α and β happen to become first order approximations for their
previously defined values:

exp

(
− ∆t

τsyn/mem

)
≈ 1− ∆t

τsyn/mem
. (13)

Figure 2 shows how the different quantities discussed above create the neuron
dynamics.
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Figure 2: Simulation of the LIF-dynamics, including from top to bottom: The input
spike train, the length of the dashes representing the synaptic weight, the resulting
synaptic input current, the membrane trace and the spikes generated by this neuron.
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2.3 Encoding and Decoding for Spiking Neural Networks

SNNs make use of spiking neuron models such as the LIF-model by connecting them
in network structures via synapses. Figure 3 shows how a simple SNN can look like.
For simple feed-forward dense network structures typically a distinction in nomination
between input layer, output layer and hidden layers is made. When working with

Figure 3: Sketch of a fully connected feed forward type network architecture for
SNNs. The circles represent (artificial) spiking neurons, the arrows the connections
and synapses with their synaptic weights between them.

SNNs a number of considerations have to be done regarding input encoding, output
decoding and the learning process.

2.3.1 Input Encoding

As SNNs cannot make use of real valued inputs, some kind of encoding is needed,
resulting in a spiking representation of the input data. The approach used in this
work encodes each value into spikes over a sequence length T ∈ N, corresponding
to a time interval tenc. On the neuromorphic hardware system BSS-2 we will use
tenc = T · µs with T = 30. With the use of a discrete time grid with an integration
time step of 1 µs, the sequence length T will directly correspond to the amount of
spike times that are possible within the time span tenc. A spike is then represented
by the value 1, and there will be a 0 at times with no spikes.

Constant Current Encoding. With constant current encoding, the input value
is interpreted as a bias current that is directed to the membrane of for example a
LIF neuron, which will, depending on the bias, start firing in regular intervals, where
the firing rate will depend on the current.
This encoding type depends heavily on the scaling of the input, meaning the range
of its values and is therefore not invariant with respect to translations and scalings
of the input values.
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An encoding method that is independent on this is a time to first spike encoding
[11]. The general idea is to encode a value over a given time span by the time of a
spike. This method will be used throughout all of the trainings and an implementation
is given in section 5.1.2.

2.3.2 Decoding

Decoding is heavily dependent on the type of task and can often be adressed individu-
ally. For classification tasks that are worked with in this work, the decoding depends
on the type of neuron model that is used in the output layer. For our models, we
chose LIs for each of the output classes and used a max-over-time decoding, meaning
the output neuron with with the highest peak in the output trace of the membrane
voltage will be interpreted as the networks guess. The link to one of the output
classes enables a final prediction. Via the softmax function, the maximum values of
the output traces are mapped to (0, 1) which can then be interpreted as probabilities
for each class. When applying the log-function on top, we get the LogSoftmax:
Let x = {xi | i ∈ 1, 2, ..., N}, xi ∈ R be the outcomes of a network regarding a classifi-
cation problem with N ∈ N classes. The softmax and log-softmax are then defined
as:

Softmax(xi) =
exi∑N

j=1 e
xji

and (14)

LogSoftmax(xi) = log

(
exi∑N

j=1 e
xji

)
. (15)

2.4 Gradient Based Learning

Gradient based learning is a standard training method for ANNs as well as SNNs.
The general idea is to evaluate the networks output with a loss function L(x,W),
which is dependent on the input x and all the parameters of the network, represented
by the parameter vector W. In the usual case for ANNs, only differentiable functions
are applied to the input while computing the output of the network. This means
that the loss L(x,W)|x=x′ for a given input x′ can be derived with respect to any
parameter making use of the chain rule. The procedure of retracing the influence of
a parameter on the loss with this derivation is called backpropagation. With this
method, a gradient descent can be applied to the parameters in an effort to enhance
the accuracy of the networks’ predictions:

W(n+1) = W(n) − κ
∑
i

∂L(x,W)

∂Wi

∣∣∣∣
W=W(n),x=x′

ei, (16)

with the learning rate κ and ei being the unit vectors for each parameter in parameter
space. Instead of updating the parameters after each input, it is common practice to
create input batches containing several samples and update the networks parameters
after each batch. One might also consider decreasing the learning rate during the
training progress to take smaller steps towards a local (or global) minimum.
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2.4.1 Loss functions

While there are a lot of loss functions used in machine learning for a variety of tasks,
the most commonly used loss for classification tasks is a cross entropy loss. As we will
focus on a specific classification task, learning the MNIST data set, this is one part
of the loss functions that will be used. An equivalent implementation of the cross
entropy loss is the application of the log-softmax function followed by the negative
log likelihood (NLL) loss function. In the configuration that will be used here, the
NLL loss is defined as (see PyTorch documentation)

l(x, y) =

N∑
i=1

li∑N
j=1wyj

with (17)

li = −wyixi,yi , (18)

where x as defined before is the output of the network in form of log-probabilities
for the classes y. This formulation also involves the possibility to weight the classes
differently with the factors wyj . This can be useful when the training data is
unbalanced, meaning different classes are represented unequally often. Ignoring this
could lead to the network ignoring minor classes and instead ’focusing’ on the bigger
classes.

Regularization. SNNs, particularly in combination with neuromorphic hardware,
often have limited resources and also the minimization of energy consumption is
part of the motivation behind approaching machine learning with SNNs. To ensure
some of these properties, for example the mean firing rate of neurons in the network,
regularizations of some kind are common. Next to the firing rate, also the weights
and the membrane traces are of particular interest when working with e.g. the BSS-2
system (see section 3). With regards to energy consumption but also saturation
issues, the latter of which will be discussed in further detail in 5.4.3, the mentioned
properties should be contained within certain ranges. One option for regularization
is to use additional terms in the loss function that increase when the respective
observable approaches higher values or limits. In case of the firing rate, one might
use a mean squared error (MSE) loss and add it to the loss function. Regularization
can easily become subject to tuning of SNNs when expanding the loss function this
way. The reason being that there might be a tread off between the accuracy of the
network and its properties as the additional terms in the loss function ultimately
influence the gradient.

