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Gradient Estimation With Sparse Observations for
Analog Neuromorphic Hardware

Spiking neural networks (SNNs) take into account the temporal dimension of biological
neurons, in contrast to artificial neural networks (ANNs). Due to the discontinuous nature
of spiking neurons, this leads to challenges in gradient-based optimization of such a model
using backpropagation through time (BPTT). The novel EventProp algorithm is based on a
general treatment of mathematical neuron models and derives adjoint dynamical equations
and transitions for networks of non-refractory leaky-integrate and fire (LIF) neurons from
which exact parameter gradients in spiking neural networks (SNNs) can be obtained. This
algorithm is studied in this thesis, where it is extended to the refractory leaky-integrate and
fire (LIF) model and a closed gradient expression is derived. The EventProp algorithm is
implemented in a discrete-time form in a high-level software framework, and this learning
rule is used for the first time to train SNNs with the analog neuromorphic BrainScaleS-2
(BSS-2) system. The results demonstrate that gradient-based learning on sparse mea-
surements is feasible in analog neuromorphic hardware, and establish EventProp as an
important alternative to common surrogate gradient approaches. The high adaptability of
the underlying adjoint sensitivity analysis would allow EventProp to be extended to other
neuron models and even online-learning methods which would broaden the applications of
this method widely.

Gradientenbestimmung mit wenigen Beobachtungen für
analoge neuromorphe Hardware

Spikende neuronale Netzwerke (SNNs) berücksichtigen im Gegensatz zu künstlichen neu-
ronalen Netzwerken (KNNs) die zeitliche Dimension von biologischen Neuronen. Aufgrund
der diskontinuierlichen Natur von spikenden Neuronen führt dies zu Herausforderungen bei
der gradientenbasierten Optimierung eines solchen Modells mit backpropagation through
time (BPTT). Der neuartige EventProp-Algorithmus basiert auf einer allgemeinen Be-
handlung mathematischer Neuronenmodelle und leitet adjungierte dynamische Gleichun-
gen und Übergänge für Netzwerke nicht-refraktärer leaky-integrate and fire Neuronen ab,
aus denen genaue Parametergradienten in SNNs gewonnen werden können. Dieser Algo-
rithmus wird in dieser Arbeit untersucht, wobei er auf das refraktäre LIF Modell erweitert
und ein geschlossener Gradientenausdruck abgeleitet wird. Der EventProp-Algorithmus
wird in einer zeitdiskreten Form in einem High-Level-Software-Framework implementiert,
und diese Lernregel wird zum ersten Mal verwendet, um SNNs mit dem analogen neuro-
morphen BrainScaleS-2 (BSS-2) System zu trainieren. Die Ergebnisse zeigen, dass gra-
dientenbasiertes Lernen auf spärlichen Messungen in analoger neuromorpher Hardware
möglich ist, und etablieren EventProp als eine wichtige Alternative zu herkömmlichen
Surrogat-Gradienten-Ansätzen. Die hohe Anpassungsfähigkeit der zugrundeliegenden ad-
jungierten Sensitivitätsanalyse würde es ermöglichen, EventProp auf andere Neuronen-
modelle und sogar Online-Lernmethoden zu erweitern, was die Anwendungsbereich dieser
Methode deutlich erweitern würde.
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1 Introduction

Seeking to understand our physical surroundings is intrinsic to human behavior,
and scientific progress leads to ever-new innovations and findings about the world
around and inside us. Crucial to this progress are the enormous capabilities of
the human brain, but the brain itself, as an object of scientific study, still holds
many unimagined insights. Inspired by its ability to perceive and efficiently process
complex information and striving for a deeper understanding, scientists turn to the
application of artificial machines to mimic at least part of the processes in our brains.

Ideas of modeling neurons by condensing key characteristics into building blocks
like the perceptron [Rosenblatt 1958] and training artificial neural networks (ANNs)
comprised of these units [Rumelhart et al. 1986] have already been studied quite
early. Extensive developments of computational resources in recent decades have
made the application of such networks to solve pattern recognition, classification, or
reinforcement learning tasks increasingly successful [LeCun et al. 2015]. Although
these computational advances enable solving ever more complex tasks, ANNs largely
ignore the time-dependent and sparse nature of the human brain.

Moving closer to the original biological counterparts, SNNs model dynamical sys-
tems evolving in time and handling inter-neuron communication by all-or-nothing
spike events [Gerstner and Kistler 2002]. Alongside the efforts to gain a deeper
understanding of neural computations conceptually, computational neuroscience
applies these models in neuromorphic systems [Mead 1990]. There are multiple
approaches implementing such neuromorphic systems, examples being SpiNNaker
[Furber et al. 2012, Mayr et al. 2019], IBM’s TrueNorth [Merolla et al. 2014], Intel’s
Loihi [Davies et al. 2018, Orchard et al. 2021], DYNAPs [Moradi et al. 2018] or
Neurogrid [Benjamin et al. 2021].

Another neuromorphic system, which is also used in the work of this thesis, is
the BrainScaleS-2 (BSS-2) analog neuromorphic hardware [Schemmel et al. 2022,
Pehle et al. 2022], a mixed-signal accelerator developed in Heidelberg as part of
the Human Brain Project (HBP). It implements the adaptive exponential integrate-
and-fire (AdEx) neuron model [Brette and Gerstner 2005] in analog circuits and
provides high-bandwidth digital communication of spike events. The BSS-2 system
achieves 103 speed-up compared to biological time, regardless of network size, and
high energy-efficiency compared to traditional simulators [Müller 2014]. Using dif-
ferent approaches, learning was demonstrated successfully for networks on the BSS-2
platform [Cramer et al. 2022, Göltz et al. 2021, Arnold et al. 2023].

Compared to the already established and highly researched optimization tech-
niques in ANNs, the possibilities of learning in SNNs remain subject to study on
a quite fundamental level. Different gradient-based solutions have been applied to
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1 Introduction

supervised training of SNNs with backpropagation through time (BPTT) inspired by
recurrent neural networks (RNNs) [Neftci et al. 2019] and also for online learning
[Bellec et al. 2020]. A core challenge for both methods remains the discontinuity
introduced by the spike-based inter-neuron communication. A common approach is
introducing continuous auxiliary functions, whose gradients are used as surrogates
during optimization [Zenke and Ganguli 2018, Neftci et al. 2019]. As the imple-
mentations of this algorithm rely on observations of the neuron state at times other
than only the spike times, other approaches emerged, formulating equations to com-
pute exact gradients based only on observations at spike times [Göltz et al. 2021,
Wunderlich and Pehle 2021, Pehle 2021].

Göltz et al. [2021] derived closed-form equations for gradients for specific ratios
of a LIF neuron’s time constants and applied these to in-the-loop (ITL) training on
BSS-2. Meanwhile, Pehle [2021] took inspiration from optimal control theory and
proposed a general framework to derive sets of adjoint equations in networks of spik-
ing neurons and Wunderlich and Pehle [2021] formulated the EventProp algorithm
by deriving the equations explicitly for the non-refractory LIF neuron model. In sim-
ulation, successful optimization of models using EventProp was already achieved,
but demonstrating training of networks on analog neuromorphic hardware with this
novel algorithm remained an open task and was addressed during this thesis.

The work of this thesis aims to demonstrate the capabilities of the adjoint method
by extending EventProp to the LIF neuron model with a refractory period. Fur-
thermore, the correspondence of EventProp to the closed-form analytical equations
in the work of Göltz et al. [2021] is explicitly derived. A time-discrete version of the
EventProp algorithm was implemented and applied to ITL training with the BSS-2
chip on the low-dimensional Yin-Yang task [Kriener et al. 2022] and in simulation on
the MNIST dataset [LeCun et al. 1998] . The implementation is incorporated into
hxtorch.snn [Spilger et al. 2022], which has a high-level, PyTorch-based frontend,
giving non-expert users access to this gradient estimation method, additionally to
the previously available surrogate gradient implementation.

Thesis Outline

In chapter 2, an overview of the theoretical and methodological background is given,
including an introduction to biological neurons and the mathematical model of the
LIF neuron, gradient-based learning in SNNs, and the derivation of exact gradient
estimation algorithms for such models. Additionally, the BSS-2 platform and the
used software frameworks are outlined.

In chapter 3, I derive a set of equations similar to EventProp for the neuron model
LIF with a refractory period. In addition, I derive a gradient expression in closed
form from EventProp and show its correspondence to the work of Göltz et al. [2021].

Chapter 4 goes into detail on my software contributions, some streamlining ex-
periment execution on BSS-2 and the other enabling the usage of spike-time based
loss functions for SNNs within hxtorch.snn.

Chapter 5 covers the time-discrete implementation of the EventProp algorithm,
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a single-synapse and a single-hidden-neuron experiment meant to verify the imple-
mentation and training on two benchmark tasks: the Yin-Yang and the MNIST
dataset. For the former, training was done in simulation and with BSS-2 ITL, while
for the latter, preliminary simulation results were obtained with a network suitable
for hardware execution.

Chapter 6 summarizes and discusses the results, puts those into context with
other current work, and gives an outlook on what will come next.
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2 Theoretical Background

The foundation of this thesis is built upon a comprehensive understanding of the bio-
logical neuron and its mathematical models, which are crucial in developing spiking
neural networks (SNNs). Through this chapter, the building blocks of such net-
works will be described in detail, providing a solid grounding for the subsequent
research. The chapter will also explore the execution and optimization of SNNs on
neuromorphic hardware, paving the way for the work conducted for this thesis.

2.1 Computational Neuroscience
Drawing on the work of [Gerstner et al. 2014] and [Petrovici 2015], I will outline the
fundamental workings of biological neurons in section 2.1.1, and go into the details
of the LIF neuron model and its mathematical description in section 2.1.2.

2.1.1 Elements of a Neuron

Cells are enclosed by a membrane separating their interior from the extracellular
environment. Most of this membrane is a lipid bilayer, which is permeable for small
charge-free particles, but impermeable to ions and polar molecules. Apart from
that, the membrane also contains proteins enabling the transport of ions accross the
membrane and therefore driving the dynamics of the voltage accross the membrane.
Those ion gates and channels lead to a resting potential of about �70mV.

In contrast to other cells, neurons are exciteable and have additional ways of
manipulating the membrane potential, which ultimately allows them to communi-
cate by events called action potentials, or spikes, cf. fig. 2.1. Action potentials are
triggered by the membrane potential exceeding a threshold. The membrane poten-
tial is then subject to a spontaneous depolarization followed by a repolarization or
even hyperpolarization, letting the potential even drop below the neurons resting
potential. This phase of hyperpolarization is also called the refractory period, during
which even strong stimuli are unable to invoke another action potential.

Action potentials travel from the soma along the axon to its terminals, where
the neuron connects to the dendrites of subsequent neurons. These connections
are called synapses. If an action potential of a neuron is transmitted to the axon
terminal, this triggers a cascade of biochemical processes effectively resulting in a
post-synaptic transmembrane current (PSC) in the connected neuron. The PSC is
transmitted by the dendrites to the soma and might lead to further action potentials.

Even though the precise spatial structure of neurons is likely to be important for
the way they process signals, the models considered in this work reduce the neuron
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Figure 2.1: (a) The three main functional parts of a typical neuron are the den-
trites “a”, the soma “b” and the axon “d”. The dendrites forward input
signals from other neurons to the soma, which processes them and
eventually generates an output signal, which is then delivered to other
neuron by the axon. Where the axon terminals “h” connect to post-
synaptic neuron’s dendrites are called synapses. Image taken from
[Jarosz 2009]. (b) The action potential is generated by the soma if the
neuron’s membrane voltage exceeds a threshold. After the pulse-like
swing, the membrane potential enters a hyperpolarization phase called
the ‘refractory period’. Image taken from [Iberri 2007].

to a point-like, spike-generating object, modeling its behaviour by analogous electri-
cal circuits. A well known and very accurate description of such point-like neurons
is the model introduced by Hodgkin and Huxley [1952]. The rapid depolarization
and following repolarization arise from the model itself, but due to the detailed de-
scription using multiple differential equations is quite computationally expensive to
consider the dynamics of larger networks of such neurons. Another model, which
is also implemented with analog circuits on the BSS-2 chip, is the adaptive expo-
nential integrate-and-fire (AdEx) neuron [Brette and Gerstner 2005]. This model
describes well the depolarization of the membrane when exceeding a soft threshold,
but it needs to be force-reset when the depolarized membrane crosses a higher, hard
threshold. A simpler version of this model, which is used throughout this work, is
the LIF neuron model, described in the subsequent section. It represents the spiking
behaviour in a very simplified but efficient way, by artificially enforcing them when
a transition condition is met. Due to its simplicity, this mathematical description
of neurons is often used in modelling of large-scale networks.
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2.1 Computational Neuroscience

2.1.2 Leaky-Integrate and Fire Neuron Model

First introduced by Lapicque [1907] and later named the “leaky-integrate and fire”
model, the neuron model described here simplifies the complexity of biological neu-
rons but still describes key dynamics sufficiently well. This makes this model useful
in computational neuroscience in general and hence, also for research and applica-
tions of neuromorphic computing in simulations and on hardware [Bellec et al. 2020,
Cramer et al. 2022, Göltz et al. 2021].

The subthreshold dynamics of the membrane potential V can be described by the
first order ordinary differential equation (ODE)

Cm
dV

dt
= �gl (V � Vl) + Isyn, (2.1)

with the membrane capacitance Cm, leak conductance gl and leak reversal potential
Vl, towards which the membrane potential decays back over time. The synaptic
current Isyn accounts for any external currents arriving through synapses, and is
integrated over time onto the membrane. The time tpost of a post-synaptic spike is
defined by the threshold crossing condition V �(tpost)�Vth = 0. After spike-emission
the membrane potential is reset to

V +(tpost) = Vreset. (2.2)

Note the order of occurence, where first the threshold condition is fullfilled and
then, after spike emission, the transition to a reset is forced. To emphasize this,the
left-/right-hand limit V �/+(tpost) = limt!tpost�/+ V (t) is used.

The time-scale on which the membrane responds to its input can be described by
the membrane time constant

⌧m =
Cm

gl
. (2.3)

For a simpler notation, from here the membrane time constant ⌧m is used and
the membrane is considered with respect to the leak reversal potential by using
v = V � Vl. Then eq. (2.1) is rewritten as

dv

dt
= � 1

⌧m
v +

1

Cm
Isyn. (2.4)

The neuron model which is considered in this work uses current-based (CUBA)
synapses. For those, the synaptic input current of a neuron j can be written as

Isyn, j =
X

i

wji (✏ ? zi) , (2.5)

where the spikes zi of pre-synaptic neurons i are convolved with a synaptic kernel
✏ and weighted with wji. Spikes are considered as instantaneous events triggering
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2 Theoretical Background

a synaptic signal and can be described by �-distributions. The sequence of spikes
from a pre-synaptic neuron i is referred to as a spike train and given by

zi(t) =
X

s

� (t� tsi ) . (2.6)

The synaptic kernel ✏ is specific to the synapse and models the shape of the synaptic
input current. Depending on the degree to which the complexity of synaptic behavior
should be modeled, different kernels can be used. In this work, all experiments and
simulations are conducted using a single exponential kernel

✏(t) = ⇥(t) exp

✓
� t

⌧s

◆
, (2.7)

with the Heaviside function ⇥(t) and synaptic time constant ⌧s denoting the time
scale on which the synaptic current decreases. Examples for other kernels are simple
�-kernels, which have no temporal extent, or a more complex double-exponential
kernel, adding a second exponential with different time scale to take into account
the finite time it takes for the synaptic signal to arrive.

If the threshold condition and the subsequent triggering of spikes is omitted such
that the dynamics of the neuron can evolve freely, the resulting non-spiking neuron
model is referred to as a leaky integrator (LI).

2.2 Gradient Based Learning in Spiking Neural
Networks

Building networks of such neuron models and optimizing them is a challenging but
promising task. In comparison to classic ANNs, which disregard any temporal di-
mension, SNNs contain dynamic states evolving in time and furthermore, due to
their event-based inter-neuron communication, incorporate temporal sparsity by de-
sign. But exactly this event-based nature introduces disontinuities, which need to
be addressed when turning to gradient-based optimization. Based on descriptions in
[Billaudelle 2022] and [Goodfellow et al. 2016] I will give a brief overview of gradient
based learning on neural networks in general followed by a description on how this
is approached in networks consisting of (spiking) neurons, like the LIF neuron.

