
hxtorch.snn: Machine-learning-inspired Spiking Neural Network
Modeling on BrainScaleS-2

Philipp Spilger ∗

Kirchhoff-Institute for Physics,
Heidelberg University
Heidelberg, Germany

pspilger@kip.uni-heidelberg.de

Elias Arnold∗
Kirchhoff-Institute for Physics,

Heidelberg University
Heidelberg, Germany

Luca Blessing
Kirchhoff-Institute for Physics,

Heidelberg University
Heidelberg, Germany

Christian Mauch
Kirchhoff-Institute for Physics,

Heidelberg University
Heidelberg, Germany

Christian Pehle
Kirchhoff-Institute for Physics,

Heidelberg University
Heidelberg, Germany

Eric Müller
European Institute for Neuromorphic
Computing, Heidelberg University

Heidelberg, Germany

Johannes Schemmel
Kirchhoff-Institute for Physics,

Heidelberg University
Heidelberg, Germany

ABSTRACT
Neuromorphic systems require user-friendly software to support
the design and optimization of experiments. In this work, we ad-
dress this need by presenting our development of amachine learning-
based modeling framework for the BrainScaleS-2 neuromorphic
system. This work represents an improvement over previous ef-
forts, which either focused on the matrix-multiplication mode of
BrainScaleS-2 or lacked full automation. Our framework, called
hxtorch.snn, enables the hardware-in-the-loop training of spik-
ing neural networks within PyTorch, including support for auto
differentiation in a fully-automated hardware experiment workflow.
In addition, hxtorch.snn facilitates seamless transitions between
emulating on hardware and simulating in software. We demon-
strate the capabilities of hxtorch.snn on a classification task using
the Yin-Yang dataset employing a gradient-based approach with
surrogate gradients and densely sampled membrane observations
from the BrainScaleS-2 hardware system.

KEYWORDS
hardware abstraction, modeling, accelerator, analog computing,
neuromorphic

1 INTRODUCTION
Modern high-performance computing (HPC) environments speed
up individual workloads with domain-specific hardware accelera-
tors [9]. However, successfully establishing novel computing para-
digms depends as much on the availability of a computing substrate
as it does on the software infrastructure that provides the means to
work with that substrate. In particular, the ‘programming model’ of

∗Contributed equally.

neuromorphic hardware is a very different approach to data process-
ing than conventional systems [22, 23]. Recently, machine-learning-
inspired training methods, and in particular gradient-based opti-
mization of spiking neural networks (SNNs), have become increas-
ingly popular [4, 13, 14, 24, 32].

We introduce hxtorch.snn, a PyTorch [25] wrapper library
for the accelerated mixed-signal neuromorphic hardware system
BrainScaleS-2 (BSS-2) [26]. We discuss and demonstrate our imple-
mentation using a simple benchmark task trained with a gradient-
based method and the BSS-2 hardware system in the loop. The
implementation described here has also been used in a real-world
application [2] and will serve as the basis for future experiments.

Here we use the gradient estimation method introduced in [8],
which uses the unrolled computational graph determined by the
forward pass, to perform gradient estimation by injecting hardware
voltage measurements and spikes in the backward pass. The overall
library, however, is agnostic to this particular choice of gradient
estimation method. Other approaches can be implemented, such
as using a closed-form analytical formula [16] or the EventProp
algorithm [38]. To support this generic framework for gradient esti-
mation, we implement utilities for interpolation and normalization
of hardware measurements, conversion of spike observations into
dense tensors, and procedures for weight quantization.

Existing approaches to interfacing with Neuromorphic hardware
tend to favor abstractions familiar to neuro-scientists, such as pop-
ulations and projections [3, 10, 20, 28, 29] and only a few supported
gradient-based methods [17, 21]. Recently several libraries for ma-
chine learning with spiking neurons in PyTorch have appeared,
among them, Norse [27], Lava [18], NxTF [30], snnTorch [12], and
SpikingJelly [15].

The BSS-2 mixed-signal neuromorphic hardware emulates net-
works of spiking neurons time-continuously in analog circuits [26].
Each of the 512 adaptive exponential integrate-and-fire (AdEx) [7]
neuron compartments on BSS-2 are individually parameterized and,
in particular, can be configured to resemble leaky-integrate and



Philipp Spilger, Elias Arnold, Luca Blessing, Christian Mauch, Christian Pehle, Eric Müller, and Johannes Schemmel

fire (LIF) and leaky integrator (LI) neuron dynamics. They receive
input stimuli from a column of 256 exponential synapses in the
synapse matrix with adjustable 6-bit weights. Configuration of the
on-chip routing mechanism and the synapse matrix allows address-
ing the neurons’ digital spike events to target synapses and, thus,
the realization of arbitrary topologies. In addition, artificial neural
networks (ANNs) can be emulated by using the neurons in a non-
spiking mode, which allows implementing analog vector-matrix
multiplications [34, 37]. The recordings of spike events and mem-
brane potentials, sampled in parallel via a columnar ADC (CADC),
are accessible by the host computer and can be incorporated, e.g., for
weight update computation in a hardware-in-the-loop (ITL) [31]
fashion. A field-programmable gate array (FPGA) serves as the
real-time experiment master and as interconnect between the neu-
romorphic chip and a host computer.

