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Abstract

Over the last decade, the computational demand for Artificial Intelligence
has rapidly increased. Various novel computation paradigms are pursued to
satisfy this growing thirst for computational resources. One approach is neu-
romorphic hardware, which mimics biological neurons and synapses. Espe-
cially, dendrites are assumed to play a central role in a neuron’s computational
power. BrainScaleS-2 is a neuromorphic system capable of emulating multi-
compartment neuron models. The main goal of this thesis is to facilitate
multi-compartment experiments on BrainScaleS-2.
First, we present the results of a post-silicon validation of the inter-
compartment conductance. Furthermore, we implement a calibration routine
of the inter-compartment conductance, capable of compensating the fixed-
pattern variations between the neuron circuits by up to one order of magni-
tude. An application programming interface is built for a more comprehensive
use of multi-compartment neurons from a user-side perspective. Additionally,
the ability of genetic algorithms to configure multi-compartment neurons was
investigated. A three-compartment neuron was thereby trained to success-
fully classify the Iris data set. Moreover, the capabilities of genetic algorithms
to configure structured neurons on BrainScaleS-2 to a phenomenological ob-
servable, which could be extracted from in-vivo or in-vitro experiments, is
demonstrated.

Zusammenfassung

Innerhalb der letzten zehn Jahre ist der Rechenbedarf für künstliche Intel-
ligenz rapide gestiegen. Um diesen wachsenden Durst nach Rechenressour-
cen zu stillen, wird an verschiedenen neuartigen Computersystemen geforscht.
Einen Ansatz stellen neuromorphe Computer dar, welche versuchen biologi-
sche Neuronen und Synapsen zu imitieren. Insbesondere Dendriten wird ein
substanzieller Beitrag zur Rechenleistung biologischer Neuronen zugeschrie-
ben. BrainScaleS-2 ist ein neuromorphes System, das unter anderem Multi-
Kompartiment-Neuronenmodelle emulieren kann. Das Hauptziel dieser Arbeit
ist es, Multi-Kompartiment-Experimente auf BrainScaleS-2 zu vereinfachen.
Zunächst wurde eine Verifikation der korrekten Funktion der interkompar-
timenten Konduktanz durchgeführt. Da die Schaltungen Abweichungen auf-
grund von Fertigungstoleranzen aufweisen, wurde eine Kalibrationsroutine für
die Konduktanz implementiert. Diese ist in der Lage die Abweichungen um
bis zu eine Größenordnung zu reduzieren. Es wurde eine Anwendungsschnitt-
stelle erstellt, welche die Nutzung von Multi-Kompartiment Neuronen ver-
einfachen soll. Außerdem wurde die Nutzung genetischer Algorithmen zur
Konfigurierung von Multi-Kompartiment Neuronen untersucht. Ein Neuron
bestehend aus drei Kompartimenten wurde durch einen genetischen Algorith-
mus so konfiguriert, sodass dieses den Iris-Datensatz erfolgreich klassifizieren
konnte. Abschließend wurde die Fähigkeit genetischer Algorithmen demons-
triert, strukturierte Neuronen auf BrainScaleS-2 so zu konfigurieren, dass diese
beobachtetes Verhalten imitieren, welches aus in vivo oder in vitro Experimen-
ten stammen könnte.
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1 Introduction
Ten years ago, AlexNet won the ImageNet Large Scale Visual Recognition
Challenge [RDS+15] with an artificial neural network (ANN) consisting out
of 650,000 neurons and 60 million parameters [KSH12]. From there on, training
of new Artificial Intelligence (AI) systems demanded increasingly more compu-
tational power, doubling approximately every 3.4 months [Amo19]. This grow-
ing appetite for computational resources exceeds Moore’s law, which describes
the doubling time for transistors on an integrated circuit to roughly two years
[Wal16], therefore representing a limit for sustainable scaling. To satisfy the
thirst for computational resources, AI models are trained on ever-larger data
centers. As a consequence, these models become increasingly cost and energy
expensive. To put things into perspective, OpenAI’s natural language process-
ing model GPT-3, consumed an estimated energy of 1287MWh for training
[PGL+21]. This corresponds to the energy provided by the nuclear power plant
of Neckarwestheim-2 within one hour, which has a net capacity of 1310MW
[BOO21].

Clearly, this ongoing trend of scaling AI systems is unsustainable and will
reach its limits inevitably. Consequently, creative alternative approaches for
computation in those domains are needed. Here a solution might be found in
nature, since many of the tasks AI is targeted to solve are already done by
biological brains. One example are humans steering vehicles in a real-world
environment, where autonomous vehicles are thought to still be several years
away [Sti19]. But in contrast to the data centers described above, which provide
the computational infrastructure for the algorithms to learn, the human brain
only needs about 20W to function [VC10].

This efficiency supremacy of biological brains is one of the reasons why nu-
merous research projects are trying to translate the concepts of biological brains
into silicon devices, which are therefore called neuromorphic computers [Wal13].

One such approach is the BrainScaleS-2 (BSS-2) system developed by the
Electronic Vision(s) Group of the Heidelberg University. Thereby, BSS-2 is a
mixed-signal neuromorphic system, which implements an adaptive-exponential
integrate-and-fire (AdEx) neuron model [SBDW20]. A key difference to the
initially mentioned ANNs is that on BSS-2, so-called spiking neural networks
(SNN) can be implemented. Conceptually, SNNs are closer to their biological
archetype since they operate in continuous time and communication between
single neurons is carried out by spikes.

However, SNNs often employ a point neuron model, which arguably is miss-
ing a crucial aspect of biological neurons, namely the morphology or structure of
the neuron itself. There is evidence that the shape of the neurons and especially
the input receiving part, which are called dendrites, play a significant role in
the computational success of biological brains [Lar22].

The spatial component introduced by dendrites can be represented using a
multi-compartment neuron model, which represents the spatial structure in a
discretized space. BrainScaleS-2 supports multi-compartment neurons by pro-
viding adjustable conductances between neuron circuits to form larger spatially
structured neurons [KBM+21].
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However, those features of the hardware are not yet extensively exposed
to high-level software, which complicates the use of multi-compartment related
features for experimenters.

Therefore, the goal of this thesis is the facilitation of multi-compartment
neurons on BSS-2. One aspect of this is to create a calibration routine for the
inter-compartment conductance (ICC), which is used to interconnect different
compartments. Another aspect is the better integration of multi-compartment
related entities of the hardware in higher abstractions of the software stack. The
last topic is to demonstrate the experimental viability of multi-compartment
neurons. Therefore, genetic algorithms are chosen as they are convenient for
training new architectures [SPDR16].

In the following, a short overview of the contents of this thesis will be pro-
vided. First, a mathematical description of the leaky integrate-and-fire (LIF)
neuron model and the multi-compartment model is given, followed by the de-
scription of genetic algorithms. Then an overview of the hardware platform
BrainScaleS-2 as well as its software stack is provided, focusing on the parts of
hardware and software, which were used during this thesis.

In section 3, results of the characterization of the ICC are shown.
Next, in section 4, the implemented calibration routine for the ICC is pre-

sented.
In section 5, the LogicalNeuron is introduced, which aims to facilitate the

use of multi-compartment neurons from a user-side perspective.
Subsequently, in section 6, experiments using multi-compartment neurons

are presented, which were trained using genetic algorithms.
Finally, in section 7, the work of this thesis is summarized, discussed and an

outlook is given.



2 Principles

2.1 Neurons

soma

axon

(basal) dendrite

apical dendrite

Figure 2.1: 3D rendering of the structure from a pyramidal neuron of a rat’s
neocortex. Various regions like the soma, axon and dendrites are highlighted
in different colors. The data was collected by [SBS+12] and accessed via
NeuroMorho.org [Asc06].

In 1939 Hodgkin and Huxley discovered that there is a potential across the
membrane of a neuron, which is defined as the difference between the intracel-
lular and the extracellular potential [HH39]. This so-called membrane potential
can be altered upon the activation of a synapse. Depending on the type of
the synapse, an excitatory postsynaptic potential (EPSP) is initiated or an
inhibitory postsynaptic potential (IPSP), where the former increases the mem-
brane potential and the latter decreases it. If the membrane potential exceeds a
certain threshold, the neuron will elicit a spike1, which is a characteristic change
of the membrane potential. This threshold introduces a non-linearity, which is
crucial to the system’s ability to make computations. After the neuron has
spiked, it is in a refractory state where its potential is strongly decreased and
de facto not responsive to further stimuli. Succeeding the refractory time τref ,
the membrane potential will decay back to its resting state [Koc99].

Now the principle dynamical properties of a neuron are stated, but there are
also important spatial structures that influence the behavior of a neuron.

When looking at biological neurons like the one depicted in figure 2.1 three
regions can be highlighted:

1. The right parts in green and purple are the dendrites. Most of the synapses
are located here, therefore making the dendrites the signal-receiving part
of the neuron.

2. The middle part in red, the so-called soma, is where the cell’s nucleus
resides and the integration of the incoming information takes place.

1Thereby, the prior change of the membrane potential is not allowed to be arbitrarily slow
in order to elicit a spike.
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3. The left part in black is called the axon; its purpose is to forward the pre-
processed signal to other cells via synapses at the so-called axon-terminals.
[Wik22]

Especially dendrites might play a significant role in the computational power
of biological brains [Lar22]. For example, dendritic spikes introduce a further
non-linearity, allowing dendrites to pre-process synaptic input locally. Further-
more, the passive properties of the dendrite enable it to be direction-selective
and sensitive to coincidence [KBM+21].

From a phenomenological perspective, the properties of a neuron are now
outlined. In the following two subsections, two mathematical models are in-
troduced, which are capable of describing certain aspects of biological neurons.
First, the leaky integrate-and-fire (LIF) neuron model will be presented, which
implements the dynamics of a point neuron. Subsequently, the model of the LIF
neuron will be expanded to a mathematical description of a multi-compartment
neuron. This extension of the LIF model will then allow to model spatial prop-
erties of a neuron.

2.1.1 LIF Neuron Model

The dynamics of the membrane potential Um of a LIF neuron can be described
with following linear ordinary differential equation

Cm
dUm

dt
= −gl (Um − EL) + Iext, (1)

where Cm describes the membrane capacitance, gl the leak conductance and
EL the leak potential. The current term Iext accounts for any external input.

The membrane time constant τm = Cm/gl quantifies how fast the membrane
potential responds to external stimuli.

If we charge the capacitance by setting Iext to a constant value, the potential
increases exponentially, up to a threshold voltage Uth. If the membrane potential
reaches the threshold at time ts a spike will be initiated and the voltage will be
set to the reset potential Er for the time of the refractory period τref [GK02]:

Um(ts) =Uth

Um(ts < t < ts + τref) =Er.

When considering synaptic input, equation 1 must be extended by a current
term Isyn. Thereby, two synapse types are commonly considered:

• conductance-based synapses (COBA)

• current-based synapses (CUBA).

The LIF neuron with conductance-based synapses is described with

Isyn =ge(t) (Eexc − Um) + gi(t) (Einh − Um) (2)

ge/i(t) =
∑
input
neuron

k

∑
spike
s

wkεe/i
(
t− tks

)
, (3)
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where Eexc/inh denotes the excitatory/inhibitory potential, ge/i the synaptic
conductance, wk is the synaptic weight and εe/i the synaptic kernel.

Current-based LIF neurons are described with

Isyn =
∑
input
neuron

k

∑
spike
s

wkεe/i
(
t− tks

)
. (4)

Note that here the weight wk is now in units of Ampere compared to the
conductance-based synapse where the weight is given in units of Siemens, there-
fore the names. An example of the synaptic kernel ε can be a simple exponential
kernel of shape:

εe/i(t) = Θ(t) · exp

(
− t

τ
e/i
syn

)
. (5)

Here Θ denotes the Heaviside step function, which is 1 if its argument is larger
than 0, and otherwise, it is 0. τ

e/i
syn is the synaptic time constant [Pet16].

The LIF model can be further extended with an adaptive term, which ac-
counts for a short time course of adaptation. This so-called adaptive exponential
integrate-and-fire (AdEx) neuron model is implemented on the hardware plat-
form BrainScaleS-2 with current-based synapses [Sch21]. BSS-2 is the hardware
platform used in this thesis (cf. section 2.3).

2.1.2 Multi-Compartment Neuron Model

The simple model of the LIF neuron, discussed in the previous section 2.1.1, can
already capture the measured input-output behavior of regularly firing neurons
from a guinea pig’s visual cortex at their cell bodies [Koc99, CMLM96].

However, the cells from the experiment were stimulated at the cell’s body.
In nature, almost none of the excitatory synapses are located directly at the
soma but instead spread along the large dendritic trees. This clarifies why the
LIF neuron is a so-called point neuron model, because it does not consider any
spatial information a biological neuron has. Consequently, all inputs of a LIF
neuron have an instantaneous impact on the membrane potential. However,
biological neurons possess complex spatial structures (cf. figure 2.1), which at-
tenuate and actively process the signal.

To account for the spatial structure within a neuron, cable theory is often
used as an analytically understood model. Thereby, dendrites are approximated
as cylinders, with a longitudinal and transversal conductance [GKNP14]. As-
suming a long dendrite and both the longitudinal and transversal conductance
to be constant, the cable equation reads as:

τm
∂Um

∂t
− λ2

m

∂2Um

∂x2
+ Um =

Iext

gl
, (6)

where λm =
√
rm/rl is the electronic length scale with rl being the longitudinal

resistance per unit length and rm the transversal resistance times unit length.
The electronic length scale describes how strong a signal is attenuated along the
membrane. Therefore, Cable theory allows to describe the potential in dendrites
continuous in time and space.
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By discretizing the space, we end up with a compartmental neuron model.
This can be done by approximating the second derivative of U in equation 6
with the central difference approximation:

∂2Um

∂x2
≈ Um(x+ dx)− 2Um(x) + Um(x− dx)

dx2
, (7)

where equation 6 then becomes

Cm
∂Um

∂t
= −gl · Um

+gic · (Um(x+ dx)− Um(x) + Um(x− dx)− Um(x)) + Iext.
(8)

Additionally, the relations rm/dx = 1/gl and λ2
m = dx2 gic/gl were used.

Now, the neuron can be viewed as split into multiple compartments, which are
appropriately connected via inter-compartment conductances gic. Each com-
partment in turn can be described with a point neuron model2, which can
easily be seen when setting gic = 0 and returning at the LIF neuron equation 1
[Pet16].

Allowing for more than two connections per compartment and variable mem-
brane and inter-compartment conductance results in a more general description
of a multi-compartment neuron, for example, to represent a branching chain.
Here the membrane potential Um,i of compartment i can be expressed by fol-
lowing differential equation:

Cm,i
dUm,i

dt
= −gl,i · Um,i +

∑
j∈neighbors

of i

gic,ij · (Um,j − Um,i) + Iexti , (9)

where Cm,i describes the capacitance of compartment i, gl,i the leak conductance
of compartment i, gic,ij the conductance connecting compartment i with the
neighboring compartment j, Um,j the membrane potential of compartment j
and Iexti any external input current to compartment i. To solve this equation
for a neuron with n compartments we need to solve the system of n ordinary
differential equations, each defined by equation 9 [GK02].

2.2 Genetic Algorithms
Genetic algorithms belong to the category of search and optimization algo-
rithms. Suitably, the core concepts used by genetic algorithms are based on
the principles of evolution in nature as discovered by Charles Darwin. Thereby,
Darwins evolution theory can be summarized by three central principles which
act on a population:

• Inheritance: Traits are passed on from one or multiple parents to an off-
spring individual.

• Selection: Since resources in nature are limited, individuals compete for
them. Thereby, those who are better adapted to their environment, with
respect to their competitors, contribute on average more offspring to the
next generation. Individuals, which are succeeding in this process, are
attributed a higher fitness than those who do not.

2In the preceding derivation the leak potential EL was set to 0 without loss of generality.
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• Variation: The traits of individuals vary within a population.

