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In this thesis a novel microstructured, superconducting resonator is tested to see if it

can be used to analyse the borosilicate glass N-BK7 through dielectric measurements

at a resonance frequency of 1GHz and at low temperatures. The Standard Tunneling

Model and previous measurements conducted on N-BK7 are used to assess the obtained

results. Equilibrium measurements are conducted which include the measurement of

the temperature dependency in the range of 10−2K to 1K and the power dependency

in the range of −115 dBm to −65 dBm of the sample. The temperature dependency

measurements show some deviation to the theory but a good agreement with previous

results obtained by a different resonator. The power dependency measurements show

the expected behaviour but could not be successfully described by a fit function. The

non-equilibrium measurements include Landau-Zener spectroscopy which is implemented

with an additional electric bias field. The bias rate was applied by a triangle signal which

was varied by either changing the frequency or the voltage of the signal. The frequency

dependent measurements show a good agreement to the expected behaviour. The voltage

dependent measurements show deviating behaviour which led to a further measurement

to ensure that no external heating effects were responsible.

Evaluation eines neuen mikrostrukturierten, supraleitenden Resonators

für die Analyse der dielektrischen Eigenschaften von N-BK7 bei 1GHz

und niedrigen Temperaturen

In dieser Arbeit wird ein mikrostrukturierter, supraleitender Resonator getestet um

die Eignung für die Analyse von dem Borosilikatglas N-BK7 durch dielektrische Mes-

sungen bei einer Resonanzfrequenz von 1GHz und bei niedrigen Temperaturen zu

überprüfen. Die Ergebnisse werden mithilfe des Standardtunnelmodels und früherer

Messungen evaluiert. Es werden Gleichgewichtsmessungen an N-BK7 durchgeführt, die

die Messung der Temperaturabhängigkeit im Bereich von 10−2K bis 1K und der Leis-

tungsabhängigkeit im Bereich von −115 dBm bis −65 dBm beinhalten. Die Temper-

aturabhängigkeitsmessungen zeigen teilweise Abweichungen zur Theorie aber eine gute

Übereinstmmung zu vergangenen Messungen mit einem anderen Resonator. Die Leis-

tungsabhängigkeitsmessungen zeigen den erwarteten Verlauf, konnten aber nicht erfolgre-

ich mithilfe einer Fitfunktion beschrieben werden. Die Nicht-Gleichgewichtsmessungen

beinhalten Messungen mit Landau-Zener Dynamik. Diese wird mithilfe eines elektrischen

Vorspannungsfeldes realisiert, das durch ein Dreieckssignal angelegt wird. Das elektrische

Vorspannungsfeld wird variiert, indem entweder die Frequenz oder die Spannungsampli-

tude des Signals verändert wird. Die frequenzabhängige Messung zeigt eine gute Übere-

instimmung zum erwarteten Verlauf. Die spannungsabhängige Messung zeigt ein abwe-

ichendes Verhalten zur Theorie, weswegen Heizeffektmessungen durchgeführt werden, um

zu versichern, dass kein zusätzliches Heizen für das Verhalten verantwortlich ist.
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1. Introduction

Crystals have a short- and long-range periodicity which allow a good understand-

ing of their inner workings. The periodic structure enables a description of crystals

with the help of phonons that are interpreted as elementary excitations of the lat-

tice [Hun18]. In contrast, amorphous solids do not posses a long-range periodicity

because their bonding angles vary statistically [Ell84]. This makes it more diffi-

cult to describe them theoretically. A model that has so far described amorphous

solids fairly well is the Standard Tunneling Model (STM) which was independently

worked out by [And72] and [Phi72]. It describes the characteristics of the material

by assuming that it originates from two-level atomic tunneling systems. The STM

is able to account for the differences of the thermal properties between crystals and

amorphous solids, which were first observed by [Zel71], due to the interaction of the

tunneling systems with phonons. The model also provides a good description for

dielectric measurements [Fre21], and ultrasonic absorption [Hun72, vS77]. However,

the model fails to provide a microscopical origin for the observed phenomena. Fur-

ther, the model is not always able to fully describe the experimental observations.

As a result, different additions have been made to the STM over time. One such ad-

dition is the incorporation of interactions between tunneling systems [Bur95, Nal04]

which gains importance in the low temperature regime.

As the additions show, the understanding of the inner workings of the amorphous

solids need to be improved even further. This can be experimentally done by studying

the reactions of the amorphous solids to external stimuli like electric probe- and bias

fields. Recently, the usage of Landau-Zener transitions as a way to study amorphous

thin films was introduced by [Kha14] and has already been applied to amorphous

solids by [Fre21]. In such experiments an electric bias field is used to control the

energy splittings of the tunneling systems to suppress the saturation of the dielectric

loss.

In order to do this the proper tools are needed that are able to produce these exter-

nal stimuli but also ensure a good measurement of the solid’s reaction. Currently, a

Wheatstone-bridge setup is used [Lut18, Kö19, Lut20, Fre21]. This setup contains

multiple capacitors which makes it harder to build. The goal of this thesis is it to

test a new resonator setup that only contains one capacitor per resonator, thus, is

easier to build and therefore prone to less non-linearities. Because of the simpler

setup it is also easier to describe in terms of it’s electronic features.

The experiments conducted in this thesis will determine if the expected behaviour

of the amorphous solid can be reproduced. The expected behaviour is given by the

theoretical expectation and previous experimental observations.
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The thesis at hand is divided into five components. In Chapter 2 the theory needed

for the understanding of the experiments is introduced. The theory includes current

knowledge on amorphous solids at low temperatures, the description of the STM and

various effects that arise when amorphous solids are being influenced by an electric

probe- or bias field. After being equipped with the necessary knowledge, the experi-

mental methods are depicted in Chapter 3. Here the chosen sample, the pathway of

the electric signal, and, of course, the resonator are introduced. The thesis continues

with Chapter 4 which depicts the individual experiments, the measurement results

and the corresponding analysis of the results. Here, equilibrium measurements, such

as the power- and temperature dependency measurements are conducted, as well as,

non-equilibrium measurements in form of the Landau-Zener Spectroscopy measure-

ments. Lastly, a conclusion and future outlook will be provided in Chapter 5.



2. Theory

In this chapter an introduction will be given on amorphous solids and the interactions

that take place within them at very low temperatures while under the influence of

different external impulses. First, the general properties of amorphous solids at low

temperatures are introduced in Section 2.1. Next, the Standard Tunneling Model

that theoretically describes amorphous systems is depicted in Section 2.2. Since the

behaviour of the sample will be analysed under the influence of a constant probing

field the dielectric function is introduced in Section 2.3. Sections 2.4 and 2.5 describe

the resonant- and relaxation interaction, respectively. Those are the interactions that

occur in amorphous solids while being probed by a constant electric field. The last

Section 2.6 theoretically describes the behaviour of an amorphous solid under the

influence of an additional electric bias field.

2.1 Low Temperature properties of amorphous solids

There are some fundamental differences between crystals and amorphous solids which

are rooted in the different structural periodicity of the two solids as depicted in Figure

2.1.

Figure 2.1: Schematic drawing of the crystalline- (left) and the amorphous structure
(right). In the amorphous solid some atoms are able to transition between two energetically
identical positions as indicated by the red and blue dots [Zac32, Hun74, Mü21].

While crystals are periodic in every aspect, amorphous solids only have have a short-

but no long-range order. Meaning that their bonding angles and bonding lengths can

vary [Hun74]. This leads to different phenomena among which is a greater specific

4



2.1. Low Temperature properties of amorphous solids 5

heat and a decreased heat conductivity at low temperatures in comparison to crystals

[Zel71]. In order to understand this, one has to take a closer look at the structure of

the solid. As shown on the right in Figure 2.1 some atoms in amorphous solids can

occupy multiple positions which are almost energetically identical.

To describe this configuration a microscopic description through two-level systems as

seen in Figure 2.2 is used. These can be interpreted as a superposition of two double-

well potentials with a potential barrier of height V between them. The possible

positions that can be occupied by an atom can be described with the distance d

between them, the asymmetry energy ∆ which is related to the environment around

the particle and the ground state energy ℏΩ/2. Ω denotes the angular frequency of

the oscillator and ℏ is the Planck constant divided by 2π.

Ψa Ψb

d

ħΩ
2

V

Δ

En
er
gy

m

Figure 2.2: Schematic drawing of a double well potential as a superposition of two
harmonic potentials with ground state energy ℏΩ/2, distance d, asymmetry energy ∆ and
potential barrier height V which can be tunneled through by the particle of mass m at low
temperatures. Adapted from [Mü21, Phi81].

At higher temperatures for which kBT ≫ ∆ holds true, where kB is the Boltzmann

constant and T the temperature, the particle can overcome the barrier. However,

at low temperatures this is only possible if the particle tunnels through the barrier

since kBT < ∆ holds for the thermal energy.

As lower temperatures are approached, the number of phonons decreases. This re-

sults in a decreased occupation of higher energy states. For T < 1K a tunneling

system can resonantly absorb one phonon in order to enter the excited state. The

tunneling system can then relax back into the ground state after the relaxation time

τ . Because of this the thermal conductivity is lower in comparison to crystals.

When an electric field is applied it couples to the tunneling system through a per-

manent dipole moment. The thermal equilibrium of the two-level system can then

be disturbed by an electromagnetic wave. After a system is disturbed, it takes the
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relaxation time τ to relax back into its thermal equilibrium. This process is accom-

panied by the emission or absorption of thermal photons.

Another difference in comparison to crystals is that the ultrasonic absorption in-

creases in amorphous solids for low temperatures [Hun72]. This is because the tun-

neling systems resonantly interact with the sonic waves. In order for a resonant

interaction to occur, the energy of the sonic phonon has to match the energy split-

ting E of the tunneling system. If this condition is given, a phonon can be either

absorbed or emitted depending on the occupation of the energy levels. At very low

temperatures where kBT ≪ E almost all particles occupy the ground state which

means that phonons can only be absorbed. For kBT ≫ E on the other hand the

ground- and excited state are approximately occupied by the same number of parti-

cles meaning that the resonant interaction occurs roughly at the same rate for either

the absorption or emission of a phonon.

