
A scalable approach to modeling on

accelerated neuromorphic hardware
Eric Müller *†1, Elias Arnold †1, Oliver Breitwieser †1, Milena Czierlinski †1, Arne

Emmel †1, Jakob Kaiser †1, Christian Mauch †1, Sebastian Schmitt †2, Philipp

Spilger †1, Raphael Stock †1, Yannik Stradmann †1, Johannes Weis †1, Andreas

Baumbach 1,3, Sebastian Billaudelle 1, Benjamin Cramer 1, Falk Ebert 1, Julian

Göltz 3,1, Joscha Ilmberger 1, Vitali Karasenko 1, Mitja Kleider 1, Aron

Leibfried 1, Christian Pehle 1, Johannes Schemmel 1

1Kirchhoff-Institute for Physics, Heidelberg University, Germany
2Third Institute of Physics, University of Göttingen, Germany
3Department of Physiology, University of Bern, Switzerland

Correspondence*:
Eric Müller
mueller@kip.uni-heidelberg.de

ABSTRACT1

Neuromorphic systems open up opportunities to enlarge the explorative space for computational2

research. However, it is often challenging to unite efficiency and usability. This work presents3

the software aspects of this endeavor for the BrainScaleS-2 system, a hybrid accelerated4

neuromorphic hardware architecture based on physical modeling. We introduce key aspects of5

the BrainScaleS-2 Operating System: experiment workflow, API layering, software design, and6

platform operation. We present use cases to discuss and derive requirements for the software7

and showcase the implementation. The focus lies on novel system and software features such as8

multi-compartmental neurons, fast re-configuration for hardware-in-the-loop training, applications9

for the embedded processors, the non-spiking operation mode, interactive platform access, and10

sustainable hardware/software co-development. Finally, we discuss further developments in terms11

of hardware scale-up, system usability and efficiency.12

Keywords: hardware abstraction, neuroscientific modeling, accelerator, analog computing, neuromorphic,13

embedded operation, local learning14

1 INTRODUCTION

The feasibility and scope of neuroscientific research projects is often limited due to long simulation runtimes15

and therefore long wall-clock runtimes, especially for large-scale networks (van Albada et al., 2021). Other16

areas of neuromorphic research —such as lifelong learning in robotic applications— inherently rely on17

very long network runtimes to capture physical transformations of their embodiment on the one hand and18

evolutionary processes on the other. Furthermore, training mechanisms relying on iterative reconfiguration19

benefit from low execution latencies.20

†contributed equally.
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Traditional software-based simulations typically still often rely on general-purpose high-performance21

computing (HPC) hardware. While some efforts towards GPU-based accelerators provide an intermediate22

step to improve scalability and runtimes (Abi Akar et al., 2019; Yavuz et al., 2016), domain-specific23

accelerators —a subset of which are neuromorphic hardware architectures—, have come more and more24

into the focus of HPC (Dally et al., 2020). Such systems specifically aim to improve on performance and25

scalability issues — both, in the strong and in the weak scaling cases. Particularly, the possibility to achieve26

high throughput at low execution latencies can pose a crucial advantage compared to massively parallel27

simulations.28

The BrainScaleS (BSS) neuromorphic architecture is an accelerator for spiking neural networks based on29

a physical modeling approach. It provides a neuromorphic substrate for neuroscientific modeling as well as30

neuro-inspired machine learning. Earlier work shows its scalability in wafer-scale applications, emulating31

up to 200k neurons and 40M synapses (Schmitt et al., 2017; Göltz et al., 2021; Kungl et al., 2019; Müller32

et al., 2020b), as well as its energy-efficient application as standalone system with 512 neurons and 128k33

synapses in use cases related to edge computing (Stradmann et al., 2021; Pehle et al., 2022). Compared to34

the biological time domain, the model dynamics evolve on a 1000-fold accelerated time scale making the35

system interesting for iterative and long-running experiments. Constant model emulation speed is attractive36

for hardware users. However, it often comes with algorithmic challenges. Similar to other neuromorphic37

systems based on the physical modeling concept, neuroscientific modeling on the BrainScaleS-2 (BSS-2)38

system requires a translation from a user-defined neural network experiment to a corresponding hardware39

configuration. BSS-2 operates in continuous time and does not support pausing or resuming of model40

dynamics. The algorithmic problem statement is global for the user-defined experiment. Therefore, the41

complexity of the translation process cannot be reduced by partitioning the problem. Many neuromorphic42

systems have been providing software solutions to solve this problem and enable higher-level experiment43

descriptions. We developed a software stack for the wafer-scale BrainScaleS-1 (BSS-1) system covering44

the translation of user-defined experiments from the PyNN high-level domain-specific description language45

to a hardware configuration (Müller et al., 2020b). While the BSS-2 neuromorphic architecture hasn’t46

been scaled to full wafer size yet, other feature additions such as structured and non-linear neuron models47

as well as single instruction, multiple data (SIMD) processors make BSS-2 an appealing substrate for48

modeling of smaller network sizes. In particular, a new challenge is posed by the introduction of SIMD49

processors in BSS-2 as programmable elements with real-time vectorized access to many observables from50

the physical modeling substrate. Observables such as correlation sensors are implemented in the synapse51

circuits, yielding an immense computational power by offloading computational tasks into the analog52

substrate. Moreover, the configuration space increases significantly: in addition to a static configuration of53

network topology, the processors allow for flexible handling of dynamic aspects such as structural plasticity,54

homeostatic behavior, and virtual environments enabling robotic or other closed-loop applications. This55

“hybrid” approach requires modeling support in the software stack integrating code generation for the56

processors as well as mechanisms to parameterize plasticity algorithms and other code parts running on the57

embedded processors.58

We present recent modeling advances on the substrate showcasing new features of the system: complex59

neurons (section 3.1), neuro-inspired machine-learning experiments (section 3.2), closed-loop sensor-60

motor interaction (section 3.3) and non-spiking operation (section 3.4). We demonstrate network-attached61

accelerator operation as well as standalone operation. We argue that for successful and sustainable advances62

in the usage of neuromorphic systems a deep integration between hardware and software is crucial on63

all layers. The complete system —software together with hardware— needs to be explicitly designed to64

support access with varying abstraction levels: high-level modelers, expert users and component developers65

This is a provisional file, not the final typeset article 2
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possess different perceptions of the system; in order for a modeling substrate to be successful, it has to66

deliver on all of these aspects.67

1.1 The BrainScaleS-2 hardware68
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Figure 1. Overview of the BSS-2 system. (A) BSS-2 application-specific integrated circuit (ASIC)
bonded to a carrier board. The ASIC is organized in two hemispheres each hosting 256 neurons and the
accompanying synapse matrix, cf. (D). (B) Portable BSS-2 system. (C) Laboratory setup. (D) Overview
over the signal flow in the BSS-2 system. The depicted analog neural network core and SIMD processor
represent one of the two hemispheres visible in (A), which are mirrored vertically below the neurons.

In this section we introduce the BSS-2 system and highlight the basic hardware design which is guiding69

the development of the accompanying software stack. For a more in depth description of the hardware70

aspects of the BSS-2 system refer to Pehle et al. (2022); Schemmel et al. (2020); Aamir et al. (2018).71

BrainScaleS is a family of mixed-signal neuromorphic accelerators; analog circuits emulate neuron as72

well as synapse dynamics in continuous time, while communication of spike events and configuration data73

is handled in the digital domain. In this paper we focus on the single chip BSS-2 system with 512 neurons74

and 131 072 synapses circuits, see fig. 1 A. Due to the intrinsic properties of the silicon substrate, the75

physical emulation of neuron dynamics is 1000× faster than in biological real time. Currently, the BSS-276

ASIC is integrated in a stationary laboratory setup, fig. 1 C, as well as in a portable system, fig. 1 B.77

The high configurability of the BSS-2 system facilitates many different applications, see section 3. For78

example, the neuron circuits replicate the dynamics of the adaptive exponential integrate-and-fire (AdEx)79

neuron model (Brette and Gerstner, 2005) and are individually configurable by a number of analog and80

digital parameters. By connecting several neuron circuits together to form one logical neuron, more81

complex multi-compartmental neuron models can be formed and the synaptic fan-in of individual neurons82

can be increased; a single neuron circuit on its own has access to 256 synapses (fig. 1 D). In addition to83

the emulation of biologically plausible neural networks, BSS-2 also supports non-spiking artificial neural84

networks (ANNs). This is facilitated by disabling spiking as well as the exponential, the adaptive and the85

leak current of the AdEx neuron model, turning the neuron circuits into simple integrators. Furthermore,86
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the high configurability allows countering device-specific deviations between analog circuits which result87

from imperfections during the manufacturing process, see section 2.3.6.88

The digital handling of spike events enables the implementation of various network topologies. All spikes,89

including external spikes as well as spikes generated in the neuron circuits, are collected in the “event90

handling” block and subsequently routed off chip for recording or via the synapse drivers and synapses91

to post-synaptic on-chip partners, cf. fig. 1 D. One of the key challenges during experiment setup is the92

translation of neural networks to valid hardware configurations. This includes assigning specific neuron93

circuits to the different neurons in the network as well as routing events between neurons, cf. sections 2.3.294

and 2.3.3.95

Apart from forwarding spikes, the synapse circuits are also equipped with analog correlation sensors96

which measure the causal and anti-causal correlation between pre- and post-synaptic spikes. The measured97

correlation can be accessed by two columnar ADCs (CADCs), which measure correlations row-wise in98

parallel and can be used in the formulation of plasticity rules, cf. sections 3.2 and 3.3. An additional99

analog-to-digital converter (ADC), the so-called membrane ADC (MADC), offers the possibility to record100

single neurons with a higher temporal and value resolution.101

Aside the analog neural network core, two embedded SIMD processors, based on the PowerTM architec-102

ture (PowerISA, 2010), which allow for arbitrary calculations and reconfigurations of the BSS-2 ASIC103

during hardware runtime and are the experiment master in standalone operation. They are equipped with104