Gradient Descent Optimization

The aim of models considered in this work is to approximate a function �⇤, , e.g. in
classification tasks the mapping of an input x to a target y⇤. The model then can
be implemented as a function

y = �(x, ✓), (2.8)
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2.2 Gradient Based Learning in Spiking Neural Networks

where ✓ are parameters, for which the aim is to find a set of parameters resulting
in the best approximation of �⇤ by the network �. To evaluate how well the model
approximates the true mapping, a (differentiable) loss function

L (y,y⇤, ...) (2.9)

is defined, assigning a value to the networks output y depending on the target values
y⇤ and optionally other observabes. In gradient descent learning, the loss function
is intended to be minimized by descending along the slope of its parameter gradient
dL/d✓ with the impact of the parameter update defined by a scaling ⌘, referred to
as a learning rate. The simplest optimization step would be

✓ ! ✓ � ⌘
dL
d✓

. (2.10)

For non-convex problems, or loss landscapes respectively, this gradient descent might
potentially converge to a non-optimal local minimum. To improve convergence,
modifications are applied to this simple algorithm, e.g. starting by incorporating
a momentum to overcome saddle points leading to find potentially more optimal
minima.

Feed-Forward Networks

Typically, to accomodate the potentially arbitrary high complexity of nonlinear
descision boundaries in a task, networks are built in layers of nonlinear functions
�l with layer-specific parameters ✓l. In a feed-forward network with L layers, e.g.,
these functions are simply chained together

y = �L�1 � ... � �l � ... � �0(x). (2.11)

Assuming, that the functions �l implementing each layer are differentiable with re-
spect to their input and parameters, the gradient dL/d✓l can then be computed
using the chain rule, which is referred to as backpropagation. This chaining of gradi-
ents in layered networks addresses and solves the spatial credit assignment problem.

Recurrent and Time-Dependent Networks

In SNNs, additionally to the spatial aspect of layers, the temporal dimension of
current and membrane dynamics as well dependencies on spiking activity present
the challenge of the temporal credit assignment. At least in discrete implementa-
tions on SNNs, where the dynamics are solved step-wise, these dependencies can be
interpreted as recurrencies and solutions can be adopted from the treatment of re-
current neural networks (RNNs). There, the network is unrolled along its recurrent
(time) dimension and a two-dimensional computational graph arises, in which tem-
poral and spatial connections point only in one direction on their respective axes (cf.
fig. 2.2). Traversing the connections in reversed direction along the time dimension
then allows to assign temporal credit through backpropagation through time (BPTT)
[Werbos 1990].
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Figure 2.2: SNN with recurrent feedback through time- and state-dependent dy-
namics (depending on ⌧m and ⌧s) and reset (“rst”) and two-dimensional
graph of time-unrolled SNN. (a) The example considers the first two
LIF layers of a network and its spike input. The SNN can be inter-
preted as a RNN. (b) Time-discrete SNNs can be unrolled in time to
achieve a two-dimensional computational graph, allowing for propa-
gation of gradients also along the reversed time dimension and hence
assigning temporal credit. Figures adopted from [Billaudelle 2022].

Surrogate Gradients

As backpropagation can be applied onto time-unrolled SNNs, another issue surfaces
as soon as one arrives at the time of the forced reset of the membrane potential
V after spike emission. In case of the LIF neuron, the spiking neurons’ activation
function can be defined using a Heaviside function

S(V (t)) = ⇥ (V (t)� Vth) . (2.12)

The derivative of the activation function, though, is mostly zero, except at the
threshold crossing of the membrane, where it is technically defined as the Dirac delta
function �. To avoid this mostly zero derivative when deriving the weight updates
applying the chain rule, a surrogate gradient can be introduced [Neftci et al. 2019].
A typical choice, introduced by Zenke and Ganguli [2018], is to approximate the left
side of the Heaviside function by the left side of a fast sigmoid

�(V ) =
�(V � Vth)

1 + � |V � Vth|
+ 1. (2.13)
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2.3 Exact Gradients for Spiking Point Neurons

The factor � determines the steepness of the fast sigmoid. The derivative here is

�0(V ) =
1

(1 + � |V � Vth|)2
. (2.14)

When computing parameter gradients in layered networks, the derivative of the
activation function is replaced by its surrogate

... · @S
l

@V l
· ...! ... · �0(V l) · ... (2.15)

Using surrogate gradients has certainly many advantages, e.g. non-zero gradients
are available even in the absence of spikes, allowing to learn from an initially silent
network. Nevertheless, gradients here are only approximating the dependence of
post-synaptic activity on pre-synaptic spikes and weight. Hence, other approaches
emerged, deriving exact closed-form gradient equations or systems of equations, that
can be solved analytically of numerically to compute gradients in SNNs. Those other
approaches will be described in the following section.

2.3 Exact Gradients for Spiking Point Neurons
Approaches using surrogate gradients for backpropagation of errors often rely on
the dense representation of state variables, which, when using analog hardware,
e.g., requires sampling of membrane voltages with high enough frequency. As an
alternative the EventProp algorithm was proposed by Wunderlich and Pehle [2021],
which applies well-known concepts from optimal control theory [Galán et al. 1999]
and the study of hybrid dynamical systems to spiking neural networks. For the
considered system of LIF neurons, the algorithm provides equations for event-based
gradient estimation, only requiring observables of the state variables at spike times.
Nevertheless, the algorithm also allows for the choice to incorporate state variables
at times other than the spike times. Prior to the above-mentioned work, Göltz et al.
[2021] derived closed-form equations for gradients in networks of LIF neurons with
CUBA synapses based on first spike times for specific ratios of the synaptic and
membane time constants.

2.3.1 Adjoint Dynamics and Transitions

I will go through the derivation of the adjoint equations in a quite general way based
on [Pehle 2021, Ch. 3], which for parts of the derivation references [Galán et al. 1999,
Gronwall 1919, Rozenvasser 1967].

Consider a system whose state is described by x and the dynamics of this state,
given an initial state x0 at t = 0, are governed by the linear ODE

f (ẋ, x, p, t) = 0, (2.16)
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2 Theoretical Background

where t is the time and p is a set of parameters. Additionally a jump condition

j
�
ẋ�, x�, p, t

�
= 0 (2.17)

is introduced, which, when fulfilled, defines an event time tpostk , where k implies
that multiple such events can happen over the course of time. Given some intial
conditions x0, the system is evaluated over time according to f and if the state x of
the system fulfills this jump condition j, it undergoes a transition

g(ẋ+, x+, ẋ�, x�, p, t) = 0. (2.18)

The considered loss function consists of two functions lp (tpost) and lx (x(t), t) de-
pending on post-synaptic spike times tpost, the state variables x and time t. The
complete loss is

L = lp
�
tpost

�
+

Z T

0

lx (x(t), t) dt. (2.19)

The system dynamics are added to the loss function as constraints via Lagrange
multipliers �(t) and the parameter derivative is taken, leading to the calculations

dL
dp

=
d

dp


lp
�
tpost

�
+

Z T

0

[lx (x(t), p, t) + �f(ẋ, x, p, t)] dt

�
(2.20)

=
d

dp

"
lp
�
tpost

�
+

NpostX

k=0

Z tpostk+1

tpostk

[lx (x(t), p, t) + �f(ẋ, x, p, t)] dt

#
(2.21)

=

NpostX

k=0

"
@lp
@tpostk

dtpostk

dp
+ l�x,k+1

dtpostk+1

dp
� l+x,k

dtpostk

dp

+

Z tpostk+1

tpostk


@lx
@x

@x

@p
+

@lx
@p

+ �

✓
d

dt

@f

@ẋ

@x

@p
� @f

@x

@x

@p
� @f

@p

◆�
dt

#
,

(2.22)

where Npost spikes are considered and the additional times tpost0 = 0 and tpostNpost+1 = T
are introduced. With partial integration

Z tpostk+1

tpostk

�

✓
d

dt

@f

@ẋ

@x

@p

◆
dt = �

Z tpostk+1

tpostk

�̇
@f

@ẋ

@x

@p
dt+


�
@f

@ẋ

@x

@p

�tpostk+1

tpostk

, (2.23)

the loss gradient is rewritten to

dL
dp

=

NpostX

k=0

"Z tpostk+1

tpostk

✓
@lx
@x
� �̇

@f

@ẋ
� �

@f

@x

◆
@x

@p
+

@lx
@p
� �

@f

@p

�
dt

@lp
@tpostk

dtpostk

dp
+ l�x,k+1

dtpostk+1

dp
� l+x,k

dtpostk

dp
+


�
@f

@ẋ

@x

@p

�tpostk+1

tpostk

#
.

(2.24)
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2.3 Exact Gradients for Spiking Point Neurons

The dynamics of the Lagrange multipliers, or adjoint variables, are then chosen
to be such, that the integrand containing parameter sensitivities @x

@p in eq. (2.24)
vanishes. The time reversed derivative d

dt ! � d
dt is denoted by 0 and then the

adjoint differential equations are

�0@f

@ẋ
= �

@f

@x
� @lx

@x
. (2.25)

The initial conditions of x are assumed to be parameter independent and the bound-
ary conditions of the adjoint variables are chosen to �(T ) = 0. This causes the
evaluations of the last term in eq. (2.24) at times tpost0 = 0 and tpostNpost+1 = T to also
vanish. The loss gradient then reads

dL
dp

=

NpostX

k=0

Z tpostk+1

tpostk


@lx
@p
� �

@f

@p

�
dt+

NpostX

k=1

⇠k, (2.26)

⇠k =
@lp
@tpostk

dtpostk

dp
+
�
l�x,k � l+x,k

� dtpostk

dp
� �+@f

+

@ẋ

@x+

@p
+ ��@f

�

@ẋ

@x�

@p
. (2.27)

The parameter derivative dpj of the tranistion condition is used to relate the
paramater sensitivity dpt

post
k of the k-th spike time to the parameter sensitivity

@px� of the state before the jump

dpt
post
k = �

⇣
@x�j � @ẋ�j (@ẋf�)�1 @xf�

⌘
@px� + @ẋ�j@pf� + @pj

@x�jẋ� + @tj � @ẋ�j (@ẋf�)�1 (@xf�ẋ� + @tf�)
(2.28)

= A@px
� +B. (2.29)

The parameter derivative dpg of the jump is

0 = dpg =
⇣
@x+g � @ẋ+g

�
@ẋf

+
��1

@xf
+
⌘
@px

+

+
⇣
@x+gẋ+ � @ẋ+g

�
@ẋf

+
��1

@xf
+ẋ+

⌘
dpt

post
k

+
⇣
@x�g � @ẋ�g

�
@ẋf

���1
@xf

�
⌘ �

@px
� + ẋ�dpt

post
k

�

+
⇣
@tg � @ẋ+g

�
@ẋf

+
��1

@tf
+ � @ẋ�g

�
@ẋf

���1
@tf

�
⌘
dpt

post
k

� @ẋ+g
�
@ẋf

+
��1

@pf
+ � @ẋ�g

�
@ẋf

���1
@pf

� + @pg.

(2.30)

This, together with eq. (2.29), is then used to relate the sensitivities @px� before
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and @px+ after the jump

@px
+ = Â@px

� + B̂ (2.31)

with Â = D�1
⇣
CA+ @ẋ�g

�
@ẋf

���1
@xf

� + @x�g
⌘
, (2.32)

B̂ = D�1
⇣
CB + @ẋ+g

�
@ẋf

+
��1

@pf
+ + @ẋ�g

�
@ẋf

���1
@pf

� + @pg
⌘

(2.33)

C = �@ẋ+g
�
@ẋf

+
��1 �

@xf
+ẋ+ + @tf

+
�
+ @x+gẋ+

� @ẋ�g
�
@ẋf

���1 �
@xf

�ẋ� + @tf
��+ @x�gẋ� + @tg

(2.34)

D = @ẋ+g
�
@ẋf

+
��1

@xf
+ � @x+g (2.35)

Equations (2.29) and (2.31) are now used to replace the corresponding terms in
eq. (2.27), resulting in the gradient contribution

⇠k =
⇣
@tpostk

lp + l�x,k � l+x,k

⌘
B � �+@ẋf

+B̂

+
h⇣

@tpostk
lp + l�x,k � l+x,k

⌘
A� �+@ẋf

+Â+ ��@ẋf
�
i
@px

�.
(2.36)

In order for the parameter gradient of the loss to be independent of the parameter
sensitivity of the system state, the adjoint variables are demanded to undergo the
transition

�� =
⇣
�+@ẋf

+Â�
⇣
@tpostk

lp + l�x,k � l+x,k

⌘
A
⌘ �

@ẋf
���1

, (2.37)

and the gradient contribution therefore simplifies further to

⇠k =
⇣
@tpostk

lp + l�x,k � l+x,k

⌘
B � �+@ẋf

+B̂. (2.38)

2.3.2 EventProp

The EventProp algorithm, as first presented by Wunderlich and Pehle [2021], con-
siders LIF neurons with CUBA, single-exponential synapses. Instead of explicitly
giving an expression for the synaptic currents, one can consider the additional dif-
ferential equation

dI

dt
= � 1

⌧s
I, (2.39)

where I = 1
gl
Isyn for easier readability. Considering a network of N neurons, the

state variables are x> = (v0, I0, ..., vN�1, IN�1) and the equatios 2.4 and 2.39 can be
combined into a system of 2N linear differential equations

f(ẋ, x, p) =

✓
1N ⌦


⌧m 0
0 ⌧s

�◆
ẋ�

✓
1N ⌦


�1 1
0 �1

�◆
x = 0, (2.40)
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where the Kronecker product ⌦ is used. If the membrane potential vn of neuron n
reaches the threshold # = Vreset � Vl, expressed in the transition condition

j(x�, p) =
�
e>n ⌦ [1, 0]

�
x� � # = 0, (2.41)

the the state variables are subject to jumps given by

g(x+, x�, p) = x+ �
�
12N � P>

n TPn

�
x� � pn = 0, (2.42)

with Pn = e>n ⌦ 12, T =


1 0
0 0

�
, pn = (Wen)⌦


0
1

�
+ en ⌦


Vreset � Vl

0

�
,

(2.43)

where en denotes the N -dimensional, n-th Cartesian unit vector. Note that the
transformation (2.42) consist of a simple linear transformation and a translation.

The adjoint dynamical system with variables � = (�v,0,�I,0, ...,�v,N�1,�I,N�1) is
given by inserting eq. (2.40) into eq. (2.25) and reads

�0@ẋf = �@xf � @xlx. (2.44)

The dynamics in between the times of jumps only couple membrane v and current
I of individual neurons, and therefore, the adjoint dynamics behave equivalently.
Then, for a single neuron with adjoints �v and �I given a loss lV depending on the
membrane trace, but not the current, the dynamics are

⌧m�
0
v = ��v � @vlV , (2.45)

⌧s�
0
I = ��I + �v. (2.46)

The loss with respect to a synaptic weight wji can be obtained from eq. (2.26)
using the contributions at spike times in eq. (2.38). Considering the dependencies of
dynamics f(ẋ, x, p), transition condition j(x�, p), and jump g(x+, x�, p), the weight
gradient then is

dL
dwji

=

NpostX

k=1

�+@ẋf
+@wjig (2.47)

= �⌧s
X

spikes from i

�+
I, j (2.48)

From eq. (2.37) the jumps in the adjoint variables to

�� = �+@ẋf
+

✓�
ẋ+ + @x�gẋ�� @x�j

@x�jẋ� � @x�g

◆�
@ẋf

���1

+
⇣
@tpostk

lp + l�x,k � l+x,k

⌘ @x�j

@x�jẋ�

�
@ẋf

���1
.

(2.49)
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ttpre0 tpre1

tpost0 tpost1

x

I

V

�v

�I

Figure 2.3: Forward and adjoint (backward) dynamics of a LIF neuron receiving
two input spikes at tpre1 and tpre2 . The membrane potential experiences
two jumps, giving the post-synaptic spike times tpost1 and tpost2 . In
the computation of the adjoint dynamics, which happens backwards
in time, the adjoint variable �v experiences jumps at the two post-
synaptic spike times. The gradient contributions are then computed
by sampling the adjoint state �I at the respective pre-synaptic spike
times, indicated by dashed circles.

Looking at eq. (2.41), the term @x�j is a 2N -sized row-vector with almost all entries
being 0 except for the 2n(k)-th entry, where n(k) is the index of the neuron that
emitted the spike at tpostk . Also, the term @x�g is a diagonal matrix with �1 in all
diagonal entries except for the 2n(k)-th, where it is 0. With those two considerations,
it’s then quite clear that only the n-th neuron’s adjoint variable �v,n regarding its
membrane undergoes a jumps. All other adjoint variables stay the same, which one
can write as

��
I,n(k) = �+

I,n(k), (2.50)

8m 6= n(k) : ��
v,m = �+

v,m, �
�
I,m = �+

I,m. (2.51)
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The jump in �v,n(k) is given by

��
v,n =

⇣�
�+@ẋf

+
�
ẋ+ + @x�gẋ���

n
+
⇣
@tpostk

lp + l�x,k � l+x,k

⌘⌘

n

1

⌧m(v̇�)n
(2.52)

=
(v̇+)n
(v̇�)n

�+
v,n +

1

⌧m(v̇�)n

 
N�1X

m=0

�
�+
v,m � �+

I,m

�
wmn + @tpostk

lp + l�x,k � l+x,k

!
.

