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Introduction

Gradient-based learning has recently been demonstrated

to be a suitable learning scheme for analog neuromorphic

hardware [1, 2, 3, 7].

While previous approaches either make use of dense ob-

servations of neuron dynamics or are limited by assump-

tions on time constants, spiking behavior, and network

topology, here we introduce an approach, based on the

EventProp algorithm [8], that does only need spike-time

observations from the neuromorphic hardware and is suit-

able for arbitrary network topologies and loss functions.

1. Spike Observations are sufficient for estimating

gradients. By training a feed-forward network of 120

Leaky-Integrate and Fire (LIF) neurons on a low

dimensional classification task, we demonstrate for the

first time that EventProp can be used as an in-the-loop

training algorithm for analog neuromorphic hardware.

2. Numerical Gradient Estimates Converge. We

implement a numerical integration scheme for both

the forward- and adjoint dynamics of LIF neurons [8]

and show that the computed gradient converges to

the analytically known solution in cases where an

analytical gradient is known.

3. Mean Hardware Gradient Estimates agree with

Analytical Solution. We show that the mean gradient

estimate obtained using spike time hardware

measurements by our algorithm agrees with the

analytically known solution in cases where an

analytical gradient is known.

Numerical Gradient Estimate Converges

We use a simple numerical integration scheme (explicit

Euler integration) for both the forward and adjoint dynam-

ics of a LIF neuron having exponential-shaped, current-

based synapses [8]. To quantify the numerical error, we

can compare to the analytical gradient in a special case

(τsyn = τmem, τrefrac = 0) for which an explicit formula is

available, cf. [3]. We consider a situation where a LIF

neuron receives a single spike with weight w (Fig. 1).

Figure 1. Experiment setup (top), spike time (center) and estimated

gradient (bottom) for a loss function L = tpost as a function of the

weight w. As the numerical integration timestep dt decreases the
numerically estimated gradient (dashed lines) converges to

analytically known gradient (solid-black line), cf. Göltz et al. [3].
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Hardware Training Results on Yin-Yang

We choose the Yin-Yang dataset [4], a simple two-

dimensional classification task with three classes, for

demonstrating the learning algorithm on BrainScaleS-2,

an accelerated analog neuromorphic research platform

[6, 5].

Figure 2. Maximum membrane values over time on validation set

after training (top) and validation accuracy (bottom) for

hardware-in-the-loop training with EventProp on the Yin-Yang

dataset.

Gradient estimator loss test acc.

analytical [3] sim. TTFS 95.9 ±0.7

analytical [3] hw J(b) TTFS 95.0 ±0.9

EventProp [8] sim. J(d) TTFS 98.1 ±0.2

Surr. Gradient sim. Max 96.0 ±0.5

Surr. Gradient hw Max 93.8 ±0.8

EventProp sim. J(c) Max 96.5 ±0.7

EventProp hw J(a) Max 93.4 ±0.9

Table 1. Test accuracy on the Yin-Yang task for three gradient

estimators, two loss definitions using numerical integration and

hardware emulation. The results marked by ‘TTFS’ are using a loss

based on time-to-first-spike decoding, the ‘Max’ results are based on

‘maximum membrane value over time’.

Hardware Gradient Estimation

Figure 3. Spike time (top) acquired from runs on BrainScaleS-2 and

estimated gradient (bottom) for a loss function L = tpost as a function

of the weight w. Results for n = 50 hardware neuron circuits are

shown in light grey, the average in dashed black. The analytical

result (blue line, see Fig. 1) agrees well with the hardware average.

Comparison to Surrogate Gradient

Figure 4. Numerical comparison of surrogate and EventProp gradient

estimate evaluated with the same numerical precision to the

analytical result. Same experiment as in Fig. 1.

Hardware-in-the-loop Training

Figure 5. A BrainScaleS-2 neuromorphic chip (4 mm × 8 mm)

bonded to a carrier board, see [6] for detailed information.

Figure 6. Dataflow occuring during hardware-in-the-loop training.

Discussion

We have demonstrated a gradient estimation algorithm

for analog neuromorphic hardware, which only requires

spike observations and makes no assumptions on network

topology or loss function. This has the potential to enable

scalable gradient estimation in large-scale neuromorphic

hardware, as the continuous measurement of observables

would be prohibitive in this case. While the results re-

ported here are encouraging further work is needed in

several areas:

We would like to demonstrate the algorithm on further

tasks, particularly ones that are not feasible using

surrogate-gradient-based in-the-loop training due to

hardware trace-memory limitations.

We would like to use hardware observables to learn

the dynamics, instead of assuming a particular model.
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