We use a layered software approach to abstract hardware us-
age [22]. At the lowest level, a transport layer and an instruction
set of commands to the FPGA, which execute sequentially, are
employed. Above, individual hardware entity configuration, e.g.,
for each neuron, is abstracted into containers residing in a uni-
form address space for type safety and to remove requiring knowl-
edge about the memory layout. Using this hardware abstraction,
a data-flow-graph-based experiment notation, grenade, separates
network topology specification, temporal evolution description, and
execution to support the accelerated real-time nature of the neuro-
morphic hardware. On top, front ends for spiking and non-spiking
experiments exist. Spiking neural networks can be described in
the back-end-agnostic language PyNN [10] targeting computational
neuroscience. For offloading ANNs, i.e. analog vector-matrix mul-
tiplications, a thin PyTorch machine-learning adapter, hxtorch,
was developed [33], separating hardware interaction and machine-
learning framework. Similarly, this work adds support for describ-
ing SNNs in this machine-learning framework yielding access to
training, inference, and data alteration integrated into PyTorch’s
ecosystem.

2 METHODS
For developing a machine-learning framework supporting the em-
ulation of SNNs on BSS-2, we follow the same structure as for
the developed ANN machine-learning adaptor hxtorch [33]. Due
to its vast community, we continue to build our front end upon
the PyTorch framework. Given the accelerated time-continuous
nature of the neuromorphic hardware, network topology specifi-
cation, temporal evolution and execution need to be separated in
the machine-learning front end. In particular, individual numeri-
cal operations in a time-grid-based simulation cannot be trivially
identified with dynamics on the neuromorphic substrate.

We use the data-flow-graph-based experiment notation [22] as
the back end. The machine-learning front end then needs to handle
data conversion to and from PyTorch tensors and wrapping of
network topology descriptions in a PyTorch-compatible notation.
Therefore, hardware interaction and machine-learning framework
adaptation are separated.

In PyTorch, models are eagerly executed by the computation of a
layer’s result when calling its forward method, which implies that
the network builds up incrementally. However, the emulation of

SNNs in physical time requires knowledge of the complete network
topology before experiment execution, to derive a corresponding
hardware configuration. Therefore, an additional separation is re-
quired.

Since training neural networks benefits from the auto differ-
entiation provided by the machine-learning framework, we aim
to incorporate this into the network description. Within PyTorch,
we train with the hardware in the loop by emulating the forward
pass on BSS-2 and injecting its results in the backward pass on the
host computer. Moreover, the convenience of describing models
by a composition of modules, i.e. network layers, should be main-
tained and allows for defining network topologies with recurrently
connected layers.

For developing a model for the neuromorphic hardware from
scratch or a reference model, iterative development is beneficial.
Exchanging a simulated model with emulation on BSS-2 requires
parameter translations, e.g., weight scaling and adaptation to lim-
ited resolution on hardware or neuron model parameter translation
to technical hardware parameters. A seamless comparison to and
replacement of (parts of) the network by (custom) simulation facili-
tates this. It also enables hybrid networks, for example, by adding
the possibility to introduce layers not representable on the neuro-
morphic hardware, e.g., neuron models not present on hardware
or other arbitrary numerical operations on intermediate results,
while retaining the neuromorphic hardware’s acceleration for the
representable parts.

Lastly, the collection of hardware observables, such as membrane
potential recordings or spike trains, shall be adjustable per layer
depending on the training algorithms. Importantly, the transforma-
tion of acquired hardware observables into PyTorch data structures
needs to be fully customizable to be best-tailored for the training
algorithm at hand, e.g., the transition of sparse time-series data
to a dense time grid, the interpolation of sparse membrane mea-
surements, or the mapping of synapse weight parameters between
PyTorch and BSS-2 can impact the network’s dynamics as well as
the learning process.

3 RESULTS
The software library hxtorch.snn integrates modeling SNNs on
BSS-2 into the PyTorch ecosystem. It extends the thin wrapper
library hxtorch, which previously only targeted modeling ANNs.