2.4.2 Backpropagation Through Time

While gradient descent for feed forward ANNs can directly be performed with the
methods discussed above, altered approaches have to be used when training SNNs.
The two main differences to be addressed are the time dependency of spiking neurons
and the non differentiable spiking behaviour. The latter will be discussed in the
following section 2.4.3.
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The first step is to view SNNs as recurrent neural networks (RNNs). RNNs are
neural networks where connections between neurons are not only from one layer
to the next but also to any layer before, for example allowing neurons to influence
themselves. When revisiting the numerical solutions to the LIF dynamics (equation
12) it is clear the mapping from SNNs to RNNs is possible since the state of a neuron
(i.e. its membrane voltage) is dependent on input from previous neurons and the
current state which can be viewed as a recurrent connection. The network is then
rolled out in time: For each time step of the execution, a copy of the network is
created. When layed out next to each other, each time step influences a number of
neurons in the following, creating a graph that only has connections in positive time
direction, overcoming the recurrent view of the network. With all the copies sharing
their parameters, the gradient of the loss function with respect to its parameters can
be computed, following the different paths through time that lead to a copy of the
parameter. This algorithm is commonly known as backpropagation through time and
will be the training algorithm for the example proposed in chapter 5.

2.4.3 Surrogate Gradients

The other issue to training SNNs with gradient based methods is the not differentiable
binary spiking mechanism desribed by the Heaviside Θ-Function. A solution to this are
surrogate gradients. In that case, when computing the gradient, the non differentiable
Θ-Function is replaced with a differentiable function smoothing the step. A collection
of these surrogate gradients are shown in figure 4 The idea of surrogate gradients
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Figure 4: Plots of different surrogate gradients for the heaviside step function and
different values of α. Left: Superspike (fast sigmoid derivative) (1 + α|x|)−2. Middle:
Rescaled sigmoid derivative 4 · exp (−αx)

(1+exp (−αx))2
. Right: Piecewise linear function with

slope ±α.

can not only be applied to the LIF dynamics but also any other situation where
effectively step functions are applied.

2.4.4 PyTorch

PyTorch [12] is a deep learning research platform for python that provides a broad
library of tools. Next to its tensor library torch, we will make use of torch.autograd,
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an automatic differentiation library, and torch.nn, a neural network library that is
integrated with torch.autograd.

2.5 MNIST

MNIST (modified National Institute of Standards and Technology database) [1] is a
data set containing 70000 28×28 gray scale images of handwritten numbers (0 to 9).
60000 of these are intended for training purposes, the rest for testing. The MNIST
data set stands as a former benchmark for machine learning models and will provide
the data used for training SNNs in this work.
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3 The BrainScaleS-2 System

The neuromorphic computing platfrom BSS-2 [15, 19] allows for the emulation of
spiking neural networks through electrical circuits. It provides 512 AdEx (adaptive
exponential) neuron circuits which can be modified to resemble the behaviour of
LIF or LI neurons. Figure 5 shows where the neuron circuits are distributed over
the two hemispheres of the chip. Each hemisphere contains two synapse arrays with
128 columns and 256 rows. Upon an incoming event, an exponentially decaying
current is triggered in the respective synapse. The amplitudes of these currents are
proportional to adjustable weights, that can be configured within the range of 6 bit.
With a row-wise setting whether the incoming signals are inhibitory (amplitude < 0)
or excitatory (amplitude ≥ 0), signed weights can be accomplished by using two
rows per input unit, allowing weights in the range of w ∈ Z, |w| ≤ 63. The sum of
all currents triggered in the same column will then be directed to the membrane of
one neuron. With the standard configuration of signed weights, this allows for 128
independent input streams to each neuron. On BSS-2 several neuron circuits can
be connected to form a large neuron, meaning a group of adjacent neurons that are
connected so that they effectively share their membrane voltage, while the spiking
mechanism is only enabled for one of them. The number number of distinct synaptic
inputs can thereby be scaled up to c · 128, c ∈ {1,...,64}, c being the number of
neurons. The system also features a set of columnar analogue to digital converters

Figure 5: Left: Image of a BSS-2s chip. Right: Floorplan of the chip. Images taken
from [19]

(CADCs), allowing the readout of the membrane voltages by the host computer.
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The execution of specific network topologies is enabled through external configu-
ration of input spikes and the internal routing on the chip. Neuron parameters such
as time constants, leak, reset and threshold values are subject to calibration. With
calix, a calibration framework for BSS-2, custom calibrations can be realized.

3.1 In-The-Loop Learning with hxtorch.snn

As a modeling framework for the BSS-2 system, hxtorch.snn [20] was used throughout
this thesis. It provides a high level access to the system and extends PyTorch [13]
to SNNs. hxtorch.snn implements the numerical solutions for the LIF dynamics
discussed in section 2.2.1, also making use of the mentioned first order approximation
for the exponential term. It also allows for an easy switch between a simulation of the
network in software and a hardware execution on the BSS-2 system building a basis
for easy comparisons between simulation training and hardware in-the-loop (ITL)
training. For the latter, the actual membrane voltages are used in the forward path
of execution and injected in the backward path for the computation of the gradient.
The gradient is directed to the parameters via the simulated membrane traces and
thus also building a connection between simulated and real dynamics. A feature that
we will make great use of is that hxtorch.snn allows the handling of the hardware
execution to a network built in the software. Each network topology is assigned an
experiment that can be run at any desired time during the execution of the code.
This is especially useful when working with parts of networks:
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4 Partitioning

When building spiking neural networks with neuromorphic hardware such as the
BSS-2 system, it is not trivial how to handle network topologies that exceed the
resources of one setup. While the Electronic Vision(s) group is also working on
multi-chip-setups, this work focuses on cases where only one chip is available. The
following ideas, however, can be applied to multi-chip-setups as well.