When talking about inheritance, it is not yet specified of how traits are
passed on from a parent to an offspring generation. Crossover or recombination
describe one mechanism of how traits are passed on by a parent generation to
their offspring. Additionally, the offspring is exposed to mutations, which is a
process where traits are randomly altered.

Genetic algorithms are built along those central ideas. First, the problem
must be described so that an individual can represent a solution to that prob-
lem. Next, the population is initialized, for example, by randomly generating
individuals. Often, the individuals are encoded by an array of numeric values.
In genetic algorithms, this array can be seen as the equivalent of the genome in
living beings.

The main part of the genetic algorithm is done in a loop where first individ-
uals are selected and then evolutionary operators are applied to them to breed
the offspring generation. Then, the offspring generation will undergo the same
procedure again. In each generation, each individual will be assigned a fitness
value, which describes the quality of the solution provided by the individual.
Based on this score, each individual will be selected to be a parent of the next
generation. Each individual of the offspring generation is created by applying
crossover and mutation to the genome of the parent generation. Finally, the
offspring generation becomes the new parent generation and the whole process
starts again.

The above described loop is repeated until some stop condition, which can,
for example, be a maximal number of generations or if the fitness of an indi-
vidual or the average fitness of the whole population exceeds some threshold.
With that, an approximation to the solution of the problem is found [Wir20].

2.3 BrainScaleS-2: Hardware Platform
In this subsection, the BrainScaleS-2 hardware platform will be described, which
was used to obtain most of the results in this thesis.

The central idea of BrainScaleS-2 is to implement physical models of biologi-
cally inspired neural networks on a mixed-signal substrate [SBDW20, PBC+22a].
During this work, the High Input Count Analog Neural Network chip called
HICANN-X of second generation was used, which resembles the latest revision
of the BrainScaleS-2 system at the time most of the experiments were conducted.
Thereby, HICANN-X v2 is fabricated using a 65 nm complementary metal-oxide-
semiconductor (CMOS) technology, carried out by the Taiwan Semiconductor
Manufacturing Company (TSMC). While writing this thesis a third generation,
HICANN-X v3 was manufactured and is currently under testing.

The HICANN-X chip, as can be seen in the red box of figure 2.2A, consists
of 512 neuron circuits, each emulating an adaptive-exponential integrate-and-
fire (AdEx)[SBDW20] neuron model. The 512 neurons are arranged in four
quadrants of 128 neurons each (cf. figure 2.2B). Multiple neuron circuits can
be connected directly to their adjacent neighbors using programmable switches
to create larger logical neurons. Those switches are labeled Smh and Smv in
figure 2.2C and are used to connect neuron circuits horizontally and vertically,
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Figure 2.2: Overview of the BrainScaleS-2 system. A Section of the
BrainScaleS-2 cube setup with the HICANN-X chip located at the red rect-
angle. The chip is mounted on the chip-carrier board, which again is mounted
on the xBoard. Edited photo, originally taken by Johannes Schemmel. B
Schematic layout of the HICANN-X chip. Its 512 neurons are divided in four
quadrants of 128 neurons each. Each neuron can receive input from up to 256
plastic synapses. C Outline of the neuron circuitry with focus on the multi-
compartment related features. Four neuron circuits can be seen and the vari-
ous lines, which allow to interconnect neuron circuits in order to build multi-
compartment neurons. Figure adapted from [AMK+18] and [KBM+21].

respectively. Furthermore, each neuron circuit can be connected to a somatic
shared line either directly with the switch Sms or using an adjustable conduc-
tance Gic, which is controlled by an analog bias current. The shared line itself
has switches Ss between each neuron circuit. Those features enable BSS-2 to
emulate multi-compartment neurons, as they were described in equation 9 of
section 2.1.2.

Furthermore, each neuron circuit is capable of receiving input from up to
256 synapses. The input strength of each synapse can be adjusted via a 6-bit
weight [PBC+22a].

Since the typical membrane time constant τm = Cm/gl of a neuron circuit
on BSS-2 is in the regime of µs and typical neurons in biology have a membrane
time constants in the range of a few ms, we can speak of a 1000-fold acceleration
[KBM+21].

Next to the bias current adjusting the inter-compartment conductance, there
are further 23 analog parameters controlling the analog behavior of each neuron
circuit. Each parameter is adjustable using a 10-bit on-chip digital-to-analog
converter (DAC), which is called the capacitive memory (CapMem) and pro-
vides the current or voltage [PBC+22b, HHSM13].

Two different types of analog-to-digital converters (ADC) are available to
read out analog signals from the chip. The first one is the so-called membrane
ADC (MADC), which has a 10-bit digital resolution with a sampling frequency
of approximately 30MHz [Wei20]. However, the MADC is can only record two
neuron circuit at a time. The second one is the columnar ADC (CADC), which
has an 8-bit resolution with a maximal sampling frequency of about 500 kHz
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[Czi20]. In contrast to the MADC the CADC can read out all neuron circuits
in parallel since it has 1024 channels [Dau20].

Experiments can be controlled using a host computer, which sends instruc-
tions via Ethernet to a field-programmable gate array (FPGA). The FPGA for-
wards instructions to the chip and returns read data back to the host computer.
The xBoard, shown in figure 2.2A, functions as an intermediator between the
FPGA and the chip itself. Furthermore, the xBoard has a DAC, with a 12-bit
resolution over a voltage range of 0V to 2.5V, which can be connected to the
chip and therefore be used to stimulate neuron circuits.

The Electronic Vision(s) Group possesses multiple HICANN-X chips, where
each chip has a unique identifier. However, this thesis will not refer to the
unique identifier when referring to a chip but another naming scheme. This
naming scheme is based on the names of the chips used in the workload manager
Slurm [Mau21], which is used within the Electronic Vision(s) group to allocate
computational resources like BSS-2. Therefore, any time experiment results are
presented in this thesis; the used chip will be specified according to that naming
scheme. Table A.1, located in the appendix, can be used to translate the here
employed naming scheme to the unique identifier of each chip.

2.4 BrainScaleS-2: Software Stack
The BrainScaleS-2 software stack is structured in multiple layers [MAB+22],
and will be described here shortly in a bottom-up fashion. Additionally, for a
better overview, the whole software stack is schematically shown in figure 2.3.

The first layer is the communication layer where hxcomm resides, responsible
for receiving and sending data to and from the chip. Next up are the various
hardware abstraction layers. haldls is a collection of chip and hardware com-
ponents represented as configurable containers; halco is the general coordinate
system that addresses each unique hardware component conveniently. The con-
trol flow layer stadls is responsible for timed instructions, such as sequentially
writing coordinate, container pairs.

The next higher level of abstraction is the logical layer called lola, where
multiple related haldls containers are combined to build one coherent container.
Above that, the calibration framework calix is located, responsible for tuning
the system’s analog parts into a desired operating state, that is defined by the
user. Parallel to that, a graph-based experiment flow and description layer
called grenade is located.

Finally, the high-level application programming interfaces (APIs), which are
called pyNN.brainscales2 and hxtorch enable non-expert users to run experi-
ments on BrainScaleS-2 [MAB+22, Mau21]. While pyNN.brainscales2 imple-
ments the PyNN-API [DBE+09] for BSS-2, which is used for modeling SNNs,
hxtorch can be used for non-spiking classical machine learning applications
[SME+20] and wraps the PyTorch-API [PGM+19].

Almost all software layers described here are predominantly implemented in
the programming language C++ and are exposed to Python using GENPYBIND
[Klä20]. Only the modeling layers and calix are implemented in Python.

The full software stack is publicly accessible under the GNU Lesser General
Public License v2 at https://github.com/electronicvisions.

https://github.com/kljohann/genpybind
https://github.com/electronicvisions
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Figure 2.3: Overview of the whole BSS-2 software stack. Left: The differ-
ent software stack layers are highlighted by the differently colored background.
Multiple APIs or libraries can reside within each layer, which are illustrated
as white boxes alongside their repository name. The endpoints of the arrows
indicate the dependencies of an instance. Right: Typical applications for the
respective points in the hierarchy. The figure was taken from [MAB+22]. For
a more detailed description of the software stack of BSS-2 the reader is encour-
aged to take a look into [MAB+22].
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In the following, a more detailed description of the calibration framework
calix and the logical layer lola is given since most of the software developed
by the author was contributing to those repositories.

2.4.1 Calix - Calibration on HICANN-X

As already mentioned, the calibration framework calix is responsible for cal-
ibrating the various biases, which are used to set the analog parts of the chip
into a desired state. Furthermore, calix is responsible for setting digital control
bits like the offsets of the CADC, however here, we will focus on the calibration
routines of the analog parts.

The calix framework is implemented in the Python programming language
and interfaces the lower-level hardware abstraction layers.

An individual calibration routine is implemented for each parameter, which
sets the parameter such that a target observable is reached as close as possible.
Thereby, each calibration is derived from an abstract base class, defining the
interface of all calibration routines within calix in a comprehensive way.

At the heart of each calibration, there is the run method calling an experi-
ment in an iterative way, defined by a provided algorithm. Each experiment run
returns an observable, which can be spike counts or recordings from the CADC
or MADC. The algorithm is accountable for sweeping the parameter space of the
parameter. Therefore, the experiment is run multiple times, each time with an
according to the algorithm adapted parameter. The decision of the algorithm,
how to tweak the parameter, is based on each experiment result.

In the end, the calibration returns the parameter values, which reached the
provided target as close as possible.

2.4.2 Lola - Logical Layer

At the level of the so-called logical layer lola, multiple containers are combined
to form larger containers abstracting multiple parts of the chip into one encap-
sulating container. An example would be the AtomicNeuron, which summarizes
all containers related to a neuron circuit. So both, analog aspects, like the leak
potential, and digital aspects, like enabling the synaptic input of the neuron
circuits, are summarized in there.





3 Characterization of the Inter-Compartment
Conductance

The inter-compartment conductance (ICC) plays a central role in the use of
multi-compartment neurons on BSS-2. Consequently, it is essential to verify its
correct functionality. Even though the implemented analog circuitry of BSS-
2 is tested extensively in software simulations before a chip is manufactured
[M1̈7], malfunctions can sneak their way into the system. Therefore, post-silicon
validation of the chip components is important to detect any undesired behavior,
which can be addressed and fixed in upcoming chip revisions. In this section,
the inter-compartment conductance is characterized to verify it is operating as
intended.

Additionally, fixed-pattern deviations, which are introduced during the chip
manufacturing process, result in slightly different properties between neuron
circuits [Wei20]. The characterization can help to quantify those.

In the following subsections, the measurement setup along with the used
equipment is described. Then the characterization results are presented in sub-
section 3.2 and subsequently compared to simulation data in subsection 3.3 in
order to verify its correct operation.

3.1 Measurement Setup
In this subsection, the measurement equipment as well as the hardware config-
uration, which is required to characterize the inter-compartment conductance,
is described.

We have learned about the multi-compartment features of BSS-2 in section
2.3. The most important component is the inter-compartment conductance gic,
which can connect a neuron circuit to the somatic shared line (cf. figure 2.2).
In order to characterize it, multiple neuron circuits have to be configured such
that a precise current can be put through the conductance.

The simplest multi-compartment neuron one can create consists of two com-
partments. In order to create such a two-compartment neuron we have to enable
the conductance gic and close the switch Ss connecting the somatic shared line
to its right neighbor. By closing the switch Smh of the right neighbor, we have
the configuration that resembles a two-compartment neuron.

A current through the inter-compartment conductance can be created by
setting the potentials of the two compartments Um,a 6= Um,b.

One way of setting the membrane potentials Um,{a,b} to some value would be
using the CapMem. However, the CapMem is set by a 10-bit digital value, which
is translated to a corresponding voltage [HHSM13], where no direct translation
to SI units is possible. A translation to SI units would depend on another char-
acterization of the CADC. Additionally, and far more important, we currently
lack a procedure for measuring the current going through the conductance once
a potential difference is established. Theoretically, there exists circuitry, capable
of measuring currents on the chip but it is not yet commissioned.

To overcome those two problems, we can use the Keithley 2635B sourceme-
ter, which can serve as both a current measuring device and a voltage source at
the same time.
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Figure 3.1: Measurement setup for each neuron for the characterisation, us-
ing the DAC of the xBoard and an external sourcemeter (SM). The neuron
with enabled inter-compartment conductance is deciding, whether the configu-
ration with the column ”even” or ”odd” should be used. Figure adapted from
[AMK+18] and [KBM+21].
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For the purpose of attaching peripheral measuring devices the chip is equipped
with two readout pins. The sourcemeter can then be attached to one of those.

As a second voltage source the digital-to-analog converter (DAC), located
on the xBoard, can be used. Since the DAC is located on the xBoard, it can
be connected to the other readout pin by simply configuring the xBoard in
software. The DAC then sets the potential for the other compartment. Further
technical specifications about the used sourcemeter and the DAC of the xBoard
are given at the end of this subsection.

Any neuron circuit can be directly connected to the readout pins using a
line called istim. Unfortunately, there is only one such istim line per row of
neurons. However, by extending the multi-compartment neuron with one fur-
ther neuron circuit on the opposite row of the initial neuron, using the switch
Smv, both istim lines can be utilized. Therefore, both the sourcemeter and the
DAC can be used to set the compartments to arbitrary potentials.

Since we want the measurement setup to be equal for all neurons on the
chip four hardware configurations are needed. Those four configurations are il-
lustrated in figure 3.1. The configuration depends on the hemisphere, where the
neuron with enabled inter-compartment conductance is located, and whether
the neurons ”hardware index” is even or odd. The latter distinguishing is re-
quired to be able to characterize all inter-compartment conductances even at
the boundaries of the hardware.

Finally, this ensures that the DAC is always attached to the neuron circuit,
whose inter-compartment conductance is enabled, as can be seen in figure 3.1.

In the following two paragraphs, the specification of the DAC and sourceme-
ter will be described.

Keithley 2635B Sourcemeter
The Keithley 2635B is a current/voltage source and, simultaneously, a measur-
ing device with a resolution of 20 pA at an operating current of 1µA up to a
resolution of 20 fA at 1 nA. Below 200mV the voltage source resolution is 5µV
[Tek21]. It provides a USB interface, which can be used to configure it remotely
using a Python-wrapped C++ library [Str16].

DAC on xBoard
The DAC on the xBoard has a 12-bit resolution over the voltage range of 0V to
2.5V, with a typical relative accuracy of ± 2LSB. Again, the DAC value can
be set remotely via the host computer [Sch21, Dau20].

3.2 Measurement Results
The results shown in the following were obtained by setting compartment b to
a constant potential Um,b using the external sourcemeter, while sweeping com-
partment a’s potential Um,a using the DAC of the xBoard. For each potential
difference Udiff = Um,a −Um,b the sourcemeter can measure the current Îic run-
ning through the inter-compartment conductance gic. This will then be repeated
for multiple values of Um,b.
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Figure 3.2: Baseline current Ibl, of the compartment, which is attached to
the sourcemeter, in dependency of the supplied potential Um,b. Thereby, the
compartments are disconnected from each other by opening switch Sms. Four
neurons were recorded per quadrant. The quadrant membership of the neurons
is indicated by the color. Results obtained on W66F3.

Furthermore, different neurons on the hardware were measured to get an
estimate for the fixed-pattern variation of the neuron circuits introduced during
fabrication of the chip.

As a first step, a baseline measurement was carried out to measure the base-
line current Ibl. Thereby, compartment b was disconnected from compartment
a using the switch Sms. Now the baseline current Ibl was measured for every
potential setting Um,b, using the sourcemeter. The results of this baseline mea-
surement can be seen in figure 3.2. Thereby, four neurons per chip quadrant
are displayed. The baseline current can be explained by the transmission gate
connecting the neuron circuit to the istim line. Already here, the effect of
fixed-pattern variation can be seen as the currents vary between the neuron
circuits.

