
Leveraging PyTorch on BrainScaleS-2:
Training a Real-World Application

Elias Arnold1,∗ Philipp Spilger1 Eric Müller3,1 Georg Böcherer2

Maxim Kuschnerov2 Johannes Schemmel1

1Kirchhoff-Institute for Physics, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
2Munich Research Center, Huawei Technologies Duesseldorf GmbH, Munich, Germany

3European Institute for Neuromorphic Computing, Heidelberg University, Heidelberg, Germany

Introduction

The usability of novel neuromorphic hardware is dictated

by software allowing non-expert users to describe ex-

periments effortlessly [3]. Especially when approaching

gradient-based optimization tasks with spiking neural net-

works (SNNs) on such hardware, support for model defi-

nition and automatic differentiation is indispensable.

ä We discuss the abstraction of training on the

accelerated mixed-signal neuromorphic hardware

system BrainScaleS-2 (BSS-2) in our high-level

PyTorch-based framework hxtorch.snn and motivate

our design choices

ä We demonstrate hxtorch.snn on a real-world

application: The demapping of a nonlinearly impaired

high-speed intensity modulation / direct detection

(IM/DD) optical data link with SNNs on BSS-2 [1]

Methods

BrainScaleS-2 (BSS-2)

Figure 1. The BrainScaleS-2 analog neuromorphic system.

The mixed-signal neuromorphic BSS-2 system [6]:

ä 512 spiking AdEx [2] neurons and 131k 6-bit plastic

synapses in parallel analog circuits, emulated in

continuous time

ä Neural dynamics individually parameterized

ä Support for arbitrary topologies

ä Access to spike events and membrane potentials,

sampled column-wise in parallel by analog-to-digital

converters

Training SNNs with PyTorch

SNNs are studied for machine learning tasks using state-

of-the-art software libraries typically deployed for artificial

neural networks (ANNs), like PyTorch [5].

ä The network model is described by a composition of

PyTorch modules (layers)

ä Easy computation of network gradient by the

backpropagation through time algorithm

ä Eager construction of a differentiable computational

graph by executing all network operations successively

and assigning a backward function to it : Gradient :
Weight update

NOTE The non-differentiability of spiking neurons is

often bypassed with surrogate gradients [4]

In-the-loop Learning on BSS-2

SNNs on BSS-2 can be trained in-the-loop within Py-

Torch’s ecosystem:

1. Emulate the forward pass on BSS-2

2. Use the hardware observables to compute weight

updates on the host computer

NOTE The SNN is executed on BSS-2 before the Py-

Torch graph is built to ensure that hardware data is present

for the backward pass

hxtorch.snn Framework

BSS-2

PyTorch Model

init
instance
func=LIF

post_process

forward

x1 x2 x3 x4

Syn LIF Syn LI

Loss

Grad

PyTorch Graph

Handle
torch.Tensor
HXModule

Instance

Create hardware

experiment and

execute

run

post_process
to torch.Tensor

A
ins = hxtorch.snn.Instance()

syn1 = hxtorch.snn.Synapse(ins, ...)
lif1 = hxtorch.snn.LIF(ins, ...)
syn2 = hxtorch.snn.Synapse(ins, ...)
li2 = hxtorch.snn.LI(ins, ...)

x1 = syn1(Handle(input))
x2 = lif1(x1)
x3 = syn2(x2)
x4 = li2(x3)

hxtorch.snn.run(ins, ...)

loss = f(x4)
loss.backward()

B

Figure 2. A) Schmeantic of hxtorch.snn framework. B) Code example of an feed-forward SNN. Both taken from [7].

ä SNNs are defined as in PyTorch

ä Modules are derived from a base-class HXModule
representing entities on BSS-2, e.g., neuron

populations LIF and LI, and projections Syn
ä Modules hold a PyTorch-differentiable function

func(...), defining the backward pass

ä Modules get Handle-typed inputs and return a

Handle-typed output : References to data available

after hardware execution

ä Modules share an Instance (experiment on BSS-2)

object in which they register themselves

Calling run : Instance extracts and executes the hard-

ware experiment on BSS-2 : Hardware observables are

post_processed to torch.Tensors : The PyTorch graph

is constructed by calling the modules’ functions, utilizing
and returning the data tensors : Tensors are assigned to

the modules’ handles : PyTorch backward pass estimates

the gradient of the SNN on BSS-2

NOTE For model development, hxtorch.snn also sup-

ports a simulation mode

Example: Demapping an IM/DD Optical
Link on BSS-2

Rxyn ỹn

[b1b2]n
Tx

PAM-4

Fiber

CD

Photodiode

and Noise

| · |2 + σ

Spikes

Spatio-temporal
BSS-2

[
b̂1b̂2

]
n

Figure 3. Demapping a simualted IM/DD link on BSS-2.

