
Towards Addressing Noise and Static Variations
of Analog Computations using Efficient

Retraining

Bernhard Klein1, Lisa Kuhn1, Johannes Weis2, Arne Emmel2, Yannik
Stradmann2, Johannes Schemmel2, and Holger Fröning1

1 Institute of Computer Engineering, Heidelberg University, Germany
{bernhard.klein,holger.froening}@ziti.uni-heidelberg.de

lisa.kuhn@stud.uni-heidelberg.de
2 Kirchhoff-Institute for Physics, Heidelberg University, Germany

{johannes.weis,arne.emmel,yannik.stradmann,schemmel}@kip.uni-heidelberg.de

Abstract. One of the most promising technologies to solve the energy
efficiency problem for artificial neural networks on embedded systems
is analog computing, which, however, is fraught with noise due to sum-
mations of unwanted or disturbing energy, and static variations related
to manufacturing. While these inaccuracies can have a negative effect
on the accuracy, in particular for naively deployed networks, the ro-
bustness of the networks can be significantly enhanced by a retraining
procedure that considers the particular hardware instance. However, this
hardware-in-the-loop retraining is very slow and thus often the bottle-
neck hindering the development of larger networks. Furthermore, it is
hardware-instance-specific and requires access to the instance in ques-
tion.

Therefore, we propose a representation of a hardware instance in soft-
ware, based on simple, parallelization-friendly software structures, which
could replace the hardware for the major fraction of retraining. The
representation is based on lookup tables, splines as interpolated func-
tions and additive Gaussian noise to cover static variations together
with electrical noise of the multiplier array and column-wise integrators.
The combined approach using the proposed representation together with
some final epochs of hardware-in-the-loop retraining reduces the overall
training time from over 10 hours to less than 2 hours compared to a
full hardware-in-the-loop retraining, while notably increasing accuracy.
This work highlights that including device-specific static variations and
noise in the training process is essential for a time-efficient hardware-
aware network training for analog computations, and that major parts
can be extracted from the hardware instance and represented with sim-
ple and efficient software structures. This work is the first step towards
hardware-specific but hardware-inaccessible training, addressing speed
and accuracy.

Keywords: Analog Hardware Representation · Hardware-aware Train-
ing · Static Variations · Electrical Noise · Analog Computations.



2 B. Klein et al.

1 Introduction

Machine learning (ML) has quickly established as key component for various
applications, ranging from image processing over robotics and natural language
processing to signal processing, and is pervasively deployed on devices includ-
ing mobile, embedded and edge devices. However, there is a substantial gap
in between ML’s compute and memory requirement and hardware capability,
amplified by a staggering Moore’s law and the end of Dennard scaling.

As in the Post-Dennard performance scaling era performance in operations
per second is best defined as the product of the power budget in Watts and
the energy efficiency in operations per Joule, energy efficiency of arithmetic op-
erations and their associated data movements are becoming first-class citizens,
and limited resources for mobile, embedded and edge devices due to physical
footprint and battery life are amplifying the problem. While digital CMOS pro-
cessing is still the most common option for ML and various other computational
tasks, the interest in alternatives is increasing. There is a plethora of options in
the context of Beyond Moore, such as quantum computing, neuromorphic com-
puting, and several more. Among those, possibly analog CMOS computing is
least disruptive to the existing compute stack. While analog computations can
substantially improve the energy efficiency of computations, it comes at the cost
of uncertainty in computations, both with regard to static variations such as
non-linearities as well as dynamic noise. While digital computing relies on bina-
rization to increase the resilience towards such imperfections, analog computing
is much more sensitive. Still, there are tradeoffs, for instance by choosing a suit-
able bit width one can avoid a dominating influence of otherwise prohibitive
thermal noise in analog computing [19].