(2.53)

This set of equations allows to compute exact weight gradients (cf. eq. (2.48))
in SNNs of LIF neurons by solving the adjoint dynamics in eqs. (2.45) and (2.46)
while considering the jumps in eq. (2.53). Using the same approach, similar sets
of equations could be derived for gradients with respect to time constants or other
neuron parameters.

2.3.3 Closed-Form Equations in Special Cases

The work of Göltz et al. [2021] considers the cases of ⌧m !1, ⌧m = ⌧s and ⌧m = 2⌧s
and they derive explicit gradient expressions by studying the membrane of a single
LIF neuron and its jump condition. The derived gradient expressions and application
of those onto learning with SNNs will be referred to as “Fast And Deep” (or “F&D”
in short) throughout this thesis.

In all cases, the input current

I(t) =
X

i

wi exp

✓
�t� ti

⌧s

◆
(2.54)

is considered, where the spike times ti are treated independent of their source neuron
and have an associated weight wi. In the mentioned special cases, the first spike
time of a neuron can be derived explicitely and from there, gradients with respect
to weights and pre-synaptic spike times can be calculated.

Learning rule for ⌧m = ⌧s

The membrane voltage in this case follows

v(t) =
1

⌧s

X

i

wi⇥ (t� ti) (t� ti) exp

✓
�t� ti

⌧s

◆
, (2.55)

and the post-synaptic spike time tpost is defined through the jump condition
v(tpost) = #. Solving this jump condition for tpost yields

tpost =
⌧sb

a1
� ⌧sW

✓
� #

a1
exp

✓
b

a1

◆◆
, (2.56)
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with the Lambert W function W , evaluated on its branch W(x) > �1, and the
expressions

an :=
X

k2C

wk exp

✓
tk
n⌧s

◆
, (2.57)

b :=
X

k2C

wk
tk
⌧s

exp

✓
tk
⌧s

◆
, (2.58)

where C = {k|tk < tpost} is the set of causal pre-synaptic spikes. Introducing the
variable z := � #

a1
exp

⇣
b
a1

⌘
to abbreviate the argument of the Lambert W function,

the gradients of the first spike time are
@tpost

@wi
= � 1

a1

tpost � ti
W(z) + 1

exp

✓
ti
⌧s

◆
, (2.59)

@tpost

@ti
= � wi

⌧sa1

tpost � ti � ⌧s
W(z) + 1

exp

✓
ti
⌧s

◆
. (2.60)

Learning rule for ⌧m = 2⌧s

The membrane voltage in this case is

v(t) =
X

i

wi⇥ (t� ti) (t� ti) , (2.61)

(t) = exp

✓
� t

2⌧s

◆
� exp

✓
� t

⌧s

◆
. (2.62)

Solving the jump condition for tpost and utilizing a1 and a2 as defined in eq. (2.57),
along with x :=

p
a22 � 4#a1, gives

tpost = 2⌧s ln

✓
2a1

a2 + x

◆
. (2.63)

The gradients then become
@tpost

@wi
=

2⌧s
a1


1 +

#

x
exp

✓
tpost

2⌧s

◆�
exp

✓
ti
⌧s

◆
� 2⌧s

x
exp

✓
ti
2⌧s

◆
, (2.64)

@tpost

@ti
=

2wi

a1


1 +

#

x
exp

✓
tpost

2⌧s

◆�
exp

✓
ti
⌧s

◆
� wi

x
exp

✓
ti
2⌧s

◆
. (2.65)

The gradients in eqs. (2.59), (2.60), (2.64) and (2.65) can be used to compute
errors in layered networks. Since gradient expressions are available for weights and
pre-synaptic spike times, the error information can be backpropagated in a layer-
wise fashion by applying the chain rule. They also succesfully apply this gradient
estimation using analytical expressions to hardware ITL training on the BSS-2 plat-
form (cf. section 2.4). The only constraint here, is that neurons in hidden layers
can spike only once, since gradients are not derived for later spike times. But as the
authors in Göltz et al. [2021] mention, and as was recently published by Bacho and
Chu [2022], the approach can be extended to neurons emitting multiple spikes.
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2.4 BrainScaleS-2

The BSS-2 system is a mixed-signal neuromorphic accelerator for SNNs [Pehle et al.
2022]. The BSS-2 application-specific integrated circuit (ASIC) (full chip specifier:
HICANN-DLS-SR-HX v3), has an analog network core to emulate the dynamics of
neurons and synapses in continuous time and surrounding digital circuitry commu-
nicating and handling spike events and configuration data. The neuron and synapse
circuits in the system allow for modeling inspired by neuroscience. Through field-
programmable gate arrays (FPGAs), a host computer can control and configure the
system and execute experiments. A set of specially designed hardware abstraction
layers allows the user to describe experiments in software at a high level and elim-
inate the need to manually write low-level instructions for host-chip and on-chip
communication. Extensions have also been developed for common frameworks like
PyNN [Davison et al. 2009] and PyTorch [Paszke et al. 2019], which allow non-
expert users to use the chip more easily. This chapter delves into the architecture of
the BSS-2 system, the capabilities of the ASIC, and the various software tools and
frameworks developed to facilitate experimentation with the analog neuromorphic
substrate.

2.4.1 System Setup

The BSS-2 chip, depicted in fig. 2.4, comprises 512 neuron and 131.072 synapse cir-
cuits split into two hemispheres. The substrate allows physical emulation of neuron
dynamics with an approximately 1000-fold acceleration compared to the biological
time domain. All spike events, either external or ones generated by neuron cir-
cuits during emulation are handled digitally by the event handling block. They are
collected and can be sent off the chip via the FPGA to the host, recording those
spike observables, or routed to post-synaptic neuron circuits on the chip via synapse
drivers. Additionally to the spike events, membrane voltages of neurons can be ac-
cessed and measured parallely by columnar analog-to-digital converters (CADCs).

The synapses are divided into four quadrants, and two of these quadrants are
present in each hemisphere. Each quadrant contains a synapse array, made up of 256
rows and 128 columns. The synaptic weights are represented by 6 bit values stored in
static random-access memory and modulate the height of the pulse signal triggered
by an event transmitted along a synapse to a neuron. BSS-2 features both current-
based (CUBA) and conductance-based (COBA) synapses. The synapse driver in
BSS-2 is organized such that all connections along a synapse row have the same
effect on the neurons’ membranes, either excitatory or inhibitory. Other important
data sources are the correlation sensors, measuring the correlation between pre-
and post-synaptic spikes, the spike counters, and the membrane analog-to-digital
converter, allowing to sample the membrane of a single neuron with high resolution.

The neuron circuits on BSS-2 implement the AdEx neuron model [Brette and
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Figure 2.4: Left: Close-up image of BSS-2 chip bonded to its carrier board. Im-
age taken from [Müller et al. 2022]. Right: Schematics of signal flow
on BSS-2. The schematic of a single hemisphere outlines the analog
network core and the single instruction, multiple data processor. The
real chip has two hemispheres with 256 neurons each, mirrored verti-
cally along the neurons. Spike events are processed and routed on-chip
posing as input to post-synaptic neuron circuits or sent off-chip via
the FPGA to the host for recording. Figure taken from [Müller et al.
2022].

Gerstner 2005]

CmV̇ = �gl (V � Vl) + gl�T exp

✓
V � VT

�T

◆
� w + I, (2.66)

⌧wẇ = a (V � Vl)� w. (2.67)

Other than the LIF neuron model (cf. eq. (2.1)), this model additionally includes
an exponential feedback term and an adaptation term. The exponential feedback
is defined by its slope �T, and soft threshold VT and mimics the depolarization in
the neuron’s action potential. The adaptation term w acts as an additional current
flowing off the membrane V and has its own dynamic, allowing the neuron to adapt
to afferent activations and its own activity. The adaptation dynamics are defined
by the decay time constant ⌧w and the adaptation strength a.

Parameters stored in the analog parameter storage allow custom control over the
conductances and potentials in each neuron circuit. Therefore, those parameters can
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�w

forward

backward

input spikes recorded data

Figure 2.5: Illustration of in-the-loop
(ITL) training with BSS-2. Forward
execution happens on BSS-2 and a
host computer models the dynam-
ics to build a computational graph.
The hardware observables are used to
compute gradients in the model and
update hardware weights accordingly.
Figure adapted from [Cramer et al.
2022].

be calibrated so that each neuron’s membrane dynamic on the BSS-2 chip shows
the desired behavior. To model the LIF neuron, the exponential term and adapta-
tion current (cf. eq. (2.66)) can be switched off. A comparator detecting threshold
crossings of the membrane triggers spike emissions. Switching off this comparator
allows the emulation of non-spiking neurons.

2.4.2 Software Framework

The software stack of the BSS-2 ecosystem allows users to describe experiments in
a high-level fashion and translates them to an equivalent experiment configuration
to be executed on the BSS-2 hardware. This translation is done by converting the
high-level description to a signal-flow graph description and applying a place-and-
route algorithm to convert the graph to a valid hardware configuration. This allows
users without expert knowledge to execute experiments on the hardware substrate,
provide input stimuli and record back observables [Müller et al. 2022].

To calibrate the dynamics on hardware to a set of model parameters defined by
a user, the calibration library calix is provided. This library allows the user to
inject a set of target parameters (e.g., for neuron time constants, leak, reset, and
threshold potentials) and returns a calibration data set, which provides operation
point settings for each circuit.

To facilitate the modeling of SNNs on BSS-2 the hxtorch.snn software library
[Spilger et al. 2022] was designed with a frontend built upon the PyTorch framework.
hxtorch.snn enables users to describe a SNN model using custom modules for
synapse and neuron layers corresponding to hardware entities. The library structure
utilizes PyTorch’s model construction interface while separating the construction
from its execution on the hardware. This allows to build the computational graph,
enabling to backpropagate errors and hence optimizing networks of SNNs, but it
uses the hardware observables by forward execution on BSS-2 (cf. fig. 2.5).

This separation is achieved by providing an instance into which each module
invocation is registered. If executing on hardware, invocations of modules’ forward
calls are done on a promise handle, which is filled with the corresponding data after
hardware execution. The library also allows evaluating models in software, for which
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handles are directly filled with corresponding data and invocations operate on the
data directly. Building a layered network and execution can be done according to
the following exemplary structure:
1 instance = hxtorch.snn.Instance ()

2

3 synapse_ih = hxtorch.snn.Synapse(n_h , n_i , instance , ...)

4 neuron_h = hxtorch.snn.Neuron(n_h , instance , ...)

5 synapse_ho = hxtorch.snn.Synapse(n_o , n_h , instance , ...)

6 neuron_o = hxtorch.snn.ReadoutNeuron(n_o , instance , ...)

7

8 input_handle = hxtorch.snn.NeuronHandle(input)

9

10 sh0 = synapse_ih(input_handle)

11 nh0 = neuron_h(h1)

12 sh1 = synapse_ho(h2)

13 nh1 = neuron_o(h3)

14

15 hxtorch.snn.run(instance , ...)

After the hxtorch.snn.run() call, when using the BSS-2 chip for forward execution,
the NeuronHandles nh0 and nh1 are filled with the hardware observables, which for
spiking neurons are the spikes and if enabled the CADC membrane measurements,
for non-spiking neurons only the latter. The SynapseHandles sh0 and sh1 are filled
with the multiplication result of the weights and the input spikes, or observed spikes
respectively.

Gradient-based optimization on the parameters is enabled by equipping the mod-
ules with PyTorch-differentiable functions [Paszke et al. 2017] that are either pro-
vided directly as an pytorch.autograd.Function or through a function that defines
a simulated forward pass implicitly containing the backward pass. The built-in func-
tions have an additional function argument through which hardware observables, if
provided, are handled, allowing for seamless backpropagation of gradients based
on those hardware observations. Additionally, users can provide custom functions
implementing individual handling of hardware observables and associated gradient
estimation algorithms.

At the time of the experiments conducted in this thesis, the hxtorch.snn library
supported LIF (hxtorch.snn.Neuron) and LI (hxtorch.snn.ReadoutNeuron) neu-
ron layers. Additionally, hxtorch.snn includes a dropout module that applies a
batch-wise spiking mask to a preceding neuron layer, disabling the spike output
on hardware accordingly. This provides a typical machine learning functionality to
users.

Remark on Module and API Changes

Due to the hxtorch.snn library being just recently developed, active work is still
being conducted on it, and additional functionalities are planned to be incorporated
successively. Therefore, the application programming interface (API) and underly-
ing software might be subject to modification, and even in the time between record-
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2.4 BrainScaleS-2

ing the experiments for this thesis and writing it, the library has undergone some
changes. The software state used for experiments conducted for this thesis is listed
in appendix F.
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3 Extensions on EventProp

The adjoint sensitivity analysis, as described in section 2.3, is quite general in its
form and can be applied to numerous systems with discontinuous jumps, especially
to neuron models. In the case of the EventProp algorithm the adjoint formalism was
used to derive an exact gradient estimation method for the LIF neuron model (cf.
section 2.3.2). In this chapter, I use the same reasoning to derive the equations of
the adjoint dynamical system, its jumps and the weight gradients in the case of the
LIF neuron model including a refractory period. The aim here is to show how the
adjoint formalism can be applied to other systems and derive parameter gradients.

I will also go through the derivation of explicit expressions for weight gradients of
the first spike time of a LIF neuron by solving the ODEs in EventProp and show that
those results are equal to the expressions derived by Göltz et al. [2021]. This is to
show the similarity of the methods, even though they are derived in different ways,
and to justify why I use the analytical expressions later to check my implementation
of the EventProp algorithm.

3.1 Refractory Leaky-Integrate and Fire Neuron
The refractory LIF model extends the LIF model considered in EventProp by in-
cluding a refractory period during which the neuron cannot fire again, even if the
incoming current exceeds the threshold. This models the period of time during
which a biological neuron is unresponsive to incoming stimuli after firing an action
potential and thus incorporates this important, biological property. By deriving the
adjoint equations for a system of refractory LIF neurons, I complement the work
of Wunderlich and Pehle [2021] by applying the methods used therein, described in
section 2.3 of this thesis.

The dynamics of a single refractory LIF neuron n can be described by
2

4
⌧mv̇n
⌧sİn
⌧rżn

3

5 =

2

4
�⇥(�zn) ⇥(�zn) 0

0 �1 0
0 0 0

3

5

2

4
vn
In
zn

3

5+

2

4
0
0
�1

3

5 (3.1)

Compared to eq. (2.40) the additional variable z(t) is introduced to measure the
refractory period of a neuron. In this model, after a neuron spikes, its membrane
stays constant at the reset potential over the refractory time period ⌧r. After this
period, the membrane follows the usual dynamics again and therefore only then is
able to cross the threshold and spike again.

I consider a system of N neurons with state x = (v0, I0, z0, ..., vN�1, IN�1, zN�1).
The differential equation describing the dynamics of the complete system can be
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3 Extensions on EventProp

written as

f(ẋ, x, p, t) = M1ẋ+M2(z)x+ br, (3.2)

with M1 = 1N ⌦

2

4
⌧m 0 0
0 ⌧s 0
0 0 ⌧r

3

5 , (3.3)

M2(z) =
N�1X

n=0

P>
n

2

4
�⇥(�zn) ⇥(�zn) 0

0 �1 0
0 0 0

3

5Pn, (3.4)

br =
N�1X

n=0

en ⌦

2

4
0
0
�1

3

5 (3.5)

where I use z = (z0, ..., zN�1) to refer to only the refractory state variables. The
jump condition for the neuron model I consider here is

j(x�, p) =
�
e>n ⌦ [1, 0, 0]

�
x� � # = 0, (3.6)

with the threshold # = Vth � Vl for the relative membrane voltage v(t) = V (t)� Vl.
If a neuron n fulfills the transition condition j, the state variables jump according
to

g(x+, x�, p) = x+ �
�
12N � P>

n TPn

�
x� � pn = 0, (3.7)

with Pn = e>n ⌦ 13, T =

2

4
1 0 0
0 0 0
0 0 1

3

5 , pn = (Wen)⌦

2

4
0
1
0

3

5+ en ⌦

2

4
Vreset � Vl

0
1

3

5 .

(3.8)

The dynamics of the adjoint dynamics of a single refractory LIF neuron follow
from eq. (2.25) and are

⌧m�
0
v = ��v⇥(�z), (3.9)

⌧s�
0
I = �v⇥(�z)� �I , (3.10)

⌧r�
0
z = � (�v + I)�v�(�z), (3.11)

where the Dirac delta distribution ��(�z) arises by taking the derivative of the
Heaviside step function ⇥(�z).

