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Abstract

BrainScaleS-2 (BSS-2), a neuromorphic platform developed at Heidelberg University, suc-
cessfully demonstrates a hybrid in-memory computing architecture. At the interface be-
tween the analog and digital domains, a multichannel, parallel analog-to-digital converter
(ADC) enables accessing the rich analog neuron and synapse dynamics from the digital
surrounding. This ADC will prospectively be replaced by a new successive-approximation
ADC (SAR ADC) operating at Nyquist-rate. For this purpose, the present work presents
the design process of a mixed-signal simulation framework, the digital SAR logic and the
required comparator module including an adjustable (5 bit) capacitive reference genera-
tor. The comparator, based on a double-tail sense amplifier, requires 298 ps and 80 fJ

for each decision in post-layout simulations at an input voltage difference of 1mV. In
its fast mode (7 bit), the SAR ADC achieves a sampling rate of 125MS/s in pre-layout
simulations with a maximum differential non-linearity (DNL) of 0.21 LSB and an energy
consumption of 4.01 pJ per conversion. In its precise mode (8 bit), the ADC still achieves
a sampling rate of 43.7MS/s with a maximum DNL of 0.50 LSB and energy consump-
tion of 4.01 pJ per conversion. Post-layout simulations of the entire ADC suggest the
finalization of the prototype as well.
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Zusammenfassung

BrainScaleS-2 (BSS-2), eine an der Universität Heidelberg entwickelte Plattform, de-
monstriert erfolgreich eine hybride In-Memory Rechenarchitektur. An der Schnittstelle
zwischen der analogen und der digitalen Domaine ermöglicht ein vielkanaliger, paralleler
Analog-digital-Wandler (ADC) das Auslesen der vielfältigen Dynamiken in den analogen
Neuronen und Synapsen durch ihre digitale Peripherie. Dieser wird perspektivisch durch
einen neuen, auf sukzessiver Approximation basierenden Nyquist-ADC (SAR ADC) er-
setzt. Zu diesem Zweck beschreibt die vorliegende Arbeit die Entwicklung einer Mixed-
Signal Simulationsumgebung, der digitalen SAR-Logik, sowie des benötigten Komparator
Moduls einschließlich eines einstellbaren (5 bit) kapazitativen Referenzgenerators. Der auf
einem zweigliedrigen Leseverstärker basierende Komparator benötigt in layoutbasierten
Simulationen bei einer Eingangsspannungsdifferenz von 1 mV 298 ps und 80 fJ für eine
Entscheidung. Im schnellen Modus (7 bit) erreicht der SAR ADC in Simulationen auf
Transistorebene eine Abtastrate von 125 Mhz bei einer maximalen differentiellen Nicht-
linearität (DNL) von 0,21 LSB und einem Energiebedarf von 2,47 pJ pro Wandlung. In
seinem präzisen Modus (8 bit) erreicht er unter gleichen Bedingungen immer noch eine
Abtastrate von 43,7 Mhz bei einer maximalen DNL von 0,50 LSB und einer Energieauf-
nahme von 4,01 pJ pro Wandlung. Auch die layoutbasierten Simulationen des ADCs legen
die Erstellung eines Prototyps nahe.
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1 Introduction

1 Introduction

Analog-to-digital converters (ADCs) have become indispensable in many devices today.
By converting an electrical current or a voltage into a series of bits, they make physical
quantities accessible to the rich prospects of digital data processing. In a way they are
the “eyes and ears of a digital system” (Pelgrom, 2017). Without ADCs, no smartphone
would send a call, no digital camera would take a picture, no computer controlled robot
would operate in a factory, and physicists would not be able to trace the trajectories of
high-energy particles in modern experiments.

Another scope of application is analog or hybrid computing, where analog data must be
transferred back into the digital domain. Digital computing has undisputed advantages
such as great flexibility or error correction. However, real-world applications are often
based on differential equations and matrix multiplications, which are costly to solve in
the digital domain. This is where analog or hybrid computing excels by solving these
directly by the nature of its circuits. One modern hybrid computer is the accelerated
neuromorphic BrainScaleS-2 (BSS-2) system (Schemmel et al., 2020; Pehle et al., 2022).
Neuromorphic systems implement biologically inspired neurons and synapses and enable
the formation of neural networks (NNs). Such networks are also suitable for breaking with
yet another classic approach: the von Neumann architecture. Contrary to von Neumann
computers, where memory and computing unit are physically separated (Von Neumann,
1993), both are united in the synapses of BSS-2 (Friedmann, 2013). This so-called “in-
memory computing” approach thus largely circumvents the von Neumann bottleneck of
sequential data processing from which classical computers suffer.

For the next generation of neuromorphic chips in BSS-2, an improved and accelerated
column-parallel ADC (CADC) operating at Nyquist-rate is required. While the current
implementation of the on-chip CADC reaches sampling frequencies of below 2MS/s at
8 bit resolution (Schreiber, 2021), a redesigned version aims for 125MS/s at 7 bit resolu-
tion. This improvement should allow increasing the learning efficiency and inference speed
in NNs. To be competitive with the current implementation, the new ADC should also
provide a precise mode with 8 bit resolution at a sampling frequency of at least 10MS/s.
For this purpose, the new ADC will implement a dual-mode successive-approximation
architecture.

A successive-approximation converter quantifies the magnitude of an analog signal by
approximating it by the output signal of a digital-to-analog converter (DAC). Hereby
it makes use of a successive-approximation register (SAR), which implements a binary
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1 Introduction

search algorithm: It takes N cycles to yield a resolution of N bits. For this purpose,
the DACs in SAR ADCs are often implemented by arrays of N binary scaled capacitors.
Czierlinski (2022) implements an appropriate dual-mode capacitive DAC for the new SAR
ADC and a transmission gate for all internal switches. Within this thesis, we develop,
present and discuss the other components of this SAR ADC: a mixed-signal verification
framework, a comparator unit, and the digital control logic.

Firstly, Section 3 describes the development of a mixed-signal verification framework.
The verification framework makes use of the new custom python module TeststandAMS
that enables to set up, execute and evaluate hardware simulations in this programming
language. These simulations run in a mixed-signal-simulator, joining the event-based
behavior simulation commonly used in the digital domain with a simulation that solves
the circuit according to Kirchhoff’s laws. Together they enable functional verification.

Secondly, Section 4 discusses the implementation of a dual-mode successive-approximation
register. Its digital logic fetches comparator decisions and reconfigures the capacitive DAC
accordingly. By storing each decision and thus the approximation path, it provides ADC’s
digital output code. From an abstract point of view, a successive-approximation register
implements a large finite state machine (FSM). However, smart memory and signal path
partitioning allow keeping the logic efficient and robust at the same time.

Then, Section 5 present the design process of a comparator unit. In a SAR ADC, a
comparator is used to compare the output of the DAC with the input voltage. In fact,
the actual implementation of the DAC modulates the input voltage, so the comparator
compares to a reference voltage. This work also presents a corresponding reference voltage
generator that is built from a 5 bit adjustable capacitive voltage divider. The comparator
core itself implements a double-tail sense amplifier. A double-tail sense amplifier is a
further development of the common sense amplifier flip-flop which is used, e.g., for SRAM
readout and optimized for large input voltage ranges.

Lastly, Section 6 evaluates the performance of the entire ADC including the work of
Czierlinski (2022). By combining all components, we simulate its characteristics with
respect to the sampling frequency based pre-layout models. Furthermore, post-layout
simulations allow a realistic performance estimation of the entire ADC.

The development of an ADC is a challenge in itself. Microelectronic engineers have spent
decades developing and improving various design architectures. However, for us in the
Electronic Vision(s) group, this project is the first design of a high-speed ADC. This thesis
marks the first design iteration of an ongoing process.
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2 Background

2 Background

Before starting the development of a new component, it is generally useful to define target
values and specifications for it. First, we explain and discuss some common definitions for
ADC specifications. Different ADC architectures are also briefly mentioned, yet this topic
can be found in more detail at Czierlinski (2022). Secondly, the BSS-2 system, for which
the new ADC is developed, is introduced. Then, the targets and specification are defined
based on the planned applications. Finally, the concept for the new ADC is presented.

2.1 Analog-to-digital converters

An analog-to-digital converter (ADC) converts a time- and value-continuous, electrical
quantity into a quantized, digital representation of the same. For this purpose, it samples
an electrical signal at some time ts and returns a corresponding sequence of N bits. Thus,
it grants access to data processing with discrete numbers, such as integers and floating
points. Such a quantization always comes with a loss of information: This so-called
quantization error is the fundamental accuracy limit of an ideal ADC. To gain reliable
insights into the behavior of the electrical signal, the ADC needs to sample it sufficiently
frequent and precise.

Furthermore, distortions and noise from different sources influence the conversion. Gen-
erally, suppressing them results in an increased power consumption and area.

It is common practice to distinguish two input signal configurations: single-ended and
differential. A single-ended ADC compares an input signal to a global signal (e.g., ground)
and a differential one determines the difference of two signals. For the remainder of the
thesis we consider a voltage V as input signal and an ordinary binary encoded bit sequence
as output code C:

C ∈
{
0, 1, 2, ..., 2N − 1

}
with N ∈ N. (2.1)

The smallest resolvable value is the value of the least significant bit (LSB).

Monotonicity. An ADC should provide a simple and use-case orientated transfer func-
tion from a physical quantity to a number. This transfer function describes the assignment
of a sampled voltage V (ts) to a digital code C and itself should be time independent. Ide-
ally, therefore, one and the same input voltage V should be always mapped to the same
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2 Background

output code C.

A natural assignment of a given input voltage V to a digital output code C is monotonic.
This is due to the fact, that it directly comes with an easily invertible transfer function.
Typically, one would expect a monotonously rising behavior:

C(V ) ≤ C(V +∆) ∀ ∆ > 0, ∀ V. (2.2)

2.1.1 Linear relation

In addition, it is often claimed that the transfer function is approximately linear over the
dynamic range of the ADC. The linearity is limited by the resolution limit of the digital
code C. Counterexamples can be found, e.g., where more sophisticated transfer functions
balance the non-linearity of the sensors (e.g., some CMOS cameras). However, a linear
regression of output codes C with respect to input signal leads to a simple and sufficient
mapping for many applications:

C = a · V − b. (2.3)

In an ideal ADC, the parameters gain a and offset b are given by:

a =
2N

Vmax − Vmin
,

b = a · Vmin,

(2.4)

where Vmin and Vmax determine the allowed dynamic range VFS of the ADC. Using Equa-
tion (2.3), the LSB becomes the weight of VLSB = 1/gain.

Physical measurements of these characteristics are typically performed using a sin-wave
stimulus, as for example a saw-tooth stimulus becomes hard to generate for high ADC
sampling frequencies. In simulations, as presented in this thesis, the generation of the
stimulus is no obstacle. Instead, the simulation execution time is the limiting factor.
Therefore, we sweep the input voltage with a sufficient granularity.

Extraction of transitions. To simplify further computations and interpretations, one
extracts the voltages that correspond to a code transition from the sweep. All further
evaluation methods depend on these trip points. Inspired by a measurement procedure of
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Figure 1: Extraction of a linear transfer function from sampled data. A: Extraction of the code
transitions. B: A linear fit (green) through the mean voltage of each code determines gain a
and offset b. Their deviation from an ideal ADC (gray) is called gain- and offset-error.

the company Applicos, we developed an evaluation method appropriate for our problem.
Given an ordered set of strict monotonic and equidistant input voltages:

Vmin ≤ Vj < Vj+1 ≤ Vmax for j ∈ [0,M ∈ N] (2.5)

with corresponding output codes Cj and assuming C(V ) to be monotonic, we use a cumu-
lative sum of a histogram with integer binning to find the positions of trip points jtrans(i)
for output code C = i:

jtrans(i) =
i∑

m=0

(
histogrambin: m∈[0,2N ]

j∈[0,M ] (Cj)
)

m
. (2.6)

From this, we can read of the transition voltage Ai = Vj(i). In fact, this also handles
non-monotonic positions and missing codes.

The resulting trip points can be extrapolated to a set of mean voltages Vi = (Ai + 1+Ai)/2

that correspond to a certain output code Ci.

Gain- and offset-error. Using linear regression, one can extract the parameters gain a

and offset b (c.f. Equation (2.4)) from the extracted input voltages and output codes. This
linear regression can either be based on an ordinary linear fit over all possible codes or
by only referring to the first and the last output code. Here, we use the former method,
as this is more precise.

Given an ideal Vmin and Vmax, one can measure the deviation of a regressed gain to an ideal
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one. A large gain error indicates either a reduced dynamic range or a reduced resolution
inside the dynamic range. In the same manner, one can measure the deviation of the
offset. The offset error indicates an additional shift in the dynamic range.

Beside the limitations of the dynamic range, an offset or gain error does not deteriorate
the quality of a linear voltage-to-code mapping. However, where an absolute mapping
matters, offset- and gain-errors directly lead to large absolute deviations.

2.1.2 Non-linearity

Non-linearity is the term used to describe the errors that remain after the offset and gain
errors have been corrected. Usually, differential and integral non-linearity are considered.

The differential non-linearity (DNL) is a measure for the local step size deviation. Given
real transitions Ai and the ideal step size ∆Aideal = VLSB = 1/gain, it returns the ratio of
real to ideal step size for each step. To be centered around zero, it is often shifted by one.

DNL(Ai) =
Ai+1 −Ai
∆Aideal

− 1 ∀i ∈ 0...(2N − 1) (2.7)

A DNL of ≤ −1 is equivalent to a missing code. For a good ADC performance, it is
desirable to keep the DNL between ±0.50 LSB. In the case of gradient based optimization
in analog computing (c.f. Sections 2.2.2 and 2.2.3), a consistently small DNL helps to find
the correct gradients. This is the case because the numerical determination of gradients
is based on the formation of local differences, on which the DNL has a large influence.

In the same manner, one can define the integral non-linearity (INL). Contrary to DNL,
INL links the real transition position Ai to the ideal one.

INL(Ai) =
(Ai+1 +Ai) · gain

2
+ offset − i (2.8)

The INL of an ideal ADC is zero for all possible output codes. Furthermore, the mean
of the INL only measures the quality of the fit used to determine gain and offset. Some
literature consider INL not with respect to the output code, but only take the maximum
of its absolute value.
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Figure 2: Common measures for non-linearity in Nyquist-ADCs. A: The DNL determines the
variation in the individual step widths. B: The INL determines the absolute deviation of the
real transition function from the ideal one. Illustrations inspired by Pelgrom (2017).

2.1.3 Introduction to ADC architectures

Due to the huge variety of application areas for ADCs, there are many implementations
(Bashir et al., 2016). Each implementation is optimized for a special use case. However,
one can find recurring architectures. The following section describes three architectures
and one concept that are used or discussed in this thesis.

All discussed ADCs consist of at least one comparator, which compare one or more ref-
erence voltages with the (modified) input voltage. To be able to control the sampling
time ts, an ADC is typically equipped with an implicit or explicit sample-and-hold stage.
Furthermore, some architectures are more likely to be adapted from a single-ended input
to a differential one.

Single-slope ADC. The current implementation of the CADC on the current chip
version (c.f. Section 2.2) is a single-slope ADC (Schreiber, 2021). A ramp generator
generates a saw-tooth reference voltage that covers the desired dynamic range of the
ADC. This reference voltage is then compared to an input voltage using a comparator.
A counter starts when the ramp starts and stops when the reference voltage exceeds the
input voltage. Hence, it is also called “counter-ramp-ADC”.

Since the ramp generator can be separated from comparator and counter, this architecture
is easy to parallelize. The single-slope ADC also has advantages in terms of energy.
However, due to the ramp and the counter, it takes 2N steps to achieve a resolution of N
bit. This limits the maximum sampling frequency and makes them unattractive for high
resolutions. Concepts like double-slope ADCs try to face this fundamental speed limit,
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but also stay in an exponential relation between precision and necessary steps (Bashir
et al., 2016).

Flash ADC. A flash ADC utilizes 2N comparators with individual reference voltages
to achieve a resolution of N -bit. Hence, a conversion takes only one step, but is expo-
nentially expensive in power and area. In some measure, it is the counterpart to the
single-slope ADC. To reduce the number of comparators, some modifications can change
their comparators reference voltages to reach their result only after multiple steps.

Successive-approximation ADC. A SAR ADC balances sampling frequency, energy
consumption and area usage. Utilizing a DAC, the input or the reference voltage is mod-
ified in binary steps, to bring the two closer together, just like a binary search (Figure 3).
Due to the binary steps, each step represent one bit of output code starting with the most
significant bit (MSB). Hence, the number of conversion steps is N for an N -bit ADC
(Pelgrom, 2017).

DAC
comparator

controller

Vref
analog input

digital output

Figure 3: General concept of a typical successive-approximation ADC, utilizing a (usually)
capacitive DAC, a comparator and control logic implementing the successive-approximation
register.

In many cases, the DAC is realized by a switchable, binary weighted capacitive array.
Here, one can distinguish between a charge redistribution (Kugelstadt, 2000; Harpe, 2018)
and a charge sharing (Chen et al., 2018; Craninckx and Van der Plas, 2007) approach.
Both can reuse their capacitive DACs as sample capacitors for their input stage. They
differ in how the sampled charge is adopted: While the former reload the capacitors
during the conversion using charge from an external power supply, the latter balances
the charge on the capacitors by changing their polarity. Hence, in case of charge sharing,
the final charge and voltage on the capacitor is path dependent. Therefore, the steps are
not invertible. This becomes crucial when considering parasitic capacitance and hinders
general analytical solutions. However, during conversion charge sharing is power supply
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independent and also aims for a low power consumption. Using the more common charge
redistribution approach, one finds a simple analytical solution for the ADC’s algorithm:
According to charge-division and due to the binary weight, each step m is able to add or
subtract VFS/2

m+1 to the sampled voltage V .

The concept of a pipeline ADC is very similar to a capacitive SAR ADC. Instead of using
one DAC and iterating its voltage in place, it disaggregates the steps to individual stages.
This typically works in the current domain and allows reusing the stages after each step.

Interleaving ADC. Interleaving multiple ADCs is a common approach to increase
the sampling frequency. Here, independent ADC input stages sample an input voltage at
slightly different points in time. Now one or more independent ADC channels can evaluate
the sampled voltages. Further samples can be taken in parallel from unused input stages.
This can be used to take very few samples with very high frequency that are evaluated
afterwards or accomplish an almost dead-time free ADC.

2.2 Applications in BrainScaleS-2

Von Neumann architecture has been dominated computing for decades. However, NNs
suffer from the associated von Neumann bottleneck. For this reason, today many artifical-
neural-networks (ANNs) utilize graphics processing units (GPUs), which follow the “stream
process” architecture. However, the human brain, which serves as a template for neural
network models, uses a completely different architecture: in-memory computing. Here,
memory and data processing engine are nearby or even realized in the same physical
structures. One approach of in-memory computing is the emulation of neural networks in
analog circuits. BrainScaleS-2 (BSS-2) is a mixed-signal neuromorphic system, that flexi-
bly implements analog neurons and synapses, but moreover benefits from the advantages
of digital signal processing and communication (Schemmel, 2021). The analog observables
in networks need to be accessed by its digital environment utilizing ADCs.

2.2.1 System overview

BSS-2 contains mixed-signal application-specific integrated circuits (ASICs) along with
software- and communication-infrastructure. The utilized high-input-count-analog-neural-
network digital-lerning-system (HICANN DLS) chip, designed in a 65 nm low-power CMOS
node and fabricated by TSMC, is currently available in the third version of generation
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Figure 4: Visual introduction of HICANN DLS. A: Block-level diagram taken from Billaudelle
et al. (2020). B: Photo of a HICANN DLS Xv2 chip, photograph provided by Eric Müller.

“X”. It implements an analog neural network core, digital microcontrollers with vector
extensions, ADCs and DACs, as well as, event handling and a high-speed link interface.
Furthermore, the surrounding BSS-2 system provides experiment control with external
memory and I/O based on field-programmable gate arrays (FPGAs). Current systems
include one FPGA per HICANN DLS-chip, connected by a 1Gbit high-speed link.

Analog neuromorphic core. As it emulates accelerated, scaled and biologically in-
spired neuron and synapse behavior, the analog neural network core on HICANN DLS
is the main component of BSS-2. The 512 neuron circuits, distributed equally over four
blocks and two hemispheres, offer a rich spectrum of accurate dynamics (Billaudelle et al.,
2022). They implement differential equations of the adaptive exponential integrate-and-
fire (AdEx) neuron model, which is an extension of the more common leaky integrate-
and-fire (LIF) neuron model:

Cmem · dVmem
dt = −gleak(Vmem − Vleak) + I(t). (2.9)

Here, Cmem denotes the membrane capacitance, gleak the leak conductance and Vleak the
leak potential. Whenever the neuron membrane potential Vmem reach a threshold voltage
ϑ, a spike is emitted and the membrane resets to Vreset (Lapicque, 1907; Gerstner and
Kistler, 2002; Brette and Gerstner, 2005). All additional external currents, such as synapse
interactions, are summarized in the time dependent offset current I(t). By connecting
multiple neurons, one can abandon these point neuron model in favor of a dendritic and
spatially resolved one (Kaiser et al., 2022).

By default, the adjustable membrane capacitance Cmem is configured to its maximum value
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of 2.46 ± 0.01 pF (Billaudelle, 2022). Furthermore, the leak conductance gleak reaches
a maximum large-signal transconductance of ≈10 µS. Such a configuration, which for
example occurs in the implementation of the reset condition, results in a membrane time
constant τmem = Cmem/gleak of ≈250 ns.

Each neuron receives potential input from 256 individual synapses, arranged in an ar-
ray. Therefore, synapse drivers transform digital 5 bit pre-synaptic events into a voltage
based stimulus with length ∆t and send them horizontally through the synapse array.
The synapses themselves store a 6 bit weight to generate a respective current I and,
if enabled by the correct provided address, dump a charge Q = I · ∆t to a neuron’s
vertical synaptic input line. Here, this charge is integrated on a leaking capacitor, mod-
eling an exponentially decaying synaptic interaction kernel and driving a current- or
conductance-based synaptic input to the neuron membrane (Billaudelle et al., 2022). For
spike-time-dependent plasticity (STDP), each synapse is equipped with correlation sen-
sors. (Friedmann et al., 2016; Billaudelle et al., 2019)

On-chip ADCs. HICANN DLS is equipped with two types of ADCs: a fast and precise
pseudo two-channel ADC, called membrane ADC (MADC), and a slow and low resolution
CADC. Each type of ADC has a different area of applications. A quantitative comparison
of their specifications can be found in Tables 1 to 4.

The CADC reads voltages from the synapse correlation sensors as well as from variables
in the differential equation, such as the membrane potential Vmem. For this purpose, each
synapse row corresponds to two designated CADC channels. Designed as single-slope-
type ADCs (c.f. Section 2.1.3), each chip hemisphere shares a common saw-tooth signal,
generated by integrating a current on a capacitor. Since the CADC lacks an explicit
sampling stage, it cannot guarantee a precise sampling time. Providing a 8 bit resolution
and a maximum individually triggered sampling rate of 1.85MS/s, their performance is
inferior to the fast MADC.

The latter is a single channel 10 bit Nyquist-rate SAR ADC with a maximum continuous
sampling rate of 62.5MS/s. By alternating between two inputs, the MADC provides a
pseudo-two-channel mode at half the sampling frequency (LSM, 2015). Due to its area-
and power-consumption, HICANN DLS provides only a single MADC.

Plasticity processing unit. The two on-chip general-purpose microprocessors (one for
every hemisphere) are extended by special-purpose vector units implementing the single
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instruction, multiple data (SIMD) principle. These vector units are designed to calculate
and perform synapse weight updates from observables in the analog core unit. On the one
hand, they have access to almost every configuration on the chip. On the other, they are
directly linked to CADC’s readout channels (Friedmann, 2013; Friedmann et al., 2016).
Thanks to the Power ISA 2.06 architecture of its general-purpose parts, programs for the
plasticity processing units (PPUs) can be cross-compiled on a host computer (Heimbrecht,
2017).

2.2.2 Inference with spiking-neural-networks

While ANNs perform difficult tasks fast and with high accuracy, they suffer from high
power consumption. Inspired by the human brain, spiking-neural-networks (SNNs) use
binary spikes in time as well as continuously integrating neuron membranes to save energy
in sparse networks. Modern learning methods, such as backpropagation through time
(BPTT) allow training these networks efficiently. The lack of analytical gradients in
the physical system can be bridged using e.g., surrogate gradients. Here, the learning
algorithm performs the forward path on hardware storing spikes and membrane traces
as well as in a simplified numerical SNN-simulator. Later, the backward path uses the
gradients from the simulator, but inserts measured spikes and traces from the hardware
to compute weight updates. Cramer et al. (2022) and Göltz et al. (2020) have proven the
learning and inference capabilities of BSS-2 in a series of different application and data
sets.

However, learning algorithms that utilize continuous state variables like membrane po-
tentials are limited in temporal resolution by the current CADC’s sampling frequency.
Increasing the sampling frequency in a redesigned ADC as well as the data link speed
would reduce the dependency on interpolations. Moreover, an improved sampling fre-
quency would allow using the neurons to operate at shorter timescales τmem = Cmem/gleak

and therefore increase the inference speed. Currently, the implemented SNNs emulate
a continuous sampling mode for the CADC by using the workaround of regular trigger
signal from the PPU.