Since the rate of ultrasonic absorption is dependent on which state the tunneling

system is occupying, the population difference between the two energy levels is in-

troduced as [Ens05]

∆n = n2 − n1 = n tanh

(
E

2kBT

)
(2.1)

with n1 and n2 being the density of tunneling systems in the ground- or the excited

state respectively and n is the total number of available two-level systems.

Further, it is known that the mean free path is limited by the resonant interaction

between phonons and tunneling systems and can be written as [Hun76]

l−1
res = l−1

0

tanh

(
ℏω

2kBT

)
(1 + J/Jc)

1/2
. (2.2)

Jc is used to denote the critical acoustic intensity, ω is the angular frequency of

the applied signal, l−1
0 is the inverse mean free path at T = 0K and at an acous-

tic intensity approaching zero. For low temperatures the population difference can

be approximated to ∆n ≈ n, since almost all tunneling systems are in the ground

state. This means that the mean free path is almost temperature independent. For

higher temperatures ∆n ≈ nE/2kBT which indicates a frequency and temperature

dependency. Because the occupation of the excited state increases with the sonic

intensity J the damping through resonant processes will decrease and the dielectric

loss, denoted as tan δ, will saturate.

Similarly, the dielectric loss problem was solved by [vS77] by using

tan δ = tan δ0

tanh

(
ℏω

2kBT

)
√

1 + |F|2/F 2
c

(2.3)
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to describe the dielectric loss in response to an applied electric field F with a critical

electric field Fc.

2.2 Standard Tunneling Model

The Standard Tunneling model was introduced in 1972 independently by [And72] and

[Phi72] to describe the low temperature phenomena in amorphous solids. The theory

is based on the assumption that some atoms have the ability to occupy multiple

positions in amorphous solids. It has already been mentioned that a particle that

can occupy two energetically almost equivalent positions can be described through

a two-level system with a potential consisting of two harmonic wells. Now a more

detailed depiction of this theory will follow.

2.2.1 Two-level systems

In the following the theory of two-level systems, which can be seen in Figure 2.2,

will be mathematically described.

The wave function of a two-level system is a linear combination of the two wave

functions Ψa and Ψb with their corresponding complex coefficients a and b,

Ψ = aΨa + bΨb (2.4)

representing two individual harmonic oscillators as depicted in Figure 2.2.

In order to find the energy eigenvalue E of such a system the time-independent

Schrödinger-equation

HΨ = EΨ (2.5)

needs to be solved with

E ≤ ⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

=
a2Eaa + b2Ebb + 2abEab

a2 + b2 + 2abS
(2.6)

for which the equations

Eii = ⟨Ψi |H |Ψi⟩ with i ∈ {a, b},
Eab = ⟨Ψa |H |Ψb⟩ and

S = ⟨Ψa |Ψb⟩

were used. Eii are the corresponding eigenvalues of the particle in the isolated well,

Eab expresses the exchange energy and S is the overlap of the two wave functions.

The true wave function in the ground state will minimize E. Hence the requirement
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∂E/∂a = ∂E/∂b = 0 is implemented. With this we find

(Eaa − E) (Ebb − E)− (Eab − ES)2 = 0. (2.7)

If the ground state energy is defined as being between the two potential minima, the

energy eigenvalue of the particle in the isolated wells becomes

Eaa =
ℏΩ +∆

2
, (2.8)

Ebb =
ℏΩ−∆

2
. (2.9)

Under the assumption that the overlap of the wave functions is weak, the term E ·S
can be neglected. Furthermore, the interaction energy can be approximated by the

WKB1-method as

∆0 = −2Eab ≈ ℏΩe−λ (2.10)

with λ being the tunneling parameter

λ ≈ d

2ℏ
√
2mV (2.11)

which is dependent on the mass m of the particle and the potential barrier height V

of the tunneling system. Given this information, equation (2.7) can be transformed

to (
ℏΩ
2

+
∆

2
− E

)(
ℏΩ
2

− ∆

2
− E

)
+

∆0

2
= 0. (2.12)

From this equation the energy eigenvalues

E± =
1

2

(
ℏΩ±

√
∆2 +∆2

0

)
(2.13)

are obtained. The resulting wave functions Ψ+ and Ψ− represent the ground- and

first excited state and can be thereby named the symmetric and antisymmetric wave

functions, respectively and can be seen in Figure 2.3.

The energy-splitting of the ground state can be now calculated as

E = E+ − E- =
√

∆2 +∆2
0. (2.14)

1Wentzel-Kramers-Brillouin
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Ψ

Ψ+

-
E

Δ

Con�guration Space

En
er

gy

Figure 2.3: Superposition of the wave function of the ground state Ψ+ and of the excited
state Ψ- of a tunneling system with the asymmetry energy ∆ and the energy splitting E.
Adapted from [Fre16].

2.2.2 Coupling between two-level systems and electric fields

When an electric field is applied, the environment of the particle changes. This in

turn also changes the asymmetry energy ∆ of the two-level system. In case of small

enough electric fields the coupling can be described by first order perturbation theory

[Ens05]. The total Hamiltonian changes to

H = H0 +HS, (2.15)

where HS is the perturbed Hamiltonian due to the field and H0 is the Hamiltonian

of the two-level system without any perturbation. In the basis of the isolated wells

Ψa,b the unperturbed Hamiltonian is

H0 =
ℏΩ
2

+
1

2

(
∆ −∆0

−∆0 −∆

)
. (2.16)

Since the two states Ψa,b are not eigenstates of the total system one needs to write

the Hamiltonian in its eigenbasis Ψ+,-. For this the transformation matrix

T =
1

E

(
∆ ∆0

−∆0 ∆

)
(2.17)

is used. With the transformation matrix, the Hamiltonian in its eigenbasis is obtained

as

HTS =
ℏΩ
2

+
1

2

(
E 0

0 −E

)
(2.18)
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in which E describes the energy-splitting of the ground state.

Looking at the Hamiltonian’s off-diagonal elements one sees that in the unperturbed

state no spontaneous transitions between the states Ψ+ and Ψ− are possible. How-

ever, tunneling systems can posses dipole moments p due to local charge distribu-

tions. If a tunneling system has a dipole moment it can interact with an external

electric field F . An electric field alters the environment of a particle and as a result

the asymmetry energy ∆ is altered. For a weak electric field and a linearly varying

asymmetry energy we find

δ∆ = 2pF = 2pF cos θ. (2.19)

Here θ is the angle between the dipole moment p and the applied electric field F .

Contrary to the asymmetry energy the impact on the tunnel splitting ∆0 is negligible.

This is because the distance between the potential minima and the barrier height

remains mostly unaffected by the field. Thus, the tunnel splitting ∆0 also remains

approximately unchanged. As a result, the perturbation matrix reads

HS ≈ 1

2

(
δ∆ 0

0 −δ∆

)
. (2.20)

Using once more the transformation matrix (2.17) on (2.20) the perturbation matrix

in the eigenbasis of the tunneling system is obtained as

HS ≈ 1

E

(
∆ −∆0

−∆0 −∆

)
p0F. (2.21)

One can see from the diagonal elements that the external field modifies the energy

splitting by

δE =
2∆

E
pF cos θ. (2.22)

The off-diagonal elements give us an insight into the coupling and therefore the

possible transitions between the states Ψ+ and Ψ-.

2.2.3 Distribution function

In order to explain macroscopic observations all tunneling systems of the solid need to

be taken into account. Because their parameters vary statistically, their distribution

function needs to be found. The STM assumes that the asymmetry energy ∆ and

the tunneling parameter λ can be considered independent from each other and are

uniformly distributed. This results in a distribution function of the form

P (∆, λ) d∆dλ = P0d∆dλ (2.23)
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with the material dependent constant P0. With a Jacobian transformation the fol-

lowing equation [Ens05]

P (E,∆0) d∆0dE = P0
E

∆0

√
E2 −∆2

0

(2.24)

can be found which is graphically depicted in Figure 2.4.

0.0 0.2 0.4 0.6 0.8 1.0
/

 
(

,
)

,

Figure 2.4: Distribution function
P (E,∆0) plotted as a function of ∆0/E.
To avoid a nonphysical answer of infinite
tunneling systems the parameter ∆0,min

is introduced which denotes the minimal
value the tunneling parameter ∆0 can be.

It shows that two singularities occur at ∆0 = 0 and ∆0 = E in the distribution

function. In order to avoid a non-physical result for ∆0 → 0 the minimum value

∆0,min has to be introduced. It is sensible to define ∆0,min dependent on the minimum

temperature Tm that can be achieved within the experiment as it is done with the

definition ∆0,min = 10−3kBTm [Luc16].

2.3 Dielectric function

When an electric field acts on a dielectric material, charges will shift accordingly and

form dipoles. The ability of a material to shift its charges in response to an electric

field is called polarization

P = ε0χF (2.25)

and it is dependent on the strength of the electric field F , the permittivity in a

vacuum ε0 and the susceptibility χ. The susceptibility is material dependent and

tells us how easily a given material can be polarized. Another important parameter

is the dielectric function which is given as

ε = 1 + χ. (2.26)
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If an oscillating electric field is applied the dielectric function will split into a real-

and imaginary part

ε = ε′ + iε′′. (2.27)

Here the real part contains information about the energy that is stored in the material

and the imaginary part represents the loss due to dissipation processes. The dielectric

loss is defined as the ratio between real- and imaginary part

tan δ =
ε′′

ε′
(2.28)

and represents the dissipation factor with the loss angle δ.

Depending on the frequency range different polarization processes contribute to the

dielectric function. The experiments conducted in the scope of this thesis take place

in the GHz range in which orientation polarization outweighs the contribution due

to electric- and ionic polarization [Hun18]. Therefore, it will be shortly discussed.

If a solid contains permanent dipoles the application of an electric field will alter the

dipole moment because the potential energy

U = −pF = −pF cos θ (2.29)

is dependent on the angle θ between electric field and dipole moment. If a dipole

has two equivalent positions available for occupation then its potential energy can

be described by a two-level system. The electric field will lead to a difference in the

energy according to equation (2.19) of the available energy-levels.