Figure 1 shows the library structure, experiment description,
and constitution. Similarly to ANN models in PyTorch, we describe
constituents of a SNN model like synapse and neuron layers via
custom modules derived from HXModule, containing parameters
and representing the corresponding hardware entity. We want to
retain PyTorch’s eager model construction and execution inter-
face by successively applying modules’ forward(input) calls, but
we need to separate the construction of the complete model from
its execution on the hardware. Therefore, we only register each
module’s invocation into an Instance, passed to each module on
its construction. Instead of returning the actual results, we return
Handle-typed promises of future results. The instance is then sepa-
rately executable, and the promises are filled with the result data of
the respective modules after the instance’s execution. An instance



Machine-learning-inspired Spiking Neural Network Modeling on BrainScaleS-2

A B

BSS-2

PyTorch Model

init
instance
func=LIF

post_process

instance
func=LIF

post_process

forward

x1 x2 x3 x4

Syn LIF Syn LI

Loss

Grad
Tensor

PyTorch graph

Handle

HXModule

Instance
Create hardware
experiment and

execute

run

post_process
to torch.Tensor

ins = hxtorch.snn.Instance()

syn1 = hxtorch.snn.Synapse(ins, ...)

lif1 = hxtorch.snn.LIF(ins, ...)

syn2 = hxtorch.snn.Synapse(ins, ...)

li2 = hxtorch.snn.LI(ins, ...)

x1 = syn1(input)

x2 = lif1(x1)

x3 = syn2(x2)

x4 = li2(x3)

hxtorch.snn.run(ins, ...)

loss = f(x4)

loss.backward ()

Figure 1: Software application programming interface (API) of hxtorch.snn shown exemplarily for the feed-forward network
used in the classification of the Yin-Yang dataset [19], where A depicts the data flow in the model and with BSS-2 and B displays
the corresponding source code. The network consists of two synapse layers and two LI/LIF neuron layers and is associated to
an instance to be executed on hardware. Execution is triggered explicitly via the run function and the handles x, y and loss
only afterwards carry their result data from the execution. This then in particular allows gradient calculation via backward
functions attached to the handles’ data.

represents one hardware experiment execution. Upon explicit ex-
ecution of an instance via run, the network topology is extracted
from the registered modules and their invocations and converted
into a graph-based description, which is then mapped to a hardware
experiment description and executed on hardware. The resulting
data is transformed into PyTorch tensors, post-processed via a cus-
tomizable method, and finally annotated onto the corresponding
data handles, thereby being accessible by the user. Since instances
of Instance only require hardware allocations upon execution,
multiple instances can coexist and be executed sequentially. This
allows interleaving hardware-executed model parts and simulated
parts as long as no inter-instance recurrence is required.

The model construction via network entity module invocations
allows defining recurrent models by associating each module in-
stance with a network entity and using invocations to connect
them, cf. listing 1.

Listing 1: Construction of a recurrent network.When reusing
the same network entity nrn, a recurrent connection is cre-
ated.
nrn = hxtorch.snn.LIF (...)

syn1 = hxtorch.snn.Synapse (...)

syn2 = hxtorch.snn.Synapse (...)

x = syn1(input)

x = nrn(x) # feed -forward

x = syn2(x)

x = nrn(x) # recurrence

Upon construction, each module is equipped with a custom
PyTorch-differentiable function, either directly as Autograd.Func-
tion or via a function defining both a simulated forward pass and
an implicit backward pass. In the first case, hxtorch.snn injects
the hardware data implicitly to be used in the backward function,
and in the second case, hardware observables are provided as an
additional function argument. This allows annotating a backward
pass to the handle data tensors such that PyTorch’s auto differenti-
ation can seamlessly backpropagate gradients based on hardware
observations. When a simulated forward pass is provided, this mod-
ule can also be used without hardware usage as long as it does
not participate in a cyclic sub-network. This greatly aids network
development and translation onto the hardware, since (parts of) a
simulated reference network can gradually be interchanged with
and compared to hardware entities within the same library.

Currently, hxtorch.snn supports LIF and LI neuron layers and
has access to spike times and membrane voltage recordings of
individual hardware neurons. To support the full extent of BSS-2
neuron dynamics, a forward and backward PyTorch implementation
of the AdEx neuron model is planned.

A dropout module provides additional machine learning func-
tionality by applying a batch-wise spiking mask to a preceding
neuron layer and disabling the spike output on hardware accord-
ingly.

Synaptic connections on BSS-2 are exposed to PyTorch as a
Synapse module, representing a projection between neuron layers.
This provides a framework for recording of additional synapse-
related observables, such as spike-time correlation sensor record-
ings.



Philipp Spilger, Elias Arnold, Luca Blessing, Christian Mauch, Christian Pehle, Eric Müller, and Johannes Schemmel

section duration [s] rel. duration [%]

network emulation duration 0.3 1.0
additional hardware runtime 7.5 26.3
additional back-end overhead 4.7 16.5
data transform to PyTorch 13.1 45.7
additional front-end overhead 2.5 8.6
gradient calculation 0.8 2.9

total duration 28.7 100.0
Table 1: Runtime performance of a training epoch of the
Yin-Yang experiment consisting of 64 batches to 75 samples
using a host computer with an AMD Ryzen 7 3800X central
processing unit (CPU). While the emulated network dura-
tion falls two orders of magnitude behind the total training
runtime, the majority of the additional hardware and back-
end time consists of the analog-to-digital converter (ADC)
neuron membrane potential readout. The data transforma-
tion to PyTorch tensors is dominated by interpolation of
the sparse-in-time ADC data onto a dense time grid. The ad-
ditional front-end overhead and gradient calculation don’t
contribute significantly to the total training duration.