16 KiB static random-access memory (SRAM) memory each and feature a weakly-coupled vector unit105

(VU), which can access the hemisphere-local synapse matrix as well as the CADC.106

Communication to the BSS-2 ASIC as well as real-time runtime control is handled by a field-107

programmable gate array (FPGA). It provides memory buffers for data received from a host computer or108

from the chip, with which it orchestrates experiment executions in real time, see section 2.1. To allow for109

more complex programs and larger data storage, the on-chip processors can access memory connected to110

the FPGA.111

The software stack covered in this paper handles all the necessary steps to turn high-level experiment112

descriptions into configuration data, spike stimuli or programs for the on-chip SIMD processor.113

In the following we will at first describe the BSS-2 Operating System (BSS-2 OS) in section 2 before114

showcasing several applications in section 3. We conclude the paper with a discussion in section 4.115

2 BRAINSCALES-2 OPERATING SYSTEM

This section introduces key concepts and software components that are essential for the operation of116

BrainScaleS-2 systems. First, we introduce the workflow of experiments incorporating BSS-2, derive an117

execution model and specify common modes of operation in section 2.1. Continuing, we give a structural118

overview of the complete software stack including the foundation developed in (Müller et al., 2020a)119

in section 2.2. Following this, we motivate key design decisions and show their incorporation into the120

development of the software stack in section 2.3. Finally, we describe advancements in platform operation121

towards seamless integration of BSS-2 as an accelerator resource in multi-site compute environments in122

section 2.4.123

This is a provisional file, not the final typeset article 4
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Higher abstraction layers scale down the level of required hardware detail knowledge. Naturally, such124

abstractions impose constraints on and reduce the flexibility of system usage introducing tradeoffs. There-125

fore, there are tradeoffs between abstraction level and the flexibility to exploit system capabilities. In the126

following, we explain existing tradeoffs at their occurrence.127

2.1 Experiment Workflow128

Unlike numerical simulations, which are orchestrated as number-crunching on traditional computers,129

experiments on BSS-2 are more akin to physical experiments in a traditional lab. Just like for these130

there is an initialization phase, which ensures the correct configuration of the system for this particular131

experiment and a real-time section, where the network dynamics are recorded and the actual emulation132

happens. If multiple emulations share (parts of) the configuration, those experiments can be composited by133

concatenating the trigger commands for both input and recording (see fig. 2).134

The fundamental physical nature of the emulation on BSS-2 requires these control commands to be issued135

with very high temporal precision as the dynamics of the on-chip circuitry can neither be interrupted nor136

exactly repeated. To achieve this, the accompanying FPGA is used to play-back a sequence of instructions137

with clock-precise timing, in the order of 10 ns. In order to limit the FPGA firmware complexity, the play-138

back unit is restricted to sequential execution, which includes blocking instructions (used for times without139

explicit interaction), but excludes branching instructions. Concurrently to the FPGA-based instruction140

sequence execution, the embedded single instruction, multiple data central processing units (SIMD CPUs)141

can be configured to perform readout of observables and arbitrary alterations to the hardware configuration.142

This means that conditional decisions, e.g. the issuance of rewards, can be performed either via the SIMD143

CPU if they are not computationally too complex or via synchronization with the executing host computer144

which in the current setup has no guaranteed timing.145

The initialization phase typically includes time-consuming write operations to provide an initial state146

of the complete hardware configuration. This is due to both, the amount of data to be transmitted,147

e.g. for the synapse matrix, and required settling-time for the analog parameters. Since this can take148

macroscopic amounts of time, at least around 100 µs due to round-trip latency, around 100 ms for a149

complete reconfiguration, back-to-back concatenation of real-time executions is needed to keep their150

timeshare high and therefor the configuration overhead low.151

Due to the hardware’s analog speed-up factor compared to typical biological processes, a single real-time152

section can be short compared to the initialization phase. Therefore, we concatenate multiple real-time153

sections after a single initialization phase to increase the real-time executions’ timeshare. In the following,154

this composition is called execution instance and is depicted in fig. 2.155

Alternatively, instead of this asynchronous high-throughput operation, the low minimal latency allows for156

fast iterative workflows with partial reconfiguration, e.g., iterative reconfiguration of a small set of synaptic157

weights.

initialisation || | | | | · · · | | || ||

realtime sections

t

Figure 2. Time evolution of a single execution instance.
The initialization is followed by possibly multiple real-time
executions with input spike-trains represented by vertical lines.

158

Based on this we differentiate between three modes of operation. First, in batch-like operation one159

or multiple execution instances are predefined and run on hardware. Second, in the so-called hardware160
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in-the-loop case hardware runs are executed iteratively where the results of previous runs determine the161

parameters of successive runs. Last, in closed-loop operation is characterized by tightly coupling the162

network dynamics of the analog substrate to the experiment controller, either the SIMD CPU or the control163

host.164

2.2 Software Stack Overview165

Structuring software into well-defined layers is vital for keeping it maintainable and extendable. The166

layers are introduced and implemented via a bottom-up approach matching the order of requirements in the167

current stage of the hardware development and commissioning process. This means, that first raw data168

exchange and transport from and to the hardware via the communication layer is established. Subsequently,169

the hardware abstraction layer implements translation of typed configuration, e.g. enabling a neuron’s170

event output, to and from this raw data. On this level, the calibration layer allows to programmatically171

configure the analog hardware to a desired working point. Then, hardware-intrinsic relations between172

configurables and their interplay in experiments, cf. section 2.1, is encapsulated in a graph structure. Lastly,173

automated generation of hardware configuration from an abstract network specification enables embedding174

into modelling frameworks for high-level usage. Figure 3 gives a graphical overview of this software175

architecture1.176

2.2.1 Communication177

From the software point of view, the first step to utilize hardware systems is the ability to exchange178

data. With proper abstraction the underlying transport protocol and technology are interchangeable.179

Communication is therefore structured into a common connection interface hxcomm2 that supports various180

back-ends.181

For most hardware setups, we use a custom, reliable regarding data integrity, transport protocol on top of182

the user datagram protocol (UDP), Host-ARQ provided by sctrltp3. Additionally, we support connection to183

hardware design simulations via flange4, compare section 3.6 for both the use during debugging of current184

and unit testing of future chip generations. Multi-site workflows are transparently enabled already at this185

level via the micro scheduler quiggeldy5.186

2.2.2 Hardware Abstraction187

A major aspect of any system configuration software is hardware abstraction, which encapsulates188

knowledge about the raw bit configuration, e.g. that bit i at address j corresponds to enabling neuron k’s189

event output. It therefore decouples hardware usage and detailed knowledge about its memory layout,190

which is an important step towards providing hardware access beyond the group of developers of the191

hardware. Responsibility of this layer can be compared to device drivers. The layers provide an abstract192

software representation of various hardware components, such as synaptic weights on the chip or values of193

supply voltages on the periphery board, as well as their control flow.194

1 All the repositories mentioned in the following are available at https://github.com/electronicvisions under the GNU Lesser General Public

License v2/v3.

2 hxcomm is available at https://github.com/electronicvisions/hxcomm

3 sctrltp is available at https://github.com/electronicvisions/sctrltp

4 flange is available at https://github.com/electronicvisions/flange

5 quiggeldy is available at https://github.com/electronicvisions/hxcomm
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Figure 3. Overview of the BSS-2 software architecture and its applications. Left side: Colored boxes in
the background represent the separation of the software into different concerns. White boxes represent
individual software APIs or libraries with their specific repositories names and dependencies. Right side:
Various applications concerning different system aspects. The arrows represent dependencies in the stack,
where the dependent points to its dependencies. For embedded operation additional dependencies on libnux
are needed (dashed arrows).

Within this category the lowest layer is fisch6 (FPGA Instruction Set arCHitecture), the abstraction195

of FPGA instructions. Combined with communication software this is already sufficient to provide an196

interface for prototyping in early stages of system development, i.e., the possibility to manually read and197

write words at memory locations. With knowledge of the hardware’s memory layout this allows specifying198

addresses and word values directly, e.g. bit i (and all other bits in this word with possibly unrelated effects)199

at address j which then enables the neuron k’s event output.200

The heterogeneous set of entities on the hardware as well as their memory layout is arranged via201

geometric pattern and contain symmetries, e.g. a row of neurons or a matrix of synapses. An intuitive202

structure of this fragmented address space is provided by the coordinate layer halco7. It represents hardware203

components by custom ranged types that can be converted to other corresponding coordinate types, e.g. a204

6 fisch is available at https://github.com/electronicvisions/fisch

7 halco is available at https://github.com/electronicvisions/halco

Frontiers 7

https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/halco


Eric Müller et al.