In case of a stationary electric field the polarization of a solid containing such dipoles

follows the Langevin-Debye equation

P0 = np tanh

(
pF

kBT

)
≈ np2F

kBT
. (2.30)

2.4 Relaxation effects

If one applies an electric field it is expected that the polarization exponentially grows

as the time t progresses according to

P (t) = P0 (1− exp(−t/τ)) (2.31)

until reaching the new equilibrium polarization P0. The relaxation time τ is depen-

dent on the temperature range the experiment takes place in. For high temperatures

the relaxation process is thermally activated. For low temperatures the particles can

only overcome the potential barrier through tunnelling.
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If an oscillating electric field is applied instead of a static one, the orientation of

the dipoles and the energy splitting E will also change periodically. As a result,

there will be a repeated reoccupation of the energy levels. Due to this continuous

reoccupation, the dipoles are not in the equilibrium state and will try to relax back

into it. For a periodically changing electric field the polarization and the equilibrium

polarization change according to

P (t) = P (ω) exp(−iωt), (2.32)

P0(t) = P0(0) exp(−iωt). (2.33)

By plugging the above equations into the relaxation equation, as was done in detail

in [Hun18], we find
dP (t)

dt
= −P (t)− P0(t)

τ
. (2.34)

By using the relation P (ω) = ε0χ(ω)F (t), the susceptibility due to the dipoles can

be written as

χd(ω) =
χd(0)

1− iωτ
. (2.35)

In order to find the dielectric function the contribution of the electric- and ionic

polarization also has to be taken into account. The dielectric function then reads

ε(ω) = 1 + χi(ω) + χe(ω) + χd(ω). (2.36)

Since the ionic- and electric contributions are constant in the GHz frequency range,

as was mentioned previously, equation (2.36) can be rewritten and simplified to

ε(ω) = 1 + χi + χe +
χd(0)

1− iωτ
= ε∞ +

εst − ε∞
1− iωτ

. (2.37)

Here ε∞ denotes the permittivity for high frequencies (ωτ ≫ 1) and εst stands for

the permittivity in the low frequency regime were ωτ ≪ 1 holds. Differentiating

between real- and imaginary part we find

ε′(ω) = ε∞ +
εst − ε∞

1 + (ωτ)2
, (2.38)

ε′′(ω) =
(εst − ε∞)ωτ

1 + (ωτ)2
. (2.39)

The behaviour of the real- and imaginary part can be seen in Figure 2.5. For ωτ1 ≪ 1

where the frequency of the field is small, one can observe that the dipoles can still

follow the oscillating electric field, hence the real part of the dielectric function is

large. For increasing frequencies the real part begins to decrease and experiences the
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greatest decline at ωτ1 = 1 at which point the imaginary part reaches its maximum

value. For even higher frequencies ωτ1 ≫ 1 the dipoles are not able to follow the

electric field anymore and they become quasi-static.
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Figure 2.5: Real- ε′ and imaginary part
ε′′ of the dielectric function as a function
of ωτ1 as a result of relaxation processes.
τ1 describes the relaxation time of a one-
phonon process as introduced in equation
(2.45).

Next, we want to find the change in the polarization and the dielectric function of the

amorphous solid due to the electric field. When an external electric field is applied

the alignment of the electric dipoles changes and therefore, a change in the energy

splitting is induced. This leads to a change of the occupation number difference

δ(∆n). As a result, we find with (2.1) and (2.25) the change in the polarization to

be

δP = δ(∆n)
∆

E
p cos θ. (2.40)

In order to find χd(0) from equation (2.37) the equations (2.1), (2.22), (2.25), and

(2.40) are used to find

χd(0) =
1

ε0

∂P

∂F
=

1

ε0

∂ (δP )

∂ (δn)

∂ (δn)

∂ (E)

∂ (E)

∂ (F )
=

p20N

ε0kBT

(
∆

E

)2

sech2

(
E

2kBT

)
. (2.41)

Thus, with equations (2.38) and (2.39) the change in permittivity can be found as

δε′rel = χd(0)
1

1 + (ωτ)2
, (2.42)

δε′′rel = χd(0)
ωτ

1 + (ωτ)2
. (2.43)
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2.4.1 Relaxation time

Now that we have seen what changes occur when an electric field is applied, we also

want to have a look at the relaxation processes that lead to the relaxation of the

amorphous solid back to its equilibrium state. The process implemented by the solid

is dependent on the temperature regime it is experiencing.

For high temperatures relaxation occurs through thermally activated jumps for which

many phonons are needed. Since the number of phonons decreases with decreas-

ing temperature the tunneling system relaxes back to its equilibrium state through

the Raman process, also known as two-phonon relaxation process at intermediate

temperatures. This is because the potential barrier cannot be overcome classically

anymore and the transitions occur between the split ground state and intermediate

states that may be real or virtual. The two-phonon relaxation time reads [Dou80]

τ−1
2P = R

(
∆0

E

)2

T 7f

(
E

2kBT

)
(2.44)

and depends on the constant R that describes the coupling strength of the process

and the function2 f .

Lastly, at low temperatures for which kBT ≲ E is fulfilled, the relaxation process

occurs through the one-phonon process where the transition is made through the

absorption or emission of one thermal phonon. By calculating the transition proba-

bilities through Fermi’s golden rule, the inverse longitudinal relaxation time is found

as [Jä72]

τ−1
1P =

(
∆0

E

)
E3

K1P

coth

(
E

2kBT

)
(2.45)

with the coupling constant

K1P = 2πρℏ4
(
γ2
l

ν5
l

+ 2
γ2
t

ν5
t

)−1

(2.46)

where ρ is the mass density, νl,t are the sound velocities and γl,t the coupling strengths

of the longitudinal and transversal phonons to the tunneling system.

The relaxation time becomes maximal for very asymmetric tunneling systems where

∆0 is minimal. Consequently, the relaxation time is minimal for symmetric tunneling

systems where ∆0 = E.

The total longitudinal relaxation time can then be approximated as

τ−1 ≈ τ−1
1P + τ−1

2P (2.47)

2f(x) =
x

70

(
x2 + π2

)(
x4 − π2x2 +

10

3
π4

)
coth(x)
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if higher order phonon processes are neglected.

2.5 Resonant Interaction

Resonant interactions depict the interaction of the tunneling systems with the electric

field through the absorption of photons. A photon from the electric field with the

energy ℏω can be resonantly absorbed by a tunneling system with the resonant

frequency ω0 and the corresponding energy E = ℏω0, if their energies match. The

resonant absorption excites the system from its ground into its excited state. As can

be seen in Figure 2.6 the system absorbs photons the most efficient when ω = ω0,

resulting in the largest contribution to the imaginary part due to the high energy

dissipation.
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Figure 2.6: Frequency dependence of the
real- b′(ω) and the imaginary part b′′(ω) of
the dielectric function as a function of ω/ω0

as a result of resonant processes.

The real part receives contributions from tunneling systems of all frequencies ω and

changes its sign at the resonance frequency. Through resonant processes the dielectric

function changes according to [Fre21]

δε′res =
p20

ε0εrℏ

(
∆0

E

)2

tanh

(
E

2kBT

)
b′(ω), (2.48)

δε′′res =
p20

ε0εrℏ

(
∆0

E

)2

tanh

(
E

2kBT

)
b′′(ω) (2.49)
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with the parameters

b′(ω) =

[
− (ω − ω0)

(ω − ω0)2τ 22 + 1
+

(ω + ω0)

(ω + ω0)2τ 22 + 1

]
τ 22 , (2.50)

b′′(ω) =

[
− 1

(ω − ω0)2τ 22 + 1
− 1

(ω + ω0)2τ 22 + 1

]
τ2. (2.51)

In these equations τ2 denotes the transversal relaxation time, also called the de-

phasing time, which describes the time period in which dephasing of the resonant

tunneling system takes place. The dephasing arises due to interactions with other

tunneling systems. Such interactions can take place through a change in the lo-

cal strain field. A change like this can occur when tunneling systems transition or

when electric interactions occur which include dipole-dipole interactions. Either way

the resonant tunneling system experiences a change in energy splitting and loses

coherence with the neighbouring tunneling systems. This process is called spectral

diffusion and the corresponding dephasing time has been found through polarization

echo experiments [Fic13].

Having covered the change in the dielectric function due to the interactions of one

tunneling system through relaxation- (Subsection 2.4) and resonant processes, the

total change of the dielectric function can now be calculated by taking into account

the whole ensemble. To do this the change of the dielectric function is integrated over

the energy splitting E, the tunneling energy ∆0 and the angle θ between a dipole

and electric field.

For the contribution of the ensemble due to relaxation processes we find

δε′rel
ε′

=

∫ π

0

cos2 θ sin θdθ

∫ Emax

∆0,min

∫ E

∆0,min

dEd∆0δε
′
relP (E,∆0), (2.52)

δε′′rel
ε′

=

∫ π

0

cos2 θ sin θdθ

∫ Emax

∆0,min

∫ E

∆0,min

dEd∆0δε
′′
relP (E,∆0). (2.53)

Similarly for the contribution of the ensemble due to the resonant processes we find

δε′res
ε′

=

∫ π

0

cos2 θ sin θdθ

∫ Emax

∆0,min

∫ E

∆0,min

dEd∆0δε
′
resP (E,∆0), (2.54)

δε′′res
ε′

=

∫ π

0

cos2 θ sin θdθ

∫ Emax

∆0,min

∫ E

∆0,min

dEd∆0δε
′′
resP (E,∆0). (2.55)

With these equations the changes of the real and imaginary part were evaluated.

The result of this numerical evaluation is shown in Figure 2.7. The Figure shows

the influence of relaxation processes, resonant processes and the sum of both, in

dependence of the temperature of the system, on the real and imaginary part.
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From Figure 2.7 it is apparent that for both the real- and imaginary part, the res-

onant interactions dominate at low temperatures. This is because the number of

phonons is very low in this temperature regime. For very low temperatures an al-

most temperature independent behaviour is seen since almost all tunneling systems

remain in their ground state and interact resonantly with the electric field.
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Figure 2.7: Change in the dielectric function due to relaxation- and resonant processes as
a function of temperature. On the left the change in the real part of the dielectric function
is depicted and on the right the dielectric loss. Adapted from [Fre21].

For the real part the behaviour is seen for T ≲ 0.0025K and for the imaginary

part for a temperature of T ≲ 0.002K. The small increase in the real part at

T ≈ 0.0065K is because the resonant tunneling systems become thermally accessible

when kBT ≈ ℏω is fulfilled. After that the resonant contribution decreases because

tunneling systems begin to get thermally excited until at high temperatures only off-

resonant tunneling systems with large energy splittings can still contribute. Further,

at higher temperatures (T ≈ 0.5K) the relaxation processes also begin contributing

and dominate the change of the dielectrics real part. As a result, a minimum is

reached after which the real part increases again.