There exists a notable set of related work on analog computing, which usually
is due to its uncertainty rather application-specific. In the context of machine
learning, the work by Murmann describes a mixed-signal processor architecture
for artificial neural networks (ANN) [9], which proposes a processing array that
allows for much denser processing elements than its digital counterpart, and
leverages this in combination with a reduced power budget per element for an
increase in parallelism. Another analog computing platform for machine learn-
ing applications is BrainScaleS-2 (BSS-2), which utilizes analog operations for
the computation of spiking networks as well as ANNs [15]. While this is an-
other example for mixed-signal computation, the implementation details differ
substantially.

Furthermore, ANN architectures are apparently quite tolerant against un-
certainties in the computation, as there exists a rich body of previous work on
quantization and pruning [7,14]. Essentially, both techniques are unsafe opti-
mizations [22] and introduce noise in the computation, however, previous work
has shown that retraining is an effective measure to counter a potential loss in
prediction quality [1]. Examples for work that enhances the robustness of ANNs
for analog computing are based on knowledge distillation [23] and noise injecting
training [12], and demonstrate the potential robustness of ANNs.



Towards Addressing Uncertain Analog Computations using Retraining 3

The main idea of this work stems from the observation that neural networks
can be tolerant against inaccurate computations, but this inaccuracy has to be
represented in the training process. While including the uncertain hardware in
the forward path of the training process can be an option, so-called hardware-
in-the-loop training, it is often slowing down this process substantially as such
analog hardware is not optimized for peak throughput but rather peak energy
efficiency. Based on this observation, the present work is concerned with find-
ing a suitable representation of the hardware including non-idealities found in
analog computing, such that the required hardware involvement can be reduced
to a minimum, thereby saving training time. Although being precise enough in
representing the hardware peculiarities, this representation has to be compact
and efficient to compute, as otherwise training time penalties can occur. Last, as
every analog computing instance differs, it has to be trainable in an automated
manner to a particular hardware instance.

We therefore propose a representation based on lookup tables and splines as
interpolated functions in combination with a configurable amount of additive
noise, to represent static variations as well as dynamic noise. The lookup tables
represent non-linearities, the splines describe saturation effects, while the addi-
tive noise mimicks the various noise sources found in analog computations. We
show that this representation can be derived from an automated characterization
of a particular hardware instance. We base our characterization on BSS-2 as a
real-world prototype of analog computing, fabricated in a generic 65nm CMOS
technology and available in sufficient quantities. We demonstrate the effective-
ness of our abstract yet precise representation by comparing the accuracy of a
keyword spotting task to the accuracy of an ANN trained directly on hardware
as well as full-precision standard computations. In detail, this work makes the
following contributions:

– Proposing a sufficiently precise and compute efficient representation of hard-
ware non-idealities, suitable to be included in the training framework.

– Designing a training methodology to compensate all major hardware imper-
fections, reducing time-costly hardware-in-the-loop training.

– Comparing the performance of various representations in terms of accuracy
and training time, including various baselines such as full-precision accuracy.

As a result, the training of neural networks on inaccurate hardware is sub-
stantially simplified and accelerated, furthermore allowing researchers to reason
in an abstract way about the implications of uncertain computations on ML
tasks. We see the resulting methodology as key for further research on robust
network architectures and explorations in the context of HW/SW-Codesign with
uncertain hardware.

2 Background and Related Work

While in principle analog computing exists also based on optical [6], photonic [16]
or phase-change-memory [11] technology, most commonly found and focus of the



4 B. Klein et al.

present work is electronic CMOS technology [9]. In such, computations such as
multiplication and addition can be easily represented using the physical laws of
network analysis. The key operation of most ANNs is the dot product. As one
option among various alternatives, the input operands of a multiply-accumulate
(MAC) operation can be represented as current pulses, with a pulse’s length
∆ti (time) being the input activation and its amplitude the synaptic weight
Ii,j . A single multiplication is then the time integral over this pulse, therefore
charge, whilst the result of the MAC over all inputs equals Qj =

∑
i Ii,j ·∆ti.