SynapseOnSynapseRow as a ranged integer i ∈ [0, 256), that allows conversion to a neuron column, see205

(Müller et al., 2020a).206

A software representation of the configuration space of hardware components is implemented by the207

container layer haldls8. For example a NeuronConfig contains a boolean parameter for enabling the208

spike output. These configuration containers are translatable (e.g. a neuron container represents one, but209

not a specific one, of the neurons) and also define methods for de- and encoding between their abstract210

representation and the on-hardware data format given a location via a supplied coordinate. A logical211

function- instead of a hardware subsystem-centered container collection is implemented by the lola9 layer.212

For example the AtomicNeuron collects the analog and digital configuration of a single neuron circuit,213

which is scattered over two digital configurations and a set of elements in the analog parameter array.214

The runtime control layer stadls10 provides an interface to describe timed sequences of read and write215

instructions of pairs of coordinates and containers, e.g. changing the synaptic weight of synapse i, j at time216

t, as well as event-like response data, e.g. spikes or ADC samples. These timed sequences, also called217

playback programs, can then be loaded to and executed on the FPGA which records the response data.218

Afterwards, the recorded data is transferred-back to the host computer.219

We track the constitution of all hardware setups in a database, hwdb11. It is used for compatibility checks220

between hardware and software as well as for the automated selection of stored calibration data. We also221

use it to provide the resource scheduling service with information about all available hardware systems.222

This set of layers is feature-complete to formulate arbitrary hardware-compatible experiments and was223

used as basis for experiments in Göltz et al. (2021); Czischek et al. (2022); Klassert et al. (2021); Schemmel224

et al. (2020); Cramer et al. (2022).225

2.2.3 Embedded runtime226

In addition to the controlling host system, the two SIMD CPUs on the BSS-2 ASIC require integration into227

the BSS-2 OS. To enable users to efficiently formulate their programs, we provide a development environ-228

ment based on C++. It specifically consists of a cross-compilation toolchain based on gcc (GNU Project,229

2018) that has been adapted to the custom SIMD extensions of the integrated microprocessors (Müller et al.,230

2020a). More abstract functionality is encapsulated in the support library libnux12, which provides various231

auxiliary functionality for experiment design. Moreover, the hardware abstraction layer of the BSS-2232

OS (cf. section 2.2.2) supports the SIMD CPUs as an additional cross-compiled target for configuration233

containers as well as coordinates.234

2.2.4 Calibration235

In order to tune all the analog hardware parameters to the requirements given by an experiment, we236

provide a calibration framework, calix13. For example, an experiment might require a certain set of synaptic237

time constants for which analog parameters are to be configured while counteracting circuit inequalities.238

In section 2.3.6, this layer’s design is explained in detail. The Python module supplies a multitude of239

algorithms and calibrations for each relevant component of the circuitry: A calibration provides a small240

8 haldls is available at https://github.com/electronicvisions/haldls

9 lola is available at https://github.com/electronicvisions/haldls

10 stadls is available at https://github.com/electronicvisions/haldls

11 hwdb is available at https://github.com/electronicvisions/hwdb

12 libnux is available at https://github.com/electronicvisions/libnux

13 calix is available at https://github.com/electronicvisions/calix
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experiment based on the hardware abstraction layer, see section 2.2.2, which is executed on the chip for241

characterization. An iterative algorithm then decides how configuration parameters should be changed in242

order to match the measured data with given expectations.243

The user-interfacing part provides functions that take a set of target parameters and return a serializable244

calibration result that can be injected to experiment toplevels, cf. section 2.2.6. Additionally, we have the245

option to calibrate the analog circuits locally on chip, using the embedded processors. Aside of enabling246

arbitrary user-defined calibrations, we provide default calibrations for spiking operation, cf. for example247

sections 3.1 and 3.2, and non-spiking matrix-vector multiplication, cf. section 3.4 for convenient entry.248

They are generated nightly via continuous deployment (CD).249

2.2.5 Experiment Description250

With rising experiment and network topology complexity, a coherent description ensuring topology251

and data-flow correctness becomes beneficial. Therefore, a signal-flow graph is defined representing the252

hardware configuration and experiment flow. Compilation and subsequent execution via the hardware253

abstraction layer, cf. section 2.2.2, of this graph in conjunction with supplied data, e.g. spike events, then254

forms an experiment execution. The applied execution model follows the experiment workflow described255

in section 2.1. It, therefore, restricts flexibility to enable network-topology-based experiment descriptions256

and the separation of data-flow description and data.257

While this aids in construction of complex experiments, detailed knowledge of configuration and its258

interplay is still required. Solving this, a high-level abstract representation of neural network topology259

building on top of the signal-flow graph description is developed. An automated translation from this high-260

level abstraction to a valid hardware configuration is handled by a place-and-route algorithm. This enables261

hardware usage without detailed knowledge of event routing capabilities and interplay of configuration.262

While relieving users from providing a valid hardware configuration, this automatism requires tradeoffs to263

be made between the computational complexity of the algorithms and the size of the explored configuration264

space to find a matching hardware configuration for a given abstract network representation.265

This layer is contained in grenade14, short for GRaph-based Experiment Notation And Data-flow266

Execution. Its design is explained in detail in section 2.3.2.267

2.2.6 Modeling Wrapper268

Various back-end-agnostic modeling languages emerged to provide access to various simulators or269

neuromorphic hardware systems to a wide range of researchers. The BSS-2 software stack comprises270

wrappers to two of such modeling frameworks: PyNN (Davison et al., 2009) via pyNN.brainscales215 and271

PyTorch (Paszke et al., 2019) via hxtorch16 (Spilger et al., 2020). Their goal is to provide a common user272

interface and to embed different back-ends into an existing software ecosystem. This allows users to benefit273

from a consistent and prevalent interface and integration into their established work-flow. The design of274

these layers’ integration with BSS-2 is explained in detail in section 2.3.4 for PyNN and in section 2.3.5275

for PyTorch.276

14 grenade is available at https://github.com/electronicvisions/grenade

15 pyNN.brainscales2 is available at https://github.com/electronicvisions/pynn-brainscales

16 hxtorch is available at https://github.com/electronicvisions/hxtorch
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2.3 Software Design277

We base the full-stack software design on the principles laid out in Müller et al. (2020a). We use C++ as278

the core language to ensure high performance and make use of its compile-time expression evaluation and279

template metaprogramming capabilities. Due to the heterogeneous hardware architecture we employ type280

safety for logical correctness and compile-time error detection. Serialization support of configuration and281

control flow enables multi-site workflows as well as archiving of experiments.282

In the following, we show enhancements of the hardware abstraction layer, see section 2.2.2, introduced283

in Müller et al. (2020a) as well as design decisions for the full software stack with high-level user interfaces.284

First, support for multiple hardware revisions is shown in section 2.3.1. Then, the signal-flow graph-based285

experiment notation is derived in section 2.3.2. Following, an abstract network description explained286

in section 2.3.3 closes the gap to the modelling wrappers in PyNN, cf. section 2.3.4 and PyTorch, cf.287

section 2.3.5. Closing, the calibration framework is described in section 2.3.6.288

2.3.1 Multi-revision hardware support289

As platform development progresses, new hardware revisions require software support. This holds true290

for both, the ASIC and the surrounding support hardware like the FPGA and system printed circuit boards291

(PCBs). Additionally, the platform constitution evolves, e.g. by introduction of a mobile system with still292

one chip but different support hardware or a multi-chip setup.293

After a potential development of a second revision, a heterogeneous set of hardware setups may co-294

exist. For one generation of chips, it is typically possible to combine different revisions with different295

surrounding hardware configurations, leading to a number of combinations given by the Cartesian product296

N = MASIC ×MPlatform1
× · · · ×MPlatformP

, where MPlatformi
is the number of configurations for a given297

part of the platform, e.g. the FPGA and MASIC is the revision of the BSS-2 ASIC.298

We provide simultaneous software support by dependency separation and extraction of common code299

for each affected component across all affected software layers. This way, code duplication is minimized,300

maintainability of common features is ensured and divergence of software support is prevented. Moreover,301

phasing-out or retiring hardware revisions is possible without effecting the software infrastructure of302

other revisions. The to be implemented software reduces to N ′ = MASIC +MPlatform1
+ · · ·+MPlatformP

303

constituents, the combinations are rolled-out automatically. We use C++ namespaces for separation and304

C++ templates for common code, which depends on the individual platform’s constituents.305

2.3.2 Signal-flow graph-based experiment notation306

As stated in section 2.2.2, the hardware abstraction developed in Müller et al. (2020a) is already feature-307

complete to formulate arbitrary hardware-compatible experiments. However, it lacks a representation308

of intrinsic relations between different configurable entities. For example, the hard-wired connections309

between synapse drivers and synapse rows are not represented in their respective configuration but only310

given implicitly.311

Neural networks are predominantly described as graphs. For spiking neural networks single neurons or312

collections thereof and their connectivity form a graph (Davison et al., 2009; Gewaltig and Diesmann,313

2007; Goddard et al., 2001). In machine-learning, the two major frameworks PyTorch (Paszke et al., 2019)314

and Tensorflow (Abadi et al., 2015) use a graph-based representation of tensor computation or are moving315

into this direction (PyTorch’s JIT intermediate representation (Facebook, Inc., 2021a) and XLA back316

end (Facebook, Inc., 2021b; Suhan et al., 2021)).317
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Inspired by this, we implement a signal-flow graph-based experiment abstraction. A signal-flow318

graph (Mason, 1953) is a directed graph, where vertices receive signals from their in-neighborhood,319

perform some operation, and transmit an output signal to their out-neighborhood. We integrate this320

representation at the lowest possible level to fully incorporate all hardware features without premature321

abstraction.322

For BSS-2, the graph-based abstraction is applied at two granularities, see fig. 4. First, the initial323

static network configuration as well as virtualized computation using the on-chip embedded processors is324

abstracted as a signal-flow graph. Second, data-flow between multiple individual real-time experiments325

distributed over chips and time are described as a graph.326

A
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synapses

neurons

output crossbar

external events

PADI events

labels

synaptic currents

neuron spikes

external events
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load

load
external

store
chip 2

synapse
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synapse
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Figure 4. Signal-flow graph-based experiment abstraction on BSS-2. (A) Placed feed-forward network
represented as signal-flow graph. Left: Abstract network; Middle: Actual layout on the chip, the arrows
represent the graph edges; Right: The network graph structure enlarged with signal type annotation on
the edges. The color links the same entities in the middle (chip schematic) and right subfigure (vertical
data-flow graph). (B) Non-spiking network distributed over two physical chips, adapted from Spilger et al.
(2020). The result of two matrix multiplications on chips 1 and 2 is added on chip 1. The latter execution
instance depends on the output of the two former instances.