By subtracting the baseline measurement Ibl from the above described mea-
sured current Îic, we obtain the actual current Iic = Îic − Ibl going through the
inter-compartment conductance.

The result for Neuron 0 on Chip W66F3 can be seen in figure 3.3. The bias
current for the inter-compartment conductance was set to 511LSB with bias
current multiplication enabled. On the x-axis, the potential difference Udiff is
shown, and on the y-axis, the baseline adjusted current Iic, running through
the inter-compartment conductance. The color bar to the right displays the
corresponding fixed compartment potential Um,b for the set of curves.
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Figure 3.3: Current through the inter-compartment conductance Iic in depen-
dency of the potential difference Udiff recorded form neuron 0 of chip W66F3.
Each curve represents a fixed setting of Um,b, which is indicated in the colorbar
to the right. Different values for Udiff within one curve are obtained by sweeping
Um,a, using the DAC.

If the inter-compartment conductance were a perfect ohmic resistance, we
would expect a straight line through the origin. However, the measured curves
deviate from that and depend on the potential of the respective compartments.

Furthermore, the set of curves should pass through the origin since no cur-
rent should go through the inter-compartment conductance in the absence of a
potential difference. However, the set of curves seems to be shifted to the left
by approximately 0.05V. Since the readout of the current is very precise, most
likely there is a miss-match between the provided sourcemeter voltage and DAC
voltage. The leftwards shift suggests that the supplied potential by the DAC
is larger than that from the sourcemeter when programming them to the same
value.

Since we want to investigate the conductance, the derivative of the current
Iic with respect to the differential potential Udiff was calculated to obtain the
conductance gic. Thereby, a numerical derivation was carried out using a central
finite difference approach of 2nd-order. Because the conductance is calculated
from the derivative, the aforementioned leftward shift is not affecting the out-
come of the calculated conductance beyond the already present shift to the left.

The results of that calculation can be seen in figure 3.4 for the measurement
data shown in figure 3.3. Desirable would be a constant conductance over a
broad range of Udiff . However, especially in the regime of low Um,b and Um,a

the conductance is strongly dependent on Udiff .
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Figure 3.4: Inter-compartment conductance gic in dependency of the potential
difference Udiff of neuron 0 on chip W66F3. The conductance was calculated by
taking the derivative of Iic with respect to Udiff using a central finite difference
approach of 2nd-order. Each curve represents a fixed setting of Um,b, which is
indicated in the colorbar to the right. Different values for Udiff within one curve
are obtained by sweeping Um,a.

As mentioned in section 2.3 the ICC is adjustable via a bias current with a
10-bit resolution, which is called i_bias_nmda. Furthermore, the bias current
can be multiplied or divided by a factor of 4.

In the following, measurement results for the behavior of the ICC for differ-
ent i_bias_nmda values are presented. Thereby, compartment b was set to a
fixed potential of 0.6V, while compartment a was set to two different potentials
Um,a = {0.7 ,0.8 }V, for each value of i_bias_nmda. Using the two values of
Udiff = {0.1 ,0.2 }V a 2nd-order forward finite difference scheme was used to
calculate the conductance. Additionally, this parameter sweep was repeated for
different settings of bias current division and multiplication.

The results can be seen in figure 3.5. The grey curves show the i_bias_nmda
sweep with bias current multiplication, the black curves without any additional
setting and for the blue curves bias current division was activated.

Each line represents a neuron of the second quadrant of the chip. The red
line marks the mean of each configuration, where the bars denote the standard
deviation. For the blue and black curves, one can see the expected amplifica-
tion of the conductance by an approximate factor of four, introduced by the bias
current division, over the whole parameter range. However, for the multiplica-
tion configuration the curves do not progress linearly over the whole parameter
range. The stagnation already begins at a bias current value of around 200LSB.
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Figure 3.5: Inter-compartament conductance gic in dependency of the bias cur-
rent i_bias_nmda, bias current multiplication and division. The different set of
curves, indicated by the colors, represent different configuration of the bias cur-
rent. The grey lines have bias current multiplication activated. For the black
curves no bias current modifications were used and for the blue curves bias
current division was enabled. Each curve represents one neuron of the second
quadrant on W66F3. Therefore, each set of curves represent 128 neuron circuits.
The red line denotes the mean of each set of curves and the bars denote the
standard deviation. The inter-compartment conductance was calculated with a
2nd-order forward finite difference scheme. The therefore needed currents were
introduced by applying a potential difference of Udiff = {0.1, 0.2}V between the
compartments at Um,b = 0.6V.
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Furthermore, figure 3.5 can give an estimate for the fixed-pattern variations
between the neuron circuits. The statistical error of the measurement can be
expected to be small compared to the fixed-pattern variations since a large one
would result in a zigzag pattern along each line. Note that each point of the
lines represent one single measurement. Additionally, the error of the readout
of the sourcemeter is several orders of magnitude smaller and can therefore be
neglected. As a consequence, the fixed-pattern variations represent the domi-
nating source of error. Therefore, the standard deviation marked in red for each
setting can be used as an estimate for the fixed-pattern variations.

To get a better quantitative overview of the conductance and its variation,
we state the measured values for the three settings at 500 LSB. The conductance
for the blue curves at 500 LSB is gic = (0.32 ± 0.06)µS, gic = (1.12 ± 0.16)µS
for the black curves and gic = (3.15± 0.26)µS for the grey curves.

3.3 Hardware Simulations
The multi-compartment circuits characterized in this section were already simu-
lated by Paul Müller in his PhD thesis [M1̈7]. For figures 3.3 to 3.5 of this thesis,
the swept parameter ranges were the same as the ones used in the simulations
depicted in figure 3.68 of [M1̈7]. Thereby, figures 3.3 and 3.5 are qualitatively
comparable to their counterparts in [M1̈7]. However, figure 3.4, displaying the
relationship of the conductance with the potential difference, shows more sig-
nificant variations from the simulations.

Therefore, new simulations were carried out by Sebastian Billaudelle and
Milena Czierlinski using teststand, which is a Python interface for the com-
mercial analog circuit simulation software called Cadance® Spectre® [SBDW20].

In figure 3.6 A.1 and B.1, the data of the simulation, which Sebastian Bil-
laudelle carried out, is shown. Here only the inter-compartment conductance
circuitry was simulated. Therefore, the input and output pins of the conduc-
tance were supplied with potentials equivalent to those which were used during
the here presented characterisation.

Additionally, in figure 3.6 A.3, A.4, B.3 and B.4, data from two further
neurons collected from the sourcemeter measurements are displayed. The two
neurons displayed were chosen from the measurements because they possess the
highest and the lowest measured current at Um,b = 1.1V and Udiff = 0.6V.
This again can give an estimate for the range of the fixed-pattern noise.

Comparing the simulation of Sebastian Billaudelle with the sourcemeter
measurements for the current plots (A.X), qualitatively similar results can be
observed. The absolute parameter range match between figure 3.6 A.1 and
A.3. By comparing A.3 with A.4, the effect of fixed-pattern noise can be seen.
The magnitude of the current is for the latter noticeably smaller.

Next, the conductance gic in dependency of the potential difference Udiff , will
be compared, which are shown in figures 3.6 B.1 to B.2. In B.3, the largest
value for gic is not at Udiff = 0V but further to the left, compared to B.1 and
B.4. Again, fixed-pattern variation can explain the different quantitative pro-
gression of the curves in B.3 and B.4.
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Figure 3.6: Simulated and measured data of the inter-compartment conduc-
tance. In the subplots labeled with an A the current going through the inter-
compartment conductance in dependency of the potential difference between
the compartments is shown, while in subplots with label B the conductance
is given in dependency of the potential difference. X.1 represents data from
simulations carried out by Sebastian Billaudelle. X.2 is data from simulations
of Milena Czierlinski and X.3, X.4 are sourcemeter recordings of neuron 284
and 473, respectively.
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Additionally, large qualitative discrepancies between the sourcemeter mea-
surements and the simulation by Sebastian Billaudelle can be seen, especially
when looking at lines with Um,b > 0.82V beginning at Udiff > 0.1V. This
characteristic is much more pronounced in figure 3.6 B.3 than it is in B.4.

Since in Sebastian Billaudelle’s simulations, the feature on the right-hand
side is seemingly absent, another simulation was set up by Milena Czierlin-
ski, now considering the whole neuron circuits involved during the sourcemeter
measurements. The simulations consider all three neuron circuits and their re-
spective connections like they were presented in figure 3.1. In the simulations,
the neuron circuits, which were attached to the peripheral devices during the
measurement, were set to the respective potentials directly. Now the simulation
results of Milena Czierlinski represented in figure 3.6 B.2, reveals the feature to
the right as well, which is also present in the characterization.

Consequently, we can conclude that this behavior does not directly originate
from the inter-compartment conductance but is instead due to the interplay of
the different components of the neuron circuitry and the connections between
them. However, it is unclear why the subtracted baseline measurement does
not compensate for the right-hand side artifact in the recorded data. One could
address this by simulating the baseline measurement and subtracting it from
the whole simulation. If the artifact is still present in the simulation, we could
conclude that the baseline measurement can not compensate for the observed
artifact.

3.4 Conclusion
Concluding this section, the characterization mostly agrees with the simulated
data, especially when the simulation mimics the whole measurement setup.

In the future, it might be interesting to further pinpoint the component
which is responsible for the right-hand side feature, for example, by iteratively
excluding elements of the circuit inside the software simulation until the effect
vanishes. However, this effect only occurs at a certain parameterization and the
variations do not exceed the variations introduced by fixed-pattern variation.

Additionally, we have seen the fixed-pattern variation of the ICC with respect
to different neuron circuits in figure 3.5. Depending on the bias current, the
standard deviation of the conductance can range from 8% up to almost 30% of
the mean conductance.

Therefore, to counteract the fixed-pattern variation, a calibration is needed,
which will keep the variations of the ICC between neurons at a minimum. The
calibration routine will be described in detail in the next section.



4 Calibration of the Inter-Compartment Con-
ductance

4.1 Motivation
As seen in the previous section 3.2, the magnitude of the inter-compartment
conductance varies with the neuron circuit. By looking at figure 3.5, it becomes
apparent that different neurons, configured to the same bias value, possess dif-
ferent inter-compartment conductances.

To ensure that the neuron circuits behave as intended by the user, their
physical properties need to be configured. Since it is not possible to directly
use the bias current for that, because of the aforementioned reasons, we need
a calibration routine translating the bias in a physical property, which allows
comparison between the neuron circuits. Consequently, we need to know which
bias current corresponds to which conductance.

4.2 Measuring procedure
Unfortunately, we can not measure the current going through the ICC as pre-
cisely as we did in section 3 since the sourcemeter is usually not available.

However, using the MADC, the membrane potential of a compartment can
be recorded with a high sampling frequency. Therefore, we can build an ex-
periment, allowing us to measure the time constant τ of a multi-compartment
neuron, which is anti-proportional to the desired conductance g ∝ 1/τ .

The experiment procedure is as follows: we set two neuron circuits on differ-
ent leak potentials and then connect them using the ICC gic to build a multi-
compartment neuron. In the moment the two compartments are connected,
their membrane potentials begin to approach each other. The two-stepped pro-
cedure is visualized in figure 4.1.
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Figure 4.1: Left: Connection scheme of the inter-compartment conductance cal-
ibration. First ( I ), the two neighboring compartments are disconnected and
then connected ( II ). Right: The membrane potentials of the compartment
over time in dependency of the states to the left. The different states are high-
lighted with the background color and are labeled accordingly. Left subfigures
adapted from [AMK+18] and [KBM+21]. The data was recorded on W69F3.

By recalling equation 9, we can derive the exact formula of how the po-
tentials approach each other. Consequently, the membrane potentials Um of
compartment a and b are given by:
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Ca
dUm,a

dt
= −gl,a · Um,a + gic · (Um,b − Um,a) (10)

Cb
dUm,b

dt
= −gl,b · Um,b + gic · (Um,a − Um,b) . (11)

Note that we again can assume EL,{a,b} = 0V without loss of generality.
If we now assume that the capacitances are equal Ca = Cb

!
= C as well as

the leak conductances gl,a = gl,b
!
= gl we obtain the following expression for the

potential difference Udiff = Um,b − Um,a, by subtracting 10 from 11

U̇diff = U̇m,b − U̇m,a

= −
(
2gic + gl

C

)
· Udiff

= −
(

2

τicc
+

1

τm

)
· Udiff

U̇diff = − 1

τtot
Udiff , (12)

where the total time constant τtot is defined as

τtot =
1

2
τicc

+ 1
τm

. (13)

Equation 12 resembles an ordinary differential equation of first order. Using
an exponential as ansatz, one can show that

Udiff(t) = Udiff,0 · exp
(
− t

τtot

)
(14)

solves equation 12, where Udiff,0 describes the initial potential difference of
compartment a and b.

However, since we can only record one compartment’s membrane potential
at a time with the MADC, we can not record Udiff as a whole. Fortunately,
equations 10 and 11 can be solved with equations analogue to 14:

Um,a(t) = Ua,0 · exp
(
− t

τtot

)
Um,b(t) = Ub,0 · exp

(
− t

τtot

)
.

In the equations above Ua,0 and Ub,0 are the initial potentials of the re-
spective compartments. This allows for fitting an exponential to a recorded
membrane trace, where we can then extract the total time constant τtot from.

The relationship between the total time constant τtot and the membrane time
constant τm is visualized in figure 4.2. The x-axis shows the membrane time
constant τm of each compartment in units of the inter-compartment conductance
time constant τicc. Note that we are still assuming gl,a = gl,b

!
= gl. On the y-axis,
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Figure 4.2: Relationship of the
total time constant and the
membrane time constant, as-
suming equal leak conductances
gl,a = gl,b = gl. The red line de-
notes one-half of the ICC time
constant, while the blue curve
visualizes equation 13.

the total time constant τtot is shown, again in units of τicc. We can see that if
τm � τicc the total time constant approaches one-half of the inter-compartment
conductance time constant τtot ≈ 0.5 τicc.

Finally, by changing the bias current of the ICC, we can alter the total time
constant τtot, which is a proxy variable for the ICC time constant and therefore
for the ICC itself. By setting the leak conductance gl to a small value (large
τm), figure 4.2 allows a quick conversion from τtot to τicc and gicc. Thereby, it
is important that both leak conductances gl,a = gl,b are approximately equal.
However, the leak conductance gl is not directly calibrated, but the membrane
time constant τm = Cm/gl, which in this case acts as a proxy variable for gl.
This way, the quotient Cm/gl is calibrated. Consequently, if two neurons possess
the same membrane time constant τm, this does not imply that they share the
same capacitance Cm and leak conductance gl.

Even though the membrane capacitance Cm is adjustable using a 6-bit value,
there is no calibration yet implemented. In [Dau20], the average maximal mem-
brane capacitance of the neurons on a HICANN-X-v2 chip was measured to be
Cm = (2.39 ± 0.16)pF. All experiments in this thesis were performed with the
maximal configurable membrane capacitance, which should be similar to the
one mentioned.

Nevertheless, in many experiments, one is interested in the dynamics of the
neurons, which can be sufficiently described by the time constants. Therefore,
knowing the exact values of the conductances and capacitance is superfluous.

Now that the procedure of how the membranes approach each other is un-
derstood, we can look at the implementation of the calibration in calix.

4.3 Implementation
In section 2.4.1, the concept of a calibration class within calix was explained.
Now, the implementation of the inter-compartment conductance calibration is
explained by first giving a broad overview of the different stages of the calibra-
tion, which are subsequently explained in more detail.

At the beginning of every calix calibration, the calibration will call a
prelude, where calibration-specific configurations are written to the chip. Af-
ter that, the iterative parameter search itself starts, which can be split into
two sub-processes for MADC-based calibrations: first the stimulate function,
which is responsible for executing an experiment on the chip, and second the
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evaluate function, which evaluates the recorded data. The bias current is then
updated based on the evaluated data. The iterative process ends when the
optimal parameter is found.