In particular, BSS-2 operates in exactly this scheme.
While in theory analog computations following Kirchhoff’s laws require no

energy, in practice charging and de-charging capacitors results in inefficiencies,
the required translation from digital signaling to analog quantities requires con-
version, and leakage currents and conductances are not ideal, which all contribute
to a notable amount of energy. Still, as long as thermal noise is not the dominant
non-ideality, analog electrical computing is considered orders of magnitude more
energy-efficient than its digital counterpart [9].

2.1 BrainScaleS-2
Columnar ADC

SIMD Processor

signed

synapse

Columnar ADC

SIMD Processor

signed

synapse

Fig. 1: Block diagram of the
BSS-2 analog core, showing
synapse drivers (triangles),
neurons (large circles), and
synapses (small circles in
matrix) [2].

The presented framework is tested using
BrainScaleS-2—a mixed-signal neuromorphic
platform based on a custom ASIC manufac-
tured in 65 nm CMOS technology [15]. It sup-
ports the accelerated emulation of spiking
neural networks (SNN) as well as the pro-
cessing of MAC operations within its analog
core [21]. The ASIC consists of 512 neuron cir-
cuits, each of which is connected to a column
of 256 synapses as well as a dedicated ADC
channel for activation readout. The synapses
are of 6 bit precision. As its sign can be se-
lected row-wise, to achieve signed weights we
combine two hardware synapses to a single
virtual synapse (Fig. 1). When computing a
matrix-vector multiplication, the input is encoded as a vector of 5 bit unsigned
integers. Its entries are multiplied inside the synapse array and accumulated on a
capacitor representing the neuron’s activation, which is digitized using columnar
ADCs with 8 bit precision. Each vector may be sent multiple times Nsends with
an adjustable pause between individual vector entries Tpause to optimize signal
amplitudes for the circuits’ dynamic range.

The process of analog computation is affected by multiple sources of uncer-
tainties: As the analog matrix-vector multiplication is embedded in a full digital
setting, multiple digital-analog and analog-digital conversions are required. The
involved circuitry does not maintain perfect linearity throughout its full dynamic
range; especially apparent through offsets, saturation and range-specific amplifi-
cation effects. Most notably, low vector inputs are exaggerated within the respec-



Towards Addressing Uncertain Analog Computations using Retraining 5

tive digital-to-analog conversion. Each computational element involves multiple
amplifiers, all of which are subject to different degrees of saturation. Most promi-
nently, saturation effects are observable for the circuits driving synaptic signals
to the neuronal accumulators, being strongest for negative summands if the ac-
cumulated activation from preceding vector entries is already low. Moreover, the
signals emitted by the synapses weaken if multiple high-valued summands of the
same sign arrive within a short time interval. Last, a driver’s signal deteriorates
with physical distance, most notably for small values. In addition, all modules of
an ASIC are subject to device mismatch due to imprecisions within the manu-
facturing process. For BrainScaleS-2, effects of these static variations primarily
emerge for the analog circuits and result in a random distribution of the com-
putational characteristics of all neurons and synapses. The hardware therefore
provides calibration mechanisms that can be used to reduce the deviations be-
tween its computational elements, even though static variations cannot be elim-
inated completely in practice. Also, the result from any analog computation is
superimposed by electrical noise of various sources, including coupled noise from
neighboring circuitry and thermal noise. Integrating this noise results in devia-
tions of the output activations that can be observed after digitization, ultimately
reducing the obtainable resolution. Models for analog hardware therefore need to
be robust against non-linearities, post-calibration mismatch and electrical noise.

2.2 Noisy Computations in the Context of Machine Learning

Most often, the dynamic noise of analog computations is modeled as additive
zero-mean Gaussian noise, while the variance differs among the related works.
For instance, in Rekhi et al. [13] the variance is a function of the number of bits of
the output, in Joshi et al. [5] it depends on range of values a non-volatile memory
device can store, while in Zhou et al. [23] the amount of additive noise is a con-
figurable parameter to explore the robustness of network architectures against
such. Static variations have also been considered before, but rather with regard
to interactions among multiple devices as found in arrays of analog processing
elements [4,3].