As a demonstration of our framework we consider the low-
dimensional Yin-Yang classification task [19] visualized in Fig-
ure 2A. It consists of three classes yin, yang, and dots, each defining
an area on the 2-dimensional 𝑥𝑦-plane. Its 𝑖-th sample is a point
𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖 ), randomly drawn from the corresponding areas and
labeled accordingly. As input to the SNN, the sample 𝒙𝑖 is trans-
lated to spike times of five input neurons [16, 19]. As shown in
Figure 2B the point’s values, 𝑥𝑖 and 𝑦𝑖 , in each direction, as well as
their inverse, 1 − 𝑥𝑖 and 1 − 𝑦𝑖 , are scaled linearly to spike times in
the time window

[
𝑡early, 𝑡late

]
. In addition, a bias spike shortly after

𝑡early is inserted to increase the network activity which is observed
for the duration 𝑇 . A hidden layer constitutes 120 LIF neurons in
our SNN on BSS-2 integrates the input events and projects spikes
itself onto a readout layer of 3 LI neurons, each corresponding to
one class, as indicated by Figure 2A. This allows it to infer a class
decision 𝑘𝑖 for sample 𝒙𝑖 by interpreting the maximum membrane
value of the output neurons 𝑣𝑘 over time as a score for the corre-
sponding class, i.e. 𝑘 = argmax𝑘 (max𝑡 𝑣𝑘 (𝑡)). For each sample, the
SNN is emulated for𝑇 = 60 µs. We use the cross-entropy loss on the
max-over-time values 𝑠𝑘 = max𝑡 𝑣𝑘 as the objective function, and
SuperSpike [24] surrogate gradients for training. In hxtorch.snn,
the PyTorch model is defined as outlined in Figure 1B. The upper
plot in Figure 2D exemplifies the output traces while inferring a
single sample. The membrane voltage of the output neuron corre-
sponding to the sample’s class has the maximum value over time.
The lower plot depicts the achieved accuracy of the SNN on BSS-2
over epochs; it reaches about 94.63 ± 0.7% (standard deviation over
15 seeds).

4 DISCUSSION
We presented the library hxtorch.snn to describe SNN models and
their emulation on BSS-2 in the PyTorch ecosystem. It integrates

the auto-differentiation capabilities of PyTorch, providing access to
the same training methodology as for ANNs. Separation of network
construction and emulation allows taking full advantage of the em-
ulation speed-up of BSS-2 and the description of feed-forward and
recurrent network topologies. The API is designed for user-defined
extension of neuron and synapse types, including customization of
the backward pass while removing the need for expert knowledge
of the hardware. Moreover, we showcased the library by using it to
classify the YinYang dataset [19].

The Yin-Yang samples are encoded in spike events as proposed
in [19] and fed into an SNN with one hidden LIF layer followed
by a LI readout layer. When emulated on BSS-2, the SNN achieves
a classification accuracy of 94.63 ± 0.7% when using a max-over-
time loss. Compared to an accuracy of 95.0 ± 0.9% achieved on
BSS-2 in [16], where the authors use spiking output neurons and
an analytical solution for the gradient to optimize the model, our
accuracy is only marginally lower. This verifies the design choices
of our machine learning layer hxtorch.snn and demonstrates the
implementation successfully.

The source code for the demonstration experiment, hxtorch.snn,
and the underlying open-source software stack is available on-
line [11, 36]. As part of the EBRAINS research infrastructure [1],
we operate BSS-2 as a service allowing researchers to interactively
conduct experiments and research on the neuromorphic platform.
In [35] we provide and maintain a collection of experiments as
interactive learning material for the platform.

Table 1 evaluates the experiment runtime overhead of the soft-
ware. The surrogate-gradient-based training is dominated by data
transformations, mostly from membrane measurement data. How-
ever, more data-sparse training algorithms, such as EventProp [38],
can avoid much of this conversion overhead. To further optimize
performance, adding support for event-based numerical codeswould
also be beneficial, as it would allow us to avoid converting to a time
grid. Here, for example, a port of hxtorch.snn to jax [6] could offer
advantages based on increased flexibility yielding opportunities for
more efficient data structures and codes.

The backward functions currently assigned to eachmodule repre-
sent the entire backward dynamics of the module over time. Since
this is a constraint for recurrent topologies, we aim to incorpo-
rate algorithms and interfaces that allow to either assign a single
backward function to a defined sub-network (and forward in mock
mode) or, for a defined time grid, assign each module a function rep-
resenting one integration step and then build the backward graph
by implicit time-unrolling in an outer loop (and forward in mock
mode). Additionally, we plan to provide support for online learning
rules like the e-prop learning method [5] involving code gener-
ation for the embedded single instruction, multiple data (SIMD)
microprocessors on BSS-2.

