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Since the beginning of information processing by electronic components, the nervous

system has served as a metaphor for the organization of computational primitives.

Brain-inspired computing today encompasses a class of approaches ranging from

using novel nano-devices for computation to research into large-scale neuromorphic

architectures, such as TrueNorth, SpiNNaker, BrainScaleS, Tianjic, and Loihi. While

implementation details differ, spiking neural networks—sometimes referred to as the third

generation of neural networks—are the common abstraction used to model computation

with such systems. Here we describe the second generation of the BrainScaleS

neuromorphic architecture, emphasizing applications enabled by this architecture. It

combines a custom analog accelerator core supporting the accelerated physical

emulation of bio-inspired spiking neural network primitives with a tightly coupled digital

processor and a digital event-routing network.

Keywords: neuromorphic computing, physical modeling, neuroscientific modeling, spiking neural network

accelerator, plasticity

1. INTRODUCTION

One important scientific goal of computational neuroscience is the advancement of brain-inspired
computing. Continuous-time emulators for modeling brain function play an essential role in
this endeavor. They provide resource-efficient platforms for the bottom-up modeling of brain
function—including computationally expensive aspects like plasticity and learning or structured
neurons. BrainScaleS is a neuromorphic computing platform that realizes this approach to the
furthest extent possible with current technologies by constructing a physical replica of the most
commonly used reductionist view of the biological brain: a network of neurons connected via
plastic synapses.

In this aspect, it differs from most other modeling approaches within the computational
neuroscience community. In particular, while the network model operates, no differential equation
gets solved. Biological processes are not represented by discrete-time changes of a multitude of
bits representing some binary approximation of molecular biology. Instead, the temporal evolution
of physical quantities, such as current and voltage, directly correspond to the neural dynamics
in BrainScaleS. In that regard, our approach is similar to system architectures using novel nano-
devices to perform computation. However, we focus on creating a controllable, configurable
substrate based on well-understood CMOS technology, which can serve as a platform for research
into system-level aspects of such an approach.
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In designing the BrainScaleS-2 architecture, we had several
high-level design goals and use cases in mind. Some of them are
informed by the limitations we discovered with previous system
designs. The overarching design goal was to enable large-scale
accelerated emulation of spiking neural networks. This requires
a scalable system architecture. The system we will describe in
this article is a unit of scale for such a large-scale system.
Analog neuromorphic hardware presents unique challenges to
scalability compared to digital neuromorphic hardware. Since the
constituting components are subject to both fixed-pattern noise,
as well as temperature and time-dependent drift of parameters,
architectural solutions are needed to address these. Device
variations (fixed-pattern noise) are addressable by calibration,
but this requires acceptable parameter ranges and sufficient
compute resources, which enable constant scaling with system
size. A novel design for analog parameter storage (Hock et al.,
2013) ensures wide parameter ranges and stability of parameters
over time. Rapid calibration is enabled by including embedded
processor cores and high-resolution and multi-channel analog-
to-digital converters with access to all relevant analog states.
Taken together, they enable on-chip calibration in our unit of
scale and ensure that calibration time remains constant with
system size.

From a user perspective of the system, we aim to
support several operation modes and use cases for the system
architecture. They can be distinguished along several dimensions.
Perhaps the most common mode of operation is to perform
experiments in batch mode. In this mode, experiment instances
are queued and sequentially executed on the system without
any data dependency among the different instances. Batch-
mode execution is used for parameter sweeps, evaluation of
biology-inspired learning rules, or inference once task-specific
parameters for a classification task have been found. There are
several ways to introduce data dependencies between experiment
instances. We refer to them collectively as in-the-loop operation.
Our system enables us to close these loops on several time scales
and at different points of the system hierarchy, as we will further
describe in Section 2.3. This ability features also prominently
in some of the experiments: among them the learning-to-learn
approach (Bohnstingl et al., 2019), briefly discussed in Section
3.2, the surrogate gradient in-the-loop optimization described
in Section 3.3.1, and analog artificial neural network training in
Section 3.3.2.

One of the key distinguishing features of the architecture
is our approach to synaptic plasticity. In contrast to designs
like Loihi (Davies et al., 2018), which only supports micro-
coded operations per synapse or other designs with fixed
plasticity, we support plasticity programs with complex control
and data dependencies. The combination of massive-parallel data
acquisition of (analog) system observables (synaptic correlation
andmembrane voltage traces) and the efficient, digital evaluation
in programmable plasticity rules is a unique strength of our
system. This approach will be described in more detail in Section
2.3 and is the basis of all experiments reported in Section 3.2.

Another key distinguishing feature is that our synaptic
crossbar can process weighted spikes. This capability enables the
use of the same components to implement analog vector-matrix

multiplication. We will give an overview of the analog emulation
of artificial neural networks on our system in Section 2.2.

The rest of this paper is structured as follows: We begin
with a more detailed description of the system architecture in
Section 2.1. Afterwards, we describe the analog core of the
system in Section 2.2, in particular the design of the neuron
circuitry with an emphasis on the design decisions that lead to
controllability and a wide range of biological parameters. Beyond
the analog core, the system also incorporates two loosely coupled
embedded processors enabling the realization of hybrid plasticity
schemes, emulation of virtual environments for reinforcement
experiments, as well as the orchestration of calibration and data
transfer. We describe this part of the system in Section 2.3.

Taken together, these design decisions and features of the
system architecture enable the use of the system on a wide
range of tasks and operation modes. The current system design
can serve as a versatile platform for experimentation with
both biology-inspired and machine-learning-inspired learning
approaches. We will present experiments supporting these
assertions in Sections 3.2 and 3.3. From a system design
perspective, we see these results as evidence that the design
is suitable as a unit of scale for a large-scale accelerated
neuromorphic learning architecture.

Finally, we will discuss related work and give an outlook on
future developments in Section 5.

2. THE BRAINSCALES-2 SYSTEM

2.1. System Architecture
This section will give an overall description of the BrainScaleS-
2 architecture in terms of its constituting components. We
have taped out several scaled-down prototype versions and now
successfully commissioned a full-scale single-core system. This
single-core system can serve as the unit of scale for larger-scale
designs involving multiple neuromorphic cores. In Figure 1 we
show an overview of the system architecture.

A single neuromorphic BrainScaleS-2 core consists of a full-
custom analog core combining a synaptic crossbar, neuron
circuits, analog parameter storage, two digital control- and
plasticity-processors, and the event routing network responsible
for spike communication. The physical design is divided into
four quadrants, each featuring a synaptic crossbar with 256 rows
and 128 columns. The neuron circuitry is also partitioned in
this way, with each of the 512 neuron circuits associated with
one column. The two digital processors (Friedmann et al., 2017)
located at the top and bottom of the design are responsible
for the analog core’s upper and lower half, respectively. Using
single-instruction multiple data (SIMD) vector extensions, they
can read and write the digital state of their half of the synaptic
crossbars row-wise in parallel and readout analog traces via a
512-channel column analog-to-digital converter (CADC) (there
are 256 channels per quadrant, pairwise associated to correlation
and anti-correlation measurement). In Section 2.3 we will give
a more detailed description of the digital processors’ role in the
realization of plasticity. The event routing network takes up the
cross-shaped space dividing the four quadrants and is extendable
in all directions. Operating on address event-encoded packets,
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FIGURE 1 | Overview of the BrainScaleS-2 System architecture. (A) Bonded chip on its carrier board, one can see the two synaptic crossbar arrays. (B) Test setup,

with the chip (covered by white plastic) mounted on a carrier board. The FPGA and I/O boards have been designed by our collaboration partners at TU Dresden. (C)

Schematic floorplan of the chip: Two processor cores with access to the synaptic crossbar array are on the top and bottom. The 512 neuron circuits and analog

parameter storage are arranged in the middle. The event router routes events generated by the neurons and external events to the synapse drivers and to/from the

digital I/O located on the left edge of the chip. (D) Conceptual view of the system architecture in spike processing mode: Event packets (red dot) get injected by the

synapse driver into the synaptic crossbar, where they cause synaptic input integration to occur in synapses with matching addresses (indicated by red lines).

Membrane voltage accumulation eventually results in spike generation in the associated neuron circuits. The resulting spikes are routable to both synapse drivers or

external output. The plasticity processing unit has low latency and massively parallel access to synaptic weights, addresses, correlation measurements, and neuron

membrane voltage dynamics during operation. Plasticity rules and other learning algorithms can use these observables to modify all parameters determining network

emulation in an online fashion.

it connects the digital output of neuron circuits, external input,
and on-chip Poisson sources and routes them to synaptic rows
of one of the quadrants or off-chip targets. The digital interface
of events and data to an external system implements a custom
hardware link protocol (Karasenko, 2020), which supports both
reliable data transfer and efficient event communication.