An early work on robust neural networks reports the benefits of noise injec-
tion during training on the example of MLPs [10]. Noisy machines [23] focuses on
the additive Gaussian noise and neglects static variations to propose a methodol-
ogy based on knowledge distillation to highlight and combat the reduced learning
capactity of ANNs when executed on noisy hardware. A more general treatment
of fault-tolerance of ANNs can be found in [18].

While we are also concerned about finding more robust ANNs, our work
distinguishes from related work by the fact that we are not only concerned with
dynamic noise, but also static variations and the inevitable amount of variance
found across multiple hardware instances. While hardware-in-the-loop training is
suitable to address the noise and variances, it comes with a substantial slowdown.



6 B. Klein et al.

3 Hardware Representation

Fig. 2: Schematic overview of the
representation: lookup table for the
static variations of the multiplier ar-
ray, splines for the column and inte-
grator specific variations, and addi-
tive Gaussian noise that models the
electrical noise, among others.

The provided method is designed to rep-
resent chip specific peculiarities of in-
accurate matrix multiply operations in
the training process and is applicable for
uncertain accelerators which are based
on a multiplier array and accumulate
with column-wise integrators. Although
the proposed hardware representation re-
quires that the columns are largely inde-
pendent of each other and that there are
no major time dependencies besides elec-
trical noise, it is a very general concept
that can be applied to a wide variety of
accelerators. The peculiarities of the ac-
celerator are distilled from measurements
and mapped in a hardware representation,
which is suitable to train machine learn-
ing models for this specific hardware as
quickly as possible. Fig 2 illustrates the three distinct parts of the model which
simulate the hardware and capture multiplier-array- and integrator-specific
static variations together with electrical noise, which are a lookup table to rep-
resent the multiplier non-linearities, splines as piecewise polynomial functions
to represent integrator imperfections, and Gaussian additive noise to represent
the electrical noise observed during analog computations. In the following, we
describe these components in more detail.

Lookup Table All multiplier effects are covered by storing the output for all
possible inputs for each multiplier in a lookup table. On condition that the effects
are reproducible and do not change over time, the lookup table enables to model
complex behavior of the multipliers with highest possible generality. For the
BSS-2 hardware such a column-row-activation-weight-based lookup table can be
created by performing row-wise measurements to capture the row and column
specific details with minimal interference. Since only one row is active at the
same time the electrical signal strength is low, therefore saturation effects are
negligible. The signal is amplified with Nsends = 20, Tpause = 8 to a medium high
level to be measured with good quality. All other measurements and hardware-
in-the-loop training uses Nsends = 1, Tpause = 8 to minimize saturation effects.

Splines While the lookup table can model multiplier specific variations, it is not
capable to model effects which are based on interactions between them or be-
long to the integrator. For BSS-2, saturation effects dominate these column-wise
variations. On condition that only multipliers connected to the same integrator
can interact and interaction between integrators is negligible, properly designed



Towards Addressing Uncertain Analog Computations using Retraining 7

Fig. 3: Mismatch between values expected from a correct matrix multiply xcorrect
to measured results xhardware for a random column (left). A relevant part of this
errors can be corrected by using the sums of the lookup table scol (middle),
together with a interpolated spline to represent column specific saturation ef-
fects. On the right: comparison of representation xsim and measurement xhardware

results. An optimal representation would lead to a straight line broadened by
electrical noise.

functions can model this inter-multiplier and integrator specific behavior. The
sum of values scol in a column c extracted from the lookup table elookup,

scol =

I∑
r

elookup[r, c, ar, wr] (1)

is mapped with column-specific function fcol,

xsim = fcol(scol) (2)

to the predicted hardware values xsim, with I as input vector size, activation
ar and weight wr of row r. Splines—piecewise polynomial functions—can be
interpolated to act as this functions. A full range measurement is performed
for all possible activations, weights and input vector sizes to include the limits
of the value space and thus extract the saturation effects of the accelerator. All
measured values xhardware whose summed lookup table values scol are in the same
interval ∆si = [i∆s, (i + 1)∆s] are averaged to get a stable mapping from ∆si
to xhardware. Fig. 3 shows exemplary the operation of lookup table and spline.