The contribution to the imaginary part is also dominated by resonant tunneling

systems at very low temperatures. At these low temperatures all tunneling systems

in the resonance band are able to contribute since they remain in their ground

state. As the temperature increases the imaginary part decreases since the tunneling

systems continue to be thermally excited until almost all become saturated. At

this point the relaxation processes dominate the contribution and a minimum in the

total contribution is reached. After that the contribution due relaxation processes

increases until reaching a plateau. The plateau is reached because a balance is
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established between the relaxation and the subsequent excitation of the tunneling

systems.

2.6 Landau-Zener transitions

In the previous sections the effects of a high energy probing field on tunnelling

systems were discussed. In this section we will go through the impact an additional

electric bias field Fb(t) has on tunneling systems. When such an electric field is

applied it modifies the energy splitting according to

Emod(t) =

√
∆2

0 + (∆ + δ∆(t))2. (2.56)

Additionally, to the electric probe field that causes the change in the asymmetry

energy δ∆, an oscillating electric field will be applied in form of a triangle signal.

This field can be modified either through the variation of the bias voltage or the

frequency of the signal. This will result in a further modification of the energy

splitting E which means that other tunneling systems will be in resonance with the

electric probe field. Since the parameter distribution of the tunneling systems is

flat it should not make any difference in the change of the real dielectric function.

However, when the additional electric field is constantly changed a dynamic shift will

occur which forces the tunneling systems successively through the resonance band.

As a result, the tunneling systems will be consecutively excited by the electric field

and thus the dielectric loss will increase. Hence, the next step is to find the dielectric

loss based on the calculations of [Kha13, Bur13].

If only the tunneling systems are considered to contribute to the resonant loss that are

in resonance with the high frequency probe field for which E ≈ ℏω holds, then, a first

order Taylor-approximation can be used to calculate the modification of the energy

splitting around the resonance band, where only tunneling systems with δ∆ → 0 are

relevant, as

Emod(t) ≈ ℏω +

√
1−

(
∆0

ℏω

)2

δ∆(t). (2.57)

Next, the change of the energy splitting with time is examined

dEmod(t)

dt
= ℏν =

√
1−

(
∆0

ℏω

)2

2pḞb cos θ = ℏν0

√
1−

(
∆0

ℏω

)2

(2.58)

in which we defined ν0 := 2pḞb/ℏ. Now the energy splitting can be rewritten as

Emod(t) = ℏω(t− t0) (2.59)
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with t0 being the time at which the tunneling system is in exact resonance with the

field.

In a next step, we want to deduce the Landau-Zener equations by firstly solving the

time dependent Schrödinger equation. In order to do this we begin to describe a

system on which we impose an oscillating electric field F ac(t) = F ac cos(ωt) with the

wave function

⟨Ψ| =
(
c1(t)

c2(t)

)
(2.60)

which describes a superposition of the ground state ( 0
1 ) and the excited state ( 1

0 ).

The time evolution can be described through the Schrödinger equation with the

Hamilton operator

H =
1

2

(
E 0

0 −E

)
+

1

E

(
∆ ∆0

∆0 −∆

)
p0Fac cos(ωt) (2.61)

by neglecting relaxation processes during the resonance crossing and assuming that

the change of the energy splitting in accordance to the probe field remains small,

such that Emod/2 ≪ ∆/EpFac. As a result, the coupled equations

iℏċ1(t) =
Emod

2
c1(t) + ℏΩR cos(ωt)c2(t), (2.62)

iℏċ2(t) =
Emod

2
c2(t) + ℏΩR cos(ωt)c1(t) (2.63)

are found which are then transformed into the rotating frame by(
a1(t)

a2(t)

)
=

(
c1(t)e

iωt/2

c2(t)e
−iωt/2

)
(2.64)

in order to find the stationary solutions

ȧ1(t) = −iν

2
(t− t0)a1(t)−

iΩR

2
a2(t), (2.65)

ȧ2(t) = −iν

2
(t− t0)a2(t)−

iΩR

2
a1(t) (2.66)

which can be identified as the equations of the Landau-Zener problem [Zen32]. In

these equations the Rabi-frequency

ΩR = ΩR,0 cos θ
∆0

E
with ΩR,0 =

pFac

ℏ
(2.67)

was used which represents the frequency at which the oscillation between the ground-

and excited state takes place when an external electric field Fac(t) is applied.
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Next, we want to look at two different extremes. First, it is assumed that the

change in the energy splitting of the tunneling system is performed slowly meaning

ν0 ≪ Ω2
R,0. If this is the case then the transition to the excited state occurs under

the absorption of a photon from the electric probe field. On the other hand, if the

modification in the energy splitting happens fast, meaning ν0 ≫ Ω2
R,0, there will be

no excitation because the coupling between the two energy levels is too weak. This

is called a Landau-Zener transition. Thus, the probability of a transition in which

an excitation occurs is

Pg→e = 1− e−γ with γ =
πΩR

2ν
. (2.68)

Now we will look at the total dissipated energy associated with an external electric

field modulated by an additional bias field. In order to calculate the total loss, we

integrate over the dielectric volume and over the number of tunneling systems N

that are in resonance with the external field during the time interval dt

dE =

∫
dV

∫
dNℏωPg→e. (2.69)

Further, we integrate over the distribution function

dE = ℏωP0V

∫ 1

0

d cos θ

∫ ℏω

0

d∆0

∫ ℏω+ℏνdt

ℏω−ℏnudt
dE

PE

∆0

√
E2 −∆2

0

. (2.70)

Lastly, it is assumed that the change in energy ℏνdt is small and substitute x = ∆0/ℏω.
We find according to [Fre21]

dE
dt

= πωF 2
acP0p

2V

∫ 1

0

d cos θ cos2 θ

∫ 1

0

Pg→e

γ

xdx√
1− x2

(2.71)

with which the dielectric loss can be written as

tan δ =
PL

ωW0

=
dE
dt

(
ωV ε0εF

2
ac

)−1
(2.72)

where the dissipated energy is denoted as PL and the stored energy as W0. Us-

ing equation (2.71) and assuming a very fast bias sweep ν0 ≫ Ω2
R,0 for which the

approximation e−γ ≈ 1− γ can be made, we find

tan δ = tan δ0 =
πP0p

2

3ε0εr
(2.73)

in which tan δ0 denotes the saturated loss.
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Figure 2.8: Numerical integration of the
dielectric loss (2.75) in dependence of the
dimensionless bias rate ξ [Kö19].

More generally, for other probe fields equation (2.72) has to be solved numerically

as it was done in Figure 2.8 for which the dimensionless bias rate is defined as

ξ =
2ν0

πΩ2
R,0

=
2ν0ℏ2

πp2F 2
ac

(2.74)

which leads to the expression

tan δ =
πP0p

2

ε0εr
ξ

∫ 1

0

d cos θ cos θ

∫ 1

0

(
1− exp

(
−cos θ

ξ

x2

√
1− x2

))
dx

x
. (2.75)

It has to be taken into account that for the calculation it was assumed that no relax-

ation processes occur during the resonance crossing. This assumption can be used

for larger bias rates but for low ones the probability of the occurrence of relaxation

processes is higher. With that in mind we can describe the behaviour of the loss

for different bias rates. The loss increases for increasing bias rates and reaches a

plateau at tan δ0. This is because as the bias rate increases more tunneling systems

cross the resonance band which can be potentially excited by a resonant interaction

with the electric field. However, as mentioned before, the probability for a resonant

interaction decreases for fast bias-sweeps. These two processes counteract each other

resulting in the visible plateau.
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This section aims to introduce the experimental setup and explain how the experi-

mental results were obtained. To effectively measure the influence of external stimuli

on the sample it is best for the tunneling systems to be in their ground state. To this

end the dilution refrigerator, that is used to ensure the low temperature environment,

is introduced in section 3.1. The composition of the glass sample used is explained

in Section 3.2. Section 3.3 describes how the data is extracted and evaluated from

the measurements. The external stimuli are provided by the electronics depicted in

section 3.4 that are connected to the newly realised resonator introduced in 3.5.

3.1 Dilution refrigerators

For the experiments very low temperatures need to be achieved to ensure that most

tunneling systems are in their ground state in order to effectively measure their in-

teraction with the applied electric field. This can be illustrated by calculating the

population difference for the applied frequency of ν = 1GHz at different tempera-

tures

∆n = tanh

(
hν

2kBT

)
= 0.24 with T = 100mK, (3.1)

∆n = tanh

(
hν

2kBT

)
= 0.98 with T = 10mK. (3.2)

Evidently, temperatures in the range of T = 10mK are needed. To this end, a dilu-

tion refrigerator as shown in Figure 3.1 is used. In the following a short description

of the principals of dilution refrigerators will follow, a more detailed depiction can

be found in [Ens05, Pob07].

A dilution refrigerator is based on the interaction between a 3He/4He mixture. Since

the mass of a 4He atom is greater than that of a 3He atom it has a lower zero-point

energy which makes it more favorable for 3He to bind with 4He rather then with

with atoms of its kind. However, at some point the mixture will divide into a lighter
3He-rich and into a heavier 3He-poor phase. This is based in the nature of 3He since

it acts according to Fermi-statistics, resulting in a higher kinetic energy with increas-

ing number density. This leads to a reduced effective binding energy. Meaning that

if the concentration of 3He diluted in 4He gets too large, two phases are energetically

more favorable. For temperatures below approximately 800mK superfluid 4He acts

as a quasivacuum for 3He.

23
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Figure 3.1: Schematic drawing of the 3He/4He dilution cryostat. The vacuum pot
contains the dilution unit and the experiment is placed on the experimental platform. The
drawing also includes part of the electronic setup that is contained within the cryostat and
will be further discussed in Section 3.4. Adapted from [Pob07, Fre21].

In case of dilution refrigerators where the 3He concentration is continuously reduced

in the diluted phase, the explained property of 3He/4He mixtures leads to a con-

tinuous transition of 3He from the 3He rich phase to diluted phase. During this

transition energy is taken in from the environment. This results in a temperature

decrease with a cooling power of Q̇ = 84ṅ3T
2 [Pob07] where ṅ3 is the number of 3He
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atoms transitioning per unit time.