The single-core BrainScaleS-2 system has been integrated
into two hardware setups so far: One system tailored for
commissioning and analog measurements (shown in Figure 1B).
In addition, we designed and implemented a fully integrated
“mobile” system meant for edge deployment, which incorporates
a Zynq FPGA with embedded ARM cores that can run Linux
and the BrainScaleS-2 neuromorphic core in a small form-factor
(Stradmann et al., 2021). It, therefore, can be deployed entirely
independently from any external host. In both cases the FPGA
is used for real-time control, buffering of external stimulus and
output data. It also manages external memory access for the
plasticity processors and provides connection from and to the
host system.

Beyond these two hardware setups, we also see the single-
core system as a unit of scale for large-scale neuromorphic
architectures. The most immediate step that does not require a
modified ASIC architecture is integrating multiple single-core
chips into a larger system by implementing an external event-
routing architecture. Work in this direction is underway. We

can also increase the reticle size and extend the on-chip digital
routing architecture appropriately. With this approach, about 8
cores could be integrated on a single reticle. We will discuss some
future directions in Section 5.

Further improvements might consider modifications to the
core architecture itself. Future revisions will include on-chip
memory controllers, thereby eliminating the need to rely on an
external FPGA. The overall modularity of the architecture would
also allow swapping out the synaptic crossbar, neuron circuit,
or plasticity processor implementation. The neuron circuit
implementation underwent several iterations until it converged
on the design reported here. We will turn to this aspect of the
system next and then describe the plasticity and control processor
in more detail.

2.2. Accelerated Analog Emulation of
Neural Dynamics
The emulation of neuron and synapse dynamics takes place
in dedicated mixed-signal circuits, which—in combination
with other full-custom components—constitute the analog
neuromorphic core. A full-sized application-specific integrated
circuit (ASIC) encompasses 512 neuron compartments with
versatile and rich dynamics. They evolve at 1.000-fold accelerated
time scales compared to the biological time domain, paying
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tribute to the characteristic time constants of the semiconductor
substrate. In its core, the neuron circuits faithfully implement
the adaptive exponential integrate-and-fire (AdEx) model (Brette
and Gerstner, 2005),

CmV̇ = −gl(V − El)+ gl1T exp

(

V − VT

1T

)

− w+ I , (1)

τwẇ = a(V − EL)− w , (2)

where the first differential equation describes the evolution of
the membrane potential V on capacitance Cm. The membrane
accumulates currents I = Isyn + Istim, which encompass direct
external stimuli as well as currents originating from synaptic
interaction. Furthermore, gl represents the leak conductance
pulling the membrane toward the leak potential El. The
exponential term implements the strong positive feedback
emulating the coarse shape of the action potential of a biological
neuron and is controlled by the exponential slope 1T and the
soft threshold VT. An outgoing spike is released as soon as the
membrane potential crosses the hard firing threshold Vth. In that
case, the membrane is clamped to the reset potential Vr and held
there for the refractory period tr. A second differential equation
captures the dynamics of the adaptation current w allowing the
neuron to adapt to its previous activation and firing activity. The
adaptation state decays back to zero with a time constant τw
and is driven by the deflection of the membrane potential, scaled
with the subthreshold adaptation strength a. In case of an action
potential, w is incremented by b implementing spike-triggered
adaptation. A more detailed, transistor-level description of a
previous version of the BrainScaleS-2 neuron circuit can be found
in Aamir et al. (2018b).

Each neuron circuit can be configured individually via 80 bit
of local configuration static random access memory (SRAM) as
well as 24 analog parameters which are provided by an on-chip
digital-to-analog converter (DAC) with 10 bit resolution (Hock
et al., 2013). The analog parameters allow to control all
potentials and conductances mentioned in Equation (1) for each
neuron individually—themodel dynamics can therefore be tuned
precisely and production-induced fixed-pattern deviations can be
compensated. This in particular allows to calibrate each circuit
to a specific set of model parameters, which may either be
homogeneous across the whole array or custom to individual
neuron instances. Other aspects of the neuron, such as the
refractory time tr or the membrane capacitance Cm, can be
directly configured via the locally stored digital configuration,
which can also be used to en- or disable certain features of
the neuron. For example, the adaptation current as well as the
exponential term in Equation (1) can be disconnected from
the membrane, reducing the AdEx model to the simpler leaky
integrate-and-fire (LIF) neuron model. When disabling also the
leak and threshold circuits, the neuron can be employed to
linearly accumulate charges and therefore—in conjunction with
the synapse array— implement analog matrix multiplication (see
Section 3.3.2).

On the other hand, the neuronal dynamics can also be
extended. Using additional resistors and switches between the
neuron circuits, larger cells with an increased synaptic fan-in as

well as intricately structured neurons can be formed (Aamir et al.,
2018a; Kaiser et al., 2021).

Each neuron circuit integrates synaptic stimuli from a column
of 256 plastic synapses. BrainScaleS-2, in particular, features
time-continuous current- as well as conductance-based synapses
with exponentially decaying kernels. The total current

Isyn =
∑

i

wiSi(t) ∗ e
−t/τsyn (3)

hence results from the sum over all associated synapses i, their
respective weights wi, the presynaptic spike trains Si(t) =
∑

j δ(t − tj), and the synaptic time constants τsyn, which can

be chosen independently for excitatory and inhibitory stimuli.
On BrainScaleS-2, the weights are stored locally per synapse in
6 bit SRAMs and modulate the amplitude of an emitted current
pulse. Along them, each synapse also holds a 6 bit source address
which is compared to the label of afferent events and lets the
synapse then only responds to matching stimuli. Hence, the
network structure is determined not only through the digital
event routing network but also by synapse-local properties.
Synapse addresses, in particular, allows to map sparse networks
efficiently and change the connectome by inserting and removing
synaptic connections dynamically (Billaudelle et al., 2021).

Spike timing-dependent plasticity (STDP) and related
correlation-based plasticity rules are supported through
analog sensor circuits within each synapse (Friedmann et al.,
2017). They continuously measure the exponentially decaying
pair-wise correlation between post- and presynaptic spikes
and accumulate them as an observable for weight update
calculations (cf. Section 2.3). In addition, BrainScaleS-2 supports
a presynaptic modulation of events, which is exploitable for
the implementation of short-term plasticity (STP) (Bi and Poo,
1998) and allows to inject graded spikes. By combining the latter
with neurons with disabled spiking dynamics—hence acting
as simple integrator circuits—BrainScaleS-2 also supports the
execution of non-time-continuous vector-matrix multiplications
(see Section 3.3.2).

2.3. Hybrid Plasticity and Versatile Digital
Control
Besides the accelerated and faithful emulation of neuron and
synapse dynamics realized by the analog neuro-synaptic core
described in the previous section, the system features two digital
plasticity and control processors (Friedmann, 2013), which we
refer to as plasticity processing unit (PPU). The overarching goal
of this part of the system is to complement the flexible and
configurable neuron and synapse architecture with an equally
flexible digital control architecture. Here we highlight several use
cases of this design choice: implementation of programmable
hybrid plasticity, automatic on-chip calibration, parallel readout
of analog observables for in-the-loop learning, orchestration of
analog artificial neural network computation, and simulation of
virtual environments.

Apart from speed, a big problem of physical implementations
is their limited flexibility, especially regarding learning rules.
BrainScaleS-2 uses a “hybrid plasticity” scheme (Friedmann et al.,
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2017), combining analog measurements with digital calculations
to increase the flexibility while keeping the advantages of
an accelerated physical model, like simultaneously observing
all correlations between pre-and postsynaptic signals. In a
moderate-sized network, this amounts to tens of thousands
of measurements per second for each synapse. Thus, a
single BrainScaleS ASIC can perform several tera-correlation
measurements per second. Compared to biological model
dynamics, the emulation runs one thousand times faster; a
speedup factor that, even for small to medium-sized plastic
networks, is typically out of reach to software simulations (Zenke
and Gerstner, 2014).

To implement the plasticity rules themselves, i.e., to calculate
new weights, topology information, and neuron parameters
during the continuous-time operation of the network, the hybrid
plasticity architecture relies on specialized build-in SIMD units
in the two microprocessor cores. They interface directly with the
synaptic crossbar and the neuron circuits via the CADC, which,
as the name suggests, can perform simultaneous measurements
of analog quantities in one row and across all 256 columns of
the synaptic crossbar. The result of the correlation measurements
can then enter plasticity programs, which can perform both
fixed-point and integer arithmetic operations on vectors of
either 128×8 bit or 64×16 bit entries. The weights and addresses
stored in the synaptic array and the voltage traces from the
neuron circuits allow for flexible plasticity computations bridging
multiple timescales. In particular, we have demonstrated several
versions of spike timing-dependent plasticity (STDP)-based
learning rules (R-STDP Wunderlich et al., 2019, homeostatic
plasticity Cramer et al., 2020a), as well as learning rules that
compute updates based on small artificial neural networks
(Bohnstingl et al., 2019) and structural plasticity (Billaudelle et al.,
2021).