A flowchart depicting the core calix calibration steps is shown in figure 4.3.

start

prelude stimulate evaluate

end

provide measured data

update bias
store

parameters

Figure 4.3: Flow chart of the main steps of a calix MADC based calibration
routine.

Since we use the MADC for the inter-compartment conductance calibration,
we can inherit from the madc_base.Calibration class. In this parent class,
the sequential connection of each neuron circuit on the chip with the MADC is
already implemented.

In the following the three steps mentioned above will be explained in de-
tail and how they were implemented for the inter-compartment conductance
calibration.

prelude
For the inter-compartment conductance calibration, the prelude has to:

• set all neurons in a non-spiking mode so that the leak potential can be set
to a high value

• disable the synaptic input in order to reduce noise on the neuron circuit

• calibrate the leak potential such that neighboring neurons have a different
membrane potential

• decide whether inter-compartment conductance multiplication or division
is needed to reach the target

• (optionally) calibrate the leak conductance to a large value

The second to last item is realized by setting the ICC bias current of all neurons
to a large value near the boundary of the parameter range of the ICC, which
resides at 1022LSB. If the measured time constant exceeds the target time
constant, ICC bias current multiplication is enabled, for the respective neuron.
In another run, the bias current is set near to 200LSB, since this approximately
corresponds to a bias current of 800LSB with enabled ICC bias current division
(cf. figure 3.5). If the measured time constant is smaller than the target time
constant, the ICC bias current division is enabled.

The last item of the enumeration above is helpful as it allows for a quick
translation between the total time constant and the ICC time constant. For
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large leak conductances, the measured time constant approaches one-half of the
ICC time constant, as we have already seen in the previous section in figure 4.2.

stimulate
Inside the stimulate method, instructions are defined, which are executed while
a neuron circuit is connected to the MADC. In our case, stimulate executes
the following instructions:

1. Connect two neighboring neuron circuits to form a multi-compartment
neuron, as depicted in 4.1.

2. Wait until the potentials have aligned.

3. Disconnect the neuron circuits so their potentials can decay back to their
initial values.

The recorded membrane trace is then passed to the evaluate method.

evaluate
The following function is fitted to each of the recorded membrane traces:

Ufit(t) = Û · exp
(
− t− t0

τtot
·Θ(t− t0)

)
+ Uinf . (15)

In the above equation, Θ describes the Heaviside step function, t the time, Ufit

the membrane potential and Û , Uinf , t0 and τtot are fit parameters. The fit is
carried out by the scipy module curve_fit3, which alters the fit parameters
such that it minimizes the squared residuals between the measured data and the
fit function using the algorithm described in [BCL99]. This function is used for
all fits in this thesis. With few expenses, initial guesses for the fit parameters
are pre-calculated and provided to the curve_fit function. Thereby, the point
in time the two neuron circuits are connected can be used as an initial guess for
t0, Uinf can be set to the mean of the last few recorded samples and Û can be
calculated by subtracting Uinf from the mean of the first few recorded samples.
Now only an initial guess for τtot is missing, which is set to the time where the
potential has changed by (1− 1/e) Û .

Subsequently, the total time constant τtot can be extracted from the fit.

Two exemplary fits of two neighboring compartment traces can be seen in
figure 4.4. The Heaviside step function Θ in the fit function accounts for the
constant potential part of each compartment trace before they are connected,
which is highlighted by the blue background color.

Based on the extracted total time constant τtot, the bias current of the ICC is
increased if τtot is larger than the target total time constant, otherwise the bias
current is decreased. After the adjustment of the bias current, the next iteration
of measurements begins. This is repeated until the parameters are found which
describe the desired target time constant the best. Those parameters, describing
the bias current, are finally stored as a property of the calibration class.

In the subsequent section, the effect of the calibration is quantified.
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_

fit.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
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Figure 4.4: Fit to two recorded traces with residuals during calibration. In
the lower plot, the orange and the blue data points represent two neighboring
compartments, which were recorded consecutively (neuron circuits 0 and 1 of
W69F3). The red line demonstrates the fit using the fit function described in
equation 15. Note that the Heaviside step function Θ accounts for the constant
part before the compartments are connected. The mean residuals to the fit
for all neurons on W69F3 are shown in the first two subplots, where the even
neurons are depicted on the first subplot, while the odd neurons are shown in the
second subplot. The red shaded area denotes the standard deviation of the mean
residual calculated by considering all even or odd neurons in the respective plot.
The translation from LSB to V was done using a characterization of the MADC,
which only applies to one neuron circuit at a time since different circuits might
have a different offset in their readout amplifier. While this is no problem for
the residuals, the absolute values of the orange trace (•) should be used under
caution since the characterization was applied to the neuron circuit the blue
traces belong to (•).
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4.4 Results
The quality of the calibration will be presented in this section.

First, the fit procedure itself will be investigated. The fit function was de-
rived under the assumption that the inter-compartment conductance gic is con-
stant, which we have seen in figure 3.4 is not true since it depends on the volt-
age difference Udiff between the compartments and on the single compartment
potentials Um,{a,b}. During the convergence of the compartment’s membrane
potentials, Udiff continuously decreases until it reaches 0, and as a consequence,
gic changes accordingly. In order to quantify the quality of the fit function,
the residuals r(t) = Umeasured(t)− Ufit(t) of the fit for all neurons are shown in
the first two subplots of figure 4.4. Thereby, the red lines represent the mean
residual, which is close to 0. However, a short negative peak of the residual
r in the beginning of the potential approach can be seen. This means that
Ufit is generally larger than the measurements potential Umeasured ≤ Ufit in
this regime. Shortly later, this relation is inverted as Umeasured ≥ Ufit. Since
the time constant of the fit τtot,fit is constant, the initial total time constant
τtot,init(gic(Ua, Ub)) must be smaller than the fit time constant τtot,init < τtot,fit
in order to see the short negative peak of the residual r. Afterwards this rela-
tionship is inverted and τtot,init > τtot,fit as r becomes positive. Consequently,
gic is decreasing as Udiff approaches 0.
This observation was reproduced in figure 4.5 by simulating the measured traces
with the above fit function from equation 15 using a variable ICC gic(Udiff)

4. To
this simulated ”measured” data, a fit with constant gic is fitted and subtracted
in order to produce the residuals. The blue continuous residual line qualitatively
recreates the course of the observed residuals in figure 4.4. The blue dashed line
was added to illustrate that the magnitude of the maximal displacement is de-
pendent on the common mode voltage Ucm. Here gic = 4.3µSV−2 ·U2

diff+1.77µS
was used, which is the same formula as used for the continuous blue line but
with the offset of the orange line. So from the residual we can conclude that
the conductance in this domain is decreasing with decreasing Udiff .
Please note that a quantitative comparison in SI units is not feasible here since,
first of all, the data used to create figure 4.4 originates from W69F3 and the
sourcemeter measurements, shown in figure 4.5, were carried out on W66F3.
Furthermore, only potential differences in figure 4.4 can be assumed to be cor-
rect but not their absolute values, which are needed to get the common mode
potential Ucm, which gic depends on.

Nevertheless, the residuals are smaller than the standard deviation of the
noise of the MADC readout, which is on the order of 1.5 LSB. As a result, the
fit function in equation 15 is sufficient for the calibration task.

Next, the total time constants of all neurons of chip W69F3 in an uncali-
brated and calibrated state are compared and displayed in figure 4.6. As ex-
pected, the bias current multiplication results in a smaller mean total time
constant since the conductance increases and gic ∝ 1/τtot. Likewise, bias cur-
rent division leads to a larger total time constant τtot compared to the default
state.

4In equation 15 the total time constant τtot was substituted by equation 13 in order to use
gic.
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Figure 4.5: Investigation of the residuals. The upper plot shows simulated
residuals, which result from subtracting equation 15 using a fixed total time
constant from equation 15 but using a variable total time constant τtot(Udiff) =
C/gic(Udiff). For the variable total time constant, gic(Udiff) from the lower plot
was used. Thereby, in the lower plot, the ICC is shown in dependency of the
potential difference Udiff . Actually, the same data is shown as in figure 3.4, but
now it is grouped by the common mode potential Ucm = (Um,a+Um,b)/2, rather
than by Um,b. This representation is suitable here since, during the approach of
the membrane potentials of the compartments, the common mode potential is
constant. Finally, two quadratic functions to the conductances were fitted, one
which is convex and the other which is concave. Only points within the grey
highlighted domain were used for the fit since the maximal Udiff was estimated
to 0.18V from figure 4.4. The fitted quadratic functions were used as gic(Udiff)
to calculate the residuals.
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Figure 4.6: Comparison between uncalibrated and calibrated neurons on the
chip W69F3. The orange histograms represent the measured total time constant
when the chip is in an uncalibrated state, by just setting every neuron to a fixed
bias valuea. The used bias value is shown for every row on the right. The blue
histograms represent the measured total time constants after calibrating each
neuron to the mean total time constant resulting from the orange histogram.
Every column represents the three different states of the bias current. In the
leftmost column, bias current division is activated. Whereas in the rightmost
column bias current multiplication is used, while neither of both is enabled in
the middle column. Please note that the bin size in all nine plots is the same,
but the limits on the x-axes vary, which can give the impression that the area
of the histograms is increasing even though it is constant.

aPlus small noise to avoid CapMem crosstalk.
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In all nine panes, the calibration leads to a sharper distribution of the mea-
sured total time constant, illustrating the performance of the calibration over
the whole parameter range.

Overall, we can see that with smaller time constants the distributions get
sharper for the calibrated and even for the uncalibrated state. This can be
explained by the smaller distance between two different time constants set by
two different bias values as the bias increases since i_bias_nmda ∝ gic ∝ 1/τicc.
Therefore, if we tweak the bias, gic is tweaked proportional to that but τicc
changes inversely proportional. This relationship also transfers to the standard
deviation of the mean total time constant τ̄tot, which is visualized in figure 4.7.
The y-offset of the fit is due to the fixed-pattern variation. Furthermore, the
standard deviation on the estimated parameters provided by the fit is small.
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Figure 4.7: Relationship between the standard deviation of the total time con-
stant στ̄ in dependency of the bias current. The standard deviations of the total
time constants were taken from the uncalibrated histograms in figure 4.6. The
respective value of i_bias_nmda was either multiplied or divided by 4, depend-
ing on the setting, and used as the ”equivalent i_bias_nmda”. The red line
shows a fit to the recorded data. The triangular markers indicate if ICC bias
current division (H) or multiplication (N) was enabled.

Next, we compare this trend to the conductance measurements of figure 3.5,
since τtot ∝ 1/gic. The relative error fx = ∆x/x for the different i_bias_nmda
settings is shown for the ICC gic and the total time constant τtot in figure 4.8.

Both the relative error of gic and the uncalibrated total time constant τtot
decrease with increasing ”equivalent i_bias_nmda”. However, at an approxi-
mate value of 1000 ”equivalent i_bias_nmda”, the relative error for the total
time constant stagnates. Since the total time constant is a derived quantity
defined in equation 13, we can calculate it from C, gic and gl. Using error
propagation, we can also give an estimate of the relative error for the calcu-
lated τtot and compare it to the measurements. The leak conductance gl can
be calculated from the capacitance estimate of [Dau20] and the membrane time
constant gl = C/τm, where τm was calibrated to τm = (53 ± 3)µs. Assuming
that C, gic and gl are independent variables, the error of τtot can be calculated
from error propagation via:

∆τtot = τtot ·

√(
2 ·∆gic
2gic + gl

)2

+

(
∆gl

2gic + gl

)2

+

(
∆C

C

)2

. (16)
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Figure 4.8: Relative error of the total time constant τtot in calibrated (•) and
uncalibrated state (•) (data from figure 4.6) and relative error of the ICC gic
(•) (data from figure 3.5). The relative error is plotted against the ”equivalent
i_bias_nmda”, which was calculated as in the previous figure 4.7. Of course the
relative error of the total time constant τtot in calibrated state is not mappable
to a single ”equivalent i_bias_nmda” but it is placed at the same horizontal
location as the corresponding uncalibrated total time constant. Additionally,
the relative error of the capacitance measured in [Dau20] is shown as well as
the relative error of the membrane time constant τm measured from W69F3 at
τm,target = 60 µs. Using equation 13, gic, Cm, τm and equation 16 the expected
relative error for the total time constant τtot can be calculated, which is shown
by the red data points (•). Like in figure 4.7, the triangular markers indicate if
ICC bias current division (H) or multiplication (N) was enabled.
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The calculated relative error of the total time constant τtot stagnated just
above the relative error of the capacitance, which is expected since the error of
the calculated total time constant must be larger than the largest relative error
of the quantities it was derived from.

One possible explanation for why the relative error of the measured total
time constants fτ̄tot stagnates earlier than the calculated one could be due to
the different Udiff and Ucm of the total time constant measurement compared to
the measured conductances in figure 3.5. Furthermore, the conductances from
figure 3.5 originate from chip W66F3, while the measured total time constants
were measured on W69F3.
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Figure 4.9: Range of the feasible calibration targets. On the x-axis, the cali-
bration target of the total time constant is shown in µs, and on the y-axis, the
corresponding measured total time constant. Both axes use a logarithmic scale.
The black dotted line is the expectation and the blue line is the mean measured
time constant regarding all neurons on the chip. The light blue shaded area
denotes the standard deviation of the used neurons. The data was recorded on
W69F3.

The feasible calibration targets are shown in figure 4.9, where the target
time constant τtarget is plotted against the measured time constant τmeasured,
using a double logarithmic scale. Thereby, the black dotted line represents an
ideal calibration, where every target is perfectly reached. The blue line denotes
the average measured time constants of all neurons on the chip after calibration,
while the light blue shaded area represents the standard deviation.

We can see that the calibration has a minimal reachable target of below
1µs. When trying to reach even lower targets, the standard deviation increases
and the measured target saturates. This is explained by the finite available
parameter space of the bias current. Low calibration targets for the total time
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constant need a high bias current, whose maximal value is reached at 1022LSB
with enabled ICC bias current multiplication. Due to the fixed-pattern varia-
tions between the neuron circuits, the maximal conductance varies as well, as
we have seen in figures 3.5 and 3.6. Accordingly, some neurons can reach smaller
time constants than others, leading to the increased standard deviation at the
boundaries in figure 4.9.

The argumentation for the saturation at the end of large total time constants
above some 30µs is analogue.

This limited feasible calibration range is also the reason for the increased
relative error at large ”equivalent i_bias_nmda” for the calibrated total time
constant τtot in figure 4.8, since the two points to the right correspond to mean
time constants of τtot = 0.86µs and τtot = 0.89µs, which is already in the
domain where the standard deviation in figure 4.9 increases.

As we have seen in section 3, the inter-compartment conductance gic depends
on the common mode voltage and the voltage difference between the compart-
ments. This in turn means that the total time constant τtot(Udiff) is dependent
on the supplied voltages. As a consequence, when we change the potential, the
time constant changes accordingly. An example for this can be an EPSP or
IPSP within one compartment. This leads to a change in the voltage difference
between the compartments and therefore leads to a changing time constant.
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Figure 4.10: Change of the mean calibrated total time constant τ̄tot in de-
pendency of the potentials of the compartments Um,a and Um,b. In order to
investigate this, neurons consisting out of two compartments were used. The
red cross (×) marks the initial potential state used during calibration of the
inter compartment conductance. In the left plot, the change of the mean total
time constant with the potential difference is shown. Thereby, the mean is cal-
culated from all neurons on the chip. The colorbar is shifted by −3µs in order
to highlight the difference to the initial state of τtarget = 3 µs. The right plot
shows the standard deviation of the total time constant within one potential
setting. The data was recorded on W69F3.

Figure 4.10 quantifies this effect. Thereby, the neurons consist out of two
compartments and were calibrated to a fixed total time constant τtot = 3 µs
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at Um,a = 80 LSB and Um,b = 110 LSB. This state is marked by a red cross
(×) in the figure. On both axes, in each subplot, different potential settings for
the two compartments are shown. In the left plot, the shift of the mean total
time constant with respect to the calibration target is shown, where the mean
was calculated from all neurons on the chip. The right plot shows the standard
deviation of the total time constant for all neurons for each potential state.