The weight gradient of the loss is the same as in eq. (2.48),

dL
dwji

= �⌧s
X

spikes from i

�+
I,j. (3.12)

The jumps in the adjoint variables are quite similar to the ones in section 2.3.2 and
the derivation follows the same pattern. Due to the same dependencies of dynamics
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3.1 Refractory Leaky-Integrate and Fire Neuron

f , transition condition j and jumps g, the general form is the same as in eq. (2.49).
But the term @x�g here is a diagonal matrix with �1 in all diagonal corresponding
to the membrane vn(k) and refractory state zn(k) of the n-th neuron, where it is zero.
Hence, all adjoint variables except for �v,n(k) and �z,n(k) stay the same

��
I,n(k) = �+

I,n(k), (3.13)

8m 6= n(k) : ��
v,m = �+

v,m, �
�
I,m = �+

I,m,�
�
z,m = �+

z,m. (3.14)

The adjoint of the refractory state is simply reset to 0 at the spike time tpostk

��
z,n = 0. (3.15)

To derive the jump of �v,n, I apply the same steps as in eqs. (2.52) and (2.53). This
then results in

��
v,n =

1

⌧m(v̇�)n

 
N�1X

m=0

�
�+
v,m⇥(�z+m)� �+

I,m

�
wmn � �+

z,n + @tpostk
lp + l�x,k � l+x,k

!
.

(3.16)

The forward and adjoint dynamics of a refractory LIF neuron are illustrated in
fig. 3.1. In the forward direction, the refractory state z holds the membrane at a reset
value until the refractory period ends. As can be seen from eqs. (3.11) and (3.16),
the adjoint of the refratory state �z stores the value v� I, which equals �⌧mv̇, after
the end of the refractory period and enters into �v at the spike time. This is also
visible in the illustration of the adjoint traces in fig. 3.1.

In the limit ⌧r ! 0, the refractory LIF converges against and ultimately becomes
the non-refractory LIF neuron model. Therefore, the adjoint equations and gradients
contributions should also become similar. This can easily be shown by taking this
limit for the refratory adjoint state, leading to

lim
⌧r!0

�z(t
post + ⌧r) = �⌧m lim

⌧r!0
v̇(tpost � ⌧r) = �⌧m lim

t!tpost+
v̇(t) = �⌧mv̇+. (3.17)

Injecting this into eq. (3.16) the adjoint of the refractory state can be dropped
and the jumps become similar to the ones in EventProp in eq. (2.53), making the
methods similar in the limit ⌧r ! 0.

Although the extension here is relatively modest, since the equations describing
the refractory LIF neuron are not too different from the non-refractory LIF neuron,
the steps taken and the equations derived show that the adjoint formalism can be
applied to neuron models other than a purely linear system of ODEs.
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t
tpre0 tpre1 tpre2 tpre3

tpost0 tpost1 tpost2

x

I

V

z

�v

�I

�z

Figure 3.1: Forward and adjoint (backward) dynamics of a refractory LIF neuron
receiving four input spikes. The neuron emits three spikes, after which
its membrane voltage is refractory for a certain time period. This re-
fractory period enters also into the dynamics and jumps of the adjoint
variables. The adjoint variable �z of the refratory state effectively
stores information during this period and enters into �v at the spike
time, cf. eqs. (3.11) and (3.16). Similar to the non-refractory LIF neu-
ron, the gradient contributions are computed by sampling the adjoint
state �I at pre-synaptic spike times.
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3.2 Explicit Gradient Expressions From EventProp

3.2 Explicit Gradient Expressions From EventProp
As was described in section 2.3.3, for special cases explicit expressions can be cal-
culated for the first spike time of a neuron and its derivatives with respect to pre-
synaptic spike times or the associated synaptic weights. When considering the same
starting point of a single neuron receiving pre-synaptic spikes at times ti with weights
wi, the gradient of the first post-synaptic spike time with respect to the weight can
also be calculated explicitely without restricting the choice of time constants.

Here, I derive the explicit expression of the weight gradient from integrating the
adjoint dynamics and explicitely injecting the jumps of the adjoint variables. I also
show that the result equals the expressions derived by Göltz et al. [2021] for the
cases where ⌧m = ⌧s and ⌧m = 2⌧s.

General Weight Gradient

I consider a neuron emitting only a single spike at tpost, and since the gradient
@wit

post is desired, choose L = lp = tpost (cf. eq. (2.19)). The jump in the adjoint
variable �v at the post-synaptic spike time, given in eq. (2.53), then simply becomes

��
v

�
tpost

�
=

1

⌧mv̇� (tpost)
, (3.18)

where the exponent “�” denotes the left-hand limit. Injecting this into the dynamics
eqs. (2.45) and (2.46), gives

�v(t) =
1

⌧mv̇� (tpost)
exp

✓
�tpost � t

⌧m

◆
. (3.19)

�I(t) =
1

⌧mv̇� (tpost)

⌧m
⌧m � ⌧s


exp

✓
�tpost � t

⌧m

◆
� exp

✓
�tpost � t

⌧s

◆�
, (3.20)

=
1

v̇� (tpost)

1

⌧m � ⌧s

�
tpost � t

�
, (3.21)

where (t) := exp(�t/⌧m)�exp(�t/⌧s) from eq. (2.62) is used. Using the expression
of the membrane voltage v(t) in eq. (2.61) and the definition of the set of causal
pre-synaptic spikes C = {k | tk < tpost}, the term v̇� (tpost) can be written as

v̇�
�
tpost

�
=

⌧s
⌧m � ⌧s

X

k2C

wk


� 1

⌧m
exp

✓
�tpost � tk

⌧m

◆
+

1

⌧s
exp

✓
�tpost � tk

⌧s

◆�

(3.22)

=
⌧s

⌧m � ⌧s

X

k2C

wk̇
�
tpost � tk

�
. (3.23)

Equation (3.21) can then be rewritten to depend only on the causal pre-synaptic
spike times ti and their associated weights wi, the post-synaptic spike time tpost, the
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time constants ⌧m and ⌧s and used to compute the gradient of tpost from eq. (2.48),
ultimately resulting in

dtpost

dwi
= �⌧s�I (ti) (3.24)

= �⌧s


1

⌧m � ⌧s

�
tpost � ti

��
"

⌧s
⌧m � ⌧s

X

k2C

wk̇
�
tpost � tk

�
#�1

. (3.25)

Following, I will show that this gradient is equal to the gradients in “Fast And
Deep” in the cases ⌧m = 2⌧s and ⌧m = ⌧s.

Weight Gradient for ⌧m = 2⌧s

To show that eq. (3.25) and eq. (2.64) are equal, I insert the constraint ⌧m = 2⌧s
into the former equation and separate into terms proportional to exp (ti/⌧s) and
exp (ti/(2⌧s)). To The calculations are
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= �
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= A1 exp

✓
� ti
⌧s

◆
+ A2 exp

✓
� ti
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, (3.28)

with A1 = 2⌧s
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A2 = �2⌧s

2 exp

✓
�tpost

2⌧s

◆
a1 � a2

��1

= �2⌧s
x
. (3.30)

Th factors in front of the exponentials with ti from eq. (2.64) can now be compared
to A1 and A2 and shown that they are equal. For A2 this can directly be seen,
while for A1 and the factor in front of exp (ti/⌧s) the steps to show equality, using
eqs. (2.57) and (2.63), are

2⌧s
a1


1 +

#

x
exp

✓
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2⌧s

◆�
(3.31)

=
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x+ # exp

✓
tpost

2⌧s

◆�
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The weight gradient in eq. (3.25) for the case of ⌧m = 2⌧s therefore equals the
expression in eq. (2.64) of “Fast And Deep”.

Weight Gradient for ⌧m = ⌧s

In the case of equal time constants, the limit ⌧m ! ⌧s has to be taken in the gradient
in eq. (3.25). This can be done for the terms with  and ̇ seperately, which are

lim
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⌧m � ⌧s
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The gradient of the spike time can be rewritten and exponential terms with ti (or tk
inside the sum) can be separated from exponentials with tpost to be able to use the
definitions of a1 and b as in eqs. (2.57) and (2.58). Using eq. (2.56) to relate spike
time tpost and the Lambert W function W (z) will ultimately show that the gradient
here is the same as in eq. (2.59). The calculations are
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= �⌧s


tpost � ti

⌧ 2s
exp

✓
�tpost

⌧s

◆
exp

✓
ti
⌧s

◆�

⇥
"
X

k2C

wk
1

⌧s

✓
1� tpost

⌧s
+

tk
⌧s

◆
exp

✓
�tpost

⌧s

◆
exp

✓
� ti
⌧s

◆#�1 (3.39)
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= �
�
tpost � ti

�
exp

✓
ti
⌧s

◆�
[a1 (1 +W(z))]�1 . (3.41)

Equation (3.41), the explicit weight gradient derived starting from EventProp, is
the same as the expression for equal time constants ⌧m = ⌧s in eq. (2.59) from “Fast
And Deep”.
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The calculations above demonstrate that an explicit expression for the weight gra-
dient can be obtained from the EventProp formalism [Wunderlich and Pehle 2021],
matching the expressions derived by Göltz et al. [2021] for the special cases con-
sidered there. This result is, of course, expected since both algorithms analytically
derive gradients for the same system, only that EventProp provides a system of
equations that still needs to be solved. Nevertheless, this shows that starting from
EventProp, explicit gradients can be formulated, which only depend on pre- and
post-synaptic spike times, weights, and time constants, while not needing to restrict
the choice of those time constants. The same can be expected for gradients con-
cerning pre-synaptic spike times since the method described in section 2.3 allows
the derivation of an analogous system of equations from which explicit expressions
can also be determined.
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The experiments in this thesis were done using hxtorch.snn [Spilger et al. 2022]
and the BSS-2 ASIC. The hxtorch.snn library allows to evaluate a network of neu-
rons either completely by simulating it in software or by emulating it on the ASIC.
For experiments optimizing on or computing gradients with respect to spike times,
I contributed a spike time decoder function to the hxtorch.snn software stack, to
enable using this across experiments and beyond the scope of this work. I also added
two methods that aim to align observables and parameters in simulation with execu-
tion on BSS-2, specifically a software to hardware weight conversion and a method
to measure time domain misalignment between spike and membrane measurements.

4.1 Spike Time Decoder
A key advantage of the EventProp algorithm compared to the way surrogate gradient
approaches are commonly used is the possibility to train networks in a purely spike-
based manner without recording membrane traces. To include spike time into the
loss calculations, like the loss term lp in eq. (2.19) allows, the spike times need to
be extracted from the binary tensors holding spikes as 1s and otherwise 0s. To then
optimize on such losses, the backpropagation of gradients through this conversion
needs to be defined in some sensible way. Figure 4.1 shows an overview of the
decoder’s functionality and how it handles the backpropagation of gradients. I
will describe the implementation below and show experiments using this decoder in
section 5.2.

To illustrate the functionality of the spike-time decoder, consider an experiment
with NT time steps size �t. The time-dependent variables and observables are
then given on or mapped to a discrete time grid of length NT and the total time
of the experiment is T = NT�t. The output of a simulated SNN or hardware
measurements from BSS-2 mapped to this discrete time grid is a binary spike tensor
holding 1s at the index corresponding to the time at which this spike occurred. I
implemented the decoder such that it converts this tensor z to a tensor t holding
the spike times, i.e. the index of the spike along the time dimension times �t. An
example spike train and the output of the decoder would then be

Forward: z = (0, 0, 1
z0
, 0, 0, 1

z1
, 0) ! t = (t0, t1) = (2�t, 5�t) . (4.1)

In most tasks there are multiple output neurons Nn which might emit different
numbers of spikes each. Spike-time-based classification strategies either rely on the
timing of only the first spike, cf. [Mostafa 2017, Göltz et al. 2021], or the first K
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tpost
L = lp (tpost)

Forward

[[0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 1, 0, 0]]

[[3�t,+1],
[1�t, 4�t]]

Backward
[[0, 0, 0,� @l

@t0,0
, 0, 0, 0],

[0,� @l
@t1,0

, 0, 0,� @l
@t1,1

, 0, 0]]

[[ @l
@t0,0

, 0],

[ @l
@t1,0

, @l
@t1,1

]]

zin zout

Figure 4.1: Illustration of spike time decoder with exemplary forward and back-
ward translation. The binary spike tensor zout is converted into float-
ing point spike times tpost. The custom PyTorch autograd function
enables backpropagation of gradients into the network for loss func-
tions depending on spike times. The decoder is exemplified using a
time grid of size NT = 7 with time step width �t and Nn = 2 output
neurons. The returned tensor is padded with +1 for neurons emit-
ting less spikes than others. The backward pass injects gradients with
respect to spike times, where tn,k marks the k-th spike time of neuron
n, at their initial positions in the binary spike tensors.

spikes. Therefore, the decoder allows for the specification of the desired number K
of spikes to retrieve. If a neuron spikes less often than K-times, the spike times are
written in ascending order and the remaining entries are filled with floating point
+1.

The desired scheme to backpropagate gradients of a loss lp with respect to the
spike times tk, retrieved according to eq. (4.1), is to inject those gradients @tk lp at
the place of the corresponding spikes zk. The propagation of gradients then follows

Backward: @tlp = (@t0lp, @t1lp) ! @zlp = (0, 0,�@t0lp, 0, 0,�@t1lp, 0)
(4.2)

The negative sign is necessary to obtain the correct gradients, as is later demon-
strated for the novel EventProp implementation and the already available surrogate
gradient implementation (cf. fig. C.1). A related description of this was also outlined
by Billaudelle [2022].

I implemented the backpropagation of gradients in the case of multiple spikes such
that gradients propagate only for finite times and only for spike entries of z decoded
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t

V sw
l

V sw
th

Software

t

V hw
l

V hw
th

Hardware

1

2

t

V sw
l

V sw
th

t

V
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�
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th � V sw
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3 Weight scaling from V̂sw
!
= V̂hw

) whw = wswasw/ahw

Figure 4.2: Illustration of the steps involved in converting software weights to
hardware weights. First, the measured hardware data is offset to
align the leak potential V hw

l with the software value. Next, the
data is scaled to match the difference between the leak potential and
threshold Vth � Vl. To determine the proportionality factor between
the weight and the amplitude of the post-synaptic potential (PSP)
(V̂ = maxt (sign (w)V (t))), a non-spiking neuron receiving a single
input signal with weight w is used in both simulation and hardware.
By considering weights w along the entire hardware range of BSS-2,
the factor asw/ahw is obtained from the linear relation V̂ = aw. This
factor is necessary to observe the expected dynamics on hardware for
a given set of software parameters and applied calibration.

into a spike time. If, for example, a neuron emits more than the K specified spikes,
the neglected spikes are not used during loss calculation and therefore the gradient
with respect to those is simply zero.

4.2 Software to Hardware Weight Conversion
The two relevant observables from the BrainScaleS-2 analog substrate are the mem-
brane traces Vhw(t) and the emitted spikes zhw(t), which can be processed into Py-
Torch tensors by interpolating them onto the discrete time grid chosen for the soft-
ware representation of variables and observables. The membrane dynamics, specifi-
cally with regard to their weight dependence, are influenced by the selected hardware
calibration. However, when training using hardware ITL, it is important to ensure
that the parameters’ effect on the dynamics of the physical substrate matches the
simulated dynamics. This is necessary to enable a reasonable estimation of the gra-
dient during the training process. Therefore, the weights specified in software need
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to be translated correctly to hardware weights on BSS-2. I have implemented such
a translation method for CUBA synapses and make it available for general use by
adding it to the hxtorch.snn software stack.

Instead of using explicit conversion relationships between the software parame-
ters (e.g. V sw

th ) and the values chosen in calibration for the hardware, I adopted
a more pragmatic approach that aligns the observations of the substrate with the
expected dynamics. This approach is schematically represented in Figure 4.2. This
has the advantage that an ideal behavior of the components is not essential, so that
systematic errors in the components can be tolerated to a certain extent.

After normalizing the membrane measurements, the height of the PSP is compared
to the expected value in simulation. Since the amplitude of the PSP is proportional
to the synaptic weight by

max
t

(sign (w)V (t)) = aw, (4.3)

the factor needed to achieve analogous behaviour on hardware can be extracted from
demanding

max
t

(sign (wsw)Vsw(t))
!
= max

t
(sign (whw)Vhw(t)) (4.4)

, whw
!
=

asw
ahw

wsw, (4.5)

where asw, or ahw respectively, is the proportionality factor between the amplitude
of the PSP and the weight w in software, or on BSS-2 respectively.