Three of the most fundamental parts of the cryostat include the mixing chamber, the

still and the 1K-pot. These components are all contained within a vacuum chamber

that is submerged into a 4He bath. The mixing chamber contains the diluted- and

the 3He-rich phase. Further, the still, that is maintained at a temperature of 0.7K,

is connected to the diluted phase and since 3He has a lower boiling temperature

than 4He, 3He is mostly evaporating inside the still through which the 3He enters

the pumping system. Through this process the 3He concentration decreases and a

concentration gradient between the still and the mixing chamber evolves that leads

to an osmotic pressure. Thereby, a flow of 3He from the mixing chamber to the still

is set in motion which drives the phase transitions occurring in the mixing chamber.

Since a continuous cycle has to be achieved for effective cooling to take place the
3He is cleaned through a nitrogen- and a helium trap, enters the vacuum chamber in

a capillary and is then pre-cooled in the 1K pot. With the help of a flow impedance

the pressure is maintained and 3He condenses before reaching the still. In a next

step, it encounters a heat exchanger and finally reaches the 3He-rich phase in the

mixing chamber. By using this process the temperature range needed for the exper-

iments conducted in this thesis can be reached.

The temperature of the cryostat is measured by a resistor thermometer for which

the resistance is read out through an AC resistance bridge3 which measures the re-

sistance through small excitation voltages to avoid parasitic heating. In addition,

the temperature above a certain base temperature can be regulated by an attached

heater.

To mount the experiment an experimental platform is needed. It consists of copper4

and is therefore thermally well attached to the mixing chamber. The response of

the resonator is then read out by coaxial cables that connect the resonator to the

readout electronics. To reduce the heat loads from the cables heat sinks are used

that are applied at different temperature steps of the cryostat.

3.2 Sample

The sample used in the experiments is the borosilicate glass N-BK7 from Schott AG5.

The chemical composition was determined by atomic emission spectroscopy by the

Fraunhofer Institute for Silicate Research and can be viewed in Table 3.1. Among the

applications of this glass it has already been used for many dielectric measurements

over a wide frequency range [vS75, Ant79, Woh01, Kö19, Fre21]. As a result, it is

3AVS-47, RV-Elektroniikka Oy Picowatt, Veromiehentie 14, FI-01510 Vantaa, Finland
4Tempered oxygen-free copper to avoid impurities and ensure a good thermal conductivity and

thermalization of the experiments.
5Schott AG, Hattenbergstr. 10, 55122 Mainz, Deutschland.
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SiO2 B2O3 Al2O3 Na2O K2O BaO
74.8% 9.6% 0.03% 10.1% 4.7% 0.74%

Table 3.1: Chemical composition of the borosilicate glass N-BK7 in molar percentage
[Lud03].

a good choice for the characterization of new devices since one can compare results

with previous measurements. In this thesis we will focus and compare results to the

results obtained in [Fre21] since similar experiments were conducted in the realm of

this thesis.

3.3 Measurements

This section depicts the calculations needed to evaluate the data obtained from the

experiments.

3.3.1 Characteristics of the resonator and evaluation

An external electric field is generated with the resonator which alters the state of

the tunneling systems in the glass. A resonator can generally be characterized by

its inductance L, capacitance C, and resistance R through which the resonance

frequency

f0 =
1

2π

√
1

LC
− R2

4L2
(3.3)

=
1

2π
√
LC

for R = 0 Ω (3.4)

can be calculated. In the second step R = 0 Ω is declared since the resonator consists

of niobium and therefore we can assume that there is no DC resistance. To analyse

the response of the glass to the various external stimuli the resonance curve of the

resonator will be analysed. Another parameter to describe this curve besides the

resonance frequency is the internal quality factor

Qi = 2πf0
Wtot

Pdis

= R

√
C

L
(3.5)

which is dependent on the dissipation power Pdis = U2
0/(2R) and the maximum

electric energy that can be stored in the resonator Wtot = CU2
0/2 with U0 being the

maximum voltage. The internal quality factor excludes the coupling strength of the
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resonator to the feedline Qc so that the total quality factor of the resonator reads

1

Q
=

1

Qi

+
1

Qc

. (3.6)

The main contributors to the internal quality factor are the tunnelling systems but

radiative losses, a finite electric conductivity or pair-breaking processes in supercon-

ductors might also be contributors. Since the capacitance is directly linked to the

resonance frequency of the resonator we can use the relation

∆C

C
=

C − C⋆

C⋆
=

(
f ⋆
0

f0

)2

− 1 (3.7)

with C⋆, f ⋆
0 being arbitrary reference points. However, because the electric field does

not only penetrate the sample but also the volume around it we have to differentiate

the capacitance of the sample Cs and the parasitic stray capacitance of the vacuum

Cv, according to

C = Cs + Cv. (3.8)

We assume the capacitance in the vacuum to be constant and because we are only

interested in the change in the sample we use the relative change of capacitance

within the sample
∆Cs

Cs

=
∆C

C − Cv

=
∆C

C
F (3.9)

in which we introduce the filling factor F = 1 − Cv/C which describes the part of

the electric field that penetrates the sample. As a result, the relative change of the

dielectric function’s real part is found to be

δε′

ε′
=

∆Cs

Cs

=

((
f ⋆
0

f0

)2

− 1

)
1

F
. (3.10)

Next, through a comparison of the equations (2.72) and (3.5) the dielectric loss is

determined to be

tan δ =
1

Qi

. (3.11)

Taking into the account the influence of the stray capacitance Cv on the quality

factor we write down
Qi

Qi,v

=

√
C

Cv

(3.12)

in which Qi,v is the modified internal quality factor due to the stray capacitance.

Overall, we find

tan δ =
1

Qi,v

=
1

Qi

√
1 +

Cv

Cs

=
1

Qi

√
F
. (3.13)
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In order to extract the resonance frequency and the internal quality factor from the

measured resonance curves a modified Lorentz curve

L(f) = A1 + A2 (f − f0) +
A3 + A4 (f − f0)

1 + 4Q2

(
f − f0
f0

) (3.14)

is used as a fit function. It takes into account the constant- and linear underground

noise which is proportional to the parameters A1 and A2 respectively, the amplitude

of the resonance curve A3 and the asymmetry term which is proportional to A4.

These additional parameters have to be taken into account because the resonance

curve changes according to the applied temperature, power, and bias field due to

the interaction of the tunneling systems with the electric probe field. Information

about the tunneling systems can be extracted from the resonator because the tun-

nelling systems extract energy from the resonator when they undergo resonant- and

relaxation processes.

3.3.2 Landau-Zener transitions

By adding a continuously changing electric bias field, the asymmetry energies of the

tunnelling systems continuously change and thus the tunneling systems are in a sense

getting pushed through the resonance band. This results in an increasing dielectric

loss. The change of the electric field at the capacitor is approximately given by

Ḟb ≈ Ubfb

(
2

(
d1
εr,1

+
d2
εr,2

))−1

(3.15)

with Ub and fb being the voltage and frequency applied through a continuous bias

signal that in our case has the form of a triangle signal. The permittivity of air is

denoted by εr,1 = 1, εr,2 = 5.8 is the absolute permittivity of N-BK7 [Fre16], d1 =

125µm is the distance between the sample and the upper electrode and d2 = 200µm

is the thickness of the sample [Sta22]. Different bias field signals will be generated

by either altering the applied voltage while keeping the frequency constant or by

altering the frequency of the signal while keeping the voltage constant. The STM

predicts that this should not make a difference in the measurements of the real-

or imaginary part if either method is used to create the same values of the bias

field. Additionally, at high bias rates created by high voltages heating effects have

been observed [Kö19] that can be avoided by applying high frequencies to achieve

high bias rates. It also has to be taken into account that because of the continuous

application of the signal the tunneling systems will not have enough time to fully

relax back into their ground state and for one tunneling system multiple coherent
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Landau-Zener transitions might occur.

3.4 Signal pathway

In the following the components used in the electronic setup which can be viewed in

Figure 3.2 will be introduced.
RF
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U

T

RF
 IN

PC
Network Analyzer

0 to -81 dB

Signal 
Generator

<<
<<

<<

Resonator

DC Block

+20 dB

Heatsinks

-20 dB

-10 dB

-20 dB

Cryostat

RF Ampli�er
+ 50dB

Figure 3.2: Schematic drawing
of the high frequency signal path-
way. The blue lines represent the
electronic setup associated with
the high frequency pathway, the
red line is the one associated to
the bias rate measurements and
the green ones represent the con-
trol of the signal generator and
the network analyzer by the com-
puter via a LabView program.
Adapted from [Fre21].

The signal that excites the resonator comes from a vector network analyzer6. It

also measures the transmission in terms of amplitude and phase. Attenuators at

room temperature are used to ensure that only low power signals can enter the

cryostat and to reduce standing waves that emerge because of impedance differences.

However, because attenuators also lead to noise another attenuator was placed inside

the cryostat at lower temperatures whereby the signal to noise ratio is increased. We

6HP 8752A, Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304-1185 USA
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use three attenuators with a fixed attenuation and one with a controllable range7,

which goes from 0dB to −81 dB. The controllable attenuator is used to control the

power that acts on the sample. To avoid heating from the coaxial cables heat sinks

are used by thermally coupling the cables to the cryostat with sapphire plates at

different temperature steps. Further, DC blocks are used to prevent DC- and low

frequency currents from entering the resonator and the rf-amplifier8 via the high

frequency lines. The rf-amplifiers are used to enlarge the small signal that exits the

resonator. The first amplifier is inside the cryostat and therefore produces less noise

compared to the amplifier placed at room temperature. When the signal reaches the

second amplifier it is already large enough to ensure a good signal to noise ratio.

The bias signal is created by the signal generator9 and enters the resonator on a

separate pathway.

Lastly, the network analyzer and the signal generator are connected to the computer

by a GPIB10-port. On the computer one can control both via a LabView11 program.

3.5 Resonator

In the following the LC-resonator used in this experiment as shown in Figure 3.3

will be described. The figure itself was constructed with the program Cadance12. In

previous measurements [Fre21, Kö19, Lut20, Lut18] a LC-resonator with capacitors

arranged in a Wheatstone-bridge setup was used. The resonator presented in this

thesis is prone to less non-linearities due to its simple setup. The setup is simpler

since it contains only one interdigital condensator (IDC) per resonator in contrast

to the Wheatstone-bridge setup which contains four.

