
CO
M

PU
TE

R
SC

IE
N

CE
S

N
EU

RO
SC

IE
N

CE

Surrogate gradients for analog neuromorphic
computing
Benjamin Cramera,1,2 , Sebastian Billaudellea,1,2, Simeon Kanyaa, Aron Leibfrieda, Andreas Grübla , Vitali Karasenkoa,
Christian Pehlea, Korbinian Schreibera, Yannik Stradmanna , Johannes Weisa , Johannes Schemmela, and
Friedemann Zenkeb,2

aKirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; and bComputational Neuroscience Group, Friedrich Miescher Institute
for Biomedical Research, 4058 Basel, Switzerland

Edited by Terrence Sejnowski, Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA; received May 19, 2021; accepted
November 25, 2021

To rapidly process temporal information at a low metabolic cost,
biological neurons integrate inputs as an analog sum, but commu-
nicate with spikes, binary events in time. Analog neuromorphic
hardware uses the same principles to emulate spiking neural
networks with exceptional energy efficiency. However, instantiat-
ing high-performing spiking networks on such hardware remains
a significant challenge due to device mismatch and the lack
of efficient training algorithms. Surrogate gradient learning has
emerged as a promising training strategy for spiking networks,
but its applicability for analog neuromorphic systems has not been
demonstrated. Here, we demonstrate surrogate gradient learning
on the BrainScaleS-2 analog neuromorphic system using an in-
the-loop approach. We show that learning self-corrects for device
mismatch, resulting in competitive spiking network performance
on both vision and speech benchmarks. Our networks display
sparse spiking activity with, on average, less than one spike
per hidden neuron and input, perform inference at rates of up
to 85,000 frames per second, and consume less than 200 mW.
In summary, our work sets several benchmarks for low-energy
spiking network processing on analog neuromorphic hardware
and paves the way for future on-chip learning algorithms.

neuromorphic hardware | recurrent neural networks | spiking neural
networks | surrogate gradients | self-calibration

In recent years, deep artificial neural networks (ANNs) have
surpassed human-level performance on many difficult tasks (1–

3). The human brain, however, remains unchallenged in terms of
its energy efficiency and fault tolerance. A fundamental property
underlying these capabilities is spatiotemporal sparseness (4),
which is directly linked to the way biological spiking neural
networks (SNNs) process and exchange information. Spiking
neurons receive and integrate inputs on their analog membrane
potentials and, upon reaching the firing threshold, emit action po-
tentials, or spikes. These binary events propagate asynchronously
through the SNN and are ultimately received by other neurons.

Neuromorphic engineering attempts to mirror the power
efficiency and robustness of the brain by replicating its key archi-
tectural properties (5–9). Here, one distinguishes between fully
digital, analog, and mixed-signal systems. Digital systems
“simulate” the analog dynamics of spiking neurons, e.g., their
membrane potentials (10–15). In contrast, analog and mixed-
signal solutions “emulate” neuronal or synaptic dynamics and
states by representing them as physical voltages, currents, or
conductance changes evolving in continuous time (7, 13, 14, 16).
Thus, by explicitly taking advantage of physical properties and
dynamics of the underlying hardware substrate, neuromorphic
computing holds the key to building power-efficient and scalable
SNNs in silico (15, 19, 20).

However, to serve meaningful computational purpose, these
analog devices require training. The most successful training
schemes for ANNs are gradient-based. Yet, extending similar
training techniques to SNNs and neuromorphic hardware poses
several challenges. First, one has to overcome the binary nature

of spikes, which impedes vanilla gradient descent (21–23). Sec-
ond, training has to ensure sparse spiking activity to exploit the
superior power efficiency of SNN processing (24, 25). Finally,
training has to achieve all of the above while coping with analog
hardware imperfections inevitably tied to their manufacturing
process.

In this article, we tackle the above challenges by extending pre-
vious work on surrogate gradients, which have emerged as a pow-
erful method for training SNNs end-to-end (23). Specifically, we
developed an in-the-loop (ITL) training framework for surrogate
gradient learning and applied it to the mixed-signal BrainScaleS-
2 single-chip system (26–28). We demonstrate that SNNs trained
using our approach solve several challenging benchmark prob-
lems by taking advantage of sparse, precisely timed spikes instead
of firing rates. The resulting SNNs reach comparable accuracy
levels to corresponding software simulations and perform energy-
efficient inference with ultralow latency by taking full advan-
tage of BrainScaleS’ accelerated nature and in-memory compute

Significance

Neuromorphic systems aim to accomplish efficient compu-
tation in electronics by mirroring neurobiological principles.
Taking advantage of neuromorphic technologies requires
effective learning algorithms capable of instantiating high-
performing neural networks, while also dealing with in-
evitable manufacturing variations of individual components,
such as memristors or analog neurons. We present a learning
framework resulting in bioinspired spiking neural networks
with high performance, low inference latency, and sparse
spike-coding schemes, which also self-corrects for device mis-
match. We validate our approach on the BrainScaleS-2 analog
spiking neuromorphic system, demonstrating state-of-the-art
accuracy, low latency, and energy efficiency. Our work sketches
a path for building powerful neuromorphic processors that
take advantage of emerging analog technologies.

Author contributions: B.C., S.B., and F.Z. designed research; B.C., S.B., S.K., and F.Z.
performed research; A.L., A.G., V.K., C.P., K.S., Y.S., J.W., J.S., and F.Z. contributed new
reagents/analytic tools; B.C. and S.B. analyzed data; B.C., S.B., and F.Z. wrote the paper;
A.L. contributed software; A.G., V.K., C.P., K.S., and Y.S. contributed core-components to
the hardware; and J.S. designed the BrainScaleS-2 neuromorphic system.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).
1B.C. and S.B. contributed equally to this work.
2To whom correspondence may be addressed. Email: benjamin.cramer@kip.uni-heidel
berg.de, sebastian.billaudelle@kip.uni-heidelberg.de, or friedemann.zenke@fmi.ch.

This article contains supporting information online at https://www.pnas.org/lookup/
suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental.

Published January 14, 2022.

PNAS 2022 Vol. 119 No. 4 e2109194119 https://doi.org/10.1073/pnas.2109194119 1 of 9

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2109194119&domain=pdf&date_stamp=2022-01-13
http://orcid.org/0000-0001-7948-4391
http://orcid.org/0000-0002-3955-4815
http://orcid.org/0000-0001-9603-6777
http://orcid.org/0000-0002-1435-0250
http://orcid.org/0000-0003-1883-644X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:benjamin.cramer@kip.uni-heidelberg.de
mailto:benjamin.cramer@kip.uni-heidelberg.de
mailto:sebastian.billaudelle@kip.uni-heidelberg.de
mailto:friedemann.zenke@fmi.ch
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://doi.org/10.1073/pnas.2109194119

capabilities. Crucially, we show that ITL surrogate gradients
achieve this through self-calibration, whereby training automat-
ically corrects for device mismatch without the need for costly
offline calibration.