Another approach in SNNs is incorporating STDP (Billaudelle et al., 2019). These bio-
logically inspired learning rules incorporate measured correlations between pre- and post-
synaptic events for each neuron (Friedmann et al., 2016). Originally, the CADC was
developed specifically to allow the PPU to access these correlation sensors. With STDP
one can implement structural plasticity, which explicitly keeps a SNN sparse.
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2.2.3 Analog vector-matrix multiplication

Vector-matrix multiplication accounts for a significant fraction of computing power used
in the forward path of ANNs (Oh and Jung, 2004). HICANN DLS’s architecture can also
be used for analog vector-matrix multiplication as well as an analog inference accelerator
for ANNs. Storing the matrix in the synapses’ weights and pushing input vectors through
the synapse drivers, each synapse affects the synaptic line by multiplying the two. After
charge integration on the synaptic line, the respective voltage equals the sum over the
multiplication results (Weis et al., 2020). In the absence of dedicated sampling capaci-
tors in the CADC, the current pulses are integrated on capacitors of the leaky neuron
membranes. Finally, the CADCs digitize the voltages to make the result of the analog
calculation accessible by the digital environment.

The full application is seamlessly integrated with pytorch (Spilger et al., 2020). Due to
the in-memory computing approach and the power efficiency of the system, this so-called
HAGEN mode is promising to be competitive to other state-of-the-art implementations
of ANN-accelerators (Stradmann et al., 2022). However, the current implementation does
not reach the speed limit of the synapses, which dump their charge in a maximum of 4 ns.
Integrating directly on the sample stage of a new and faster ADC as well as increasing
the bandwidth of the high-speed FPGA-link can help to get closer to this limit.

2.2.4 Calibration of analog circuits

Crucial to the accuracy and richness of the dynamics in the circuits is that each of
their innumerable parameters can be adjusted individually. Calibration is used to com-
pensate device mismatch. Moreover, it enables to adapt the circuit to different mod-
els (Leibfried, 2021; Weis, 2020). Here, an almost orthogonal mapping of circuit- and
biological-parameters supports efficient and robust calibration routines (Billaudelle et al.,
2022). The calibration routines are mainly based on observations with relatively large
time scales which allow the use of the current CADC.

2.3 Design targets for a new column-parallel ADC on BSS-2

The applications mentioned above result in requirements for a redesigned CADC. Due
to the wide area of applications, two modes with different focus were suggested: a fast
mode and a precise mode. The former should serve the needs of the analog vector-
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matrix multiplication, while the latter mainly replaces the functionality of the current
implementation. The new Nyquist-rate ADC is planned to operate parallel in hundreds
of channels. All targets are subject to a balanced overall performance of the ADC.

Sampling. One of the main reasons to redesign the current CADC is its lack of high
sampling frequencies (see Table 1). While the current design is well suited for reading
from the correlation sensors in a plasticity experiment, it is one of the limiting factors
for fast inference applications. For many applications one would also like to support
continuous sampling. On the other hand, the individual triggering of samples should still
be possible, and therefore a low latency startup is desirable.

The new ADC’s fast mode is adapted to the maximum synapse operation speed. The
synapses are able to perform one charge pulse in 8 ns using the maximum current pulse
length of 4 ns. For future implementations of the HAGEN mode, one would like to dispense
with integrating the charge in the membrane capacitance. Instead, one would then directly
use the synaptic line as integration capacitance, which speeds up the entire calculation.
This not only reduces the integration time constant but also enables the omission of
preparatory measures such as resetting the membrane voltage. Therefore, the synapses
current pulses should be aligned with the ADC’s sampling windows. Including timing
jitters and an integration time constants, this results in the required sampling window
of 6 ns. To stay within the synapse operation speed of 125MS/s, the maximum allowed
dead-time is 2 ns.

A precise mode should be at least five times faster than the current implementation.
Reaching a maximum sampling frequency in the same order of magnitude as the MADC
is preferable as this leads to improvements as discussed in Section 2.2.2. The tracking
period should be long enough to not decrease the ADC’s precision. However, this mode
is not designed to be dead-time free.

Unit speed / MS/s clock speed / MHz

CADC 1.85 500
MADC 62.5 750
New ADC (fast mode) 125 ≤1000
New ADC (precise mode) ≥ 10 ≤1000

Table 1: Target sampling frequency of the new ADC in comparison to the current on-chip ADCs
(Schreiber, 2021; LSM, 2015).
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Area. As it is planned to locate the new ADC in the same position as the current
CADC, the area constraints of the previous design also apply to the new one. Therefore,
Table 2 illustrates the dimensions of related current chip components. This is especially
important for the column width that needs to fit the synapse array. However, the previous
two channels per synapse column can be replaced by one. The two channels were necessary
to allow parallel read out of the causal and acausal correlation sensors. An increased
sampling frequency, which is below the typical time scales of these sensors, makes this
limitation dispensable.

The channel height is limited by an efficient ratio of ADC area to synapse array area.
Moreover, in the current HICANN DLS, it is also restricted by neighboring units such as
the PPU.

Unit width / µm height / µm area / µm2

CADC (single channel) 5.88 45.70 265
CADC block w/ ramp generator 1592.15 45.70 72 761
Single synapse 11.76 8.00 94
Synapse block w/ driver 1541.50 2097.90 3 233 913
MADC 340.12 317.17 107 876
New ADC (single channel) 11.76 ≈100 ≈1160

Table 2: Aspect ratios and areas of on-chip ADCs and related VLSI circuits. Data taken from
the Electronic Vision(s) internal layout database.

Energy. Analog in-memory computing comes with the claim of power efficiency and is
characterized by this for edge applications. However, ADCs are often one of the most
power-consuming parts in analog computing. It is planned that at full speed operation
the total ADC power does not exceed 50% of the total chip power. Nevertheless, our
guideline is to stay at 10% of the total chip power. Calculating with a total chip power
of 1W and 512 ADC channels, this leads to 196 µW per channel. Table 3 presents a
classification of this target with respect to the current one-chip ADCs.

A reduced power also helps to reduce the effort for a sufficient power routing. Due to its
significant effect on the total chip power, the new ADC should consume as little static
power as possible. Furthermore, due to a total supply line inductance of about 10 nH, the
current transients dI/dt must also be sufficiently small. In addition, all active components
should be detachable.

The used TSMC 65 nm low power process provides normal transistors for a 1.2V power
supply as well as thick-oxide transistors for voltages up to 2.5V. Since the device’s power

15



2 Background

consumption grows quadratically with the supply voltage, we limit ourselves to the 1.2V

power supply.

Unit max. power / µW energy / pJ
conv

CADC (single channel) 13.4 7.20
MADC 2500 38.5
New ADC (single channel) 196 1.56

Table 3: Energy budget of the new ADC in comparison to the other on-chip ADCs (Schreiber,
2021; LSM, 2015).

Resolution. Different applications require different ADC resolutions. In order to be
able to select a resolution, the associated dynamic input range is crucial. The 8 bit

resolution distributed over the dynamic range from 0.0V to 1.2V of the current CADC
(see Table 4) is sufficient for all current applications. Hence, the precise mode of the
new ADC should aim for this resolution. At this point it should be noted that both
currently implemented ADCs cannot be used reliably over their entire dynamic range.
Due to effects occurring in the readout chain between observable and ADC, voltages below
150mV cannot be resolved and voltages below 200mV and above 1.15V are distorted
(Billaudelle, 2022).

In vector-matrix multiplication, a 5 bit synapse driver pulse is multiplied by a 6 bit synapse
weight. The previously discussed future charge integration on the synaptic line leads to
an adapted dynamic range. Synaptic interaction pulls down the synaptic line’s potential
by a few hundred millivolts. Since the synaptic line leaks to the supply voltage of 1.2V,
a reduced dynamic range of 0.6V to 1.2V seems to be sufficient for the fast mode. At
the same time, one can reduce the number of bits, due to the low resolution of the input
vector and the weights in the matrix.

The current CADCs operates with single-ended input signals. This design decision was
motivated by the single-slope architecture. However, to reduce further modifications, the
new ADC should also provide a single-ended input.

Unit input range / V resolution / bit

CADC 0.0 to 1.2 8
MADC 0.0 to 1.2 10
New ADC (fast mode) 0.6 to 1.2 6
New ADC (precise mode) 0.0 to 1.2 8

Table 4: Target resolution of the new ADC in comparison to the other on-chip ADCs.
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Peripheral constraints. Beside all these ADC target specifications, multiple boundary
conditions are given by technicalities of the HICANN DLS.

Firstly, the design provides a magnitude of parallel channels. Hence, a new ADC archi-
tecture must be robust against crosstalk.

Secondly, the number of references is limited. It is not possible to load any reference
except power and ground. Moreover, any used static unloaded reference would be the
same for all channels.

Lastly, the ADC is crossed by multiple control signals connecting the synapse matrix with
the PPU. Since each ADC channel corresponds to one synapse column, these signals are
2 × 8 static random-access memory (SRAM) data signals (in/out) with 2 corresponding
enable-signals as well as 2 lines for reading the causal and acausal correlation sensors.

2.4 Concept for a fast, small and flexible SAR ADC

This thesis presents components for a successive-approximation ADC, that features the
two previously suggested operation modes in one physical implementation. This was
preceded by an extensive search for a suitable ADC architecture. Details on the chosen
architecture are presented in Czierlinski (2022).

2.4.1 Flexible capacitive DAC for a SAR ADC

Czierlinski (2022) present and discuss the concept for a charge redistribution SAR ADC
illustrated in Figure 5. Furthermore, they developed a capacitive DAC optimized for the
two required modes: It consists of two individual arrays, each implementing a DAC that
is suitable for a 7 bit SAR ADC with a dynamic range of 0.0V to 1.2V. In operation, one
array samples an input voltage on its capacitors, whereas the other adopts a previously
sampled voltage in order to convert it into a digital code. By doing so, Czierlinski (2022)
implement two interleaving ADCs. However, other physical components such as the com-
parator and the controller are shared between both ADCs to reduce the required area.
Coupling these 7 bit-full-range DACs, one gets a combined DAC that fits the require-
ments of a 8 bit SAR ADC. The capacitors for the array are designed as metal-oxid-metal
(MOM) capacitors using crossed, dense metal lines in multiple metal layers. Details on
the switching scheme used to implement the two modes can be found in Section 4.2.
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Figure 5: Overall schematic of the new charge redistribution ADC concept which special em-
phasis on the capacitive DAC implementing a fast and a precise mode. Taken and adapted from
Czierlinski (2022).

Fast mode. The required fast mode is implemented using the two DACs operating
interleaved. Due to the fact, that a 7 bit ADC with a rail-to-rail dynamic range equals
the properties of an extended half-rail-to-rail 6 bit ADC, this configuration exceeds the
given constraints without suffering any particular disadvantages.

While one DAC operates as sample-and-hold stage, the other one performs the conversion
of its previous sampling period. The conversion uses a try-and-reject-principle. This
means that the DAC first adds a certain amount of charge, which then is removed again
if the new arranged voltage is greater than half the reference voltage (0.6V). If the new
voltage is smaller, the additional charge stays in the capacitive array. The charge is moved
by switching the capacitors bottom plate either to ground or to the reference voltage. To
be able to remove charge also in the first iteration, the input voltage V is sampled on
one capacitive array with almost all capacitors are connected to ground; only the MSB-
capacitor is connected to the supply voltage. By doing so, the binary weighted capacitors
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refer the total charge equally to both rails.

Precise mode. In the precise mode, both capacitor arrays are connected. Both capac-
itor arrays sample the input voltage V , but one refers to ground and the other to the
supply voltage. If the comparator output is high, the previously supply-referred MSB
capacitor switches its reference to ground. Otherwise, the ground-referred MSB capacitor
changes its reference. In the next step, the newly adopted voltage is compared again,
and its result applied to the next capacitor accordingly. This continues until the LSB
capacitor is reached. At this point, another last comparator decision is performed after
the corresponding result was generated and applied. This process generates 8 bit with two
times seven binary sized capacitors.

2.4.2 Floor plan

A first iteration of the new ADC consists of two capacitive 7 bit DACs, a comparator with
a suitable reference generator and some transmission gates in its full-custom part as well
as a synthesized digital controller. The floor plan of the full-custom part is dominated by
the two capacitive digital-to-analog converter arrays. The utilized process node provides
nine metal layers. Including their shielding, they occupy metal layers 4 to 8 of the nine
metal layers provided in the TSMC 65 nm low power process. Metal layer 3 is used for
the crossing synapse-PPU-signals, power distribution and some long range analog signals.
Most of the control signal routing (e.g., for the transmission gates and the DAC) is done
on the second metal layer. Aside from the transmission gates, the comparator and its
reference generators are also planned to be placed below the capacitive DAC. Hence,
these components need to be flat. Moreover, some local decoders and combinatorial logic
are planned to join the full-custom parts to reduce the overall area consumption. Due
to their required routing resources the digital controller is currently placed next to the
capacitive array.
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3 Mixed-signal verification framework

Verification is an important task in hardware and very large scale integration (VLSI)
design. The verification of a design proofs its correct behavior. “Correct” means that
a design meets the previously defined design specifications. Once manufactured, silicon
hardware is generally immutable. Therefore, each module, unit or system needs to be
verified beforehand, no matter if it operates in the analog or the digital domain.

Verification can be done in many ways. One distinguishes simulation based verification
and formal verification. As the name suggests, simulation based verification uses simu-
lations to check the behavior of a design. These checks can be carried out in different
methodical ways. For digital designs, visual inspection of simulated waveforms is the
simplest verification method, but it has only low test coverage. The test coverage can be
increased by using systematic or randomized test patterns that are automatically evalu-
ated. Formal verification refers to a design reduction down to mathematical expression
(e.g., boolean equations), which then can be used to find an equivalence between two
designs or a design and a specification. Verification of analog designs is driven by small-
and large-signal simulations that carry out sweeps over different process corners, sup-
ply voltages and temperatures or make use of Monte-Carlo methods to indicate device
variations.

Cadence® is one of the market leaders for hardware development environments. However,
it lacks the ability to run, adapt and evaluate functional hardware tests from a widely
used programming language such as python. In this chapter, we present and discuss
the development of a python interface for Cadence Spectre®AMS Designer and Cadence
Xcelium™ simulator and its application in a generic Nyquist-ADC verification framework.

Test bench for simulation based verification. In order to perform simulation based
verification, a test bench provides and coordinates the necessary resources. One popular
standardized and modularized test bench is provided by the universal verification method-
ology (UMV) (Accellera, 2015). Figure 6 illustrates the components and the signal flow
in a classical design test bench using a nomenclature inspired by the UMV.

A test bench verifies a design under test (DUT). Therefore, the DUT is placed in a func-
tional environment. Test signals that stimulate the DUT are generated by a module called
driver. A monitor tracks the corresponding responses of the DUT. Finally, a scoreboard
evaluates these with respect to the input signal. This can be done by comparing them
with a model or the specification.
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Figure 6: Classical test bench design for hardware verification. Inspired by Burkhardt (2012).

For generalization, the DUT is often coupled to the rest of the test bench using a design
specific interface. This allows to keep driver, monitor and scoreboard free from design
specific elements and reuse them in multiple designs.

3.1 Introduction to hardware simulation

The used circuit simulation technique depends on the required abstraction level. Here
we would like to highlight four levels of abstraction: The functional behavioral descrip-
tion, the register transfer level (RTL), the transistor-level description (schematic), and
the geometric description of the circuit in silicon (layout). Except for the register transfer
level (RTL) which is a digital domain specific structural representation, these abstraction
levels are general. In a top-down-approach, one starts conceptualizing a design entry at
the highest abstraction level and end up with a silicon chip that contains geometrical
structures (Gajski et al., 1994). Thereby, information gained at a more precise imple-
mentation phase, can be annotated in higher abstraction levels. This can be resistances
and capacities that are extracted or estimated from a layout, which are either directly
inserted as devices into a schematic or used to model correct delays on a RTL.

By choosing a suitable abstraction level, the simulation becomes efficient in of simulation
speed and optimal adapted to a use case. In general, one can distinguish at least two
simulation paradigms: On the one hand there are Spice-class simulators, which simulate
schematics with all its components and under consideration of Kirchhoff’s rule by numer-
ically solving differential equations. On the other hand, there are event-driven simulators
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that simulate behavioral descriptions and logic at a RTL by scheduling, evaluating and
executing events of an event queue. A purely digital design flow (c.f. Section 4.1.2) can
do without SPICE simulation, because the gain in knowledge is marginal compared to a
back-annotated event-based simulation. However, event-based simulation are often too
imprecise to model pure analog circuits. Mixed-signal designs contain circuits that belong
to the digital domain and other circuits that belong to the analog domain. By combining
the two simulation paradigms, simulation performance in the digital domain is increased
without compromising simulation accuracy in the analog domain (Balasubramanian and
Hardee, 2013).

From here on we use the terms electrical and logic for the simulation paradigm and the
terms analog and digital for the intended operation domain. This nomenclature is inspired
by the naming of E2L element presented in Section 3.1.3.

3.1.1 Simulations in the electrical domain

Simulations in the electrical domain allow simulating a circuit on a physical level. Here,
we use Spectre, a Spice-class simulator developed and distributed by Cadence. Spectre is
a commercial redesign of Spice, a “simulation program with integrated circuit emphasis”
originally developed at the EECS department of the University of California by Nagel
and Pederson (1973).

Spectre is equipped with various numerical algorithms to solve a circuit according to
Kirchhoff’s laws. Therefore, it provides different models for different circuit elements as for
example resistors, capacitors, conductivities and voltage sources. But also more complex
models like for diodes and metal-oxide-semiconductor field-effect transistors (MOSFETs)
are supported. Chip manufactures provide multiple adopted models for their devices,
including process parameters and process variations. This circuit solving capability can
be used for different types of analysis, such as transient, DC, AC or noise analyses.
A transient analysis evaluates the circuit’s evolution over time. Therefore, it uses a DC
analysis to find a properly converged set of initial values for every node to start with. Such
DC analyses are also used to investigate the circuit’s static behavior. Spectre also provides
meta-analyses like Monte-Carlo-Analysis that draw circuit instances with parameters from
a given distribution to model e.g., device mismatch.

In practice, in order to enable a simulation, the database behind the graphical circuit
schematic needs to be translated into a netlist. This netlist contains parameterized in-
stances of device models and electric primitives like resistors and capacitors. In a fur-
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ther step, one adds the configuration of an analysis and sets different design parameters
(Quarles et al., 1994). Together, this results in a source file, that is interpretable by the
simulator.

The Spice simulator engine itself analyses the given circuit according to Kirchhoff’s voltage
and current law. To do so, it generates a mathematical expression of the circuit in
matrix representation. It replaces all non-linear elements by linearized models to solve
the expressions1. During a transient analysis, the time steps are typically adjusted to the
gradients of the signals in the circuit.

Even Spice and Spectre are fully controllable by using a command line interface, software
packages like virtuoso ADE provide a graphical user interface (GUI) for the simulators. At
the latter, the full workflow is hidden and executed automatically. But also the recorded
signals are originally only available in the GUI. Only the explicit usage of functions enables
further external data handling.

3.1.2 Simulations in the logic domain

A digital signal can usually exhibit four symbols: Zero, one, undefined and a high-
impedance state. The majority of digital designs use synchronous logic. This means
that all signals are evaluated synchronously to a global timing signal, called clock. This
enables a structural, RTL representation of a design.

Verilog2 and its further development SystemVerilog3 are hardware description languages
(HDLs) that are capable of representing almost all abstraction levels. However, their most
essential feature is, that they intrinsically provide an executable model of the design. In
their definition they describe the functioning of an event-based simulator. Here we use
the Cadence Xcelium simulator to simulate designs on a RTL. Xcelium is one of the big
three commercial Verilog implementations.

The term “event” in event based simulator refers to an update or change of a signal or
variable in the design. Verilog provides blocking (example: A <= B;) and non-blocking
(example: A = B;) assignments of signals, which can occur in always @() (free-running
process) or initial (single execution) blocks. Further, Verilog also provides continu-
ous assignments, introduced by assign statements. These assignments generate update

1A typical Spice simulation implement the Newton algorithm by means of a sparse LU factorization.
In order to be able to parallelize the simulations, one no longer requires global convergence today and
decomposes the matrix into individual parts.

2Language reference: IEEE Std 1364-2005 (2006)
3Language reference: IEEE Std 1800-2017 (2018)
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Figure 7: Connect rules define the simulator behavior of signals that crosses the domain bound-
aries.

events during the simulation, that are directly executed or scheduled for a later execution.
After resolving all hierarchies and module instances in a design, an iterative scheduling,
evaluating and executing process starts. A time wheel runs with a given precision and de-
fines time slots. In each time slot, the simulator evaluates the design for planned changes
in signals or variables (queuing events) and executes them by scheduling new events.
Thereby Verilog defines the order, in which the different assignments are processed.

3.1.3 Simulation of mixed-signal designs

A mixed-signal simulator runs an electrical domain simulator and a logic domain simu-
lator in parallel. To transfer signals from one simulator to the other, both needs to be
synchronized. In our case, Xcelium acts as master and Spectre AMS Designer as slave
that accesses Xcelium’s database.

Special elements, called connect-rules, are automatically inserted at the ports between
modules that are simulated in the electrical domain and modules that are simulated in
the logic domain (c.f. Figure 7). On the one hand, an E2L (electrical-to-logic) module
converts electrical voltages to a logic symbol. Thereby, a voltage below a given first
low-threshold becomes a “zero” and above a second high-threshold a “one”. The regime
in between is interpreted as “undefined”. Furthermore, the E2L implements termination
capacitors. On the other hand, an L2E (logic-to-electrical) module converts a logic symbol
to an electrical signal. Here it typically uses a piece-wise linear voltage source, that is
extended by termination resistors and capacitors to generate a more real source. The
parameters of the connect-rules are specified in a configuration file (e.g., ie_card.scs),
which is parsed to the compilation step of the simulator.

Developed by Cadence, Verilog-A is a HDL or netlist language for the electrical domain
that is based on elements of Verilog’s structure. For electrical signals, Verilog-A intro-
duces the discipline “electrical”, which basically describes an electrical node. Beside the
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instantiation of models, VerilogA also supports using different analog operators and dif-
ferent functions to connect the nodes. This includes linear relations, but also derivatives
and integrals of signals in a design, which together allows abstract behavior modeling.

The feature set of Verilog-A enables Verilog to be extended to a mixed-signal HDL:
VerilogAMS4. In this sense, a VerilogAMS does not fully belong to the electrical or logic
domain, but provides a number of signals that belong either to former or to latter. Hence,
it is not possible to directly connect a signal of the discipline electrical to one of the logic
domain. But by using more flexible data types as integers and reals, one can describe the
behavior response of an electrical signal to a logic and the other way around. By doing
so, connect-rules can be described fully in VerilogAMS.

3.2 Interfacing Cadence with Python

In order to interface with the hardware and circuit simulators, there are often two main
options: Either one uses a graphical user interface or one utilizes the command line in-
terface of the underlying simulator engine. A graphical user interface enables an intuitive
user experience: Every simulator option can be found and selected in menus and input
masks. After setting up a simulation, a corresponding configuration file can be down-
loaded, which enables to repeat this configured simulation multiple times. The command
line interface, however, allows executing such pre-configured simulation setups. Writing
a configuration by hand provides the full power of the simulations, without searching for
specific options in drop-down menus. Nevertheless, it requires extra effort to get familiar
with all the configuration needed. Often, manual work is needed to adopt all configura-
tions in complex simulation environments. Both options prevent fast iterating based on
simple but powerful scripts.

The biggest disadvantage, however, is that simulations cannot be easily automated to
depend on the results of other simulations. Here software lacks on simple automated
post-simulation evaluation options like fitting functions to masked signal waveforms. This
becomes crucial when simulating complex calibration routines e.g., to investigate, whether
a circuit reaches its target specification (Kriener, 2017). Thereby one typically make use
of Monte-Carlo methods and draw parameters from a distribution to simulate device
variations.

The python module Teststand respectively TeststandAMS is an attempt to develop a

4Language reference: Verilog-AMS Language Reference Manual (Little et al., 2014)
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Figure 8: Structure of a teststand-based simulation including the interaction with the Cadence
Design Suite, taken from Grübl et al. (2020).

simple accessible toolbox, that creates, adapts and executes hardware simulator config-
urations (Grübl et al., 2020). Therefore, it runs different Cadence tools and simulators
and keeps track of the required and provided input and output files. In this sense, it does
not implement a new simulator, but an interface to existing simulators. For waveform
analysis, it exports all probed signals directly to python, which enables the rich function-
ality of a full programming language. TeststandAMS allows a scripted and automated
simulations jointly with short simulation iteration cycles. While the original Teststand
is a creation of Sebastian Billaudelle, this thesis fully redesigned it for the purpose of
mixed-signal simulations.

3.2.1 Teststand

Teststand is a custom python module, that interfaces the Spectre simulator (Grübl et al.,
2020). Therefore, the module reads, creates and modifies configuration files and runs
Spectre simulator, as well as other tools from the Candence Design Suite (CDS) in sub-
processes.