We can see that the total time constant changes with varying potentials of
the compartments, as expected by the sourcemeter measurements seen in figure
3.4, especially when changing the potential to smaller values. However, in the
vicinity of the original calibrated state, the total time constant is more constant
and the standard deviation stays small.

Concluding this section, we have seen that the calibration of the ICC is pos-
sible solely by using on-chip circuitry without the use of any further external
readout devices. The calibration reduces the standard deviation of the total time
constant over the whole parameter range compared to plainly setting the bias
current. However, the user has to keep the limitations of the inter-compartment
conductance in mind when performing experiments: First, the boundaries of the
feasible target inter-compartment time constants and second the dependency of
the conductance or time constants on the compartment potentials.

Nevertheless, we now have a detailed knowledge of the ICC and how it be-
haves. Furthermore, we have a calibration routine, which sets the ICC in a de-
sired state, which is helpful for the construction of a multi-compartment neuron.

In the upcoming chip revision HICANN-X v3, neuron circuits can achieve
higher leak potentials compared to HICANN-X v2. Thereby, experiments, which
use multi-compartment neurons, will directly benefit from that since the ICC
can then be calibrated at a higher common mode potential Ucm, which is closer
to the regime of EPSPs.



5 LogicalNeuron

5.1 Motivation
When implementing complex experiments using multi-compartment neurons, a
user-friendly API for a high-level description of the experiment is crucial for
the experimenters to succeed in their research since it reduces code complexity.
Hence-worth it increases code readability and sustainability.

A first attempt towards enabling multi-compartment neurons to high-level
users of the BSS-2 system is the implementation of the LogicalNeuron. Thereby,
a LogicalNeuron is a collection of inter-connected neuron circuits. Addition-
ally, a LogicalNeuron can be subdivided into multiple compartments. The
compartments themselves in turn can be constructed out of multiple neuron
circuits.

Meanwhile, the PyNN developer team is on an endeavor to supporting multi-
compartment neuron models in PyNN, which is also one of the high-level ex-
periment description languages the BSS-2 system supports. While ultimately,
the goal is to join both the BSS-2 multi-compartment related software with up-
stream PyNN, the LogicalNeuron will act as foundation on which the future
PyNN-API for BSS-2 can build on.

5.2 Implementation
The LogicalNeuron is implemented in the logical layer, called lola, of the
BSS-2 software stack, which is written in C++ (cf. section 2.4).

As multi-compartment neurons vary in size and can have arbitrary com-
plex structures, the builder pattern intrinsically is a suitable choice for creat-
ing varying and complex objects since it breaks down the object construction
into multiple steps. Therefore, the LogicalNeuron will be constructed using
a builder pattern. Furthermore, the builder pattern can ensure whether pre-
defined criteria are met the upon finalization of an instance. Therefore, the
builder pattern approach increases code readability and is less error-prone from
a user-side perspective.

The LogicalNeuron builder is called Morphology, which is used to define
the neuron’s structure. The user can add a Compartment to the Morphology
by calling the create_compartment method with the desired relative coordi-
nates. A Compartment is a vector of AtomicNeuronOnLogicalNeuron, which is
the halco coordinate used to describe the respective neuron circuit’s location
in the context of the constraints introduced by the hardware. One such hard-
ware constraint is that the maximal number of neuron circuits a compartment
can be constructed from is 256. However, the coordinates do not yet refer to
a fixed hardware placement but rather resemble relative coordinates, which are
only later placed to a fixed hardware position. This allows for translation or
mirroring of the LogicalNeuron on the grid, which is defined by the hardware
layout. Since a biological neuron is a continuous structure, the LogicalNeuron
must meet this constraint as well, which means that its building blocks, the
Compartments, are required to be a continuous structure themselves. There-
fore, if the provided coordinates for the Compartment construction do not result
in a continuous structure, a runtime error will be thrown.
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1 void connect_to_soma(AtomicNeuronOnLogicalNeuron const& coord);
2

3 void connect_resistor_to_soma(
4 AtomicNeuronOnLogicalNeuron const& coord);
5

6 void connect_soma_line(
7 NeuronColumnOnLogicalNeuron const& start,

NeuronColumnOnLogicalNeuron const& end,
8 NeuronRowOnLogicalNeuron const& row);

Listing 1: Signature of the functions responsible for the connectivity of the
somatic shared line.

Additionally, three methods are implemented, which are responsible for con-
necting the different compartments using the somatic line. The functions sig-
natures are given in listing 1. There are two ways of connecting a single com-
partment to the somatic shared line: either by using the inter-compartment
conductance Gic by calling the connect_resistor_to_soma method or using
the direct switch Sms by calling connect_to_soma (cf. figure 2.2). In both
ways, the methods need the coordinate specifying the neuron circuit, which will
be connected to the somatic line, as an argument.

Since the somatic line is interrupted due to the by default open switches Ss,
the third method, connect_soma_line, is used to close those. Therefore, the
method takes three coordinates as arguments, two defining the start and end
point, between whom the somatic line will be continuous, and the third one is
specifying the hemisphere.

By calling the done method of the Morphology class an instance of a
LogicalNeuron is created and returned as well as the respective compartment’s
coordinates. Upon finalization, the user-defined morphology is checked for cor-
rectness. Since on construction a compartment must be continuous, two prop-
erties remain to be checked in order to ensure the correctness:

1. No pair of neuron circuits belonging to different compartments are con-
nected without using an inter-compartment conductance.

2. There is a path from any compartment to every other compartment.

Those two properties are checked because all used neuron circuits should
be interconnected, and we want to have distinct compartments; in particular,
no two compartments are connected just using switches. If two compartments
were connected solely using switches, at least one ICC would be bypassed. This
certainly is unintended behavior since the user could otherwise have built the
same neuron without using the ICC, by defining the two compartments, which
were bypassed, as one single compartment. More likely, the user was not aware
of the bypass, and therefore bypassing compartments is prohibited.

Both properties are solved by representing each neuron circuit as a vertex
in a graph and a subset of the various connections, depending on the problem,
as edges. Then, we only need to traverse the graph in a way defined by the
breadth-first search (BFS) [Moo59].

To check for property 1, all connections except the inter-compartment con-
ductance represent an edge. Additionally, using the property that every neuron
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circuit belongs to a compartment, the algorithm presented in listing 2 can be
used to verify property 1.

1 for compartment in array_of_compartments:
2 # use first neuron circuit in compartment as start point of BFS
3 start_neuron_circuit = compartment[0]
4 # BFS returns all reachable neuron circuits including the
5 # start neuron circuit
6 reachable_neighbors = BFS(start_neuron_circuit)
7 if len(compartment) != len(reachable_neighbors):
8 raise

Listing 2: Pseudo-code describing the check needed for property 1.

Property 2 is checked by setting all connections as edges. If we now start with
the search at an arbitrary compartment and reach every other compartment,
property 2 is true. Again this can be implemented using BFS as represented in
the pseudo-code in listing 3.

1 # use first compartment as start point of BFS
2 start_compartment = array_of_compartments[0]
3 # BFS returns all reachable compartments including the start
4 # compartment
5 reachable_neighbors = BFS(start_compartment)
6 if len(array_of_compartments) != len(reachable_neighbors):
7 raise

Listing 3: Pseudo-code describing the check needed for property 2.

The final LogicalNeuron uses the data structure of a map, where the com-
partment index serves as the key and the values are vectors of the neuron circuits
belonging to the respective compartment. Thereby, the neuron circuits are rep-
resented as MCSafeAtomicNeuron, which is an additional class derived from the
AtomicNeuron. The distinction between both classes is that the derived class
does not expose any connection-related multi-compartment attributes anymore.
Ultimately, this makes the topology of the LogicalNeuron immutable, while cir-
cuit properties like the threshold potential for every neuron circuit within the
LogicalNeuron are still mutable. Therefore, a user can still configure neuron
parameters but not accidentally split a multi-compartment neuron into multiple
parts or create illegal morphologies.

0
3

1
2 0 1 2 2 3

A B

Figure 5.1: Schematics of a branching chain. The numbers in both schematics
represent the same compartment. A Compartmental schematic of a brainching
chain. B Schematics of one possible hardware implementation of the branching
chain to the left. Each rectangle represents a neuron circuit. The line above the
neuron circuits is the somatic shared line. Figure adapted from [KBM+21].

5.3 API example
In this section, a code example of constructing a multi-compartment neuron us-
ing the LogicalNeuron is given. The multi-compartment neuron schematically
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depicted in figure 5.1 A, which is a branching chain, is implemented in listing
4. The implementation is explained step by step in the caption of listing 4. The
therefore needed hardware configuration is illustrated in figure 5.1 B, with focus
on the connection configuration.

1 from dlens_vx_v2 import lola, halco
2

3 # Initialize Morphology of LogicalNeuron
4 morphology = lola.Morphology()
5

6 # define coordinates
7 coord = halco.AtomicNeuronOnLogicalNeuron # relative coordinate
8 column = halco.NeuronColumnOnLogicalNeuron # 0, 1, ..., 127
9 row = halco.NeuronRowOnLogicalNeuron # 0, 1

10

11 # Add compartments
12 morphology.create_compartment([coord(0, 0)]) # compartment 0
13 morphology.create_compartment([coord(1, 0)]) # compartment 1
14 morphology.create_compartment(
15 [coord(2, 0), coord(3, 0)]) # compartment 2
16 morphology.create_compartment([coord(4, 0)]) # compartment 3
17

18 # enable conductance to somatic shared line
19 for neuron in [coord(i, 0) for i in [1, 2, 4]]:
20 morphology.connect_resistor_to_soma(neuron)
21

22 # directly connect to somatic shared line
23 for neuron in [coord(i, 0) for i in [0, 3]]:
24 morphology.connect_to_soma(neuron)
25

26 # connect somatic shared line
27 morphology.connect_soma_line(column(0), column(2), row(0))
28 morphology.connect_soma_line(column(3), column(4), row(0))
29

30 compartments , logicalneuron = morphology.done()

Listing 4: Example Python code of the construction of the lola LogicalNeuron,
using the Morphology, which is the builder. In the following, the code required
for the configuration of figure 5.1 B is explained. First, we must import the BSS-
2 specific modules lola, where the LogicalNeuron resides, and halco, which
is the coordinate system. Then, we can initialize the builder called Morphology
in line 4. After that, we declare the coordinates to new names for the sake of
readability. Next, the four compartments of the branching chain, whose index
is also shown in both schematics of figure 5.1, are added to the builder in lines
12 to 16. Note that we have to use two neuron circuits for compartment 2 since
an interruption of the somatic line is needed to ensure that compartment 0 is
not a direct neighbor of compartment 3. Subsequently, the compartments are
connected. First, we enable the inter-compartment conductance of the neuron
circuits 1, 2 and 4 in lines 19 and 20, and then we set the direct connection to
the soma for neuron circuit 0 and 3. In lines 27 and 28, the somatic shared line is
made contiguous with the aforementioned interruption between compartments
2 and 3. Finally, a LogicalNeuron is constructed in line 30 by calling the done
method.



6 Genetic Algorithms
Now, in this section, experiments using multi-compartment neurons will be
conducted. Additionally, genetic algorithms will be investigated and applied to
multi-compartment neurons. Those multi-compartment neurons will be trained
using genetic algorithms, whose concepts were introduced in section 2.2.

6.1 Implementation
The Python framework DEAP [FDG+12] provides the backbone of the genetic al-
gorithm used in this thesis. DEAP provides data structures and algorithms while
still encouraging customization of algorithms [FDG+12], which is indispensable
when working with custom hardware like BSS-2 since it facilitates necessary
code adaptations. Another reason why DEAP was chosen as the framework for
the genetic algorithm is its good user documentation and literature like [Wir20],
which uses DEAP as the framework of choice to teach the concepts of genetic al-
gorithms. The key components of a genetic algorithm, as stated in section 2.2,
are already implemented in DEAP, including various evolutionary operators for
crossover, selection routines and population generation methods. Furthermore,
DEAP provides entire out-of-the-box solutions, where only the individuals of the
population have to be specified, as well as the evaluation function, which assigns
each individual its fitness.

Thereby, the evaluation function is the only part of the algorithm which
requires to execute instructions on BSS-2. For the hardware configuration, the
network description language pynn.brainscales2 was used. As the evaluation
function is strongly dependent on the problem at hand, it will be described
alongside the respective problem in the following subsections.

To increase the performance of the genetic algorithm, an elitism mechanism
was added. Elitism describes a process during selection, where the best nelites

individuals are passed directly on to the next generation without any modifica-
tion. The number nelites is a hyper-parameter, which has to be specified by the
user. The benefit of using elitism is that the current best solution will not be
forgotten over the generations. This is an example of the exploitation versus
exploration trade-off dilemma. While elitism ensures exploitation because the
currently best solution is guaranteed in future generations, it decreases the num-
ber of possibly altered individuals in the offspring generation by nelites, which
slightly reduces the exploration of the algorithm.

An overview of the here used genetic algorithm is given in figure 6.1.

6.2 Experiment - OneMax Problem
6.2.1 Experiment description

The OneMax problem is a toy problem for genetic algorithms, which we use
to illustrate how genetic algorithms work and how to integrate BSS-2 into the
framework of a genetic algorithm. Thereby, the optimization target is to set
all N elements of a list with binary values to one. Therefore, it is suitable
to represent each individual xj of the population as a binary list, where xj [i]
with i ∈ [1, N ] describes the i-th element of the list. An example of one such
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Figure 6.1: Flow chart of the genetic algorithm. The main evolutionary loop
is highlighted with a blue background. The evaluate function is highlighted
with an orange background and is the only component of the algorithm that
is executed on the neuromorphic hardware. The algorithm will stop if the
predefined stop criterion is met.

individual could be represented by the list [1,1,0,1], where in this case N = 4.

Each method of the genetic algorithm depicted in figure 6.1 will now be
explained. At first, all M individuals of the population will be initialized by
setting each element of the binary list randomly either to 0 or 1. Thereafter, the
evaluate method assigns all individuals a fitness. This will be described in the
following subsection 6.2.2. For the selection process, tournament selection will
be used, where at each step, k randomly picked individuals compete against
each other to be chosen for the next generation based on their fitness. If an
individual was selected, two-point crossover will be applied with a predefined
probability pcross. The two-point crossover splits the genome of two individuals
at two random points and produces two offspring individuals by combining the
sequence of the parent individuals, as depicted in table 1. Each of the individuals
of the offspring generation will be exposed to the mutation operator with a
probability of pmut. Subsequently, if an individual was picked for mutation,
each bit of its genome will be randomly flipped with the probability pind, as
depicted in table 2. Additionally, the elitism mechanism was utilized, so in
each generation, the nelites best performing individuals are directly passed to
the offspring generation. Furthermore, the best performing individuals will still
contribute their genome to the offspring generation via the selection process if
they are selected. Now the whole procedure will start again if the stop criterion
is not yet fulfilled.



6.2 Experiment - OneMax Problem 43

parent 1 [1↓,1,0↓,1]
parent 2 [0,1,1,0]

offspring 1 [1,1,1,1]
offspring 2 [0,1,0,0]

Table 1: Concept of the two-point crossover operator used for the OneMax
problem. In the first two rows, the parent genomes are shown for the individuals
x4 and x5 from figure 6.3. The bottom two rows show the resulting offspring.
The single genome entries of each parent are colored to keep track of them in
the offspring generation. The arrows indicate the two points where the genome
is cut.

parent [
↓
1,1,0,0]

offspring [0,1,0,0]

Table 2: Example of the mutation operator used in the OneMax problem. Each
single entry of the gnome will be mutated by a probability of p. The parent
individual is in the first row and the resulting offspring is in the bottom row.
The mutated entries are indicated by an arrow and by color.