The BrainScaleS-2 Analog Neuromorphic Substrate
In this article, we relied on the analog BrainScaleS-2 single-chip
system. It features 512 analog neuron circuits, whose dynamics
obey the leaky integrate-and-fire (LIF) equation

C
dV

dt
=−gleak (V − Vleak) + I , [1]

which can optionally be augmented by adaptation currents and an
exponential spiking nonlinearity. The membrane potential V is
explicitly represented on the chip as an analog voltage measured
across a capacitor and evolves continuously in time. The leak
conductance gleak pulls the membrane toward the leak poten-
tial Vleak, resulting in an exponential decay with time constant
τm ≡ C/gleak. Due to the substrate’s small intrinsic capacitances
and comparatively large currents, the dynamics of the spiking
neurons implemented on BrainScaleS-2 evolve 103 times faster
than biological neurons.

Whenever the membrane potential crosses the firing threshold
ϑ, an outgoing spike is generated, and the membrane is reset.
An on-chip event router propagates both internally generated
and external spikes to connected neurons, allowing it to form
feed-forward as well as recurrent topologies. To that end, each
neuron integrates stimuli from a column of 256 synapses, each
with a 6-bit weight stored in local static random-access memory.
The resulting postsynaptic currents I, which are integrated on the
membrane capacitor, follow an exponential time course similar
to the membrane dynamics themselves. The sign of a synapse is
determined as a presynaptic property. However, we allowed for
a continuous transition between positive and negative weights
during training by merging synapse circuits of opposing signs
(Fig. 1B).

BrainScaleS-2 allows individually adjusting all neuronal param-
eters, including reference potentials and time constants, on a
per-neuron basis to flexibly emulate different target dynamics.
This fine-grained control also facilitates calibration to mitigate
deviations induced by variations in the production process. In this
article, we, however, make use of this parameterization to actively
decalibrate the system, thereby allowing us to systematically
explore self-calibration properties of our learning algorithm.

ITL Surrogate Gradients on Analog Hardware
To train SNNs on BrainScaleS-2, we developed a general learn-
ing framework to optimize recurrent and multilayer networks.
Our approach is based on the notion of surrogate gradients,

CADC

PPU

signed
synapse

A B

Fig. 1. The mixed-signal BrainScaleS-2 chip. (A) Close-up chip photograph.
(B) Implementation of a multilayer network on the analog neuromorphic
core. Input spike trains are injected via synapse drivers (triangles) and
relayed to the hidden-layer neurons (green circles) via the synapse array.
Spikes in the hidden layer are routed on-chip to the output units (red circles).
Each connection is represented by a pair of excitatory and inhibitory hard-
ware synapses, which holds a signed weight value. The analog membrane
potentials are read out via the CADC and further processed by the PPU.

� w

forward

backward

input spikes recorded data

340 µs

25
6

ne
ur

on
s

S0[0]

Ĩ1 [0]

V1[0]

Ṽ1[0]

S1[0]

S̃1[0]

Ĩ2 [0]

S0[1]

Ĩ1 [1]

V1[1]

Ṽ1[1]

S1[1]

S̃1[1]

Ĩ2 [1]

S0[2]

Ĩ1 [2]

V1[2]

Ṽ1[2]

S1[2]

S̃1[2]

Ĩ2 [2]

S0[3]

Ĩ1 [3]

V1[3]

Ṽ1[3]

S1[3]

S̃1[3]

Ĩ2 [3]

S0[4]

Ĩ1 [4]

V1[4]

Ṽ1[4]

S1[4]

S̃1[4]

Ĩ2 [4]

W1

W1R

rst

W2

W1

W1R

rst

W2

W1

W1R

rst

W2

W1

W1R

rst

W2

in
je

ct

re
co

rd
ed

da
ta

in
pu

t
hi

dd
en

re
ad

ou
t

time

A B

C

Fig. 2. Surrogate gradient learning on BrainScaleS-2. (A) Illustration of our
ITL training scheme. The forward pass is emulated on the BrainScaleS-2 chip.
Observables from the neuromorphic substrate as well as the input spike
trains are processed on a conventional computer to perform the backward
pass. The calculated weight updates are then written to the neuromorphic
system. (B) Parallel recording of analog traces and spikes from 256 neurons
via the CADC. (C) The differentiable computation graph results from the
integration of LIF dynamics. The time dimension is unrolled from left to
right, and information flows from bottom to top within an integration step.
Synaptic currents are derived from the previous layer’s spikes and potential
recurrent connections, multiplied by the respective weights (W). Stimuli are
integrated on the neurons’ membranes (V), which trigger spikes (S) upon
crossing their thresholds. These observables are continuously synchronized
with data recorded from the hardware. Spikes as well as reset signals (rst) are
propagated to the next time step, which also factors in the decay of currents
and potentials.

which overcome vanishing gradients and critical points associated
with nondifferentiable spiking dynamics (23). Surrogate gradient
learning flexibly supports arbitrary differentiable loss functions
and can seamlessly exploit both rate-based and spike timing-
based coding schemes.

Broadly, our ITL approach works as follows (Fig. 2): First, we
emulate the forward pass on the analog neuromorphic substrate
and record both spikes and internal membrane traces (Fig. 2 A
and B). By injecting the latter into an otherwise approximate
software model, we effectively render the neuromorphic SNN
differentiable. This permits the evaluation of surrogate gradi-
ents and the calculation of weight updates using backpropaga-
tion through time (BPTT) on graphics-processing unit–enabled
autodifferentiation libraries (29), in combination with state-of-
the-art optimizers. At the same time, our learning algorithm
self-corrects for parameter mismatch of the analog components
(Fig. 2C). Finally, we close the loop by transferring the updated
weights back to the analog system.

In the following, we elaborate on the two central steps, namely,
the recording of data from the neuromorphic system and their
integration into the computation graph.

Recording Spikes and Analog Membrane Traces. Surrogate gradient
learning crucially relies on the neurons’ membrane potentials.

2 of 9 PNAS
https://doi.org/10.1073/pnas.2109194119

Cramer et al.
Surrogate gradients for analog neuromorphic computing

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

https://doi.org/10.1073/pnas.2109194119

CO
M

PU
TE

R
SC

IE
N

CE
S

N
EU

RO
SC

IE
N

CE

On an analog system like BrainScaleS-2, these are represented as
physical voltages and are hence not readily available for numer-
ical computation. The required digitization is often challenging
due to the inherent parallelism of these substrates. This bottle-
neck is further emphasized by accelerated systems.