As shown in Figure 8, in a first step it directly extracts the netlist from a Cadence
design database using a modified ocean script. In a further step, Teststand is able to
adapt simulator options in the netlist file, such as temperature and design parameters.
Moreover, it adds different analysis configurations, as well as probing statements. When
enabled, Teststand adds more circuit elements such as voltage- and current sources to
the netlist. Within this work, capacitors and resistors are added to the list of netlist
extension devices. Together, this enables creating the test bench with the power of a
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full programming language like python. Finally, Teststand passes the modified netlist
to a Spectre sub-process. The separation of netlist generation and actual simulations
makes it possible to use the same primary netlist with different adaptations in multiple
simulations. This in particular applies to Monte-Carlo-analyses, which also bases upon
one single primary netlist. Here, multiprocessing of the Spectre sub-processes enables fast
end efficient simulation. Every simulation log is parsed to a log file so that a targeted
investigation is possible in case of errors. In step three, all simulation results are parsed
back to python utilizing numpy objects. Thereby, Teststand make use of the external and
free python/C++ library libpsf5. Teststand is successfully integrated into the design
flow of the Electronic Vision(s) group (Grübl et al., 2020; Schemmel et al., 2020).

3.2.2 TeststandAMS

Inspired by Testand, this thesis presents a python interface for a mixed signal simulator.
Thereby, the API is a consequent derivative of the original Teststand. However, it newly
separates the front-end, that sets up the simulation, from the file handlers and run engines.
This allows a flexible adaptation and continuous development of TeststandAMS. To fit
the requirements of mixed-signal simulations, the front-end classes and definitions are
adapted and optimized. TeststandAMS uses tools from Cadence AMS Designer.

Mixed-signal simulations requires a netlist generator, that decodes electrical as well as
logic circuit descriptions. Here, TeststandAMS enables the netlist generation for modules
in the Candence Design Suite (CDS) library architecture. As known from Teststand, one
first instantiates a custom CDS library, before instantiating TeststandAMS’s main class.
Thereby, TeststandAMS triggers the super tool Cadence runams to create a VerilogAMS
netlist (netlist.vams-file) down from one top-level module. This netlist holds the infor-
mation for all schematics modules, while all other modules, that are already available in
a HDL, are included externally into this netlist (textInputs-file).

Aside from the netlist, runams generates configuration files for a simulation setup. In the
following step, TeststandAMS reads this files, adjust them according to the required simu-
lation options and writes them to the simulation run-directory. In particular, Teststand-
AMS applies individual circuit parameters setting these up in the cds_gloabls.vams file.
The analog simulator Spectre is configured in the amsControlSpectre.scs file. Here,
TeststandAMS writes out the analyses for every simulation. Due to the character of
mixed-signal simulation, these are typically limited to transient and Monte-Carlo anal-

5The source-code of the python module libpsf can be found on Github (https://github.com/
henjo/libpsf, state: 29.11.2014).
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1 # Define CDS library
2 self.cds_lib = CDSLib()
3 self.cds_lib.add_include("mydesign/cds.lib")
4 self.cds_lib.add_include("connect_lib/cds.lib")
5

6 # Perform net-list generation of the CDS-based design
7 testbench = TeststandAMS(cds_lib=cds_lib,
8 design=Design("mylib", "mycell", "my_view"),
9 model=Model("modelfile.scs", "section"),

10 netlist=True,
11 root=Path("netlist_rundir"))
12

13 # Define analysis
14 analysis = TransientAnalysis("voltage_trace", stop=10e-9)
15

16 # Set up simulation
17 simulation = SimulationAMS([analysis],
18 parameters={"transistor_width": 0.1e-6}
19 connrule=1.2,
20 save=[Net("my_toplevel.myinstance.mysignal")]
21 timescale=(1e-9, 10e-12),
22 add_hdl=["my_toplevel.sv", "hdl_module.v"],
23 set_toplevel="my_toplevel")
24 simulation.path = Path("sim_rundir")
25

26 # Run simulation
27 results = testbench.simulate(simulation, workers=10)

Figure 9: Code snippet of a TeststandAMS simulation.

yses. Here moreover, TeststandAMS sets up the circuit temperature and the simula-
tion accuracy. The used Spice-models for the elements in the netlist are added in the
spiceModels.scs-file. Connect-rules are specified in the ie_card.scs. TeststandAMS
make use of general connect-rule definitions, that scales with the supply voltage. Signals,
that should be stored by the simulators are denoted in the probe.tcl-file.

All these files are represented in different classes derived from a common file base class.
These classes perform the described file manipulations; often using regular expressions
and replacement. Unfortunately, the pure runams output files are not suitable to set
up a successful simulation. Hence, some misconfigurations are also fixed in using these
file modifiers. However, they are all hidden behind the front-end simulation setup API.
Similar to Teststand, the user sets up a simulation containing all information about the
upcoming file modifications. The actual modification happens jointly to the simulation
run call.

The actual simulation is performed utilizing Xcellium, by running the super-tool xrun
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with mixed-signal options. Again, this tool is executed in a parallelized and controlled
sub-process engine, which enables simulating the same design with different options si-
multaneously. The various options are passed on to the simulator via the configurable
tool call of xrun.

After the actual simulations, probed signals are exported to python. Due to a different
and more difficult output data format (sst2-format), TeststandAMS needs a different
waveform reader than Teststand. The proprietary file format requires the usage of an-
other Cadence tool (SimVisDButil) to export the probed signals as csv. Finally, we read
the csv-data to python and parse them to numpy data structures.

3.3 Application in an ADCs characterization framework

The development of a new fast and efficient parallel ADC is the first use case of Teststand-
AMS. Therefore, we developed a generic ADC verification framework. Here, test bench
concepts, ADC characteristics and simulation methods meet.

In order to develop a verification framework, one needs to define its scope first. The given
design specifications serve as basis to find observables and quantities, that describes the
fit of a design to its specification. Therefore, the design’s field of application influences,
which aspects of the unit are covered by the test suite.

In case of the new ADC, introduced in Sections 2.3 and 2.4.1, the tests focus is on the
dynamic range including (offset and gain error), the DNL and the INL. Due to is meth-
ods, the verification framework operates on a functional verification level. Furthermore,
functional verification can not replace a rigorous verification of the underlying modules,
but it does measure how all parts perform together as unit.

Having this said, in its core the verification framework uses a staircase shaped stimulus
to sweep the ADC’s input voltage through the target dynamic range. Using a sufficiently
dense step width, one can extract all code transitions from this simulation. In this sense,
the framework is rigorous as it covers systematically the full input range. However, the
framework only covers “DC” input conditions, bandwidth limitations are not detectable.

Data flow. Figure 10 shows a block schematic of the framework’s data flow, exemplary
for the new SAR ADC. The process is mastered by a python script, which uses Teststand-
AMS and performs the output data’s post-processing. As supposed by TeststandAMS, the
framework uses a logic top-level test bench module, which is written in SystemVerilog.
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SystemVerilog: test bench
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digitali
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analog input & output code

Figure 10: Suggested ADC verification strategy using TeststandAMS. The mixed-signal sim-
ulation is set up and started from python. The test bench itself is a SystemVerilog module
containing a driver- and monitor-unit as well as the DUT, which can consist of modules from
both simulation domains.

At this level, one also includes other units that serve as environment for the DUT, for
example global signals. Moreover, it integrates on the one hand the DUT and on the
other a driver-and-monitor unit. The provided driver-and-monitor unit, also written in
SystemVerilog, generates the introduced staircase stimulus and writes the ADC output
code, together with the input voltage, to a file. For this purpose the electrical signals
are internally represented as real values. A custom VerilogAMS voltage source at the
interface to the electrical domain, assigns the requested input voltage to the ADC’s input
node. Since only SystemVerilog allows real values in port lists, the intermediate real value
representation of the input voltage is converted to a 64bit signal using Verilog’s build-in
functions. The time continuity is realized by using a suitable timescale directive. As an
ADC contains analog and digital elements, the DUT can contain subunits in the electrical,
as well as in the logic domain. However, here we decided to use the Cadence design library
for all elements in the ADC. So, the netlist is generated at this hierarchy level, enabling
simulating the digital circuits in the logic as well as in the electrical domain. A scoreboard
written in python evaluates the ADC’s responses.
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Scoreboard evaluation. The scoreboard implements the equations and methods from
Section 2.1. Different helper functions implement different aspects of the evaluation. The
respective results are stored in a summary. First, a checker investigates the monotonicity
of the output code and ensures equidistant input voltage steps.

Now, the scoreboard can extract the output code’s transition points as described in Sec-
tion 2.1.1. All further evaluations base on these transition points. But due to the nsteps

discrete input voltage steps, the precision of the transition points Ai is limited. Given all
intervals between input voltage steps, that show a code transition and without further
knowledge, we assume the distribution of actual transitions to be uniformly distributed
inside these intervals. Consequentially, the transition points’ standard deviation is deter-
mined to:

∆Ai =
Vmax − Vmin√

12 · nsteps
∀i ∈

[
0, 2N − 1

]
. (3.1)

Here, nsteps is the number of equidistant steps in the input voltage sweep, Vmin and Vmax

the limits of the sweep. The factor 1/
√
12 comes from the standard deviation of a uniform

distribution. In case of non-monotonic transition behavior, the performed trip point search
returns an averaged code transition point. This further increases the transition points
uncertainty. Generally, the transition point extraction bases on the assumption, that the
ADC performance is time independent. Here, a visual inspection, that monitors ADC’s
voltages and currents, can ensure that this is the case. Furthermore, we do not include
any systematic errors from the simulator, since a suitable simulator setting (numerical
tolerances, ...) makes them negligible.

Gain and offset of the ADC are determined by a first-order polynomial fit. Hereby, the
scoreboards uses the voltage at the centers between two transition points. The scoreboard
calculates a gain and offset corrected DNL and INL with Equations (2.7) and (2.8). Using
Gaussian error propagation one can estimate the DNL’s standard deviation to:

∆DNL(Ai) =

√
1

6

(
Vmax − Vmin

nsteps
· gain

)2

+ (∆gain · (Ai+1 −Ai))
2 ∀i ∈

[
0, 2N − 1

]
. (3.2)

In the same way, we calculate the standard deviation of INL using Equation (2.8)

∆INL(Ai) =

√
1

24
·
(
Vmax − Vmin

nsteps
· gain

)2

+

(
∆gain · Ai+1 +Ai

2

)2

+∆offset2. (3.3)
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Figure 11: Results of the evaluation with the help of the presented verification framework using
the example of an ideal 6 bit ADC from the Cadence library. The input voltage range was
sampled in 1024 steps and the result was approximated with a linear fit after determining the
code transitions. The DNL and INL, given in LSB, are calculated from the deviations from this
fit.

Framework testing. According to their definition, the mean value of INL and DNL
must always be zero. Apart from numerical deviations, a continuous monitoring of these
values measures the quality of the fit.

To ensure that the generic ADC framework performs as expected, we implemented test
cases at different levels. The test suit covers the different helper functions behavior.
Moreover, functional tests keep track of the framework’s performance. Here, the test suit
contains prominent examples of artificial output codes. To also test its proper integra-
tion in TeststandAMS, the tests simulates the ideal ADC provided as library module by
Cadence. Latter is shown in Figure 11. All functional tests are regularly and for every
software change executed by a Jenkins6 server. The framework as well as TeststandAMS
are integrated in the Electronic Vision’s containerized software development flow.

6The official webpage of Jenkins can be found at https://www.jenkins.io/ (accessed: 26.12.2022).
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4 Successive-approximation register

Each successive-approximation ADC requires a controller implementing a binary search
algorithm. Basically, a successive-approximation register (SAR) ensures that a compara-
tor’s decision leads to a corresponding change in the configuration of the DAC. Moreover,
it generates the digital output code from the sequence of comparator decisions. Hence,
the controller is a key part of the SAR ADC and just as critical in terms of speed, area,
and energy as the capacitive DAC or the comparator.

There are very different approaches to design a fast SAR logic (Xu and Xu, 2017; Gao
et al., 2015; Chio et al., 2008). The control logic is usually strongly tailored to a specific
ADC. As described in Section 2.4.1, the new ADC provides two modes and two switching
schemes, that the controller needs to fit. However, due to this complexity in the new
ADC, it is difficult to adopt many of these approaches.

The controller’s main functionality repeats individually in every ADC channel. A target
clock frequency of 1GHz in mind, the ability to share the surrounding logic between
channels is limited. In the following sections, we present a controller for the new dual
mode SAR ADC.

4.1 Introduction to digital hardware design

The controller implements digital logic. In order to use common verification tools (c.f.
Section 4.1.2), this logic operates synchronously to a globally distributed clock signal.
Hereby, one resorts on a combination of sequential and combinatorial elements realized
by characterized standard cells. These elements differ in the fact that sequential logic’s
output depends on an input at a specific, previous point in time (e.g., the latest positive
clock edge), so it stores information, while the output of combinatorial logic ideally only
depends on its current input. Sequential elements are for example master-slave-flip-flops
(FFs) or latches, whereas the elements realizing an “and”, a “or” or a “not” gate are
combinatorial. Typically, different sequential nodes, called registers, are connected using
combinatorial logic.

Real combinatorial logic has delays, because they are on the one hand build from silicon
transistors (gate delay) and, on the other hand, connected by real wires that inadver-
tently implement RC elements (propagation delay). In deep sub-micron processes, the
delay through the wires exceeds the gate delay (Sylvester and Keutzer, 2000). Signals on
different paths through the combinatorial logic have different delays. Due to these signal
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path-depended delays, a simultaneous change in the input signals, can lead to unexpected
intermediate output states, before the actually output state is reached. This behavior is
called “glitch”. Glitches are acceptable for synchronous logic, but in signals controlling
transmission gates or the DAC, they can lead to undesired behavior.

The longest signal path must be shorter than one clock period minus the setup and clock-
to-output time of the sequential logic. The setup time describes the minimum time that
the input signal of a FF must be stable before are positive clock edge. The clock-to-output
time describes how late after a positive clock edge the FF must have taken over the new
value at its output. The hold time is the third characteristic time of a FF and specifies
how long after a positive clock edge the input signal must still be stable so that the signal
is also reliably accepted.

4.1.1 Finite state machines

A finite state machine contains a finite number of states Zt ∈ {Z0, . . . , Zi} between which
it alternates depending on its input vector X t. Automata theory knows deterministic
FSMs as a subset of non-deterministic ones (Hofmann and Lange, 2011). Given a current
state Zt and a specific input vector X t, the deterministic one have exactly one possible
transition to a new state X t+1. Every FSM can be illustrated in a state diagram.

The mathematical method of FSMs can be used to describe sequences in synchronous
digital hardware. Thus, they are often used in decision-making and control logic (Katz,
1994). From the state Z and the input signal X one can derive an output signal Y . There
are two main dominant methodologies: The Moore machine and the Mealy machine
(Chiuchisan et al., 2010). Both modeling techniques consist of a next-state logic Zt+1 :=

f (Xt, Zt), a state register Zt and an output logic Y t. A transition, even if it is recurrent,
is forced in every clock cycle. However, both techniques differ in how they generate their
output signal.

In a Mealy machine, the output signal depends on the stored state and the input signal
Y t := g (Zt, Xt). Often, this leads to a reduced required storage and increases the response
time. However, possible glitches at the input stage are transmitted to the output.

In a Moore machine the output signal only depends on the current internal state Y t :=

g (Zt). Hence, a change in the input signal is only applied at the output in the next clock
cycle. This avoids propagating glitches through the FSM to its output. Yet, a Moore
machine is not as fast a Mealy machine. In general, a Moore machine requires more
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Figure 12: Differences and similarities between the most common implementations of finite state
machines: Simple Moore machine, Moore machine and Mealy machine.
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Figure 13: Digital frontend design flow and its representation level, inspired by Harter (2002).
If the time constraints are not met after synthesis, the design process must be repeated.

internal states than a Mealy machine in order to produce the same output spectrum. A
subclass of Moore machines are the simple Moore machines. These are simpler because
the output signal Y t is equal to the state representation Y t := Zt. This completely avoids
glitches caused by runtime differences.

One can also build mixed forms of these automaton classes. The states Z are realized
by sequential logic. To indicate the number of FFs used for the state representation, we
utilize the common bit notation Z[b : a]. In this way, we also access individual FFs Ẑ[a].
Here, we denote partial state representations by a hat. To concatenate different FFs, we
use the curly braces Z = {Ẑ[a], Ẑ[b]}.

4.1.2 Digital design flow

Generally, one divides the digital design flow into a generic frontend and an ASIC specific
backend. The frontend design includes a circuit behavior description without any infor-
mation about the physical chip. This generalizes an implementation and makes it easy
to reuse a design in multiple chips or even in different process nodes. As illustrated by
Harter (2002) in Figure 13, the frontend design covers the path from a design specification
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to a first gate-level netlist. The gate-level netlist contains instances of standard cells that
implement the building blocks of digital hardware, e.g., FFs and combinatorial gates. In
this “trow-over-the-wall” approach, the subsequent backend design includes floor plan-
ning (including IO-ring), design placement and routing, a clock tree synthesis and power
routing (Grübl, 2007). Here, we focus on the frontend design flow.

Frontend design flow. The frontend design flow is dominated by two blocks: The
creation of a RTL design entry on the one side and the syntheses on the other. While
former requires a lot of manual work, the latter is supported by, e.g., Synopsis Design
Compiler® or Cadence® Genus™ tool kits. During the design entry creation, one generates
specific registers and precise logic sequences from a design specification. In our case,
the switching schemes description in Section 4.2 is the design specification. During this
creative process, one can revert to principles like FSMs (c.f. Section 4.1.1). Keeping future
design steps and the physical implementation in mind reduces the number required design
cycles. This targets, for example, the implemented set of combinatorial logic between two
sequential elements: As each combinatorial gate comes with some delay.

Synthesis. In a first step during synthesis, Synopsis Design Compiler software requires
access to timing and cell information from the used process node (syn, 2018). Compiling
the RTL source files, it generates an abstract module and hierarchy view on the design.
The following elaborate step resolves the module behavior and therefore unifies the module
instances. The actual synthesis creates a boolean and primitive representation from this.
This representation is mapped to the given standard cells of a process node.

In order to guide this mapping process, one adds design constraints like the target clock
frequency. A proper target set helps to the algorithm to find a good optimum, while over-
constraining could entice the algorithm to stack in local optima. With this, it determines
the choice and order of required standard cells.

Hereby, the correct sizing of the standard cells is important. The wide majority of cells
are available in different driving strengths. If the driving strength is too low, it takes a
long time for the wire and gate capacities to recharge and the cell’s output signal becomes
slow. A cell that is too large not only consumes too much space, but also typically has a
larger input capacitance. Hence, more stages are needed for the same logic increasing the
energy consumption and the total gate delay. As rule of thumb, fan-out of four fits the
timing-energy relation best: Each transistor with gate width W and gate length L drives
an equivalence of a total transistor gate area of 4 W L (Hedenstierna and Jeppson, 1994).
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To verify the timing closure, Synopsis Design Compiler software uses a static timing
analysis (STA). Each signal path is annotated with its expected delays and compared
to the setup and hold times of the terminating sequential logic. The path delays are
determined from the predetermined cell delays and estimated wire delays. In a first step,
a wire load model is used to estimate the wire delays statistically without any knowledge
about the physical placement or routing. This estimate is correspondingly imprecise. If
a cell mapping doesn’t fit the constraints, the tool tries to optimize it by iterating this
process with an adopted focus on the designs structure.

4.2 Switching scheme of a flexible SAR ADC

The new ADC’s switching scheme of the transmission gates and DAC is fixed by its
architecture choice. Due to the requested two modes, there are two architectures in
one ADC: One implementing two individual and interleaved ADCs and another that uses
these both parallel to increase their resolution. For a better understanding of the following
section, the reader is advised to refer to Figure 5 from Section 2.4.1.

Independently of the operation mode, we introduce a synchronous global sample signal
g_sample, that indicates the ADC’s tracking period. The tracking period is the time
interval during which a capacitive element in the ADC is connected to the input and
thus charges to it.7 Evaluated at the next positive clock edge, its high state indicates the
ADC to start a new tracking period. If g_sample is low again, the ADC moves on with
the conversion of the sampled input voltage. To ensure the synchronous character of the
g_sample signal, it will be guided parallel to the clock. Using g_sample, the track period
is adjustable to different use cases.

As illustrated by Figure 5, the new ADC implements two arrays, which we index with the
characters “A” and “B”. Each of these arrays provides seven binary weighted capacitors
as well as one additional capacitor, that equals the smallest binary weighted capacitor.
While one side of the capacitors is shorted to the common mode lines va or vb, the other is
connected either to ground or to the supply voltage. In practice, the latter is implemented
by eight individual inverters: If an inverter’s input signal is high, the capacitor is connected
to ground, if it is low, the capacitor is connected to the supply rail. These inverters’ inputs
are embraced to a bus array A[7:0]/array B[7:0], where bit 7 indicates the largest
capacitor. Furthermore, the common mode lines va/vb can be connected to the ADC’s

7In general, a distinction is made between sample-and-hold and track-and-hold input stage circuits.
This will not be discussed further here.
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input utilizing transmission gates controlled by connect input A/connect input B. In
the same way, the signals connect comparator A/connect comparator B control the
transmission gates between va/vb and the comparator input. va/vb are connected to the
electrical ground node when the signals reset A/reset B are high.

The signal enable comparator requests the comparator for a decision until the next clock
cycle. In Figures 14 and 15, the actual comparator decision moment is marked by orange
dots. Here it becomes clear, that the comparator is triggered using the negative clock
edge. The impacts of this decision are discussed in detail in Section 5.5.2.

For this switching scheme it is sufficient if the output code is only valid for one clock cycle,
since in the final implementation the output code is buffered by a synchronizer anyhow.
This synchronizer allows the PPU or any subsequent data processing and storing logic to
access the output code, even it is driven by a different clock.

In the following, we discuss the details of both operation modes with respect to the
switching scheme to understand their influence on the requirements for the controller
design. The waveforms in Figures 14 and 15 serve as visual guideline.

Fast mode. As already mentioned in Section 2.4, the fast mode interleaves two 7 bit

ADCs. Hereby, each full track-and-convert cycle takes at least 16 clock cycles. With
the help of the length of global sample the tracking period can be extended. However,
Figure 14 shows the fastest operation using a 6 clock cycles tracking period.

Before the first conversion or after a time without conversions, both ADC arrays are in
their “idle state”. In doing so, va and vb are connected to ground enabling reset A and
reset B. Furthermore, their transmission gates to the input and to the comparators are
open. Also, the comparator is disabled and the content of the ADC’s output register in
not valid. At this time, the positions of the capacitors inverters array A[7:0] and array
B[7:0] do not matter8.

8It turns out that it is important to disconnect the comparator from the common mode line before
setting array A[7:0] / array B[7:0] back to the sampling position. This is because if both operations
happen simultaneously, the comparator input node is charged to a random potential which influences the
subsequent sample.
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Figure 14: Switching scheme in the ADC’s fast mode using a 1GHz clock and the most dense
sampling configuration. Orange traces mark applied comparator decisions. Gaps inside the
traces illustrates points, where their actual level doesn’t matter.

39



4 successive-approximation register

If after a positive clock edge the controller sees the global sample signal high, the ca-
pacitors inverters array A[7:0] should be already in the 7 bit sampling position. In the
7 bit sampling position, the array’s largest capacitor is connected to the supply, which
due to the inverter’s character equals a low control signal of array A [7]. The other
capacitors in this array are connected to ground by applying a high signal. The reset A
signal is released and connect input A enabled. Array B does not change.

Finishing the sampling period of array A, global sample is released again. At the follow-
ing clock edge, instead of connect input A the signal connect comparator A becomes
high. Simultaneously, the logic requests the comparator to evaluate va at the next falling
clock edge and until the next rising one. At each first decision of a conversion, the switch-
ing scheme differs from the discussed try-and-reject approach, as the MSB capacitor is
already pre-charged during the sampling period. This shifts the total common mode
voltage to the half supply, which comes with relaxations of the comparator’s input range
characteristics. Moreover, the first comparator decision already determines the output
code’s MSB and the further position of the array A [7]. In Figure 14, this decision
result is illustrated using the ambiguous orange trace. Concurrently at the next positive
clock edge and due to the try-and-reject approach, the second significant bit (array A
[6]) refers to the supply. Again, the comparator provides the corresponding decision,
which is subsequently applied to array A [6] as well as to the output code at the next
positive clock edge. Now, this scheme replicates until array A [2], which are so far in
total six decisions. The last and sevenths decision for the output code’s LSB applies to the
“try” of array A [1]. For want of further decisions, here a consecutive “reject” after is
not required. With this last decision, the output code becomes valid, and the comparator
is disabled again. Array A enters its idle state again, waiting for its next sampling order.

During array A’s conversion, also array B is active. At the earliest two clock cycles after
global sample is low, it can be enabled again. Now, as array A is not in its idle state, this
signal applies to array B which behaves in the same way as array A previously. The two
clock cycles with global sample in a low state are required, to enable the arrays to reset
after each conversion. Moreover, it enforces a period, where neither of both arrays are
connected to the comparator. This prevents an unintentional discharging of the capacitors.
For further illustration, additional conversion cycles are shown in Figure 14.
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Figure 15: Switching scheme in the ADC’s precise mode using a 1GHz clock and the most
dense sampling configuration. Orange traces mark applied comparator decisions. Gaps inside
the traces illustrates points, where their actual level doesn’t matter..
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Precise mode. Similar to the fast mode, Figure 15 illustrates the switching scheme
for the precise mode. Again, in its most dense sampling configuration we have 16 clock
cycles per conversion cycle. The first difference to Figure 14 is, that both arrays switch
in unison. Again, after a period of inactivity, both arrays are connected to ground by
enabling reset A and reset B. Meanwhile, the transmission gates connect input A
and connect input B are open. Since there is no reason to open them here, connect
comparator A and connect comparator B are closed permanently. This prevents the
capacitors and signals from additional charge injection caused by a switching. Not shown
in the picture, enabling both comparator transmission gate signals together closes also an
additional transmission gate between the arrays common mode lines va and vb. Hereby,
if all transmission gates are sized equally the conductance between these quadruples.