The signal-flow graph representation yields multiple advantages. Type safety in the graph constituents327

facilitates experiment correctness regarding on-chip connectivity and helps to avoid inherently dysfunctional328

experiments already during specification. Debugging benefits from visualisation of the graph representation,329

which directly contains implicit on-chip connectivity. Finally, the signal-flow graph is the ideal source of330

relationship information for on-chip entity allocation optimization or merging of digital operations.331

However, the actual signals are not part of the signal-flow graph representation. They are either provided332

separately (e.g. external events serving as input), will only be present locally upon execution (e.g. synaptic333

current pulses) or will be generated by execution (e.g. recorded external events). We implement the334

experiment workflow described in section 2.1 consisting of an initial static configuration followed by a335

collection (batch) of time evolutions, see fig. 2.336

The signal-flow graph is a recipe for compilation towards the lower-level hardware abstraction layer,337

cf. Müller et al. (2020a), and eventual execution. The specific implementation of the compilation and338

execution process is separate from the graph representation in order to allow extensibility and multiple339

solutions for different requirement profiles. Here, we present a just-in-time (JIT) execution implementation.340

It supports both, spiking and non-spiking experiments. For every execution instance, the local subgraph is341

compiled into a sequence of instructions, executed and its results processed in order for them to serve as342
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inputs for the out-neighborhood. While it is feature-complete for the graph representation, it introduces343

close coupling between the execution on the neuromorphic hardware and the controlling host computer.344

Host-based compilation can be performed concurrently to hardware execution, increasing parallelism.345

Figure 5 shows concurrent execution of multiple execution instances (A) and the compilation and execution346

of a single execution instance (B).

A

1

3
2
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t
1
2
3
4

executionpreprocessing postprocessing

B
host computer BrainScaleS-2

static config

time evolution

execution

delayed post-execution
computation

playback
programs

responses

Figure 5. JIT compilation and execution of signal-flow graph of multiple execution instances and within
a single execution instance. (A) JIT execution of a graph on two physical chips, adapted from Spilger et al.
(2020). Left: Execution instance 3 is to be executed on another physical chip than the other execution
instances. Right: The execution of instance 3, depicted in gray, can be performed concurrently to execution
instance 1. (B) JIT compilation and execution of a single execution instance subgraph. First, the static
configuration is extracted by a vertex visit and transformed to hardware configuration where applicable.
Then, the real-time execution is built by a vertex visit. This built program is executed on the neuromorphic
hardware and results are transmitted back to the host computer. Finally, delayed digital operations, which
require output data from the execution, are performed on the host computer.

347

2.3.3 Abstract network description348

The signal-flow graph-based notation from section 2.3.2 eases creation of correct experiments while349

minimizing implicit knowledge. However, knowledge of hardware routing capabilities is still required350

to create a graph-based representation of the hardware configuration which performs as expected. This351

should not be required to formulate high-level experiments. To close this gap, an abstract representation352

similar to PyNN (Davison et al., 2009), consisting of populations as collections of neurons and projections353

as collections of synapses, is developed. Given this description, an algorithm finds an event routing354

configuration to fulfill the abstract requirements and generates a concrete hardware configuration. This355

step is called routing. Figure 6 visualizes an abstract network description and one corresponding hardware356

configuration.

Figure 6. Abstract network notation. Population A consist-
ing of five neurons is connected to population B consisting
of four neuron via projection AB. Left: Abstract network;
Right: Placed and routed on the hardware, where the projec-
tion AB consists of synapses in the two-dimensional synapse
matrix and the populations A and B are located in the neuron
row, compare fig. 1 (D).
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B

AB

A B

AB

357
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2.3.4 Integration of PyNN358

When it comes to modeling spiking neural networks, a widely used API is PyNN (Davison et al., 2009).359

It is supported by various neural simulators like NEST (Gewaltig and Diesmann, 2007), NEURON (Hines360

and Carnevale, 2003) and Brian (Stimberg et al., 2019), as well as by neuromorphic hardware platforms like361

SpiNNaker (Rhodes et al., 2018) or the predecessor hardware of BSS-2: BSS-1 (Müller et al., 2020b) and362

Spikey (Brüderle et al., 2009). With the aim of easy access to BSS-2, we expose its hardware configuration363

via the PyNN interface. The module pyNN.brainscales2 implements the PyNN-API for BSS-2. It364

offers a custom cell type, HXNeuron, which corresponds to a physical neuron circuit on the hardware and365

replicates the lola.AtomicNeuron from the hardware abstraction layer, see section 2.2.2. This allows366

to set parameters directly in the hardware domain and gives expert users the possibility to precisely control367

the hardware configuration while at the same time take advantage of high-level features such as neuron368

populations and projections. Figure 7 illustrates how these parameters are available in the corresponding369

interfaces. An additional neuron type supporting the translation from neuron model parameters in SI units370

is currently in the planning. Otherwise, the PyNN program looks the same as for any other back end. Since371

the PyNN-API is free from hardware placement specifications, they are algorithmically determined by372

mapping and routing in grenade, cf. section 2.3.3. This step is performed automatically upon invocation of373

pynn.run(), so that the user is not required to have any particular knowledge about event routing on the374

hardware. Nevertheless, the interface allows that an experimenter can adjust any low-level configuration375

aside from neuron parameters and synaptic weights.376

neuron = lola.AtomicNeuron()

neuron.leak.v_leak = 650

neuron.leak.i_bias = 420

neuron.leak.enable_division = True

pynn.Population(1, pynn.HXNeuron({

"leak_v_leak": 650,

"leak_i_bias": 420,

"leak_enable_division": True}))

Figure 7. Comparison between lola.AtomicNeuron and pynn.HXNeuron.

To exploit the full potential of the accelerated hardware the software implementation’s overhead shall be377

minimal. Figure 8 presents runtime and memory consumption analysis of the whole PyNN-based stack378

for a high spike count benchmark experiment. 12 neurons are excited by a regular spike train with 1 MHz379

frequency and their activity is recorded for one second. These settings are chosen as they roughly equate to380

the maximum recording rate without loss.381

The initial overhead of importing Python libraries and setting up the PyNN environment only needs to382

be performed once for every experiment and is independent of the network topology itself. Run time on383

hardware is about 1.5 s of which roughly 125 ms are initial configuration and 278 ms are transmission of384

the input spike train. Post-processing the 1.2 × 107 received spikes (fisch and grenade) takes about 1.9 s,385

i.e., in the same order of magnitude as the actual hardware run. Peak memory consumption is reached386

during post-processing of results obtained after the hardware execution which corresponds to roughly 3387

times the minimum memory footprint of the recorded spike train. With this the stack is well suited to also388

handle experiments with high spike count without introducing a bottleneck.389
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Figure 8. Run time analysis of a PyNN-based
experiment with large spike count. Population
of 12 neurons is excited by a regular spike
train with frequency of 1 MHz. The network
is emulated for 1 s on hardware resulting in

1.2 × 107 spike events. The black line repre-
sents memory consumption during execution.
Horizontal bars represent time consumption in
software layers. The annotations in the legend
present the individual run time of steps and
percentage of the overall run time.

0 1 2 3 4 5

runtime [s]

0

200

400

600

800

1000

m
e

m
o

ry
[M

iB
]

script 1.2s (25%)

pyNN 0.3s (6%)

grenade 1.5s (31%)

hxcomm 1.5s (30%)

fisch 0.4s (9%)

2.3.5 Integration into PyTorch390

To enable access to BSS-2 for machine learning applications, we develop a thin wrapper layer to391

the PyTorch-API. This extension is called hxtorch and was introduced in Spilger et al. (2020) for non-392

spiking hardware operation emulating analog multiply-accumulate operations and compositions thereof.393

There, we build on top of the same signal-flow graph experiment description as for the spiking mode of394

operation, cf. section 2.3.2. Operations are mapped to the hardware size by using temporal serialization and395

physical concurrency. The PyTorch extension enhances this by automatic gradient calculation for training.396

Same as PyTorch, we implement a functional API in C++ wrapped to Python (e.g. hxtorch.matmul397

comparable to torch.matmul) and add modules/layers on top in Python (e.g. hxtorch.nn.Linear398

comparable to torch.nn.Linear). In contrast, our operations are quantized to the hardware-intrinsic399

digital resolution (5 bit unsigned activations, 6 bit weights plus sign bit and 8 bit signed results). Execution400

on the hardware is performed individually for each operation using the JIT execution, see section 2.3.2.401

2.3.6 Calibration framework402

On BSS-2, there are a multitude of voltages and currents controlling analog circuit behavior. While some403

of them can be set to default values, most of them require calibration in order to match experiment-specific404

target values and to counteract device-specific mismatch. Fundamentally, the calibration can be executed405

on a host computer or locally on chip, using the embedded processors. We provide the Python module406

calix to handle all aspects of the calibration process.407

Model parameters are calibrated by iteratively adjusting relevant parts of the hardware configuration. As408

an example, the membrane time constant is controlled by a bias current: In order to calibrate the membrane409

time constant of all neurons, the neurons’ membrane potentials are recorded while they decay back to their410

resting potential after an initial perturbation from the resting state. We can perform an exponential fit to the411

recorded voltage trace to determine the time constant and iteratively tweak the bias current to reach the412

desired target.413

The calibration routine of each parameter is encapsulated using an object-oriented API providing a414

common interface. Mainly, two methods allow the iterative parameter search: one applies a parameter415

configuration to the hardware, while the other evaluates an observable to determine circuit behavior. An416
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algorithm calculates parameter updates during the iterative search. In each step, the measurement from the417

calibration class is compared to the target value and the parameter set is modified accordingly.418

A functional API is provided for commonly used sets of calibrations, for example for calibration of a419

spiking leaky-integrate and fire (LIF) neuron. Technical parameters and multidimensional dependencies420

are handled automatically as required in this case. This yields a simple interface for experimenters for421

tweaking high-level parameters, while calibration routines for individual parameters remain accessible for422

expert users.423

The higher-level calibration functions save their results in a typed data structure, which contains the424

related analog parameters and digital control bits. Further, success flags indicate whether the calibration425

targets were reached within the available parameter ranges. These result structures can either directly426

be applied to a hardware setup or serialized to disk. Application of serialized calibration is beneficial427

compared to repeating the calibration in experiments due to decreased required time and improved digital428

reproducibility.429

Running the calibration on a host computer using Python allows for great flexibility in terms of430

gathering observations from the chip. We can utilize all observables, including a fast ADC, which allows431

performing fits to measured data – as sketched previously for the calibration of the membrane time constant.432