In the case of the BSS-2 system, the constraints that are important for this
consideration are the number of inputs an atomic neuron can receive (ι := 128), and
the number of atomic neurons on the chip (Na := 512). This raises a problem when
wanting to execute networks that exceed these numbers. As mentioned in section 3,
atomic neurons can be connected to form neuron compartments, effectively sharing
their membrane and expanding the number of possible inputs. These constraints can
be bypassed by partitioning the respective network in the manner that the resulting
parts of the network comply with the constraints for one hardware execution on the
chip.

4.1 Partitioning for Feed Forward fully connected architectures

In the following, we will assume the network topology of a feed forward and fully
connected network architecture, meaning a network with an input layer, a number
of hidden layers and an output layer, where each neuron in each layer has a synap-
tic connection to all neurons of the following layer. For a total of L layers, let li,
i ∈ {1, ..., L} be the number of neurons in layer i.

The partitioning algorithm that was developed during this bachelor thesis loops
over the processing layers of the network and determines, given the input size of the
previous layer, how many atomic neurons c in a larger neuron are necessary, thus
how many neuron compartments (:= Nc) of this size c can fit on one chip and how
many (=: p) partitions are necessary when transmitting the information from layer
i− 1 to layer i. In each step of the loop, the following calculation is performed. With
2 ≤ i ≤ L:

c =

⌈
li−1

ι

⌉
, Nc =

⌈
Na

c

⌉
⇒ p =

⌈
li
Nc

⌉
. (19)

With this result, the number p of partitions and neuron sizes c for each layer, a
number of larger scale networks can be trained and executed on the BSS-2 system.

For the execution of a partitioned network, a few more things have to be considered.
Since for any part of a partition, the full information of one layer is passed on to
disjunct parts of the following, the executions of these parts are independent of each
other. Regarding the execution of next layer however, the combined information of all
executions from the previous are needed, which is why these have to be concatenated
before moving on to the next layer.
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Limitations. Although partitioning increases the range of executable networks on
BSS-2, it is still limited by the number of neurons on each chip. That is because
neuron sizes can not exceed the number of neurons on the chip. Also with increasing
numbers of neurons in a larger neuron there may be other issues that remain to be
investigated provided the software implementation supports these neuron sizes. With
the currently implemented methods, the capability of the chip includes a fan-in of
64 · ι = 64 · 128 = 8192 = 213. For fully connected/dense network topologies this of
course also limits the number of units per layer to the same number.

-> image of general concept of partitioning

Implementation. This algorithm was implemented using hxtorch.snn. In addi-
tion to that, also a network initialization given a partition was implemented in an
automated fashion, allowing easy high level changes to the network structure.

4.1.1 Exemplified on MNIST

One of the network topologies that were used for the MNIST data set is using a
hidden layer of size 256. Together with an input image size of 22 × 22 = 484 and
the output layer containing 10 units for the ten classes, the algorithm suggests the
following: Starting with the hidden layer, the number of needed neurons in a larger
neuron is

nc =

⌈
484

128

⌉
= ⌈3.78125⌉ = 4 (20)

which means that in one hardware execution⌈
512

4

⌉
= 128 (21)

compartments of the size 4 can be used, resulting in a total of ⌈256/128⌉ = 2 necessary
hardware executions to pass the input information through the complete hidden layer.
Following the same calculation for the output layer, we get:

nc =

⌈
256

128

⌉
= 2, nl =

⌈
512

2

⌉
= 256 ⇒ np =

⌈
10

256

⌉
= 1, (22)

meaning the output can be determined in one extra hardware execution and a total
of P = 3 are necessary for the entire network.
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Figure 6: A visual representation on how the partition for a network topology of
22×22 → 256 → 10 works. Marked are the different partitions that can be run
consecutively with the first two being interchangable.

15



5 Training on BSS-2

5.1 Methods

5.1.1 Data Set Transformations

In order to extract the maximum information out of the training data and to build
a robust model, a few transformations are applied to the MNIST data set, i.e. the
input images. It is important to notice that apart from a cropping or rescaling to
match the training data, the test data set remains untouched.

By using the torchvision [6] transform RandomRotation, each image is tilted by
some degree in the range of [−25◦, 25◦]. The degree by which each image is tilted
will also be different every time the data set is accessed, effectively changing every
epoch of the training. As the letters tend to decrease in intensity when using a
bilinear interpolation method, the images are scaled by a factor of 1.5 after roation.
To ensure the same range of values, each pixel value is clamped to [0,1]. This rota-
tion method is applied with a probability of 0.5 thus augmenting the training data set.

As the original images of size 28× 28 show a margin of around 2 pixels in each
direction, one of the transformations is a center crop, cutting these margins and
leaving the input data with a size of 22× 22. This results in more input units spiking,
thus encoding more detail of the image in contrast to just scaling the image down to
the desired size. If after this center crop, a smaller input size is desired, this cropped
version can be scaled down.

Another measure to build a more robust model and to avoid any kind of overfitting
to the training data set itself is to add Gaussian noise to the images, which will
be applied with a probability p = 0.5. As the test data does not have background
noise, the noise will only be applied to the parts of the image that are close to the
writing. This is done by rounding up the image values, resulting in non-zero values
to be one and the rest to remain at zero. This image is blurred using a Gaussian
blur and multiplied elementwise with the torch tensor holding the Gaussian noise.
This is done in a last step of the transformations. It is important to notice the order
in which these transformations are applied: Rotations are applied first as the quality
of the resulting image is dependent on the resolution. The cropping and noise adding
can be exchanged, although the given order might be slightly more efficient as no
unnecessary computations are done in the cropping region of the image.