Introduced again by global sample’s high state, the ADC starts tracking the input and
in doing so charge the capacitors in the arrays. Due to the fact, that in the precise mode
the ADC does not follow the “try-and-reject” principle, the arrays’ sampling positions
differ: While all capacitors in array A refer to the supply, the capacitors in array B refer
to ground.

When global sample is low again, the actual conversion starts. For this purpose, inputs
are disconnected again, and the comparator is enabled. The first decision holds for the
output codes MSB as it registers whether the sampled voltage is greater than or less
the half supply voltage. The same applies to the inverter setting: While before the two
largest capacitors referred to different potentials, after the decision both are connected
to the same potential at their bottoms. On the one side, if the input is greater the half
supply, also the array A [7]-capacitor is connected to ground (high signal); the array
B [7]-capacitor keeps referred to ground (high signal as well). On the other, if the input
signal is less than the half supply, the array B [7]-capacitor adds charge, and hence
increases the arrays common mode voltage, by switching to a low signal. Here, array A
[7] would stay low.

Since the capacitors are binary scaled, repeating this scheme results in a successive ap-
proximation of the half supply by the common mode voltage. Along the way, the stored
comparator decisions represent the primer sampled voltage in a digital code. The LSB
decision happens after the signals array A [1] and array B [1] is adopted. After the
LSB decision, which is not needed to be applied to the capacitor array, the output code
is finally valid. At the same time, the arrays are reset by enabling reset A and reset B
again. From here, the hole sequence can start again.
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time

clock

signal logic logic
−

+

switches/DAC comparator

Figure 16: Time sequence in a clock cycle illustrating the temporal and causal dependencies in
the ADC during conversion.

Time sequences in a clock cycle. The control logic is no less time critical than
the comparator, switches and DAC. This becomes particularly clear when looking at
Figure 16, which shows the division of a clock cycle during conversion. Here the signal
path is matched in a stylized way with the time sequence. Starting at a positive clock
edge, the arrival time of a signal at the output of the FSM Y t determines when the
switches and DAC can start to operate. This time is influenced by the clock-to-output
time of the FFs and, in the general case, the processing time of function g(Zt, X t). The
DAC itself needs some additional time to settle down and apply the new configuration
correctly to the input of the comparator. Here, an estimation by means of RC times, as
done in Czierlinski (2022), is useful.

The comparator is triggered with the negative clock edge. This marks the beginning of
the second half of the clock cycle. However, the trigger-tree (c.f. Section 5.5.2) must also
be taken into account. The output signal of the comparator runs as new input X t+1 for
the FSM through its next-state logic f(X t+1, Zt) to be taken over by the subsequent FF
while respecting the setup time. It is therefore important to keep the logic on this data
path as lean as possible.

4.3 Implementation of a dual-mode SAR

The task of the controller is to implement the presented successive-approximation switch-
ing scheme. Generally, the controller can be considered as a large FSM covering both
arrays and both modes. To ensure that the entire switching sequence has unique, de-
terministic state transitions, the entire state space is larger than the number of switches
and output signals. Ultimately, the following consideration is about finding a practical,
unambiguous representation of all states. Thereby the total space spanned by sequential
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logic can be larger than the number of valid and accessible states.

Partitioning of the state space. To better reflect the nature of the new ADC, it is
useful to divide the state space of this state machine into orthogonal sub-state spaces. In
other words, we search for projections of the states that map these onto sequential logic.
By using different projections, one can shift the ratio of combinatorial to sequential logic.
Three axes are of particular interest here: first, the division into fast and slow modes;
second, the individual consideration of the two arrays; and third, the separation of a data
path from a control path.

The division of the state space into a fast and a slow mode is done by the external
fast_mode signal. Thus, it does not describe an axis through the state space in the sense
of the memory bits but implements the Mealy-machine principle. Nevertheless, it should
be mentioned here. In fast mode, the two arrays operate as quasi-independent ADCs.
To reduce even-odd effects between the arrays, the control for both arrays should be as
identical as possible. If the states are represented so that the output signals for the two
arrays can be generated orthogonally to each other, this simplifies the logic. Separating
data and control paths means that signals that depend on a comparator decisions are
treated differently than the rest. This is motivated by the fact that the potentially
undefined comparator output should not cause the FSM to get stuck.

The mentioned subdivisions increases the number of flip-flops needed. On the other hand,
they make the design more robust and easier to maintain. It should be noted that the
output signals of the logic Y t is not evaluated like synchronous logic, but continuous-time.
The signals for the transmission gates and the inverters at the arrays must not have any
glitches and must comply with the timing specifications from Section 4.2.

We present a sophisticated control logic that reduces the number of FFs as much as is
practical. However, since we find that this comes with many drawbacks, this is followed
by a discussion of a relatively naive but efficient control logic. To better understand the
details of the implementations, we start with some general remarks about the state space
and how parts of it can be represented. To do this, let’s take a closer look at the switching
sequence from Section 4.2.

Pattern in the switching scheme. In the fast as well as in the precise mode, we find
almost similar pattern: As illustrated in Figure 17, both modes start in a “reset” situation
(R) connecting the common mode lines va/vb to ground. The global sample enables
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either both or only one array to move on to a tracking symbol (T) connecting the respective
array(s) with the ADC input. This requires a mode specific sampling position at array
A[7:0]/array B[7:0]. When global sample is low again, these arrays step forward into
a conversion mode. Here, the labels write register A/write register B in Figure 17 notify,
which capacitor array inverter is effected by the next comparator decision. However, due
to the “try-and-reject” approach in the fast mode, before each decision the capacitor with
the denoted index is connected to the supply. As after the LSB decision the inverters
positions doesn’t matter, we can use them anyhow to store the output codes LSB. Due
to the reduced number of bits in the fast mode, write register A/write register B only
goes down to one; in the precise mode it finally counts to zero. After seven or eight clock
cycles, we recognize one clock cycle of a finish symbol (F), which sets the output code to
valid. We can further observe, that if at least one array is in its conversion mode (C),
the comparator is enabled. In the fast modes, these states of both arrays are interleaved
while in the precise mode these sequences run in parallel. By this grouping or projection
of the different states it becomes clear that there are memory elements needed which
control array A[7:0]/array B[7:0], others which control the transmission gates and
some kind of counting logic.
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clk

global sample

symbol A R T C F R T C

write register A 7 6 5 4 3 2 1 7 6 5 4 3 2 1

symbol B R T C F R T

write register B 7 6 5 4 3 2 1

enable comparator

evaluate va/vb

0 5 10 15 20 25 30

time / ns

code valid

A

clk

global sample

symbol A R T C F R T C

write register A 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

symbol B R T C F R T C

write register B 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

enable comparator

evaluate va/vb

0 5 10 15 20 25 30

time / ns
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B

Figure 17: Wave forms illustrating pattern in the logic that controls the successive-approximation
register. A: The fast mode is realized by interleaving the both arrays. B: In the precise
mode, both arrays operate together. The symbols are abbreviated by (R) reset, (T) track, (C)
conversion and (F) finish and corresponds to the positions of the transmission gates reset,
connect input and connect comparator. The arrows mark causal relations.

4.3.1 Sophisticated, flip-flop reduced controller

By analyzing the possible states and its transitions, we find that the convert counter only
applies the one array at a time or both simultaneously. Thus, also the output vectors
array A and array B act dynamical subsequently or simultaneously. This in mind, we
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end up with a state space spanned by:

Z [14 : 0] =
{
Ẑcnt [2 : 0] , Ẑctr A [1 : 0] , Ẑctr B [1 : 0] , Ẑdout [7 : 0]

}
(4.1)

Here Ẑdout[7 : 0] holds the comparator decisions and therefore controls array A[7:0]/
array B[7:0], while Ẑctr A/ctr B[1 : 0] is the transmission gate part of the state repre-
sentation. Ẑcnt is the memory of one common counting logic. For this implementation,
the counting functionality as well as the control memory for the DACs are shared. The
implementation is realized by a handcrafted Moore machine.

clk

en

D Q

sync. rst

comp. out
(cnt = 7)

Array A [7]
1'b0

Array B [7]

mode

mode
(cnt < 7)
(cnt < 6)

dout [7]

dout clear en A en B

A

clk

en

D Q

sync. rst

comp. out
(cnt = i)

Array A [i]
mode

Array B [i]
1'b1

mode
(cnt < i)

(cnt < i-1)

dout [i]

dout clear en A en B

B
for i in 6..0

Figure 18: Data path in the flip-flop reduced controller for the inverter signals Array A [7:0]
and Array B [7:0] using one shared register bank. The logic is driven by a counter “cnt”,
the ADC operation mode as well as “en A” or “en B”. To accommodate both modes, the MSB
capacitor in A has a different sampling position logic than the other capacitors i = 6 . . . 0 in B.

The limitations of this implementation can be shown best by the signal path between
the comparator and array A/array B (c.f. Figure 18). As shown in Figure 17(A), in
the fast mode, always only one array ever changes, while the other remains constant.
In the precise mode, either both arrays change due to the comparator output or both
outputs are constant. This leads to the idea of implementing only one FF per output code
bit. However, to be able to have array A[7:0] and array B[7:0] in two independent
positions (e.g., array A[7:0] takes its sampling position while array B[7:0] converts),
we implement two demultiplexer banks in front of array A[7:0] and array B[7:0]. A
demultiplexer has at least two input signals, one of which it selects as output. Here, each
demultiplexer connects array A[i]/array B[i] either to its constant sampling position
or to the dynamic Ẑdout[i] FF. The sampling position can be considered as constant,
because the ADC mode signal only changes when the ADC is switched off. On a strict
interpretation, however, we would recognize a Mealy machine here. So in fast mode (mode
is high) these are high except for those for the MSB capacitors. In the precise mode (mode
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is low) array A[7:0] is low and array B[7:0] is high.

In each conversion step exactly one enable-FF (Ẑdout[i]) copies the comparator output.
The corresponding FF is selected from the counter Ẑcnt.

The change between the input modes are driven by the counter’s inverse temperature
output. In other word, it is driven by a “smaller than”-logic. However, this is preceded
by the fact that Ẑctr A/ctr B[1 : 0] of the respective array must be show the symbol “convert”.
Now, if an array is enabled, one bit after the other changes from its constant input to the
output of the FF. This realizes the staircase behavior in the switching scheme as discussed
in Section 4.2. In order to achieve the “try-and-reject” approach, the array takes the input
from the register until cnt < i. So each inverter is already connected to the respective
FF one clock cycle before this FF takes over the comparator output. Since the FFs are
zeroed before each conversion, this ensures that the respective capacitor is first recharged
against the supply. In the precise mode, the array takes the input from the register until
cnt < i − 1. Here, the change from the static to the dynamic input happens after or
during the FF copies the comparator output.

This implementation does pay attention to the signal path between the FF and the respec-
tive inverter, but the critical path is the one that is created by the selection logic. This
starts at the counter and leads to the control port of the demultiplexer via the less-than
logic. By the way, during the synthesis it is not at all guaranteed that the demultiplexer
really becomes a demultiplexer, because the described functionality can also be generated
differently. This attempt is yet promising, as without constraining, we achieve an area
consumption of ≈350 µm2. But in the end, the physical aware synthesis tries to keep the
time constraints and uses large as well as power hungry standard cells. Using a 1MHz

target clock frequency and a wire-load model at a typical corner for the static timing anal-
ysis (STA) together with the load constraints of the parasitic extraction, this controller
requires an area of ≈750 µm2.

This implementation also has the disadvantage that it generates all outputs by combi-
natorial logic. As already discussed, this is dangerous, since glitches can arise through
the synthesis. Although gray-like encoding is used to control the transmission gates, the
same is not possible for array A[7:0]/array B[7:0].
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4.3.2 Naive but efficient controller

Given the switching scheme from Section 4.2 and the regarding the symmetry and the
control and data signal splitting, one can naively implement the controller as (simple)
Moore machine splitting the state space in two individual blocks, each containing the
logic of one array. In order to separate data and control path, we perform the following
split of the state space:

Z [23 : 0] =
{
Ẑcontrol, A [3 : 0] , Ẑdata, A [7 : 0] , Ẑcontrol, B [3 : 0] , Ẑdata, B [7 : 0]

}
(4.2)

It is directly obvious that the total number of memory bits is larger than in the example
discussed above. The important point is, that no information flows from the data-part to
the control-part of the state representation: It runs autonomously and does not require
any comparator decision.

Similar to a simple Moore machine, the data dependent part Ẑdata, A[7 : 0] directly con-
trols array A[7:0] and Ẑdata, B[7 : 0] controls array B[7:0]. By doing so, glitches are
prohibited intrinsically, and the timing constraints are met easily. But the signal-parts
symbols change with respect to the current value in the control part: They set them back
to their sampling state or execute the “try”-part in the fast mode. To apply the successive
approximation, accordingly to the current (convert counting) symbol in the control part,
the individual bits of the signal-part copy the respective comparator output.

The counting logic and the transmission gates control are incorporated to Ẑcontrol, A/B.
Here, sequences from Figure 17 are decoded as shown in Table 5. To avoid glitches in
the output vector Y , all critical transitions are implemented utilizing the ideal of a gray-
counter: The order of the codes always remains the same, only in the fast mode, one
jumps from C1 directly to FINISH. Their transitions are on the one hand driven by the
array-specific “sample” signal, on the other they operate as rigid clock-driven sequential.

Implementation wise, these naive approach results in for example two case blocks per
array: One for the control parts next-state logic and one to write the data-part. To fully
describe the controller, some more combinatorial logic is required. In the fast mode, both
arrays are externally interleaved by combinatorial logic. Therefore, the sample signal
that triggers the ADC always shows up in “A”, but in “B” only if the ADC is in the
precise mode or if “A” is not in RESET or TRACK. Moreover, in the precise mode, the
comparator is always connected to both arrays. However, the enable comparator signal
is high, if one of Ẑcontrol, A[3] and Ẑcontrol, B[3] is high. The output code always shows the
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Name Code R T C F cnt
RESET 4’b0000 1 0 0 0
TRACK 4’b0001 0 1 0 0
C7 4’b1001 0 0 1 0 7
C6 4’b1000 0 0 1 0 6
C5 4’b1100 0 0 1 0 5
C4 4’b1101 0 0 1 0 4
C3 4’b1111 0 0 1 0 3
C2 4’b1110 0 0 1 0 2
C1 4’b1010 0 0 1 0 1
C0 4’b1011 0 0 1 0 0
FINISH 4’b0011 0 0 0 1

Table 5: Almost gray encoding of Ẑcontrol, A and Ẑcontrol, B together with its impact on the
corresponding transmission gates reset (R), connect input (T), connect comparator (C) as
well as an indication for a valid flag (F) and an associated counter (cnt). In a conversion, the
sequence is executed from top to bottom. The red numbers annotate the changing places: Only
in case of critical code transitions do several FFs change at once.

state of Ẑdata, A[7 : 0], only if Ẑcontrol, B = FINISH it selects Ẑdata, B[7 : 0]. If Ẑcontrol, A

or Ẑcontrol, B shows FINISH, the output code is valid. To prevent the state machine from
getting stuck, Ẑcontrol, A/B automatically returns to RESET if a code is encountered that
is not described in Table 5. This controller enables, to disconnect the comparator in the
fast mode first, before resetting the common mode line. By doing so, at the start of a
conversion the comparator’s input node is always pre-charged to around 0.6V.

4.3.3 Physical aware syntheses

For a realistic timing of the ADC, the digital logic needs to be cast to physical transistors.
Here we used Synopsis Design Compiler to perform the synthesis. To account for the
full custom part of the ADC, we apply the port capacitance determined in a paracitic
extraction (PEX) of the layout as constraints to the synthesis. Using a 1MHz target
clock frequency, we estimate the maximum allowed time for the logic to generate an
array-inverter or transmission gate signal to 300 ps. Consistently with the rest of the
ADC, we use a wire-load model at a typical corner for the STA. No clock or reset tree is
created in this synthesis.

Despite the increased number of flip-flops, the area required for the 158 standard cells is
482 µm2. The leakage currents in the synthesized control logic have a power of 19.97 nW.
In the fast mode, the digital controller requires 1.62± 0.02 pJ/conv, in the precise mode
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it requires 3.00± 0.02 pJ/conv (c.f. Section 6.2). The uncertainty here refers to its input
voltage dependence. The increased energy consumption in the precise mode is due to the
fact that both arrays work simultaneously and there is also one more switching operation.

The designs functional verification is performed with the verification framework from
Section 3.3. As the test suite drives smoothly through the full input voltage range, each
state transition in the comparator is tested. Since this incorporates the full ADC, it is
presented in Section 6.2.
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5 Double-tail sense amplifier

As its name suggests, a comparator compares the magnitudes of two analog quantities,
e.g., two voltages, and returns the result as a binary signal. From an abstract point of
view, it implements a discretization by introducing a decision boundary at the parity of
the input signals. If Vi+ > Vi−, the comparator yields a high signal, if it’s the other
way around, the output signal of the comparator is low. Every ADC architecture utilizes
comparators (Pelgrom, 2017).

Conceptually, one distinguishes regenerative and time continuous comparators. The latter
are ordinarily implemented as high-gain amplifiers most often centered around vanilla,
continuously biased differential pairs. Due to its permanent power consumption, this
approach would not fit into the new ADC design. Moreover, it requires a bias current
whose provisioning of which requires further effort. Sense amplifier flip-flops (SAFFs)
were initially designed for symbol identification in digital circuits, such as for example
in on-chip transceivers (Schinkel et al., 2005; Zhang et al., 2000) or level detectors in
SRAMs (Hsu and Ho, 2004; Chandankhede et al., 2014). However, they also proved to be
good comparator circuits for different ADCs architectures (Xu and Xu, 2017; Gao et al.,
2010; Naraghi et al., 2010; Reddy et al., 2012). Their clocked decision-making process and
digital output characteristics make them the circuits of choice for fast, low-power ADCs.

5.1 Introduction to comparators

The new SAR ADC engage one comparator to evaluate the voltage on its capacitors. Its
control logic fetches the comparator decision and computes the next step of the successive
approximation from this. During a conversion, each comparator decision is responsible
for one bit of the output code. This makes the comparator critical for a successful ADC
implementation. In the following section, we introduce concepts, properties and charac-
teristics that are required in comparator design.

5.1.1 Effects in the transfer curve

The transfer curve describes the output-level of a comparator with respect to an input volt-
age difference. Ideal characteristics (Figure 19A) exhibits an infinitely steep output-level
transition at the zero crossing of the two input voltages. In reality, however, comparators
can suffer from different types of distortions which we are going to discuss in the following
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Figure 19: Comparator transfer curves for ideal comparators and distorting effects. A: Ideal
comparator characteristics. B: Comparator with partially digitally undefined output levels. C:
Effect of an input offset to the transfer curve. D: Comparator’s transfer curve showing a path-
dependency (hysteresis).

paragraphs.

In an ADC, the comparator’s output-level is evaluated by subsequent digital logic. If
during this evaluation the comparator’s output signal is neither in the low-state nor in the
high-state, the signal is digitally undefined which can cause metastability. Metastability
describes the situation in which a flip-flop does not reach a stable equilibrium but persists
in a meta-stable intermediate state. Figure 19B exhibits a comparator with a partially
digitally undefined output state: Small input voltage differences are not sufficient to yield
a full swing at the output.

Comparators can, furthermore, suffer from a static offset in the transfer curve. As il-
lustrated in Figure 19C, a static offset shifts the decision boundary to non-zero input
voltage differences. This can be caused, e.g., by to device or input impedance mismatch.
There are multiple approaches to calibrate for static offset (Wong and Yang, 2004; Miya-
hara et al., 2008). However, dynamic offset errors, for example caused by noise, add
uncertainty in the form of a washed-out tripping point in the transfer curve.

A comparator’s decision can, in addition, become path dependent (Figure 19D). This
means that the observed decision boundary depends on the direction from which you
approximate it. This effect is called hysteresis.

5.1.2 Differential pair

A differential pair is a common circuit to amplify a voltage difference. Many comparators
use this or modified version to amplify their input signal. As illustrated in Figure 20A, it
is based on the concept that the sum of the currents through the left and the right branch
equals the current trough a common bias source:
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Figure 20: Illustration of the fundamental difference between the two basic types of differential
pairs. A: A conventional, continuous-time differential pair uses a constant bias current. B: A
regenerative differential pair driven by pre-charged capacitive elements does not require it.

Ibias = Id+ + Id−. (5.1)

Now, the left (Id+) and the right (Id−) branches are driven by the gates of the transistors
T1 and T2 and hence by the input voltages Vi+ and Vi−. Since the two identical resistors
R serve as loads, a difference between Id+ and Id− cause a voltage difference between Vd+

and Vd−:

Vd+ − Vd− = R · (Id+(Vi+, VS)− Id−(Vi−, VS)) . (5.2)

To handle the constant power consumption in a differential pair, one can reduce the cross
current through T1 and T2 to the moment of the decision-making process. One way to do
this is to use a regenerative pre-amplifier (Pelgrom, 2017). Here, we replace the resistors
R by pre-charged capacitors C (c.f. Figure 20B). When enabling the common source
current, both capacitors discharge with input voltage dependent slew-rates:

slew-rate =
dVd
dt =

Id(Vi)

C
(5.3)

The voltages Vd+(Vi+, t) and Vd−(Vi−, t) become time dependent and only differ during
the decision-making process. Following stages generate static signal from the slew-rates of
the two branches. For example, a sense amplifier make use of two cross-coupled inverters.
Before the decision, these are brought to a state of an unstable tipping point. During the
decision, the input-depend slew-rates of the two branches than guide the cross coupled
inverters to an equilibrium.
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In each decision-making process, the transistors T1 and T2 pass through different oper-
ation modes: Before the differential pair is enabled, Vd+ and Vd− are pre-charged to the
supply voltage. Input voltage depended, T1 and T2 are usually not fully off but operate
in their deep-sub-threshold, which slowly also pre-charges the node VS. The differential
pair is activated by closing the enable-switch. Thereby, the enable-switch forces VS to
ground. Now, T1 and T2 discharge Vd+ and Vd−. As long as Vd+/− > Vi+/− − Vth,
the channel of T1/T2 pinch-off (saturation regime) and the discharging current Id+/− is
almost independent of the capacitor’s discharging state. This is the phase in which the
actual comparator decision is prepared. If Vd+/− < Vi+/−−Vth, e.g., because the capacitor
is almost discharged, the transistor enter its linear regime. This means that the influence
of the input voltage Vi+/− on the discharge current Id+/− decreases. If the input voltage
Vi+/− has no sufficient magnitude, e.g., it is smaller than the threshold voltage Vth, the
discharging current Id+/− is driven by the Boltzmann statistics. Here, the discharging
current Id+/− is significantly reduced compared to the other regimes, and it takes longer
to discharge the capacitors.

5.1.3 Error sources in comparators

noise:
1/f

thermal
supply

A B

∆Q

C

Figure 21: Exemplary sources of error in comparators. A: It is difficult to calibrate away the
different types of noise, so the design itself should be robust against them. B: Device mismatch
often lead to random static offset errors. C: Kickback in comparators is caused by charge
injection in the differential pair.

Every circuit is subject to sources of error. First, we can identify different external or
fundamental sources of noise: 1/f noise, thermal noise and supply noise. In addition, the
manufacturing process causes device imperfections: Mismatch in transistor parameters.
Finally, the design itself limits its accuracy: Capacitive coupling and the influence of the
input impedance.

Noise. At temperatures above 0K, charge carrier also move in equilibrium. This ran-
dom movement is inherent to the statistic nature of thermal energy and leads to a slightly
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fluctuating voltage in all electrical circuits. In addition, pink noise, also called 1/f noise,
occurs in many electronic devices (Allen and Holberg, 1987). In a first approximation, if
the input impedance R dominates the noise, the root-mean-square of this offset voltage
is determined to be:

vRMS =
√

4kBTR∆f. (5.4)

Here kB equals the Boltzmann constant, T the temperature and ∆f the bandwidth (Pel-
grom, 2017).

A comparator, moreover, can suffer from supply noise. Dynamic change in the supply
voltage can lead to variations in its circuit’s behavior. The noise components can act like
a dynamic time-dependent offset, which can not be calibrated. In order to suppress this
anyhow, the design itself needs to be robust against noise.

Device mismatch. The manufacturing process leads to imperfections that further limit
the comparator’s accuracy. With them in mind, one can optimize a design to become
sufficiently robust. Unfortunately, typical comparators consist of multiple devices that
should be as equal as possible.

Device mismatch occurs either due to geometrical differences or due to changes in process
parameters like silicon doping concentrations. The former can be caused systematically
by the approximate effect (Neighboring poly-silicon changes the geometry of implanted
areas) or statistically by the limit of the process node. Generally, symmetry in design
and layout helps to reduce these effects. Changes in silicon doping concentrations and
variations of the gate-oxides thickness leads to threshold voltage mismatch. Pelgrom et al.
(1989) measures the current factor mismatch in transistors as

σ2(β)

β2
≈

A2
β

WL
+ S2

βD
2. (5.5)

Here, Aβ and Sβ are process parameters, while W and L are width and length of a
rectangular transistor and D the distance to the neighboring devices.