While this direct measurement should yield the most accurate results, fitting to a trace for each neuron433

takes a lot of time. Performing a full LIF neuron calibration takes a few minutes via the Python module.434

And importantly, when scaling this approach to many chips, we need to scale the host computing power435

accordingly.436

In order to achieve better scalability, we can control the calibration from the embedded processors, directly437

on chip, removing the host computer from the loop. However, this approach limits the observables to those438

easily accessible to the embedded processor, the CADC and spike counters – performing a fit to an MADC439

trace using the embedded processors would consume lots of runtime and potentially counteract benefits440

of scaling. As a result, some calibrations have to rely on an indirect measurement of their observable.441

Again using the neurons’ membrane time constant as an example, we can consider the spike rate in a442

leak-over-threshold setup. However, this introduces a dependency on multiple potentials being calibrated443

beforehand.444

Apart from the need for indirect measurements, on-chip and host-based calibration work similarly: An445

iterative algorithm selects parameters, we configure them on chip and characterize their effects. Using the446

embedded processors for configuring parameters and acquiring data from the two on-chip readouts is fully447

supported and naturally faster than fetching them from a host computer. We use the SIMD CPUs’ vector448

units for parallel access to the synapse array and columnar ADCs. This is enabled by cross-compiler-support449

(cf. section 3.3), by which both the scalar unit and vector unit are integrated and accessible from the C++450

language.451

We provide routines for on-chip calibration, which allow all LIF neuron parameters to be calibrated452

in approximately half a minute, with this number staying constant even when considering large systems453

comprising many individual chips. Similar to the host-based calibration API, calix exposes these on-chip454

routines as conveniently parametrized functions that can be called within any experiment. Their runtime is455

mostly limited by waiting for configured analog parameters to stabilize before evaluating the effects on the456

circuits.457
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2.4 Platform Operation458

Over the past decade neuromorphic systems evolved from intricate lab setups towards back ends for the459

more comfortable execution of spiking neural networks (Indiveri et al., 2011; Furber et al., 2012; Benjamin460

et al., 2014; Davies et al., 2018; Pehle et al., 2022). One major step along this development path is to461

provide users with seamless access to the systems.462

Small scale prototype hardware is often connected to a single host machine, e.g., via USB. This is also a463

common usage mode for different neuromorphic hardware. To access these devices, users have to have464

(interactive) access to the particular machine the hardware is connected to. This limits the flexibility of the465

user and is an operational burden as the combination of neuromorphic hardware and host machine has to466

be maintained. While this tightly coupled mode of operation is sufficient during commissioning and initial467

experiments, it is not robust enough for higher work-loads and flexible usage.468

An improvement to the situation sketched above is using a scheduler, e.g., SLURM (Yoo et al., 2003),469

where users can request a resource, e.g., a specific hardware setup, and the jobs get launched on the470

matching machine with locally attached hardware. This is the typical mode of access also used for other471

accelerator-type hardware, e.g., GPU clusters. However, this batch driven way is not always ideal as it often472

requires accounts on the local compute cluster and does not allow for easy interactive usage. In addition,473

traditional compute load schedulers optimize for throughput and not latency, therefore the scheduling474

overhead can be significant especially for hardware that is fast and experiments that are short. In the latter475

case, job execution rates of the order of Hz and faster are required.476

Another downside of using a traditional scheduler is that hardware resources are not efficiently utilized477

when multiple users want to use the same hardware resources at the same time. Therefore, we developed478

the micro scheduler quiggeldy that exposes access to the hardware directly via a network connection,479

but still manages concurrent access from different users. It decouples the hardware utilization from the480

user’s surrounding computations such as experiment preparation, updates in iterative workflows or result481

evaluation. For this to work runtime control, configuration, input stimulus as well as output data must be482

serializable which is facilitated via cereal (Grant and Voorhies, 2017). The inter-process communication483

between the user software and the micro scheduler is done with RCF (Delta V Software, 2020). When a484

user requests multiple hardware runs, it is checked whether certain already performed parts can be omitted,485

e.g., resets or re-initializations. Experiment interleaving between multiple users is also supported as the486

initialization state is tracker for each user and is automatically applied when needed.487

Having the correct software environment for using neuromorphic hardware is also a major challenge.488

Nowadays, software vendors often provide a container image that includes the appropriate libraries.489

However, this approach does not necessarily yield well specified and traceable dependencies, but only490

a “working” black-box solution. We overcome this downside by using the Spack (Gamblin et al., 2015)491

package manager with a meta-package that explicitly tracks all software dependencies and their version492

needed to run experiments on and develop for the neuromorphic hardware. An automatically built container493

embedding the Spack installation enables encapsulation and eased distribution. This Spack meta-package is494

also used for the EBRAINS’ JupyterLab service and will eventually be deployed to all HPC sites involved495

in EBRAINS (ebr, 2022). The latter will facilitate multi-site workflows involving neuromorphic hardware496

and traditional HPC.497
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Figure 9. Pulse propagation along a dendrite which branches into two sub-branches. (A) Each branch is
modeled by two compartments (rectangles). Different compartments are connected via resistors (lines). (B)
Hardware configuration: neuron circuits (squares) are arranged in two rows on BSS-2, compare fig. 1 (D).
Each compartment is represented by at least two neuron circuits. Circuits which form a single compartment
are directly connected via switches (straight lines); compartments are connected via resistors. For details
see Kaiser et al. (2021). (C) Membrane responses to synaptic input: we inject synaptic input at four different
compartments; the compartment at which the input is injected is marked by a *. The membrane traces
of the different compartments are arranged as in sub-figure (A). For the top left quadrant (i) the input is
injected in the first compartment and decreases in amplitude while it travels along the chain. The response
in both branches is symmetric. A similar behavior can be observed when the input is injected in the second
compartment, (ii). Due to the symmetry of the model, we only display membrane responses for synaptic
input to the upper branch. When injecting the input in the first compartment of the upper branch (iii) the
input causes a noticeable depolarization within the same branch and the main branch but does not cause a
strong response in the lower sister branch. Note: all values are given in the hardware domain.

3 APPLICATIONS

In this section, we show-case a range of applications of BSS-2. Each application involves use of unique498

hardware features or modes of operation and motivates parts of the software design.499

First, we describe biological multi-compartmental modelling in section 3.1 concluding in the development500

of an API for structural neurons. Continuing, functional modelling with spiking neural network (SNN) is501

demonstrated for a pattern-generation task in section 3.2, which leads to embedding of spiking BSS-2 usage502

into the machine learning framework PyTorch and involves host-based training as well as local learning503

on the SIMD CPUs. Then, embedded operation, where the SIMD CPUs are the experiment orchestrator504

of BSS-2, is displayed and their implications detailed in section 3.3. Following, the non-spiking mode of505

operation implementing ANNs and its PyTorch interface is characterized in section 3.4. Afterwards, user506

adoption and platform access to BSS-2 is shown in section 3.5. Finally, application of the software stack507

for hardware co-simulation, co-design and verification is portrayed in section 3.6.508

3.1 Biological Modeling Example509

BSS-2 aims to emulate biological inspired neuron models. Most neurons are not simple point-like510

structures but possess intricate dendritic structures. In recent years, the research interest in how dendrites511

shape the output of neurons has increased (Major et al., 2013; Gidon et al., 2020; Poirazi and Papoutsi,512

2020). As a result, BSS-2 incorporates the possibility to emulate multi-compartmental neuron models in513

addition to the AdEx point-neuron model (Aamir et al., 2018; Kaiser et al., 2021).514
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In the following, we use a dendritic branch, which splits into two sub-branches, to illustrate how multi-515

compartmental neuron models are represented in our system, cf. fig. 9. At first, we look at a simplified516

representation of the model, subfigure (A). The main branch consists of two compartments, connected via517

a resistance; at the second compartment, the branch splits in two sub-branches, which themselves consist518

of two compartments each. On hardware this model is replicated by connecting several neuron circuits via519

switches and tunable resistors, cf. fig. 9 (B). Each compartment consists of at least two neuron circuits,520

directly connected via switches, compare colors in subfigure (A) and (B). With the help of a dedicated521

line at the top of the neuron circuits these compartments can then be connected via resistors to form the522

multi-compartmental neuron model; for more details see Kaiser et al. (2021).523

In software, the AtomicNeuron class stores the configuration of a single neuron circuit and therefore can524

be used to configure the switches and resistors as desired. As mentioned in section 2.3.4, the HXNeuron ex-525

poses this data structure to the high-level interface PyNN, allowing users to construct multi-compartmental526

neuron models in a known environment. However, it is cumbersome and error-prone to set individual527

switches. As a consequence, we implement a dictionary-like hierarchy on top of the AtomicNeuron,528

called LogicalNeuron in the logical abstraction layer, cf. section 2.2.529

We use a builder pattern approach to construct these logical neurons: the user creates a neuron morphology530

by defining which neuron circuits constitute a compartment and how these compartments are connected.531

Upon finalization of the builder, the correctness of the neuron model configuration of the neuron model532

is checked; if the provided configuration is valid, a LogicalNeuron is created. This LogicalNeuron533

stores the morphology of the neuron as well as the configuration of each compartment.534

The coordinate system of the BSS-2 software stack, cf. section 2.2.2, allows to place the final logical535

neuron at different locations on the chip (Müller et al., 2020a). This is achieved by saving the relation536

between the different neuron circuits defining the morphology in relative coordinates. Once the neuron is537

placed at a specific location on the chip, the relative coordinates are translated to absolute coordinates.538