Electrical Noise With all static variations modeled by the lookup table and
splines there are still sources of electrical noise which can not be covered with
a deterministic model. However, due to their very statistical properties, they
can be represented by adding noise sampled from a zero-mean Gaussian dis-
tribution. The variance is determined by a measurement where activation and
weight matrices are chosen randomly and the same random input matrices are
used to computed the outputs many times to measure the standard deviation of
exactly the same operation. As Fig. 4a illustrates, the electrical noise increases



8 B. Klein et al.

slightly with the number of summands and differs significantly between integra-
tors, therefore the hardware representation of the Gaussian variance depends on
the input vector size and column in the same way as observed on the hardware.

(a)
(b)

Fig. 4: Left: Electrical noise measured as standard deviation of repeated cal-
culations with identical inputs. With a larger input vector the average noise
increases (vertical gradient), since more noisy values are accumulated, but also
the variances between columns are significant (vertical lines). Right: Model per-
formance as difference to hardware measurements for random inputs. A perfect
model would be align with the electrical noise (gray) of the hardware. The pro-
posed hardware representation outperforms other linear-regression and splines
based models. Noise and model imperfections increase with input vector size due
to more involved components and saturation effects.

Performance of various models to represent BSS-2 Fig. 4b compares
linear models together with a column-wise spline-based model to the proposed
hardware representation. The better a model is, the closer it comes to the base-
line given by electrical noise. Due to more involved inaccurate and noisy compo-
nents, a larger input vector size increases the error of all models. With increas-
ing input vector size also the error of column-specific variations becomes more
dominant since more values are amplified by them. Therefore for larger input
vectors the column-wise models perform better than their non-specific coun-
terparts. Although larger input vectors lead to more hidden saturation effects
and thus increase the mismatch between representation and hardware, including
multiplier-specific variations by its lookup table enables the proposed hardware
representation to outperform all other models.

While the proposed general hardware representation models saturation ef-
fects with columnar splines, the BSS-2 hardware accumulates positive and neg-
ative summands separately. This leads to hidden saturation effects which occur
in the sign intrinsic accumulation process and due to positive and negative can-
cellation are not visible in the final sum. However, the representation has to
be compact and of high throughput, thus it cannot model all hardware imper-



Towards Addressing Uncertain Analog Computations using Retraining 9

fections in detail, particularly since accurate hardware emulations mostly are
notably slower than execution on the hardware itself, which is in direct conflict
to the design goals of a representation used to speed up the training process.

While PyTorch was used to be interchangeable with the BSS-2 interface hx-
torch [17], the concept is universal and applicable with all major ML frameworks.

4 Training Methods and Results

Fig. 5: Key-
wordspotting
model

Keyword Spotting Task We consider the keyword spot-
ting task of the Speech Commands Dataset V1 [20] as being
both representative and sufficiently complex to unveil dif-
ferences in between proposed hardware representation and
hardware itself. While there are different options to model
such time-series problems, including recurrent neural net-
works, LSTMs and transformers, this work focuses on a
multi-layer perceptron with log-mel filter [8]—illustrated in
Fig. 5. Other architecture options are considered to be be-
yond the scope of the present work.

Training Methods based on the Hardware Represen-
tation For compression of ML models, retraining with the
compressed model has proven to be very successful to com-
pensate accuracy loss induced by the less accurate repre-
sentations [1]. Here we follow a similar approach to com-
pensate for hardware imperfections. In the retraining step, the already trained
full-precision model is trained again but this time with the hardware or their
representation used in the forward path. The intuition is, that then the backprop-
agation will automatically address the hardware imperfections by minimizing the
errors injected in the forward path. Notably, complete hardware-in-the-loop re-
training is the most precise way to integrate the hardware but also by far the
slowest option.