With this the transistors properties like the transconductance also change. Using error
propagation in a linearized transistor model, one can calculate the total effect on the
comparator (Pelgrom, 2017, p. 296). Unfortunately, transistors in comparators with re-
generative stages, as for example sense amplifiers (SAs), cross through their full dynamic
range and hence do not fit a linear approximation. In first approximation, device mis-
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match leads to a random static comparator offset, which is a second order effect in SAR
ADCs.

Kickback. Kickback is an effect in comparators that comes with the intrinsic properties
of transistors. As illustrated in Figure 21C, a transistor’s gate does not only control
the drain-source current but also implements a capacitive element with respect to the
drain- and source-potentials. This capacitance is in first order linearly related to the
transistor’s gate area, but in second order also gate voltage dependent. While in a common
differential pair the voltages Vd+ and Vd− only change with the input signals Vi+ and
Vi−, in a regenerative comparator Vd+ and Vd− cross through their full dynamic range
in every decision (c.f. Figure 20). This results in a significant charge transfer on the
input lines Vi+ and Vi−. Pre-charging Vd+ and Vd− stage again, approximately reverses
this charge transfer. Thus, the comparator’s input impedance matching influences the
decision and leads to another random static offset. Since decreasing the gate area at
constant transconductance properties increases the device mismatch, we need to find a
sufficient trade-off between kickback and device mismatch.

5.2 Design constraints

To reach the goal of a flexible, fast and energy as well as area efficient ADC, all components
must be coordinated with each other. Given the targets in Section 2.3, Czierlinski (2022)
presented a suitable ADC concept (c.f. Section 2.4). Having said this, we can derive a
fist set of specifications for a comparator.

The comparator should fit the ADC’s fast mode as well as the precise mode. While the
required accuracy differs, both modes operate in a single ended configuration comparing
a full-swing signal (typically 0.0V to 1.2V) with half the supply voltage (typically 0.6V).
In the approximation algorithm, the latter serves as common mode voltage that is suc-
cessively approximated by the DAC (Czierlinski, 2022). Hence, a change in this voltage
is equal to a static input offset of the comparator and equivalent to an offset error in
the ADC’s output code (Pelgrom, 2017). Although this is a second order effect, we want
to be able to calibrate for it by implementing an adjustable reference voltage generator.
Moreover, a deliberate shift of the comparators decision boundary allows compensating
for ADC gain and offset error by shifting the dynamic range. In this sense, the full
comparator circuit should operate in a single-ended configuration.

An ideal 7 bit (8 bit) ADC with 1.2V dynamic range has a LSB-step-size of 9.38mV
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(4.69mV). Even if a static offset has a second order effect, effects that equal a time
dependent offset or metastability should be suppressed. For flash ADCs, Pelgrom (2017,
p. 295) suggests that the comparator’s input offset should be five to ten times smaller
than the LSB-step-size. Following this rule of thumb, we base our design on a minimum
input voltage difference of 1.0mV.

The given ADC architecture also determines the comparator’s input impedance: Ulti-
mately, the capacitive array implements an infinite impedance with a certain reservoir of
charge. But as the comparator is separated from the capacitive arrays by transmission
gates and the comparators input capacitance is small relative to the DAC’s capacitance,
we also need to consider them.

Delay time. As mentioned before, the comparator should base on a regenerative ap-
proach and thus requires a trigger signal to enable the differential pair. A sense amplifier
holds the output signal in two cross-coupled inverters. In this sense, a sense amplifier pro-
vides two output signals (Vo+ and Vo−), one from each inverter. The trigger as well as this
output signal interface to the digital domain. To characterize a comparator design, we
motivate a timing relation both signals. Inspired by the commonly used clock-to-output
time in sequential logic like FFs, we define a trigger-to-output time: It starts at the half
trigger edge (50% of the supply voltage) and stops if one of the two output signals reaches
90% of the supply voltage.

The ADC is driven by a 1GHz clock, which should also serve as source for a comparator
trigger signal. We decided to divide each clock cycle in two parts: At positive clock edges,
the combinatorial logic generates array-inverter transitions (c.f. Section 4.2) that adapt
the sampled voltage. At negative clock edges, the comparator is enabled makes a decision.
So, we make use of both clock edges and need to account for a probably unsymmetrical
clock duty cycle. In a typical case this would stop a comparator decision after ≈500 ps.
Including the required FF hold time, we assume a maximum of ≈400 ps at 1.0mV input
voltage difference to be sufficient. Hence, the maximum trigger-to-output time should be
less.

Power and area consumption. The comparator is one of the most power hungry
circuits in the ADC. In order to stay within the required total power constraints, a first
approximation of the core power of the comparator should stay below 100 fJ per decision.
If the comparator ran constantly, this would equal a power of 100 µW, which is more than
the half the ADC’s total power consumption.
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In order to fit to the area constraints, it was decided to accommodate the entire com-
parator unit, including the reference circuits, below the capacitive array. However, this
influences the number of available metal routing layers: To save routing resources, the
comparator should be as flat as possible.

5.3 Sense amplifier

Originally SA FFs are designed for high speed, low power applications in the digital
domain. But especially voltage mode SAs are also interesting as comparators in ADCs.
Today, there are many variations and implementations of sense amplifier (Zhu et al.,
2013).

T9

T7

T8

T6

T1 T2

T3

Vi− Vi+

Vo−

Vo+

T5 T4

clk

clk clk

Vd− Vd+

Figure 22: Circuit schematic of a classic single tail sense amplifier flip-flop.

Commonly, all SAFFs use a capacitive, regenerative differential input stage (c.f. Fig-
ure 20B) and some kind of cross coupled inverters as latch stage. Figure 22 illustrates
a simple single-tail SA. Here, transistors T1 and T2 realize a differential pair, biased by
the N-type MOS (NMOS) switch T3. The lines Vd+ and Vd− serve as implicit capacitors.
On top of this differential pair the transistors T6 to T9 implement two cross coupled
inverters. The latch created in this way can be reset by transistors T4 and T5. Hereby,
the reset transistors T4 and T5 become conducting (clock is low) and pulls Vo+ and Vo−

to the supply rail. This again pushes the NMOS transistors of the inverters, T6 and T7,
to pre-charge Vd+ as well as Vd−. Since the clock is still low, switch T3 is open as no cross
current flows through the branches.

At a positive trigger edge, switch T3 closes and simultaneously the reset T4 and T5 is

59



5 Double-tail sense amplifier

released. The charges stored on Vo+ and Vo− as well as on Vd+ and Vd− drain via T1 and
T2. Input voltage dependent, the drain currents Id+(Vi+) andId−(Vi−) (c.f. Figure 20B)
differ, which is amplified by the positive feedback of the cross-coupled inverters. Here,
either T8 or T9 becomes conducing while either T7 or T6 opens. At the output Vo+ and
Vo− a full swing signal occurs.

In this configuration, only one common trigger signal is required. So both stages are
intrinsically synchronized. However, due to the three stacked NMOS transistors, T1 and
T2 suffer from a reduced headroom: The primer pre-charge of Vd+ and Vd− is not the full
supply voltage but limited by the conductance of T6 and T7. Hence, this design is not
suitable for the required common mode voltage.

Several variations of this circuit attempt to address the problem of poor dynamic range.
Some variations retain one tail, while others deviate from this approach and outsource
the second stage. In the former, for example, Vd+ and Vd− are explicitly pre-charged
during reset by additional P-type MOS (PMOS) transistors. Further both branches can
be connected using a small additional transistor to pre- and discharge both branches
input-independently in every trigger cycle (Nikolic et al., 2000).

5.4 Implementation of a double-tail sense amplifier

Double-tail sense amplifier (DTSA), for the first time presented by Schinkel et al. (2007),
deal with the limited headroom by moving the cross-coupled inverters to a second tail.
Thus, both stages can operate with full swing voltages. As shown in Figure 23A, Vd+

and Vd− are charged by two the PMOS transistors T4 and T5 replacing the cross-coupled
inverters.

Today, there exists multiple variation of the original double-tail concept, which vary in
the exact coupling of the latch stage. One approach is to use a conducting stage coupling
(Van Elzakker et al., 2008): Here the corresponding NMOS transistors are inserted be-
tween T8 and T10 as well as T9 and T11 (c.f. Figure 53 in appendix). In order to remove
the need for an inverted trigger signal, Miyahara et al. (2008) derive the latch-enable
signal from Vd+ and Vd− (c.f. Figure 54 in appendix). Furthermore, one can introduce
another inverting stage between the differential pre-amplifier and the output latch (Jeon
and Kim, 2010).

A first comparison of the individual double-tail variants was made based on simulations
not yet including optimizations of transistor sizing: Schinkel et al. (2007), Miyahara et al.
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(2008) and Jeon and Kim (2010) exhibit a similar level of performance with respect to
their energy consumption and decision delay. The original DTSA, however, seems to be
more robust against device mismatch. In addition, it is already successfully implemented
in other SAR ADCs and in similar technologies, e.g. in Harpe (2018).

Going into future detail, in the original DTSA, both stages are coupled in a voltage mode
fashion. The voltages Vd+ and Vd− are directly applied to the gates of T13 and T12,
inversely driving the branches of the cross-coupled inverters. As a side effect, T12 and
T13 also serve as additional capacitive elements at Vd+ and Vd−.

As long as trigger is low, T4 and T5 are closed and Vd− as well as Vd+ are pulled
towards the supply rail. This charges these implicit capacitors and forces Vo− and Vo+

to ground. At this point, transistor T6 prevents the latch from producing large cross
currents and switch T3 – acting as the differential pair’s current sink – is open. When
trigger transitions to high, Vd− and Vd+ discharge similarly as in a single-tail SA (c.f.
Section 5.3). T4 and T5 open and T6 closes, whereupon the latch is enabled to change
its value. During the discharging process, either T12 or T13 – depending on the applied
voltage – dominates the output stage and guide the cross-coupled inverter towards a
stable equilibrium. With the respective positive feedback, the output stage latches and
generates a full-swing signal.

5.4.1 Characterization methodology

To verify the performance of the comparator, we simulate it individually and in conjunc-
tions with its periphery. For that purpose, we consider the following characteristics: delay
time, energy per decision and input offset.

Figure 23(B) shows the basic evaluation technique. The upper plot illustrates the com-
parator’s trigger signal. Similar to the clock, from which this signal is derived, the trigger
signal as well as its inverse is driven with a frequency of 1GHz. In our simulation setup,
we generate the clock respectively the trigger signal by an ideal voltage source. If not
explicitly mentioned, the clock transition from low (0.0V) to high (1.2V) and vice versa
is configured to 30 ps. These values are based on experience and data sheets of the given
process node.

As mentioned in Section 5.2, the delay is calculated from the transition of the comparator’s
output relative to the rising edge of the trigger signal. To be precise, we determine the
time between the 50%-mark of the rising edge and the point in time when one output
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Figure 23: Double tail sense amplifier increases the transistor’s headroom by reducing the num-
ber of stacked devices. A: Schematic of the implemented comparator core suggested by Schinkel
et al. (2007) B: Internal as well as external signals extracted from transistor-level simulations.
The dotted lines annotate points in times that are used to evaluate the comparator’s delay and
energy consumption.

branch reach 90% of the supply voltage while the other output branch holds less than
10%. Both times are annotated in Figure 23B as t0 and t1. When the comparator does not
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Figure 24: A series of a resistor followed by a pre-charged capacitor is used to investigate the
kickback effect in the ADC. The resistors symbolize the transmission gates, while the capacitors
represent the capacitive arrays and the capacitive reference DAC.

succeed to find a decision during the trigger high period, the output signal is interpreted
as ambiguous.

The comparator’s energy per decision is extracted from the currents and voltages at
its supply input. We calculate the instantaneous power consumption as P = U · I,
as illustrated in the lower panel of Figure 23B. Furthermore, we numerically integrate
E =

∫ t2
t0

P over one period of the trigger signal to yield the energy per decision. Here we
assume that every decision cycle behaves independently and identical. The assumption
is based on the fact that due to the circuit’s topology, all nodes are recharged in every
cycle. In a first approximation, this means that the whole charge provided by the supply
node is finally dumped into the ground node.

To determine the offset, a binary search approximates the comparators tripping point.
Starting with initial boundaries of ±100mV and performing 10 iterations, we can estimate
the input offset with a precision of less than 0.2mV.

Kickback causes significant transients and intermediate voltage jumps in the order of tens
of millivolts at the input node of the comparator. Thus, they influence the discharging
behavior of Vd+ and Vd−. To account for the limited input impedance, we model the
transmission gate with a resistor and the capacitive array as an ideal capacitor (c.f. Fig-
ure 24). Inspired by other transmission gates in the given process node (Billaudelle, 2022),
we assume a resistance of 3 kΩ. Based on the proceeding development of the capacitive
array, we estimate the capacitance to be 200 fF. At the beginning of each simulation,
these transistors are pre-charged to the desired input voltage. As long as the comparator
is simulated individually, it operates without considering any load at its output.
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5.4.2 Component dimensions

The traces shown in Figure 23B not only illustrates the measurement method, but also
gives insights to the technical functionality of the individual stages. The sizing the com-
ponents of the comparator defines its performance. Therefore, the physical understanding
of the circuit is required, and the layout effects need to be considered beforehand.

Differential pair. During the decision process, the differential pair discharges the nodes
Vd+ and Vd−. The time required for a full-swing discharging of these nodes is determined
by the capacitance Cd+/−, input voltages Vi+/− and the geometrical aspect ratios W/L of
T1 and T2. If this time is too large, the comparator becomes slow, if it is too small, the
subsequent cross-coupled inverters have a too short response time and the comparator
becomes less accurate. Cd+/− are recharged in every decision cycle and thus contributes
directly to the energy consumption. They are dominated by the gate capacities of the
strong-arm transistors T12 and T13 that couple the stages.

Since device mismatch between T1 and T2 directly leads to a comparator input offset,
a good matching between them is required. Increasing the transistor size reduces the
current factor mismatch at the cost of gate area, which in turn determines the kickback
effect. Dividing T1 and T2 into multiple, parallel transistors (“fingers”) and interleaving
them properly reduces mismatch. To some extent, such a layout allows canceling the
effect of the mismatch sources that occur with spatial gradients, e.g., variations in the
gate-oxide thickness.

Transistors T3, T4 and T5 should operate as switches. In their closed configuration,
their resistance should be correspondingly low. Especially T3 requires special care, as
all charges from the nodes Vd+ and Vd− passes through it. T4 and T5 are designed to
fit to the magnitude of Cd+/− best. As their gates are recharged in each decision, their
contribution to the total energy scales with their gate area. To reduce the leak current,
all switches are dimensioned to a gate-length L of 80 nm.

Coupling to 2nd stage and cross-coupled inverters. Transistors T12 and T13 have
an amplifying characteristic. Since they couple both stages in differential manner, they
must be matched to not contribute significantly to the comparator’s offset. Thus, they
require transistor lengths L that are greater than the minimal length: L = 120 nm. But
as described above, their gate areas corresponds to the capacitance Cd+/−. The width of
T12 and T13 ensure, that they can always overrule the latch’s state.
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type width / nm length / nm fingers
T1, T2 NMOS 700∗ 150∗ 4
T3 NMOS 300 80 4
T4, T5 PMOS 400 80 4
T6 PMOS 400 80 4
T8, T9 PMOS 400 120 4
T10, T11 NMOS 300 120 2
T12, T13 NMOS 300 120 4

Table 6: Transistor sizes in the comparator’s first design iteration. ∗Parameters after post-
layout optimization. All pre-layout simulations use for T1 & T2 a width of 500 ns and a length
of 200 ns.

Transistors T8 to T11 implementing the feedback loop. For a balanced decision, the cor-
responding pairs of these transistors need to match as well. Nevertheless, increasing their
gate area, decreases the feedback speed slightly, as the driven gate capacities increases as
well. For reasons of symmetry, we decide to use the same transistor length L as in T12
and T13. The transistor widths are chosen with respect to balance NMOS and PMOS
transistor speed.

To address all above aspects, we group the transistors according to their tasks. In the
design process of a layout, several transistor fingers are usually bundled in wells by pairwise
connecting their drain or source contacts. The transistor widths W of bundled transistors
should match, to avoid symmetry brakes. Apart from the division into P-wells and N-
wells, we find three classes of device accuracy requirements. The first class comprises
T1 and T2, as these play the most important role for the comparator’s performance. A
second class includes all other transistors that require matching: T8 to T13. Last, all
switches are optimized by minimizing their gate area in order to reduce the switching
power while fitting the respectively required on resistances. All transistor dimensions are
collocated in Table 6.

5.5 Transistor level simulations

Using the methods described in Section 5.4.1, this section evaluates the design proposed in
Section 5.4.2 on a transistor level. Hence, the presented simulations incorporate transistor
models without any knowledge about their physical placement. However, they allow a
first approximation of the design’s performance and require much less computation time
enabling Monte-Carlo mismatch simulations. We run simulations with different initial
states in the cross-coupled inverters with no observable change in behavior. Further,
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Figure 25: Delay time and energy consumption of the comparator on a transistor level with re-
spect to the input voltage difference vdiff, the common mode voltage vcm and the supply voltage
vdd for different process corners. The target supply voltage is 1.2V, the target common mode
voltage 0.6V and the simulated input voltage difference 1mV. The Y-axis, which represents
the input voltage difference, is scaled by a symmetric logarithm.

it can be shown that the trigger edge quality in realistic ranges has a minor effect on
the comparator’s behavior. The same is true for a skew between the trigger signal and
its inverse: As long as the active phases of both stages overlap in time sufficiently, the
comparator remains functional. However, the energy consumption reduces if the inverted
trigger signal, trigger, is slightly after the non-inverted trigger signal. This is due to
the fact that it reduces the time of the cross current through the second stage.

Process corner. Figure 25 shows the comparator delay as well as the energy with
respect to the input voltage difference vdiff, the common mode voltage vcm and the
supply voltage vdd in the different corners.

The delay with respect to the input voltage difference is plotted on a symmetrical, loga-
rithmic X-axis. Thereby, Vi+ (later: single-ended input) changes from decision to decision,
while Vi− (later: reference voltage) stays at the ADC’s nominal common mode voltage of
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0.6V. Below an input voltage difference of around 10mV the comparator’s decision time
is dominated by the balance of power in the cross-coupled inverters. Here the decision is
made after both Vd+ and Vd− have already completed their equal-length discharge pro-
cess. The decision itself is based on minimal differences in the discharging process of Vd+

and Vd−, registered by Vo+ and Vo− and amplified in the positive feedback loop to a full
swing signal. The decision time grows exponentially decreased input voltage difference
(Pelgrom, 2017).

For unambiguously negative input voltage difference, the decision time is limited by the
time it takes to discharge Vd−. In the process, the discharging time of Vd+ is much larger.
On the other side, for unambiguously negative input voltage differences, Vd+ is faster
than Vd−, which speeds up the decision. The decision time depends on the process corner,
whereby the NMOS corner is more influencing than the PMOS corner. This is among
others due to the current factor in the transistors T1 and T2 of the differential pair.

The same trisection can be observed in the respective energy consumption. However,
each section seems to belong to a characteristic energy consumption. In contrast to
the delay time, the corners act differently on the energy consumption. Here, the mixed
process corners are more influential, as they affect the effective cross currents through the
comparator by the matching of the NMOS and PMOS threshold voltages.

To characterize the robustness against an ADC’s common voltage change, we simulate
different common mode voltages Vcm = Vi++Vi−

2
at an input voltage difference of 1mV.

This input voltage difference was previously suggested and discussed (c.f. Section 5.2). In
the delay time and the energy consumption, common mode voltages above 0.8V perform
similar. Below 0.8V, one can observe some differences leading to ambiguous decisions as
the trigger period continues. This is due to the reduced gain of the transistors T1 and
T2 in the differential pair. A common mode voltage Vcm of 0.6V is already at the tipping
point to ambiguous decisions, especially when the NMOS transistors are slow. With
increased input voltage differences or trigger periods, reduced common mode voltages
Vcm are achievable as well. The energy consumption with respect to the common mode
voltage Vcm is independent of the process corner. We continue with this design, as we
have no better transistor parameters at this moment and the design targets are met in
every process corner.

In the right panels of Figure 25, delay time and energy consumption is plotted with
respect to the supply voltage. While the delay time is almost independent of supply
voltage variations, the delay time act significantly on the energy consumption. The latter
is expected, as in full swing digital circuits the first-order energy grows quadratically with
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Figure 26: Mismatch effects extracted from simulations of 200 circuit instances drawn with
Monte-Carlo methods from a device variation distribution. While the input offset error (A)
shows a significant spread, the delay time (B) and the energy consumption (C) are almost
not affected. Delay time and energy are extracted for an effective input voltage difference of
∆Vi = 1mV after correcting the offset error. The histograms are fitted by normal distributions.

the supply voltage (Chandrakasan et al., 1992).

In all illustrated measurements, the comparator decide correctly, but the missing data-
points in centered panel indicated too late decisions.

Device mismatch. Monte Carlo methods are used to study device mismatch. First
the comparators offset is determined for each sample and then in a second step delay
time and energy consumption are simulated with corrected reference voltage Vi− and an
effective input voltage difference of 1mV.

The histogram in Figure 26A shows the offset error distribution determined by offset
searches of of 200 circuit instances drawn with Monte Carlo methods. A Gaussian normal
distribution (orange curve) is used to fit the data. For the comparator a device mismatch-
specific input offset distribution with σ(Voff) = 7.4mV is extracted. The mean of the offset
error is Voff = 0.5mV, which indicates that no significant systematical effects occur.

The extracted delay times and energy consumption also demonstrate a Gaussian behavior.
Nevertheless, since the distributions are quite narrow and less distinct as for example
variations through the process corner, the device mismatch is less relevant here.

Kickback effect. In every decision cycle, the transistors T1 and T2 pull and push
charge into implicit capacitors created by their gates. This input voltage dependent
effect leads to major transients on the input lines, as shown in Figure 27A. Therefore,
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Figure 27: Simulated effect of input impedance mismatch at the comparator. A: Dependent on
the input voltage, the kickback effect leads to transients on Vi+ (gray) and Vi− (orange). B: By
changing the resistance Ri+, we model an input impedance mismatch caused by the transmission
gates. C: Above a certain threshold, a mismatch of the capacitive elements Ci+ and Ci− have
relatively small impact on the input offset.

a difference in the limited input impedance of Vi+ and Vi− leads to an effective input
offset as illustrated in Figure 27B+C. Vi− always provides the same input impedance
model (Ri− = 3kΩ, Ci− = 0.2 fF), while the input impedance parameters of Vi+ are
adopted. Above around 0.2 fF, an increasing capacitance only has a slight impact on
the offset. In practice, this means that using one capacitive array (fast mode) or both
(precise mode) does not require much adjustment. However, if the input capacitance
is further reduced, we observe an effect of up to −9mV offset variation. Changing the
resistivity parameter, which models the transmission gate, has a significantly different
effect. An almost linear behavior between differences in the resistance and the resulting
input offset can be observed. Hence, it is important to use the same transmission gates
for all configurations.

Beside this transient effect, kickback can also have a not regenerative side. It is not
guaranteed that all charge is fully recovered and preserved. This can be due to the
voltage dependent gate capacities of the transistors T1 and T2. However, in the time
scales of the ADC conversions, this is not relevant.

5.5.1 Layout creation

To be cast in silicon, the transistors of the proposed comparator are placed and routed. In
such a small and sensitive circuit, the actual physical layout is critical to the performance
of the design. Keeping symmetries is an effective way to avoid manufacturing effects.
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T1 & T2

Figure 28: First layout attempt: In order to keep the layout “flat”, we restricted our self to the
layers up to metal 1. The color legend can be found in Figure 40.

Therefore, we bundle related transistors of the same size and use a common centroid ap-
proach with multi-finger transistors. Care must be taken to ensure that the flow directions
of the fingers in each transistor each other out in total. At the outer borders of each tran-
sistor stack, dummy transistors are used to avoid approximate effects (c.f. Section 5.1.3).
Guard rings need to be considered to separate the comparator from neighboring circuits
and ensure a good bulk diode behavior.

“Metal 1 only”-version. In a first layout attempt (c.f. Figure 28), we created a layout
only using the layers up to the first metal layer (gray). The aim of this approach is to keep
routing capacities on the second metal layer free. In order to enable line crossings anyway,
the poly-silicon layer (blue) – actually developed for transistor gates – is also used as an
additional routing layer. Poly-silicon comes with the draw-back, that its sheet-resistance9

is about 100 times lower than in metal layers. The large density of parallel metal 1 routing
increases the wire capacitance. Especially, Vd+ and Vd− catch parasitic capacities that
increase the charge stored on them which are to be drained by T1 and T2. Due to large
resistances, the RC-time constants of almost every wire grow. As presented in Figure 30
this has dramatic effects on the comparator’s performance: The delay time as well as the
energy consumption more than doubled. At a small input voltage difference, ambiguous
outputs occur, causing the plateau at the respective delay time in Figure 30. Since this
does not fit the design targets, the second metal layer is utilized in a second attempt as
well.