For demonstration, we train an SNN on BSS-2 to demap a

simulated IM/DD link [1], see fig. 3. A bit sequence [b1b2]n
is modulated to a signal yn, optically transmitted through a

fiber, and measured at the receiver by a photodiode (PD).

The resulting sequence ỹn is impaired by linear chromatic

dispersion, the nonlinear PD, and noise (σ). The SNN

equalizes and demaps ỹn, translated into spikes, to the

received bits [b̃1b̃2]n. The SNN, consisting of a hidden

leaky-integrate and fire (LIF) and a leaky-integrator (LI)

output layer, is trained to minimize the bit error rate (BER).

15 16 17 18 19 20 21 22
−10 log10(σ2) [dB]

10−4

10−3

10−2

B
E
R

1 tap LMMSE

7 tap LMMSE

7 tap SNN, CPU

7 tap SNN, BSS-2

Figure 4. BER over noise in the IM/DD link.

In fig. 4, the BER is depicted over noise σ in the link. The

simulated SNN and the SNN emulated on BSS-2 achieve

lower BERs than the linear LMMSE equalizer. Figure 5

shows the LIF neurons’ membrane voltages and their

spikes together with the LI output traces are shown :
The output neuron producing the highest voltage dictates

the demapped bits.

0

15

30

j

0

15

30

j

0 5 10 15 20 25 30
t [µs]

0

3

k

−1.0

−0.5

0.0

0.5

1.0

v
j resp

.
v

k

Figure 5. BSS-2 observables of the LIF (Upper: membrane, middle:

spikes) and LIF (lower: membrane) layer while demapping two bits.

Conclusion

ä hxtorch.snn allows descriptions of high-level SNN

models in PyTorch and their emulation on BSS-2

ä By utilizing PyTorch data types, we can leverage its

auto-differentiation mechanism and thus make

learning on BSS-2 effortless

ä API supports the definition of arbitrary networks (incl.

feedback connections), the different neuron types on

BSS-2 and different backward functions

ä Integrated into the EBRAINS platform

References

[1] E. Arnold et al. “Spiking Neural Network Equalization on Neuromorphic

Hardware for IM/DD Optical Communication”. In: European Conference on

Optical Communication (ECOC) 2022. Optica Publishing Group, June 2022,

Th1C.5.

[2] Romain Brette and Wulfram Gerstner. “Adaptive Exponential Integrate-and-

Fire Model as an Effective Description of Neuronal Activity”. In: Journal

of Neurophysiology 94.5 (2005). PMID: 16014787, pp. 3637–3642. DOI:

10.1152/jn.00686.2005.
[3] E. Müller et al. “A Scalable Approach to Modeling on Accelerated Neuro-

morphic Hardware”. In: Frontiers in Neuroscience 16 (2022). DOI: 10.3389/
fnins.2022.884128.

[4] E. O. Neftci et al. “Surrogate Gradient Learning in Spiking Neural Networks:

Bringing the Power of Gradient-Based Optimization to Spiking Neural Net-

works”. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 51–63. DOI:

10.1109/MSP.2019.2931595.
[5] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library”. In: Advances in Neural Information Processing Systems 32.

Curran Associates, Inc., 2019, pp. 8024–8035.

[6] C. Pehle et al. “The BrainScaleS-2 Accelerated Neuromorphic System With

Hybrid Plasticity”. In: Frontiers in Neuroscience 16 (2022). DOI: 10.3389/
fnins.2022.795876.

[7] P. Spilger et al. hxtorch.snn: Machine-learning-inspired Spiking Neural Network

Modeling on BrainScaleS-2. 2022. DOI: 10.48550/arXiv.2212.12210.
This work received funding from: BMBF (16ES1127), EU (H2020/2014-2020: 720270, 785907, 945539),

Lautenschläger-Forschungspreis 2018, DFG (EXC 2181/1-390900948).

https://www.humanbrainproject.eu HBP Student Conference 2023, Madrid, ES ∗elias.arnold@kip.uni-heidelberg.de

https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.3389/fnins.2022.884128
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.3389/fnins.2022.795876
https://doi.org/10.48550/arXiv.2212.12210
https://www.humanbrainproject.eu
mailto:elias.arnold@kip.uni-heidelberg.de

	References