Currently, the logical neuron is only exposed in the logical abstraction layer. In future work, it will539

be integrated in the PyNN API of the BSS-2 system. This will – for instance – allow to easily define540

populations of multi-compartmental neurons and connections between them.541

3.2 Functional Modeling Example542

The BSS-2 system enables energy efficient and fast SNN implementations. Moreover, the system’s543

embedded SIMD CPU enables highly parallelized on-chip learning with fast access to observables and thus,544

promises to benefit the computational neuroscience and machine learning community in terms of speed and545

energy consumption. We demonstrate functional modeling on the BSS-2 system with a pattern-generation546

task using recurrent spiking neural networks (RSNNs) with an input layer, a recurrent layer and a single547

readout neuron. The recurrent layer consists of 70 LIF neurons {j} with membrane potential vtj , receiving548

spike trains xti from 30 input neurons {i}. Neurons in the recurrent layer project spike events ztj onto the549

single leaky-integrate readout neuron with potential yt.550

RSNNs are commonly trained using backpropagation through time (BPTT) by introducing a variety of551

surrogate gradients taking account of the discontinuity of spiking neurons (Bellec et al., 2020; Zenke and552

Ganguli, 2018; Shrestha and Orchard, 2018). However, as BPTT requires knowledge of all network states553

along the time sequence in order to compute weight updates (backwards locking), it is not just considered554

implausible from a biological perspective, but also unfavourable for on-chip learning, which effectively555

enables high scalability due to local learning. Therefore, we utilize e-prop learning rules (Bellec et al.,556
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Figure 10. (A) Computational graph of an RSNN for one time step. The contribution to the weight update
is computed by merging learning signals Lt

j with eligibility traces etji. (B) Representation of the RSNN on

the BSS-2 system using signed synapses. Inputs and recurrent spike trains are routed to the corresponding
synapse drivers via the crossbar. (C) s-prop training on hardware. The upper plot depicts the evolution
of the mean squared error (MSE) while training the BSS-2 system in-the-loop, where the experiment is
executed on BSS-2 and weight updates are computed on the host computer, in comparison to training
with the network simulated in software, incorporating basic hardware properties (Sim). In both cases the
weights are optimized using the Adam optimizer (Kingma and Ba, 2014). The learned analog membrane
trace of the readout neuron after training BSS-2 for 1000 epochs is exemplified in the lower plot, aligned
to the spike trains ztj of the first five out of 70 recurrent neurons. (D) NASProp simulations. The upper

plot depicts the MSE over the update period P after training with Adam in comparison to a training with
gradient descent (GD) and a training taking additional hardware properties (noise, weight saturation, etc.)
into account (HW props). Optimization with pure GD mimics weight updates computed by the SIMD CPU
while on-chip learning. The lower plot shows the worst and best learned readout traces of the target pattern
ensemble in simulation. (E) Timing of NASProp weight updates. For each update n at tn, the correlation
cnji are merged with the learning signals Ln

j by incorporating the membrane trace yn.

2020), where the gradient for BPTT is factorized into a temporal sum over products of so-called learning557

signals Lt
j and synapse-local eligibility traces etji. While the latter accumulates all contributions to the558

gradient that can be computed forward in time, the first depends on the network’s error and still requires559

BPTT. However, Bellec et al. (2020) provide suitable approximations for Lt
j , allowing computing the560

weight updates online (fig. 10A). Such learning rules are favorable for the BSS-2 system, as the SIMD561

CPU can compute the weight updates locally while the network is emulated in parallel.562

E-prop-inspired learning on the BSS-2 system is enabled by adapting Bellec et al. (2020, Eq. (28)). Here

we replace the membrane potentials vtj in etji with the post-synaptic recurrent spike train ztj ,

et+1

ji → zt+1

j · Fα

(

zti
)

:= êt+1

ji , ∆W hh
ji = −η

∑

t

Lt
jFκ

(

êtji
)

, (1)

where Fx is an exponential filter with decay constant x. The update rule for input weights, derived in563

Bellec et al. (2020), is adapted accordingly. The equation for output weights remains untouched. With the564

readout neuron’s membrane trace yt and an MSE loss measuring the error to a target trace y∗,t, the learning565

signals are Lt
j = W ho

j

(

yt − y∗,t
)

. Since this learning rule propagates only spike-based information over566

time we refer to it as s-prop.567
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Finally, we approach s-prop learning with BSS-2 in the loop (cf. section 2.1). For this, the network,568

represented by PyTorch parameters W ih, hh, ho, is mapped to a hardware representation (see fig. 10B) via569

hxtorch (see section 2.3.5), forwarding a spike tensor on-chip. Inherently, grenade (see section 2.3.2)570

applies a routing algorithm, finds a graph-based experiment description and executes it on hardware for a571

given time interval. The routing algorithm allocates two adjacent hardware synapses for one signed synapse572

weight in software, one excitatory and one inhibitory. Further, grenade records the MADC-sampled readout573

trace yt and the recurrent spike trains z
t. Both observables are returned as PyTorch tensors for weight574

optimization on the host side. Experiment results are displayed in fig. 10C.575

Implementing s-prop on-chip requires the SIMD CPU to know and process explicit spike-times. As this

comes with a high computational cost, the correlation sensors are utilized to emulate approximations of

the spike-based eligibility traces êtji in analog circuits, thereby freeing computational resources on the

SIMD CPU. The correlation sensors model the eligibility traces under nearest-neighbor approximation

(Friedmann et al., 2017) and are accessed by the SIMD CPU as an entity cnji, accumulated over a period

P . Hence, the time sequence is split into N chunks of size P and weight updates on the SIMD CPU are

performed at times tn = nP + t̃, with n ∈ N
<N
0

(cf. fig. 10E) and t̃ ∈ [0, P ) a random offset,

∆W̄ ih/hh
ij = −η

∑

n

Ln
jFκ̂

(

cih/hh,n
ji

)

and ∆W̄ ho
kj = −η

∑

n

(

ynk − y∗,nk

)

Fκ̂

(

ζnj
)

, (2)

with κ̂ = exp (−P/τm) and ζnj being the recurrent spike count in interval n. Due to the updates rules’576

accumulative nature, we refer to them as neuromorphic accumulative spike propagation (NASProp).577

Simulations in fig. 10D verify that NASProp endows RSNNs with the ability to solve the pattern-generation578

task reasonable well.579

NASProp’s SIMD CPU implementation effectively demonstrates full on-chip learning on the BSS-2580

system. In high-level software, on-chip learning is implemented in a PyTorch model, defined in hxtorch,581

holding parameters for the network’s projections. Its forward method implicitly executes the experiment582

on the BSS-2 system for a batch of input sequences. Currently, this model learning on-chip serves as a583

mere black box for the specific network at hand with a static number of layers, as for on-chip spiking584

networks the network’s topology needs to be known upon execution. Therefore, this approach is considered585

a first step from common PyTorch models to spiking on-chip models.586

As for in-the-loop learning, on forwarding a batch of inputs sequences, grenade maps the software587

network to a hardware representation with signed synapses and configures the chip accordingly. Moreover,588

before executing a batch element, grenade starts the plasticity kernel on the SIMD CPU, computing weight589

updates in parallel to the network’s emulation. The plasticity rule implementation relies on libnux (cf.590

section 2.2.3) and utilizes the VU extension for accessing hardware observables (e.g. cnji and yn) and591

computing weight updates row-wise in parallel, thereby fully exploiting the system’s speed up factor.592

In hxtorch, learning parameters are configured in a configuration object exposed to Python, which is593

injected to grenade and passed to the SIMD CPU before batch execution on hardware begins. As different594

projections in the network have different update rules, relying on population-specific observables, the595

network’s representation on hardware (cf. fig. 10B) is communicated to the SIMD CPU. This allows596

for identifying signed hardware synapses and neurons with projections and populations on the SIMD597

CPU. Finally, before each batch element is executed, grenade has the ability to write trial-specific details598

onto the SIMD CPU (e.g. random offset t̃ and the synapse row to perform updates for). Hence, smooth599

on-chip learning is granted by reliable communication between little-endian host engine and the embedded600

This is a provisional file, not the final typeset article 20



Eric Müller et al.

big-endian SIMD CPU. For serialization of information from and to the SIMD CPU we deploy the C++601

header-only library bitsery (Vinkelis, 2020), allowing for seamless transmission of objects between systems602

of differing endianness.603

Due to changing hardware weights during on-chip training, the adjusted weights are reverse mapped to604

the software representation and stored in the network’s parameter tensors. Therewith we utilize PyTorch’s605

native functionality to load and store network parameters. Reverse network mapping is implemented in the606

hxtorch on-chip-learning model by accessing the hardware routing result and is performed implicitly in the607

model’s forward method after experiment execution.608

Successful implementations of plasticity rules for on-chip learning are facilitated by providing trans-609

parency of SIMD CPU programs by means for tracing and recording data. To that end, libnux (cf.610

section 2.2.3) facilitates logging of any information into a dedicated SIMD CPU memory region, easily611

accessed from the host engine. Moreover, logging can be redirected to the FPGA-controlled dynamic612

random-access memory (DRAM), effectively allowing extensive logging of whole learning processes and613

hardware observables.614

3.3 Embedded Operation615

Apart from operating BSS-2 tightly coupled to a host computer, the integrated microprocessors can616

act as system controllers. They can orchestrate the control flow of the experiment and undertake tasks617

within it. These tasks may include calibration routines, virtual environment simulation or optimizer loops.618

