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Introduction

The usability of novel neuromorphic hardware is dictated

by software allowing non-expert users to describe ex-

periments effortlessly [3]. Especially when approaching

gradient-based optimization tasks with spiking neural net-

works (SNNs) on such hardware, support for model defi-

nition and automatic differentiation is indispensable.

ä We discuss the abstraction of training on the

accelerated mixed-signal neuromorphic hardware

system BrainScaleS-2 (BSS-2) in our high-level

PyTorch-based framework hxtorch.snn and motivate

our design choices

ä We demonstrate hxtorch.snn on a real-world

application: The demapping of a nonlinearly impaired

high-speed intensity modulation / direct detection

(IM/DD) optical data link with SNNs on BSS-2 [1]

Methods

BrainScaleS-2 (BSS-2)

Figure 1. The BrainScaleS-2 analog neuromorphic system.

The mixed-signal neuromorphic BSS-2 system [6]:

ä 512 spiking AdEx [2] neurons and 131k 6-bit plastic

synapses in parallel analog circuits, emulated in

continuous time

ä Neural dynamics individually parameterized

ä Support for arbitrary topologies

ä Access to spike events and membrane potentials,

sampled column-wise in parallel by analog-to-digital

converters

Training SNNs with PyTorch

SNNs are studied for machine learning tasks using state-

of-the-art software libraries typically deployed for artificial

neural networks (ANNs), like PyTorch [5].

ä The network model is described by a composition of

PyTorch modules (layers)

ä Easy computation of network gradient by the

backpropagation through time algorithm

ä Eager construction of a differentiable computational

graph by executing all network operations successively

and assigning a backward function to it : Gradient :
Weight update

NOTE The non-differentiability of spiking neurons is

often bypassed with surrogate gradients [4]

In-the-loop Learning on BSS-2

SNNs on BSS-2 can be trained in-the-loop within Py-

Torch’s ecosystem:

1. Emulate the forward pass on BSS-2

2. Use the hardware observables to compute weight

updates on the host computer

NOTE The SNN is executed on BSS-2 before the Py-

Torch graph is built to ensure that hardware data is present

for the backward pass
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Figure 2. A) Schmeantic of hxtorch.snn framework. B) Code example of an feed-forward SNN. Both taken from [7].

ä SNNs are defined as in PyTorch

ä Modules are derived from a base-class HXModule
representing entities on BSS-2, e.g., neuron

populations LIF and LI, and projections Syn
ä Modules hold a PyTorch-differentiable function

func(...), defining the backward pass

ä Modules get Handle-typed inputs and return a

Handle-typed output : References to data available

after hardware execution

ä Modules share an Instance (experiment on BSS-2)

object in which they register themselves

Calling run : Instance extracts and executes the hard-

ware experiment on BSS-2 : Hardware observables are

post_processed to torch.Tensors : The PyTorch graph

is constructed by calling the modules’ functions, utilizing
and returning the data tensors : Tensors are assigned to

the modules’ handles : PyTorch backward pass estimates

the gradient of the SNN on BSS-2

NOTE For model development, hxtorch.snn also sup-

ports a simulation mode

Example: Demapping an IM/DD Optical
Link on BSS-2
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Figure 3. Demapping a simualted IM/DD link on BSS-2.

For demonstration, we train an SNN on BSS-2 to demap a

simulated IM/DD link [1], see fig. 3. A bit sequence [b1b2]n
is modulated to a signal yn, optically transmitted through a

fiber, and measured at the receiver by a photodiode (PD).

The resulting sequence ỹn is impaired by linear chromatic

dispersion, the nonlinear PD, and noise (σ). The SNN

equalizes and demaps ỹn, translated into spikes, to the

received bits [b̃1b̃2]n. The SNN, consisting of a hidden

leaky-integrate and fire (LIF) and a leaky-integrator (LI)

output layer, is trained to minimize the bit error rate (BER).
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Figure 4. BER over noise in the IM/DD link.

In fig. 4, the BER is depicted over noise σ in the link. The

simulated SNN and the SNN emulated on BSS-2 achieve

lower BERs than the linear LMMSE equalizer. Figure 5

shows the LIF neurons’ membrane voltages and their

spikes together with the LI output traces are shown :
The output neuron producing the highest voltage dictates

the demapped bits.
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Figure 5. BSS-2 observables of the LIF (Upper: membrane, middle:

spikes) and LIF (lower: membrane) layer while demapping two bits.

Conclusion

ä hxtorch.snn allows descriptions of high-level SNN

models in PyTorch and their emulation on BSS-2

ä By utilizing PyTorch data types, we can leverage its

auto-differentiation mechanism and thus make

learning on BSS-2 effortless

ä API supports the definition of arbitrary networks (incl.

feedback connections), the different neuron types on

BSS-2 and different backward functions

ä Integrated into the EBRAINS platform
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