BrainScaleS-2 solves this problem by incorporating column-
parallel analog-to-digital converters (CADCs) to simultaneously
digitize the membrane potentials of all neurons (Fig. 1B). We
trigger the ADC conversions via the embedded plasticity process-
ing units (PPUs) (30) to ensure higher and more stable sampling
rates compared to a host-based scheduling. This furthermore
enables the implementation of a fast inference mode, where only
classification results are transmitted to the host. When training
the network, however, each recorded sample is instantly trans-
ferred to an intermediate external memory region, from where
it is asynchronously read by the host machine at the end of an
input pattern or batch. In total, we reach a sample rate of ∼0.6
MSample×s−1, corresponding to a sampling interval of 1.7 μs.
For 256 neurons, this yields a total data rate of 1.2 Gbit×s−1.
In addition to the sampled membrane traces, we continuously
record and time-stamp the spike events emitted by the substrate.

A Computation Graph for Analog Circuits. To compute weight up-
dates based on surrogate gradients, we incorporate these ag-
gregated data into a computation graph that approximates the
underlying neuronal dynamics on the neuromorphic substrate. To
that end, we iteratively simulate the neuronal dynamics to obtain
the graph in which we inject the actual recorded membrane
traces. Thus, we use measured quantities, where available, and
only rely on the model estimates for internal variables that are
not measured, e.g., the synaptic currents.

We formulate the graph on a regular time grid of time step
Δt derived from the sampling period of the membrane traces.
Although the spike trains from the neuromorphic substrate are
known with much higher temporal resolution, they are also
aligned to these bins. Depending on the coding scheme and
network topology, an increased resolution can be beneficial and
allow us to better capture causal relations between spikes. In this
case, the computation graph can be evaluated on a finer time
scale and, for that purpose, operate on interpolated membrane
traces.

To reconstruct the internal states, we start by assuming ideal
LIF dynamics (Eq. 1), which we numerically integrate by taking
into account its temporal decay and the calculated synaptic cur-
rents Ĩ [t], which, in turn, are based on the presynaptic spikes S̃j [t]
of neuron j:

Ṽ [t + 1] = Ṽ [t] · e−Δt/τm +Ĩ [t], [2]

Ĩ [t + 1] = Ĩ [t] · e−Δt/τs +
∑

j Wj S̃j [t]. [3]

For brevity, we consider a dimensionless formulation of the LIF
dynamics, in which we assume a leak potential Vleak = 0, a capaci-
tance C = 1, and a firing threshold ϑ= 1 (23). Physical variables
can be readily obtained through appropriate rescaling (cf. Ma-
terials and Methods and SI Appendix). Eq. 3 can be augmented
by an additional term to encompass recurrent connections. The
modeled state variables, indicated by the tilde (˜), represent the
estimates of the on-chip dynamics. Since these can deviate from
the actual emulation and hence distort the resulting gradients,
we, in their place, insert the normalized recorded data. For this
purpose, we introduce an auxiliary identity function f (x , x̃)≡
x and define surrogate derivatives ∂f /∂x = 0 and ∂f /∂x̃ = 1.
Eq. 2 can now be modified to

Ṽ [t + 1] = f
(
V [t + 1], Ṽ [t] · e−Δt/τm +Ĩ [t]

)
. [4]

A similar approach is taken for spikes by defining S̃j [t](Sj [t],

Ṽj [t])≡ Sj [t] with associated derivatives

∂S̃j [t]

∂Sj [t]
= 0,

∂S̃j [t]

∂Ṽj [t]
=

(
β · |Ṽj [t]− ϑ|

)−2

, [5]

where β describes the steepness of the surrogate gradient (31).
When performing the backward pass and, to this end, calcu-

lating ∂L/∂θ = . . . ∂S̃/∂Ṽ · ∂Ṽ /∂θ, the sampled values for the
membrane potential are used whenever an expression containing
Ṽ is evaluated, e.g., in ∂S̃/∂Ṽ . The estimates, in contrast, are
used to determine further derivatives ∂Ṽ /∂θ, which occur in the
recursion relation of BPTT.

Flexible Choice of Loss Functions. The suggested framework allows
us to operate on any differentiable loss that can be formulated on
the data acquired from the neuromorphic system. This encom-
passes loss functions based on the spiking activity of the neurons,
as well as on their membrane voltages (cf. Materials and Meth-
ods). The task-specific loss can be augmented by regularization
functions. These might, on one hand, target an improved gener-
alization performance or, on the other hand, an adaptation to
hardware-specific constraints, such as finite weights and dynamic
ranges of analog signals. Such terms can furthermore be directly
tailored to shape the activity of the emulated SNNs and result in
sparse firing patterns.

Results
We trained BrainScaleS-2 on a series of spike-based vision and
speech-recognition tasks using our ITL learning framework.
Specifically, we chose classification tasks requiring evidence
integration on widely different time scales, which allowed us
to probe the efficiency of our approach on both feed-forward
and recurrent network topologies.

First, we trained a feed-forward network consisting of a sin-
gle hidden layer with 246 neurons on the Modified National
Institute of Standards and Technology (MNIST) dataset (32). To
accommodate the data to a fan-in of 256 inputs, we reduced the
original 28× 28 images to 16 × 16 pixels. We then converted the
pixels into a spike-latency code (cf. Materials and Methods). The
network was optimized by using the Adam optimizer (33) to min-
imize a max-over-time loss L= NLL(softmax(maxt V O

i [t]), y�),
with the negative log-likelihood (NLL), the membrane traces
of the output layer V O

i [t], and the true labels y�. To prevent
excessive amplitudes and, in turn, clipping of V O

i on the analog
substrate, we included a penalty ρa · meani((maxt V O

i [t])2). We
furthermore added an activity-shaping term to promote sparse
activity patterns (cf. Eq. 6). Notably, this contribution could
only reduce the network’s activity and did not act as an upward-
pulling homeostatic force. Being based on surrogate gradients,
our approach nevertheless allowed training the network starting
from a quiescent hidden layer.

During training, the neuromorphic substrate learned to cor-
rectly infer and represent the correct class memberships as the
maximally responsive output units (Fig. 3 A and B). Interestingly,
the inhibition of the other units was not explicitly demanded by
the loss function, but emerged naturally through optimization.
After 100 epochs, the model almost perfectly fit the training
samples and achieved an overall accuracy of 97.2 ± 0.1% on
held-out test data (Table 1). We were able to reduce overfitting
by augmenting the data through random rotations of up to 15◦.
Dropout similarly improved test performance, and combining it
with data augmentation resulted in an accuracy of 97.6 ± 0.1%
on BrainScaleS-2.