Table 1 compares different training strategies reporting accuracy and retrain-
ing time, notably a plain training based on 300 epochs (which is also used as
initialization for all other methods), a quantized retraining to achieve the re-
quired quantization (uint5 activations and int6 weights) of BSS-2, a noise-only
retraining based on the plain method that adds injected zero-mean additive
Gaussian noise, a representation (rep.) no noise retraining based on this work’s
lookup table and splines, a representation (rep.) with noise retraining based on
this work’s lookup table, splines and additive noise, a representation (rep.) in-
creasing (inc.) noise retraining based on this work’s lookup table, splines and a
noise increasing over the epochs from 0 % for first epoch to 100 % of the origi-
nal noise level on the last epoch, a hardware-in-the-loop retraining that uses a
BSS-2 instance in the forward path, and a combined retraining that first relies
on either the quantized model or on our representation with increasing noise,
before finally retraining for a couple of epochs using hardware-in-the-loop.



10 B. Klein et al.

Table 1: Comparison of various retraining methods
Method Retraining Accuracy

Name Description Epochs
Time in

SW BSS-2
minutes

plain original full precision model 0 0.0 80.8 % 12.3 %
quantized uint5 activations, int6 weights 300 13.1 79.6 % 25.8 %
noise only plain model & noise 300 10.4 80.5 % 18.4 %

rep. no noise static variances without noise 300 83.4 76.5 % 26.4 %
rep. with noise hw. rep. with noise 300 83.4 73.5 % 35.1 %
rep. inc. noise hw. rep. increasing noise 300 83.6 76.0 % 41.0 %

hw-in-the-loop full hardware-in-the-loop 300 652.3 66.8 %
hw-in-the-loop full hardware-in-the-loop 350 769.5 66.7 %
combined qt. quant. (300 ep.) & hw. (5 ep.) 305 13.1 + 11.5 62.1 %
combined qt. quant. (300 ep.) & hw. (50 ep.) 350 13.1 + 117.5 67.3 %
combined rep. rep. (300 ep.) & hw. (1 ep.) 301 83.6 + 2.2 64.9 %
combined rep. rep. (300 ep.) & hw. (5 ep.) 305 83.6 + 11.5 67.4 %
combined rep. rep. (300 ep.) & hw. (10 ep.) 310 83.6 + 23.5 69.7 %
combined rep. rep. (300 ep.) & hw. (50 ep.) 350 83.6 + 117.5 70.1 %

Comparing Various Representations While the plain model performs very
poorly on BSS-2, including more hardware characteristics with quantization,
additive noise and hardware representation leads to an increased accuracy of
the retrained model. Although most related work focuses on counter measures
against noise [5,12,23], the experiments show that static variations are equally
important and have to be considered. Moreover we found that increasing the
noise level during the retraining leads to better results. This suggests that in-
creasing the difficulty, in our case hardware imperfections, slowly during retrain-
ing makes it easier for the model to adapt. This might also be the reason for
the astonishing fact that combining representation retraining with only a few
epochs hardware-in-the-loop retraining leads to higher test accuracies than full
hardware-in-the-loop retraining.

These first experiments clarify that although the representation is not yet
exact enough to replace hardware-in-the-loop completely, it covers enough hard-
ware particularities during the training to be much more accurate than a naive
deployment. Harnessing the best of both worlds with a combined approach out-
performs hardware-in-the-loop retraining in terms of accuracy and training time.

Training Time While the training with hardware in the loop is bound by BSS-2
throughput, the representation training is only limited by the available compute
resources. For the experiments a single NVIDIA Titan Xp was used, however, the
throughput scales with the resources and by using more or more powerful GPUs
the required training time can be reduced easily. Although with this lightweight
training resource, in contrast to typical high-end, multi-GPU training systems,
a speedup of 7.8 for representation training and 6.9 for combined training (5 hw.
epochs) over hardware-in-the-loop retraining can be reported.