9In CMOS processes, the resistance is given in ohm per square (Ω/�).
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T1 & T2

Figure 29: In the final layout, we also make use of the second metal layer decreasing the decision
delay. The color legend can be found in Figure 40.

Speed and power optimized layout. Figure 29 shows a picture of the final com-
parator layout, utilizing also the second metal layer (yellow). Additionally, a part of the
ADC’s power routing on the third metal layer (pink) as well as the signal input on the
same are shown. In difference to the layout above, the choice of the transistor bundled
differ. Besides the restructured N-well area, the reduced usage of the first metal layer
attracts attention. Moreover, this layout gets along without poly-silicon routing. These
changes are reflected in quantitative improvements in Figure 30. We extract, in a so-called
PEX, parasitic resistances and capacities from the layout and pass them to the simulator.
For this purpose, we utilize calibre.

The layout still shows the lack of consideration of the additional conduction capacitance
on Vd+ and Vd− in the transistor-level simulations. To counteract this and further improve
the layout, the transistor parameters are adjusted afterwards. The insights gained from
the previous discussion are considered. Since increasing the total gate area is, due to the
kickback effect, not an option, changing the aspect ratio of T1 and T2 increases their
current factors at the costs of reduced device matching. While the previous total current
factor was β ∝ W/L = 10, the new one equals β ∝ W/L = 18.6. The comparator core
has an area of 67.6 µm2.

5.5.2 Digital interface

In order to operate the comparator in a silicon environment, it is connected to the envi-
ronment via a trigger tree and an output latch. These to stages serve as interface elements
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Figure 30: Comparison of the delay time and energy consumption between the transistor-only
model and the simulations using the PEX of the different layouts. The Y-axis is scaled by a
symmetric logarithm.
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Figure 31: The comparator core (center) is embedded into buffer stages that form a digital
interface. The trigger signal is derived from the clock signal and can be disabled by a clock-
gating mechanism. To stabilize the output signal of the double-tail sense amplifier, it is buffered
by a latch.

to the digital domain and reduce the required verification effort. Hence, they are build
from standard cells provided by the manufacturer. Figure 31 shows a schematic of the
utilized modules and how they are connected to the comparator. Energy simulations on
these modules can be found in Section 6.2.

Trigger tree. The trigger tree derives the comparator’s trigger signal from the digital
clock and is illustrated on the left side of Figure 31. As already mentioned, it uses the
negative clock edge for triggering the comparator and the positive one to pre-charge it
again. Utilizing the negative clock edge lead to an unknown edge-timing, as typically
only the positive clock edge of a clock source node (e.g., phase-locked loop (PLL)) is
characterized in detail. Also clock jitter needs to be considered. To have full analog
control about the skew between the trigger signal and its inverse, both have the same
source node.
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Figure 32: The trigger tree introduces an additional delay. The timing of the triggering (left)
and pre-charging (right), illustrated for the different process corners, is normed to the half clock
edge.

The trigger tree can be disabled via a clock-gate, which makes it possible to switch the
comparator on and off safely. Therefore, a standard clock gate cell receives input from
the comparator enable signal presented in Section 4.2. This enables using the provided
timing characterization from the manufacturer to constrain the module port. One buffer
and one inverter are tuned to the capacitive load of the switches in the comparator using
the fan-out-4 rule of thumb (c.f. Section 4.1.2).

To verify the trigger tree’s behavior, we perform a functional verification simulating it
together with the comparator. Figure 32 shows both trigger signals relative to the timing
of an ideal clock edge. Simulating different process corners gives some boundaries for
the physical implementation. Due to the circuit’s simplicity and a careful placement, we
do not expect large variations between a transistor based simulation and a simulation
that includes the wire parasitic. The transistor level simulation determines the expected
(clock) gate delay in the typical corner to 62 ps (rising edge) and 52 ps (falling edge) for
the trigger signal. The delay for its inverted signal is with 69 ps (rising edge) and 65 ps

(falling edge) slightly larger, which reduces the required comparator power. The overall
maximum observed delay is the rising edge of trigger (85 ps). These delays can be hidden
through a useful clock skew, delaying the rest of the ADC behind the clock signal at this
trigger source node.
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Figure 33: Behavior of the output latch at output level transitions in cooperation with the
double-tail sense amplifier at an input voltage difference of ∆Vi = ±1mV for different process
corners. The timing is normalized to the time when Vo+ or Vo− reaches 80% of the supply
voltage.

Output latch. An active low latch is utilized to buffer the comparator’s output for
the digital domain (c.f. Figure 31). It reduces meta-stability in the following stages
and balance the load at Vo+ and Vo−. Every positive feedback loop potentially generates
oscillations. In an active low latch, this is suppressed by a sufficient gain of the not-or
gates. As additional load at Vo+ and Vo− further increases the comparator’s trigger-to-
output time, these gates provide a driving strength D0, measured in units of the minimal
standard cell inverter. To decouple the latch from the following components and to
keep the fan-out rule of 4, one inverter gate each of driver strength D1 is implemented.
Metastability in subsequent FFs is still possible if they sample at the output’s time of
transition, but is majorly suppressed by the output gain. Moreover, if the comparator
fails to reach a decision in time, the latch keeps the previous value.

Since the transition delay through the output latch further increases the effective com-
parator delay, we determine the same in simulations with respect to the process corner.
Figure 33 presents the comparators output stage Vo+ and Vo− as well as the out signal
illustrated on the very right of Figure 31. One comparator input (Vi+) alternates be-
tween 599mV and 601mV, while the other (Vi−) is fixed at 600mV, causing output state
transitions. For this simulation only, the comparator’s inputs are driven by ideal voltage
sources. The left panels show a transition from low to high, the right one a vice versa
transition. All traces are centered to the related 20%/80% marks of Vo+ and Vo−. We
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can observe that a falling transition requires more delay time than a rising one, which is
not unusual in FFs. In the typical corner, the transition time is 18 ps (rising edge) and
64 ps (falling edge) and in slow-slow corner 32 ps (rising edge) and 89 ps (falling edge).
Again, we do not use a simulation with extracted parasitic.

5.6 Capacitive reference voltage generator

In order to generate required second input voltage for the comparator, the comparator
unit should include a reference voltage generator. As the ADC architecture requires
comparisons with the half supply voltage, this reference circuit should be optimized for
this target. In addition, the reference generator should be adjustable to serve in other
tasks: An adjustable reference voltage can calibrate for static comparator input offset
and comparator input impedance mismatch. Finally, adjusting reference voltage also
serves to calibrate for static internal reference mismatch, which could be caused by device
mismatch.

There are multiple successful approaches of designing capacitive DACs and reference volt-
age generators (Pelgrom, 2017). Moreover, BSS-2 already provides a capacitive DAC
(Hock, 2015). Nevertheless, we decide to take a new and perhaps unusual approach.

Here we present and discuss an adjustable capacitive voltage divider. This reflects on the
capacitive nature of the array presented by Czierlinski (2022). In the comparator unit,
this module is instantiated two times to alternately be in operation and recharged. To
consider comparator’s sensitivity to input impedance mismatch, these reference circuits
are connected to the comparator negative input utilizing the same transmission gate as
comparator’s signal input. Further insights on this transmission gate can be found in
Czierlinski (2022).

5.6.1 Capacitive voltage divider

A capacitive voltage divider is a very basic circuit and illustrates in Figure 34: Analogous
to a resistive voltage divider, two capacitors C1 and C2 are connected in series between the
supply rail vdd and the ground rail gnd. Due to charge retention and the fundamentals
of electrostatics, a defined voltage out is established between them.

To control the shared charge, both capacitors are cleared in a reset state shown in Fig-
ure 34A: By connecting both plates of the capacitors to ground node or respectively the
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A B

gnd
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vdd
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gnd
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out

Figure 34: Capacitive voltage divider in its reset A and active B state.

supply voltage, the initial charge on the capacitors is known:

Qt0
C1

= Qt0
C2

= 0 (5.6)

At this moment, the signal out is floating.

In an active state, both capacitors share one capacitor plate while the other remains
connected to vdd and gnd, respectively. This pulls charge from the supply as well as from
the ground to fulfill the Kirchhoff voltage law: The voltage between supply and ground
must now drop across the capacitors. However, the total charge Qtotal must be preserved:

Qt1
total = Qt1

C1
+Qt1

C2
= C1 · (out − gnd) + C2 · (vdd − out) !

= 0 (5.7)

After some simple transformations we get an expression for the output voltage:

out = C2 · vdd + C1 · gnd
C1 + C2

(5.8)

So, two equally sized capacitors result in half the supply voltage, as required by the
ADC. By changing either the voltages on the rails or the capacitance of the capacitors,
one can adjust this voltage. While the former opens the doors to a minor power supply
rejection, the latter enables us to build a DAC from this scheme. Since the capacitive
array suggested by Czierlinski (2022) suffer from the same lack of power supply rejection,
these effects cancel each other out to some extent: Half the supply voltage always results
in half the maximum output code. It remains to be discussed whether this correlation is
really desirable; at least it is deterministic and simple.

When refreshing, first the capacitive reference generator core fully discharges its capac-
itors. One half of the charge is released back to the supply rail and the other half to
the ground rail. This charge is bound by the capacitors again, when they move on to
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Figure 35: Schematic of an adjustable capacitive voltage divider as reference DAC for the
comparator.

their active states. In this sense, there is no cross flow of charge and no effective power
consumption in the voltage divider.

5.6.2 Implementation details

The adjustable capacitance of the reference DAC is created from multiple parallel capac-
itors each. C1 as well as C2 are each the sum of one larger and several binary weighted
smaller capacitance. To select a specific output voltage, the latter are enabled respectively.
Figure 35 shows a schematic of this scheme. The capacitors are build from MOSFETs with
shorted source, drain and balk terminals, with the gate serving as capacitive element. On
its left side the main capacitance C1, main and C2, main with the corresponding switches are
visible, which are very reminiscent of the equivalent circuit diagram in Figure 34. The
right side shows exemplary two of the selectable binary weighted additional capacitors
that are multiples of the unit capacitor C1/2, unit.

Capacitors. Capacitors utilizing transistors gates are called metal-oxide-semiconductor
(MOS) capacitors. As their capacity is voltage dependent, they are typically not the
capacitors of first choice (Hu, 2010, p.157f), but due to the fact that the reference DAC
only provide a limited dynamic output range, this aspect is minor. On the other hand,
MOS capacitors provides a relatively large capacitance per area, while only occupying the
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layers up to poly-silicon. This enables placing the reference DAC below the capacitive
array.

The capacitors connected to the supply rail are made from PMOS transistors while the
ones connected to the ground rail are made from NMOS transistors. This provides a
continuous depletion zone in the MOS capacitors and stabilizes their performance. To
further reduce the impact of the threshold voltage variation, the MOS capacitors are
implemented as low-threshold transistors.

Switches. Figure 35 also shows transistors that perform switching between the two
states illustrated in Figure 34. Therefore, the refresh and its inverse are required. Since
the switches on one MOS capacitor are of the same type and of the same size, the charge
injection just cancels out when switching. To reduce leakage currents, they have a small
width and a long length (c.f. Table 7). However, even made from unit cells, the number
of parallel switch instances per MOS capacitor changes with respect to the capacitance.
By doing so, we account for a sufficient RC time during refreshing the reference DAC.
NMOS and PMOS transistors need to be balanced so that both have the same effective
current factors.

The decoding of the digital value happens in a bank of triple NOR and NAND gates,
build from TSMC standard cells with minimal driving strength. At a minimum digital
value, C1 is maximized by enabling all additional MOS capacitors while those of C2 are
disabled. In the center, all additional MOS capacitors are disabled. When applying the
maximum digital value, C2 is maximized. The refresh signal and its inverse is derived
from a global refresh signal. It is gated by a global reference selection signal to always
refresh only the non-active reference decoder. In addition, the refresh is signals buffered
to deal with the large gate areas of the switches.

Number of required stages. When discussing the comparator core (c.f. Section 5.5),
the expected input offset caused by device mismatch was determined to be 0.5± 7.4mV.
In addition, an ADC LSB in precise mode ideally counts around 4.7mV. Due to the gain
error in the ADC caused by non-ideal capacitors (see Czierlinski (2022)), this drops to less
than 4mV in the real application. For good calibration, a reference DAC LSB should be
less than a LSB of the ADC. Hence, we decide for an Cmain-to-Cunit ratio that allows for
a resolution of 3.3mV. To account for the process corners, we aim for a dynamic range of
≈100mV. Together this results in a number of 5 bit, which at the same time represents
the largest possible number of justifiable routing resources at this point. As already given
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type width / nm length / nm fingers
C1,main lvt NMOS 2000 4120 2
C1,unit lvt NMOS 1200 280
unit switch C1 NMOS 200 200
C2,main lvt PMOS 2000 4120 2
C2,unit lvt PMOS 1200 280
unit switch C2 PMOS 440 200

Table 7: MOS device dimensions in the core of the capacitive reference DAC. The main capac-
itance C1, main/C2, main are each connected to 13 unit switches per state; the binary weighted
capacitance Ci = Cunit · 2i utilizes one unit switch per state, only its MSB capacitors use two.
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Figure 36: Corner simulations of the reference DAC. The digital value 0 is reached by the codes
5'b01111 and 5'b10000.

by the symmetry of C1, main and C2, main, the reference DAC’s output should be centered
around half the supply voltage.

In this discussion, calibration for impedance mismatch as well as adjustment of the dy-
namic input range of the ADC play a minor role. This is not due to their lack of relevance,
but due to the missing design information of the corresponding components at this time.
However, based on this, the component dimension of the reference DAC are listed in
Table 7.

5.6.3 Simulations

The behavior of the reference DAC is investigated in simulations. An open-loop config-
uration of the reference generator reflects the high impedance input of the comparator.
In this first simulation, the focus is on the capacitive voltage divider itself. Therefore,
the digital code decoding stage is replaced by ideal voltage sources. We sweep the digital
configuration performing one refresh cycle and evaluate the final voltage at its output.
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Figure 36(A) shows this output voltages for the different process corners. While the
typical, slow-slow and fast-fast are similar except for a small gain error, the mixed corners
reveal offset errors. The latter come from the fact, that the capacitive voltage divider also
incorporates a resistive voltage divider implemented by the switches’ on resistance. Since
the switches are build from different transistors types, any current factors mismatch will
affect the output voltage. In the typical corner the DAC exhibit a gain of 3.3mV/LSB

with a y-axis intercept of around 598mV. In the mixed corners the y-axis intercept can
be determined to 576mV (fast-slow) and 620mV. Thus, in the typical corner, the DAC
covers 6.9σ of the discussed mismatch-related input offset, but in the fast-slow corner only
4.0σ and in the slow-fast corner 4.4σ. This is based on the fact that the input offset of
the comparator is process corner independent.

Analogous to the DNL/INL definitions (c.f. Equations (2.7) and (2.8)) for ADCs, one
can calculate the same also for DACs. While their statements remain the same, only the
voltages at the code transitions need to be replaced with the output voltages at a code.
The calculated DNL and INL is shown in Figure 36B+C. Both are almost not influenced
by on the process corner.

When simulating Monte Carlo mismatch, the models provided by the manufacturer do
not provide statistical information about transistors gate capacity mismatch. However,
it can be shown that device mismatch in the switches has only a minor effect on the
discussed observable, while the characteristic peaks in the DNL still occur. This suggests
that these characteristic peaks come from the MOS capacitors intrinsic properties. But
since DNL as well asINL are in a sufficient range, this will not be investigated further
here.

To estimate the total capacity of the reference DAC, we slightly discharge over a defined
resistance while determining the RC time constant. It turns out, that this is a rather
imprecise method and the fit-uncertainty of the time constant RC is significant. We
determine, however, the capacitance to be in the range between 477±25 fF and 546±27 fF.
Thus, the reference DAC has roughly the same capacitance as the ADC-array in its precise
mode.

We observed, that initializing the reference DAC requires more than one refresh cycle.
This is due to the charge and the related voltage, initially stored on the output node.

Simulation (c.f. Section 6.2) have shown, that a refresh cycle consumes 0.24 pJ.

80



5 Double-tail sense amplifier

C2 C1

Figure 37: Layout of the capacitive reference DAC. The main-capacitors are located in the lower
half, the selectable unit capacitors are placed in the upper half. The color legend can be found
in Figure 40.

5.6.4 Layout creation

Figure 37 shows the layout of the reference DAC’s capacitive core. It is divided in a part
containing the NMOS and an N-well containing the PMOS devices. On the upper half,
the main capacitance C1, main and C2, main are visible. Above, 18 unit MOS capacitors are
placed, three of which are dummy MOS capacitors shorted to the respective rail. The
switches are located in the center and at the bottom and top edges. The control signals
are routed on the second metal layer (light green). Altogether, each capacitive reference
generator core covers 6.76 µm× 25 µm silicon.

Since the decoder is build from TSMC standard cells, it is not drawn here. However, it
covers an area of 6.76 µm× 7.5 µm.

Post-layout simulations of the comparator core determine the performance more realisti-
cally than pre-layout simulations. Figure 38 is generated by the same evaluation method
as in Figure 36, but instead of sweeping the process corner, the typical layout version
is shown. As orientation, also the typical corner is plotted. Although both show the
same trends, they differ in details. Apparently, the parasitic capacities and resistances
in the layout flat the edges in the DNL curve. Moreover, the gain of the DAC increases
slightly, because the parasitic capacities affect the selectable capacitors more than the
main capacitors.
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Figure 38: Reference DAC performance evaluation of a simulation utilizing layout data (PEX)
in contrasts to a transistor-only model in the typical corner.
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Figure 39: Histogram of the comparators offset compensation. The shift of the mean is caused
by an input impedance mismatch and the use of small transmission gates. The solid curves fit
Gaussian distributions to the data. A: Simulated comparator input offset distribution before
(red) and after (gray) calibration. B: Distribution of configurations for offset compensation.

5.7 Summary

In this chapter, we present and discuss a fast and energy efficient comparator and its
environment. Here, all components are tested altogether. This includes the comparator
core, the clock tree, the buffering output latch and two reference generators. The reference
generator is selected by the transmission gates designed by Czierlinski (2022).

Comparator input offset compensation. The capacitive reference generator is de-
signed to, among other things, compensate the input offset of the comparator caused by
device mismatch. To verify this, we simulate Monte Carlo samples of the full comparator
unit and calibrate for the offset. The comparator’s signal input is equipped with one
transmission gate followed by an ideal voltage source. By doing so, we consider that the
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input impedance mismatch in the final ADC may depend on the transmission gate as long
as the upstream capacitance is sufficiently large.

The prior and remaining offset is determined by sweeping the comparator’s input volt-
age while continuously triggering the comparator after an initialization sequence of the
reference generator. To test the whole comparator for hysteresis at the same time, the
sweep has a rising and a falling part. Here, the Monte Carlo samples of the comparator
– even with the input transmission gates, its related feedback and a constantly changing
input signal – show only minor hysteresis between the falling and the rising sweep of
0.44± 0.14mV.

Physical quantities. The entire comparator unit is located below the area-dominating
capacitive signal DAC. According to the floor plan, 2.5 µm are free on the longitudinal
edges to place the inverters for the latter. Figure 40 shows the corresponding layout of the
comparator up to the third metal layer. The comparator core is located at the bottom,
directly above the trigger tree and the buffering output latch. In the center, two of the
transmission gates can be found. The rest of the area is used by the two capacitive voltage
dividers and their logic. Together, all comparator components utilize around 710 µm2.
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NW: N-Well

OD: Diffusion

PO: Poly-silicon

CO: Contacts OD/PO - M1

M1: First metal layer

VIA 1: Contact M1 - M2

M2: Second metal layer
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Figure 40: Layout of the entire comparator unit. Power and the input signals for the double-tail
sense amplifier are routed on the third metal layer. Due to non-disclosure agreements, the digital
standard cells provided by TSMC are hidden.
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6 Silicon implementation

In order to meaningfully evaluate the new ADC design, we merge the parts discussed in
this thesis with the results presented by Czierlinski (2022). For the following simulations,
a joint effort can be assumed.

As mentioned in Section 2.4, the SAR ADC consists of a capacitive DAC, a comparator,
and a control logic. These “local” parts are repeated in each ADC channel, and we
consider the unit formed by them as the design under test (DUT). Their environment,
i.e. global signals including the sample signal, is generated by an abstracted behavioral
description. The simulation is performed using the framework introduced in Section 3.3.

Initial simulations show that the individual components can work together, but insuffi-
cient time buffers have been planned. Therefore, the most critical components are already
optimized in this first iteration. The largest of these optimizations is adjusting the tran-
sistor sizes for the comparator layout and is described in Section 5.5.1. The existing
trigger tree in the comparator also proves to be a problem as long as there is no synthe-
sized clock tree for the digital part and both are fed from the same clock generation. To
compensate for this simulation-related effect, we create two clock generators shifted by
100 ps. These clock generators are modeled by ideal voltage sources that generate pulses
with a symmetrical duty cycle and a rise/fall time of 40 ps.

6.1 ADC offset error correction

First, we investigate the impact of the reference generator to the ADC output code.
Figure 41 shows the ADC response to an analog input stimulus (0.6V) for the fast as well
as for the precise operation mode with respect to different reference DAC configurations.
These results are based on a full transistor-level simulation with synthesized control logic
in the typical process corner but do not include layout information as e.g. extracted
resistances and capacitance. Since in this simulation environment there are variations
between the two implemented reference DACs, only one reference DAC is considered
here. To account for the different output code ranges in the two operation modes, the
figure exhibits two scales. Both are adjusted in a way, that one LSB in the fast mode
equals two LSB in the precise mode. When investigating both drawn lines we find an
almost linear behavior with a similar negative slope but with different y-axis intercepts.
The negative slope factor results from the fact that an increase in the reference voltage
corresponds to a relative decrease in the input voltage. This can be illustrated by the
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Figure 41: ADC response to an 0.6V input voltage with respect to the reference DAC setting.
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Figure 42: Shift in reference voltage due to comparator kickback. Gray hashed area: Vm in a
comparator-core only simulation setup (c.f. Figure 24) for all possible Vp; simulated without
reference DAC. Orange: Reference voltage in a full ADC simulation (8bit, vdd=1.2V, 1GHz
clock frequency).

MSB decision: An input voltage of 0.6V leads to a high signal at a reference voltage of
0.59 V, while at 0.61V it sets the MSB to zero. Further, the different offsets are caused by
the different input impedance in the different modes, leading to an effective offset error
in the comparator decision. While in the fast mode only one array is connected to the
comparator by one unit-transmission gate, in the precise mode both arrays are connected
by two parallel unit-transmission gates. Thus, the charge injection from the kickback
effect can be balanced faster compared to the fast mode and, above all, faster than at
the reference input of the comparator. With the reference generator, the ADC gains a
total ADC error offset compensation with a dynamic range of 11 LSB in the fast mode
and 20 LSB in the precise mode.

Reference generator refresh cycles. The question remains how often the reference
DAC has to be refreshed. Unfavorably, it turns out that this was only insufficiently
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considered during the development of the same. However, there are different forces acting
on the reference voltage.

Figure 42 extracts at least one of those: The kickback related effective charge injection.
The gray, hatched area shows the voltage shift on the comparators input for a comparator-
only setup as described in Figure 24. So far, there is no reference DAC involved; only
a pre-charged capacitor and a resistor models the comparators input impedance. The
spanned area indicates the simulations for the different voltages occurring at the signal
input Vi+ of the comparator during operation. For this purpose, we always extract the
reference voltage Vi− of the comparator just before the comparator is triggered. Here, the
comparator is triggered every 1 ns. This also explains the dip at the beginning: Between
simulations, the resting state of the input voltage is not fully reached at the given input
resistance. However, this can only be seen as a linear shift, which does not affect the
following statements.

We can observe, that even in this ideal setting with optimized simulator configuration,
the reference voltage Vi− changes as a function of repeated triggering of the comparator.
It is indicated that this is also a function as a function of the input voltage Vi+. This
suggests that an effective charge injection occurs that is not recovered after a decision.
This is probably due the voltage-dependent capacitance of the gates of transistors T1 and
T2. Thereby the two differential branches can influence each other via the common source
nodes. The phenomenon is also exciting because there is no DC path to and from the
comparator input node except for the minimum conductance inserted by the simulator.

The orange line shows the evolution of the reference voltage from one single reference
DAC in a simulated ADC while operating in the precise mode. We extracted the voltage
at the reference input node of the comparator just before each conversion. Contrary
to the expectation aroused by the above observation, this voltage trends to ground and
not to supply. Since this simulation incorporates transistor models of the reference DAC
a possible explanation would be the observation of lack currents in the switches of the
reference DAC. This effect would be time dependent and would not depend on the number
of decisions made by the comparator.

In summary, we can state that the prediction of the course of the reference voltage is
complicated by many influencing factors. Therefore, it is not possible in this thesis to
give an exact time or number of conversions or decisions until the reference DAC has to
be refreshed. Unless otherwise specified, we refresh the reference DAC every 400 clocks in
the following simulations. For this purpose, we alternate the two implemented reference
DACs.
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Figure 43: DNL and INL, extracted from a target oriented, optimistic transistor-level simulation
of the ADC in its fast, interleaved mode (7 bit) at 125MS/s sampling frequency (1GHz clock
frequency). The small orange arrows annotate non-monotonic code transitions. The control
logic is modeled ideally.