As a comparison, we trained the same SNN purely in software
and, in that process, ignored all hardware-specific constraints,
including the finite weight resolution. With an accuracy of

Cramer et al.
Surrogate gradients for analog neuromorphic computing

PNAS 3 of 9
https://doi.org/10.1073/pnas.2109194119

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://doi.org/10.1073/pnas.2109194119

in
pu

ts
pi

ke
s

hi
dd

en
sp

ik
es

ou
tp

ut
tr

ac
es 3

im
ag

es

4 0

10 µs

0.01

0.10

1.00

tr
ai

n
lo

ss

0 20 40 60 80 100
epochs

0.01

1.00

tr
ai

n
er

ro
r

(%
)

0 5 10 15
time T (µs)

10

100

te
st

er
ro

r
(%

)

0 20 40 60 80
time (µs)

0.2

0.4

0.6

0.8

1.0

ou
tp

ut
(V

)

11.8 µs

2.5

3.0

3.5

te
st

10 100
average hidden layer spikes per image

0.0

0.1

tr
ai

n

regularization �b

er
ro

r
(%

)

A B

C

D

E

Fig. 3. Classification of the MNIST dataset. (A) Three snapshots of the SNN activity, consisting of the downscaled 16 × 16 input images (Top), spike raster of
both the input spike trains and hidden-layer activity (Middle), and readout neuron traces (Bottom). The latter show a clear separation, and, hence, a correct
classification of the presented images. (B) Loss and accuracy over the course of 100 training epochs for five initial conditions. (C) The time to decision is
consistently below 10 μs. Here, the classification latency was determined by iteratively reevaluating the max-over-time for output traces (see A) restricted to
a limited interval [0, T]. (D) This low latency allowed us to inject an image every 11.8 μs, corresponding to more than 85,000 classifications per second. This
was achieved by artificially resetting the state of the neuromorphic network in between samples. (E) The neuromorphic system can be trained to perform
classification with sparse activity. When sweeping the regularization strength, a state of high performance was evidenced over more than an order of
magnitude of hidden-layer spike counts.

97.5 ± 0.1% on the test data, the software implementation
only slightly surpassed BrainScaleS-2. As a baseline for the
downscaled 16 × 16 MNIST dataset, we furthermore trained
an equivalently sized ANN with rectified linear units, which
resulted in an accuracy of 98.1 ± 0.1%. Dropout as well as
augmentation again improved upon these numbers, resulting
in a best-effort performance of 98.7 ± 0.1%. Importantly, these
accuracy figures—within their uncertainties—resembled results
on the full-size MNIST images, suggesting that these two datasets
are comparable in their complexity.

To further explore the computational abilities of BrainScaleS-2
trained with surrogate gradients, we used the same network archi-
tecture to classify 16× 16 Fashion-MNIST (34), which resulted
in a test accuracy of 84.2 ± 0.2% (Table 1).

Low-Latency Neuromorphic Computation. The output traces of
trained networks suggested that for latency-encoded inputs, as
used above, the decision is available long before the end of a
stimulus (cf. Fig. 3A). To determine the network’s classification
latency, we artificially restricted the readout layer’s membrane
traces (cf. Fig. 3A) to varying time intervals [0,T], over which we
based the network’s decision, as given by the maximally active
unit. We found that the readout reached its peak accuracy within
8 μs after the first input spike (Fig. 3C).

Low classification latency, however, does not automatically
translate into high inference rates, but is also affected by the
neuronal and synaptic time constants. These time constants de-
termine the rate by which state variables decay back to base-
line within the neuron circuits and, hence, impose a minimum

Table 1. Comparison of results achieved with networks trained on BrainScaleS-2 and in software as well as an ANN baseline

Implementation Remarks Accuracy, %

Train Test

16× 16 MNIST BSS-2 100.0 ± 0.0 97.2 ± 0.1
BSS-2 Dropout + rotation 97.3 ± 0.1 97.6 ± 0.1
Software 100.0 ± 0.0 97.5 ± 0.1
Software Dropout + rotation 97.7 ± 0.1 98.0 ± 0.0
Reference ANN 100.0 ± 0.0 98.1 ± 0.1
Reference ANN Dropout + rotation 99.0 ± 0.0 98.7 ± 0.1

16× 16 F-MNIST BSS-2 90.1 ± 0.6 84.2 ± 0.2
Software 95.2 ± 0.1 85.5 ± 0.1
Reference ANN 97.9 ± 0.1 88.0 ± 0.2

SHD BSS-2 96.6 ± 0.5 76.2 ± 1.3
BSS-2 Augmentation 90.7 ± 0.5 80.6 ± 1.0
Software 100.0 ± 0.0 71.2 ± 0.3
Software Augmentation 90.9 ± 0.2 79.9 ± 0.7

4 of 9 PNAS
https://doi.org/10.1073/pnas.2109194119

Cramer et al.
Surrogate gradients for analog neuromorphic computing

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

https://doi.org/10.1073/pnas.2109194119

CO
M

PU
TE

R
SC

IE
N

CE
S

N
EU

RO
SC

IE
N

CE

separation of independent stimuli. Still, to translate low classifica-
tion latency into high inference rates, we added an artificial reset
of the neuromorphic units 10 μs after inserting the first input
spike. Specifically, we exploited a feature of BrainScaleS-2 that
allowed us to concurrently reset the analog membrane circuits
and clamped all synaptic currents to their respective baselines
(Fig. 3D). This allowed us to infer images with a separation
of 11.8 μs, allowing our SNNs to accurately classify more than
85,000 (85 k) images per second with a latency of 8 μs.

Moreover, we measured the system’s power consumption.
When emulating the trained SNN, the full BrainScaleS-2 chip
consumed ∼200 mW. This figure included the current draw
from the analog neuromorphic core, the plasticity processors,
all surrounding periphery, and the high-speed communication
links. Combining this measurement with the above throughput
results in an energy consumption of 2.4 μJ per classified image.

Efficiency through Sparse Spiking Activity. A key advantage of
SNNs is their sparse temporal spiking activity, which is presumed
crucial for the power efficiency of the brain (4). For similar
reasons, it is also important for larger neuromorphic systems
and particularly in scenarios in which several chips cooperate
by exchanging spikes over communication channels with limited
bandwidth.

To ensure sparse activity on the BrainScaleS-2 system, we
augmented the training loss by a regularization term

Lreg = ρb
1

NH

NH∑
i=1

(∑
t

SH
i [t]

)2

, [6]

with the strength parameter ρb, the hidden-layer size NH, and
the corresponding hidden-layer spike trains SH

i (35). We trained
the above feed-forward SNNs for a range of different values ρb
and measured both their accuracy and average hidden-layer spike
counts. All resulting network configurations were able to fit the
training data with high accuracy (Fig. 3E). More importantly,
they reached a constant test accuracy of 97.2% for activity levels
down to ∼20 hidden-layer spikes per image. When only using 10
spikes on average, we observed a slight decrease in performance.
At such low spike counts, the networks operated in a regime far
from the rate-coding limit and, hence, had to rely on individual
spikes and their timing.