The chip designed for this experiment consists of five LC-resonators coupled in series

that each have a different inductance and hence a differing resonance frequency. In

this thesis we will only be using the resonator with the lowest resonance frequency

of 1GHz. The entire chip is microstructured onto a BK7-wafer which has a width

of 200µm. On the edge of the chip wires are placed to ensure contact between the

ground plane and the actual ground. It also contributes to the thermalization of the

resonator. The SMA13 ports at the edges of the chip consist of an inner and outer

cable. The inner cable is responsible for the signal pathway, whereas, the outer part

7Attenuator 11713A, Hewlett-Packard Company, 3000 Hanover Street, Palo Alto, CA 94304-
1185 USA

8KUHNE electronic GmbH, Scheibenacker 3, 95180 Berg, Germany
9Model DS340, Standford Research Systems, 1290 Reamwood Ave, Sunnyvale, CA 94089 USA

10General Purpose Interface Bus
11LabVIEW 8.5, National Instruments Corporation, 11500 N MoPac Expwy, Austin, TX 78759-

3504, USA
12Cadence Design Systems, 21 Oak Hill Ave, Endicott, NY 13760, US.
13Sub-Miniature-A.
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Interdigital 
condensator

Coils

Feedline

Figure 3.3: Schematic draw-
ing made with the software
Cadance of the LC-resonator
used in this experiment. The
resonator is on top of a layer
of N-BK7 and made of niobium.
The resonator is made up of
80 IDC fingers with a length of
1000µm, a width of 6µm and a
distance of 2µm between them
[Sta22].

of the cable ensures the contact with the ground of the cryostat.

The resonator is made up of 80 IDC fingers with a length of 1000µm, a width of

6µm and a distance of 2µm between them [Sta22]. The structures on top of the

N-BK7 chip are made out of niobium which was sputtered and microstrutured in the

institut’s cleanroom. The resonator is inductively coupled to the readout electronics

and separated from it by the ground plane.

The geometry of the resonator is such that the bias field and the electric probe field

are perpendicular to each other and therefore do not influence the readout.

The sample case holder shown in Figure 3.4 is made of copper and is sputtered with

niobium from within to shield external magnetic fields, minimize radiation losses of

the resonator and avoid Eddy currents inside resistive materials.

Figure 3.4: Schematic
drawing of the sam-
ple case holder. The
chip was inserted into
it with vacuum grease
which also provides ther-
mal coupling. The
bigger holes surrounding
the chip are for the SMA
coaxial cables which pro-
vide the bias- and probe
field.
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The chip is thermally coupled to the sample holder box by applying vacuum grease

between them. The SMA cables come through the four big holes around the chip

and are connected to the chip by aluminum wires. The bottom two SMA cables are

connected to the network analyzer that creates the probe signal and the upper cables

to the signal generator that provides the bias signal. The bias signal is applied by

connecting the inner cable to the electrode and the outer one to the sample holder.

The difference in potential between electrode and sample holder imitates a capacitor

and thus provides the bias field. Aluminum wires were also used to connect the

ground of the sample holder to the ground of the chip.
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In the following chapter the experimental results of this thesis will be presented.

First, a characterization of the resonator is conducted in Section 4.1 to ensure a

correct evaluation of the resonance curves. In addition, thermalization measurements

were carried out that are depicted in Section 4.2 in order to find the time it takes

for the sample to thermalize with the temperature of the cryostat. Afterwards,

the individual measurements are presented and evaluated. Those measurements

include dielectric equilibrium measurements, such as, the power- (Section 4.3) and

temperature dependency measurements (Section 4.4) and dielectric non-equilibrium

measurements that include the Landau-Zener measurements (Section 4.5). Finally,

to get a better understanding of the experimental results obtained from the Landau-

Zener measurements, possible heating effects occurring alongside large bias signals

are analysed in Section 4.6.

4.1 Characterization of the resonator

The dielectric loss is dependent on the internal quality factorQi that is predominantly

determined by the tunneling systems. However, the quality factor of the resonator

1

Q
=

1

Qi

+
1

Qc

(4.1)

also contains the coupling factor Qc. To account for the coupling factor the following

fit function from [Pro15]

S21(f) = aeiαe−2πfτ

(
1− (Q/|Qc|)eiϕ

1 + 2iQ(f/f0 − 1)

)
(4.2)

will be used, which describes the transmission coefficient S21 of a non-ideal resonator.

The function takes into account the additional scaling factor a and phase shift α,

the cable delay τ and the asymmetryterm eiϕ due to impedance mismatches. The

resonance curves that are fitted by this function are taken from the power dependency

measurement at P = −85 dBm. Those curves have a good signal to noise ratio.

Through this method the coupling factor is determined as Qc = 11481± 36.

The results from a simulation done with the software Sonnet14 gave a result of Qc =

5372 for the coupling factor. Such a deviation can be due to mistakes during the

14Sonnet Software, 100 Elwood Davis Road, North Syracuse, NY 13212, USA.

33
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production of the chip. For all further evaluations the coupling factor determined

by the measurements is used since it should reflect the actual chip more accurately

than the simulation which treats an ideal resonator without any flaws.

Additionally, only the dielectric behaviour inside the sample is of interest. To account

for that the filling factor

F =
CP

CP + Cvac

εrCvac

εrCvac + Cvac

=
εr

εr + 1
=

5.8

6.8
≈ 0.85 (4.3)

is used.

4.2 Thermalization measurements

The goal of the thermalization measurement is to find out how long it takes for the

resonator and the sample to thermalize according to the temperature of the cryostat.

For this measurement the temperature dependency of the dielectric function is used.

The measurement takes place in a temperature range of 10mK to 50mK in steps of

5mK at a constant power of P = −90 dBm. After reaching the highest temperature

the temperature steps are reversed.

By plotting the temperature T , the dielectric’s real part δε′/ε′, and the dielectric

loss tan δ in dependence of time, as was done in Figure 4.1, one can see the indi-

vidual temperature steps. For time t < 8 h the temperature steps decrease for the

real part but increase for the imaginary part. For t > 8 h the opposite behaviour

can be observed respectively. The real part seems to follow the temperature steps

well contrasting the dielectric loss which seems less precise. Especially, at higher

temperatures the dielectric loss halts its increase and even decreases slightly. This

behaviour is not expected from the theoretical temperature dependency. However,

the dielectric loss is large for low temperatures which means that broad resonance

curves are recorded that reduce the resolution of the resonance frequency f0. Hence,

the larger imprecision of the dielectric loss compared to the real part can be expected.

For low temperatures one sees an increase in the real part which coincides with the

theoretical expectation as we have seen in Figure 2.7.



4.2. Thermalization measurements 35

0 2 4 6 8 10 12 14 16
Time  [h]

0.00

0.01

0.02

0.03

0.04

0.05
Te

m
pe

ra
tu

re
 

 [K
]

0 2 4 6 8 10 12 14 16
Time  [h]

0.0

0.1

0.2

0.3

0.4

0.5

10
3

/

0 2 4 6 8 10 12 14 16
Time  [h]

0.3

0.4

0.5

0.6

10
3

Figure 4.1: Thermalization measurements conducted on N-BK7 at a constant power
P = −90 dBm. In the upper subfigure the applied temperature steps are depicted. The
temperature steps were applied in an increasing manner that was reversed after t = 8h to
test the thermalization time of the sample. The middle and bottom subfigure respectively
show the real part of the permittivity and the dielectric loss.
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On the first look it seems peculiar that the dielectric loss increases with increasing

temperature since we have seen in the theoretical depiction of the temperature de-

pendence (see Figure 2.7) and will see in the experimental measurements (see Figure

4.5), that it should decrease with increasing temperature. However, the measure-

ments take place at an input power of P = −90 dBm for which the loss already

begins saturating as will be seen in Section 4.3. Figure 4.2 shows how the power

dependency curves depend on temperature. For the numerical calculation of these

curves equation (4.4) was used. The equation will be properly introduced in the next

section.

120 110 100 90 80 70 60
Power  [dBm]

0.0

0.2

0.4

0.6

0.8

1.0 T = 10mK
T = 30mK
T = 50mK

Figure 4.2: Behaviour of the
power dependency curve when the
temperature is increased. For the
critical power the following val-
ues were used: Pc,1 = −97 dBm
(red), Pc,2 = −87 dBm (blue) and
Pc,3 = −77 dBm (green). Fur-
ther, the parameters A = 1.74,
β = 1.73, and C = −1.8 · 10−2

were used for the description of
the power dependence curve by
equation (4.4) which will be dis-
cussed in the next section.

It can be seen from Figure 4.2 that the upper plateau is at lower dielectric losses for

increasing temperatures but also remains over a larger power range. This is because

more tunneling systems become thermally excited at higher temperatures, thus not

being able to contribute to the loss. Further, the systems that are not yet in their

excited state have large energy splittings for which higher powers are needed in order

to overcome them. Since the critical power Pc is the power at which the curve starts

to decrease and is also dependent of the temperature, it describes the larger power

range of the plateau for increasing temperatures. As a result, the increase of the

dielectric loss with increasing temperature at a high power of P = −90 dBm can be

understood. Experimental evidence of this special case can be found in [Kö19] in

which the power dependency curves were obtained at two different temperatures.

To summarize, although the dielectric loss does not follow the temperature steps as

well as the real part it can still be concluded that a thermalization time of 60min
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is sufficient because of the greater imprecision of the resonance curves for large

dielectric losses. The behaviours of the curves in dependency of the temperature

can be explained by the introduced theory.

4.3 Power dependency

The power dependency measurements were conducted in a range of −65 dBm to

−115 dBm at a constant temperature of T = 10mK by recording the resonance

curves of the resonator. The different powers are adjusted by the controllable at-

tenuator introduced in Section 3.4. Figure 4.3 shows the power dependency of the

real part and dielectric loss. The individual errors of the data points seen are of

statistical nature and represent the standard deviation. Further, the plot of the real

part also includes the mean value of all data points and the corresponding 3σ-range.
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Figure 4.3: Power dependency of N-BK7. The plot of the real part contains the mean
value of the measurements (dashed) and the corresponding 3σ-range (dotted).

The resonator couples with the tunnelling systems which are inside the resonance

band. By altering the power, the population difference of those tunnelling systems

changes. As the power increases more systems transition into the excited state. Tun-

nelling systems of all energy splittings contribute to the real part which leads to the

observed systemic independence.