The scalar part of the processor core can operate
independently and take responsibility for scheduling the
data-parallel instructions, data transfers, and measurements.
Scoreboards track data dependencies in an in-order issue
out-of-order retire scheme, which allows both the vector
unit and the scalar unit to perform, for instance, arithmetic
operations, that are independent of the completion of potentially
higher latency load/store operations or CADC measurements,
thereby reducing overall execution time. This asynchronous
operation of vector and scalar units is beneficial, in particular, for
plasticity programs.

Besides plasticity programs, the parallel access to the analog
synapse and neuron state is also helpful in the gradient-based
learning approaches discussed below. The surrogate gradient-
based learning approach relies on CADC samples of the
membrane voltage during experiment execution. A program
running on the PPU performs this sampling in a tight loop
and then writes the resulting traces to either internal SRAM
or external memory. The external bandwidth of the system
and the DDR3-memory the FPGA interfaces with make this
approach feasible. During artificial neural network in-the-loop
training and inference, the processor cores perform data transfer,
accumulation of partial results, and the analog readout of matrix-
vector multiplication results.

As will be discussed in the following Section 3.1, the neuron
circuits can be adjusted by calibration of 24 parameters each.
In addition, the parallel access to the neuron circuit membrane
dynamics via the CADC allows us to implement efficient on-chip
calibration, as done in several of the experiments reported here.

Finally, the processor cores can simulate virtual environments.
This use case is enabled because the processor cores can inject
spikes into the synaptic crossbar and readout rates and voltage
traces from the neuron circuits. It is, therefore, possible to close
the agent-environment loop by simulating the agent’s state and
the environment interaction on the PPU and implement the
agent’s action selection (in part) as a spiking neural network.
We will give a detailed description of one such use case in
Section 3.2.1.

The flexibility of the digital architecture is in large part also
enabled by a compiler, the C++ programming language, and
library support. The scalar processor cores implement a subset of
the 32 bit POWER instruction set architecture (PowerISA, 2010).
The SIMD vector instructions are custom but generally follow the
conventions of the VMX SIMD instruction extension (PowerISA,
2010). We have modified the GCC compiler toolchain to support
the custom vector instructions based on the pre-existing support
of the POWER instruction set architecture. With this compiler
support as a foundation, we have implemented support for the
C++ standard library and ensured that our hardware abstraction
library (HAL) is usable both on the embedded processor cores
and on the host system, with a user-transparent change of
hardware access modes. Details were reported by Müller et al.
(2020). Finally, we also provide abstractions for scheduling and
executing plasticity rules.

While the on-chip memory resources are limited to 16KiB
SRAM per processor core, the cores have access to an external
memory interface, which can back both the 4KiB per core
instruction cache and provide higher-latency access to FPGA
attached memory or block RAM. This memory architecture
allows for both the execution of latency-critical code without
external memory access and less latency sensitive but memory
intensive setup and calibration code. Future revisions will include
on-chip memory controllers for direct access to suitable external
memory technology.

3. APPLICATIONS OF THE
BRAINSCALES-2 SYSTEM

3.1. Faithful Emulation of Complex Neuron
Dynamics
Analog neuromorphic systems can usually suffer from temporal
noise, fixed-pattern parameter deviations, and a divergence from
the original model equations. As elaborated in Section 2.2,
BrainScaleS-2 goes a long way to accomplish an extensive and
at the same time detailed control over each individual circuit and
thus model parameter.

We employ calibration to find configuration parameters
for each circuit such that its observable characteristics match
a given target. Due to the device-specific nature of fixed-
pattern deviations, this calibration is an iterative process
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FIGURE 2 | Histograms showing a characterization of LIF properties of neurons before (top) and after (bottom) calibration. Each histogram shows all 512 neuron

circuits on a single ASIC. In the top row, the configuration has been set equal for all neurons, to the median of the calibrated parameters. This results in different model

characteristics due to device-specific fixed-pattern noise arising during the manufacturing process. After calibration, the analog parameters, such as bias currents and

voltages, are selected such that the observed characteristics match a target.

FIGURE 3 | Faithfully emulating the original AdEx equations, BrainScaleS-2’s neuron circuits can be configured to generate distinct firing patterns as a response to a

constant current stimulus. Here, we tuned the neuron circuits exemplarily to replicate four of the patterns described by Naud et al. (2008) using automated calibration

routines. Each of the four panels features the time evolution of the membrane trace and the adaptation current, as well as the resulting trajectory through the phase

space.

involving a measurement on each of the specific circuits. These
measurements are a minimal hardware experiment, typically
based around an ADC or spike rate measurement, in order to
characterize one observable at a time. The effects of calibration
are visualized for LIF neurons in Figure 2. However, the scope
of calibration extends beyond those, to, e.g., the AdEx model,
multicompartment functionality, and technical parameters that

don’t correspond to a term in a model, but are necessary for the
circuitry to behave as expected.

In this section, we want to use this high configurability to
replicate the original firing patterns analyzed by Naud et al.
(2008) and to show how the presented system can be used
to emulate multi-compartmental neuron models. For these
experiments, system configuration as well as stimuli data are
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generated on a host computer and then transferred on the FPGA.
The FPGA handles experiment control and buffers recorded
voltages. These voltage recordings are performedwith the fast on-
chip analog-to-digital converter (ADC) which offers a resolution
of 10 bit and a sampling frequency of about 29MHz. At the end
of the experiment, the voltage recordings are transferred to the
host computer and evaluated.

3.1.1. Replication of Biological Firing Patterns
In order to test the full AdExmodel as depicted above we selected
sets of model parameters from Naud et al. (2008) and mapped
all voltages, currents, and conductances to the circuit’s native
domain. Specifically, we honored the acceleration factor of 1.000,
the physical membrane capacitance, and the voltage range of
the silicon neuron. We then tuned our neurons to these model
parameters by utilizing automated calibration routines.

For each of the designated firing patterns, we then stimulated
the neurons with a respective step current Istim = I0 · 2(t −
50 µs) · 2(400 µs − t). We recorded the membrane potential as
well as the adaptation state voltage and— based on the latter—
estimated the adaptation current flowing onto the membrane.
Figure 3 shows these two resulting traces as well as the resulting
trajectory through phase space for a single neuron. The four
exemplarily chosen firing patterns highlight different aspects of
the neuron design: Transient spiking requires both large spike-
triggered adaptation increments b and a strong subthreshold
adaptation a to emit a single spike as a response to the stimulus
onset and remain silent for the remainder of the current pulse.
Regular bursting and the initial burst, in contrast, already emerge
for configurations with small a andmainly rely on spike-triggered
adaptation. These two patterns primarily differentiate themselves
in the exact choice of the reset potential Vr in relation to the
threshold voltage VT, which demonstrates the precise control
over the respective circuit parameters. Finally, delayed regular
bursting relies on an inverted subthreshold adaptation (a < 0)
leading to positive feedback.

For the last three patterns, the trajectory through the phase
plane spanned by V and w nicely demonstrates the precise
and reproducible dynamics of the circuit, which are especially
highlighted by the remarkable stability of the limit cycles for
the periodic spiking activity during stimulation. While here
only shown for a single neuron, all patterns could—without
manual intervention—be reliably reproduced by most, if not all,
of the neuron circuits. For example, regular bursting could be
simultaneously configured for all of the 128 tested neurons.

3.1.2. Multi-Compartmental Neuron Models
To further demonstrate the high configurability of the system at
hand we want to show how multi-compartmental models can be
emulated. As mentioned in Section 2.2, BrainScales-2 offers the
possibility to connect several neuron circuits and therefore allows
to implement various compartmental neuron models (Kaiser
et al., 2021).

A passive compartment chain model can for example be used
to replicate the behavior of a passive dendrite, Figure 4A. We
inject synaptic input in one of the compartments and investigate
how the excitatory post synaptic potential (EPSP) travels along

the chain of compartments. For that purpose, we once again use
the fast on-chip ADC to record the membrane potentials in the
different compartments. In the first row the input is injected
into the left compartment. As expected, the EPSP becomes
smaller and broader as it travels along the chain. The extent of
the attenuation can be controlled by the conductance between
the different compartments. When looking at the case where
the input is injected into the second compartment the influence
of the neuron morphology becomes obvious. The height of
the EPSP is smaller as compared to the injection in the first
compartment. This is due to the lower input conductance: the
second compartment has two neighbors as compared to the
single neighbor for compartments at the end of the chain.