Embedding them in proximity to the neural network core yields latency and data-locality advantages. In the619

following, we describe three exemplary experiments that make exhaustive use of the embedded processors620

as system controllers.621

First, Wunderlich et al. (2019) introduce an embedded environment simulation of a simplified version of622

the Pong video game on the SIMD CPU, see left panel in fig. 11. One of the two involved agents plays623

optimally by design, the other one is represented by a SNN on BSS-2. During the experiment, the latter is624

trained on-chip using a reward-based spike timing dependent plasticity (STDP) rule. This set-up therefore625

unites the control flow, virtual environment simulation and learning rule within a single program running626

on the integrated processors.627

Second, Stradmann et al. (2021) describe the application of the BSS-2 system for inference of ANNs that628

detect atrial fibrillation in medical electrocardiogram (ECG) data. Targeting applications in energy efficient629

devices, they aim for as little periphery as possible and therefore let the embedded processors orchestrate630

all classification routines. The resulting tight loop between the analog inference engine and digital data in-631

and outputs allows for low classification latencies and high throughput of more than 3600 ECG traces per632

second.633

Third, Schreiber et al. (2022) presents the emulation of an insect model with strong biological inspiration634

on BSS-2. The simplified brain model is embedded into an agent that is fed with stimuli from a simulated635

environment, see right panel in fig. 11. While the neural network is emulated as a SNN within the analog636

core, the agent itself as well as its virtual environment are both simulated on the SIMD CPU. The authors637

specifically challenge the virtual insects with a simple path integration task: As depicted in the right panel638

of fig. 11, a simulated swarm-out phase is followed by a period of free flight, where the agent is supposed to639

return to its nest. The complexity of this task and the comparably low number of involved neurons requires640

precisely controlled dynamics, which they achieve by integrating experiment specific on-chip calibration641

routines directly on the SIMD CPUs (cf. section 2.3.6).642
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Figure 11. (left) Reinforcement learning: the chip implements a spiking neural network sensing the current
ball position and controlling the game paddle. It is trained via a reward-based STDP learning rule to achieve
almost optimal performance. The game environment, the motor command and stimulus handling, the
reward calculation and the plasticity is performed by a C++ program running on the on-chip processor.
Figure taken from Wunderlich et al. (2019). (right) Recording of a virtual insect navigating a simulated
environment. The top panels show the forced swarm-out path in black. During this phase, the SNN emulated
by the analog neuron and synapse circuits on BSS-2 perform path integration. Afterwards, the insect flies
freely and successfully finds its way back to the starting point and circles around it (gray trajectory). The
bottom panel shows the neuronal activity during the experiment. The environment simulation as well as the
interaction with the insect is performed by a C++ program running on the on-chip processor. Figure taken
from Pehle et al. (2022).

Supporting these complex experiments on the embedded processors and their interaction with the643

controlling host computer poses specific requirements to the BSS-2 OS. Especially, a cross-compilation644

toolchain for the SIMD CPU is required.645

As described in section 2.2.3, we therefore provide a cross-compiler based on gcc (GNU Project, 2018),646

which in addition to the processor’s scalar unit also integrates its custom vector unit in C++ (Müller et al.,647

2020a). Additional hardware specific functionality is encapsulated in the support library libnux. It abstracts648

access to configuration data and observables in the analog neural network core, like synaptic weights or649

correlation measurements. The exchange of such data with the host is facilitated by integration of the lean,650

cross-platform binary serialization library bitsery (Vinkelis, 2020).651

For execution, the compiled programs need to be placed in system memory — in case of BSS-2, each652

SIMD CPU has direct access to 16 kB SRAM. For a complete calibration routine or complex locally653

simulated environments, this may not suffice. We therefore utilize the controlling FPGA as memory654

controller: It allows the on-chip processors to access externally connected DRAM with significantly larger655

capacity at the cost of higher latency. Programs for the embedded processor can place instructions and data656

onto both the internal SRAM and the external memory via compiler attributes. This allows fine-grained657

decisions about the access-latency requirements of specific instruction and data sections.658

Similar to experiments designed for operation from the host system, embedded experiments often659

require reconfiguration of parts of BSS-2. The hardware abstraction layer introduced in the BSS-2 OS660
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(cf. section 2.2.2) has therefore been prepared for cross-compilation on the embedded processors. As a661

result, the described container and coordinate system can be used in experiment programs running on the662

on-chip SIMD CPUs.663

3.4 Artificial Neural Networks664
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Figure 12. Matrix-vector multiplication for ANN inference. (A) Scheme of a multiply-accumulate
operation. Vector entries are input via synapse drivers (left) in 5 bit resolution. They are multiplied by the
weight of an excitatory or inhibitory synapse, yielding 6 bit plus sign weight resolution. The charge is
accumulated on neurons (bottom). Figure taken from Weis et al. (2020). (B) Comparison between a spiking
(top) and an integrator (bottom) neuron. Both neurons receive identical stimuli, one inhibitory and multiple
excitatory inputs. While the top neuron shows a synaptic time constant and a membrane time constant, the
lower is configured close to a pure integrator. We use this configuration for ANN inference. Please note
that for visualization purposes the input timing (bottom) has been slowed to match the SNN configuration
(top). The integration phase typically lasts less than 2 µs.

The BSS-2 hardware supports a non-spiking operation mode which supports artificial neural networks665

(ANNs) implementing multiply–accumulate (MAC) operations (Weis et al., 2020). The operation within666

the analog core is sketched in fig. 12A. Each entry in the vector operand stimulates one or two rows of667

synapses, when using unsigned or signed weights, respectively. The activations have an input resolution of668

5 bit, controlling the duration of synapses’ activation. Similar to the spiking operation, synapses emit a669

current pulse onto the neurons’ membranes depending on their weight, which has a resolution of 6 bit. We670

implement signed weights by combining an excitatory and an inhibitory synapse into one logical synapse.671

Once all entries in the input vector have been sent to the synapses, the membrane potential resembles the672

result of the MAC operations. It is digitized for all neurons in parallel using the CADC, yielding an 8 bit673

result resolution.674

As a user interface, we have developed an extension to the PyTorch machine learning framework (Paszke675

et al., 2019), hxtorch (Spilger et al., 2020). It partitions ANN models into chip-sized MAC operations676

that are executed on hardware using grenade, see section 2.2.5. Apart from a special MAC program used677

for each multiplication, the majority of code is shared between spiking and non-spiking operation. With678

the leak term disabled, the neurons’ membranes represent the integrated synaptic currents, as shown in679

fig. 12B. As the MAC operation lacks any real-time requirements, it is executed as fast as possible to680

optimize energy efficiency. In terms of circuit parameterization, this means we choose a small synaptic681

time constant in order for the membrane potential to stabilize quickly. Therefore, a subset of the existing682
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spiking calibration routines can be reused here, cf. section 2.3.6. There is only one additional circuit – the683

encoding of input activations to activation times in synapse drivers – that needs to be calibrated.684
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hxtorch.nn.Linear(4, 120, mock=mock),

hxtorch.nn.ConvertingReLU(shift=1, mock=mock),

hxtorch.nn.Linear(120, 3, mock=mock),

)

def forward(self, x):

return self.classifier(x)

# now train the model as usual
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Figure 13. (A) The Yin-Yang dataset (Kriener et al., 2021) used for the experiment. (B) Hardware
initialization and model description with hxtorch. (C) Network response of the trained model depending on
the input. Top: 32 bit floating-point precision; bottom: quantized model on BSS-2 (5 bit activations, 6 bit
plus sign weights). (D) Output of the MAC operation on BSS-2 (left) compared to the linear approximation
(right). The solid line indicates the median, the colored bands contain 95% of each neuron’s outputs across
100 identical MAC executions.

Defining an ANN model in hxtorch works similar to PyTorch: The hxtorch module provides linear and685

convolutional layer classes as a replacement for their PyTorch equivalents. We introduce a few additional686

parameters controlling the specifics of hardware execution, e.g. the time interval between sending successive687

entries in the input vector to the synapse matrix, or the option to repeat the vector for efficacy scaling. This688
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enables the user to optimize saturation effects when driving the input currents as well as the gain of the689

MAC operation for the particular experiment. For both we provide default values as a starting point. The690

activation function ConvertingReLU additionally converts signed 8 bit output activations into unsigned691

5 bit input activations for the following layer by a bitwise right shift.692

Trained deep neural network models can be transferred to BSS-2 by first quantizing them with PyTorch693

and subsequently mapping their weights to the hardware domain. For quantization, we need to consider the694

intrinsic gain factor of the hardware MAC operation.695

Figure 13 shows an example application of a deep neural network with BSS-2, using the yin-yang dataset696

from Kriener et al. (2021). One of the three classes – yin, yang, or dot – are to be determined from four697

input coordinates (x, y, 1− x, 1− y). The network is first trained with 32 bit floating point accuracy using698

PyTorch, achieving 98.9 % accuracy. After quantizing with PyTorch to the hardware resolution of 5 bit699

activations and 6 bit plus sign weights, this drops to 94.0 %. Porting the model to BSS-2, after running a700

few epochs of hardware-in-the-loop training, an accuracy of 95.8 % is finally reached.701

In addition to running the ANN on the BSS-2 hardware, a hardware-limitations-aware simulation is702

available. It can be enabled per layer via the mock parameter (see fig. 13B). For mock mode, we simply703

assume a linear MAC operation, using a hardware-like gain factor. To investigate possible effects of704

the analog properties of the BSS-2 hardware on the inference and training, additional Gaussian noise of705

the accumulators and multiplicative fixed-pattern deviations in the weight matrix can be simulated. The706

comparison with actual hardware operation shown in fig. 13 D illustrates how this simple model already707

captures the most dominant non-linearities of the system. More sophisticated software representations708

that embrace second-order effects across multiple hardware instances have been proposed by Klein et al.709

(2021). They have shown how pre-training with faithful software models can significantly decrease710

hardware allocation time while at the same time increasing classification accuracy compared to plain711

hardware-in-the-loop training.712

3.5 User Adoption and Platform Access713

The BSS-2 software stack aims to enable researchers to exploit the capabilities of the novel neuromorphic714

substrate. Support for common modeling interfaces like PyNN and PyTorch provides a familiar entry point715

for a wide range of users. However, not all aspects of the hardware can fully be abstracted away, requiring716

users to familiarize themselves with unique facets of the system. To flatten the learning curve several717

tutorials —verified in continuous integration (CI) as ‘executable’ documentation— as well as example718

experiments are provided17. They range from introducing the hardware via single neuron dynamics to719

learning schemes like plasticity rate coding. In addition to the scientific community, they also target720

students, for example exercises accompanying a lecture about Brain Inspired Computing and hands-on721

tutorials.722

A convenient entry point to explore novel hardware are interactive web-based user interfaces. That is723

why we integrated the BSS-2 system into the EBRAINS Collaboratory18 (ebr, 2022). The Collaboratory724

provides a dynamic VM hosting on multiple HPC sites for Jupyter notebooks running in a comprehensive725

software environment. An BSS-2-specific experiment service manages multi-user access to the hardware726

located in Heidelberg utilizing the quiggeldy micro scheduler, see section 2.4. It allows for seamless727

interactive execution of experiments running on hardware with execution rates of over 10 Hz. This, for728

17 The tutorials and example experiments are available at https://github.com/electronicvisions/brainscales2-demos

18 Platform access is available via https://ebrains.eu
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example, was utilized during hands-on tutorials at the NICE 2021 conference (nic, 2021). The execution729

rates of that demonstration are shown in fig. 14.730
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Figure 14. Rate of executed experiment-steps via quiggeldy during the two BSS-2 hands-on tutorials
at NICE 2021. Experiments were distributed among eight hardware setups. In total there were 86 077
hardware runs executed.