5.1.2 Time-to-First-Spike Encoding

While the idea of a time to first spike (TTFS) encoding has been mentioned before
(section 2.3), I am not aware that there is any work regarding this encoding that uses
the exact implementation that is explained in the following. The specific algorithm
used here starts by mapping the gray scale values of each batch of images to the
interval [0, T ]. This happens via an affine linear transformation, resulting in the
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minimum value vmin of the batch being mapped to 0, the maximum value vmax to
T . For a batch size of 100, the value vmin is always equal to zero because of the
background of the images. It is also very unlikely that the maximum value inside a
batch is smaller than the maximum value for the total data set, making this procedure
a global encoding. Nevertheless, for general values x ∈ [vmin, vmax], this mapping is:

x 7→ T · (x− vmin)

vmax − vmin
=: x1. (23)

These values are then rounded and inverted in the following sense:

x1 7→ T − x̄1 =: xind, (24)

where we used the bar symbol to indicate the rounding to the next integer. xind
now represents the index in the time dimension of the output tensor, where a spike
will be encoded. As for a sequence length of T , the index T is out of range, which
in this case is intentional, resulting in gray-scale values that are rounded to zero
being represented by no spiking and high values to be encoded in early spikes. This
choice also supports the sparsity in energy consumption of the BSS-2 system. This
encoding method in general ensures maximum sparsity in input encoding and can be
implemented using PyTorch methods.

For the specific use case of this work, the value T = 30 was chosen. It is important
to notice that the sequence length is independent of the duration of the experiment
for which spikes will be registered. It may be useful to chose a higher value for the
latter. An example of an encoding is shown in figure 7.

Figure 7: Encoding of a 0 using this implementation of a TTFS encoding.

5.2 Network Topology

With the MNIST data set being a former benchmark in the field of neural networks,
there are many options for network topologies. In order to demonstrate network
partitioning and to discuss the fundamental properties of ITL training with neuro-
morphic hardware, a rather simplistic model was chosen: With an input space of
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22× 22 = 484, a hidden layer with 256 LIF-units and an output layer consisting of
10 LI-units, representing the ten classes of the MNIST data set, this model builds a
baseline for these discussions. As derived previously in section 4.1.1, this network
can be realized by using three partitions. Each of these parts will be assigned to an
experiment within hxtorch.snn that can then be run consecutively.

5.3 Simulations and Mapping to Hardware

The simulation of membrane traces is of fundamental importance to the training of
SNNs when using the hardware ITL approach of hxtorch.snn. With the membrane
traces being deterministic in simulation, this does not hold for those on hardware.
While this is for a variety of reasons, some of which will be investigated in the
following sections, simulations in return give the opportunity to develop training
methods for ideal behaviour while slowly approaching the difficulties of training with
hardware. Another advantage of using the simulation mode regards execution times
as there has to be no communication between the host and the hardware setup,
meaning the transmission of information for input spikes, weight matrices and the
read out membrane traces and spikes. In practice, simulation training has been
faster by a factor of around 15, allowing much more progress in the exploration of
methods within the same time. However, with hardware training being the ultimate
goal, simulation proved models have been trained on hardware from time to time.
Important changes to the model regarding the solvement of issues from hardware
training can then also be applied to simulation models to obtain comparable data.
Therefore, an approach of hand-in-hand development between softare simulation
training and hardware ITL training with a BSS-2 setup was selected in this work.

As simulations (pure software executions) and hardware executions are entangled
so fundamentally, a mapping between the properties of both are necessary. The goal
of this mapping is to gain the same relative dynamics. This means that although the
values for leak potential Vl,sw/hw, threshold ϑsw/hw and reset Vr, sw/hw might differ
for sw/hw, the PSP-heights should be (almost) identical relative to ϑsw/hw − Vl,sw/hw.
This relative equivalence can only be achieved when it also holds for the reset values:

Vl,sw − Vr,sw

ϑsw − Vl,sw
=

Vl,hw − Vr,hw

ϑhw − Vl,hw
. (25)

This property can be easily satisfied by choosing Vl,sw = Vr,sw and Vl,hw = Vr,hw. For
the PSP-heights however, a more rigourus calculation has to be done.

Therefore, we first notice that the relation between the PSP-heights and the
weights is linear:

msw := max(Vm,sw(t)) = awsw and (26)
mhw := max(Vm,hw(t)) = bwhw (27)

with constants a, b ∈ R+ and wsw ∈ Q, whw ∈ {−63,−62, ..., 62, 63}. With both of
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these relations being linear, an obvious mapping between msw and mhw is also linear:

cmsw = mhw, c ∈ R+. (28)

For spiking neurons, it is msw = ϑsw and mhw = ϑhw and thus yields c = ϑhw/ϑsw.
Together with equation 27 we find

whw =
mhw

b
=

cmsw

b
=

cawsw

b
=

a

b

ϑhw

ϑsw
wsw. (29)

Weights in software representation therefore have to be scaled with a factor of a
b
ϑhw
ϑsw

when mapping to hardware and the read out membrane traces from hardware execu-
tions have to be scaled with ϑsw/ϑhw. These two procedures will be reffered to as
weigh scaling and trace scaling, respectively. While this procedure in general can be
performed for each neuron of the chip individually, in practice the mean values were
used and showed sufficient accuracy (see section 5.6).

As weights on a BSS-2 system are also disrcete, weights in software representation
will be rounded after scaling. By choosing values for ϑhw and Vl,hw, the dynamical
range of weights in software representation can be adjusted. Another possibility
for this is to change the scaling b with its dependency on the hardware parameters
’i_synin_gm’ and ’synapse_dac_bias’ (for more information see [14]).