Dendrites are not simple passive cables but are able to initiate
local regenerative events (Larkum et al., 1999; Schiller et al.,
2000; Major et al., 2013). On BrainScaleS-2 each compartment
is made up of one or more fully functional neuron circuits
and can therefore replicate dendritic spikes. Besides sodium-
likes spikes, which are modeled by the AdEx model, the neuron
also supports plateau-like spikes. Figure 4B illustrates the model
of a dendritic branch which splits into two thinner dendrites.
The first compartment, compartment 0, of one of the branches
is configured to initiate plateau potentials. We inject synaptic
inputs in two compartments with a fixed delay between them and
record the membrane potential at the spike initiation zone. As
expected, spiking depends on the spatio-temporal distribution of
the inputs (Williams and Stuart, 2002; Polsky et al., 2004). While
inputs near the spike initiation zone elicit a dendritic spike, more
distal inputs fail to cause a threshold crossing. Furthermore, a
spike is more easily triggered if the distal input precedes the input
at the initiation zone.

3.2. Biology-Inspired Learning Approaches
One underlying goal of the system is to enable the exploration
of biologically plausible learning rules at accelerated time scales
relative to biology. For our purposes, we consider a learning
rule or algorithm to be biologically plausible if it satisfies several
criteria. The algorithm should be spatially and temporally local.
By spatially local, we mean that parameter changes computed
by the algorithm should rely only on observations that can
be locally made at each neuron and synapse. Some aspects of
biological plausibility are enforced by the system design itself.
The PPUs—coupled to the correlation circuitry implemented
in each synapse—facilitate the implementation of such spatially
local algorithms, as we have discussed in Section 2.3. A
temporally local algorithm should not rely on complete traces of
activity but sparse temporal observations.

Here we highlight experiments that have effectively used
the underlying hardware capabilities to demonstrate aspects of
biologically plausible learning. One aspect of biological learning
systems is that they typically interact with an environment. We
have realized tasks on the BrainScaleS-2 system in which an
agent interacts both with a simulated and physical environment.
Tasks range from simple Markov decision processes like maze
navigation and Multi-Armed Bandits (Bohnstingl et al., 2019),
playing a version of Pong (Wunderlich et al., 2019), to insect
navigation and control of an accelerated robot (Schreiber,

Frontiers in Neuroscience | www.frontiersin.org 7 February 2022 | Volume 16 | Article 795876

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pehle et al. The BrainScaleS-2 Accelerated Neuromorphic System

FIGURE 4 | Emulating multi-compartmental neuron models on BrainScaleS-2. (A) Four compartments are connected to form a chain, compare model at the top and

left side. The traces show the membrane potential in the four different compartments as a synaptic input is injected in one compartment after another. Thanks to the

high configurability of the BrainScaleS-2 system, compare Section 2.2, the conductance between the individual compartments can be altered to control the

attenuation of the signal along the chain. (B) Model of a chain which splits in two. The BrainScaleS-2 system supports dendritic spikes, here demonstrated in the form

of plateau potentials. Inputs are injected in different compartments with a fixed delay between them; this is indicated by the vertical bars above the membrane traces.

Depending on the spatio-temporal distribution of the inputs a dendritic spike can be elicited. The traces show the membrane potential in compartment 0. Figure

adapted from Kaiser et al. (2021).

2021). In all of these instances, the rapid reconfigurability and
experiment execution time lead to a significant speedup over a
simulation on commodity hardware.

The virtual environment and the agents are simulated on
the plasticity processor, which can guarantee low latency due
to its tight coupling to the analog neuromorphic core. In
fact, this lack of deterministic low latency coupling made such
experiments difficult on the BrainScaleS-1 systems, where that
problem was further emphasized by the additionally increased
acceleration factor.

Besides the three reinforcement learning related experiments,
we also explored other aspects of biologically plausible learning.
For example, the parallel access of the plasticity processing unit to
both the (anti-)correlation sensor readings and the digital weight
and address settings of the synapse array suggests experiments
based on synaptic rewiring and pruning (Billaudelle et al., 2021).
This work makes use of the ability of our synaptic crossbar to
realize sparse connectivity, as each synapse has a local receptive
field of 64 potential inputs. Last but not least, we have performed
work exploring criticality and collective dynamics of spiking
neurons subject to homeostatic plasticity rules on both the
scaled-down prototype systems (Cramer et al., 2020a) and in
ongoing work, which we will report on in Section 3.2.3.

3.2.1. Insect-Inspired Navigation
One way to study neural computation is to focus on small
functional circuits. While the scale of the single-core system
with its 512 neuron circuits and the prototype systems with 32

neurons do not allow the exploration of large-scale dynamics,
they should enable the study of functional circuits over long
periods. Here we focus on a recently published anatomically
constrained model of the path integration abilities of the bee
brain (Stone et al., 2017). Path integration enables bees to return
to their nest after foraging for food successfully. In adopting
the model to the hardware constraints, we had to both translate
the rate-based model to a spike-based model and find a way to
implement the integration primitives in terms of the plasticity
mechanisms available in hardware. The resulting model is scaled-
down relative to the model proposed by Stone et al. (2017) to fit
the hardware constraints of the prototype system. Furthermore,
the model can be run at the 1.000× accelerated time scale relative
to biology on a prototype of the BrainScaleS-2 system and, more
recently, on the full-scale single-chip system.

The model is evaluated on a task divided into three parts. In
the first “foraging” part, the bee performs a random walk starting
at the “nest” location, with two sensory neurons receiving light
direction information. In a second “return” phase output of the
motor neurons is used to determine the movement of the bee
back to the nest. Finally, during a “looping” phase, the bee is
supposed to remain as close as possible to the nest until the
experiment is terminated.

Details of the signal flow and an activity trace are given
in Figure 5A. A “foraging,” “return” and “looping” episode
was simulated in 200ms, therefore corresponds to 200 s in
biological time. The virtual environment of the bee, as well as
simulating the bee’s “foraging” random walk, position, heading
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FIGURE 5 | Insect-inspired path integration and navigation on the BrainScaleS-2 accelerated neuromorphic substrate. (A) Network activity and path during a single

experiment instance. The simulated agent first randomly spreads out from the “nest” until it finds “food.” It then returns to the nest using the integrated path

information. Once returned, it starts looping around the nest until the experiment is terminated. The blue lines indicate how points along the trajectory correspond to

the activity trace shown below. From top to bottom, the neuron activity traces are that of the two sensory neurons (TN), “compass” neurons (TB), integrators (CPU4),

steering (CPU1), and motor neurons (M). Signals flow from TN → TB, TB → CPU4, CPU1; CPU4 → CP1 and CP1 → M. Details of the network architecture were

given by Schreiber (2021). (B) We performed evolutionary optimization of the weights controlling the behavior of our agents. Here we show 3 sample trajectories each

of the initial (primeval) and evolved population. Inset is a histogram over 1.000 trajectories in the final “looping” phase of the evaluation, zoomed in to a 6.000× 6.000

square of positions at the origin. As can be seen, the evolved population reaches a more symmetrical and tighter looping behavior. (C) Influence of two

hyperparameters h, k on the integration performance of the spiking integrators, each 12.000×12000 square of positions contains a histogram of 100 trajectories in

the looping phase (t > 2treturn ) for a total of 4.200 trajectories. (D) Response to excitatory and inhibitory input rates of the calibrated CPU1 neurons. The dashed line

indicates where 50% of the maximum output rate is expected. Calibration of these neurons, as well as all the other neurons, was done on-chip using the PPU, in the

case of the implementation done on the full-scale BrainScaleS-2 system. (A–D) are adapted from Schreiber (2021), (D) uses data from Leibfried (2021).

direction in the environment, and sensory perception, are
implemented on the PPU. It, therefore, closes the perception-
action loop in conjunction with the accelerated emulation of the
path integration circuit on the neuromorphic core. Moreover,
the behavior of the CP4 integrator neurons relies on weight
modifications of axoaxonic synapses, which are implementable
due to the flexible synaptic modifications that can be performed
by the PPU.

The acceleration factor also allows us to efficiently sweep
the hyper-parameters of the integrator neurons (Figure 5C).
Moreover, we are able to calibrate the neurons for this task
using on-chip resources (Figure 5D). Finally, we performed
an evolutionary optimization in order to improve the agents’
distance to the nest during the looping phase (Figure 5B).
Without the acceleration factor, the hyperparameter sweep

would have required 9.6 day. Instead, it can be performed in
approximately 14min. Similarly the evolutionary optimization
over 200 epochs of 1.000 individuals would have required 448
day, instead it could be completed in roughly 12 h. The output
data required by the evolutionary algorithm is buffered by the
FPGA and evaluated on the host. The host is also responsible for
the initial and all subsequent configurations of the system, as well
as the implementation of the evolutionary algorithm.