Furthermore, EBRAINS has begun to provide a comprehensive software distribution that includes typical731

neuroscientific software libraries next to the BSS-2 client software. As of now, this software distribution732

has been already deployed at two HPC centers and work is under way to extend this to all sites available733

in the EBRAINS community. Leaving interactive demos aside, this automatic software deployment will734

simplify multi-site workflows significantly —including BSS-2 systems— as the scientist is not responsible735

for software deployment anymore.736

3.6 Hardware/Software Co-Development737

The BSS-2 platform consists of two main hardware components: the ASIC implementing an analog738

neural network core and digital periphery, as well as an FPGA used for experiment control and digital739

communication. Development of these hardware components is primarily driven by simulations of their740

analog and digital behavior, where — especially in the case of the ASIC — solid pre-fabrication test741

strategies need to be employed. Given the complexity of the system, integration tests involving all742

subsystems are required to ensure correct behavior.743

Replicating the actual hardware systems, the setup for these simulated integration tests pose very similar744

requirements on the configuration and control software. The BSS-2 OS therefore provides a unified interface745

to both, circuit simulators and hardware systems. For the connection to the simulators, we introduce an746

adapter library (flange) as an optional substitution for the network transport layer. Implementing an747

additional hxcomm back-end, flange allows for the transparent execution of hardware experiments in748

simulation.749

This architecture enables various synergies between hardware and software development efforts — specif-750

ically, co-design of both components already in early design phases. On system level, this methodology751
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helps to preempt interface mismatch between components of various different subsystems. Positive implica-752

tions for software developers include the possibility of very early design involvement as well as enhanced753

debug information throughout the full product life cycle: Having simulation models of the hardware754

components of the system allows for the inspection of internal signals within the FPGA and ASIC during755

program runtime. In particular, we have made use of this possibility during the development of a compiler756

toolchain for the embedded custom SIMD microprocessors, where the recording of internal state helps757

to understand the system’s behavior. Hardware development, on the other hand, strongly profits from758

software-driven verification strategies and test frameworks. BSS-2 OS especially allows to run the very759

same test suites on current hardware as well as simulations of future revisions. These shared test suites760

are re-used across all stages of the platform’s life cycle for multiple hardware generations, therefore ever761

accumulating verification coverage.762

4 DISCUSSION

This work describes the software environment for the latest BrainScaleS (BSS) neuromorphic architecture763

(Pehle et al., 2022): the BrainScaleS-2 (BSS-2) operating system. In Müller et al. (2020b) we introduced764

the operating system for the BrainScaleS-1 (BSS-1) wafer-scale neuromorphic hardware platform. New765

basic concepts of the second-generation software architecture were described in Müller et al. (2020a).766

For example, we introduced a concise representation of “units of configuration” and “experiment runs”767

supporting asynchronous execution by extensive usage of ‘future’ variables. Key concepts already existing768

in BSS-1 —e.g., the type-safe coordinate system— were extended for BSS-2. In particular, the systematic769

use of ‘futures’ now allows higher software levels to transparently support experiment pipelining and770

asynchronous experiment execution in general. Additionally, dividing experiments into a definition and an771

execution phase also facilitates experiment correctness, software stack flexibility —by decoupling hardware772

usage from experiment definition— as well as increased platform performance by enabling a separation of773

hardware access from other aspects of the experiment.774

The new software framework is expert-friendly: we designed the software layers to facilitate composition775

between higher- and lower-level application programming interfaces (APIs). Domain experts can therefore776

define experiments on a higher abstraction level in certain aspects, and are still able to access low-level777

functionality. A software package for calibration routines —the process of tuning hardware parameters to778

the requirements defined by an experiment— provides algorithms and settings for typical parameterizations779

of the chip, including support for multi-compartmental neurons and non-spiking use cases. An experiment780

micro scheduler service allows to pipeline experiment runs, and even preempt longer experiment sessions781

of individual users, to decrease hardware platform latency for other user sessions. Enabling multiple782

high-level modeling interfaces —such as PyNN and PyTorch— to cover a larger user base was one783

of the new requirements for BSS-2. To achieve this, we provide a separate high-level representation784

of user-defined experiments. This signal-graph-based representation is generally suited for high-level785

configuration validation, optimization, and transformation from higher- to lower-level abstractions. The786

modeling API wrappers merely provide conversions between data types and call semantics. The embedded787

microprocessors allow for many new applications: Initially designed to increase flexibility for online788

learning rules (Friedmann et al., 2017), they have been also used for: environment simulations (Schreiber789

et al., 2022; Pehle et al., 2022), online calibration (section 3.3), general optimization tasks, as well790

as experiment control (Wunderlich et al., 2019). We ported our low-level chip configuration interface791

to the embedded processors and thereby allow for code sharing between host and embedded program792

parts in addition to a software library for embedded use cases. Apart from features directly concerning793
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platform users, we enhanced the support for multiple hardware revisions in parallel facilitating hardware794

development, commissioning and platform operation. In combination with a dedicated communication795

layer, this enables not only support for multiple communication backends between host computer and796

field-programmable gate array (FPGA), such as gigabit ethernet (GbE) or a memory-mapped interface797

for hybrid FPGA-CPU systems, but also for co-simulation and therefore co-development of software798

and hardware. Finally, we operate BSS-2 as a research platform. As a result of our contributions to799

the design and implementation of the EBRAINS (ebr, 2022) software distribution, interactive usage of800

BSS-2 is now available to a world-wide research community. To summarize, we motivated key design801

decisions and demonstrated their implementation based on existing use cases: Support for multiple top-level802

APIs for ‘biological’ and ‘functional’ modeling; support for the embedded microprocessors including803

structured data exchange with the host, a multi-platform low-level hardware-abstraction layer, and an804

embedded execution runtime and helper library; support for artificial neural networks in host-based and805

standalone applications; focus on the user community by providing an integrated platform; sustainable806

hardware-software co-development.807

To build a versatile modeling platform, BSS-2 is a neuromorphic system that improved upon successful808

properties of predecessors, both, in terms of hardware and software. Simulation speed continues to be809

an important point in computational neuroscience. The development of new approaches to numerical810

simulation promising lower execution times and better scalability is an active field of research (Knight and811

Nowotny, 2018, 2021; Abi Akar et al., 2019), as is improving existing simulation codes (Kunkel et al., 2014;812

Jordan et al., 2018). Whereas parameter sweeps scale trivially, systematically studying model dynamics813

over sufficiently long periods as well as iterative approaches to training and plasticity can only benefit814

from increases in simulation speed. The physical modeling approach of the accelerated neuromorphic815

architectures allows for a higher emulation speed than state-of-the-art numerical simulations (Zenke and816

Gerstner, 2014; van Albada et al., 2021). BSS-2 can serve as an accelerator for spiking neural networks817

and therefore opens up opportunities to work on scientific questions that aren’t accessible by numerical818

simulation. However, to deliver on this promise in reality, both, hardware and software need to be carefully819

designed, implemented and applied. The publications building on BSS-2 are evidence of what is possible in820

terms of modeling on accelerated neuromorphic hardware (Bohnstingl et al., 2019; Billaudelle et al., 2020,821

2021; Cramer et al., 2019, 2022; Czischek et al., 2022; Göltz et al., 2021; Kaiser et al., 2021; Klassert et al.,822

2021; Klein et al., 2021; Müller et al., 2020a; Schreiber et al., 2022; Spilger et al., 2020; Stradmann et al.,823

2021; Weis et al., 2020; Wunderlich et al., 2019).824

We believe that these publications offer a first glimpse of what will be possible in a scaled-up system.825

The next step on the roadmap is a multi-chip BSS-2 setup employing EXTOLL (Neuwirth et al., 2015;826

Resch et al., 2014) for host and inter-chip connectivity. First multi-chip experiments have been performed827

on a lab setup (Thommes et al., 2022). Additionally, a multi-chip system reusing BSS-1 wafer-scale828

infrastructure is in the commissioning phase and will provide up to 46 BSS-2 chips. Similar to BSS-1, a829

true wafer-scale version of BSS-2 will provide an increase in terms of resources by one order of magnitude830

and thus will enable research that not only looks at dynamics at different temporal scales, but also on831

larger spatial scales. In terms of software we have been adapting our roadmap continuously to match832

modelers’ expectations. For example, we work on future software abstractions that will allow for flexible833

descriptions of spiking network models with arbitrary topology in a machine learning framework. PyTorch834

libraries such as BindsNET (Hazan et al., 2018) or Norse (Pehle and Pedersen, 2021) enable efficient835

machine-learning-inspired modeling with spiking neural networks and would benefit from neuromorphic836

hardware support.837
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