4.3 Time Domain Alignment
On BSS-2, the CADC samples of membrane voltages are processed by the on-chip
processors, which is not synchronized to the system time which is used to assign time
stamps to events. However, when using voltage-dependent loss functions in Event-
Prop or when using surrogate gradient methods, it is crucial for the the membrane
traces and spike trains to be aligned to ensure correct temporal credit assignment.
The required precision of this alignment in different learning algorithms or its impact
on overall network performance remains subject to further studies.

I contributed such a method to the hxtorch.snn software stack, allowing users
to quantify the misalignment of observed membrane traces and spike trains. The
method uses the simple setup of a non-spiking neuron receiving an input spike at
time tpre through a synapse with maximum weight. The unprocessed membrane
measurements, combining CADC values and corresponding time stamps, are used
to fit a PSP

Vfit(t) = afit⇥ (t� tfit)

✓
exp

✓
�t� tfit

⌧m

◆
� exp

✓
�t� tfit

⌧s

◆◆
+ bfit, (4.6)
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Figure 4.3: PSP fit on example CADC membrane measurements (left) and dis-
tribution of the time shift between membrane and spike observables
on BSS-2 (right). An input spike is sent at tpre = 10 µs (red arrow)
and tshift is obtained by comparing the input spike time to the time of
the membrane voltage rise observed on BSS-2 by fitting a PSP to the
measured data.

with the fit parameter of interest being the time shift tfit. The other parameters afit
and bfit are used to make the function invariant to the scale and shift the measure-
ments. The choice of fitting a function allows for precision below the sampling rate
rather than detecting the rising edge by the pairwise comparison of samples.

The parameter tfit in eq. (4.6) represents the time at which the input spike arrives
at the neuron and its membrane rises. The time tfit should be the same as that
of the input spike tpre, which is specified by the user. The method I implemented,
allows to measure the difference of those times for all neurons on BSS-2 over multiple
runs with batches of equal inputs. From this, the time shift can be extracted in each
single case or averaged over all runs, batched inputs and neurons to obtain a average
shift tshift.

An example of such a fit to the CADC measurements and the distribution of
resulting time shifts tshift are displayed in fig. 4.3. The difference of the input spike
time and the rise of the membrane is visible and over 5 batches of size 10 and all
512 neurons the shift is tshift = (1.62 ± 0.31) µs.

An important remark about this method is the assumption of exact timing of the
input peaks without any fluctuations. This is probably not the case, but I have
assumed that the fluctuations are small enough compared to a shift in the range of
µs. To quantify this further, in future work multiple input spikes could be considered
in a single trace and their spacing crosschecked.

Nevertheless, this utility allows users to quantifiy the misalignment of data along
the time domain and give the opportunity to align the observables. In my experi-
ments on the Yin-Yang dataset, described below in chapter 5, I used a voltage-based
loss and therefore applied this method to measure the time shift and adjust the out-
put traces used for training.
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Even though the BSS-2 platform allows to sample the membrane potentials of neu-
rons over the whole experiment time window, the EventProp algorithm is able the
compute gradients based on observables at spike times only. This makes it a desir-
able alternative alongside surrogate gradients to optimize and study SNNs, especially
when training with hardware ITL.

I will describe the implementation of the algorithm using custom PyTorch auto-
grad functions, in order to integrate EventProp as a gradient estimation method in
hxtorch.snn, and show how the estimated gradient compares to the exact gradi-
ent in a special case by using formulas derived by Göltz et al. [2021] for “Fast And
Deep”. Then I present the training results achieved on the Yin-Yang task [Kriener
et al. 2022] for training with EventProp in software as well as using BSS-2. For
the MNIST dataset [LeCun et al. 1998], I show simulation results with a network
architecture suitable for hardware execution. In both cases, I compare the results
to additional experiments done with the surrogate gradient method.

5.1 Implementation

To implement the EventProp Algorithm, as derived for continuous time by Wun-
derlich and Pehle [2021] and here described in section 2.3.2, the forward and adjoint
dynamics are discretized and integrated using the explicit Euler integration scheme
with step size �t. A version of this discrete EventProp algorithm was already imple-
mented in Norse [Pehle and Pedersen 2021] preceeding my work, though, it makes
a simplification by not accounting for the intricate way gradients must be handled
in layered networks. To handle backpropagation in layered networks appropriately,
I implemented PyTorch functions EventPropSynapse and EventPropNeuron with
custom forward and backward methods. Following, I will go through the intricacies
of those functions in detail.

The dynamics of the LIF neurons are either computed in simulation only or can be
injected from observations when training with BSS-2 in the loop. This, together with
computing the adjoint trajectories, is handled in EventPropNeuron, a custom Py-
Torch autograd function. The complete dataflow, together with EventPropSynapse,
another function ensuring the correct backpropagation to the synaptic weights and
the previous layer, is displayed in fig. 5.1. The gradient estimation for a layer of LIF
neurons is described in Algorithm 1. While the full code of EventPropSynapse and
EventPropNeuron is listed in listing B.1, this section contains portions of the code
with slight modifications or abbreviations to allow focus on the important aspects.
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5 EventProp with BrainScaleS-2

Algorithm 1 Discrete EventProp gradient estimation for a single layer of LIF
neurons
input { pre-synaptic spikes zpre, weights W , time constants ⌧m, ⌧s, total time T ,

integration step size �t, optional: hardware data (Vhw, zhw) }

. Forward pass
if no hardware data then

(Vsw, Isw, zsw)  Forward Euler integration with step size �t of forward dy-
namics and jumps from 0 to T
else

Assume Ihw = Isw  Forward Euler integration with step size �t from 0 to
T or current dynamics
end if

. Backward pass
(�I ,�V )  Forward Euler integration with step size �t of adjoint dynamics and
jumps from T to 0

output
dL
dW = �⌧s�>

I zpre, dL
dzpre

= (�V � �I)W

EventProp in Layered Networks — A Remark

In section 2.3.2 the dynamics are considered for a complete network, where W
holds the information over all connections. By using hxtorch.snn, the networks
are built by layering hxtorch.snn.Synapse projections and hxtorch.snn.Neuron

population:
1 linear = hxtorch.snn.Synapse(n_out , n_in , ...)

2 lif = hxtorch.snn.Neuron(n_out , ...)

Having an input spike train z_in with shape=(batch_size, seq_length, n_in),
the forward execution would be
1 z_projected = linear(z_in)

2 s_out = lif(z_projected)

where s_out is a NeuronHandle holding the membrane traces and output spike train.
By splitting the network into such layers, each projection layer is defined by

a weight matrix W only representing a block of the matrix considered in the
derivation of EventProp. However, this splitting prompts the need to correctly
handle the computation of gradients, because the weights are not available in the
hxtorch.snn.Neuron module in which the adjoint variables are computed during
backpropagation. The weight gradient in EventProp, as derived in section 2.3.2,
samples the adjoint variable �I at spike times of the prior layer according to
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Figure 5.1: Dataflow occurring during BSS-2 ITL training. During the ITL train-
ing of BSS-2, input spikes are passed through EventPropSynapse,
which returns weighted input spikes along with an empty tensor of the
same shape to accommodate backpropagation of two separate gradient
terms. The output of EventPropNeuron can be either the observations
from BSS-2 or, if those are not present, the forward trajectories in simu-
lation. In the backward pass, the adjoint dynamics are computed using
the stored spikes from the forward call, and a tensor holding ⌧s�I and
(�I � �V) is returned. Returning the stacked tensor is only possible
because the output of EventPropSynapse is already a stacked tensor
with the same shape. In the backward direction, EventPropSynapse
propagates ⌧s�>

I zpre, the gradient with respect to the synaptic weights,
and (�I � �V)w, the gradient with respect to the pre-synaptic spikes.

eq. (2.48), which reads

dL
dwji

= �⌧s
X

spikes from i

�+
I, j. (5.1)

So �I has to be backpropagated to the weights somehow. However, the jump of the
adjoint variable �v contains terms depending on the adjoint variables of subsequenly
connected neurons, as in eq. (2.53), which reads

��
v,n =

(v̇+)n
(v̇�)n

�+
v,n +

1

⌧m(v̇�)n

✓N�1X

m=0

�
�+
v,m � �+

I,m

�
wmn| {z }

gradient between
neuron layers

+@tpostk
lp + l�x,k � l+x,k

◆
.

(5.2)

Therefore, two seperate terms have to be backpropagated between neuron layers in
software, one containing �⌧s�I of all post-synaptic neurons at pre-synaptic spike
times and the other containing the product of �+

v � �+
I from the post-synaptic layer

with the weight matrix W specific to the synapse layer between neuron layers.

41



5 EventProp with BrainScaleS-2

Forward

In a layered network, the synapse layer receives spikes input from an external source
or from a pre-synaptic neuron layer and projects these onto the post-synaptic layer
with weights contained in the tensor weight. This is handled by EventPropSynapse,
which basically applies the same computations as torch.nn.functional.linear,
but in forward direction returns the projection stacked onto a tensor of zeros with
same shape to accomodate the backpropagation of the above-mentioned two gradient
terms:
1 class EventPropSynapse(torch.autograd.Function):

2 @staticmethod

3 def forward(ctx , input , weight , _):

4 ctx.save_for_backward(input , weight)

5 output = input.matmul(weight.t())

6 return torch.stack((output , torch.zeros_like(output)))

7 ...

The EventPropNeuron function is used in the hxtorch.snn.Neuron module to
simulate forward dynamics and handling the corresponding gradient backpropaga-
tion according to EventProp. EventPropNeuron.forward receives the projected,
weighted spikes inside of input together with neuron parameters. The neuron pa-
rameters are stored a hxtorch.snn.functional.LIFParams object and hold the
neurons inverse time constants tau_syn_inv and tau_mem_inv, leak, reset and
threshold voltages v_leak, v_reset, and v_th, and time step size dt. If the exper-
iment is executed on BSS-2, the hxtorch.snn.Neuron module overwrites forward

and directly forwards observed spike trains and membrane traces. When the experi-
ment is done in simulation only, the projected spikes in input[0] are extracted into
input_current and the currents i and membrane voltages v are integrated over all
time steps ts. The main loop of EventPropNeuron.forward is
1 for ts in range(T - 1):

2 # Current

3 i = i * (1 - dt * tau_syn_inv) + input_current [:, ts]

4 current.append(i)

5

6 # Membrane

7 dv = dt * tau_mem_inv * (v_leak - v + i)

8 v = dv + v

9

10 # Spikes

11 spike = torch.gt(v - v_th , 0.0).to((v - v_th).dtype)

12 z = spike

13

14 # Reset

15 v = (1 - z.detach ()) * v + z.detach () * v_reset

16

17 # Save state

18 spikes.append(z)

19 membrane.append(v)
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5.1 Implementation

where spikes and membrane are lists to which the observables are appended after
each integration step and at the end are stacked into tensors to be returned by
EventPropNeuron.forward. The input, the computed membrane and spike values,
and if in simulation only, also the current, are saved for backward.

Backward

For the computation of the adjoint jumps in backward direction, the spike times
and the time derivatives of the membrane V̇ are needed. For ideal dynamics, those
are determined only by the synaptic currents I at spike times. When training
with BSS-2 ITL, enabling synaptic current measurements is not exposed in the
hxtorch.snn API and therefore those are approximated to calculate the jumps
of the adjoint variables. This approximation is done by numerically integrating
eq. (2.39) using the binary tensors, to which the spike recordings are mapped, to
apply the transitions as in eq. (2.42).

The computation of the adjoint jumps, cf. eq. (2.53), is split into two terms
according to

��
v,n =

(v̇+)n
(v̇�)n

�+
v,n

| {z }
jump_term

+
1

⌧m(v̇�)n

 
N�1X

m=0

�
�+
v,m � �+

I,m

�
wmn + @tpostk

lp + l�x,k � l+x,k

!

| {z }
output_term

.

(5.3)

In EventPropNeuron.backward, the adjoint dynamics are integrated in reverse time
according to eqs. (2.45), (2.46) and (2.53). The main loop here reads
1 for ts in range(T - 1, 0, -1):

2 dv_m = v_leak - v_th + i[:, ts - 1]

3 dv_p = i[:, ts - 1]

4

5 dlambda_i = tau_syn_inv * (lambda_v[:, ts] - lambda_i[:, ts])

6 lambda_i[:, ts - 1] = lambda_i[:, ts] + dt * dlambda_i

7

8 dlambda_v = - tau_mem_inv * lambda_v[:, ts]

9 lambda_v[:, ts - 1] = lambda_v[:, ts] + dt * dlambda_v

10

11 output_term = z[:, ts] / dv_m * grad_spikes [:, ts]

12 jump_term = z[:, ts] * dv_p / dv_m

13

14 lambda_v[:, ts - 1] = \

15 (1 - z[:, ts]) * lambda_v[:, ts - 1] \

16 + jump_term * lambda_v[:, ts - 1] \

17 + output_term

18

19 return torch.stack(( lambda_i / params.tau_syn_inv ,

20 lambda_v - lambda_i)), None

There, when computing the membrane time derivatives V̇ � (or dv_m) before and
V̇ + (or dv_p) after the jump, I make the approximation of assuming the membrane
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5 EventProp with BrainScaleS-2

voltage to have precisely the threshold value before the jump and being reset to
exactly 0 afterward. The impact of this choice or alternatives of, e.g., incorporating
membrane measurements at these points are not studied in this thesis but worth
considering in future work.

The returned gradients of EventPropNeuron.backward are received by
EventPropSynapse.backward as grad_ouput. The first part of the stacked ten-
sor, holding the backpropagated ⌧s�I , is multiplied with the pre-synaptic spike ten-
sor zpre, effectively sampling and summing over the adjoint state at pre-synaptic
spike times. The result is backpropagated as the weight gradient. The second part,
holding the difference �v � �I , is multiplied with the synaptic weights in W and
backpropagated to the previous neuron layer. This is handled in the backward

method of EventPropSynapse:
1 class EventPropSynapse(torch.autograd.Function):

2 ...

3 @staticmethod

4 def backward(ctx , grad_output):

5 input , weight = ctx.saved_tensors

6 grad_input = grad_weight = None

7 grad_input = grad_output [1]. matmul(weight)

8 grad_weight = grad_output [0]. transpose (1, 2).matmul(input)

9 return grad_input , grad_weight , None

The two PyTorch autograd functions EventPropSynapse and EventPropNeuron

were added to the hxtorch.snn software stack and can be used inside
hxtorch.snn.Synapse and hxtorch.snn.Neuron as an alternative to gradient es-
timation with surrogate gradients. They allow for the correct backpropagation of
numerically estimated gradients corresponding to the EventProp algorithm in a lay-
ered network of LIF neurons and enable users train and evaluate of SNNs either in
simulation only or with BSS-2 ITL.

Sign-flip in EventProp implementation

While implementing and testing the discrete EventProp algorithm, I encountered
the issue of a mismatch in the sign of gradients, when comparing to the well studied
surrogate gradients method and therefore switched the sign of the returned lambda_i

(or �I), as can be seen in line 112 of listing B.1. To demonstrate that this in fact
leads to the correct gradient sign, I considered an experiment setup of a LIF and
subsequent LI neuron. A single input spike is sent with strong enough weight into
the first neuron, which in turn emits a spike. This hidden spike is received by the
output LI neuron and the gradient of its maximum membrane value over time is
computed through backpropagation. I simulated this setup with both the discrete
EventProp implementation and surrogate gradients and tracked all state variables
and their gradients (if existing) (cf. fig. 5.2). The gradients have the same sign, even
though the EventProp implementation used for this work contains a different sign in
the term backpropagated to the weights than compared to the underlying equation
in eq. (2.48).
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Figure 5.2: Gradients for a single hidden LIF and output LI neuron and max-over-
time. A single input spike is sent to a LIF neuron, triggers a post-
synaptic spike, which is forwarded to a LI readout neuron. Gradient
of the maximum membrane value of the readout neuron is backprop-
agated through two the layers and visualized for gradient estimation
using the discrete EventProp implementation of this thesis and surro-
gate gradients.

The same is the case for two consecutive LIF neurons when using the spike time
decoder (cf. section 4.1) to compute a floating point spike time output and backprop-
agate the gradients (cf. fig. C.1). For both, the sign of the weight gradients would be
sampling dL/dz at the pre-synaptic spike times, which would yield a negative value
for the gradient. The sign then is correct, since the neuron’s membrane rises more
quickly with larger synaptic input and therefore the spike occurs at an earlier time.
This supports the choice of gradients injected in the spike time decoder (cf. eq. (4.2))
and the sign used in the EventProp implementation at line 112 in listing B.1.