6.2 Limits of the ADC

For an initial estimate of the accuracy of the ADC, it is simulated based on transistor
models. In order to better investigate the influence of the individual components, we
start with a simulation model that uses the RTL description of the control logic without
considering any delays. In other words, we simulate an ideal, infinitely fast control logic.
Thus, now we only see the effects caused by the components from Czierlinski (2022) and
the comparator circuit. To further normalize the statements, we simulate in the typical
process corner, at a temperature of 50 °C and without taking into account variations in
manufacturing. The supply voltages are provided by ideal voltage sources at 1.2V. Since
we moreover do not consider layout effects, this is an optimistic estimate overall. As such,
it serves as a reference to rank further simulation results.

We do not show sweeps over various supply voltages, temperatures and the different pro-
cess corners here because they are discussed in detail by Czierlinski (2022). In summary,
however, ADC characteristics deteriorate under worsened conditions. In some really harsh
conditions (slow-slow process corner and reduced supply voltage), functional operation at
full speed is no longer guaranteed. However, if one decreases the operation speed, the
ADC becomes functional again and almost as precise as in normal conditions.

Target-oriented simulations. One of the targets for the redesigned ADC is to operate
reliable at 125MS/s in its fast mode. For the precise mode, there are less strict timing
requirements. To achieve the 125MS/s in the fast-mode, the ADC requires a 1GHz clock.
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Figure 43 shows the differential and integral non-linearity of the ADC in its fast, interleav-
ing mode. Uncertainties are calculated from Equations (3.2) and (3.3). Non-monotonic
code transitions are denoted by small arrows above the DNL plot. The ADC has gain of
114 LSB/V and an offset of −4.1 LSB. The maximum DNL is 0.34 LSB and the maximum
absolute INL is −0.25 LSB. The gain-error (the ideal gain would be 106 LSB/V) is caused
by additional capacitance which are caused by the shielding of the capacitive array. It
decreases the dynamic range of the ADC. Thus, the offset error is not as dramatic as indi-
cated by the offset value, because we want the center of the dynamic range to be located
around 0.6V. Given the gain error, we calculate the ideal offset to −4.8 LSB. Due to the
results in Section 6.1, the reference DACs are both configured to +2. The disagreement
of the ideal offset, and the simulated one can be explained by the evaluation method in
Section 6.1: There we only take one single sample after the simulation start up, which
differs from the following ones due to not pre-charged nodes at the comparator input.

With regard to the DNL and INL, the results are in line with our expectations. If the DNL
were negligible, the ADC would be over-optimized for precision which probably would have
been at the expense of area and energy consumption. However, if the DNL is greater than
0.5 LSB, accuracy errors in the ADC are more important than the quantization error. The
same applies to the INL, which is generally less susceptible in SAR ADCs.

An important observation is that no systematic abnormalities are visible. However, the
ADC already shows some of its weakest points here. At this level of simulation, we do not
expect non-monotonic code transitions but observe three of them. It turns out, that the
two interleaving ADCs individually achieve much better values for DNL and INL and also
do not suffer from non-monotonic code transitions. Such an array-dependency must be
caused by the influence of precharged nodes in the ADC generating some kind of memory
effect.

To simulate the ADC in its precise mode, we start with the same clock frequency like in the
fast mode, which leads to a sampling frequency of 62.5MS/s. Considering Section 6.1,
we set the reference DAC to +9. Figure 44A shows the corresponding DNL and INL
results. The ADC has a gain of 223 LSB/V (ideally 213 LSB/V) and an offset of −13.2 LSB

(ideally −6.0 LSB). This simulation shows no non-monotonic code transition. However, it
exhibits two missing codes at the MSB decision, at the positions where the MSB decisions
are applied (64 LSB / 192 LSB). At the same time, one LSB before the missing code, the
code step is enlarged leading to an increased DNL. This is then also reflected by the
INL. The same effect, but with less intensity, also occurs in the code transitions from the
second-MSB decision. Here we note DNLs that are grater than 0.5 LSB. Also, in some
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Figure 44: Reducing the clock frequency increases the accuracy. A: DNL and INL, extracted
from a target oriented, optimistic transistor-level simulation of the ADC in precise mode (8 bit) at
62.5MS/s sampling frequency (1GHz clock frequency). The small arrows denote non-monotonic
code transitions. The control logic is modeled ideally. B: Similar to A, but with reduced clock
frequency (800MHz) and thus a sampling frequency of only 50MS/s.

other regular positions, this degeneration happens.

There is a common reason for all the effects mentioned: We are running the ADC too fast.
Since all transmission gates and components are designed to fit the accuracy requirements
in the fast operation mode, we can not act on the assumption, that this automatically
fulfill the accuracy requirements of the precise mode at the same clock frequency. Each
switch and each transmission gate reacts with a certain RC-time and the convergence to
a new common mode voltage follows the same law. In precise mode, however, we have to
converge to a new voltage twice as well compared to the fast mode, since we have one bit
more of resolution here.

To account for this increased convergence requirements, we simulate the precise mode
also with a reduced clock frequency (c.f. Figure 44B). With this change, the accuracy of
the ADC increases. Even, if we do not observe any missing code anymore, now the ADC
exhibits one non-monotonic code transition. As expected, the gain and the offset of the
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Figure 45: Simulated ADC accuracy based on a transistor level model and an ideal controller
with respect to the sampling frequency. The sampling frequency is configured by the clock
frequency. The precise mode (8 bit) requires 16 clock cycles per conversion and is thus at most
only half as fast as the fast mode (7 bit). The non-monotonic ratio represent the ratio of non-
monotonic code transitions with respect to the total number of samples.

ADC at reduced clock frequency are almost identical to the simulation at 1GHz. The
maximum DNL is 0.64 LSB and the maximum absolute INL is 0.28 LSB.

Frequency sweep. In a next step, the influence of the clock frequency and thus the
sampling frequency on ADC performance will be investigated systematically. In Figure 45,
the accuracy of the ADC is plotted against the sampling frequency, which is set by the
clock frequency. The accuracy is represented by the maximum DNL and the maximum
INL as well as by the relative proportion of non-monotonic sites in the samples taken. The
simulations are performed in the fast mode (7 bit) and in the precise mode (8 bit), where
for the fast mode the interleaved sub-ADCs are considered both together and individually.

Most impressively the precise mode shows a deteriorating trend in the DNL and INL for
high sampling frequencies. Since all switches are designed for the required accuracy in
the fast mode and thus at high clock frequencies the reload-times for the precise mode
are not sufficient as expected. In such cases, the largest DNL shows up when applying
the MSB decision, usually with an output code of 63 LSB. At lower frequencies the ADC
reaches a maximum DNL close to 0.5 LSB.

The behavior of the maximum DNL and INL in 7 bit mode is completely different: Here
the ADC seems to get worse at low frequencies. However, it always remains better than
in the precise mode. A degradation of the non-monotonic code transitions is visible at
a clock frequency of around 900MHz. This is possibly caused by some phase response
of the capacitive arrays in combination with the transmission gate. The comparator’s
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kickback regularly jolt this RC-circuit. Here, further investigations are required, also to
exclude simulation-related effects.

In the right plot, the relative number of non-monotonic codes are shown for the same
simulations. Non-monotonic code transitions are critical malfunctions in the ADC. Un-
fortunately, interleaved ADCs are predestined to exhibit so-called even-odd-effects, which
causes a number of these non-monotonic code transitions. Since the simulations do not
include component variations at this point and the non-monotonic behavior occurs even
without the interleaving, other causes must be present. At all frequencies, the non-
monotonic behavior occurs with the refresh cycle of the reference voltage generator. Es-
pecially for small clock frequencies, the absolute period of a refresh cycle increases. This
goes along with a larger adjustment of the reference voltage and thus a significant jump
in the reference voltage to compensate for lost charge caused by the leak current in the
reference generator. Thereby, the number of non-monotonic code transitions increases
for this smaller clock frequencies. In interleaved operation, the timing of the refresh cycle
often corrupts one sample. However, for higher frequencies, the non-monotonic code tran-
sitions only occur close to expected code transitions. These are caused by the kickback
of the comparator and subsequent effects as well as too small transmission gates and a
too slow digital control logic. Already by connecting the comparator to the DAC in the
precise mode leads to charge sharing which results in a voltage drop of almost 15mV due
to charge sharing between the comparator input node and the capacitive DAC. In some
boundary decisions, the comparator does not provide its result in time to be fetched the
digital logic.

In conclusion, we expect a maximum DNL of around 0.6 LSB in the precise and 0.3 LSB

in the fast mode in the best case. Also, we do not expect for the non-monotonic code
transitions to disappear completely.

Transistor level controller. After the previous section investigated the ADC neglect-
ing the delays of the control logic, the following section includes a transistor based model
for a synthesized controller. The synthesis of the successive approximation register itself
is described in Section 4.3.3. At this point, we have finally simulated all components with
some transistor properties, including an estimation of the timing and a transistor driving
strength. The goal of the following simulations is to show that we can achieve equally
good DNL and INL, even with the control delay as when we do not consider it. If we do
not achieve this at full speed, reducing the frequency is a valid retrenchment of the design
constraints.
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Figure 46: Maximum DNL and INL as well as ratio of samples exhibiting non-monotonic code
tranitions for different sampling respectively clock frequencies for the precise (8 bit) and the fast
mode (7 bit). Due to a non-symmetric syntheses result and resulting even-odd effects, in the
fast mode we only observe one single array or every second sample. The precise mode (8 bit)
requires 16 clock cycles per conversion and is thus at most only half as fast as the fast mode
(7 bit).

In order to find a sampling and clock frequency that shows the desired behavior, we sweep
the clock frequencies in both modes similar to what we have done before. Figure 46
shows the maximum absolute DNL and INL together with the ratio of non-monotonic
code transitions. Since Figure 45 already indicates even-odd effects of the two interleaved
operating ADCs and since due to the synthesizing process the signal paths of both ADCs
differ, in the fast mode we only present the data of one single sub-ADC. The latter will
be fixed in the future by instantiating two times the same physical module. So far, in
practice, we track only every second sample, similar as in the results above.

Interestingly, we observe less non-monotonic code transitions than with the ideal con-
troller. In terms of DNL and INL we see a slide shift of the accuracy towards lower
frequencies in the precise mode. This can be explained by the fact, that the precise mode
was already timing critical before and by introducing signal delays for the switches and
the DAC control this is even extended.

As illustrated in Figure 47A the ADC reaches an almost similar performance with a
synthesized controller compared to an ideal one. Nevertheless, the simulation method
differs from Figure 43, since we again only utilize the samples of one array here. In this
simulation, the ADC has gain of 114 LSB/V and an offset of −4.3 LSB. The gain does
not change, since we have no changes in the parasitic capacitance. Due to the same
configuration of the reference generators, same applies to the offset. The maximum DNL
is 0.21 LSB and the maximum absolute INL is −0.22 LSB.
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Figure 47: With a synthesized controller we get similar results like before. A: DNL and INL,
extracted from a transistor-based simulation including the control unit of the ADC in its fast
mode (7 bit) at 125MS/s sampling frequency (1GHz clock frequency). This plot incorporates
results of only one array, so of only every second sample. B: Similar to A, but in the precise
mode (8 bit) and with a sampling frequency of 43.7MS/s (700MHz clock frequency).

Based on the results of Figure 46, for the precise mode (Figure 47B) we select a clock
frequency of 700MHz. Here we do not observe any non-monotonic code transitions and
the DNL and INL reaches their minimum. The simulated maximum DNL is 0.50 LSB

and the maximum INL is −0.34 LSB. The corresponding ADC gain and offset is similar
to the ones in Figure 44.

With these simulations, it is proven that the controller is functional. Except for the
possible, not further investigated even-odd effect, there is no significant degradation of
the performance due to the control logic visible. On the contrary, the ADC even seems
to behave more benignly and is not as susceptible to the refresh cycles of the reference
DAC.
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Figure 48: Energy consumption per conversion for the fast and the precise mode and different
input voltages, determined in a transistor-level simulation including a synthesized digital logic.

Energy consumption. Before we go on with simulations that include layout infor-
mation like parasitic capacitance and resistances, we take a closer look on the energy
consumption of the ADC. We extract the currents at the power pins of individual compo-
nents of the ADC. Similar to the energy extraction approach in Section 5.5, we calculate
the energy as product of the supply voltage and the integral of the current over the time.

Figure 48 shows the extracted energy consumption of the ADC for different input voltages
in the fast as well as in the precise mode. We can see that the energy consumption of
the controller and the comparator are almost input voltage independent, while the DAC
exhibits an increase of energy consumption for input voltages grater than around 0.6V

which is discussed in detail by Czierlinski (2022). Without considering the refresh cycle
of the reference generator and only based on transistor models, the ADC requires 2.33 pJ
to 2.60 pJ per conversion in its fast mode. At full speed this corresponds to around
0.31mW per channel which is approximately 15% of the total chip power when all ADC
channels are enabled (c.f. Section 2.3). Hereby, the largest power consumer is the digital
control logic with requires 1.62±0.02 pJ per channel and conversion. The full comparator
unit requires 0.61 ± 0.04 pJ per conversion. Hereby the double-tail sense amplifier itself
consumes 0.35±0.03 pJ per conversion which fit well with the results for one single decision
in Figure 25. Further, the buffer unit has an energy requirement of 0.25 ± 0.02 pJ. The
energy consumption of the reference voltage generator is neglectable except for the refresh
cycles. Each refresh cycle independently of the mode requires around 0.24 fJ.

In the precise mode, the energy consumption of the control logic enlarges to 3.00 ±
0.02 pJ. This is the case, since now the logic of both arrays operate together converting
one sample. Moreover, the comparator accounts for the additional decision and requires
0.72± 0.04 pJ in the precise mode per channel and conversion. We can divide this value
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again between the double-tail sense amplifier (0.41 ± 0.03 pJ/conv) and the buffer unit
(0.31 ± 0.02 pJ/conv), which scale almost linearly with the numbers of decisions. The
simulated total energy consumption of ADC in the precise mode amounts from 2.33 pJ to
2.60 pJ. At a clock frequency of 700MHz (43.7MS/s sampling frequency), this leads to a
power of 0.18mW per channel.

More simulations showing the influence of the process corner can be found in Czierlinski
(2022). There, also considerations about the maximum current changes can be found.

6.3 Layout based performance evaluation

Finally, we conclude are simulation series with simulations that include layout information.
In this section we discuss a version, that contains both, a layout-based model for parts
of the ADC that already provides layout information and a transistor-based model for
the digital controller. Simulations, that include an extracted layout but an ideal control
logic, can be found in Czierlinski (2022). Based on their results, we adjust the sampling
frequency in the fast mode to 62.5MS/s and in the precise mode to 12.5MS/s.

Figure 49A shows the simulated DNL and INL for the ADC while it is operating in its fast
mode. The simulation exhibits an ADC gain of 132 LSB/V and an offset of −13.7 LSB.
Hereby the maximum DNL is 0.55 LSB and the maximum INL is −0.40 LSB. The orange
arrows mark six non-monotonic code transitions. Figure 49B illustrates the same for
the precise mode. Here, we observe a gain of 270 LSB/V and an offset of −35.4 LSB.
Unfavorably, the simulations display a regular pattern of non-monotonic code transitions,
missing codes and a maximum DNL of 1.53 LSB, which is also reflected in the INL (max.
0.73 LSB). The gain error is dominated by the parasitic capacities in the capacitive DAC.
The offset error is not really compensated, because no adjustment of the reference DAC
has been done before.

Before comparing these results, we want to point out, that due to the limited time, there
is no possibility to repeat, adapt and improve this results during this thesis. The previous
results show that the ADC is functional on a transistor-model level, including the control
logic. Czierlinski (2022) shows that a layout-based ADC model can work. However, they
have simulated the control unit on a register transfer level without modeling delays. Now,
our simulation exhibits a significant performance decline in the fast mode and a corrupted
precise mode.

It should be noted that our simulation is not directly comparable to the above. In order
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Figure 49: A: DNL and INL, extracted from a simulation that includes parasitic capacitances
and resistances from the layout and a transistor-level control unit. The ADC operates in its fast
mode (7 bit) at 62.5MS/s sampling frequency (500MHz clock frequency). This plot incorporates
results of only one array, so of only every second sample. The small arrows denote non-monotonic
code transitions. B: Similar to A, but in the precise mode (8 bit) and with a sampling frequency
of 12.5MS/s (200MHz clock frequency).

to save simulation time, we split the sweep in eight equal slices and make use of parallel
computing. We now join these eight pieces together, throwing away the first sample. It
turns out that the first conversion is systematically too low, because at this point the
node at the comparator input is not yet precharged to 0.6V. When the comparator is
connected the first time, we observe a charge sharing of this node and the capacitive array.
However, in the INL of the fast mode, these eight pieces are clearly visible. In fact, we
see only six and a half repetitions, because due to the gain error the first slice mostly
contains the output code zero, and the last slice holds almost only output code 127. If
there are such time dependencies or start-up effects in the ADC, they are hidden in the
previous simulations due to the coherent sweep.

In contrast to the other simulations, in Figure 49B the refresh cycle of the reference
voltage generator is reduced to 200 clock cycles. This is done to account for the clock
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reduced frequency and constant leak current. Almost every non-monotonic code transition
belongs to one of these refresh cycles. And interestingly, this is not only due to the refresh
of the voltage itself but due to an even-odd effect between the two reference generators.
This behavior is illustrated in Figure 56 (in appendix). Both reference generators are
configured to the same value and except for very little routing effect, there should be no
differences between the two. Such behavior was not observed in other simulations, also
not in Figure 49A. Here, a further investigation is required.

But the precise mode exhibits also at least one more issue: For conversions where the
MSB bit is high (digital out is greater 127), we see a structural deterioration in the
DNL. Since such a behavior occurred neither in our previous simulations nor in the thesis
of Czierlinski (2022), they must be caused by a change in load for the different arrays.
Generally, it should be noticed, that all simulations by Czierlinski (2022) do not make
use of the useful-skew, which is introduced to reduce the influence of the trigger-tree in
the comparator. However, the clock frequency in the discussed simulations are that low,
that such effects should not influence the ADC accuracy that much.

Even if the results shown here are not satisfactory on their own, some misbehavior can
certainly be avoided by a different configuration. Since the PEX simulations presented
by Czierlinski (2022) and the simulations including control logic are promising, it is not
necessary to assume that the ADC does not work. Rather, this simulation draws attention
to what has not yet received much attention.
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7 Discussion

The aim of this work was the creation of a fast and parallel ADC for hybrid neuromorphic
in-memory computing. Within this thesis, we developed several components and methods
for a dual-mode successive-approximation ADC and tested them jointly with the work of
Czierlinski (2022). Due to the complexity of this task, the presented first design iteration
does not meet all targets discussed in Section 2.3. Even if individual parts need to be
improved in further design cycles, the core concept of the ADC and its components are
sustainable. We have with a functional design that is ready for the prototype phase.

This discussion starts with a short comment on the hardware design process: Hardware
design is an iterative process. At the beginning of each design cycle, the overall require-
ment list is converted into constraints for the individual modules and interface definitions
to connect them. However, during the design process we suffered from the effect that in
small and time-critical circuits, the performance of design idea deteriorates by a factor
of two in terms of energy and speed between pre-layout and post-layout simulations. A
critical review of the target characteristics in each design step, as well as always designing
for the worst cases, might have prevented this.

The following paragraphs comment on the current state of the design.

Evaluation method

All simulations on the full ADC are based on the concept presented in Section 3.3. Beside
the artifacts caused by the simulator itself, the simulation approach to take equidistantly
samples over entire input voltage range has inherent drawbacks. A Nyquist-ADC is based
on the idea that each sample is fully independent of the previous ones. Assuming, this is
true, performing a linear sweep will not cause inconsistencies. If this assumption is not
true and the ADC has some kind of memory, we are blind to this kind of distortions. The
input signal change only slowly and in one direction. Moreover, we can only detect effects
that are also covered by the simulation model. In some cases, like in the evaluation of
the variations in the capacitive DACs, the manufacturer does not provide the required
models and statistics.

Due to the limited time for this study, it was not possible to analyze dynamic effects,
for example noise or device distortions in the compounded ADC. As expected for SAR
architectures, Czierlinski (2022) demonstrated that a shift in the supply voltage has a
high impact on the output code. Therefore, it can be expected that the ADC suffers from
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supply noise. To get an overview over all (jointly) performed simulations, the reader is
invited to also consult Czierlinski (2022).

This thesis avoids introducing other well-known ADC properties such as the signal-to-
noise ratio (SNR), signal-to-noise-and-distortion ratio (SNDR), spurious free dynamic
range (SFDR) or the effective number of bits (ENOB). All these properties are intended
to describe over-sampling-ADCs. They are recovered from the response of an ADC to a
sinus-shaped input stimulus, which we do not mimic in simulations. If we were to mimic
them, the simulation time would increase significantly due to their statistic nature. Hence,
they are out of the scope for our simulation approach. Ideal Nyquist-ADCs are fully char-
acterized by DNL and INL. One reason using these over-sampling-ADCs characteristics
also for Nyquist-ADCs is that real chip measurements are often utilize sinus-stimuli due
to a lack of fast and precise tooth-stimuli generators. One can show that the SNR is
linked to the DNL and the SFDR to the INL (Khorramabadi, 2010). Nevertheless, we
do not dare to attempt to convert the DNL into an ENOB at this point, as this involves
many strong mathematical simplifications and inaccuracies.

Comparator

In this thesis, we designed a fast and energy efficient comparator based on a double-tail
sense amplifier core. Beside this core module it incorporates a trigger tree, a buffering
output latch, two adjustable capacitive reference voltage generators and the transmission
gates to connect the latter with the core module.

Double-tail sense Amplifier. The most critical part of the comparator unit is its core
unit build from a double-tail sense amplifier (c.f. Section 5.5). During development, we
had a special focus on its delay time, input voltage offset and energy consumption per
decision. We investigated the influence of different process corners, device variations, input
impedance mismatch and static supply voltage changes using a transistor-based simulation
model. After three layout attempts, we finally come up with a version, that met our design
targets even with included extracted parasitic capacities and resistances. With calibrated
input offset, our implemented double-tail sense amplifier achieves to reliably distinguish a
1mV voltage difference in 298 ps by consuming only 80 fJ. We proved that input voltage
offset can be calibrated using the reference DAC yielding a narrow post-calibration offset
voltage distribution (2.9mV).

In Table 8 we compare our design with other sense amplifiers that are designed for SAR
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ADCs. The work from Schinkel et al. (2007) is the reference for all double-tail sense
amplifiers and the model of the implemented comparator. Even it is manufactured in
a larger process node, it is spatially slightly smaller than in the presented comparator.
Since we focus more on energy consumption than delay time, our delay time ends up
being more than twice as large. The second work in our comparison (Miyahara et al.,
2008) is a popular extension. It does not only provide self-calibration but also rely on
only one single clock. Except for the area, this work outrange the implemented design in
terms of delay time and energy consumption. However, in a first simulation attempt on
our part (c.f. Figure 54) did not show these expressive performance gain. Our work fits
its design targets, which is good for a first attempt. Nevertheless, there is still room for
improvements.

A: Schinkel B: Miyahara This work

Process node 90 nm 90 nm 65 nm
Frequency / GHz 2.00 0.25 1.00
Supply / V 1.1 1.0 1.2
Vcm / V 0.7 0.6 0.6
Energy / fJ 113† 20 80
Delay / ps 125 122 298
Area / µm2 82.5 280 100
Architecture DTSA∗ DTSA∗ DTSA∗

Table 8: Comparison of our simulated comparator with A Schinkel et al. (2007) and B Miyahara
et al. (2008). Delay time and energy consumption are given for an input voltage difference of
1mV. ∗Double-tail sense amplifier, †Measured at 50mV input voltage difference.

To further increase the decision speed of the comparator, one must resort to other transis-
tor configurations. Since the simulated dispersion of the offset is probably larger anyway
due to subsequent transistor size adjustment, one can also fall back on the designs which
have been discarded for this reason so far. The kickback and its effect on the comparator
offset can be reduced by increasing the input transmission gates. As this component is
designed by Czierlinski (2022), the transmission gate was not optimized in this work.

Capacitive reference DAC. The reference voltage generator, discussed in Section 5.6,
is the second critical element in the comparator unit. We implemented an adjustable
capacitive voltage divider, which is to some extent unorthodox for this task. After evalu-
ating the entire ADC, we must note that this approach is not as successful as it initially
promised. In particular, we are troubled by the charge loss due to comparator kickback
and leakage. The fact that the reference DAC must be refreshed regularly also induces
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that two of them have to be implemented. Already in simulations not including statis-
tical variations, we observe even-odd effects. One advantage of our approach is that the
comparator does not require any static power. But during every refresh cycle the tran-
sient power can be significant. This is caused by the transitions in the switches and their
buffer-trees, as well as by the recharging of the array itself. Effectively, the latter does not
require energy, but its effect on the transient charge flow must be added to the calculation
for the decoupling capacities used to reduce the effect of (bond) wire induction.

The current encoding of the digital value in the reference DAC shows the largest capacity
at the boundaries of its dynamic range, while in the middle all additional capacities to
increase C1 and C2 are decoupled. In an ideal ADC, we expect the best configuration of
the reference DAC around the center of its dynamic range: at 0.6V. Thus, it might be
a good idea to have the maximum capacity around this value. This can be achieved by
simply changing the decoder which will inevitably become more complex. In Figure 55,
such an encoding was successfully tested for an ideal decoder. However, we expect that
this increases the influence of device mismatch on the output voltage for medium codes.