Towards Addressing Uncertain Analog Computations using Retraining 11

5 Summary and Outlook

A representation is proposed to minimize the involvement of analog hardware
during retraining, based on distilling all major hardware characteristics from
measurements, and represented during training with a lookup table, splines and
additive Gaussian noise, modeling particularities of the multiplier array, sat-
uration effects of the integration, analog and digital conversion processes and
inevitable electrical noise. Although the representation cannot replace the costly
hardware-in-the-loop retraining step completely, it replaces most of it with much
faster representation training, such that the amount of remaining epochs with the
hardware is reasonable small compared to the rest and the overall training time
is reduced from more than 10 hours to less than 2 hours, notably increasing accu-
racy. Overall, the proposed method demonstrates that including device-specific
static variations and noise in the training process is essential to train hardware-
aware robust neural networks for analog computations, and that major parts can
be extracted from the hardware and represented with simple and parallelization-
friendly software structures. This is the first step towards hardware-specific but
hardware-inaccessible training, addressing speed and accuracy.

Acknowledgements

The development of BrainScaleS-2 has received funding from the German Fed-
eral Ministry of Education and Research under grant number 16ES1127, the
EU (H2020/2014-2020: 720270, 785907, 945539 (HBP)) and the Lautenschläger-
Forschungspreis 2018 for Karlheinz Meier. We also acknowledge the financial
support from the COMET program within the K2 Center “Integrated Compu-
tational Material, Process and Product Engineering (IC-MPPE)” (Project No
859480). This program is supported by the Austrian Federal Ministries for Trans-
port, Innovation and Technology (BMVIT) and for Digital and Economic Affairs
(BMDW), represented by the Austrian research funding association (FFG), and
the federal states of Styria, Upper Austria and Tyrol.

References

1. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: Training deep neural
networks with binary weights during propagations. In: Advances in Neural In-
formation Processing Systems. vol. 28. Curran Associates, Inc. (2015), https:

//dl.acm.org/doi/10.5555/2969442.2969588

2. Cramer, B., et al.: Training spiking multi-layer networks with surrogate gradients
on an analog neuromorphic substrate (2020), https://arxiv.org/abs/2006.07239

3. Feinberg, B., Wang, S., Ipek, E.: Making memristive neural network accelerators re-
liable. In: 2018 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA). pp. 52–65 (2018). https://doi.org/10.1109/HPCA.2018.00015

4. Jain, S., Sengupta, A., Roy, K., Raghunathan, A.: Rx-caffe: Framework for eval-
uating and training deep neural networks on resistive crossbars (2018), http:

//arxiv.org/abs/1809.00072

https://dl.acm.org/doi/10.5555/2969442.2969588
https://dl.acm.org/doi/10.5555/2969442.2969588
https://arxiv.org/abs/2006.07239
https://doi.org/10.1109/HPCA.2018.00015
http://arxiv.org/abs/1809.00072
http://arxiv.org/abs/1809.00072


12 B. Klein et al.

5. Joshi, V., et al.: Accurate deep neural network inference using computa-
tional phase-change memory. Nature Communications 11(1), 2473 (May 2020).
https://doi.org/10.1038/s41467-020-16108-9

6. Lin, X., et al.: All-optical machine learning using diffractive deep neural networks.
Science 361(6406), 1004–1008 (2018). https://doi.org/10.1126/science.aat8084

7. Liu, Z., et al.: Rethinking the value of network pruning. In: International Confer-
ence on Learning Representations (2019), https://arxiv.org/abs/1810.05270

8. Mermelstein, P.: Distance measures for speech recognition, psychological and in-
strumental. Pattern recognition and Artificial Intelligence 116, 374–388 (1976)

9. Murmann, B.: Mixed-signal computing for deep neural network inference. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 29(1), 3–13 (2021).
https://doi.org/10.1109/TVLSI.2020.3020286

10. Murray, A., Edwards, P.: Enhanced MLP performance and fault tolerance resulting
from synaptic weight noise during training. IEEE Transactions on Neural Networks
5(5), 792–802 (1994). https://doi.org/10.1109/72.317730