Nevertheless, the fundamental reason for the necessity to make this choice is not
yet fully understood and further investigations have to be carried out. For all of the
experiments conducted throughout this thesis, this choice was kept (cf. listing B.1).
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Figure 5.3: First output spike time and weight gradient in experiment setup with
a single synapse. A LIF neuron is simulated receiving an input spike
with weight w at time tpre = 0. The time of the first post-synaptic
spike tpost0 is used as a loss function, for which gradients are estimated
using the EventProp algorithm. Spike time and gradient for a neuron
receiving an input at tpre = 0 through a single synapse with weight w
in simulation. The numerically estimated spike time (left) and weight
gradient (right) are shown as functions of the weight w for three inte-
gration step sizes �t. The analytically known expressions are displayed
for comparison eqs. (5.4) and (5.5).

5.2 Single Synapse Experiment

Before training on complete datasets with my implementation of the EventProp
algorithm, I wanted to verify its correctness or check for eventual problems. There-
fore I turned to the work of Göltz et al. [2021], which derives explicit expressions for
weight gradients of the first spike time in LIF neurons in special cases of the time
constants (cf. section 2.3.3). Since they also succesfully applied this gradient esti-
mation using analytical gradient expressions to hardware ITL training with BSS-2,
which was also the aim of my work, it seemed a natural choice to compare my im-
plementation to their findings. Using these analytical expressions as references, I
analyzed the first spike time and the estimated gradient for an experiment setup
with a single synapse, compared my observations from simulation and also from us-
ing BSS-2 ITL, and found that the estimated gradients agree well with those found
through evaluation of analytical expressions.

I considered the experiment setup of a LIF neuron receiving a single spike at tpre
through a synapse with weight w as in fig. 5.3 and having equal time constants
⌧m = ⌧s. When considering a single pre-synaptic spike with strong enough weight,
the time of the first post-synaptic spike in eq. (2.56) and its gradient in eq. (2.59)
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Figure 5.4: Spike time and gradient for a neuron receiving an input at tpre = 0 µs
through a single synapse with weight w with BSS-2 ITL. The spike time
measured on BSS-2 (left) and numerically estimated gradient (right)
are shown as functions of the weight w for 50 neurons. For comparison,
the analytical values of eqs. (5.4) and (5.5) (blue line) and the average
for the observations from BSS-2, or gradient estimation respectively,
(black, dashed line) are shown.
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Using my discrete EventProp implementation, I simulated the system for three
integration step sizes �t 2 {0.1⌧s, 0.05⌧s, 0.01⌧s} and pre-synaptic spike time tpre =
0. In this setup, where the loss is dependent on the spike time only, those times
need to be extracted from dense binary tensors. To be able to compute gradients
for the weight w or, more generally speaking, optimize on such losses, the spike time
decoder described in section 4.1 can be used. For a range of weights I compared
the resulting first spike times and estimated gradients to the analytic formulas in
eqs. (5.4) and (5.5). The findings are displayed in fig. 5.3.

After demonstrating that the spike time and gradient in simulation converge to
the expected analytical values with decreasing integration step size �t, I conducted
the same experiment with the BSS-2 system for the forward pass. I considered
the same case of equal time constants and use a calibration with ⌧m = ⌧s = 6 µs.
Figure 5.4 shows the spike times of 50 neurons measured on BSS-2 and the gradient
estimated for the observed spike times. As can be seen in the left plot, the observed
spike times were mapped to a discrete time grid, which in this case had a chosen
resolution of �t = 0.25 µs. The mean of the estimated gradient @tpost0 /@w using
BSS-2 ITL agrees well with the analytical estimation.

To align hardware measurements to the simulated dynamics, a scaling and offset
was applied to the membrane traces and also a weight scaling factor was used. Even
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Figure 5.5: First output spike time and input weight gradient in experiment setup
with hidden neuron. A LIF neuron is simulated receiving an input
spike at time tpre = 0 via a synapse with weight wi, emitting a spike
itself which is transmitted by a synapse with weight wh to an output
LIF neuron. The computed time of the first post-synaptic spike tpost0

of the latter neuron is considered as a loss function and gradients are
estimated with EventProp. The term �v � �I , for which correct back-
propagation between neuron layers is to be verified here, is addition-
ally illustrated. The first output spike time (left) and estimated input
weight gradient (right) are shown as functions of the input weight wi for
three integration step sizes �t. The analytic spike time (cf. eq. (2.63))
and the gradient, by chaining eqs. (2.64) and (2.65), are shown for
comparison.

though using a calibration, the exact dynamics of neurons and the dependence of
synaptic currents on the weight might differ slightly for each circuit. Hence, spike
times might differ slightly between each neuron also if the same input was supplied,
which would explain the noisy spike time measurements in fig. 5.4.

5.3 Hidden Neuron Experiment

The same approach as in the previous section was taken to demonstrate the correct-
ness of backpropagated gradients between neuron layers. The term in the EventProp
algorithm holding the gradient information passed between layers is �v � �I (cf.
eq. (2.53) and line 113 in listing B.1). An extended experiment was considered in
simulation to verify the implementation, which comprises two consecutive neurons
with input and hidden synapses, with weights wi and wh, respectively. The hidden
neuron receives a spike at time tpre = 0 along the input synapse and emits a spike
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itself, which is transmitted to the output neuron along the hidden synapse. The
first spike time of the output neuron is then considered similar to a loss function
and gradients are computed by backpropagation.

Figure 5.5 displays the setup and the observed first output spike times tpost0 and
the input weight gradients dtpost0 /dwi as functions of the input weight wi. The an-
alytically expected spike time and gradient obtained from eqs. (2.63) to (2.65) are
shown for comparison. For decreasing integration step size �t, the numerical es-
timate of the output spike time and gradient both converge to the values of the
analytically known expressions. Therefore, I considered the discretized EventProp
implementation using forward Euler integration to be sufficient for further experi-
ments.

5.4 Yin-Yang
The Yin-Yang dataset [Kriener et al. 2022] is a low dimensional dataset developed
specifically for exploratory, early-stage prototyping of models and hardware plat-
forms. The low dimensionality of the task, with each sample consisting of only four
values, makes this dataset a well suited task for first hardware ITL experiments with
BSS-2 and EventProp. Also, Wunderlich and Pehle [2021] use this task to train a
network of LIF neurons in simulation with the EventProp algorithm and Göltz et al.
[2021] train similar networks with BSS-2. Therefore, the Yin-Yang task is well suited
for a first demonstration of BSS-2 ITL training with EventProp.

I trained a network of LIF and LI readout neurons similar to mentioned prior
work in simulation and with BSS-2 ITL. Studying its characteristics during training
and the performance on the Yin-Yang testset, I try to solve arising problems and
improve the initial experiment and model setup to eventually reach comparable, and
in some cases better performance as prior work, cf. table 5.1.

5.4.1 Task

The samples of the Yin-Yang task are based on the area of a circle, described by
the set

�
(x, y) 2 R2 | (x� r)2 + (y � r)2  r2, r = 0.5

 
, (5.6)

where each point is classified by one of three classes “yin”, “yang”, “dot” (cf. fig. 5.6).
The dataset comes symmetrized by including the values 1 � x and 1 � y for each
sample, so a single dataset value is x = (x, y, 1� x, 1� y).

In order to use this dataset in spiking neural networks, the spatial data x has to
be encoded into the temporal domain. For all my experiments with the Yin-Yang
dataset, I use the suggested spatio-temporal input encoding

t = (t1, t2, t3, t4) = tearly + x (tlate � tearly) , (5.7)
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Figure 5.6: Default training, validation and testset of the Yin-Yang dataset
[Kriener et al. 2022]. The dataset is represented by two-dimensional
points classified into one of the three classes yin (blue), yang (orange)
or dot (green).

Table 5.1: Accuracies on the
Yin-Yang testset after training
ANNs [Kriener et al. 2022] (* for
frozen lower weights) and SNNs
[Göltz et al. 2021, Wunderlich and
Pehle 2021] with different gradient
estimation methods.

Type Grad. estimator Acc. [%]

ANN Backpropagation 97.6 ± 1.5
Backpropagation (*) 85.5 ± 5.8

SNN Fast And Deep 95.9 ± 0.7
Fast And Deep (BSS-2) 95.0 ± 0.9
EventProp 98.1 ± 0.2

with tearly < tlate, where tearly/late are hyperparameters that can be chosen depending
on the network architecture and learning algorithm.

The results of previous work [Kriener et al. 2022, Göltz et al. 2021, Wunderlich
and Pehle 2021] on the Yin-Yang task are listed shortly in table 5.1 for ANNs and
SNNs. This is to give an idea of what results are aimed for in this work.

5.4.2 Experiment Setup and Training Procedure

In the following, I will describe the architecture of the network and parameters used
to train on the Yin-Yang task, the encoding and decoding schemes, and the loss
used for optimization.

The samples x = (x, y, 1� x, 1� y) from the dataset are encoded into spike times
t according to eq. (5.7). An additional bias spike time tbias, which is constant for
all samples, is added. This bias spike is supposed to increase activity and facilitate
training [Göltz et al. 2021]. Its associated synaptic weight is learned like all other
synaptic weights. The four sample spike times and the bias spike time are then
mapped onto a discrete time grid into boolean spike tensors used as input to a
network of LIF and LI neurons.

The feed-forward network consists of a hidden layer with 120 LIF neurons and an
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output layer of 3 LI neurons, one for each class. The loss function I consider for my
experiments with the Yin-Yang task is composed of two terms L = L1 + L2. The
first and main term is a max-over-time loss

L1 = �
1

Nbatch

NbatchX

n=1

log
exp

�
maxt V out

n,yn(t)
�

PC
c=1 exp

�
maxt V out

n,c (t)
� , (5.8)

with time t, the voltages of the output layer neurons V out, the target y, the batch
size Nbatch and the number of classes C. To prevent amplitudes from being to high,
which on BSS-2 would lead to saturation, I use the regularization loss

L2 = ↵ · 1

Nbatch C

NbatchX

n=1

CX

c=1

⇣
max

t
V out
n (t)

⌘2

, (5.9)

where ↵ is a scaling factor to adjust the influence of this amplitude regularization.
To optimize the network on the given loss functions in eqs. (5.8) and (5.9), I use the

Adam optimizer [Kingma and Ba 2014] with its default settings. Additionally, all of
my experiments on the Yin-Yang task use a step-wise learning rate scheduling, which
adjusts the learning rate after a given number of epochs by a specified factor. In the
initial experiments, I train the network for 30 epochs in simulation and 50 epochs
with BSS-2 ITL. For comparison, I separately train networks using EventProp and
also surrogate gradients.

All other parameters, which might vary depending on the used gradient estimator
or between training in simulation and using BSS-2, are listed in appendix D.

5.4.3 Initial Experiment Results

To obtain the first results on the YinYang task, I train the described network arhci-
tecture in simulation only and with BSS-2 ITL. For gradient estimation, I compare
the two available gradient estimators to allow fo better pinpointing of possible prob-
lems to the EventProp implementation or other sources.

Using the hxtorch.snn framework, switching between the built-in gradient esti-
mator using surrogate gradients and my EventProp implementation is straightfor-
ward. The same applies to changing between forward execution on BSS-2 or sim-
ulating the forward dynamics of the network in software. This allows me to study
both gradient estimators and forward execution types at the same time. In this way,
I train a feed-forward network as described in section 5.4.2 using the parameters in
tables D.1 and D.2. The results are displayed in fig. 5.7.

In simulation, the EventProp model reaches an average accuracy of 96.10%, sim-
ilar the surrogate gradient model. With BSS-2 though, both models initially only
achieve slightly above 80%. Comparing to other results using BSS-2 in table 5.1,
this is not what one expects. Hence, possible issues need to be investigated.

Kriener et al. [2022] compare the performance of ANNs with single hidden layer
for frozen and learnable lower weights (cf. table 5.2), where the network with frozen
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Figure 5.7: Test loss and accuracy on the Yin-Yang task over the training epochs
for the untuned model using EventProp and without any non-model
specific adjustments. The black, dashed lines show the average accu-
racy on the test set after the last training epoch, which is 96.10% in
simulation and 81.80% with BSS-2 ITL. For comparison, the average
loss and accuracy over training with surrogate gradients is also shown.

lower weights only reaches 85.5%. This is supposed to show that simply projecting
the Yin-Yang task to a higher-dimensional space is not sufficient to achieve high
accuracies with linear classification in the output layer. This might also be the issue
with the SNNs considered in this experiment. Therefore, a natural first subject to
investigate, are the gradients in each layer and the change in weights over the course
of the training.

5.4.4 Model and task specific modifications

To achieve higher accuracies in hardware ITL training with BSS-2, several possible
limiting subjects are investigated. First, I will highlight and discuss the multiple
orders of magnitude (OOM) difference in gradients for the hidden and output layer
when using EventProp for gradient estimation. Second, I briefly discuss the relevance
of dynamic range in synaptic input and possible ways to achieve stronger signals in
tasks with low input dimensionality. At last, I will point out that encoding the
data onto a discrete time grid creates an upper limit on the maximum possible
performance.

Gradient Rescaling

In fig. 5.8, the layer-specific gradient distribution is shown at different points in
training. Compared to the output layer gradient distributiion, the distribution of
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Figure 5.8: Layer-specific gradient distribution for unscaled and scaled EventProp.
The distribution of gradients observed in the hidden (blue) and output
layer (orange) during BSS-2 ITL training are shown for EventProp
using the true gradient (left) in eq. (2.48) and for a gradient scaled by
⌧�1
s (right).

gradients in the hidden layer is 6 OOM more narrow, with gradients in the range
[�10�8, 10�8]. The layer-specific gradient distributions for training in simulation are
displayed in fig. E.1.

The initial assumption was, that these multiple OOM difference in gradients when
training with BSS-2 might lead to the hidden weights staying almost constant during
training, while only the output layer learns. In the simulation based training, I
use time constants in the 10�3 to 10�2 range and only observe a 3 OOM difference
between the gradient distributons of the hidden and the output layer. When training
with BSS-2, I use time constants around 10 µs = 10�5 s and observe the mentioned 6
OOM difference in the width of the layer specific gradient distributions. Therefore,
this roughly scales with the time constant, which is to be expected if looking at
eq. (2.48), where the synaptic time constant ⌧s directly enters into the gradient
computed with EventProp. With this reasoning, I chose to scale the gradient by the
inverse of the synaptic time constant and therefore counteract the imbalance of the
hidden and output layer weight gradients.

However, this rescaling has no significant effect on the weight updates, because I
use the Adam optimizer in training. A primary characteristic of the Adam optimizer
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Figure 5.9: Resolution of spike encoding for different step sizes �t 2
{2 µs, 1 µs, 0.5 µs}. The grid separates the dataset into regions inside
which all samples are encoded into the same spike sequence and there-
fore are not distinguishable after encoding. Resolutions are shown for
the encoding window [tearly, tlate] = [1 µs, 16 µs] used to obtain the ini-
tial BSS-2 ITL training results with Yin-Yang.

is that it is almost invariant to the rescaling of the gradients. This near invariance
however depends on the choice of its parameter ✏, which is only added to prevent a
division by zero. Usually, gradients are much larger than ✏, but here they get small
enough to have the same order of magnitude as ✏, which can have a non-negligible
effect on the weight updates. Even though the rescaling of gradients ultimately
does not affect the training success here, different OOM in weight gradients are
highly relevant if using other optimization algorithms that depend on the scaling of
gradients, like stochastic gradient descent.

Input repetition

In the case of training the Yin-Yang task, Göltz et al. [2021] mention that in their
work the five inputs are insufficient to achieve good classification results when train-
ing with BSS-2 ITL. Their suggested solution is to repeat the input per sample,
including the bias, five times, ultimately having 25 input streams per data point. I
adopted their suggestion with the adjustment of initializing the hidden weights as
an nhidden ⇥ 5 matrix and repeat them 5 times along the input dimension, resulting
in a nhidden⇥ 25 weight matrix. This has the equivalent effect of increasing synaptic
efficacy without changing the target model parameters and underlying calibration
data set.

Spike Encoding Resolution

To encode the samples of the Yin-Yang dataset into spike times, eq. (5.7) is used.
Those spike times are then mapped onto a discrete time grid into boolean spike
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tensors. The step size �t between times represented by entries on the time grid can
be chosen and therefore acts as a hyperparameter in training. As fig. 5.9 shows, the
choice of �t is highly relevant, since it specifies the resolution with which the samples
of the dataset are encoded. If the step size is too large and therefore, the time grid
onto which samples are encoded is too coarse, samples around the boundaries of
classes may be encoded into the same input spike tensor. Hence, those samples are
not distinguishable from each other for the network. This creates an upper limit on
the possible classification accuracy.

Alternatively, the time window [tearly, tlate] into which samples are encoded could
be enlarged to have a similar effect. However, this would also cause the input spikes
to be further apart and the time constants may need to be adjusted.