As will be apparent from following sections, it might be useful to use a different
calibration of the neurons in the output layer. As the readout layers were chosen to
be LIs, reasonable changes in the calibration only influence b. To adapt for these
changes and match the simulated traces, the trace scaling has to be reconsidered but
with the same calculations as above.

Table 1 shows which parameter values were chosen for LIF and LI neurons.

Parameter Software Value Hardware Set-Value

ϑ 1 120

Vl = Vr 0 80

τmem 5.7 µs 5.7 µs
τsyn 6 µs 6 µs

i_synin_gm (LIF) − 1000

i_synin_gm (LI) − 400

synapse_dac_bias (LIF) − 1000

synapse_dac_bias (LI) − 400

Table 1: Typical calibration parameters for LIF and LI neurons used throughout this
work.
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5.4 Hardware behaviour

Before training with the BSS-2-system, we will examine a few basic properties of
the hardware. As an example, we will set up a basic experiment, showcasing the
dynamics of the neuron circuits and afterwards inspect PSP-heights for different
inputs to neuron compartments.

5.4.1 A Basic Experiment

In a first basic experiment, we will investigate the dynamics of a LIF circuit on a
BSS-2 setup. Therefore, a spike train will directed to multiple synapses leading to
an atomic neuron on the chip. The membrane trace and the output spikes of the
neuron will be read out and can be investigated and compared to the results of a
simulation of this experiment. The results of this experiment are shown in figure 8.
One can clearly see the variations of the output traces when repeatedly performing
the same experiment. There are even traces that do not show any spike where as
the simulation does. This displays one of the basic differences between simulation
training and training with hardware in-the-loop that will be discussed further after
reviewing the training results.

5.4.2 Investigating PSP-Heights

The investigation of PSP-heights is a necessary step when calculating the mapping
between software and hardware (parameter ’b’). We will conduct an experiment
showcasing how the PSP-heights grow linearly when increasing the weights and at
the same time compare them for inputs to different atomic neurons of the same
compartment. As neuron compartments are a fundamental resource for training
larger scale neural networks, this experiment will show if there are non-neglegiable
effects when using compartments. In this case, the largest neuron size that is used
for the MNIST model is c = 4. Figure 9 shows, how the PSP-heights relate to the
weight and how this relationship changes when targetting synapses that connect to
different atomic neurons than the one being read out.

for negative weights for positive weights

Neuron Nr. m− d− m+ d+

1 0.3993± 0.0016 −0.40± 0.06 0.3942± 0,0019 0.41± 0.07

2 0.4050± 0.0015 −0.39± 0.06 0.4018± 0.0018 0.34± 0.07

3 0.3927± 0.0013 −0.46± 0.05 0.3894± 0.0016 0.33± 0.06

4 0.3912± 0.0015 −0.46± 0.06 0.3880± 0.0018 0.33± 0.07

Table 2: Values found when optimizing for linear fits of the form y = mx+ d for the
PSP-heights shown in figure 9.
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Figure 8: Simulated membrane traces and measured traces on hardware in comparison.
The spike train shown in the uppermost plot was directed to the membrane of a LIF
neuron 30 times, the resulting traces and output spikes of which are the lower two
plots. For comparison also the outputs of the same experiment in simulation are
displayed above.

While the linear fits diverge slightly for higher weights they are well contained
within the standard deviation of the data from the fits. Also, for negative and
positive weights,separate fits were performed and when looking closely one can see
the different y-intercept. The reason for that is that the PSP-height was here defined
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Figure 9: When a single spike is weighted and directed to the membrane of a LI
on a BSS-2-setup, the peak hight of the PSPs show this behaviour. The results of
inputs directed to different atomic neurons within the same larger neuron are shown
in different colors together with linear fits and the standard deviation of the data to
respective fit (dashed lines of same color). The optimal values for the functions are
listed in table 2.

as the maximum (or minimum) value of the trace - that is subject to noise which
originates from the combined effects of the electronics generating the trace but also
the CADC readout. The differences in y-intercepts for the fits for negative and
positive weights to some degree give information on the scale of noise of the ’actual’
PSP-heights. Precisely, the y-intercept directly resembles the bias to the assigned
PSP-height by choosing the maximum value of the output trace (in comparison to for
example the maximum of a fit) in addition to fundamental biases in the electronics.
While the distinction between these can only be made when taking a closer look
at the traces themselves and performing fits, the important takeaway is that the
standard deviation shown in in figure 9 is mainly a representation of noise by the
readout of the membrane traces. Also, the linear correlation between the PSP-height
and the weight of the input spike is shown and fulfilled with great accuracy.

22



5.4.3 Saturation Issues and Resolving Methods

When approaching training with neuromorphic hardware, dynamical ranges and
saturation are important subjects to investigate on as certain components involved in
the training are restricted in their range. One of the main components was already
mentioned, the weights. A configuration within {−63,−62, ..., 62, 63} combined with
the mapping to software, it should be adressed how to deal with weights that reach
these limits while training.