Self-Calibration through ITL Learning. The above results were
obtained with a calibrated BrainScaleS-2 system in which the
parameter deviations due to device mismatch were largely
compensated, and the computation graph hence closely matched
the emulated dynamics. Nevertheless, a certain degree of residual
mismatch remained. To quantify whether and how well our
ITL scheme self-calibrates the substrate during learning, we
performed a series of additional experiments, in which we
deliberately decalibrated the system. Specifically, we calibrated
each neuron’s time constants and threshold to individual target
values. These were drawn from normal distributions with a mean
corresponding to the original calibration targets. We generated
parameter sets by varying their normalized SDs σd in the range of
0 to 50% (Fig. 4A). This notably exceeded the mismatch present
on an uncalibrated BrainScaleS-2 system. To dissect the influence
of poorly matching time constants and misaligned thresholds,
we first detuned τm,s and ϑ− Vleak separately and, finally, all of
these parameters at the same time. Each of these experiments
was repeated for five random seeds.

For each set of parameters, we trained the SNN on the neu-
romorphic system, still assuming ideal dynamics when construct-
ing the computation graph, as done previously. In other words,
we explicitly ignored the introduced mismatch. Nevertheless,
learning performance was hardly affected by decalibration up
to σd = 30%. Beyond that point, training error levels remained

0 10
�m (µs)

co
un

ts

0 10
�s (µs)

0 500
� - Vleak (mV)

50 %
0 %

uncal.

0.01

0.10

1.00

tr
ai

n

both
threshold (- Vl)

timeconstants (�
�

m & �s)

0 10 20 30 40 50
decalibration �d (%)

1.0

10.0

100.0

te
st

weight transferer
ro

r
(%

)

0 5 10 15
fraction of silenced neurons (%)

2

3

4

5
te

st
er

ro
r

(%
)

0 40dropout in training (%)

A

B

C

Fig. 4. Self-calibration and robust performance on inhomogeneous sub-
strates. (A) Distribution of measured neuronal parameters for various de-
grees of decalibration in the range of 0 to 50%. For this purpose, the analog
circuits were deliberately detuned toward individual target values drawn
from normal distributions of variable widths. Distributions for uncalibrated
(uncal.) parameters are shown in red. (B) Despite assuming homogeneously
behaving circuits in the computation graph, ITL training widely compen-
sated the fixed-pattern deviations shown in A. In contrast, simply loading
a software-trained network results in an increased test error, especially
for a strong decalibration σd. For configurations with extreme mismatch,
some networks suffered from dysfunctional states (e.g., leak-over-threshold).
(C) When incorporating dropout regularization during training, networks
become widely resilient to failure of hidden neurons.

low, but gradually increased (Fig. 4B). The testing performance,
however, was (except for the highest σd) unaffected by the arti-
ficial mismatch. Notably, for high decalibration levels, some net-
work configurations suffered from pathological network states,
which were caused by some neurons entering a suprathreshold
regime without external input. Thus, even for mismatch levels far
above the ones expected for BrainScaleS-2 and similar systems,
ITL learning effectively self-calibrated the analog neuromorphic
SNNs. To illustrate the added benefit of such self-calibration, we
also established the baseline performance for weight transfer,
whereby networks were trained in software, and the weights
were transferred to the neuromorphic chip subsequently. While
a performance gap between ITL and weight transfer was already
noticeable for the calibrated system, higher decalibration levels
σd dramatically widened this gap (Fig. 4B).

Training for Robustness. We furthermore investigated the re-
silience of trained SNNs to defects occurring after deployment,
e.g., failing neuron circuits. To this end, we simulated neuronal
death by artificially silencing randomly selected units in the
hidden layer of the network after training. As expected,

Cramer et al.
Surrogate gradients for analog neuromorphic computing

PNAS 5 of 9
https://doi.org/10.1073/pnas.2109194119

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

https://doi.org/10.1073/pnas.2109194119

performance deteriorated with an increasing fraction of disabled
neurons (Fig. 4C).

However, when robustness was encouraged during training
using dropout, the resilience to such neuronal failures was largely
improved. For networks trained with a dropout rate of 40%,
the test error increased by only 10% when silencing 15% of the
hidden-layer units. In contrast, it grew by 37% when dropout was
not used during training.

Speech Recognition with Recurrent SNNs. So far, our analysis was
limited to tasks with short time horizons, which can be readily
solved using feed-forward networks. But other tasks, such as
speech recognition or keyword spotting, may require working
memory and thus recurrent architectures. On BrainScaleS-2, re-
current connectivity is readily supported by a flexible event router.
Further, recurrence is easily integrated into our ITL learning
scheme by adding recurrent connections to Eq. 3.

To demonstrate successful learning of recurrent connections
with our framework, we trained a network with 186 recurrently
connected hidden-layer neurons on the Spiking Heidelberg
Digits (SHD) dataset (36), which consists of spoken digits from
»zero« to »nine« in both English and German, resulting in 20
classes total. This dataset is a natural benchmark for SNNs due
to its inherent temporal dimension. Furthermore, it directly
provides input spike trains and, hence, alleviates the need for

additional preprocessing, which can confound comparison. To
feed the data into our system, we reduced their dimensionality
by subsampling 70 out of the original 700 channels (cf. Materials
and Methods). The network was then trained by optimizing a sum-
over-time loss L= NLL(softmax(sumt V O

i [t]), y�) (Fig. 5A).
To prevent pathologically high firing rates, we employed
homeostatic regularization during training. Specifically, we
added a regularizer of the form ρr · max(0,

∑
i,t Si [t]− ϑr)

2,
where i and t iterate over the hidden-layer units and time steps,
respectively; ρr defines the regularization strength; and ϑr an
activity threshold.