To obtain the initial experiment results on the Yin-Yang dataset, shown in fig. 5.7,
the step size was chosen to �t = 1 µs, correspondig to the resolution displayed in
the center of fig. 5.9. This is not the initially most limiting factor in achieving better
performance, since synaptic niput strength and dynamic range turns out to be the
most crucial adjustment. However, as soon as accuracies of over 95% are achieved,
this could well be an important starting point through which further improvements
can be achieved.

5.4.5 Experiment Results After Adjustments

I investigated possible task and model specific limitations and adjustments to over-
come them in the previous section 5.4.4. In brief, these adjustments are the

• scaling of gradients estimated with EventProp in the hidden layer by the synap-
tic time constant ⌧�1

s ,

• repetition of inputs per sample 5 times to increase effective synaptic strength
per input,

• increase of input encoding resolution by lowering the integration step size �t.

I again trained a network as described in section 5.4.2 with the above listed modifica-
tions for 200 epochs in simulation and 300 epochs with BSS-2 ITL. The parameters
for those trainings are listed in tables D.3 and D.4. The obtained loss and error on
the test set over the course of training are displayed in fig. 5.10 and final accuracies
are compared to results of other work [Kriener et al. 2022, Wunderlich and Pehle
2021, Göltz et al. 2021] in table 5.2.

The results with BSS-2 ITL are significantly better than the initial results from
fig. 5.7 and are comparable to prior work of others. As I already briefly discussed
in section 5.4.4, the major reason for this improvement is the repetition of inputs
resulting in higher synaptic strength and dynamic range.

To visualize the activity in the network after training on Yin-Yang with BSS-2
ITL, I display the input encoding, observed hidden spikes, and output traces for an
exemplary sample of the training set and the maximum of the membrane voltage of
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Figure 5.10: Test loss and error on Yin-Yang dataset after applying modifications
described in section 5.4.4. Results using surrogate gradients or Event-
Prop for gradient estimation are displayed. For each experiment the
network is trained on 15 different seeds and the final performance is
determined by the accuracy after the last training epoch averaged
over runs. Training with BSS-2 ITL and EventProp results in an ac-
curacy of (96.1± 0.8)% on the test set after the last training epoch,
average and standard deviation over all seeds. Performance is com-
pared to prior work in table 5.2.

56



5.4 Yin-Yang

0 1
x

0

1

y

bias
1� y
1� x

y
x

hi
dd

en
sp

ik
es

ou
pt

ou
t

tr
ac

es

38 µs 38 µs

0 1
x

0

1

y

yin

0 1
x

0

1

yang

0 1
x

0

1

dot

0.00

0.25

0.50

0.75

1.00

1.25

1.50

m
a
x

t
(V

o
u
t
)

(a) Network activity for example Yin-Yang sample

(b) Maximum membrane values of trained model

Figure 5.11: Activity of model trained on Yin-Yang dataset. The maximum mem-
brane values maxt(V out) of the readout neurons are used for clas-
sification into one of the three classes “yin”, “yang”, “dot”. (a) Il-
lustration of input encoding and observed hidden spikes and output
traces of trained model for an exemplary sample. (b) Maximum of
observed membrane voltages of output neurons on Yin-Yang dataset
after BSS-2 ITL training using EventProp. The boundaries between
classes are not sharp, but still an average accuracy of 96.10% can be
achieved with BSS-2 ITL training (cf. fig. 5.10).
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Ref. Type Hidden Loss Gradient Estimator Fwd. Acc. [%]

(a) ANN 30 CE
Backpropagation sim. 97.6 ± 1.5
Backpropagation sim. 85.5 ± 5.8(frozen lower weights)

(b) SNN 120 TTFS Fast And Deep sim. 95.9 ± 0.7
Fast And Deep BSS-2 95.0 ± 0.9

(c) SNN 200 TTFS EventProp sim. 98.1 ± 0.2

this
work SNN 120 MAX

surrogate gradient sim. 97.6 ± 0.4
surrogate gradient BSS-2 94.6 ± 0.7
EventProp sim. 97.9 ± 0.6
EventProp BSS-2 96.1 ± 0.8

Table 5.2: Results achieved on Yin-Yang with different network types, ANNs and
SNNs, and gradient estimation using explicit analytical expressions, sur-
rogate gradients and EventProp. Prior results on the Yin-Yang task are
referenced from (a) [Kriener et al. 2022], (b) [Göltz et al. 2021] and (c)
[Wunderlich and Pehle 2021]. All networks use a single hidden layer with
different numbers of neurons. Forward (Fwd.) execution of the network
is either done by simulating the network (sim.) or on the BSS-2 system.
The used loss functions are a cross-entropy loss ‘CE’, a loss based on
time-to-first-spike decoding ‘TTFS’, and a max-over-time loss ‘MAX’.

the output LI neurons on the test set (cf. fig. 5.11). The values maxt (V out) are used
to classify the samples into one of the three classes of the Yin-Yang dataset. Even
though the model achieves an average accuracy over multiple seeds of 96.1%, the
boundaries between classes are not sharply visible from the maximum membrane
values of the output neurons.

5.4.6 Dependence on Weight Initialization

A major limitation of the EventProp algorithm is that it does not take into account
the influence of adding or deleting spikes. The gradient computed by solving the
adjoint system and its jumps in its form presented in [Wunderlich and Pehle 2021],
described in section 2.3.2 of this work, does return gradients that only quantify the
shift of a spike time depending on a weight change. But, the possible emergence of
new spikes or deletion of existing ones is not contained in those equations.

To study the consequences of this limitation, I trained the network described in
section 5.4.2 on the Yin-Yang task with different hidden weight initializations. The
weights are drawn from a normal distribution N (hw0i, �2

w0
). The choice of hw0i

influences the activity of the hidden layer and as spike deletion or creation is not
contained in the EventProp learning method, the activity does stay in the same
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Figure 5.12: Dependence of success in training on Yin-Yang on weight ini-
tialization. The network described in section 5.4.2 was trained
with BSS-2 ITL on the Yin-Yang task for different values hw0i 2
{0.0, 0.05, 0.1, 0.15}, each for seeds 0 to 7, of the weight initialization
distribution N (hw0i, �2

w0
) with �w0 = 0.2. (a) The distribution of the

hidden spikes per training sample is plotted for different stages of the
training. In all cases, the rate stays in a certain range and learning
to adjust weights for spike addition or deletion cannot be observed.
(b) The average (line) and one standard deviation (shaded region) of
the test set classification error throughout training on the Yin-Yang
dataset is displayed for the different weight initializations. The suc-
cess of training drastically depends on the weight initialization, as
this determines the number of hidden spikes.
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range throughout the whole training, which in turn drastically determines the final
outcome (cf. fig. 5.12). This shows the missing property of the EventProp method
to map the appearance or disappearance of spikes in the gradient. In the cases of
small weight initializations hw0i 2 {0.0, 0.05} a large portion of the hidden neurons
never spike and could therefore simply be removed from the network, reducing its
effective size. This partly explains the low classification accuracy for models with
those weight initializations.

A possible solution would be to adjust the used loss function, as Nowotny et al.
[2022] demonstrates. Another approach would be to study the incorporation of
membrane observations of hidden neurons into the gradient estimation, which is
already contained in the EventProp equations eqs. (2.45) and (2.53).

5.5 MNIST
As a second task I considered the MNIST dataset [LeCun et al. 1998]. I orientate
myself strongly on the work of Cramer et al. [2022] regarding modifications made
to the dataset, network topology and training procedure. They also trained SNNs
on this task and use BSS-2 for training with hardware ITL.

In this section, I train a network using EventProp in simulation and present the
results achieved on the MNIST dataset.

5.5.1 Experiment Setup and Training Procedure

Even though, results in this section are only obtained for training in simulation,
the network is constrained to a size suitable for hardware execution considering the
limited resources on BSS-2. The original images, which are 28 ⇥ 28 pixels in size,
are reduced to 16 ⇥ 16 pixels, to accomodate for the limited fan-in of BSS-2 while
still allowing for a reasonably sized hidden layer. The reduction is done by cropping
the two outer rows of an image and scaling the remaining image to the desired size.

The pixel values are encoded into spike latencies, according to the method pro-
posed by Zenke and Vogels [2021]. The intensities of the pixels are first standardized
into an interval x 2 [0, 1] and spike times are then determined by

tin(x) =

(
⌧in log

x
x�#in

if x > #in,

1 otherwise.
(5.10)

The spike time tin then corresponds to the time of a LIF neuron with time constant ⌧in
receiving an input current x. The parameter #in is the minimum current neccessary
to provoke a spike.

The resulting spike times were used as an input to a feed-forward network of 246
hidden LIF and 10 output LI neurons. The network was trained for 50 epochs on
a max-over-time loss together with readout regularization (cf. eqs. (5.8) and (5.9)).
To apply weight updates, the Adam optimizer was used with a step-wise decaying
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Figure 5.13: Results achieved on MNIST with SNNs and EventProp in simulation.
(a) Activity of the trained SNN on example images. For visualization,
output traces are clipped from below. The images of the dataset are
latency coded into spike trains to serve as input to a hidden layer
of LIF neurons. The spikes are projected onto a layer of readout LI
neurons and samples are classified by the max-over-time membrane
values of those output neurons. Target neuron traces are highlighted
having a brighter color. (b) Error on the test set over training epochs.
The model was trained with dropout and rotation and without those
augmentations. The average error (line) and its standard deviation
(shaded region) is shown for training with 10 different seeds.

learning rate. To avoid overfitting, the input images in training were randomly
rotated within a specified range. Additionally, dropout is applied to silence a given
fraction of the hidden neurons.

All testing and verification of experiment code and training procedure was done
using a validation split of 5.000 random samples drawn and excluded from the
training set. Only at the final stage, the test set was used to obtain the results
described below.

5.5.2 Experiment Results

The results of training the model with 10 different seeds are depicted in fig. 5.13
together with exemplary network activity and output traces. The separation of
target and non-target readout traces by lifting the former and inhibiting the latter
has clearly been learned for the example images. The accuracy on the test set
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Ref. Hidden Loss
Gradient

Estimator
Fwd. Remarks Acc. [%]

(a) 246 TTFS F&D sim. 97.4 ± 0.2
BSS-2 96.9 ± 0.1

(b) 300 MAX EP sim. dropout 97.6 ± 0.1

(c) 246 MAX SG

sim. 97.5 ± 0.1
sim. dropout, rotation 98.0 ± 0.0
BSS-2 97.2 ± 0.1
BSS-2 dropout, rotation 97.6 ± 0.1

this
work 246 MAX EP sim. 97.7 ± 0.1

sim. dropout, rotation 98.2 ± 0.1

Table 5.3: Results achieved on MNIST for SNNs and different gradient estimators
using explicit analytical expressions (F&D), surrogate gradients (SG)
and EventProp (EP). Prior results on the MNIST task using SNNs
with comparable hidden layer sizes are referenced from (a) [Göltz et al.
2021], (b) [Wunderlich and Pehle 2021], (c) [Cramer et al. 2022]. All
networks use a single hidden layer with different number of neurons.
Forward (Fwd.) execution of the network is either done by simulating
the network (sim.) or on the BSS-2 system. The used loss functions are
a loss based on time-to-first-spike decoding ‘TTFS’ and a max-over-time
loss ‘MAX’.

after training is 97.7± 0.1% without droupout and rotation on training images and
98.2 ± 0.1% with dropout and rotation. The results, together with results from
previously published work of others, are listed in table 5.3.

This is an intermediate result on the way to execution on hardware. The network
size is similar to the models used by Göltz et al. [2021] and Cramer et al. [2022],
which both did train with BSS-2 ITL. To train this model with forward execution
on hardware only the experiment code and EventProp implementation have to be
aligned with the latest hxtorch.snn API, but underlying model architecture changes
should not be required.
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6 Conclusion

In this work, by leveraging the theoretical foundation of the EventProp algorithm
[Wunderlich and Pehle 2021], I extended its applicability to the refractory leaky-
integrate and fire (LIF) neuron model. By deriving a similar set of adjoint equa-
tions, I have demonstrated the potential for this approach to be used more broadly
in neural network training. Moreover, I have explicitly shown the correspondence
between EventProp and the approach of Göltz et al. [2021] that derives closed-form
gradient equations, providing further evidence for the utility and versatility of this
mathematical framework.

To demonstrate the ability of EventProp to be used for in-the-loop (ITL) training
with neuromorphic hardware, I implemented and tested a time-discrete version and
trained a network of LIF neurons with forward execution on BrainScaleS-2 (BSS-2).
Specifically, my results show that EventProp can successfully train such a network
for an example task, paving the way for further exploration of this technique with
neuromorphic systems.

The refractory LIF neuron introduces a period after activation of a neuron, in
which further activation is suppressed. This can be introduced by adding an ad-
ditional state variable with its own dynamics, depending on the refractory time ⌧r.
In section 3.1, I derived a set of equations similar to the EventProp algorithm and
show equality of those equations in the case of a vanishing refractory time ⌧r ! 0.
This highlights the potential of the underlying approach, computing adjoint equa-
tions for dynamical systems with discontinuous transitions. It demonstrates that
this lends itself to further studies of the computation of parameter gradients for
other, potentially more complex neuron models.

In the case of LIF neurons, Göltz et al. [2021] derived closed-form equations
for first spike times and gradients for fixed ratios of time constants, specifically
⌧m = ⌧s and ⌧m = 2⌧s. I derived an explicit expression for the weight gradient of
the first spike time from the EventProp algorithm by integrating the dynamics and
incorporating the jumps of the adjoint variables (cf. section 3.2 and eq. (3.25)).
In the cases of equal or double time constants, I show that the gradient equation
mentioned above is equal to the equations of weight gradients in the work of Göltz
et al. [2021]. This closes the gap between using an adjoint dynamical system that
needs to be solved to compute gradient values and explicitly solving the threshold
condition of a neuron’s membrane for the spike time and taking derivatives. An
important fact to note is that only the first spike time was considered in my
calculations. Recent work by Bacho and Chu [2022] extends the approach of Göltz
et al. [2021] to multiple spike times and derives closed-form equations taking earlier
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spike times of the neuron itself into account and describes how this can be applied
to learning in SNNs. It remains open work to be shown that those equations can
also be derived starting with the set of equations provided in EventProp.

A time-discrete version of the EventProp algorithm, using simple forward Euler
integration, was implemented in two PyTorch autograd functions (cf. section 5.1),
which can be used with the high-level, PyTorch based hxtorch.snn API [Spilger
et al. 2022]. This allows users to train SNNs in simulation and with the BSS-2 chip
ITL by using EventProp for gradient estimation. The choice to split the algorithm
into two separate functions is necessary due to the topological description of SNNs
in hxtorch.snn. The description of projections in hxtorch.snn.Synapse modules
allows for flexible topologies, e.g. different synapse types connecting to the same
neuron populations contained in a hxtorch.snn.Neuron module. The theoretical
framework in which EventProp is derived does not treat this seperately but as a
closed network of neurons. Implementing this into closed all-in-one modules would
require generating new modules for each indivdual synapse-neuron combination.

For a single-synapse experiment, the weight gradient of the first spike time for a
range of weights was computed by simulation and with hardware ITL in section 5.2.
The results were compared with the analytically expectated values using the equa-
tions derived by Göltz et al. [2021]. In simulation, the first spike time and estimated
gradients converge to the analytical values for decreasing integration step sizes �t of
the implemented Euler scheme. Using BSS-2, the measured first spike time and nu-
merically computed gradient are consistently close to the analytical expectation on
average, although some variations between different neuron circuits were observed.

After this verification, a network with a single hidden layer of 120 LIF neurons
was trained on the Yin-Yang task [Kriener et al. 2022], classifying samples by the
maximum membrane voltage over time of three readout LI neurons, each corre-
sponding to one class (cf. section 5.4). For ITL training with BSS-2 and the discrete
EventProp implementation for gradient estimation, the model reached accuracies of
(96.1±0.8)%. This is comparable to other results of (95.0±0.9)% [Göltz et al. 2021]
and (94.6±0.7)% (this work, with surrgate gradients) achieved with hardware ITL
training on the BSS-2 platform.

An issue that remains with EventProp, is the lack of taking appearing or dis-
appearing events and its influence on the networks output into account (cf. sec-
tion 5.4.6). For surrogate gradients, this issue does not arise, since they explicitely
take into account the membranes proximity to its threshold. Recent work of Nowotny
et al. [2022] adresses this issue by studying different loss functions and their effect
on the gradients. This certainly provides impactful insights, but does not solve the
underlying problem of not considering spike creation or deletion in the fundamental
description of the problem. Future work could address the appropriate description
of the finite variations of the loss function due to infinitesimal parameter changes
and the resulting (dis-)appearance of spikes.