11. Nandakumar, S.R., Le Gallo, M., Boybat, I., Rajendran, B., Sebastian, A., Eleft-
heriou, E.: A phase-change memory model for neuromorphic computing. Journal
of Applied Physics 124(15), 152135 (2018). https://doi.org/10.1063/1.5042408

12. Qin, M., Vucinic, D.: Noisy computations during inference: Harmful or helpful?
CoRR abs/1811.10649 (2018), http://arxiv.org/abs/1811.10649

13. Rekhi, A.S., et al.: Analog/mixed-signal hardware error modeling for deep learning
inference. In: 56th Annual Design Automation Conference. DAC, Association for
Computing Machinery (2019). https://doi.org/10.1145/3316781.3317770

14. Roth, W., et al.: Resource-efficient neural networks for embedded systems. CoRR
abs/2001.03048 (2020), http://arxiv.org/abs/2001.03048

15. Schemmel, J., Billaudelle, S., Dauer, P., Weis, J.: Accelerated analog neuromorphic
computing. CoRR abs/2003.11996 (2020), https://arxiv.org/abs/2003.11996

16. Shen, Y., et al.: Deep learning with coherent nanophotonic circuits. Nature Pho-
tonics 11(7), 441–446 (Jul 2017). https://doi.org/10.1038/nphoton.2017.93

17. Spilger, P., et al.: hxtorch: PyTorch for BrainScaleS-2 — perceptrons on analog
neuromorphic hardware. In: IoT Streams for Data-Driven Predictive Maintenance
and IoT, Edge, and Mobile for Embedded Machine Learning. pp. 189–200. Springer
(2020), https://doi.org/10.1007/978-3-030-66770-2_14

18. Torres-Huitzil, C., Girau, B.: Fault and error tolerance in neu-
ral networks: A review. IEEE Access 5, 17322–17341 (2017).
https://doi.org/10.1109/ACCESS.2017.2742698

19. Vittoz, E.: Future of analog in the vlsi environment. In: IEEE Interna-
tional Symposium on Circuits and Systems. pp. 1372–1375 vol.2 (1990).
https://doi.org/10.1109/ISCAS.1990.112386

20. Warden, P.: Speech commands: A dataset for limited-vocabulary speech recogni-
tion. CoRR abs/1804.03209 (2018), http://arxiv.org/abs/1804.03209

21. Weis, J., et al.: Inference with artificial neural networks on analog neuromorphic
hardware. In: IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge,
and Mobile for Embedded Machine Learning. pp. 201–212. Springer (2020), https:
//doi.org/10.1007/978-3-030-66770-2_15

22. Whatmough, P., Wei, G.Y., Brooks, D.: Deep Learning for Computer Architects.
Morgan & Claypool Publishers (2017)

23. Zhou, C., et al.: Noisy machines: Understanding noisy neural networks and en-
hancing robustness to analog hardware errors using distillation. CoRR (2020),
https://arxiv.org/abs/2001.04974

https://doi.org/10.1038/s41467-020-16108-9
https://doi.org/10.1126/science.aat8084
https://arxiv.org/abs/1810.05270
https://doi.org/10.1109/TVLSI.2020.3020286
https://doi.org/10.1109/72.317730
https://doi.org/10.1063/1.5042408
http://arxiv.org/abs/1811.10649
https://doi.org/10.1145/3316781.3317770
http://arxiv.org/abs/2001.03048
https://arxiv.org/abs/2003.11996
https://doi.org/10.1038/nphoton.2017.93
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.1109/ACCESS.2017.2742698
https://doi.org/10.1109/ISCAS.1990.112386
http://arxiv.org/abs/1804.03209
https://doi.org/10.1007/978-3-030-66770-2_15
https://doi.org/10.1007/978-3-030-66770-2_15
https://arxiv.org/abs/2001.04974

	 Towards Addressing Noise and Static Variations of Analog Computations using Efficient Retraining 