While currently one Instance instance corresponds to a single
hardware experiment, we want to support mixed networks that
are only partially executed on hardware by implicitly identifying
the sub-networks to run on BSS-2 and execute the remaining parts
in software. In addition, we will implement the ability to execute
layers partially in order to allow the use of layer sizes that cannot be
mapped to BSS-2 due to limited neuron resources. This will enable
the pipelined and parallel execution of large layers on multiple
chips. Partial functionality of our hxtorch.snnwill be consolidated



Machine-learning-inspired Spiking Neural Network Modeling on BrainScaleS-2

𝑡early 𝑡late 𝑇 = 60 µs
𝑥

𝑦

1 − 𝑥

1 − 𝑦

bias

B
0.0 0.5 1.0

𝑦

0.0

0.5

1.0
𝑥

A

bias
𝑥

𝑦

1 − 𝑥

1 − 𝑦

Input Spikes 120 LIF Readout LI

“yang”
“yin”
“dots”

C

0 10 20 30
𝑡 [µs]

0

2

𝑣 𝑘
[a
.u
.]

yang
yin
dots

0 100 200 300
epochs

0.4

0.6

0.8

1.0

te
st
ac
cu
ra
cy

94.63 %

D

Figure 2: (A) Example samples from the Yin-Yang dataset [19]. The dataset consists of samples defined on the 𝑥𝑦-plane, each
assigned to one of three nonlinear separable classes yin (orange), yang (blue), and dots (green). (B) The spike encoding of the 2D
point from the Yin-Yang dataset in A depicted as a red star. Each dimension of the point and an inverse of it is translated to a
spike event. Additionally, a bias spike is added to increase network activity. (C) The SNN topology used to classify the Yin-Yang
dataset. An input layer projects the spike-encoded point onto a hidden layer consisting of LIF neurons. A LI readout layer
receives the spike events of the hidden layer. Their maximal membrane values over time are used to infer a decision. (D) The
upper plot depicts the analog output membrane voltages while inferring the red sample in A. In the lower plot the classification
accuracy is shown over the test epochs. On BSS-2, the SNN achieves an accuracy of 94.63 ± 0.7%. The code is available as an
interactive demo [36].

in Norse [27], and will serve as the mock backend, provide spike
encoding and decoding schemes, and helper functions.

Overall, hxtorch.snn is a convenient and flexible tool for im-
plementing and training SNN models on BSS-2, utilizing the auto-
differentiation capabilities of PyTorch to enable machine-learning-
inspired training methods. With further optimization and the sup-
port for the upcoming multi-chip systems, it has the potential to
greatly facilitate and accelerate machine-learning-inspired SNN
research and experimentation.

ACKNOWLEDGMENTS
The authors would like to thank the BrainScaleS software team
for fruitful discussions on software design, the participants of the
BrainScaleS-2 user meeting for their continuous support, espe-
cially Sebastian Billaudelle and Johannes Weis for sharing their
hardware expertise, and all other current and former members of
the Electronic Vision(s) research group who contributed to the
BrainScaleS-2 neuromorphic platform.

This work has received funding from the ECHorizon 2020 Frame-
work Programme under grant agreements 785907 (HBP SGA2)
and 945539 (HBP SGA3), the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy EXC 2181/1-390900948 (the Heidelberg STRUCTURES Ex-
cellence Cluster), the German Federal Ministry of Education and
Research under grant number 16ES1127 as part of the Pilotinnova-
tionswettbewerb ‘Energieeffizientes KI-System’, from the Manfred
Stärk Foundation, and from the Lautenschläger-Forschungspreis
2018 for Karlheinz Meier.

AUTHOR CONTRIBUTIONS
We give contributions in the CRediT (Contributor Roles Taxonomy)
format: PS & EA: Conceptualization, visualization, methodology,

software, resources, writing — original draft, writing — reviewing
& editing; LB: Investigation, validation, visualization, writing —
original draft, writing — reviewing & editing; CM: Methodology,
software, resources, writing — original draft, writing — reviewing
& editing; CP: Conceptualization, methodology, writing — origi-
nal draft, writing — reviewing & editing; EM: Conceptualization,
methodology, software, resources, writing — original draft, writ-
ing — reviewing & editing, supervision; JS: Supervision, funding
acquisition, writing — reviewing & editing.