One option is to use a regularisation in form of a loss on all weights of a network
to prevent the weights from reaching the limits of the dynamical range. An additional
method is to use a function that is applied to the weights before using them, that
maps to the dynamical range. This function should maintain a few properties: the
weight scaling should be accurate for most parts of the dynamical range and it should
contain the weights within the dynamical range to closely represent the behaviour on
hardware. The function f : R → (−ŵ, ŵ), ŵ ∈ R+ with

w 7→ f(w) =

{
w for |w|

ŵ ≤ 1− 1
a

sign(w)ŵ ·
(
1− 1

a exp
(
−a
(
|w|
ŵ −

(
1− 1

a

))))
else

,

(30)

a =
(
1− ws

63

)−1
(31)

with ws ∈ (0, 63) being the starting value of the roll off. Figure 10 shows this
function. These two methods adress the issue of saturating weights which can lead to
uncontrollably growing weights while not measuring the impact due to the limits for
hardware weights and thus interfering with the training process. A notable feature
of this mapping function is also that it is differentiable everywhere with a non zero
derivative, meaning that even saturated weights are affected by backpropagation. The
other main component that can become subject to saturation issues is the readout
of the CADC. Especially when using a very sensitive calibration for LIF neurons
for a high dynamical range for weights and applying the same properties to a LI,
saturation is likely. A solution to this is a combination of a regularization on the
traces themselves or the scores and a different calibration, resulting in less sensitive
LI-membranes.
Saturated traces can even favor weight saturation: When traces are supposed to have
a high PSP relative to the ones representing other classes (which is the ideal case for
a correct and certain classification) but are unable to stand out from the other traces
due to saturation of the traces, backpropagation will try to increase the ’correct’ trace
- which is done by increasing weights. Figure 11 shows an example of traces that are
saturated. While for the traces on the left the classification of a 5 works, the next
example of a 9 is being falsely classified eventhough the respective trace is clearly the
first to go into saturation and should return the highest trace. Next to weights and
membrane traces also the mean firing rate of a network is subject to regularization.
The loss function is therefore being extended to regularization terms for each of the
quantities. While starting with an MSE loss, an alteration using biquadratics (’mean
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Figure 10: Graph of the clamping function f with typical parameters ŵ=̂ ’cap’ = 2.1
and ws=̂ ’start of roll off’ = 61. The step function that is effectively applied when
using discrete software weight is shown in black, downscaled to match the software
representation of the weights. In light gray also the identity function is displayed for
reference.
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Figure 11: Output traces of ten LI neurons in the output layer of one of the networks
classifying two inputs (a five and a nine) while being affected by saturation due to a
poor choice of parameters leading to too sensitive membranes and potentially false
classifications.

biquadratic error’) proved to be more stable in the training. For the N weights wij
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of the network the regularization term is

Rw = CRw ·
∑
i,j

w4
ij

N
(32)

with a constant CRw ∈ Q.

5.5 Simulation Results

With all the methods discussed above, training on BSS-2 can be performed. Neverthe-
less, this section first presents the results of simulations as a baseline for comparison.
Multiple networks were trained with the network topology of 22 × 22 → 256 LIF
→ 10 LI and a total of three partitions. As for the simulations, there are in principle
no limitations to the weights, a maximum value of ŵ = 2 was implemented with
the method discussed in section 5.4.3. This value is of good representation for the
hardware with the used calibrations.

When using the not augmented training data set and after 100 epochs of training,
an accuracy of 97.57%± 0.08% could be achieved on the test data. Figure 12 shows
how the accuracy and loss evolved during training. Especially in early epochs, the
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Figure 12: Test accuracies (left) and losses (right) of a simulation model not making
use of training set augmentation.

accuracy of the networks differ significantly for different seeds. This effect shrinks
but not fully disappears with ongoing training. The final firing rate of these networks
reaches (0.338± 0.003) spikes

neuron·input .

In an effort to improve on the networks performances and to prevent overfitting,
augmentations to the training set were implemented. With rotations of up to 25◦ and
noise (see section 5.1.1) the models could be improved to accuracies of 98.38± 0.08
with a slightly increased firing rate of (0.377 ± 0.010) spikes

neuron·input . While with the
previous model the accuracy and loss approach their final values after around 50
epochs, figure 13 shows that especially the loss is steadily decreasing up until the final
epoch. This indicates that the model has note yet reached a final state. But To keep
these simulations comparable to the hardware models where training is much more
time consuming with about one and a half days per model, the number of training
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Figure 13: Test accuracies (left) and losses (right) of a simulation model with the
use of augmentation methods (rotation and noise).

epochs was limited to 100.

When using a dropout of 20% in the hidden layer, the accuracy on the test
data increased slightly but not significantly to 98.42%± 0.06% with a final loss off
0.1484± 0.0008 and a similar firing rate as before (0.378± 0.008 spikes

neuron·input). Again,
at epoch 100, the loss is at a steady decrease, and also the accuracy seams to be
improvable with further training. In table 3, the most important hyperparameters
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Figure 14: Test accuracies (left) and losses (right) of a simulation model with the
use of augmentation methods (rotation and noise) and dropout of 20% in the hidden
layer.

used for the simulation training are listed.

Figure 15 shows the observables of an execution of one of the best networks as
well as how the firing rate evolves during training. Especially the latter shows an
interesting behaviour: At first, the rate decreases with a steep descent but from epoch
25 on increases almost linearly up until epoch 100. All other simulation models show
very similar behaviour.
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hyperparameter value

batch size 100

learning rate 0.002

decay ×0.97 per epoch

Cbursts 8 · 10−4

Ch-weights 6 · 10−3

Co-weights 6 · 10−3

Creadout 4 · 10−5

Table 3: Important hyperparameters used while training simulation models. The
regularization coefficients are labeled with C•.
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Figure 15: Left: Representation of an execution of a simulation model with the
observables of the network. T.l.: The input image. T.r.: The encoding of this image
using TTFS encoding. The four images in the middle represent the membrane traces
and spikes in the hidden layer for both partitions. At the bottom, the output traces
of the last LI-layer are displayed. From this, one can see that the classification of the
9 was successful. Right: Firing rate in the hidden layer during training.