Therefore, we believe this to be a compelling case study of
the system’s modeling capabilities concerning small embodied
neuromorphic agents and of how contemporary research in
computational neuroscience could benefit from an accelerated
physical emulation platform to evaluate experiments. While
implementing such a model on neuromorphic hardware
enforces constraints on the modeler not present in a free-form
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von-Neumann modeling approach, it also has benefits. On a
technical side, the acceleration factor is guaranteed even when
scaling to larger circuits, including plastic synapses. On the
conceptual side, many of the constraints present in the hardware,
namely spike-based communication and local plasticity rules,
are also believed to be present in biology. Therefore, one is
encouraged to fully commit to a modeling approach without
any shortcuts afforded by using a von-Neumann architecture to
simulate the model. Furthermore, the experiment demonstrates
that it is possible to calibrate the neuron circuits with on-
chip resources, which is crucial for a scalable and host-
independent calibration.

A detailed description of the implemented spike-based model
and the experiments, including the evolutionary optimization,
was given by Schreiber (2021) and will be further elaborated on
in a forthcoming publication (Schreiber et al., 2022).

3.2.2. Accelerated Closed Loop Robotics
We can also consider another family of applications: Using the
BrainScaleS-2 system to control another physical system. This
presents several challenges: The accelerated neuron dynamics
means that the natural time scale at which the system could
interact with a real environment would be on the order of
microseconds. Similarly, sensor information to be processed by
the system needs to be on this time scale, at least if spikes
are meant to be used as the information processing primitives.
As a case study, Schreiber (2021) implemented an accelerated
mechanical system consisting of two actuators moving a light
sensor over an illuminated surface or screen. Here we give a brief
overview and refer to Schreiber (2021) for a detailed exposition.
While this robotic design has limited practical purpose, it
illustrates the key challenges any such attempt faces. This begins
with the challenge of translating signals between the robot
and spiking domain, where the challenge is to interpret the
sensor reading as spikes naturally and to convert the “motor”
neuron output into actuator input. Here, we solve this in
two different ways: In a first prototype, the sensor to spike
conversion was done by connecting modular analog circuits,
featuring circuits for differentiation, inversion, adder, noise, and
spike generation, which ultimately could produce spike input
to a parallel FPGA interface. While this came closest to the
ideal of analog and spike-based communication, we replaced this
component with a fully digital micro-controller-based solution
in a second iteration. This implementation choice is beneficial
because other experiments could also use this microcontroller
to implement more sophisticated virtual environments. In both
versions of the design, spikes of the motor neurons with a width
of roughly 500 ns were converted into actuator input by using
pulse-shapers. This required motor drivers and actuators, which
could meaningfully react to input pulses with approximately
10 microsecond duration. Fortunately, voice coil actuators, as
used in commodity hard drives, precisely have this property.
Figure 6B, shows an overview of the signal path. The actuators
move a sensor over the illuminated surface or screen. In
Figure 6 we show task performance and sensor trajectories
of a “maximum finder,” that is, the task of the agent is to
find the local intensity maximum following the light intensity

gradient. And indeed, the following of (chemical) gradients
is one way in which biological organisms find food sources.
The accelerated nature of the experiment execution allows for
fast evolutionary optimization of the required weight matrix
(see Figures 6D,E). Other experiments demonstrate that, for
example, one can construct networks capable of rapidly detecting
light intensity “edges.”

Beyond the experiments done so far, it would also be possible
to display a maze environment on the screen and let the
neuromorphic agent physically solve the maze, with rewards
being encoded either virtually by the micro-controller or by
light intensity changes in the maze. Although initial calculations
suggested that the speed would be sufficient to produce light
intensity changes at the right time scale, ultimately, we were
only able to achieve regulation oscillations with a period of
approximately 10ms. While this is still quite fast, it does not
naturally correspond to the time scale of the system. In some
sense, the neuromorphic system, therefore, can only control this
environment in slow motion. This is less of an issue for a maze-
like environment, where the decision procedure could be more
abstractly interpreted in terms of “moves.”

Besides the initial configuration and the implementation
of the evolutionary optimization, which requires recorded
data buffered on the FPGA and transferred to the host,
the experiment is implemented in a host independent
fashion. It therefore demonstrates accelerated closed-loop
neuromorphic computation.

Overall we believe using our accelerated neuromorphic
system for rapid spike-based control and sensing has many
exciting future applications. Further experiments can extend
the proof of principle we present here in several directions.
For example, instead of voice coils, one could control piezo-
electrically actuated mirrors or lenses to divert laser light in
a physical experiment or control micro-sized or high-speed
aerial vehicles. Other high-speed applications could include
motor control circuits and ultra-sound or radar applications,
particularly involving active sensing or phased arrays.

3.2.3. Collective Dynamics
One way to adapt recurrent spiking neural networks (SNNs)
to perform information processing is to deliberately exploit
collective dynamics. Particularly promising are the dynamics
emerging at a so-called critical point at which systems
fundamentally change their overall characteristics, transitioning
between e. g. order and chaos or stability and instability. Being at
this point, systems maximize a set of computational properties
like sensitivity, dynamic range, correlation length, information
transfer and susceptibility (Harris, 2002; Barnett et al., 2013;
Tkačik et al., 2015; Munoz, 2018).

Here, we showcase the tuning of plastic recurrent SNNs to
and away from criticality by adapting the input strength Kext

on a prototype of the BrainScaleS-2 system (Cramer et al.,
2020a). The CADC as well as the PPU facilitate an on-chip
implementation of the STDP-based synaptic plasticity required
to adapt the collective dynamics of our SNNs. Within these
experiments, the FPGA is only used for experiment control as
well as spike injection. On the latest chip revision, the latter
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FIGURE 6 | Real world closed loop interaction with the BrainScaleS-2 system. (A) Conceptual overview of the example experiment, a sensor head with three light

sensors is moved over an illuminated surface. Sensor readings are converted into spike input to 3 input sources in a small feedforward spiking neural network. Spike

output produced by 4 neurons is converted into motor commands, which move the sensor head on the surface. The goal is to follow the light gradient. (B) Physical

realization of the example experiment from right to left: The PlayPen2 consists of two actuated arms which pantographically move a sensor head over a screen or

illuminated surface. Signals from the sensor head are digitally processed by a micro controller and converted into spikes send into a FPGA used to interface with a

scaled down BrainScaleS-2 prototype system, which implements the small feedforward spiking network. Spike outputs are routed in the FPGA to the Spike I/O

interface and converted by pulse shapers into motor command pulses. (C) Example trajectories of the sensor head on the surface, with gray indicating the accessible

region (left) and zoom in on the center region where the brightness maximum is (right). (E) Position (top) and brightness signals (bottom) of the sensor head over time.

The two panels on the left show the full time course. The neural network starts control at t = 100ms and stops at t = 250ms. The two panels on the right show a

zoom in on the interval t ∈ [100, 200]ms, with the gray curve indicating an average over all brightness readings. (D) We perform evolutionary optimization of the 4× 3

weight matrix both from a random initial weight configuration. We show the moving average of the fitness in black and the fitness at a certain generation in gray, both

for the top three individuals (dashed line) and the population average (solid line). In addition we display the weight configuration of an arbitrary individual at 6 selected

generations (0, 3, 10, 25, 50, and 100). Finally we show a qualitative performance evaluation at the same generations of the average weight matrix over 100

experimental runs divided into 4 starting positions. The contourlines show where 99, 50, and 10% of all trajectories ended after 225ms, when the maximum

brightness should be reached. The contourlines are overlayed over a plot of the brightness sampled from the photo diode signals over all runs and generations.

Missing pixels correspond to locations not reached at any time. (A–E) were adapted from Schreiber (2021) and (C) from Billaudelle et al. (2020).

can be achieved by drawing on the on-chip spike generators
of BrainScaleS-2, thereby reducing the strain on I/O. Here, the
hybrid plasticity approach in combination with the accelerated
nature of the BrainScaleS-2 architecture allows us to fully exploit
the associated advantages by bridging the gap in time scales
between neuro-synaptic dynamics, network dynamics, plasticity
evaluation as well as acquisition of long-lasting experiments for
statistical analysis.