REFERENCES
[1] 2022. EBRAINS Research Infrastructure. https://ebrains.eu
[2] Elias Arnold, Georg Böcherer, Eric Müller, Philipp Spilger, Johannes Schem-

mel, Stefano Calabrò, and Maxim Kuschnerov. 2022. Spiking Neural Network
Equalization on Neuromorphic Hardware for IM/DD Optical Communication. In
European Conference on Optical Communication (ECOC) 2022. Optica Publishing
Group, Th1C.5. https://opg.optica.org/abstract.cfm?URI=ECEOC-2022-Th1C.5

[3] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C
Stewart, Daniel Rasmussen, Xuan Choo, Aaron Voelker, and Chris Eliasmith.
2014. Nengo: a Python tool for building large-scale functional brain models.
Frontiers in Neuroinformatics 7 (2014), 48.

[4] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, andWolf-
gang Maass. 2018. Long short-term memory and learning-to-learn in networks
of spiking neurons. Advances in neural information processing systems 31 (2018).

[5] Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj,
Robert Legenstein, andWolfgangMaass. 2020. A solution to the learning dilemma
for recurrent networks of spiking neurons. Nature Communications 11, 1 (2020),
3625. https://doi.org/10.1038/s41467-020-17236-y

[6] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2022. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

[7] R. Brette and W. Gerstner. 2005. Adaptive Exponential Integrate-and-Fire Model
as an Effective Description of Neuronal Activity. J. Neurophysiol. 94 (2005), 3637
– 3642. https://doi.org/10.1152/jn.00686.2005

[8] Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas
Grübl, Vitali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Strad-
mann, Johannes Weis, et al. 2022. Surrogate gradients for analog neuromorphic
computing. Proceedings of the National Academy of Sciences 119, 4 (2022).

https://ebrains.eu
https://opg.optica.org/abstract.cfm?URI=ECEOC-2022-Th1C.5
https://doi.org/10.1038/s41467-020-17236-y
http://github.com/google/jax
https://doi.org/10.1152/jn.00686.2005


Philipp Spilger, Elias Arnold, Luca Blessing, Christian Mauch, Christian Pehle, Eric Müller, and Johannes Schemmel

[9] William J. Dally, Yatish Turakhia, and SongHan. 2020. Domain-SpecificHardware
Accelerators. Commun. ACM 63, 7 (June 2020), 48–57. https://doi.org/10.1145/
3361682

[10] Andrew P. Davison, Daniel Brüderle, Jochen Eppler, Jens Kremkow, Eilif Muller,
Dejan Pecevski, Laurent Perrinet, and Pierre Yger. 2009. PyNN: a common
interface for neuronal network simulators. Front. Neuroinform. 2, 11 (2009).
https://doi.org/10.3389/neuro.11.011.2008

[11] Electronic Vision(s) Group. 2022. Open-Source Software. https://github.com/
electronicvisions/

[12] Jason K Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz, Girish
Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, andWei D Lu. 2021. Training
spiking neural networks using lessons from deep learning. arXiv preprint (2021).
arXiv:2109.12894 [cs.NE]

[13] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and
Dharmendra S Modha. 2015. Backpropagation for energy-efficient neuromorphic
computing. Advances in neural information processing systems 28 (2015).

[14] Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinaku-
mar Appuswamy, Alexander Andreopoulos, David J. Berg, Jeffrey L. McKinstry,
Timothy Melano, Davis R. Barch, Carmelo di Nolfo, Pallab Datta, Arnon Amir,
Brian Taba, Myron D. Flickner, and Dharmendra S. Modha. 2016. Convolutional
networks for fast, energy-efficient neuromorphic computing. Proceedings of the
National Academy of Sciences 113, 41 (2016), 11441–11446. https://doi.org/10.
1073/pnas.1604850113 arXiv:https://www.pnas.org/content/113/41/11441.full.pdf

[15] Wei Fang, Yanqi Chen, Jianhao Ding, Ding Chen, Zhaofei Yu, Huihui Zhou,
Timothée Masquelier, Yonghong Tian, and other contributors. 2020. SpikingJelly.
https://github.com/fangwei123456/spikingjelly.

[16] Julian Göltz, Laura Kriener, Andreas Baumbach, Sebastian Billaudelle, Oliver
Breitwieser, Benjamin Cramer, Dominik Dold, Ákos Ferenc Kungl, Walter Senn,
Johannes Schemmel, Karlheinz Meier, and Mihai A. Petrovici. 2021. Fast and
energy-efficient neuromorphic deep learning with first-spike times. Nature
Machine Intelligence 3, 9 (2021), 823–835. https://doi.org/10.1038/s42256-021-
00388-x

[17] Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel, Darpan T.
Sanghavi, Hava T. Siegelmann, and Robert Kozma. 2018. BindsNET: A Machine
Learning-Oriented Spiking Neural Networks Library in Python. Frontiers in
Neuroinformatics 12 (2018), 89. https://doi.org/10.3389/fninf.2018.00089

[18] Intel. 2021. Announcement of Loihi-2 and new software framework.
https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-
neuromorphic-loihi-2-lava-software.html https://github.com/lava-nc/.