6.2.2 Hardware representation

In order to solve the OneMax problem on the hardware, a suitable representa-
tion of the problem has to be implemented. One possible representation will be
explained in the following.

Here the problem will be mapped to the time domain so that each genome
entry will be evaluated sequentially. Each individual xj in the population of
size M will be represented by one hardware neuron. Additionally, there will be
N external populations, which will serve as spike sources. To ensure that the
external populations can trigger another neuron to spike, the external popula-
tions can consist out of multiple neurons themselves. Each individual will then
be connected to all neurons of the external populations, as depicted in figure 6.2
A, where N = 4 external populations exist and M = 5 individuals. Therefore,
each neuron of the population has N connections, one connecting it with each
neuron of the external populations. Now, each weight wi,j with i ∈ [1, N ] and
j ∈ [1,M ] is set either to 0 if xj [i] = 0 or to the maximum weight value if
xj [i] = 1.

For a population of M = 5 individuals, the weights of the connections are
illustrated by the line thickness connecting the external population with the
target population in figure 6.2 A.

In order to be able to evaluate each individual’s fitness, all neurons of an
external population emit one spike in a unique time interval. The time intervals
are visualized by different shades of gray in the background of figure 6.2 B.

If the weights between the external population and the target population
are set maximal, at least two spikes in the target population can be recorded, as
shown in figure 6.2 B. Next, each individual is evaluated and assigned a fitness
value. The fitness is thereby calculated by summing the number of time inter-
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Figure 6.2: A Hardware representation of the OneMax problem. Each neuron
of the population (red box right) is connected to all neurons of each external
population (blue box left). Thereby, each neuron of the population represents
one individual. The weights between both populations represent the genome of
each individual. If the list representing the genome has a 0 at position i, the
weight connecting it to the external population ei is set to 0, which is indicated
by the thinner edges. Otherwise, if the list has a 1 at the position i, the weight to
ei will be set maximal, indicated by the thicker edges. Network layout modified
from [web]. B Recorded spike trains of the five individuals to the left. Below
the black dotted line, the spike times of the external populations e1 to e4 are
indicated by black bars. The spike trains of the individuals are above the black
dotted line. Additionally, the time intervals which were used for the evaluation
are highlighted by using different shades of gray as the background color. Data
recorded on W68F3.

vals where at least one spike was recorded. For neuron x1 in no time interval, a
spike was emitted. Therefore its fitness is set to 0.

6.2.3 Results

Now being able to represent the problem on the hardware and evaluate the
fitness of the individuals, the genetic algorithm can be executed. But before
we present the results, we list the employed hyper-parameters, which were ar-
bitrarily chosen for this toy problem. The tournament size of the tournament
selection was set to k = 3, the probability pcx to apply crossover was set to 90%,
whereas pmut and pind were set to 40% and 8%, respectively. An elite size of
nelites = 1 was chosen and the stop criterion was set to be after 10 generations.
Those hyper-parameters were used in the results presented in the following.

For the simple OneMax problem with a length of 4 and a population size
of 5, the average fitness over 10 generations is shown in figure 6.3. The five
individuals were initialised like the ones depicted in figure 6.2.

The shaded area in figure 6.3 represents the maximal and the minimal fitness
of each individual in the respective generation. Individual x1 already has the
maximum achievable fitness of 4 from the beginning and individual x0 has the
minimal fitness of 0.
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Figure 6.3: Average fitness of a
population of size 5 solving the
OneMax problem. Thereby, the
shaded area represents the max-
imal and minimal fitness of the
population in each generation.
The population were initialized
with the same individuals de-
picted in figure 6.2. Data col-
lected from W68F3.

As the generations go by, the average fitness increases until in the third
generation all individuals have evolved to the best solution.

Looking at generation 7 one can see that the mutation operator can always
change an individual to a worse fitness. However, mutation is an important
evolutionary operator since it ensures the exploration of the population and can
help to overcome local maxima in the solution space.

6.3 Experiment - Iris Flower Data Set Classification

In this section, an arguably more challenging task will be discussed, namely the
classification of the Iris flower data set [And36, FIS36]. The data set consists
of 150 samples split equally into three classes, which represent different species
of the flower Iris. Each sample has four features, the length and width of the
petal and the sepal of the flower in centimeters. The samples are visualized in
figure 6.4 with respect to their features.

Only one class (Iris setosa) is linearly separable from the other two.

The Iris data set was chosen as a more complex task for the genetic algorithm
since it was already used in [SPDR16] as data set for one of their classification
problems. There they build a classifier using spiking neural networks both in
software simulations and on a neuromorphic hardware platform. Furthermore,
they split the Iris data set into a balanced training and test set, where the
former consists of 120 samples and the latter has 30 samples, 10 of each class.
Again, this training/test ratio was adopted for the investigations in this thesis.
The genetic algorithm was solely trained on the training set and then, after the
training, evaluated on the from the classifier before unseen test set.

While in [SPDR16], the focus was on learning the topology and weights of
an SNN as a whole, here the focus will reside on the effects of various design
choices one encounters when implementing an evolutionary algorithm to a given
problem. For example, by using different evolutionary operators and employing
different hyper-parameters.

In the following, the experiment design will be explained.
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Figure 6.4: Scatter plot of the Iris data set. In every subplot, two features are
plotted against each other. The respective features depend on the column and
the row. Therefore, the corresponding feature names are shown on the diagonal.
The three classes are highlighted by the marker color, where the red points (•)
belong to the class representing Iris setosa, the green points (•) to Iris versicolor
and the blue points to Iris virginica (•). Figure inspired by [Nic16].
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6.3.1 Experiment setup

Network setup
The objective of the genetic algorithm is to optimize the weights of a classifier
network consisting of a single multi-compartment neuron such that the classifier
maximizes its accuracy. The multi-compartment neuron will consist out of three
compartments. The weights which will be optimized are the ones that connect
each compartment to the input population. The input populations are spike
source arrays, which encode the features of the input instances into spikes and
are connected to the compartments in an all-to-all fashion. Each input popula-
tion will represent a single feature dimension, resulting in four input populations
to represent the Iris data set.

The topology of the network is shown in figure 6.5.

input
populations

multi-compartment
neuron classifier

hardware
representation

F1

F2

F3

F4

C2

C3

C1

C1 C2 C3

Figure 6.5: Network used for the Iris data set classification. The classifier
consists out of a single multi-compartment neuron with three compartments
(C1, C2 and C3). The therefore used hardware configuration is schematically
illustrated in the lower right corner. For all input feature dimensions a single
input population functions as spike source (F1, F2, F3 and F4). Those input
populations are connected to the compartments of the classifier in an all-to-all
fashion, using both excitatory (-) and inhibitory (-) connections.

Note the necessity of both the excitatory and inhibitory connections from
the input population to the single compartments in order to cover positive and
negative weights. The weights are configurable with integer vales in the range
of 0 to 63 for excitatory connections and for inhibitory connections in the range
of -63 to 0. When a weight is positive, the inhibitory connection will be set to
0 and accordingly for negative weights and excitatory connections.

Theoretically, multiple neurons can be placed and evaluated in parallel on
the hardware. However, to avoid effects of fixed-pattern variation of the hard-
ware, all individuals will be placed on the same neuron circuits. Especially,
the cross-over operation suffers from fixed-pattern variations between neuron
circuits since a possible weight composition on one hardware placement might
lead to a different performance on another one. Consequently, this will lead to
a slower convergence and an overall worse result.

Feature encoding and decoding
The input features are encoded into spike rates of the input layer. Thereby,
each feature dimension is linearly mapped to spike rates of minimal 2 kHz and
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maximal 120 kHz. Each sample is presented for 100µs to the classifiers. All
the samples the network is trained on are concatenated in time and presented
sequentially. After the presentation of each sample, there is an additional 100µs
pause, where no samples are presented, so the membrane potential of the single
compartments can decay back to their resting state before the next sample is
presented.

For the classification compartment C1 (cf. figure 6.5) will be defined as
the output compartment. Based on the response of the output compartment,
the presented sample will be assigned to a predicted class. Since there are three
classes, three different criteria are needed for the classification, which were again
chosen like in [SPDR16].

If the output compartment does not spike at all during the presentation
time, the classification of the sample will correspond to class 0. Furthermore,
if the output compartment does spike one to nine times, including nine, class 2
will be predicted and if the output compartment elicits more than nine spikes
during the presentation, class 3 is predicted.
An individual’s fitness is then evaluated by summing the correctly classified
samples.

Evolutionary operators
Starting the algorithm, each individual is randomly initialized. Thereby, all
weights of the individual are set to random values ranging from -63 to 63.
Like in the OneMax problem, tournament selection and a two-point crossover
operator are used. Once more, the selection process is based on the fitness of
each individual, which is determined as previously described. The two-point
crossover operator will cut the weight matrix at two random points and switch
the weights between the points to create the offspring, as illustrated in table 3.

parent 1 [[-18, 21, 30]↓,[ 51,-27, 27]↓,[-14, 39,-45],[-48,-28, 39]]
parent 2 [[ -1, 42, 31],[ 41, 21,-60],[-46,-42,-63],[-63,-25, 60]]

offspring 1 [[-18, 21, 30],[ 41, 21,-60],[-14, 39,-45],[-48,-28, 39]]
offspring 2 [[ -1, 42, 31],[ 51,-27, 27],[-46,-42,-63],[-63,-25, 60]]

Table 3: Example of the two-point crossover used for the Iris data set. The
first two rows indicate the parents and the bottom two rows show the resulting
offspring. The genome entries are colored according to their parent in order
to keep track of them in the offspring. The arrows show the two positions the
genome is cut. Furthermore, the genome is represented as a list of lists since for
each of the four feature-encoding external populations, we have three weights
connecting it to the multi-compartment neuron, one for every compartment.

If an individual was picked with a probability of pmut to be mutated, each
single weight will be altered to a new weight with a probability of pind, which
is illustrated in table 4. The procedure, which determines the new weight, is
implementation-specific and different approaches will be investigated in the fol-
lowing.
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parent [[-18, 21,
↓

30],[ 51,
↓

-27, 27],[-14, 39,-45],[
↓

-48,-28, 39]]
offspring [[-18, 21, 18],[ 51,-54, 27],[-14, 39,-45],[ 42,-28, 39]]

Table 4: Example of the mutation operator used for the Iris data set. The first
row shows the parent and the second row the resulting offspring. The places
where the mutation is applied are highlighted by the red color and indicated
with an arrow. The resulting mutated numerical values at each mutation site
can be sampled from a custom distribution or according to some function.

Generally, the mutation of the individuals is the only mechanism to enlarge
the gene pool of the population in this implementation of the genetic algorithm
[DD14]. Therefore, three different mutation operators are employed and inves-
tigated.

The three used mutation operators will now be described. All have in com-
mon that they generate a new individual by replacing one entry in the source
genome with a new weight drawn from a random distribution. First, the uni-
form mutation operator generates the new weight w ∈ Z, by drawing it from a
uniform distribution within the domain [−63, 63].

The Gaussian mutation operator samples the new weight from a Gaussian
distribution, with a mean of the current weight µ = winitial and a standard
deviation σ, which needs to be specified by the user. If a drawn weight lies
outside the parameter boundaries, it is discarded and a new one will be drawn
until it resides within the boundaries.

The last mutation operator, which will be used, is the ”bit flip” mutation.
Here the new weight value is calculated by randomly adding or subtracting 2x

from the initial weight, where x ∈ [0, 6] is randomly selected as well. Again if
the new weight falls outside the parameter boundaries, a new weight will be
drawn.

The resulting weight distribution for a fixed initial weight is visualized in
figure 6.6 for each mutation operator. We can see that the bit flip mutation
operator is a compromise between the uniform and the Gaussian mutation op-
erator. While bit flip is more likely to create a new weight around the initial
one, compared to the uniform mutation operator, it is still exploring weights far
from the initial one with a higher chance than the Gaussian mutation operator.

Initial hyper-parameters

Before the genetic algorithm can be executed, the hyper-parameters need
to be set. Unfortunately, there is no universal set of default hyper-parameters
that can be applied to any problem and lead to a sufficient result. The selec-
tion of the hyper-parameters are rather based on trial-and-error methods and
user-experience [XJZ+18]. Even though the hyper-parameters of a genetic al-
gorithm are problem-specific, the first set of hyper-parameters chosen here will
be motivated by the literature. Later on, a grid search will provide the best
hyper-parameters found for pcx, pmut and pind for the implemented classifier.

In [XJZ+18], the importance of each hyper-parameter to the training success
was investigated for their problem. In their case, the population size was among
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Figure 6.6: Weight distribution of mutated weights for an initially fixed weight of
winitial = −30LSB (red vertical line). The histograms were created by sampling
one million new weights using the mutation operators with the fixed initial
weight. For the Gaussian mutation operator a standard deviation σ = 10LSB
was chosen.

the least impactful hyper-parameters for training and was set to a value of 50,
which has the benefit of an overall shorter runtime of the experiment compared
to larger population sizes. Here, this population size will also be used. The elite
count and crossover probability were set to 5 and 50%, respectively. In [KPK05],
they parameterized a compartmental neuron model with genetic algorithms and
chose a mutation probability of pmut = 10%, which then results in a point
mutation of a random entry. Accordingly, we set the mutation probability to
pmut = 10% and the individual probability to pind = 100

L % = 100
12 %, where L

describes the length of the genome, which in our case is 12. As a consequence,
on average, one mutation of the genome occurs if the individual is chosen to be
mutated.

For the Gaussian mutation operator, a standard deviation of 10 LSB was
used and the tournament size for the tournament selection was set to 3. As
breaking condition of the evolution, a hard boundary of 30 generations was
chosen, as it was sufficient for all variations of the algorithms to result in at
least one individual with a close to 100% accuracy on the training data (cf.
figure 6.7).

This hyper-parameter set will function as a starting point for the investiga-
tions of the genetic algorithm.

6.3.2 Results

Now the whole algorithm is defined and we can look at the results, which were
all conducted on W69F3, using a fixed calibration (cf. section A.2).

First, the trial-to-trial variations of ten training runs are shown in figure
6.7 for the three mutation operators. In all runs, the genetic algorithm could
produce at least one solution with a close to 100% training accuracy after 30
generations.

Additionally, the effect of the different mutation operators can be seen. The
runs using the Gaussian mutation are the ones whose mean accuracy reaches
100% the fastest on average. The average accuracy of the populations in each
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Figure 6.7: Evolution of multiple runs of the genetic algorithm with different
mutation operators. A different mutation operator was used in each column,
which is labeled at the top. In each subplot, the average, worst and best per-
formance of the individuals on the training data are shown for each generation.
The upper orange line (-) represents the best-performing individual of each gen-
eration, the bottom orange line the worst-performing individual and the blue
line (-) the average performance of the population in the respective generation.
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run starts at approximately 33%, resembling pure guessing since we have a
three-class classification problem. Furthermore, the worst-performing individual
is rising faster for Gaussian mutation than the other two, which shows that the
Gaussian mutation scheme explores the solution space the least among the used
methods. This is due to the on average smaller deviations of the weights of the
offspring generation with respect to the parent generation.

Especially, the least fit individuals from the runs using the uniform mutation
operator stay at a pure guessing accuracy level since a mutation is likely to affect
the weights such that the performance of the individual collapses.

Another observation that can be made is the non-deterministic behavior of
the hardware, since every run within the same column varies, even though the
same random seed was chosen for all of them. On a traditional computer, the
genetic algorithm would always result in the same solution, as long as a fixed
random seed is provided.

The effect of the non-deterministic behavior can also be seen in the emerging
solutions. In figure 6.8, the weight compositions over the 10 runs of the result-
ing best-performing individuals for each mutation type are shown. At first look,
there are weights with smaller and larger distributions. Especially, the connec-
tions towards the first compartment (F3→C1, F4→C1) have a sharper weight
distribution. It is to mention that the first compartment (C1) is the output
compartment, whose spiking behavior decides upon the classification. Further-
more, the signal towards C1 is not attenuated like the signal propagating from
the other compartments towards C1.