5.6 Multi Single-Chip Execution on BSS-2

When approaching training on hardware, a few adjustments regarding the regulariza-
tion terms had to be made as the training turned out to be less stable with hardware
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in the loop. This mainly involved increasing the coefficients of the regularization loss
terms. Also, when using MSE-losses, traces were more likely to go into saturation
in some cases, interfering with the training process. With the idea to restrict the
membrane voltages more while punishing smaller values less, the MSE loss was altered
to a ’biquadratic’ mean error (see equation 32). With the values listed in table 4 a
relatively stable training process could be guaranteed. On top of that, also weights
showed an increased growth. To minimize saturation effects, a relatively high efficacy
was chosen for the calibration of the LIFs-neurons, allowing weights up to ±2.1 or
even ±2.4 for some setups.

hyperparameter value

batch size 100

learning rate 0.002

decay ×0.97 per epoch

Cbursts 5 · 10−3

Ch-weights 9 · 10−3

Co-weights 9.2 · 10−3

Creadout 1 · 10−4

Table 4: Important hyperparameters used while training models with hardware in
the loop. The regularization coefficients are labeled with C•.

To test and quantify the improvements that can be made with hardware training,
a model was trained with the raw, not augmented data set, and achieved an accu-
racy of 96.48% with a loss of 0.7728 (see figure 16). Also, the firing rate reached
0.395 spikes

neuron·input in the final epoch. With the use of data set augmentation, the perfor-
mance could be further improved to 97.095%± 0.015% with a loss of 0.2639± 0.0016.
The firing rate reached (0.75± 0.03) spikes

neuron·input .
In the same procedure as for the simulation models also a dropout in the hidden

layer with a probability of 20% was included into the model, but did not show
any improvement when used with hardware ITL training. On the contrary, the
performance even decreased slightly to an accuracy of 96.93% with a loss of 0.762%.

When reviewing the progression of the networks weights, a main difference to the
simulations is that despite the use of higher regularization values, the distribution of
weights becomes broader and distributes over the full range after about 40 epochs.

5.6.1 Final Results

As the main difference between the simulation and the execution on a BSS-2-setup is
the spiking behaviour, that was investigated in section 5.4.1, an additional model
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Figure 16: Test accuracy (left) and loss (right) of a model trained with hardware in
the loop on BSS-2 while not making use of training set augmentation but the raw
(cropped) data.
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Figure 17: Test accuracies (left) and losses (right) of a two models trained with
hardware in the loop on two different BSS-2-setups while making use of training set
augmentation (rotation and noise).

was trained with a lower synaptic efficacy to reduce noise on the chip. Although this
implies that the range of possible weights in the software representation shrinks, a
slightly increased accuracy of 97.22% with a loss of 0.2312 could be achieved after only
60 epochs of training. For this best model that could be trained within the limitations
of the duration of this bachelors thesis, figure 18 shows the observables during a
classification as well as the firing rate. With the same values for regularization as
before, the weights go into the saturation range earlier but do not overshoot when
applied on hardware due to the regularization function f for the weights (see section
5.4.3).

Compared to previous results for the MNIST data set ([18]), the simulated models
of this work could exceed the performance by about 0.4%, whereas the models trained
with hardware in the loop, were slightly worse by about 0.3%.
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Figure 18: Left: Representation of an execution of a model trained on BSS-2 with
the observables of the network. T.l.: The input image. T.r.: The encoding of this
image using TTFS encoding. The four images in the middle represent the membrane
traces and spikes in the hidden layer for both partitions. At the bottom, the output
traces of the last LI-layer recorded by the CADC are displayed. From this, one can
see that the classification of the 6 was successful. Right: Firing rate in the hidden
layer during training.
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6 Discussion and Outlook

The goal of this work was to approach the executions and trainings of larger scale
SNNs with BSS-2. To give a foundation for this, the first chapters covered the
theoretical background, starting from biological neurons and neuron models such
as the LIF model and ending with an overview on how training in SNNs can be
accomplished using gradient based methods. This included the discussion of encoding
and decoding principles as well as BPTT and surrogate gradients as effective and
robust methods.

After introducing the BSS-2 system and the important properties for this work,
it was demonstrated, how the execution and training of larger scale feedforward
networks on BSS-2 can be accomplished. It was discussed that the basis for this
is the scalability of synaptic inputs, introduced by neuron compartments, as well
as the exploitation of independent dynamics within feedforward networks, which
enables partitioning. An algorithm for this task given the limitations of neuromorphic
hardware in a more general case was developed and implemented within the the
software framework hxtorch.snn. With an investigation of important functionali-
ties of the hardware and training on the MNIST data set with a network topology
that requires partitioning, an example on how the development and tuning process
when training on BSS-2 can look like, was presented. This included the usage of
common data set augmentation methods and a TTFS encoding, both implemented
in a customized fashion. For training with limitations posed by hardware constraints,
methods were developed to deal with these constraints. In particular, a function for
the regularization of weights was proposed and existing regularization methods with
loss functions were modified to cope with the difficulties that arose during the training.

The implemented methods were tested in simulation as well as on BSS-2. In
both cases training performed well, especially in the simulation, baseline models
could be improved upon significantly and performed up to 98.42%± 0.06% on the
MNIST training data in terms of accuracies while showing low firing rates around
0.378± 0.008 spikes

neuron·input . In the case of hardware ITL-training on BSS-2, the intro-
duced baseline models could also be improved upon, but showed less improvement than
for the simulation. The best model that could be trained within the time limitations
of this thesis achieved an accuracy of 97.22% with a firing rate of 0.643 spikes