[19] Laura Kriener, Julian Göltz, and Mihai A. Petrovici. 2022. The Yin-Yang Dataset.
In Neuro-Inspired Computational Elements Conference (Virtual Event, USA) (NICE
2022). Association for Computing Machinery, New York, NY, USA, 107–111.
https://doi.org/10.1145/3517343.3517380

[20] Chit-Kwan Lin, Andreas Wild, Gautham N Chinya, Yongqiang Cao, Mike Davies,
Daniel M Lavery, and Hong Wang. 2018. Programming Spiking Neural Networks
on Intel’s Loihi. Computer 51, 3 (2018), 52–61.

[21] Dylan R. Muir, Felix Bauer, and Philipp Weidel. 2019. Rockpool Documentation.
https://doi.org/10.5281/zenodo.3773845

[22] Eric Müller, Elias Arnold, Oliver Breitwieser, Milena Czierlinski, Arne Emmel,
Jakob Kaiser, Christian Mauch, Sebastian Schmitt, Philipp Spilger, Raphael Stock,
Yannik Stradmann, Johannes Weis, Andreas Baumbach, Sebastian Billaudelle,
Benjamin Cramer, Falk Ebert, Julian Göltz, Joscha Ilmberger, Vitali Karasenko,
Mitja Kleider, Aron Leibfried, Christian Pehle, and Johannes Schemmel. 2022. A
Scalable Approach to Modeling on Accelerated Neuromorphic Hardware. Front.
Neurosci. 16 (2022). https://doi.org/10.3389/fnins.2022.884128

[23] Eric Müller, Sebastian Schmitt, Christian Mauch, Sebastian Billaudelle, Andreas
Grübl, Maurice Güttler, Dan Husmann, Joscha Ilmberger, Sebastian Jeltsch, Jakob
Kaiser, Johann Klähn, Mitja Kleider, Christoph Koke, José Montes, Paul Müller,
Johannes Partzsch, Felix Passenberg, Hartmut Schmidt, Bernhard Vogginger,
Jonas Weidner, Christian Mayr, and Johannes Schemmel. 2022. The Operating
System of the Neuromorphic BrainScaleS-1 System. Neurocomputing 501 (2022),
790–810. https://doi.org/10.1016/j.neucom.2022.05.081 arXiv:2003.13749 [cs.NE]

[24] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. 2019. Surrogate
gradient learning in spiking neural networks: Bringing the power of gradient-
based optimization to spiking neural networks. IEEE Signal Processing Magazine
36, 6 (2019), 51–63. https://doi.org/10.1109/MSP.2019.2931595

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[26] Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian
Schreiber, Yannik Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, and

Johannes Schemmel. 2022. The BrainScaleS-2 Accelerated Neuromorphic System
with Hybrid Plasticity. Frontiers in Neuroscience 16 (2022). https://doi.org/10.
3389/fnins.2022.795876 arXiv:2201.11063 [cs.NE]

[27] Christian Pehle and Jens Egholm Pedersen. 2021. Norse — A deep learning
library for spiking neural networks. https://doi.org/10.5281/zenodo.4422025
Documentation: https://norse.ai/docs/.

[28] Oliver Rhodes, Petruţ A. Bogdan, Christian Brenninkmeijer, Simon Davidson,
Donal Fellows, Andrew Gait, David R. Lester, Mantas Mikaitis, Luis A. Plana,
Andrew G. D. Rowley, Alan B. Stokes, and Steve B. Furber. 2018. sPyNNaker: A
Software Package for Running PyNN Simulations on SpiNNaker. Frontiers in
Neuroscience 12 (2018), 816. https://doi.org/10.3389/fnins.2018.00816

[29] AndrewG. D. Rowley, Christian Brenninkmeijer, Simon Davidson, Donal Fellows,
Andrew Gait, David R. Lester, Luis A. Plana, Oliver Rhodes, Alan B. Stokes, and
Steve B. Furber. 2019. SpiNNTools: The Execution Engine for the SpiNNaker
Platform. Frontiers in Neuroscience 13 (2019), 231. https://doi.org/10.3389/fnins.
2019.00231

[30] Bodo Rueckauer, Connor Bybee, Ralf Goettsche, Yashwardhan Singh, Joyesh
Mishra, and Andreas Wild. 2021. NxTF: An API and Compiler for Deep Spiking
Neural Networks on Intel Loihi. arXiv preprint (Jan. 2021).