In section 5.5, I describe the training of a SNN in simulation with 246 hidden LIF
neurons and 10 LI readout neurons similarly sized to the ones used by Cramer et al.
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[2022] and Göltz et al. [2021]. They trained their networks on a max-over-time and
time-to-first-spike loss, respectively, with BSS-2 ITL. The network in this work was
trained on the max-over-time loss within the hxtorch.snn framework. The model
achieved a final accuracy of (98.2±0.1)% on the test set, using dropout and rotation
as augmentation techniques during training to facilitate generalization. This is a
slight improvement compared to other simulation results with comparable network
sizes by Göltz et al. [2021], Cramer et al. [2022], Wunderlich and Pehle [2021],
which are listed in table 5.3. At the time of the experiments, to be able to run
this topology described in the high-level hxtorch.snn API, manually routing and
placement of synapes would have been required, which I was not able to address
in time. However, at the time of writing and thanks to the ongoing development
of hxtorch.snn by the BrainScaleS software team, the experiment would now be
possible on hardware using the high-level API.

This work is a another step in the direction to event-driven, information-efficient
encoding and overall energy-efficient functional modeling of SNNs on neuromorphic
systems. To make further progress into this direction, a fully event-based handling
of gradient computations, instead of using grid based integration of dynamics, is
inevitable and current work is done in this group to achieve such a treatment using
JAX [Bradbury et al. 2018]. Other contributions to the progress in this direction
includes to work of Bacho and Chu [2022], which allows for explicit spike time and
gradient computations in multi-spike LIF networks.

Outlook

The adjoint sensitivity analysis used to derive EventProp can also be leveraged to
obtain learning rules for neuron specific parameters like time constants, and leak,
threshold, or reset voltages. This could greatly facilitate training by eliminating
the need to individually tune these parameters, which was previously a tedious task
of hyperparameter search.

At present, efforts are being made in the group to enhance the ecosystem in
which the BSS-2 chip is integrated, with the goal of enabling multi-chip experiments
either through low-latency chip-to-chip communication using different setups or
by streamlining hybrid training with the subsequent execution of different model
parts on one or more chips. These developments will facilitate the exploration of
the applicability of EventProp in large-scale networks deployed on neuromorphic
hardware. One limitation of the algorithm — which is also present in other learning
methods — is the scaling of computations required to propagate errors back along
the time dimension and through the deep spatial dimension of large-scale networks
with an increasing number of parameters and dynamic variables.

To address this problem, online-learning rules have been developed, like e-prop
[Bellec et al. 2020], and applied to training on BSS-2 [Arnold 2021]. In Chapter 5
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of Pehle [2021], a set of equations is derived for online learning that builds on the
same foundational principle of adjoint sensitivity analysis as EventProp. Other than
the beforementioned online-learning rule e-prop, the novel approach of Pehle [2021]
treats the model in continuous time and without turning to surrogate (or pseudo-)
derivatives. As is already mentioned briefly there, the derivation of those equation
could also be adjusted, e.g. to arrive at a hybrid algorithm partitioning learning into
online parameters updates applied on a short time scale and batch-based updates
computed on the host similar to the original EventProp method. Adapting and
implementing this on BSS-2 hardware would be an intriguing challenge, as it could
potentially provide a more exact and simultaneously efficient and scalable method
for training SNNs in real time.
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B Custom PyTorch autograd functions

Listing B.1: Discrete EventProp in custom PyTorch autograd functions.
1 class EventPropNeuron(torch.autograd.Function):
2 # pylint: disable=line -too -long
3 """
4 Define gradient using adjoint code (EventProp) from norse
5 """
6 # Allow redefining builtin for PyTorch consistancy
7 # Allow names z (spikes), v (membrane), i (current) and T (time dimension

length)
8 # Allow different argument params to use dt, tau_mem_inv etc.
9 # pylint: disable=redefined -builtin , invalid -name , arguments -differ

10 @staticmethod
11 def forward(ctx , input: torch.Tensor ,
12 params: NamedTuple) -> Tuple[torch.Tensor ]:
13 """
14 Forward function , generating spikes at positions > 0.
15

16 :param input: Weighted input spikes in shape (2, batch , time , neurons).
17 The 2 at dim 0 comes from stacked output in EventPropSynapse.
18 :param params: LIFParams object holding neuron prameters.
19

20 :returns: Returns the spike trains and membrane trace.
21 Both tensors are of shape (batch , time , neurons)
22 """
23 input_current = input [0]
24 z, i, v = (
25 torch.zeros(input_current.shape[0], input_current.shape [2]),
26 torch.zeros(input_current.shape[0], input_current.shape [2]),
27 torch.empty(input_current.shape[0],
28 input_current.shape [2]).fill_(params.v_leak),
29 )
30 spikes , current , membrane = [z], [i], [v]
31 T = input_current.shape [1]
32 for ts in range(T - 1):
33 # Current
34 i = i * (1 - params.dt * params.tau_syn_inv) + input_current [:, ts]
35 current.append(i)
36

37 # Membrane
38 dv = params.dt * params.tau_mem_inv * (params.v_leak - v + i)
39 v = dv + v
40

41 # Spikes
42 spike = torch.gt(v - params.v_th , 0.0).to((v - params.v_th).dtype)
43 z = spike
44

45 # Reset
46 v = (1 - z.detach ()) * v + z.detach () * params.v_reset
47

48 # Save state
49 spikes.append(z)
50 membrane.append(v)
51 forward_result = (
52 torch.stack(spikes).transpose(0, 1),
53 torch.stack(membrane).transpose(0, 1)
54 )
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B Custom PyTorch autograd functions

55 ctx.current = torch.stack(current).transpose(0, 1)
56 ctx.save_for_backward(input , *forward_result)
57 ctx.extra_kwargs = {"params": params}
58

59 return (* forward_result ,)
60

61 # pylint: disable=invalid -name
62 @staticmethod
63 def backward(ctx , grad_spikes: torch.Tensor ,
64 _: torch.Tensor) -> Tuple[Optional[torch.Tensor], ...]:
65 """
66 Implements ’EventProp ’ for backward.
67

68 :param grad_spikes: Backpropagted gradient wrt output spikes.
69 :param _: backpropagated gradient wrt to membrane trace (not used)
70

71 :returns: Gradient given by adjoint function lambda_i of current
72 """
73 # input and layer data
74 input = ctx.saved_tensors [0]
75 input_current = input [0]
76 z = ctx.saved_tensors [1]
77 params = ctx.extra_kwargs["params"]
78

79 # adjoints
80 lambda_v , lambda_i = torch.zeros_like(z), torch.zeros_like(z)
81

82 try:
83 i = ctx.current
84 except AttributeError:
85 i = torch.zeros_like(z)
86 # compute current
87 for ts in range(z.shape [1] - 1):
88 i[:, ts + 1] = \
89 i[:, ts] * (1 - params.dt * params.tau_syn_inv) \
90 + input_current [:, ts]
91

92 for ts in range(z.shape [1] - 1, 0, -1):
93 dv_m = params.v_leak - params.v_th + i[:, ts - 1]
94 dv_p = i[:, ts - 1]
95

96 lambda_i[:, ts - 1] = lambda_i[:, ts] + params.dt * \
97 params.tau_syn_inv * (lambda_v[:, ts] - lambda_i[:, ts])
98 lambda_v[:, ts - 1] = lambda_v[:, ts] * \
99 (1 - params.dt * params.tau_mem_inv)

100

101 output_term = z[:, ts] / dv_m * grad_spikes [:, ts]
102 output_term[torch.isnan(output_term)] = 0.0
103

104 jump_term = z[:, ts] * dv_p / dv_m
105 jump_term[torch.isnan(jump_term)] = 0.0
106

107 lambda_v[:, ts - 1] = (
108 (1 - z[:, ts]) * lambda_v[:, ts - 1]
109 + jump_term * lambda_v[:, ts - 1]
110 + output_term
111 )
112 return torch.stack(( lambda_i / params.tau_syn_inv ,
113 lambda_v - lambda_i)), None
114

115

116 class EventPropSynapse(torch.autograd.Function):
117 """
118 Synapse function for proper gradient transport when using EventPropNeuron
119 """
120 @staticmethod
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121 # pylint: disable=arguments -differ , redefined -builtin
122 def forward(ctx , input: torch.Tensor , weight: torch.Tensor ,
123 _: torch.Tensor = None
124 ) -> Tuple[torch.Tensor , torch.Tensor ]:
125 """
126 This should be used in combination with EventPropNeuron. Apply linear
127 to input using weight and use a stacked output in order to be able to
128 return correct terms according to EventProp to previous layer and
129 weights.
130

131 :param input: Input spikes in shape (batch , time , in_neurons)
132 :param weight: Weight in shape (out_neurons , in_neurons)
133 :param _: Bias , which is unused here
134

135 :returns: Returns stacked tensor holding weighted spikes and
136 tensor with zeros but same shape
137 """
138 ctx.save_for_backward(input , weight)
139 output = input.matmul(weight.t())
140 return torch.stack((output , torch.zeros_like(output)))
141

142 @staticmethod
143 # pylint: disable=arguments -differ , redefined -builtin
144 def backward(ctx , grad_output: torch.Tensor ,
145 ) -> Tuple[Optional[torch.Tensor],
146 Optional[torch.Tensor ]]:
147 """
148 Split gradient_output coming from EventPropNeuron and return
149 weight * (lambda_v - lambda_i) as input gradient and
150 - tau_s * lambda_i * input (i.e. lambda_i at spiketimes)
151 as weight gradient.
152

153 :param grad_output: Backpropagated gradient with shape (2, batch , time ,
154 out_neurons). The 2 is due to stacking in forward.
155

156 :returns: Returns gradients w.r.t. input , weight and bias (None)
157 """
158 input , weight = ctx.saved_tensors
159 grad_input = grad_weight = None
160

161 if ctx.needs_input_grad [0]:
162 grad_input = grad_output [1]. matmul(weight)
163 if ctx.needs_input_grad [1]:
164 grad_weight = \
165 grad_output [0]. transpose(1, 2).matmul(input)
166

167 return grad_input , grad_weight , None
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C Gradient Sign in EventProp
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Figure C.1: Gradients for two consecutive LIF neurons and first spike time of the
output neuron. A single input spike is sent to a LIF neuron, triggers a post-synaptic
spike, which is forwarded to another LIF output neuron. The gradient of the first
spike time with respect to the ouput spike train is computed using the differentiable
spike time decoder described in section 4.1. The further backpropagation through
the two layers is visualized for gradient estimation using the discrete EventProp
implementation of this thesis and surrogate gradients.
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D Training Parameters

Parameter EeventProp / Surrogate Gradient

input size 5
hidden size 120
output size 3
weight init [mean, stdev]

hidden [1.0, 0.4]
output [0.01, 0.04]

⌧m, ⌧s 0.008
dt 0.00125
tbias [⌧s] 0
tearly [⌧s] 0.15
tlate [⌧s] 2
tsim [⌧s] 6.25

training epochs 50
batch size 20 / 16
optimizer Adam
Adam parameter � (0.9, 0.999)
Adam parameter ✏ 10�8

learning rate 0.001
SG parameter ↵ - / 50

Table D.1: Parameters of neuron dynamics, network and training used to produce
the initial training results in simulation on the Yin-Yang dataset using EventProp
(EP) and surrogate gradients (SG) for gradient estimation, displayed in fig. 5.7.
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D Training Parameters

Parameter EeventProp / Surrogate Gradient

Calibration

⌧m, ⌧s 8 µs
⌧r 1 µs
leak 80
reset 80
threshold 125
i-synin-gm 800
synapse-dac-bias 600

Experiment

input size 5
hidden size 120
output size 3
weight init [mean, stdev]

hidden [0.8, 0.4] / [1.0, 0.4]
output [0.01, 0.04]

dt 1 µs / 0.5 µs
tshift �2 µs / �1.5 µs
tbias 0 µs
tearly 1 µs
tlate 16 µs
tsim 50 µs

training epochs 30
batch size 16
optimizer Adam
Adam parameter � (0.9, 0.999)
Adam parameter ✏ 10�8

learning rate 0.001
SG parameter ↵ - / 50

trace offset -50
trace scale 0.03
weight scale 50

Table D.2: Parameters of calibrartion, neuron dynamics, network and training
used to produce the initial training results with hardware ITL on the Yin-Yang
dataset using EventProp (EP) and surrogate gradients (SG) for gradient estimation,
displayed in fig. 5.7.
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Parameter EeventProp / Surrogate Gradient

input size 5
hidden size 120
output size 3
weight init [mean, stdev]

hidden [1.0, 0.4]
output [0.01, 0.04]

⌧m, ⌧s 0.01
dt [⌧s] 0.01
tbias [⌧s] 0
tearly [⌧s] 0
tlate [⌧s] 4
tsim [⌧s] 6

training epochs 300
batch size 50 / 100
optimizer Adam
Adam parameter � (0.9, 0.999)
Adam parameter ✏ 10�8

learning rate 0.0005 / 0.001
lr-scheduler StepLR
lr-scheduler step size 50
lr-scheduler � 0.5
readout reg. 0.0004
SG parameter ↵ - / 150

Table D.3: Parameters of neuron dynamics, network and training used to produce
the training results, after appliying modifications from section 5.4.4, in simulation
on the Yin-Yang dataset using EventProp (EP) and surrogate gradients (SG) for
gradient estimation, displayed in fig. 5.10 and table 5.2.
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D Training Parameters

Parameter EeventProp / Surrogate Gradient

Calibration

⌧m, ⌧s 6 µs
⌧r 2 µs
leak 80
reset 80
threshold 150
i-synin-gm 500
synapse-dac-bias 1000

Experiment

input size 25
hidden size 120
output size 3
weight init [mean, stdev]

hidden [0.2, 0.2] / [0.001, 0.15]
output [0.01, 0.04] / [0.0, 0.1]

⌧m, ⌧s 6 µs
dt 0.5 µs
tshift �2 µs
tbias 2 µs
tearly 2 µs
tlate 26 µs
tsim 36 µs

training epochs 300
batch size 50 / 100
optimizer Adam
Adam parameter � (0.9, 0.999)
Adam parameter ✏ 10�8

lr-scheduler StepLR
lr-scheduler step size 50
lr-scheduler � 0.5
learning rate 0.0005 / 0.001
SG parameter ↵ - / 150
readout reg. 0.0004

trace offset -48
trace scale 0.0145
weight scale figs. D.1 and D.2

Table D.4: Parameters of calibration, neuron dynamics, network and training used
to produce the training results, after appliying modifications from section 5.4.4,
with hardware ITL on the Yin-Yang dataset using EventProp (EP) and surrogate
gradients (SG) for gradient estimation, displayed in fig. 5.10 and table 5.2. The
same weight scale was used for EP and SG training, but was adjusted depending on
the used chip setup.
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Figure D.1: Weight scaling measurement on setup W66F0. The scaling factor from
software to hardware is asw/ahw = 69.1.

Figure D.2: Weight scaling measurement on setup W66F3. The scaling factor from
software to hardware is asw/ahw = 74.58.
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D Training Parameters

Parameter EventProp

input time constant ⌧in 8⇥ 10�6

input threshold #in 0.2

input size 256
hidden size 246
output size 10
hidden weight init [0.05, 0.1][mean, stdev]

⌧m, ⌧s [a.u.] 6⇥ 10�6

dt [a.u.] 5⇥ 10�7

tsim [a.u.] 2⇥ 10�5

training epochs 50
batch size 25
optimizer Adam
Adam parameter � (0.9, 0.999)
Adam parameter ✏ 10�8

lr-scheduler StepLR
lr-scheduler step size 1
lr-scheduler � 0.97
learning rate 0.0015
readout regularization 0.01

dropout 0 / 0.1
random rotation 0� / 10�

Table D.5: Parameters of neuron dynamics, network and training used to produce
the results in simulation on the downscaled MNIST16x16 dataset using EventProp
for gradient estimation. The achieved results are listed in table 5.3. Results of
this work are given for models trained either without or with dropout and rotation
(settings separated by “/”).
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E Gradient Distribution
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Figure E.1: Layer-specific gradient distribution for unscaled and scaled EventProp
and with surrogate gradients. The distribution of gradients observed in the hidden
(blue) and output layer (orange) during BSS-2 ITL training are shown for Event-
Prop using the true gradient (left) in eq. (2.48), for the gradients estimated with
EventProp and scaled by ⌧�1

s (center), and for estimation using surrogate gradients
(right).

91





F Software State

Experiments conducted in this thesis used the singularity [Kurtzer et al. 2017]
container /containers/stable/2022-11-28_1.img and dls app. Experiments on
the Yin-Yang dataset used the software state in table F.1, MNIST experiment the
state in table F.2.
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