With our implementation, we showcase emergent
autocorrelation times for low input strengths Kext, significantly
exceeding the time scales of single-neuron dynamics (Figure 7A).
Most notably, adjusting Kext allows us to precisely tune the time

scale of the collective dynamics. These dynamics can be
deliberately exploited for information processing by tying on
the reservoir computing framework (Jaeger, 2001; Maass et al.,
2002). To that end, we characterize the interplay of collective
dynamics and task complexity by training a linear classifier on
the host computer based on the spike trains emitted by the
BrainScaleS-2 chip. While long time scales for low Kext only
boost the performance for complex memory-intensive tasks,
simple tasks profit from short intrinsic time scales (Figure 7B).
Hence, every task requires its own dynamics to be solved
optimally (Cramer et al., 2020a). The required tuning can be
realized by dynamically adjusting Kext under the constant action
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FIGURE 7 | Exploiting collective dynamics for information processing on BrainScaleS-2. (A) The autocorrelation time τac of recurrent SNNs can be controlled by

changing the input strength Kext under the constant application of homeostatic regulation. (B) The emerging autocorrelation times for low Kext can be exploited for

complex, memory-intensive task processing. Both, a n bit sum as well as a n bit parity task profit from the complex processing capabilities for high n. Low n task, in

contrast, profit from short time scales and hence high Kext. The optimal Kext for each n is highlighted by red stars. As a result, each task requires its own dynamic

state. (C) The adaptation of the network dynamics to task requirements can be achieved by switching the input strength under the constant action of homeostatic

regulation irrespective of the initial condition. Here, the transition from a state with long time scales to short ones is completed with only a few homeostatic weight

updates (i). The reverse transition requires a longer relaxation phase (ii).

of the synaptic plasticity. This switching can again be efficiently
achieved on BrainScaleS-2 by exploiting the acceleration. The
transition from a state with high to low autocorrelation time
is completed with 50 synaptic updates amounting to only
50ms, whereas the reverse transition requires 500 updates
and hence 500ms (Figure 7C). Moreover, this switching leads
to comparable dynamical regimes irrespective of the initial
condition and is characterized by a low energetic footprint when
drawing on the on-chip spike sources. With this, we provide not
only an understanding of how the collective dynamics can be
adjusted for efficient information processing, but in addition,
showcase how the physical emulation on BrainScaleS-2 allows to
bridge the vast range of time scales in the associated experiments
which render equivalent implementations on conventional
hardware prohibitively expensive.

3.3. Gradient-Based Learning Approaches
Both the individual analog circuits and the overall system can
be considered to be parameterized physical systems. A particular
task can be represented as a constraint optimization problem
involving a loss function and constraints which implement
the input-output relation. One approach to such a constraint
optimization problem is to estimate gradients of the parameters
and subsequently perform some form of (stochastic) gradient
descent. Compared to digital computers the analog nature of the
core components leads to additional challenges. Whereas, digital
neuromorphic systems mainly need to be concerned with the
limited precision in their digital arithmetic and otherwise can
exactly simulate the operation of their system, this is not the case
for analog neuromorphic systems.

Just like with any other parametrized physical system it is
important to have a model of its behavior in order to perform
this optimization. As a simple example to keep in mind, think
of a physical pendulum, such as a ball hanging on a piece of
string. The physical parameters of such a pendulum, namely
the length of the string L and the mass of the ball m enter any
model of this system. A good model of a physical system does not

necessarily need to capture all the details of the physical situation
to be useful. For example for small initial angles the motion of
a pendulum is well described by a damped harmonic oscillator.
Measuring the behavior of the pendulum on a set of example
trajectories then allows one to fit the model parameters to get
good agreement betweenmodel and observed behavior. Since our
analog neuromophic core attempts to replicate the dynamics of
certain idealized neuron models, we are in a similar situation.
Part of the correspondence between our physical substrate and
the model is ensured by calibration. During task specific training,
we adapt a model to a specific hardware instance, by training in
the loop.

The in-the-loop training paradigm relies on the fact, as we
alluded to above, that it is possible to use the parameter gradient
computed based on measurements and a model of a physical
system to update the parameters of the physical system in a
composable fashion. This is the basis of all three gradient-
based learning paradigms realized in the BrainScaleS-2 system so
far, namely

• Time-to-first spike (Göltz et al., 2021)
• Surrogate-Gradient-Based Learning (Cramer et al., 2022)
• Analog ANN training (Weis et al., 2020)

They differ in which measurements are necessary and what
model of the physical system is used. In the time-to-first spike
gradient-based training scheme, which we won’t discuss in detail
here, the essential idea is that it is possible to compute the
derivative of the spike time with respect to input weights based
on an analytical expression of the spike time. In other words
the only measurements required of the system are the spike
times of the neurons present in the (feed-forward) network. The
model assumes that the physical system evolves according to
dynamics with certain ratios between synaptic and membrane
time-constants, which need to be ensured by calibration. In the
surrogate gradient paradigm the network dynamics is modeled
by a recurrent neural network (RNN) closely corresponding to
the continuous time dynamic. It requires the observation of the
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membrane voltages of all neurons of the network with a temporal
resolution comparable to that of the chosen RNN timestep.
We will discuss this approach in more detail in Section 3.3.1.
Finally in the analog ANN training mode the behavior of the
system is modeled by a linear operation (implemented by the
synaptic crossbar), together with a non-linearity (implemented
by the digital processor and the analog readout). Again the
actual correspondence of the system to this behavior needs to
be ensured by calibration. In order to estimate gradients the
layerwise results are needed and a full precision version of the
implemented operation is used to propagate errors between
layers. We give a more detailed description of this approach in
Section 3.3.2.

3.3.1. Surrogate-Gradient-Based Training of SNNs
Gradient-based training of SNNs has historically been impeded
by their binary nature, and was mostly limited to rate-
based codings schemes. Surrogate-gradient-based approaches
have only recently enabled the optimization of SNNs eliciting
temporally sparse spiking activity (Neftci et al., 2019). To that
end, these approaches attach amodified derivative to the neurons’
activation functions and thereby smoothen their gradients.
Relying on the temporally resolved membrane potential, these
surrogate gradients can often be easily computed for numerically
evolved SNNs. For analog systems, the neurons’ membrane
potentials evolve as physical quantities and are hence not directly
available for the respective gradient computation; digitization
is complicated by the intrinsic parallelism of such devices.
BrainScaleS-2, however, does allow for the parallel digitization of
membrane traces, despite its accelerated nature. For this purpose,
we employed the massively parallel ADCs and scheduled their
conversion via the on-chip PPUs. This allowed us to parallelly
digitize the temporal evolution of themembrane potentials of 256
neurons with a sampling period of 1.7 µs. Based on the digitized
membrane traces and spike times, we then constructed a PyTorch
computation graph based on the LIF equations. By incorporating
the actual, measured traces into this model of our system,
we aligned the computation graph with the actual dynamics
of our silicon neurons. Our framework, hence, effectively
attached gradients to the otherwise non-differentiable physical
dynamics and allowed to minimize arbitrary loss functions via
backpropagation through time (BPTT) in combination with
state-of-the-art optimizers (Kingma and Ba, 2015).

We benchmarked our learning framework on several
challenging datasets. For example, we trained feed-forward SNN
with a hidden layer composed of 246 LIF neurons on the
handwritten MNIST digits (LeCun et al. 1998, Figure 8A), where
we reached a test accuracy of (97.6± 0.1)% (Cramer et al.,
2022). Notably, we observed a time-to-decision of less than 7 µs
(Figure 8B). We exploited this low classification latency in a fast
inference mode, where we artificially reset the analog neuronal
states to prepare the network for the subsequent input sample,
and reached a classification throughput of 84 k images per second
(Figure 8C). The flexibility of our framework could furthermore
be demonstrated by augmenting the loss term with a sparsity
penalty. This regularization allowed us to perform inference on
the MNIST data with on average only 12 hidden layer spikes per

image (Figure 8D). Moreover, our framework could be extended
to facilitate the training of recurrent SNNs. Specifically, we
trained a recurrent SNN with a single hidden layer composed
of 186 LIF neurons on the SHD dataset (Cramer et al., 2020b),
where we reached a test performance of (80.0± 1.0)% (Cramer
et al., 2022).

3.3.2. Artificial Neural Networks on BrainScaleS-2
Extending its application into the realm of non-spiking neural
networks, BrainScaleS-2 also allows processing artificial neural
networks within its analog core. This yields several advantages,
such as the possibility to process large amounts of input data
using convolutional neural networks, and easier multiplexing of
the available resources due to the non-time-continuous fashion of
the underlying multiply-accumulate operation. On BrainScaleS-
2, input vectors are encoded as arrays of graded spikes, which
control the activation time of synapses. The versatility of
the neuron circuits allows them to act as integrators without
temporal dynamics, simply accumulating synaptic currents (cf.
Section 2.2 and Figure 9). The voltage on the membrane
capacitances is finally digitized using the 8 bit columnar ADC.
The possibility to configure neurons independently allows for
a hybrid operating mode with parts of the chip processing
ANN layers and other parts processing a spiking network—a
feature unique among accelerators based on analog computation.
A detailed description of this operating mode and the
corresponding software interfaces is given by Spilger et al. (2020)
and Weis et al. (2020).