[31] Sebastian Schmitt, Johann Klähn, Guillaume Bellec, Andreas Grübl, Maurice
Güttler, Andreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Se-
bastian Jeltsch, Mitja Kleider, Christoph Koke, Alexander Kononov, Christian
Mauch, Eric Müller, Paul Müller, Johannes Partzsch, Mihai A. Petrovici, Bern-
hard Vogginger, Stefan Schiefer, Stefan Scholze, Vasilis Thanasoulis, Johannes
Schemmel, Robert Legenstein, Wolfgang Maass, Christian Mayr, and Karlheinz
Meier. 2017. Neuromorphic Hardware In The Loop: Training a Deep Spiking
Network on the BrainScaleS Wafer-Scale System. Proceedings of the 2017 IEEE
International Joint Conference on Neural Networks (IJCNN) (2017), 2227–2234.
https://doi.org/10.1109/IJCNN.2017.7966125

[32] Sumit Bam Shrestha and Garrick Orchard. 2018. SLAYER: Spike Layer Error
Reassignment in Time. In Advances in Neural Information Processing Systems,
S. Bengio, H.Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf

[33] Philipp Spilger, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch, Chris-
tian Pehle, Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Sebastian
Schmitt, Timo C. Wunderlich, Yannik Stradmann, and Johannes Schemmel. 2020.
hxtorch: PyTorch for BrainScaleS-2 — Perceptrons on Analog Neuromorphic
Hardware. In IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge,
and Mobile for Embedded Machine Learning. Springer International Publishing,
Cham, 189–200. https://doi.org/10.1007/978-3-030-66770-2_14

[34] Yannik Stradmann, Sebastian Billaudelle, Oliver Breitwieser, Falk Leonard Ebert,
Arne Emmel, Dan Husmann, Joscha Ilmberger, Eric Müller, Philipp Spilger, Jo-
hannes Weis, and Johannes Schemmel. 2022. Demonstrating Analog Inference
on the BrainScaleS-2 Mobile System. IEEE Open Journal of Circuits and Systems
3 (2022), 252–262. https://doi.org/10.1109/OJCAS.2022.3208413

[35] BrainScaleS-2 Team. 2022. hxtorch.snn: Yin-Yang Demo. https://
electronicvisions.github.io/documentation-brainscales2

[36] BrainScaleS-2 Team. 2022. Source code for the hxtorch.snn Yin-Yang
Demo. https://github.com/electronicvisions/hxtorch/tree/nice2023_yydemo/
src/pyhxtorch/hxtorch/lit_yinyang

[37] Johannes Weis, Philipp Spilger, Sebastian Billaudelle, Yannik Stradmann, Arne
Emmel, Eric Müller, Oliver Breitwieser, Andreas Grübl, Joscha Ilmberger, Vitali
Karasenko, Mitja Kleider, Christian Mauch, Korbinian Schreiber, and Johannes
Schemmel. 2020. Inference with Artificial Neural Networks on Analog Neuro-
morphic Hardware. In IoT Streams for Data-Driven Predictive Maintenance and
IoT, Edge, and Mobile for Embedded Machine Learning. Springer International
Publishing, Cham, 201–212. https://doi.org/10.1007/978-3-030-66770-2_15

[38] Timo C Wunderlich and Christian Pehle. 2021. Event-based backpropagation
can compute exact gradients for spiking neural networks. Scientific Reports 11, 1
(2021), 1–17. https://doi.org/10.1038/s41598-021-91786-z

https://doi.org/10.1145/3361682
https://doi.org/10.1145/3361682
https://doi.org/10.3389/neuro.11.011.2008
https://github.com/electronicvisions/
https://github.com/electronicvisions/
https://arxiv.org/abs/2109.12894
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1073/pnas.1604850113
https://arxiv.org/abs/https://www.pnas.org/content/113/41/11441.full.pdf
https://github.com/fangwei123456/spikingjelly
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.1038/s42256-021-00388-x
https://doi.org/10.3389/fninf.2018.00089
https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-neuromorphic-loihi-2-lava-software.html
https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-neuromorphic-loihi-2-lava-software.html
https://github.com/lava-nc/
https://doi.org/10.1145/3517343.3517380
https://doi.org/10.5281/zenodo.3773845
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.1016/j.neucom.2022.05.081
https://arxiv.org/abs/2003.13749
https://doi.org/10.1109/MSP.2019.2931595
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.3389/fnins.2022.795876
https://arxiv.org/abs/2201.11063
https://doi.org/10.5281/zenodo.4422025
https://doi.org/10.3389/fnins.2018.00816
https://doi.org/10.3389/fnins.2019.00231
https://doi.org/10.3389/fnins.2019.00231
https://doi.org/10.1109/IJCNN.2017.7966125
https://proceedings.neurips.cc/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.1109/OJCAS.2022.3208413
https://electronicvisions.github.io/documentation-brainscales2
https://electronicvisions.github.io/documentation-brainscales2
https://github.com/electronicvisions/hxtorch/tree/nice2023_yydemo/src/pyhxtorch/hxtorch/lit_yinyang
https://github.com/electronicvisions/hxtorch/tree/nice2023_yydemo/src/pyhxtorch/hxtorch/lit_yinyang
https://doi.org/10.1007/978-3-030-66770-2_15
https://doi.org/10.1038/s41598-021-91786-z

	Abstract
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	Acknowledgments
	References