After 100 training epochs, the SNN reached 96.6± 0.5% on the
training data and 76.2 ± 1.3% on the test set (Fig. 5B and Table
1). The large gap is presumably due to the nature of the dataset,
which was designed to especially challenge a network’s ability to
generalize (36). The two languages included in the dataset exhibit
classes with significant phonemic similarity (»nine« vs. »neun«),
which are indeed harder to separate by the trained network
(Fig. 5C). Most importantly, however, the test set consists to
81% of two speakers that are not part of the training set and
result in higher classification error rates (Fig. 5D). To improve
generalization performance, we employed data augmentation.
For this purpose, we stochastically shifted events to neighbor-
ing input channels drawn from a normal distribution centered

au
di

o

»acht«

in
pu

t(
70

)
hi

dd
en

(1
86

)
ou

tp
ut

(2
0)

cu
m

ul
at

iv
e

(2
0)

»five« »zero« »null«

100 µs

0.10

1.00

10.00

tr
ai

n
lo

ss

fixed reccurence

0 20 40 60 80 100
epochs

1.0

10.0

100.0

tr
ai

n
er

ro
r

(%
)

true label

pr
ed

ic
te

d
la

be
l

zero nine null neun

ze
ro

ni
ne

nu
ll

ne
un

0 1 2 3 4 5 6 7 8 9 10 11
speaker

0

10

20

30

er
ro

r
(%

)

A B

C

D

Fig. 5. Classification of natural language with recurrent SNNs on BrainScaleS-2. (A) Responses of a recurrent network when presented with samples from
the SHD dataset. The input spike trains, originally derived from recordings of spoken digits (illustrations), were reduced to 70 stimuli. The network was
trained according to a sum-over-time loss based on the output units’ membrane traces. For visualization purposes, we also show their cumulative sums. (B)
Over 100 epochs of training, the network developed suitable representations as evidenced by a reduced training loss and error, here shown for five distinct
initial conditions. When training the network with fixed recurrent weights, it converges to a higher loss and error. (C) Classification performance varies
across the 20 classes, especially since some of them exhibit phonemic similarities (»nine« vs. »neun«). (D) The trained network generalizes well on unseen
data from most speakers included in the dataset. The discrepancy between training and overall test error (dashed line) arises from the composition of the
dataset: 81% of the test set’s samples stem from two exclusive speakers (highlighted in gray).

6 of 9 PNAS
https://doi.org/10.1073/pnas.2109194119

Cramer et al.
Surrogate gradients for analog neuromorphic computing

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

https://doi.org/10.1073/pnas.2109194119

CO
M

PU
TE

R
SC

IE
N

CE
S

N
EU

RO
SC

IE
N

CE

around their original channel (cf. Materials and Methods). This
approach improved the test performance to 80.6 ± 1.0%.

To test whether good performance was dependent on learning
of recurrent connections, we initialized a set of networks with
the shuffled recurrent weights from a trained network and only
trained its input and readout weights (Fig. 5B). This resulted in
a substantial reduction of classification performance to 64.3 ±
2.3%. Thus, our ITL learning framework can leverage recurrent
connections to improve accuracy on this benchmark.

To again compare our hardware system to simulations, we
trained and evaluated the SNN in an equivalent software-only
implementation. Without augmentation, it reached an accuracy
of 71.2 ± 0.3%—far below the corresponding hardware results.
At the same time, the software simulation was able to perfectly
fit the training data, which was not achieved on BrainScaleS-
2. We speculate that this discrepancy results from the intrinsic
stochasticity of the analog substrate, which is propagated and
amplified by the network’s recurrent dynamics and thereby acts
as a form of regularization. When we applied the same data
augmentation to the simulation as in our hardware emulation,
this resulted in a improved test accuracy of 79.9 ± 0.7%, close to
the performance of BrainScaleS-2 under equivalent conditions.
Thus, our work suggests that intrinsic analog device noise could
act as an efficient regularizer.

Finally, we compared the energy efficiency of our recurrent
SNNs to recently published work on the Aloha keyword-spotting
task. To that end, we trained a recurrent network with 176 hidden
units on the task and found comparable performance at an
energy efficiency competitive to Loihi and Movidius (ref. 37;
SI Appendix, SI Text and Table S1).

In summary, our findings illustrate that the flexibility of ITL
learning also applies to the realm of recurrent SNN trained on
challenging speech-processing problems.

Discussion
We have developed a general ITL learning method for recurrent
and multilayer SNNs on analog neuromorphic substrates and
demonstrated its capabilities on BrainScaleS-2. The combina-
tion of surrogate gradients with ITL training—facilitated by the
massively parallel digitization of analog membrane potentials—
allowed us to tie on recent achievements in the field of SNN
optimization and bring them to an analog substrate. This allowed
us to achieve state-of-the-art classification accuracies on multiple
benchmark problems, comparable to equivalent software simu-
lations. During training, our framework automatically corrected

for device mismatch and thus abolished the need for explicit cal-
ibration. The resulting SNNs exhibited spatially and temporally
sparse activity patterns and could furthermore be optimized for
resilience to neuron failure. Ultimately, our method allowed us
to exploit BrainScaleS-2 for low-latency neuromorphic inference
at high throughput and a low energy footprint.

Most current neuromorphic systems are fully digital and
typically allow one to simulate software-trained models without
performance loss (38, 39). This approach is flexible with regard
to the SNN training schemes used (23, 40–49), but to fully
leverage recent advances in material sciences often requires
dealing with analog or mixed-signal components (15, 19, 50,
51). For instance, memristors, a key emerging technology, are
ideal candidates for long-term memory storage in neuromorphic
systems (52–54). However, these respective components are
intrinsically analog and subject to drift and manufacturing
variability. These imperfections can reduce performance when
loading software-trained models onto the analog substrate.
While several studies approached this problem by optimizing for
additional robustness during training (44, 55), these techniques
are intrinsically limited. Since mature on-chip training solutions
are not yet available, ITL learning has emerged as a good
compromise that efficiently takes device-specific nonidealities
and heterogeneity into account (56–59). However, previous
work relied on rate-based or time-to-first-spike coding schemes.
Here, we expanded ITL techniques into the realm of surrogate
gradient learning, which flexibly interpolates between rate-
and timing-based coding schemes on multilayer and recurrent
architectures, thereby simultaneously improving performance
and energy efficiency, while also being conducive for fast
inference (24).

Comparing the performance of neuromorphic SNN implemen-
tations is an intricate task, starting with a lack of standardized
benchmarks (36, 60). When surveying the broad spectrum of
different neuromorphic architectures, one encounters diverse
ways of determining a system’s energy consumption, which ranges
from presilicon estimates of a neuromorphic core’s current draw
to full-system laboratory measurements. Nevertheless, we at-
tempted to contrast our findings with results from previous stud-
ies on both digital and analog systems (Table 2). Although lacking
the essence of temporal spike-based information processing, we
considered the MNIST dataset due to its widespread adoption.

Our model on BrainScaleS-2 performed competitively in all
metrics and was surpassed in accuracy only by much larger or
convolutional networks. When considering the energy footprint,

Table 2. Comparison of MNIST benchmark results across neuromorphic platforms

Platform Reference Architecture Node, Accuracy, Energy/inference, Throughput, Latency,
nm % μJ inference×s−1 μs

Digital SpiNNaker Stromatias et al. (61) 784-500-500-10 130 95.0 /∗ /∗ /
TrueNorth Esser et al. (62) CNN (1 ensemble) 28 92.7 0.27 1, 000 /

CNN (16 ensembles) 28 95 4 1, 000 /
CNN (64 ensembles) 28 99.4 108.0 1, 000 /

— Chen et al. (63) 236-20 10 88.0 1.0 6, 250 /
784-1024-512-10 10 98.2 12.4 / /
784-1024-512-10 10 97.9 1.7 / /

MorphIC Frenkel et al. (64) 784-500-10† 65 97.8 205 / /
784-500-10† 65 95.9 21.8 250 /

SPOON Frenkel et al. (38) CNN 28 97.5 0.3‡ / 117
Analog BSS-1 Schmitt et al. (56) 100-15-15-5 180 95.0 /∗ 10, 000 /

BSS-2 Göltz et al. (57) 256-246-10 65 96.9 8.4 21, 000 < 10
BSS-2 This work 256-246-10 65 97.6 2.4 85, 000 8

∗Estimates were given by Pfeiffer and Pfeil (40).
†Segmented input and hidden layers.
‡Based on presilicon estimates.