Our software interface enables training of ANNs on
BrainScaleS-2 within the PyTorch framework (Paszke et al.,
2019) and thereby benefits from well-established gradient-based
training methodologies. We run the forward path of the network
on hardware and calculate weight updates on a host computer,
assuming an ideal linear model for all computational elements.
The chip is supplied with appropriately-sized MAC operations
and executes those in the analog core, the PPU handles simple
operations on the results, like pooling or applying activation
functions. Experiment control, like splitting ANNs into simple
MAC operations, is usually handled on the host computer.

As an initial proof-of-concept for analog matrix-vector
multiplication on BrainScaleS-2, we showcase a simple classifier
for the MNIST dataset of handwritten digits (LeCun et al., 1998).
Using a three-layer convolutional model, we achieve an accuracy
of 98.0% after training with hardware in-the-loop (Weis et al.,
2020). The same model reaches 98.1% accuracy on a CPU when
discretized to the same 6 bit weight resolution. This operating
mode was further used to classify the human activity recognition
dataset (Spilger et al., 2020) and to detect atrial fibrillation in
electrocardiogram traces in Stradmann et al. (2021).

In summary, we have shown that the analog network core
of the BrainScaleS-2 system—in addition to the prevailing
spiking operation—can successfully perform vector-matrix
multiplications. Applying this feature to classical ANNs,
competitive classification precision has been reached. While the
current proof-of-concept implementation of this operating mode
still carries large potential for future optimizations, interesting
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FIGURE 8 | Training of and inference with SNNs on BrainScaleS-2 using surrogate gradients. (A) Exemplary activity snapshots for three 16× 16 pixel MNIST images,

the resulting spike-latency encodings, an overlay of the hidden layer membrane traces recorded at a data rate of 1.2Gbit/s as well as the resulting hidden layer

spikes, and the output layer membrane traces. (B) Spike-latency encoding promotes fast decision times: after 7µs the network reaches its peak performance. (C) A

fast inference mode allows to exploit the quick decision times by artificially resetting the neuronal states after 8µs and therefore preparing the network for presentation

of the next sample, culminating in a classification rate of 85 k inferences per second. (D) The PyTorch-based framework allows to co-optimize for near-arbitrary

regularization terms, including sparsity penalties. In this instance, BrainScaleS-2 can be trained to classify MNIST images with an average of 12 hidden layer spikes

per image without a significant decline in performance.

hybrid applications combining spiking and non-spiking network
layers are already possible with the current hardware generation.

4. A PRINCIPLED APPROACH TO
GRADIENT-BASED PARAMETER
OPTIMIZATION IN NEUROMORPHIC
SYSTEMS

Given the multitude of approaches to learning and parameter
optimization in use in the neuromorphic computing and
computational neuroscience community, a natural question
arises: Is there a principled way to understand at least gradient-
based optimization in parametrized physical systems and (as a
particular case) neuromorphic hardware. Here we want to argue
that there is such an approach and that it is particularly useful
for neuromorphic hardware with complex neuron dynamics and
plasticity. As already discussed in the preceding Section 3.3, the
key to estimating gradients in a physical system is an appropriate
choice of model. The first observation is that most neuromorphic
hardware, and in particular the BrainScaleS-2 system, is well
described as a hybrid dynamical system.1 That is, their dynamics
are described by differential equations—the neuron equations,

1In the case of fully digital neuromorphic hardware, the situation is more
complicated, as they implement a numerical solver for a hybrid dynamical system.

the equations for the correlation traces—together with state
transitions—spike-based synaptic input, neuron reset—which
happen when jump conditions—a membrane voltage crosses
its threshold—are satisfied. The task of estimating gradients in
neuromorphic hardware is therefore mainly subsumed under the
question of how to compute parameter gradients in a hybrid
dynamical system, which is a well-established subject (De Backer,
1964; Rozenvasser, 1967; Galn et al., 1999; Barton and Lee,
2002). The second observation is that the dynamics in spiking
neural networks decouple, except for spike times, and most
of the parameters (the synaptic weights) only enter the state
transition functions. Moreover, the jump conditions typically
only depend on the state variables of single neuron circuits. These
two facts taken together result in simple event-based rules for
gradient computation.

More formally a hybrid dynamical system is given by
differentiable functions f (s)(x, p, t), labeled by the state s the
system is in, which specify the dynamics of the state vector x,
while in this state:

ẋ = f (s)(x, p, t) (4)

together with jump conditions j
(s)
r (x, p, t) = 0 and transition

equations x+ = T
(s)
r (x−, p, t). We use p to indicate a dependence

on some number of parameters of both the dynamics, jump
condition and transition equations. One simple example would
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FIGURE 9 | Use of the BrainScaleS-2 system in ANN operating mode. (A) Analog input values are represented as pulses sent consecutively into the synaptic

crossbar. The duration of these pulses represents input activations. Synapses modulate the pulse height depending on the stored weight. Signed weights can be

achieved by using two synapse rows, excitatory and inhibitory, for the same input. The neuron circuits serve as an integrator of the generated currents. Readout of the

voltage occurs in parallel once triggered (dashed violet line) by the columnar ADC. (B) Layers that exceed the hardware resources are tiled into hardware execution

instances and sequentially executed. Panel taken from Spilger et al. (2020). (C) Example membrane traces during inference of MNIST handwritten digits in the output

layer. The ten output activations are sampled at the indicated time for all neurons in parallel.

FIGURE 10 | (A) A large dynamical system consisting of two decoupled subsystems. It has a block diagonal Jacobian and corresponding decoupled sensitivity

equations. (B) Parameter gradient computation in sequentially composed physical systems (orange) can be performed by composing gradient computation in models

of the physical systems (blue).

be the Leaky Integrate and Fire neuron model. The state is given
by membrane voltage and synaptic input current x = (V , I) of
N neurons,

τmV̇ = (VL − V)+ RI (5)

τs İ = −I (6)

Each jump condition corresponds to the membrane threshold
crossing condition of one of the N neurons

V−
i − (VT)i = 0 (7)

and the corresponding transition equation implements the reset
of membrane voltage and the jump of the synaptic input current,
when neuron i fires:

I+ = I− +Wei (8)

V+
i = Vreset, (9)

hereW denotes the synaptic weight matrix and ei is the i-th unit
vector. The non-zero entries of the Jacobian

J(s) = ∂xf
(s)(x, p, t) (10)
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characterizes which dynamical variables xi directly couple to each
other. A distinguishing feature of all neuromorphic architectures
is that even though the overall state space might be large
(1× 105 to 1× 106 of neuron equations in the case of large scale
systems like Loihi, TrueNorth, SpiNNaker and the WaferScale
BrainScaleS system), the Jacobian J(s) is sparse and block
diagonal. Indeed a system of N Leaky Integrate and Fire neurons
has a Jacobian J with diagonal entries

(

−1/τm R/τm
0 −1/τs

)

(11)

The Jacobian of a jump condition

∂xj
(s)(x, p, t) (12)

in the case of spiking neural networks is equally sparse, for a
Leaky Integrate and Fire neuron model with threshold VT in
order for the k-th neuron to spike

jk(x, p, t) = Vk − VT (13)

and therefore has only one non-zero entry.
A key observation is that if the state of the system is known at

a time t0, then the time t∗ at which a transition happens is an
implicit function of the system’s state in a neighborhood close
to the transition. One can therefore use the implicit function
theorem (under certain technical conditions), to compute the

parameter derivative dt∗

dp :

∂xj

[(

∂x

∂p
+ ∂tx

)

+ ∂pj+
dt∗

dp

]

= 0 (14)

In contrast to the time-to-first spike approach (Göltz et al., 2021),
this does not require explicit or analytical knowledge of the
function t⋆(x, p) and is also applicable to more complex neuron
models. In the context of spiking neural networks, this was
recognized by Wunderlich and Pehle (2020) and elaborated in
full generality by Pehle (2021). Concurrent work also introduced
this technique to the wider machine learning community (Chen
et al., 2021). This observation is particularly useful in the
case of spiking neurons because the jacobian ∂xj is sparse and
therefore results in a sparse coupling of the gradient computation
across jumps.

To solve computational tasks, the parameters p of a spiking
neural network, such as the weight matrix W, need to be
optimized according to some (differentiable) loss function. Given
such a particular model and task, a constrained optimization
problem can be formulated for the parameters p, involving an
integral over a task-specific loss function l

L =

∫ T

0
l(x, p, t)dt, (15)

subject to the constraints on the state x given by the equations
above. The calculation of the gradient of the loss with respect to
the parameters involves the adjoint equations

λ′T = λTJ + ∂xl, (16)

where the jacobian J of the dynamical system ensures that the
computation has the same sparse coupling pattern as the forward
equations and ()′ indicates the derivative reverse in time. By their
nature, typical neuromorphic architectures and BrainScaleS-2,
in particular, have O(n) parameters, where n is the number of
“neuron” circuits, which enter the continuous-time evolution.
More specifically, in the case of BrainScaleS-2, those are the
calibration parameters of the neuron circuits as discussed in
Section 2.2 or rather the model parameters (depending on the
viewpoint). A much larger fraction of the parameters O(n2),
namely the synaptic weights, enter only the transition equations.