However, only tunnelling systems in the resonance band contribute to the loss re-

sulting in the observed power dependence. For low powers only a small dependence

can be seen since most tunnelling systems remain in their ground state and can con-
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tribute to the loss. Since more systems become excited for higher powers, the loss

decreases until finally converging towards a plateau. This behaviour can be charac-

terized by equation (2.3).

In order to theoretically describe the behaviour of the measured dielectric loss equa-

tion (2.3) is modified to [Kö19]

tan δ = A

tanh

(
ℏω

2kBT

)
√

1 +

(
P

Pc

)β
+ C (4.4)

with the use of the parameters A = πP0p
2/3ε0ε

′, β to describe inhomogeneities of

the electric field generated by the IDC, C to describe the offset that may be caused

by non-resonant contributions to the loss as discussed in Section 3.3 and Pc which

describes the critical power. The values for the parameters found through the fit

function can be found in Table 4.1. For a homogeneous electric field the parameter

is β = 1. The parameter obtained β = 1.729 ± 0.007 deviates from a homogeneous

field which might be an indication that β is not capable of fully describing the

inhomogeneity of the electric field.

A β C ·10−2 Pc [-dBm] χ2 p-value
1.7474± 0.0006 1.729± 0.007 −1.810± 0.018 97.710± 0.04 0.48 0.92

Table 4.1: Parameters estimated by fitting the function (4.4) to the data of power de-
pendency measurement.

To quantify how good the measurements and theory agree, the goodness of fit test

was applied which gives a value of χ2 = 0.48 and a p-value of p = 0.92. Thereby, the

measurements do not seem to fit the predictions well. Using a residual plot shown in

Figure 4.4 one can see that the values obtained by the fit function begin deviating

from the measurements for powers P ≥ −95 dBm. This tells us that the fit function

is not able to describe the saturation and the transition of the dielectric loss into the

saturation. Deviations of the fit function (4.4) for power dependency measurements

have also been found in [Kö19].
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Figure 4.4: Residual plot for values obtained by the fit function (4.4) and the experimental
values from the power dependency measurements. The left plot contains all residuals. In
the right plot one can see in more detail which residuals are contained in the 3σ-range of
the experimentally obtained dielectric loss. For powers P ≥ −95 dBm the residuals begin
to fall outside the 3σ-range.

4.4 Temperature dependency

The dependence of the dielectric function on the temperature was measured in the

range of 10−2K to 1K at a constant power of P = −108 dBm. At this input power

it can be ensured that the dielectric loss does not become saturated which would

overshadow the thermal effects.

In Figure 4.5 the acquired data and the predictions of the STM for the temperature

dependency of the dielectric function at 1GHz can be viewed. The parameter A =

1.7474 obtained from the power dependency fit was used to scale the theory according

to the experimental data.

For the real part of the dielectric function the predicted temperature independent

behaviour at low temperatures cannot be seen since such low temperatures could

not be reached with the dilution refrigerator. However, the small increase in the

real part can be observed. This increase occurs because tunneling systems in the

resonance band become thermally accessible. Afterwards, the contribution of the

resonant processes decreases since less tunnelling systems are in their ground state.

One can see a clear deviation of the real part from the theory for higher temperatures.

Because our measurements are normalized by the maximum frequency recorded, the

experimental curve reaches δε′/ε′ = 0. Thus, it cannot be accurately described by

the theory.
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Figure 4.5: Temperature dependence of the real- and imaginary part compared to the
theory discussed in Section 2.5 at 1GHz. For the real part, the theoretical curve was shifted
by the difference of the maximum between theoretical curve and experimental data. For the
dielectric loss, the theoretical curve was shifted by the difference of the minimum between
theoretical curve and experimental data.

For the imaginary part a flattening of the curve for low temperatures can be seen

which represents the transition to the temperature independent regime. Lower tem-

peratures could not be generated by the dilution refrigerator. Since only the tun-

neling systems in the resonance band contribute to the resonant processes one can

observe that the resonant processes dominate for a smaller temperature range than

in the real part. As the temperature increases more tunneling systems become ex-

cited and hence stop contributing to the dielectric loss. This results in the observed

decrease of the curve until it reaches its minimum due to the increasing relaxation

processes. All in all, the dielectric loss measured seems to fit the theory well up until

T ≈ 0.1K. The minimum of the dielectric loss seems to have shifted to a higher tem-

perature. This means that it takes longer for the relaxation processes to outweigh

the resonant contribution.

Further, Figure 4.6 shows a comparison to the temperature measurements of the real

and imaginary part conducted in [Fre21] with a Wheatstone-bridge setup at 1GHz.

The plots also include the theory used in [Fre21] to describe the experimental data.

For the real part, the blue data points were shifted by the difference of the maximum

values obtained in both measurements. For the imaginary part, the red data points

and the theory were shifted by the difference of the minimum values obtained in

both measurements. This can be done because the real part is a relative value that

depends on an arbitrary reference frequency. The real- and imaginary part are both
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Figure 4.6: Comparison of the measured temperature dependence with the adapted data
and theory of [Fre21] where a Wheatstone-bridge setup was used. For the real part, the
blue curve was shifted by the difference of the maximum between the two data sets. For the
dielectric loss, the red curve and the theory were shifted by the difference of the minimum
between the two data sets.

dependent on the scaling factor A that differs for the two data sets.

The two measurements of the real part correspond well with each other. However, as

has been observed in Figure 4.5, the theory was not able to describe the experimental

data. The experimental data of [Fre21] seems well described by the theory. This is

because a modified theory was used which includes the use of a different distribution

function that does not assume a constant distribution of energy levels. The modified

distribution function assumes a decreased number of low-energy tunneling systems

due to interactions between tunneling systems. For further information the reader

is referred to [Bur95, Fre16, Fre21]. The dielectric loss also shows a similar course

and a slight deviation for low temperatures. Such deviations indicate that our mea-

surement took place at a higher input power which leads to a quicker saturation of

the dielectric loss. It can be also seen here that the modified theory used by [Fre21]

describes the data better than the theory given by the pure STM.

Additionally, the measurements were conducted with two different dilution refrig-

erators which might have had different temperature calibrations. This could also

lead to deviations. By shifting the red data points by T = 10−3K, as was done in

Figure 4.7, a better agreement between the two curves can be seen. However, the

red data points still reach decreased dielectric losses in comparison to the red data

points. This points to the aforementioned higher input power in comparison to the
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measurements of Frey.
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Figure 4.7: Comparison of the measured temperature dependence with the adapted data
of [Fre21] where a Wheatstone-bridge setup was used. Here the red curves were shifted by
the difference of the minimal temperature recorded in both data sets.

Overall, the experimental results show a good agreement with the predicted theory

concerning the dielectric loss but the theory is not able to fully describe the real

part. The comparison to the measurements of Frey show a good agreement.

4.5 Landau-Zener measurements

The Landau-Zener measurements were conducted for a rate of change in the range

of 100MVs−1m−1 to 103MVs−1m−1, at a constant temperature of T = 10mK, for

three different input powers, namely −85 dBm, −90 dBm and −95 dBm. The bias

signal is applied in the form of a triangle signal for which either the amplitude or

frequency were changed, to achieve different change rates of the bias signal.

4.5.1 Frequency dependent bias rate measurement

In Figure 4.8 the real part and the dielectric loss are depicted in dependence of the

rate of change Ḟb. The bias rate was varied by changing the frequency of the signal

at a constant voltage of Ub = 1.5V. The bias signal alters the energy splittings of

the tunnelling systems and consequently new tunnelling systems enter the resonance

band.
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Figure 4.8: Bias rate dependence of N-BK7 at a temperature of T = 10mK. The bias
rate was adjusted by continuously changing the frequency of the applied triangle signal
at a constant voltage Ub = 1.5V. The left figure shows the bias rate dependency of the
real part. The right figure shows the bias rate dependency of the dielectric loss with the
corresponding theory that was acquired by numerically integrating equation (2.75). The
theoretical lower plateaus (dashed) were determined from the power dependency measure-
ment. The measurements were conducted at three different input powers.

Since not only tunnelling systems in the resonance band but rather all systems con-

tribute to the real part no dependence of the real part on the rate of change is

observed.

Moving on to the bias rate dependency of the dielectric loss, the right plot of Figure

4.8 shows the measurements at different powers with the corresponding theory from

equation (2.75) that was numerically integrated. The plot also shows the plateaus at

low bias rates that were determined from the power dependency measurements. For

all powers the lower plateau cannot be observed yet. A broader rate of change range

should be used to determine the accurate position of the lower plateaus which could

not be done in these measurements because the signal generator was not able to gen-

erate such low frequencies. The numerically integrated curves fit the measurements

well for the lower powers. However, the measurement at the highest power shows

some deviation at low bias rates. The experimental curve increases faster than the

theoretically predicted one. The reason for this may lay in the way the curves were

fitted by the theory. Essentially one uses the same numerically integrated curve for

all measurements by shifting the curves so they fit the measurements the best. This

works well at low power measurements since at low powers less tunneling systems

are in the excited state. For higher powers this changes and because more tunneling

systems are excited, the dielectric loss is decreased relative to the predicted curve as



44 4. Experimental Results

seen in the plot.

4.5.2 Voltage dependent bias rate measurement

The same measurement was conducted by changing the voltage of the signal applied

at a constant frequency of fb = 10 kHz and can be seen in Figure 4.9.
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Figure 4.9: Experimentally determined bias rate dependency of N-BK7 at a temperature
of T = 10mK. The bias rate was adjusted by continuously changing the bias voltage of the
applied triangle signal at a constant frequency fb = 10 kHz. The left figure shows the bias
rate dependency of the real part. The right figure shows the bias rate dependency of the
dielectric loss with the corresponding theory that was acquired by numerically integrating
equation (2.75). The theoretical lower plateaus (dashed) were determined from the power
dependency measurement. The measurements were conducted at three different input
powers.

For the real part no bias rate dependency can be observed for the same reasons as

before. However, in all three measurements a slight increase and subsequent decrease

of the curve can be observed. Since no dependency on the bias rate can be expected

other sources have to be considered such as external heating effects caused by the

high voltages required to create the high rates of change. Such effects have already

been observed in a previous measurement [Kö19]. A more detailed discussion to

varify whether heating effects are responsible follows in the next Section 4.6.