neuron·input .
While for simulations, the best MNIST results outperform previous simulation models
with smaller network sizes by about 0.4%, the results from hardware in the loop
training were not able to compete with previous results, leaving with a deficit of
around 0.3%. The differences in the performance between simulation and hardware
executions root mainly from the qualitative differences in spiking behaviour. The
basic experiment showed in section 5.4.1 demonstrates these differences for the cal-
ibrations that were used for most of the hardware models. Improvements would
therefore aim to align the spiking behavior with the simulation. Approaches to
this could be a minimization of noise to the signals by using different calibration
parameters. As in this case a high synaptic efficacy was chosen with the idea to
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increase the range of weights in software representation, a next step could be to
decrease the efficacy while trying to maintain a stable training with lower ranges
for the weights. For these cases, also other regularization parameters might have to
be adjusted to keep saturation effects at a low level. Also, regarding the mapping
between hardware and software, the weight scaling was implemented to be a median
value that was applied to all weights. To optimize this mapping, a distinct weight
scaling for each neuron circuit on BSS-2 could be implemented. This might even be
the reason for the slightly lower output traces of the LIF-neuron measurements of the
basic experiment. With individual weight scalings, individual traces scalings could
also help aligning the behaviour between simulation and hardware execution. Finally,
another difference are the discrete weight values on hardware whereas in software
representation and also for the simulations, weights are defined as any floating points
value. Another improvement could be to incorporate this discrete behaviour into the
simulated traces that are used with hardware ITL training with surrogate gradients
in hxtorch.snn. With an investigation on the size of weight updates during training,
even a surrogate gradient for the step function that represents the rounding of weights
could be introduces if weight updates are small enough.
An effect which both, simulations and hardware executions show, is that after a
few epochs of training, the networks firing rate starts to increase. While this is not
a fatal property given the amount of training epochs, this tendency could become
problematic when working with more complex data sets that require more epochs of
training. As the diagrams of losses during training show, at some point in training
the loss is on a steady decrease but the accuracy doesn’t improve any further. This
means that the minimization of loss leads to a trade-off between the desired features
that are implemented as regularization terms. These effects can be minimized by
tuning the regularization coefficients, leading to a more balanced state after the
accuracies reach plateaus.

Nevertheless, these results prove the effectiveness of the developed and imple-
mented methods while still leaving some room for optimization, but most importantly,
demonstrate that hardware ITL-training and executions of larger scale networks on a
single BSS-2 chip are possible with the current state of development.

With the basis of this work, there are plenty of research and development options.
Firstly, other kinds of network structures could be investigated. For example, networks
involving convolutions would likely allow improved performance on image recognition
tasks. With the scalability of network partitioning in mind, data sets like EuroSAT [8,
10] could be approached. While in this work, only a single BSS-2 setup was used, with
the Electronic Visions group working on multi-chip setups, training and execution
processes could be sped up as partitions of the same layer could be processed in
parallel.
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A Acronyms

Acronyms

ANN artificial neural network. 1, 2, 7, 8, 36

BPTT back propagation through time. 31, 36

BSS-2 BrainScaleS-2. 1, 2, 6, 8, 11–14, 17–20, 22, 25, 28–32, 36

CADC columnar analogue to digital converter. 11, 22, 23, 30, 36

ITL in-the-loop. 12, 17, 18, 28, 31, 32, 36

LI leaky integrator. 4, 7, 11, 18, 19, 22–25, 27, 30, 36

LIF leaky integrate-and-fire. 1, 2, 4–6, 9, 11, 12, 18–21, 23, 25, 28, 31, 32, 36

ML machine learning. 1, 36

MSE mean squared error. 8, 23, 28, 36

NLL negative log likelihood. 8, 36

PSP postsynaptic potential. 2, 18, 20–23, 36

RNN recurrent neural network. 9, 36

SNN spiking neural network. 1, 2, 6–10, 12, 18, 31, 36

TTFS time to first spike. 16, 17, 27, 30, 31, 36
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B Software State

The experiments conducted in this thesis used the singularity [7] container
/containers/stable/2023-05-25_1.img and gls app. The following table lists the
software state at the end of the thesis. Additionally, the change set id for all the files
used for training and plotting is 20776.

Repository Commit-Hash

repo_db 740a6abd9e2b0733385e4ed8a5442874e99eee6a

bss-hw-params 8e5e18ebbdece63890eebd4f082084111846e965

calix bc485dad6ad511f88be6d739f16455a033c9ee8f

code-format 24b533dd390253f5c698708fa735283c2e7282ca

extoll-driver a0ffdc9ea5517e11bc126c0b9d54e7dca2f1dc07

fisch 976cf3d1a2d2deef69673cca940e914b7fa41fef

flange 298335251daf2d2a02764d888e02566934ad2ec9

grenade 45779707beb8228150b4788118369feb4c005576

halco bbb5996633cfb64507b435ad53d6a9a7fee26c31

haldls 209a815d68a3fa4f643ffb6c1fc843b31e9e80c4

hate 0143bd6e177cdc2ec1f49e9276884078f3976b22

hwdb e738de3d2ed818ae9a0e9f397c1b570df85d7ea4

hxcomm 92607bcbb3ec8cb7ba4b36de04d7d93076b43859

hxtorch f16d7e274ef9ff9f29b9bd60dc289b826ab3e150

lib-boost-patches ed89665b4c066629b69617ede2e8b1fbe65822d9

lib-rcf 4ac48ea216e1e9026cd0d25f52a4bf683d97a189

libnux 9b335cb56b6faa447ffda27f5ff310e648502071

librma 5159e3c602e0133c74800a33a4042f7aeebfb00f

logger 00380efdec521fb08df4a083a1d1f443fef836e4

nhtl-extoll 2d7098e2364141ebc0db2a71982570a46d68c7b8

pywrap 8eda91fcca8bfccb946a0ee5b40ca82b5b15650e

rant 0d494ce6eedfb74889cf7cee09105258819acb35

sctrltp 42a988e986906f177102813418d5fd22dd646b44

visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3

ztl 773660f435e56b1ee7b962e8babfe004ff487cdd

Table 5: Software state.
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