A similar argument to the one made above for the parameter
derivative of the transition times allows one to then relate the
adjoint state variables after λ+ to the adjoint state variables before
the transition λ− and yields an event-based rule for gradient
accumulation of the parameters that only enter the transition
equations (in particular the synaptic weights). This is elaborated
more explicitly in Wunderlich and Pehle (2020) and Pehle
(2021). The event-based nature of the gradient accumulation
and the sparse propagation of error information has immediate
consequences for neuromorphic hardware. In particular, it means
that only sparse observations or measurements are necessary
to estimate the gradients successfully, which is a significant
advantage over the surrogate gradient approach of Section
3.3.1, which (at least currently) requires dense observations of
membrane voltages.

In the context of the in-the-loop training paradigm, the general
framework sketched here also has attractive consequences. As
the numerical implementation and the implemented dynamical
system are separate, one can choose appropriate integration
methods, such as ones also applicable to multi-compartment
neuron models. There is a well-understood way in which
numerical implementation of the forward and reverse time
dynamics are related (Haier et al., 2006 II.3, note that “adjoint”
there is not used quite in the same sense as here). Since arbitrary
loss functions are supported, the hybrid dynamical system used
to model the neuromorphic substrate can receive bothmodel and
task-specific loss contributions. In particular arbitrary temporally
sparse and partial system observations, x̂i at times ti can enter a
loss term of the form

lm =
∑

i

|Px− Px̂i|
2δ(t − ti), (17)

where P denotes a linear projection to a state subspace. Such
loss terms allow one to account for parameter mismatch and
dynamical differences between model and hardware without a
need for full access to the system state, which is prohibitive
for large neuromorphic systems. Similarly, observations of
spikes alone could be used to both fit the model to
the neuromorphic substrate and enter the computation of
parameter gradients without additional other observations.
Moreover, as illustrated in Figure 10 this extends to situations
where one has separate models for physical subsystems—
dynamical models, and adjoint computation of parameter
gradients compose as one would expect. This compositionality
is useful for the time-multiplexed execution of large feedforward
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models and the coupling of different parametrized physical
substrates, with the goal of task-specific end-to-end optimization.
In summary we believe this to be a promising approach
to gradient-based optimization in neuromorphic hardware
and intend to apply it to the BrainScaleS-2 architecture
presented here.

5. DISCUSSION

We have presented the BrainScaleS-2 system architecture as
implemented in a single-chip ASIC with an analog core
consisting of 512 neurons and 217 synapses, as well as two
embedded plasticity and control processors. The system design
meets our expectations concerning flexibility and configurability
of the analog components and has proven to be a versatile
platform for implementing a wide array of tasks across
several domains.

The modularity of the architecture, in particular, the neuron
circuits, allows for the evaluation of the implemented neuron
models on a wide range of parameters as seen in Section
3.1 and even accelerated emulation of multi-compartment
neurons (Kaiser et al., 2021). The hybrid approach of combining
the analog core with flexible digital control and plasticity
architecture has enabled many of the experiments reported
here. Beyond the immediate practical benefits, it also lays the
foundation toward a fully integrated standalone deployment
of this neuromorphic architecture, as partially realized by the
mobile system (Stradmann et al., 2021). It is also crucial for the
scalable calibration and control of a larger scale architecture,
which would use the presented neuromorphic core as a unit
of scale.

Another aspect of implementing a large-scale system based
on the presented architecture has not been touched upon:
implementing a scalable event-routing architecture and wafer-
scale integration. Since the spiking network is emulated
completely asynchronously, it has punishing demands on latency
and timing jitter. Future work will have to address this
challenge head-on. While scaling to a larger reticle size will
be straightforward, accomplishing wafer-scale integration and
networking between wafers requires further work and funding.
However, we believe that our experience with the first-generation
BrainScaleS wafer-scale system puts us in an excellent position
to accomplish a wafer-scale second-generation design (Schemmel
et al., 2010). As an intermediate step, we plan to realize a multi-
chip system building upon existing BrainScaleS-1 wafer-scale
system components. Interconnectivity will be implemented using
FPGAs based on the EXTOLL network protocol (Resch et al.,
2014; Neuwirth et al., 2015). Concurrently we are working on
a low-power inter-chip link, which eventually could also be the
basis for on-wafer connectivity. While wafer-scale integration is
surely a valuable step to a scale-up of the system, integrating
multiple wafer-scale systems using conventional communication
technology will present additional challenges. Furthermore,
assembling wafer-scale systems is a time-consuming and difficult
task. We explored techniques such as embedding wafers into
printed circuit boards to simplify this task (Zoschke et al., 2017).

Several digital neuromorphic architectures have been
proposed in recent years (Furber et al., 2012; Merolla et al.,
2014; Davies et al., 2018; Frenkel et al., 2018, 2019; Mayr
et al., 2019; Pei et al., 2019). Instead of analog emulation of
the neuron and synapse dynamics, these commonly rely on
a digital implementation with varying biological faithfulness
and flexibility. Other architectures incorporate—similar to the
BrainScaleS platform—an analog emulation of neuronal and
synaptic dynamics (Benjamin et al., 2014; Moradi and Indiveri,
2014; Moradi et al., 2018; Neckar et al., 2018; Rahimi Azghadi
et al., 2020); a review of earlier approaches were assembled by
Indiveri et al. (2011). Some of them are directly inspired by
the pioneering work of Mead and Mahowald (1988) and Mead
(1990) and rely on subthreshold characteristics of transistors.
Digital and analog verification methods for the BrainScales-2
system were previously discussed in Grübl et al. (2020). A
description of the BrainScaleS-2 architecture, event routing,
block diagrams, analog-matrix multiplication extensions,
on-hardware measurements of matrix multiplication, and the
multi-compartment extension, as well as a first application of
the artificial neural network operation mode has been given in
Schemmel et al. (2020).

Considerable progress on learningmethods for neuromorphic
hardware has been made as well. Here we only highlight those
most closely related to the presented methods. Esser et al.
(2016) proposed the use of a pseudo-derivative to replace the
derivative of the Heaviside function used for spike threshold
detection and also used a forward pass simulating the precision
constraints (trinary synapses) of the target hardware and floating-
point precision backward pass. Subsequent work applied this
training procedure to other neuronmodels or used other pseudo-
derivatives (Bellec et al., 2018; Neftci et al., 2019). The in-the-loop
training approach was realized on the BrainScaleS platform by
Schmitt et al. (2017) for rate-based models and (Cramer et al.,
2022) for SNNs employing individual spikes for information
transfer and processing, as summarized in Section 3.3.1.

Petrovici et al. (2016) related stochastically stimulated and
recurrently connected populations of LIF neurons in the high-
conductance state to Restricted Boltzmann Machines. This
relationship suggests finding variational representations of and
to sample from high dimensional probability distributions on
BrainScaleS-2. The accelerated nature of the system allows
one to rapidly produce samples over long periods. Recently
such a variational representation was used to represent POVM
probability distributions of states in certain quantum systems on
BrainScaleS-2 (Czischek et al., 2019; Klassert et al., 2021; Czischek
et al., 2022).

Beyond the experiments presented here, we believe the
architecture can serve as a versatile platform for further
experiments in multiple directions. One promising direction
appears to be to close the loop on two different levels
of the system hierarchy, as has been explored as part of
the learning-to-learn experiments (Bohnstingl et al., 2019).
Similarly, the evolving-to-learn framework by Jordan et al.
(2020) seems predestined for implementation on BrainScaleS-
2. The accelerated nature of the system makes it ideal for
rapid execution of an inner-loop, involving a bio-inspired
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learning rule and an additional optimization technique in the
outer loop. The flexible architecture for plasticity processing
allows one to for example evaluate RNN-based plasticity rules.
In another direction online learning rules, such as E-Prop
(Bellec et al., 2020) are natural candidates for implementation
on BrainScaleS-2. We have found a way to adopt such
learning algorithms to our platform, taking into account the
constraints on the observability of correlation and neuron
membrane traces.

By providing this platform, we hope to establish physical
modeling as a versatile tool to the machine learning and
computational neuroscience community. Furthermore, it can
not yet be foreseen what deep insights into the collective
dynamics of neural networks will be revealed by emulating
multiple, interconnected layers of structured neurons,
all continuously subjected to complex learning rules and
homeostatic processes.
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