The measurements of the dielectric loss also include the maxima that already sur-

faced in the measurements of the real part. This tells us that the origin of this

behaviour influences all tunneling systems. Except for the unexpected maxima of

the curves the theoretical prediction is able to describe the lowest power measure-
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ment well. For the second measurement a deviation can be seen for higher bias rates

since the maximum value of the dielectric loss has increased in comparison to the

frequency dependent measurement. The last curve cannot be described well by the

theoretical prediction. It has already been seen that for high bias rates the deviation

occurs because the maximum value of the measurement increases in regards to the

frequency dependent counterpart, thus, the theoretically predicted plateau cannot

describe it accurately anymore. The deviation for low bias rates has already been

seen in the frequency dependent measurement. However, it is interesting to note that

the increase of the loss towards high bias rates is steeper than the increase observed

in the frequency dependent measurement. This leads to a more visible lower plateau

that coincides with the predicted one. The increase is also steeper for the other two

measurements. As a result, it is deduced that the voltage dependent bias rate begins

to affect the tunneling systems not until larger bias rates are applied but once they

are affected, the dielectric loss increases very quickly. It might be that tunneling

systems pass the resonance band more quickly.

4.5.3 Dimensionless bias rate

In Section 2.6 the dimensionless bias rate ξ was introduced in equation (2.74). In

Figure 4.10 the bias rate measurements of the voltage- and frequency dependent bias

rate are plotted respectively against ξ. The field strength for one capacitor is given

by [Fre21]

Fac =

√
4Q2Pin

QcCd2ω0

(4.5)

with d = 2µm as the distance between the IDC fingers and the IDC capacitance

C = 3.02 pF was used to calculate ξ. Both parameters were obtained through a sim-

ulation in the software Sonnet [Sta22]. For the calculation of ξ the dipole moment

of the sample is also needed and was approximated as p = 1.5D [Fre21]. The black

curve represents the theoretical prediction through equation (2.75).

When measurements that are conducted at different powers are plotted against the

dimensionless bias rate the curves are expected to collapse onto each other for high

bias rates until reaching their plateaus [Mat19]. For the measurements with a voltage

dependent bias rate (right) a good agreement between the theory and the experimen-

tal results can be seen. For the frequency dependent measurement (left) a collapse of

the curves onto each other cannot be seen. The red curve seems to be collapsing into

the blue curve. The blue curve will not necessarily merge with the green one since

the curves begin separating from each other at low bias rates. As has been already

discussed the voltage dependent measurement curves showed a steeper increase then
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the frequency dependent curves. Since the curves collapse in on each other primarily

between the lower and upper plateau this could explain the deviation.
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Figure 4.10: Measurements of the dielectric loss plotted against the dimensionless bias
rate ξ. On the left the measurements conducted with a frequency dependent bias rate
and on the right the one with a voltage dependent bias rate can be seen. The black curve
represents the theoretical prediction of equation (2.75). The theoretical lower plateaus
(dashed) were determined from the power dependency measurement.

To properly determine how well the theory describes the frequency dependent bias

rate measurement further experiments in a broader frequency range have to be con-

ducted. One could also see if a possible decrease of the dielectric loss would occur

at higher bias rates.

4.6 Heating effects

In Figure 4.11 measurements of possible heating effects on the dielectric loss are

depicted. To obtain this data a constant bias signal was applied at a power of

P = −85 dBm and then abruptly switched off. If no further heating takes place a

constant loss of the value tan δ = (0.0901 ± 0.0024) · 10−3 is expected, which was

obtained from the power dependency measurement.
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Figure 4.11: Heating effects observed by first applying a bias signal and then switching it
off abruptly at a constant power P = −85 dBm and constant temperature T = 10mK. The
plots include the corresponding mean values (red, dashed) and the 3σ-range (red, dotted).
Further it contains the constant value of the dielectric loss expected at P = −85 dBm
(green, dashed) and it’s 3σ-range (green, dotted).
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For one, a slight decrease in the measured data points after switching off the signal

can be seen, however, all data points remain in the 3σ-range of their mean value.

Therefore, it cannot be concluded that the decrease has a statistical significance.

Further, the constant loss at P = −85 dBm was plotted in green with the corre-

sponding 3σ error range. Although all data points are greater than the expected

value, the 3σ-ranges of the expected and the mean of the experimental values over-

lap. As a result, a possible trend is acknowledged but no statistically significant

heating effects can be determined that influenced the previous measurement.

As a result, other sources have to be considered. It would make sense that a quicker

pass through the resonance band would lead to a steeper increase because more tun-

neling systems could contribute to the loss. However, this should also lead to the

curves culminating in a plateau at lower bias rates. As seen in Figures 4.8 and 4.9,

this is not the case. Further, there must also be an effect that causes the tunneling

systems to stay longer in their ground state since the lower plateaus can be found at

higher bias rates in comparison to the frequency dependent measurement.



5. Conclusion and Outlook

The goal of this thesis was to show that a novel resonator setup can be used to anal-

yse amorphous solids as well as the Wheatstone-bridge setup which has been used

in previous theses. This was done by characterizing the resonator and conducting

measurements that were compared to the theory from the STM and previous mea-

surements.

The characterization of the resonator included the determination of the coupling fac-

tor through a fit function that describes the transmission coefficient of a non-ideal res-

onator and accounts for the cable delay and impedance mismatches of the electronic

setup. With this method the coupling factor was determined as Qc = 11481 ± 36.

The filling factor was calculated as F ≈ 0.85.

In order for the experiments to be conducted successfully, thermalization measure-

ments were made to find out how long it takes for the sample and the resonator

to adapt to temperature changes in the dilution refrigerator. The measurements

showed a good agreement with the theoretical expectations. Thus, it was concluded

that t = 60min is a sufficient thermalization time.

Next, characterization measurements of the resonator were conducted. These in-

cluded power- and temperature dependency measurements. The power dependency

measurements showed that the real part does not experience any dependency of the

input power. The dielectric loss was fitted by a function that reflects the expecta-

tions from the STM. The goodness of fit test was conducted and the value χ2 = 0.48

as well as the p-value p = 0.92 were found which indicate that the measurements do

not fit the predictions of the model well. A residual plot further revealed that the fit

fails for powers P ≥ −95 dBm. Deviations of the fit function and power dependency

measurements have also been seen in [Kö19]. Nevertheless, through the fit the scaling

factor A = 1.7474± 0.0006 was found which was used in the subsequent evaluation

of other measurements to scale the theory accordingly. This worked quite well since

the fit is able to describe the upper plateau of the measurement. Also the parameter

β = 1.729± 0.007 was determined and is supposed to describe the inhomogeneity of

the electric probe field. A homogeneous electric field would be described by β = 1.

This indicates that the parameter β is not able to fully describe the inhomogeneity

of the field.

The temperature dependency measurements were compared to the predictions from

the STM but also previous measurements conducted in [Fre21]. Generally, the mea-

surements show the expected behaviour which includes a dominance of the resonant

interactions at low temperatures and an increasing importance of relaxation pro-

cesses for higher temperatures. However, the real part could not be fully described

49
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by the STM. This is because the experimental data is normalized with a reference

frequency which is the largest frequency recorded. The imaginary part shows a good

agreement up until T ≈ 0.1K. The minimum of the curve seems to have shifted to

higher temperatures. This indicates that it takes higher temperatures for the relax-

ation processes to compensate the resonant interactions.

The comparison to the measurements of [Fre21] show a good agreement, except for

the imaginary part at low temperatures. This can be because a higher input power for

the measurements was used and because the temperature calibration of the dilution

refrigerators differs. When accounting for a possible deviation of the temperature

calibration, the measurements show a good agreement but still indicate that for the

measurements in this thesis a larger input power was used. Further, the theory that

Frey used to describe his data is able to describe it well in contrast to the pure STM

that could not fully describe the measurements in this thesis. This is because the

theory used by Frey accounts for interactions between tunneling systems.

Finally, the effect of an electric bias field on the sample was measured and com-

pared to the theoretical expectations. The frequency dependent bias signal showed

a good agreement, whereas the voltage dependent signals showed some unexpected

behaviour. For one, a steeper increase of the curves can be observed in comparison to

the frequency dependent measurement. Further, the curves decrease after reaching

their maximum value. Heating of the sample was considered as a possible explana-

tion but disproved by measurements that targeted possible heating effects.

Both measurements were also plotted against a dimensionless bias rate ξ which should

lead the curves to collapse onto each other. This behaviour can be seen for the volt-

age dependent measurements but only partly for the frequency dependent ones. This

could be because the frequency dependent curves do not show the full course of the

curve. To get a complete picture one needs to measure over a wider bias rate range

which was not possible with the given signal generator.

Future experiments with the presented type of resonator will include a wider bias

rate range and hopefully shed further light on the behaviour of the sample under

influence of electric bias fields. Additionally, pump tones are being used to excite

off-resonant tunneling systems, push them through the resonance band with an elec-

tric bias field, as was done in this thesis, in order to observe possible effects. Lastly,

a new way to analyse amorphous solids is being tested, which involves adding the

possibility of changing the asymmetry energy by adding a mechanic distortion field.

It will be seen if both fields have similar effects on the energy levels of the tunneling

systems.

In conclusion, the experiments showed that the novel resonator design can be used

for the experimentation on amorphous solids and has the potential to be used for

new kinds of experiments.
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angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 03.06.2022 ...........................................

(Joyce Nicole Louisa Glass)


	Introduction
	Theory
	Low Temperature properties of amorphous solids
	Standard Tunneling Model
	Two-level systems
	Coupling between two-level systems and electric fields
	Distribution function

	Dielectric function
	Relaxation effects
	Relaxation time

	Resonant Interaction
	Landau-Zener transitions

	Experimental Methods
	Dilution refrigerators
	Sample
	Measurements
	Characteristics of the resonator and evaluation
	Landau-Zener transitions

	Signal pathway
	Resonator

	Experimental Results
	Characterization of the resonator
	Thermalization measurements
	Power dependency
	Temperature dependency
	Landau-Zener measurements
	Frequency dependent bias rate measurement
	Voltage dependent bias rate measurement
	Dimensionless bias rate

	Heating effects

	Conclusion and Outlook
	Bibliography
	Acknowledgements