Additionally, the neuron is symmetrical upon exchanging compartments C2
and C3, which could explain an overall larger variation of the weights connect-
ing those compartments with the input populations. The different mutation
operators do not seem to have an impact on the emerging individuals.

Since there is trial-to-trial variation in the training and we employ a fixed
random seed, there must be trial-to-trial variation on the level of a single indi-
vidual’s performance.

To quantify this trial-to-trial variation, one single individual was chosen and
evaluated 50 times on the test data set. Thereby, the best individual of the first
run in figure 6.7 using uniform mutation was chosen. Furthermore, modified
evaluation schemes were implemented, which aim to counteract the trial-to-trial
variation of an individual.

The first modified evaluation scheme augments the to be evaluated data by
repeating each sample nrepetition times. This evaluation scheme will therefore
be called ”multi-eval”. The second added evaluation scheme again augments the
data like in ”multi-eval”, but the prediction of a single sample is based on the
majority of the predictions for that sample instance. For example, if we have
nrepetition = 10 and 6 samples were predicted as class 0 and 4 as class 1, we
chose class 0 for the prediction of that sample instance. This evaluation scheme
will be called ”majority-eval” in the following. Both evaluation schemes have
the disadvantage that the augmentation of the training data will lead to longer
evaluation times and consequently to a longer runtime overall. However, only an
approximate 40% runtime increase per generation is observed using the 10-fold
evaluation schemes.



54 6 GENETIC ALGORITHMS

The effect of the evaluation schemes with respect to the trial-to-trial perfor-
mance of an individual is presented in figure 6.9.
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Figure 6.9: Trial-to-trial vari-
ation of a single individual on
the test data set. Three dif-
ferent evaluation schemes were
used, which are labeled on the
x-axis. For each evaluation
scheme, 50 trials were run. For
multi and majority evaluation,
nrepetition = 10 was used.

As expected, both evaluation schemes improve the trial-to-trial variation, as
can be seen by the sharper distributions. For the ”multi-eval” scheme, this is
simply due to the implicit averaging at every trial since already there the mean
is calculated.

The ”majority-eval” scheme even improves the mean performance of the
individual since samples where the classifier seems to be ”unsure” are more
often classified correctly now.

Since the ”majority-eval” scheme both reduces the trial-to-trial variation
and improves the accuracy of the individual it will be used from now on for the
further investigations.

Again 10 training runs for each mutation operator, like in figure 6.7, were
carried out, but now using the majority evaluation scheme.

The performance of the thereby emerged best individuals is compared to the
performance of the best individuals from figure 6.7 using the test data. This is
shown in figure 6.10.

An improvement of the trial-to-trial variation can be seen for two of the three
used mutation operators. However, the distribution for the Gaussian mutation
increased using the majority evaluation scheme.

As the last investigation, a grid search over the three hyper-parameters
pmut, pind and pcx was done in order to determine their impact on the training.
Thereby, 10%, 30%, 50%, 70% and 90% were used as values for the hyper-
parameter sweep. As mutation operator, the uniform mutation was employed.
The genetic algorithm was then run over 30 generations. The best individual
from the training was evaluated 50 times on the test set in order to get an
estimate of the accuracy and the trial-to-trial variation of the best individual.
The mean accuracy was then used for each hyper-parameter combination to vi-
sualize the grid search in figure A.1, which is shown in the appendix. However,
the grid search result is very noisy, and therefore it seems that the investi-
gated hyper-parameters did not have a strong impact on the outcome of the
genetic algorithm. Nevertheless, the best set of hyper-parameters was found to
be pmut = 90%, pind = 50% and pcx = 90%.



6.3 Experiment - Iris Flower Data Set Classification 55

uniform Gaussian bit flip
80

85

90

95

100

ac
cu

ra
cy

[%
]

default evaluation

mean
median

uniform Gaussian bit flip

majority evaluation

mean
median

mutation

Figure 6.10: Performance of best individuals emerged from different variations
of the genetic algorithm. In the left subplot, the best individuals from each of
the 10 runs of figure 6.7 are evaluated once on the test set. On the right side,
the best individuals of the 10 runs from the genetic algorithm using the majority
evaluation scheme are visualized, which were as well evaluated once on the test
set.

However, in figure 6.10, we encountered substantial trial-to-trial variations
of the emerged fittest individual from different training runs. Since the grid
search only trains once at a given hyper-parameter configuration, the resulting
performance is affected strongly by this trial-to-trial variation. Therefore, re-
running the grid search might lead to another result. Unfortunately, due to the
long runtime of the grid search, no repeated training at each hyper-parameter
configuration was feasible in an appropriate time.

In conclusion of this section, a relatively simple classifier consisting of a
single multi-compartment neuron was able to achieve sufficient results on the
Iris data set. Therefore, the genetic algorithm has proven to be able to configure
the multi-compartment neuron such that it succeeds in the classification task.
Additionally, the grid search has shown that the three investigated parameters
pcx, pmut and pind do not strongly impact the training.
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6.4 Experiment - Training biologically inspired neurons
6.4.1 Motivation

In this last subsection, the capability of the genetic algorithm for tuning chip
parameters such that the chip mimics observed behavior of biological neurons
is investigated.

Like in the previous section, where we tuned the weights of a network such
that it correctly classifies instances of the Iris data set, we again need to define
the network and the fitness function for the genetic algorithm.

The network topology will be defined by the observed biological archetype
and the fitness must be coupled to the observed behavior of the neurons, which
we want to replicate.

However, here we just want to look at a simple toy problem to validate our
methodology. The toy problem will be to tune the parameters of a chain of
compartments on BSS-2 such that it attenuates an EPSP in a characteristic
way.
This characteristic attenuation could originate from biological observations, i.e.
from in-vitro or in-vivo measurements of a dendrite segment.

Recalling the cable equation 6, the electronic length scale λm is a measure
of how strong a signal is attenuated along the membrane. If we were to inject a
constant current in one compartment of an infinitely long chain, we would get
the stationary solution of the cable equation [Pet16]:

Um(x) =
1

2
exp

(
− |x|
λm

)
. (17)

However, on the hardware only a finite chain can be implemented and we do
not inject a constant current but let a presynaptic neuron spike, which results
in an EPSP propagating along the chain. Furthermore, the ICC (gic) is slightly
dependent on the membrane potential (Udiff and Ucm), as we have seen in figure
3.4. However, the attenuation of the maximum of the EPSP traveling along
the chain of compartments on BSS-2 was empirically found to approximately
follow an exponential decay Um,max(x) ∝ exp

(
− |x|

λemp

)
(cf. figure 6.11 C), even

though the exact formulation of a propagating EPSP is much more involved
[RR74, Red73]. Here λemp describes the empirically found length constant.

6.4.2 Experiment Setup

The chain of compartments will consist out of five compartments and is vi-
sualized in figure 6.11 A, along with a schematic of its according hardware
implementation. In order to determine the length constant λemp of the chain,
a small experiment is executed. Multiple simultaneous spikes from an external
population, which is connected to the first compartment of the chain, will spike
once at a defined time. Those spikes will initiate an EPSP in the first compart-
ment, which will be recorded using the MADC. Since the MADC in its current
state is only capable of recording one neuron circuits membrane potential at a
time, the attenuation of the EPSP along the whole chain can not be measured at
once. Therefore, the experiment is repeated five times. In each repetition, the
MADC will be connected to another compartment. This way, the attenuation
of the EPSP along the chain can be recorded. One exemplary propagation of
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2 30 1 4
A

B C

Figure 6.11: A Chain of five compartments. In the bottom row, the hardware
configuration is illustrated, and in the top row, the abstract compartment chain.
The first compartment is connected to an external population which elicits one
spike, introducing an EPSP in the chain of compartments. Figure adapted from
[KBM+21]. B Recorded attenuation of an EPSP along the chain of compart-
ments implemented on BSS-2. The membrane traces are normalized to the
maximal height of the EPSP in the first compartment and colored according to
the compartment colors, so the blue trace shows the EPSP in compartment 0.
The downward pointing arrow (↓) indicates the spike time of the external pop-
ulation, which is the presynaptic partner of the multi-compartment neuron. C
Attenuation of the maximal potential of the EPSP normalized to the maximal
potential of the first compartment’s EPSP. The gray curve represents a fit to
the data points using Um,max(x) = exp

(
− x

λemp

)
+ c as fit function. Thereby,

λemp = (1.29 ± 0.07) compartments and c = 0.00 ± 0.01 were estimated as fit
parameters. Data recorded from W69F3.

the EPSP along the chain is depicted in figure 6.11 B.

To determine the length constant λemp, the maximum membrane potential
in each compartment will be extracted from the EPSP. As already mentioned
in section 4, the absolute values of the MADC between different neuron circuits
can not be compared directly. However, by subtracting the baseline, which is the
recorded membrane potential before the EPSP was initiated, we can compare
the maximal membrane potentials relative to their baseline for different neuron
circuits. Using those values, we can fit an exponential decay to the maximal
heights of the EPSP and subsequently extract the length constant λemp from
that fit, as illustrated in figure 6.11 C.

The task for the genetic algorithm is to find the pair of bias values for the
leak conductance and the ICC, such that the chain possesses the target length
constant λ̂emp.
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Figure 6.12: Visualization of the solution space for λemp in dependency of the
leak conductance bias i_bias_leak and the ICC bias i_bias_nmda for the
chain of compartments. The data was smoothed with a Gaussian filtera of first
order to create the contours. In the left plot, a single evaluation of the length
constant was carried out at fixed biases, while in the right plot 10 evaluations
were averaged in order to reduce noise. The red cross indicates the later target
for the genetic algorithm, which here has a value of λ̂emp = (0.621 ± 0.007)
compartments. The standard deviation is calculated from 10 runs of the 10-fold
evaluation scheme. The data in the top left corner of each subplot is pruned
since the length constant is rapidly growing there, which would result in a coarse
granularity of the color scale in the region of interest. Thereby, all data with a
larger length constant than 1.5 compartments was pruned. Data recorded from
W69F3.

ahttps://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_
filter.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
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Thereby, the individuals of the population will be represented by two integer
values bound to the bias parameter ranges of the leak conductance and the ICC,
which are both 0 to 1022 LSB.

The fitness f of each individual will be calculated from the absolute distance
of its length constant λemp to the target length constant λ̂emp:

f = |λemp − λ̂emp|. (18)

However, using this definition, we are interested in individuals with minimal
fitness. Therefore, DEAP provides the option to find the minimum in a solution
space compared to the maximum, which was searched for in the previously
presented problems. The same can be achieved by redefining the fitness function
via:

f̃ 7→ 1/f. (19)

However, finding the minimal solution is more intuitive when looking at the
problem at hand and is therefore used in the genetic algorithm.

Our target length constant λ̂emp will be constructed artificially by setting
both the leak conductance’s bias and the ICC’s bias to 500 LSB.

The solution space for λemp in dependency of the biases i_bias_leak and
i_bias_nmda is shown in figure 6.12. Thereby, the data was recorded by sweep-
ing both parameters in steps of 10 LSB from 10 LSB to 1000 LSB.

Since we have seen that experiments on BSS-2 often suffer from trial-to-trial
variations, we directly employ a 10-fold evaluation scheme, which will also be
used in the genetic algorithm. The 10-fold evaluation scheme repeats the mea-
surement 10 times and each time calculates the length constant λemp. After-
wards, it returns the average measured λemp of the 10 trials. The noise-reducing
effect of the 10-fold evaluation scheme can be clearly seen by comparing the
course of the contours in figure 6.12 between the single evaluation scheme and
the 10-fold evaluation scheme.

The target for the genetic algorithm will be a length constant of λ̂emp = 0.621
compartments, which is marked with the red cross in figure 6.12.

Note that multiple combinations of i_bias_leak and i_bias_nmda will re-
sult in the same length constant λemp, as can be seen by the contour lines in
figure 6.12.

To get a better understanding of how the attenuation differs for different
configurations of the two bias currents, figure 6.13 shows four examples of the
attenuation of the EPSP along the chain of compartments at different config-
urations of the conductances. We can see that with increasing length constant
λemp, the attenuation is weaker (a) than for smaller λemp (c). Furthermore, the
maximal height of the EPSP can be different at similar λemp, which can be seen
by comparing (b) with (d).

Initial hyper-parameters and evolutionary operators
Like in the previous section, we chose a crossover probability of pcx = 50%, a
mutation probability of pmut = 10% and an individual mutation probability of
pind = 50%. The population size will be set to 50 with an elite size of 5.
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Figure 6.13: Four examples of the attenuation shape at different locations in the
parameter space. For the four parameter locations marked by the arrows, the
membrane traces of all five compartments were recorded using the MADC. The
colors follow the same scheme as in figure 6.11 to indicate the compartment. The
height of the EPSP is calculated by subtracting the baseline of the membrane
potential before the EPSP starts. Data recorded from W69F3.
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As crossover function the one-point crossover was used since we only have
two parameters. The one-point crossover is analogue to the two-point crossover
function, except that only one cut is made in the genome. For selection, tour-
nament selection with a tournament size of 3 was chosen, and for mutation, the
”bit-flip” mutation operator as introduced in the previous section. The stop
criterion was set to 30 generations.

6.4.3 Results
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Figure 6.14: Fitness
of a population over
the generations. The
blue line represents the
average fitness of the
population, while the
top and bottom orange
lines demonstrate each
generation’s worst
and best-performing
individual, respectively.
The black dotted line
marks the standard
deviation of the trial-
to-trial variation of
the 10-fold evaluation
scheme. Data recorded
from W69F3.

The evolution of the fitness over the generations is shown in figure 6.14.
Already the first generation disposes one individual that achieved a fitness of
below one standard deviation of the evaluation scheme. The mean fitness of
the individuals is decreasing, as is the best-performing individual’s fitness over
the generations. The strong fluctuations of the best individual are due to the
trial-to-trial variations of the evaluation scheme.

The best emerged solutions for ten runs of the genetic algorithm are shown
in figure 6.15.

Since there are multiple solutions possible, the blue crosses, representing
the fittest individual from a single run, are spread along the contour line,
which marks a length constant of λemp = 0.62 compartments. Consequently,
all emerged solutions are viable as they are in the proximity of that contour line.

In figure 6.13, we have seen that solutions that possess the same length
constant λemp, but a different configuration of the conductances, show different
maximal heights of their EPSP.

Since genetic algorithms are capable of multi-objective optimization, we can
provide the height of the EPSP as a second optimization target. An alternative
way is to redefine the fitness function, so it additionally considers the height of
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Figure 6.15: Fittest individuals for multiple runs of the genetic algorithm. The
blue crosses show the best solutions of 10 runs of the genetic algorithm. The
red cross marks the individual, which was used to determine the target length
constant λ̂emp. The purple crosses show the best solutions of 10 runs of the
genetic algorithm using equation 20 as fitness function. Data recorded from
W69F3.

the EPSP. For example, the fitness function f could then look like this:

f =

√√√√( λ̂emp − λemp

λ̂emp

)2

+

(
ĥ− h

ĥ

)2

. (20)

Here h denotes the measured height of the EPSP and ĥ the target height.
The purple crosses in figure 6.15 depict the fittest individuals of 10 runs of

the genetic algorithm when using equation 20 as the fitness function.
Now 7 out of 10 individuals reside in the vicinity of the initial individual,

which was used to create the target length constant λ̂emp.



7 Discussion and Outlook
This thesis aimed to facilitate experiments using multi-compartment neurons
on BrainScaleS-2.

Thereby, progress was made on various levels.

The first measurements of the inter-compartment conductance on HICANN-
X were conducted during this thesis. The results were presented in section 3
and it could be shown that the ICC behaves as expected from the software
simulations, except for a minor unresolved artifact. Additionally, the effect of
fixed-pattern variations could be quantified to be in the range of 8% up to 30%
(cf. figure 4.8), depending on the bias current setting of the ICC. This reaffirms
the necessity of a calibration routine, which was presented in the successive sec-
tion 4.