Cramer et al.
Surrogate gradients for analog neuromorphic computing

PNAS 7 of 9
https://doi.org/10.1073/pnas.2109194119

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://doi.org/10.1073/pnas.2109194119

BrainScaleS-2 reached values only outperformed by optimized
architectures fabricated in much smaller and hence more effi-
cient technology nodes (38, 63). In comparison to other neu-
romorphic systems, we set benchmarks in terms of throughput
and latency, which even challenge dedicated ANN accelerators
(SI Appendix, Tables S1 and S2).

One limitation of our study is that, in addition to MNIST, we
primarily used speech-based benchmark datasets to compare to
other systems. Using accelerated systems such as BrainScaleS-2
for speech recognition would require an extra conversion step at
the sensor level and thus likely result in additional energy costs
that we did not quantify in our study. However, it is conceivable
that part of this cost could be offset by dynamical network ap-
proaches and effective time-multiplexing strategies in edge appli-
cations or data centers. We primarily chose speech benchmarks
due to the lack of suitable alternatives (60) and as a proxy for
challenging problems requiring temporal processing that fits the
number of channels supported by our system. While we expect
that our main findings will generalize to other task domains and
other neuromorphic substrates, showing this equivalence is left
for future work.

In summary, our work shows how learning can efficiently com-
pensate for device-specific imperfections, thereby allowing us
to employ analog neuromorphic substrates for complex, energy-
efficient, and ultralow-latency information processing. Impor-
tantly, it also is the first step toward future on-chip learning
algorithms that could even take advantage of such device het-
erogeneity (65). Thus, our work gives a glimpse of how pow-
erful learning algorithms will empower future neuromorphic
technologies.

Materials and Methods
Software Environment. Our training framework was based on PyTorch’s
autodifferentiation library (29). It furthermore builds upon the BrainScaleS-2
software stack to configure the neuromorphic system and execute the
experiments (66).

Input Coding. For MNIST, we scaled down the dataset to 16 × 16 pixels by
first discarding the two outermost rows and scaling the remaining pixels. The
images were then converted to spikes by interpreting the normalized pixel
grayscale values xi as input currents to LIF neuons. Strong enough currents
trigger a spike at time ti = τin log xi/(xi − ϑin), where τin denotes the input
units time constant and ϑin its threshold (SI Appendix, Table S3).

Since the SHD dataset is provided in the form of input spike times, a
custom conversion was not required. For SHD, we reduced the original
700 input channels by subsampling. Specifically, we omitted the first 70
and then retained every 9th input unit. The time dimension was scaled by
a factor of 2,000 to account for the system’s acceleration factor of 1,000
and further shorten the experiment duration to reduce the computation
burden on the host system. When employing data augmentation, a spike
originally originating from input channel i was reassigned to a neighboring
channel drawn from N (μ = i, σ). This augmentation was applied prior to
downsampling the inputs.

Initialization. We used Kaming’s initialization (67) for both the hidden-
and output-layer weights. Specifically, weights were drawn from a normal
distribution with zero mean and an SD of σ̂w/

√
NH,L (SI Appendix, Table S3).

Weight Scaling. Weight values had to be scaled, rounded, and cropped
to the neuromorphic system’s weight resolution of 7-bit signed integers
resulting from merging two 6-bit synapse circuits. The exact scaling took
into account analog bias currents and other technical parameters and was
heuristically optimized to equalize the response of the analog neuronal
circuits and the model dynamics of the computational graph.

Due to the absence of a threshold for the nonspiking output layer, its
membrane traces could be scaled arbitrarily. For the MNIST classification, we
adopted a dynamic weight scaling for the output weights by aligning the
largest absolute weight value as represented in software to the maximum
weight possible on the substrate.

Energy Measurements. We separately measured the current draw of the
full application-specific integrated circuit on the individual supply rails via
INA219 current/power monitors from Texas Instruments, which were for that
purpose placed on the system’s carrier board. The power readings were
taken during the execution of the forward pass.

Data Availability. There are no data underlying this work. Driver soft-
ware and code examples are available in GitHub (https://github.com/
fmi-basel/brainscales-2-surrogate-gradients).

ACKNOWLEDGMENTS. We express gratitude toward O. Breitwieser, C.
Mauch, E. Müller, and P. Spilger for their work on the software environment;
B. Kindler, F. Kleveta, and S. Schmitt for their helpful support; A. Baumbach
for his valuable feedback during the early commissioning phase of the
system; and J. Göltz and L. Kriener for helpful discussions. We thank the
whole Electronic Vision(s) group for the inspirational work environment
and the late K. Meier, without whom none of our work would have been
possible. This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant Agreements
720270, 785907, and 945539 (Human Brain Project). This work was supported
by the Novartis Research Foundation.

1. V. Mnih et al., Playing Atari with deep reinforcement learning. arXiv [Preprint]
(2013). https://arxiv.org/abs/1312.5602 23 (Accessed 23 December 2021).

2. D. Silver et al., Mastering the game of go without human knowledge. Nature 550,
354–359 (2017).

3. T. B. Brown et al., Language models are few-shot learners. arXiv [Preprint] (2020).
https://arxiv.org/abs/2005.14165 23 (Accessed 23 December 2021).

4. P. Sterling, S. Laughlin, Principles of Neural Design (MIT Press, Cambridge, MA,
2015).

5. C. Mead, Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).
6. C. Mead, M. Ismail, Analog VLSI Implementation of Neural Systems (Springer Science

& Business Media, 2012).
7. G Indiveri et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011).
8. C. S. T. Thakur et al., Large-scale neuromorphic spiking array processors: A quest to

mimic the brain. Front. Neurosci. 12, 891 (2018).
9. C. D. Schuman et al., A survey of neuromorphic computing and neural networks in

hardware. arXiv [Preprint] (2017). https://arxiv.org/abs/1705.06963 23 (Accessed 23
December 2021).

10. P. A. Merolla et al., Artificial brains. A million spiking-neuron integrated circuit with
a scalable communication network and interface. Science 345, 668–673 (2014).