It is a balancing act to find a compromise between accuracy and dynamic range with a
limited number of memory bits. We presented a compromise, but a final opinion can only
come with the results of an in-silicon measurement. Especially since the comparator input
offset only affects the ADC offset, it is more important to design a reference generator
that is stable over time than one to balance all eventualities.

Digital interface. The trigger tree as well as the buffering output latch work as required
and expected. Unfortunately, they require about one-third of the energy budget of the
entire comparator unit. This was disregarded in the original energy planning, although
these elements must switch in any decision. The simulation in Section 6.2 reveals a power
consumption of less than 36 fJ per decision. However, apart from using transistors with
a high threshold voltage, there is no (simple) way to reduce the required energy. High-
threshold transistor exhibits are reduced leakage current. However, such a measure could
increase the gate delays. For the trigger tree, the useful skew relaxing the comparator
timing has proven itself worth and should continue to be used.

Controller

During this course, we developed two digital controllers implementing the SAR logic: One
sophisticated, flip-flop reduced version and one naive but efficient controller. The flip-flop
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reduced version (c.f. Section 4.3.1) seemed promising, but after its synthesizes and the
assembling of the entire ADC that we noticed its shortcomings. Since the controller is
critical in time, energy, and area, a further look on the final version’s implementation
is still required. For example, it is important that both arrays are driven by identical
gate-level controller logic, which is currently not.

Not surprising the digital controller is the biggest power consumer in the ADC. Most
papers, which are not sophisticated or experimental, mention the control logic only in a
very limited way. Therefore, a direct comparison with literature is difficult. However, we
can see from pictures of produced chips that it is not uncommon for the digital logic to
consume a significant amount of space (Van Elzakker et al., 2008; Xu and Ytterdal, 2014).

In this thesis, we arrived at a gate-level netlist of the SAR logic. We performed simulations
the on a RTL as well as on a transistor-level. As discussed in Section 4.1, the wire
delay exceeds the gate delay in deep-sub-micron processes. So, we expect a significant
performance reduction for the ADC when modeling also the wire-delays. However, the
functionality of the controller itself should not break since the syntheses applied already a
model for wire delays. The in-silicon version of the controller might be different from the
simulated one. In-place optimizations and creation of a physical clock and reset tree will
change the netlist. Thus, all simulations on the controller are just best guess estimations.

ADC performance

The new ADC should accomplish objectives in the classes of speed, accuracy, area, and en-
ergy. However, these are weighted by the application situation. Not all goals are achieved
immediately in the first approach. For hybrid in-memory computing, the sampling rate is
in the foreground. As shown in Section 6, some initial cutbacks have to be made at this
point as well. However, this is not only because of the ADC itself, but also because we
lack the time for a systematic layout-based speed analysis.

For now, we can proclaim that the ADC reaches the fast mode’s target sampling fre-
quency of 125Ms/s in pre-layout simulations. In this configuration, the power consump-
tion (2.47 pJ/conv) only slightly exceeds our personal, ambitious guideline, but we stay
safely below the limit of 50% of the total chip power. Post-layout simulations yield a
sampling frequency of at least 62.5MS/s. The fast mode exhibits a resolution of 7 bit

which is also usable due to the DNL (max. 0.55 LSB) and INL (max. −0.40 LSB). As
discussed in Section 6.3, the relative accuracy in the precise mode is less. We also did
not succeed to cover a dynamic input voltage range from 0V to 1.2V (Section 6.2). The
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observed non-monotonic code transitions are not discussed further here as there various
reasons have already been evaluated in Section 6 and by Czierlinski (2022). Incidentally,
the majority of the non-monotonic code transitions would have only a minor effect in real
measurements. Presumably, they will be absorbed into the other noise that has not yet
been simulated. As usual for SAR ADCs, the area is dominated by the capacitive DAC.
This DAC already occupies the full area budget. As a result, if the digital logic is not
placed below it, we do not match the spatial constraints. However, the overshoot is kept
within limits.

A: Xu B: Van der Plas C: Harpe This work

Process node 65 nm 90 nm 65 nm 65 nm
Architecture async. SAR hybrid SAR SAR interl. SAR SAR
Sampling mode Nyquist Nyquist Nyquist Nyquist Nyquist
Resolution / bit 7 7 10 7 8
Sampling rate / MS/s 40 150 30 62.5 12.5
max. DNL / LSB 1.08 ≤1.00 0.55 0.55∗ 1.53∗

max. INL / LSB -1.20 ≤0.52 0.39 0.40∗ 0.73∗

Energy / pJ/conv 7.46 0.89 2.39 2.47† 4.01†

thereof analog 1.72 - 1.67† 0.85† 1.02†

thereof digital 5.75 - 0.50† 1.62† 3.00†

Supply / V 1.0 1.0 1.0 1.2
Area / µm2 17,000 50,000 1,000 ≥1,400

Table 9: Comparison of our simulated ADC with A Xu and Ytterdal (2014), B Van der Plas
and Verbruggen (2008) and C Harpe (2018). ∗Post-layout simulation, †Pre-layout simulation.

Table 9 compares our ADC design with three other projects. These were chosen because,
they were implemented in similar process nodes and architectures, and they have speeds
of several dozen mega-samples per second. Nevertheless, none of them is designed for a
highly parallel application, which is partly reflected in the area consumption. Van der
Plas and Verbruggen (2008) also present an ADC that supports two different speed modes
(6 bit and 7 bit). Their hybrid ADC consists of a 1 bit stage and a 6 bit stage which are
coupled to yield 7 bit. Harpe (2018) demonstrates a very compact ADC using differential
capacities. Build for 10 bit resolution, their accuracy is substantial. They utilize the same
comparator circuit as we do. The work of Xu and Ytterdal (2014) focus on asynchronous
logic and a double reference technique.

For now, the performance of our ADC is in the midfield compared to these other ADCs.
However, we would like to emphasize that our ADC has a small spatial footprint. With
a prototype, which is advisable in view of the results shown, the design can also be
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examined outside the simulator. It would allow analyzing effects that are hard to cover
in simulation. This regards in particular effects, which are difficult to estimate in post-
layout simulations, such as the impact of noise and capacitor mismatch on the accuracy
of the ADC. In future design iterations, the ADC might finally reach the all gathered
performance objectives and design targets from Section 2.3. By doing so, the ADC will
surpass the performance of the other ADCs in Table 9 in almost all metrics.

One final comment on the architecture: In general, it should be possible to reach signifi-
cantly higher sampling frequency within the presented ADC architecture. By increasing
the energy-budget and transferring the design to a faster process node the most impor-
tant weak points should be solvable: The architecture always requires eight respectively
16 clock cycles for one conversion. If a clock frequency of a process node works for normal
digital circuits, it should be possible to run our ADC architecture at this speed as well.
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8 Outlook

This thesis represents possibly a milestone for different applications in BSS-2, but more
important it indicates further steps for improvement. It lights up a promising way to a
design well suited for the requirements in analog neuromorphic hardware. Thus, work
does not stop with the completion of this thesis, but rather calls for driving the new
ADC to its true potential. Apparent improvements as discussed in the last section, need
to be implemented and tested. For this purpose, a silicon prototype is essential. There
are different suggestions in Section 7, that need to be evaluated and prepared for further
ADC versions. Especially a redesign of the reference voltage generator in favor of a more
classical, smaller, and less susceptible design is mentioned. Afterwards, a placement of
the local digital logic below the MOM capacitors of the capacitive array could decrease
the total area.

Continuous development of a universal mixed-signal verification framework.
Not only the ADC itself shows potential for further developments. The mixed-signal veri-
fication tooling evolved jointly with the ADC can be integrated to the usual co-simulation
verification flow in the Electronic Vision(s) group. By executing software in contact with
simulated hardware, one can verify the hardware jointly with the embedded low-level soft-
ware. At this point, templates for a proper integration of a direct programming interface
(DPI) needs to be included in TeststandAMS. TeststandAMS could serve as a provider of
simulators and enable unit-based mixed signal simulations for parts of the hardware.

So far, TeststandAMS uses Spectre as analog simulation engine. With some effort, other
simulators like Cadence UltraSim full-chip simulator could be provided as well. The
UltraSim simulator comes with the benefit to partition a design into different parts which
it then simulates with different precision according to the respective need. By doing so,
one could increase the speed for transistor-based digital hardware models.

Moreover, the capability of parsing and modifying netlists should be added to Teststand-
AMS. TeststandAMS should be united with the original Teststand.

Finishing of the digital logic. In order to bring the ADC to silicon, a placement
and routing of the digital logic unit is required. At this point, also the global part of
the controller, generating the sampling signal needs to be transformed from behavioral
code to a synthesized code. Moreover, the local controller unit can be tested for further
improvements in area, energy, and efficiency. A full-custom implementation of the same
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might also be considered.

The required two times 5 bit configuration storage per ADC channel for the reference
calibration of the reference generators should be implemented. To save area, these might
be realized as local SRAM, which are already available from the old CADC. However,
latter need to be extended to fit the required number of bits.

In the future, the simple interface between the local and the global logic offers capabilities
of a flexible grouping of multiple ADC channels. The trigger period of the ADC is con-
trolled by g_sample (c.f. Section 4.2). If we implement multiple, independent instances
of the g_sample-signal, an ADC-channel could log on one of these. The signal-selection
could be controlled by data-bits from the local SRAM. Thus, one can configure mutable
groups of channels.

Improvements in the analog part of the ADC. First, the transmission gates should
be modified as they are currently not sufficiently wide. This would decrease the kickback
effect as transients at the comparator’s input can be balanced faster. Vice verse, it would
increase the adaption speed of the comparator’s inputs on changes in the capacitive array.
Moreover, Sections 6.1 and 6.3 show impressively that the reverence voltage generator is
not as stable and reliable, as expected. Implementing switches based on high-threshold
transistors will reduce the potential leak currents.

Alternatives like band gap voltage reference circuits require constantly energy and are
not adjustable. Thus, they are not suited for the new ADC. Probably we find suitable
(capacitive) alternatives for the reference generator without a required “hard” refresh.
For example, we could buffer the reference voltage on a second capacitive stage.

Silicon prototype. A silicon prototype is the final prove that a design works as in-
tended. By measuring a produced chip, the quality of our simulations can be investigated.
As the current design already functional, it is not necessarily required incorporating all
the suggested improvements beforehand.

A prototype chip should give access to all important internal states. Therefore, we would
implement only a very few ADC channels - just enough to detect crosstalk effects and col-
lect channel statistics. Simultaneously, one should avoid possible additional error sources,
such as a PLL. Hence, the clock signal will be generated externally, the configuration will
be done by a simple joint test action group (JTAG) controller and the digital codes will
be stored in a sufficiently large FF-FIFO.
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Future of the ADC in BSS-2. The new ADC is planned to become an integral module
in the next generation of BSS-2 ASICs. Here, it will replace the current CADC and
improve the quality of analog data readout both in spiking and especially in non-spiking
mode. But it might also shift the bottleneck in the signal chain. While up to now the
analog-to-digital conversion has limited the operation speed, the PPU and the current
implementation of the data transmission might be quickly utilized to capacity at the
contemplated sampling frequencies. From now on, handling the digital data that comes
in and needs to be processed could become an interesting topic. The synchronization
of the ADC’s digital output code with the PPU must be clarified. Currently, the PPU
operates at a clock frequency of 125MHz, which would be just enough to fetch one new
sample per clock cycle.

A potential future application of a BSS-2-derived system could be symbol identification
in optical communication (Arnold et al., 2022). The signals that are transported via fiber
optics suffer from dispersion. Therefore, equalizers are used in transceivers to decode
an incoming signal. SNNs on neuromorohic devices are one promising realization of
these equalizers. However, no matter whether the neuromorphic devices are operating
in the electrical domain like BSS-2 or directly in the optic domain, the signals need to be
digitized at some point. Designed for neuromophic in-memory computing applications,
the presented new ADC architecture might be well suited for this application.

Within this thesis, we have not reinvented the ADC, but achieved developing functional
components for a fast dual-mode SAR ADC. In particular, the new ADC operates at
significantly increased sampling frequencies compared to the current CADC and provides
a defined sampling period. Thereby, the new ADC not only enables a parallel calibration
of fast neuron dynamics (e.g., the exponential term in the AdEx circuits), but more
importantly facilitates learning and inference applications with NNs. SNNs using the
surrogate gradient method become faster, more precise, and thus more efficient. ADC’s
fast mode empowers rapid compute iterations for vector-matrix multiplications due to its
sampling frequency and the fact that the neuron membranes are not needed anymore for
charge integration. In summary, we have presented a specialized ADC for neuromorphic
mixed-signal in-memory computing that we are now able to manufacture in a prototype
series.
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Appendix

RTL-level HDL code describing the SAR

The following three figures include the RTL code used to represent the digital logic of the
ADC. The breakdown of the module controller_local_top into three parts (A, B and
C) is only for presentation reasons.

1 module controller_local_top (
2 // left edge
3 input wire logic clk,
4 input wire logic res_b,
5 input wire logic g_sample,
6 input wire logic g_fast_mode,
7 input wire logic g_calibrate,
8 // top edge
9 output var logic [7:0] digital_out,

10 output var logic digital_out_valid,
11 // bootom edge
12 output var logic comparator_enable,
13 input logic comparator_out,
14 output var logic [7:0] A_array,
15 output var logic A_connect_input,
16 output var logic A_reset,
17 output var logic A_connect_comparator,
18 output var logic [7:0] B_array,
19 output var logic B_connect_input,
20 output var logic B_reset,
21 output var logic B_connect_comparator);
22
23 typedef enum logic [3:0] {
24 RESET = 4'b0000,
25 TRACK = 4'b0001,
26 C7 = 4'b1001,
27 C6 = 4'b1000,
28 C5 = 4'b1100,
29 C4 = 4'b1101,
30 C3 = 4'b1111,
31 C2 = 4'b1110,
32 C1 = 4'b1010,
33 C0 = 4'b1011,
34 FINISH = 4'b0011 } sub_state_e;
35
36 sub_state_e state_array_A;
37 sub_state_e state_array_B;
38 logic A_sample;
39 logic B_sample;
40
41 // output logic
42 always_comb begin
43 digital_out_valid = (state_array_A == FINISH) | (state_array_B == FINISH);
44 digital_out[7:0] = ~(state_array_A == FINISH) & (state_array_B == FINISH) ?
45 B_array [7:0] : A_array[7:0];
46 comparator_enable = state_array_A[3] | state_array_B[3];
47 end

Figure 50: System verilog HDL code implementing of the SAR. Part A.
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48 // ------------
49 // FSM Array A
50 // ------------
51 always_ff @(posedge clk or negedge res_b) begin
52 if (!res_b) begin
53 state_array_A <= RESET;
54 end else begin
55 case (state_array_A)
56 RESET: state_array_A <= A_sample ? TRACK : RESET;
57 TRACK: state_array_A <= !A_sample ? C7 : TRACK;
58 C7: state_array_A <= C6;
59 C6: state_array_A <= C5;
60 C5: state_array_A <= C4;
61 C4: state_array_A <= C3;
62 C3: state_array_A <= C2;
63 C2: state_array_A <= C1;
64 C1: state_array_A <= g_fast_mode ? FINISH : C0;
65 C0: state_array_A <= FINISH;
66 FINISH: state_array_A <= RESET;
67 default: state_array_A <= RESET;
68 endcase
69 end
70 end
71 always_comb begin
72 A_sample = g_sample;
73 A_connect_input = (state_array_A == TRACK);
74 A_reset = (state_array_A == RESET);
75 A_connect_comparator = (state_array_A[3] | !g_fast_mode);
76 end
77 always_ff @(posedge clk) begin
78 casex ({state_array_A, g_fast_mode})
79 {FINISH, 1'b1}: A_array <= 8'b01111111;
80 {FINISH, 1'b0}: A_array <= 8'b11111111;
81 {RESET, 1'b1}: A_array <= 8'b01111111;
82 {RESET, 1'b0}: A_array <= 8'b11111111;
83 {C7, 1'b1}: begin
84 A_array[7] <= comparator_out;
85 A_array[6] <= 1'b0; end
86 {C7, 1'b0}: A_array[7] <= comparator_out;
87 {C6, 1'b1}: begin
88 A_array[6] <= comparator_out;
89 A_array[5] <= 1'b0; end
90 {C6, 1'b0}: A_array[6] <= comparator_out;
91 {C5, 1'b1}: begin
92 A_array[5] <= comparator_out;
93 A_array[4] <= 1'b0; end
94 {C5, 1'b0}: A_array[5] <= comparator_out;
95 {C4, 1'b1}: begin
96 A_array[4] <= comparator_out;
97 A_array[3] <= 1'b0; end
98 {C4, 1'b0}: A_array[4] <= comparator_out;
99 {C3, 1'b1}: begin

100 A_array[3] <= comparator_out;
101 A_array[2] <= 1'b0; end
102 {C3, 1'b0}: A_array[3] <= comparator_out;
103 {C2, 1'b1}: begin
104 A_array[2] <= comparator_out;
105 A_array[1] <= 1'b0; end
106 {C2, 1'b0}: A_array[2] <= comparator_out;
107 {C1, 1'b1}: begin
108 A_array[1] <= comparator_out;
109 A_array[0] <= 1'b0; end
110 {C1, 1'b0}: A_array[1] <= comparator_out;
111 {C0, 1'b0}: A_array[0] <= comparator_out;
112 endcase
113 end

Figure 51: System verilog HDL code implementing of the SAR. Part B.
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114 // ------------
115 // FSM Array B
116 // ------------
117 always_ff @(posedge clk or negedge res_b) begin
118 if (!res_b) begin
119 state_array_B <= RESET;
120 end else begin
121 case (state_array_B)
122 RESET: state_array_B <= B_sample ? TRACK : RESET;
123 TRACK: state_array_B <= !B_sample ? C7 : TRACK;
124 C7: state_array_B <= C6;
125 C6: state_array_B <= C5;
126 C5: state_array_B <= C4;
127 C4: state_array_B <= C3;
128 C3: state_array_B <= C2;
129 C2: state_array_B <= C1;
130 C1: state_array_B <= g_fast_mode ? FINISH : C0;
131 C0: state_array_B <= FINISH;
132 FINISH: state_array_B <= RESET;
133 default: state_array_B <= RESET;
134 endcase
135 end
136 end
137 always_comb begin
138 B_sample = g_sample & !(g_fast_mode & (A_reset | A_connect_input));
139 B_connect_input = (state_array_B == TRACK);
140 B_reset = (state_array_B == RESET);
141 B_connect_comparator = (state_array_B[3] | !g_fast_mode);
142 end
143 always_ff @(posedge clk) begin
144 casex ({state_array_B, g_fast_mode})
145 {RESET, 1'b1}: B_array <= 8'b01111111;
146 {RESET, 1'b0}: B_array <= 8'b00000000;
147 {FINISH, 1'b1}: B_array <= 8'b01111111;
148 {FINISH, 1'b0}: B_array <= 8'b00000000;
149 {C7, 1'b1}: begin
150 B_array[7] <= comparator_out;
151 B_array[6] <= 1'b0; end
152 {C7, 1'b0}: B_array[7] <= comparator_out;
153 {C6, 1'b1}: begin
154 B_array[6] <= comparator_out;
155 B_array[5] <= 1'b0; end
156 {C6, 1'b0}: B_array[6] <= comparator_out;
157 {C5, 1'b1}: begin
158 B_array[5] <= comparator_out;
159 B_array[4] <= 1'b0; end
160 {C5, 1'b0}: B_array[5] <= comparator_out;
161 {C4, 1'b1}: begin
162 B_array[4] <= comparator_out;
163 B_array[3] <= 1'b0; end
164 {C4, 1'b0}: B_array[4] <= comparator_out;
165 {C3, 1'b1}: begin
166 B_array[3] <= comparator_out;
167 B_array[2] <= 1'b0; end
168 {C3, 1'b0}: B_array[3] <= comparator_out;
169 {C2, 1'b1}: begin
170 B_array[2] <= comparator_out;
171 B_array[1] <= 1'b0; end
172 {C2, 1'b0}: B_array[2] <= comparator_out;
173 {C1, 1'b1}: begin
174 B_array[1] <= comparator_out;
175 B_array[0] <= 1'b0; end
176 {C1, 1'b0}: B_array[1] <= comparator_out;
177 {C0, 1'b0}: B_array[0] <= comparator_out;
178 endcase
179 end
180 endmodule

Figure 52: System verilog HDL code implementing of the SAR. Part C.
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Alternative developments of the double-tail sense amplifier
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Figure 53: Improvement of the double-tail sense amplifier suggested by Van Elzakker et al.
(2008): The pre-amplification stage has conductance based coupling to latch stage. The simu-
lation results show 20 Monte-Carlo samples drawn from the transistor parameters above.
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Figure 54: Improvement of the double-tail sense amplifier suggested by Miyahara et al. (2008):
Instead of using the inverse trigger, the latch is fully controlled by the first stage. The simulation
results show 20 Monte-Carlo samples drawn from the transistor parameters above.
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Different encoding for the reference generator
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Figure 55: Capacitive reference DAC core with different decoding (maximum capacity in the
center).
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Even-odd effect in the reference generators
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Figure 56: Illustration of the even-odd effect in the adjustable capacitive reference voltage
generators, simulated based on layout-extractions. Both reference generators are configured to
the same code. The red respectively blue dashed line mark the new refreshed voltages. It is
clearly visible that the discharging effect plays a minor role in this situation.
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Appendix

Software used in this thesis

All circuit information and the simulation framework is available in the group internal
software database. The simulations run in a singularity10 image11 on machines of the
ASIC Labor of the Kirchhoff-Institut für Physik, Heidelberg.

Repository Commit ID

chip-teststand 1b1261fdd0843c1d310271f0a6f2b2af570d85d0
chip-sar-adc N3298e89c7bb0b4a49b435878483d6c809a3641c4

Table 10: Commit IDs for the related group internal repositories.

During the design process also proprietary software was used.

Product Provider Version

Design Compiler® Synopsis™ R-2020.09
Cadence Design Suite Cadence® 6.1.8 64bit
Spectre® Cadence® 19.1.0 64bit
Xcelium® Cadence® 19.03-s013 64bit

Table 11: Proprietary software used during this course of studies.

10The source code of SingularityCE can be found on github (https://github.com/sylabs/
singularity, state: 14.12.2022)

11Location of the used image on the ASIC-machines: /containers/stable/asic_2022-01-25_1.img

129

https://github.com/sylabs/singularity
https://github.com/sylabs/singularity


Acknowledgment

Acknowledgment

I would like to thank

• Dr. Johannes Schemmel for all his support, ideas, technical discussions, and the
opportunity to carry out this master thesis.

• Prof. Wolfram Pernice for being my second adviser.

• Milena Czierlinski for a good, successful, and trustful cooperation and a great friend-
ship, both now during the development of the ADC and already during the whole
master study.

• Sebastian Billaudelle for good suggestions and support in the analog domain.

• Andreas Grübel and Joscha Ilmberger for the technical support and good sugges-
tions in the digital domain.

• Markus Dorn for providing the ASIC Labor infrastructure.

• Jakob Kaiser and Raphael Stock for the wonderful time we spent together in our
office.

• Lennart Uecker, Sebastian Billaudelle, Moritz Sindram, Maike Clausen, Jakob Kaiser,
Sarah Görlitz, Yannik Stradmann, Wolfgang Dauer, Ingo Stephensons, Anna-Theresa
Arnold, Rouven Seibert, Lisa Maria Arnold, and Joscha Ilmberger for helping me
with prove reading this thesis.

• the entire Electronic Vision(s) group.

• my family as well as my friends who supported me during the course of my studies.
I would especially like to mention my parents Bettina and Wolfgang Dauer, as well
as Anna-Theresa Arnold and Benedikt Kneißl.

The work carried out in this Master Thesis will be incorporated in future BrainScaleS systems. The
BrainScaleS system received funding from the European Union’s Horizon 2020 Framework Programme
for Research and Innovation under the Specific Grant Agreements Nos. 720270, 785907 and 945539
(Human Brain Project, HBP).

130



Statement of Originality

Statement of Originality (Erklärung)

I certify that this thesis, and the research to which it refers, are the product of my own work. Any ideas
or quotations from the work of other people, published or otherwise, are fully acknowledged in accordance
with the standard referencing practices of the discipline.

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen
und Hilfsmittel benutzt habe.

Heidelberg, December 19th, 2022

131


	Introduction
	Background
	Analog-to-digital converters
	Applications in BrainScaleS-2
	Design targets for a new column-parallel ADC on BSS2
	Concept for a fast, small and flexible SAR ADC

	Mixed-signal verification framework
	Introduction to hardware simulation
	Interfacing Cadence with Python
	Application in an ADC characterization framework

	Successive approximation register
	Introduction to digital hardware design
	Switching scheme of a flexible SAR ADC
	Implementation of a dual-mode SAR

	Double-tail sense amplifier
	Introduction to comparators
	Design constraints
	Sense amplifier
	Implementation of a double-tail sense amplifier
	Transistor level simulations
	Capacitive reference voltage generator
	Summary

	Silicon implementation
	ADC offset error correction
	Limits of the ADC
	Layout based performance evaluation

	Discussion
	Outlook
	Bibliography
	List of figures
	List of tables
	Appendix