The developed calibration routine enables the user to set the total time con-
stant τtot to arbitrary values, as long as they are within the feasible boundaries.
Those limits of the calibration were showcased in figure 4.9. The total time con-
stant τtot acts as a proxy variable for the ICC time constant τicc and a simple
transition between the two is given for large membrane time constants τm � τicc
by τtot ≈ 0.5 τicc. Furthermore, subroutines of the implemented calibration can
be used to measure the total time constant τtot.

This can be beneficial for experiment portability to other setups or neuron
placements on the same chip, which would otherwise suffer from fixed-pattern
variation. For example, suppose one learns the optimal bias value for the ICC di-
rectly using a genetic algorithm as we did in section 6.4. In that case, the learned
bias value might result in different neuronal dynamics on another placement.
Using the calibration’s measurement routine, the dynamics of the configured
neuron circuit could be captured and applied to other hardware placements by
calibration.

Therefore, the translation from bias current DAC value to the time constant
can serve as a universal representation, conserving the desired behavior of the
neuron.

The effects of varying compartment potentials on the calibrated ICC were
showcased in figure 4.10, demonstrating only moderate changes of the time con-
stant around the initial calibration zone.

By implementing the LogicalNeuron, which resides in the logical layer of
the software stack, the construction of multi-compartment neurons is facilitated.
This introduces a more user-friendly and less error-prone workflow when imple-
menting multi-compartment neuron based experiments on BSS-2. The API and
the implementation were presented in section 5. Thereby, the LogicalNeuron
can build multi-compartment neurons on the BSS-2 system if a user provides
the correct and complete low-level specification. However, the user still needs
knowledge about the hardware layout of BSS-2 in order to know how to con-
figure the chip such that the desired morphology of the neuron is correctly
depicted. For example, to build a chain of compartments consisting of more
than three compartments (cf. figure 6.11), the expertise is needed that each
compartment, which is not an end of the chain, must be constructed out of at
least two neuron circuits. Therefore, in the future, it would be more desirable
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from a user-side perspective to define compartments and connections between
them directly, without the specification of the exact coordinates. With that,
the user does not need to worry about the exact switches defining the multi-
compartment neuron but rather can just give an abstract specification of the
neuron’s morphology. However, this simpler construction will require logic to
place the abstract concept of the neuron’s shape into a viable hardware con-
figuration. The LogicalNeuron can function as the foundation for that logic,
which upcoming implementations can build on.

In section 6, various experiments using genetic algorithms were conducted
on BSS-2.

First, the OneMax problem was solved on BSS-2 to demonstrate how to
represent problems on the given neuromorphic hardware platform.

Next, the training of a simple network consisting out of a single multi-
compartment neuron using the genetic algorithm was presented. Here the design
choices of the genetic algorithm were investigated and how they affected the re-
sulting solution. Early on, trial-to-trial variations within the experiments were
reduced by repeatedly representing the training data and by employing a ma-
jority voting scheme. It was found that the employed majority voting scheme
was able to reduce the trial-to-trial variations and the overall performance of
the classifier. A grid search indicated that the crossover probability pcx and the
mutation probabilities pmut and pind have no substantial impact on the training
results. Overall the classifier could classify the Iris data set sufficiently, with an
average accuracy of around 97% (cf. figure 6.10).

In the last experiment, the capabilities of the genetic algorithm to config-
ure a multi-compartment neuron on BSS-2, so it mimics experimental obser-
vations, were investigated. For the presented task of finding the bias values of
the leak conductance and the ICC such that the chain of compartments possess
an empirically found length constant, the algorithm was able to find sufficient
parameters.

In the future, it would be interesting to apply this approach to real exper-
imentally conducted data. For that, more parameters might be needed to be
configured. By introducing more parameters, the solution space could increase
drastically, and it would be interesting to see how the genetic algorithm copes
with that.

Overall genetic algorithms can profit twofold from BSS-2, first through its
accelerated nature and second through its intrinsic parallelization capabilities.
Compared to biological neurons, the typical time constants of a neuron on BSS-2
are three orders of magnitude smaller. Therefore we have a 1000-fold speed-up.
The genetic algorithm profits from that acceleration since each evaluation of an
individual is thereby affected.

By representing multiple individuals at once on the hardware, the fitness
of multiple individuals could be determined in parallel. However, due to fixed-
pattern variations between the neuron circuits, hardware configurations that
were trained on one placement will result in other behavior on a different place-
ment. Especially the crossover operator suffers from the fixed-pattern varia-
tions. A chip characterization would be beneficial to counteract this problem,
where each bias current is assigned a universal quantity like a time constant.
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Through a lookup table, the genetic algorithm could use the universal quanti-
ties and therefore profit from the intrinsic parallelization properties of BSS-2,
by evaluating multiple individuals at once.

Furthermore, for specific problems, it might be feasible to run the genetic
algorithm entirely on BSS-2 using the on-chip microprocessor, which is called
PPU. This could further decrease the runtime of the genetic algorithm.





A Appendix
A.1 Chip specification
Since the chips embedded on an xBoard can be exchanged, we list the chips used
in this thesis in table A.1, along with their unique identifier and the respective
naming scheme used in this thesis.

Unique chip ID from the hwdb In this thesis employed naming scheme
23 W66F3
28 W68F3
30 W69F3

Table A.1: Lookup table between the unique identifier of the chip and the here
used naming scheme.

A.2 Information to the used software and the collected
data

The software used for this thesis was build using singularity containers. For each
section where software was needed, table A.2 states the singularity image used
to build the software. In addition, the commit IDs of the different repositories
are given in tables A.4 to A.7 for the different sections.

Section singularity image
3 2021-07-19_1.img
4 2022-02-18_1.img
5 2022-02-18_1.img
6 2022-02-18_1.img

Table A.2: Singularity image used to build the software in the corresponding
sections.

As calibration data for W69F3 /wang/data/calibration/hicann-dls-sr-
hx/hxcube9fpga3chip30_1/stable/2022-04-10_1/spiking_cocolist.pbin
was used, in section 6.

Within the Electronic Vision(s) group, gerrit5 is used as review system to
improve code quality. Each change to the software stack is collected inside a
so-called change set (CS) and is reviewed by other group members. Addition-
ally, automated tests via Jenkins6 are executed for each CS. If both the group
members and the automated tests accept the CS, it can be merged into the
master branch of the software stack. The for this thesis created code was also
uploaded to gerrit; however, parts of the CSs are still in review. All CSs created
for this thesis are listed in table A.3.

5https://www.gerritcodereview.com/
6https://www.jenkins.io/
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The data created or presented during this thesis is saved inside the following
directory /ley/users/rstock/DataMasterThesis, which is accessible within
the Electronic Vision(s) cluster. For each section where data was presented, a
directory with according name was created.

Description Section Change Sets Change Sets
for visualization

Sourcemeter measurement 3 15050 17083
Calibration of ICC 4 15444 15670
LogicalNeuron 5 13670
Genetic algorithms 6 16070 16928 17238 17148
OneMax Experiment 6.2 16071 16927
Iris classification Experiment 6.3 16086 16926 16394 17150 16929 17149
Chain attenuation Experiment 6.4 17236 17237

Table A.3: Overview of the Change Sets created or modified for this thesis.

Repository Commit ID
repo_db ac4e613735afa638e13cf6044222a99bf18f37aa
bss-hw-params 3d88b7644bd40fc1fa0210b25062ac8866186a3b
calix 2428fb83562bbbe1b81ce5be93ff992ac86f22f5
code-format 5d55a9952d4b6400fa5b2baeff9be546e45bf76d
fisch 087ea1930137b1e940cf841598d4f2595f5709c3
flange fcde2aafe69805487789ca0b1a8a245caf5fb8ed
halco 27ccf9d1a92dfb938f82e1de62ab0acc45cbcd33
haldls ab3991acba7cfdf886e071ac254e4a584902f6d3
hate c7483cedc3d76b8e7a4a65e7bc9a423131f40ce1
hwdb 754b4dbb87a76411cf2291dc34153d4199a8066a
hxcomm 5114f8219973cb02e13b95965f76367ffb66697c
labcontrol faee1188de46dc3a4bc33098b1e09295c2330aa3
lib-boost-patches 2d7e07d4e74827c42d9e1a51f8d180af9907f7cb
lib-keithleysourcemeter 3c130c910144370bc1beebb4469c01ee6220154a
lib-pyscope 68e315e2c0bc0e2bf285195cdafd761442b45c4c
lib-rcf 5b16326ae30ee08a322a6569887ca8bd2684c252
logger bc006238ecfdc483d5b96ce5f5bb62e5a93e99dd
pywrap 83ddbad8a114b4730b82d299e8bd9da2a6ca5ebb
rant 4fc2cc3689c9b141708dafbcc5f9d3c7c2b7f18d
sctrltp 72a3735c606795b0b058271d4899b5f490bd88bf
visions-slurm 79de4b1754f26e77fbabb7827dc78556276c85a0
ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6

Table A.4: Commit IDs for the respective repositories used for the software in
section 3.

https://gerrit.bioai.eu:9443/c/calix/+/15050
https://gerrit.bioai.eu:9443/c/calix/+/17083
https://gerrit.bioai.eu:9443/c/calix/+/15444
https://gerrit.bioai.eu:9443/c/calix/+/15670
https://gerrit.bioai.eu:9443/c/haldls/+/13670
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/16070
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/16928
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/17238
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/17148
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/16071
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/16927
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/16086
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/16926
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/16394
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/17150
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/16929
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/17149
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/17236
https://gerrit.bioai.eu:9443/c/model-hw-mc-genetic/+/17237
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Repository Commit ID
repo_db 17dbf880e6e6b9da94468c3dae40895462aa85fb
bss-hw-params 09df17c4f4e75011f5f7c7de67c765318c795daf
calix c385f9b62515868b828cf6e05abf6e2f3efd6b35
code-format b22b8fb9ef00b1a6c6294b029f45870e0ef847c4
fisch 8522d1c8480d286d03597e8c57bbaa93d0acbe95
flange 2eb4e0dcf54c40e77505ef6a91334a96432f2a9b
halco c9783a4882b755e57d16946d629b9dca68b388fb
haldls 8d44b06ee99e7d6184f730682006d3d8f0c237ed
hate 27ead09ce8ec6889fe00baa8eb5d91bb11301415
hwdb 78d98f829de6cc542713aae83482458b411b0622
hxcomm ded34f2ac03103e48e45ed730f9d923eb54aa23b
lib-boost-patches a49d79a9889210440141c08344598aa0b850c3f1
lib-rcf 470e33b5047b91c18ec336c5277357567669f173
libnux 9ddd15b8a9f7d2a43df16a842264656435a66ce5
logger d790a807c99ffaf72948e07be40a515eaeb7a627
pywrap 0a099b14fd7fb3610395cac839f37662d4c5d30e
rant 60743b28088db351cd9f1168ce5935456111690c
sctrltp 89b051d95723c26eb2adb14d180618b3673621ec
visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3
ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6

Table A.5: Commit IDs for the respective repositories used for the software in
section 4.

Repository Commit ID
repo_db 17dbf880e6e6b9da94468c3dae40895462aa85fb
bss-hw-params 09df17c4f4e75011f5f7c7de67c765318c795daf
code-format b22b8fb9ef00b1a6c6294b029f45870e0ef847c4
fisch 948d71da9084486e4429422f3e7eb642b57b0ae5
flange 2eb4e0dcf54c40e77505ef6a91334a96432f2a9b
halco c9783a4882b755e57d16946d629b9dca68b388fb
haldls d14c949b77ab2216156f5e2a95ccfee6023a43dc
hate 27ead09ce8ec6889fe00baa8eb5d91bb11301415
hwdb 1f0f87bab4ffcf3f19317dbd7e38b84087fd46b7
hxcomm ded34f2ac03103e48e45ed730f9d923eb54aa23b
lib-boost-patches a49d79a9889210440141c08344598aa0b850c3f1
lib-rcf 470e33b5047b91c18ec336c5277357567669f173
libnux 7300c6396269def8b1f506cb5960803d23295015
logger d790a807c99ffaf72948e07be40a515eaeb7a627
pywrap 0a099b14fd7fb3610395cac839f37662d4c5d30e
rant 08d7a219e473387c43e183a66484730967c81551
sctrltp 89b051d95723c26eb2adb14d180618b3673621ec
visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3
ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6

Table A.6: Commit IDs for the respective repositories used for the software in
section 5.
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Repository Commit ID
repo_db 17dbf880e6e6b9da94468c3dae40895462aa85fb
bss-hw-params 09df17c4f4e75011f5f7c7de67c765318c795daf
calix ecf0670e2fee146f48724d8b3ca09500f68de6a5
code-format b22b8fb9ef00b1a6c6294b029f45870e0ef847c4
fisch 8522d1c8480d286d03597e8c57bbaa93d0acbe95
flange 2eb4e0dcf54c40e77505ef6a91334a96432f2a9b
grenade 17b0e2686d4a656be84dc03d08b1fc797693263d
halco 47327dc6817751a8c097e2b33d8ee5c64a4a5360
haldls 6e9e1e39cf45c3199525600bc4d80465ad052299
hate 27ead09ce8ec6889fe00baa8eb5d91bb11301415
hwdb 0db758ed9105c29ccb1fe37b75d0c9fd07893a54
hxcomm ded34f2ac03103e48e45ed730f9d923eb54aa23b
lib-boost-patches a49d79a9889210440141c08344598aa0b850c3f1
lib-rcf 470e33b5047b91c18ec336c5277357567669f173
libnux 5ae4360b75f713d766609dcc1d419bbeeb1dd5e7
logger d790a807c99ffaf72948e07be40a515eaeb7a627
model-hw-mc-genetic 71d77c35e0d534c6d30d1798c92dd27a7f80859a
model-hw-si-nsc-dendrites aea3910f215568075a5585270ecb0f84cfa7aba8
pynn-brainscales 2816e252ad7bf4c70768c5e75e9a55983173f8f3
pywrap 0a099b14fd7fb3610395cac839f37662d4c5d30e
rant 60743b28088db351cd9f1168ce5935456111690c
sctrltp 89b051d95723c26eb2adb14d180618b3673621ec
visions-slurm 8f41ea4f5bd1573d8f4623e9ed698a29f30036a3
ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6

Table A.7: Commit IDs for the respective repositories used for the software in
section 6.
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Glossary

ADC analog-to-digital converter. 8

AdEx adaptive-exponential integrate-and-fire. 1, 5

AI Artificial Intelligence. 1

ANN artificial neural network. 1

API application programming interface. 9, 10, 37, 63

BFS breadth-first search. 38, 39

BSS-2 BrainScaleS-2. 1, 2, 5, 8–10, 13, 37, 40, 41, 56, 57, 59, 63–65, 73

CADC columnar analog-to-digital converter. 8, 9, 11, 13

CapMem capacitive memory. 8, 13, 31

CMOS metal-oxide-semiconductor. 7

COBA conductance based synapses. 4

CS Change Set. 67

CUBA current based synapses. 4

DAC digital-to-analog converter. 8, 9, 14, 15, 17, 63

EPSP excitatory post synaptic potential. 3, 35, 36, 56, 57, 59–62, 73

FPGA field programmable gate array. 9

HICANN-X High Input Count Analog Neuroal Network chip. 7–9, 25, 36, 63

ICC inter-compartment conductance. 2, 13, 18, 22, 23, 25–27, 29, 30, 32, 33,
35, 36, 38, 56–59, 63, 64, 68, 73

IPSP inhibitory post synaptic potential. 3, 35

LIF leaky integrate-and-fire. 2, 4–6

MADC membrane analog-to-digital converter. 8, 9, 11, 23–29, 56, 57, 60, 73

SNN spiking neural network. 1, 9, 45

TSMC Taiwan Semiconductor Manufacturing Company. 7
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