11. B. V. Benjamin et al., Neurogrid: A mixed-analog-digital multichip system for large-
scale neural simulations. Proc. IEEE 102, 699–716 (2014).

12. S. Furber, Large-scale neuromorphic computing systems. J. Neural Eng. 13, 051001
(2016).

13. K. Boahen, A neuromorph’s prospectus. Comput. Sci. Eng. 19, 14–28 (2017).
14. M. Davies et al., Loihi: A neuromorphic manycore processor with on-chip learning.

IEEE Micro 38, 82–99 (2018).
15. K. Roy, A. Jaiswal, P. Panda, Towards spike-based machine intelligence with neuro-

morphic computing. Nature 575, 607–617 (2019).
16. M. Mahowald, R. Douglas, A silicon neuron. Nature 354, 515–518 (1991).

17. J. Schemmel et al., “A wafer-scale neuromorphic hardware system for large-scale
neural modeling” in Proceedings of the International Symposium on Circuits and
Systems (ISCAS) (IEEE, Piscataway, NJ, 2010), pp. 1947–1950.

18. E. Chicca, F. Stefanini, C. Bartolozzi, G. Indiveri, Neuromorphic electronic circuits for
building autonomous cognitive systems. Proc. IEEE 102, 1367–1388 (2014).

19. D. Marković, A. Mizrahi, D. Querlioz, J. Grollier, Physics for neuromorphic computing.
Nat. Rev. Phys. 2, 499–510 (2020).

20. S. Ambrogio et al., Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature 558, 60–67 (2018).

21. Y. Bengio, N. Léonard, A. Courville, Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv [Preprint] (2013).
https://arxiv.org/abs/1308.3432 (Accessed 23 December 2021).

22. M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv [Preprint] (2016). https://arxiv.org/abs/1602.02830 (Accessed 23
December 2021).

23. E. O. Neftci, H. Mostafa, F. Zenke, Surrogate gradient learning in spiking neural
networks: Bringing the power of gradient-based optimization to spiking neural
networks. IEEE Signal Process. Mag. 36, 51–63 (2019).

24. S. Davidson, S. B. Furber, Comparison of artificial and spiking neural networks on
digital hardware. Front. Neurosci. 15, 651141 (2021).

25. B. Yin, F. Corradi, S. M. Bohté, Accurate and efficient time-domain classification with
adaptive spiking recurrent neural networks. Nat. Mach. Intell. 3, 905–913 (2021).

26. S. Billaudelle et al., “Versatile emulation of spiking neural networks on an acceler-
ated neuromorphic substrate” in Proceedings of the International Symposium on
Circuits and Systems (ISCAS) (IEEE, Piscataway, NJ, 2020), pp. 1–5.

27. A. Grübl, S. Billaudelle, B. Cramer, V. Karasenko, J. Schemmel, Verification and de-
sign methods for the brainscales neuromorphic hardware system. J. Signal Process.
Syst 92, 1277–1292 (2020).

8 of 9 PNAS
https://doi.org/10.1073/pnas.2109194119

Cramer et al.
Surrogate gradients for analog neuromorphic computing

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2109194119/-/DCSupplemental
https://github.com/fmi-basel/brainscales-2-surrogate-gradients
https://github.com/fmi-basel/brainscales-2-surrogate-gradients
https://doi.org/10.1073/pnas.2109194119

CO
M

PU
TE

R
SC

IE
N

CE
S

N
EU

RO
SC

IE
N

CE

28. J. Schemmel, S. Billaudelle, P. Dauer, J. Weis, Accelerated analog neuromorphic
computing. arXiv [Preprint] (2020). https://arxiv.org/abs/2003.11996 (Accessed 23
December 2021).

29. A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library” in Advances in Neural Information Processing Systems, H. Wallach et al.,
Eds. (Curran Associates, Inc., Red Hook, NY, 2019), vol. 32, pp. 8024–8035.

30. S. Friedmann et al., Demonstrating hybrid learning in a flexible neuromorphic
hardware system. IEEE Trans. Biomed. Circuits Syst. 11, 128–142 (2017).

31. F. Zenke, S. Ganguli, Superspike: Supervised learning in multilayer spiking neural
networks. Neural Comput. 30, 1514–1541 (2018).

32. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998).

33. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv [Preprint]
(2014). https://arxiv.org/abs/1412.6980 (Accessed 23 December 2021).

34. H. Xiao, K. Rasul, R. Vollgraf, Fashion-MNIST: A novel image dataset
for benchmarking machine learning algorithms. arXiv [Preprint] (2017).
https://arxiv.org/abs/1708.07747 (Accessed 23 December 2021).

35. F. Zenke, T. P. Vogels, The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural Comput. 33, 899–925
(2021).

36. B. Cramer, Y. Stradmann, J. Schemmel, F. Zenke, The Heidelberg spiking data sets
for the systematic evaluation of spiking neural networks. IEEE Trans. Neural Netw.
Learn. Syst., 10.1109/TNNLS.2020.3044364 (2020).

37. P. Blouw, X. Choo, E. Hunsberger, C. Eliasmith, “Benchmarking keyword spotting
efficiency on neuromorphic hardware” in Proceedings of the 7th Annual Neuro-
Inspired Computational Elements Workshop (Association for Computing Machinery,
New York, 2019), pp. 1–8.

38. C. Frenkel, J. D. Legat, D. Bol, “A 28-nm convolutional neuromorphic processor en-
abling online learning with spike-based retinas” in Proceedings of the International
Symposium on Circuits and Systems (ISCAS) (IEEE, Piscataway, NJ, 2020), pp. 1–5.

39. S. K. Esser et al., Convolutional networks for fast, energy-efficient neuromorphic
computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–11446 (2016).

40. M. Pfeiffer, T. Pfeil, Deep learning with spiking neurons: Opportunities and chal-
lenges. Front. Neurosci. 12, 774 (2018).

41. S. M. Bohte, J. N. Kok, H. La Poutre, Error-backpropagation in temporally encoded
networks of spiking neurons. Neurocomputing 48, 17–37 (2002).

42. B. Rückauer, N. Känzig, S. C. Liu, T. Delbruck, Y. Sandamirskaya, Closing the
accuracy gap in an event-based visual recognition task. arXiv Preprint (2019).
https://arxiv.org/abs/1906.08859 (Accessed 23 December 2021).

43. D. Zambrano, R. Nusselder, H. S. Scholte, S. M. Bohté, Sparse computation in
adaptive spiking neural networks. Front. Neurosci. 12, 987 (2019).

44. J. Büchel, D. Zendrikov, S. Solinas, G. Indiveri, D. R. Muir, Supervised training of
spiking neural networks for robust deployment on mixed-signal neuromorphic
processors. Sci. Rep. 11, 23376 (2021).

45. E. Hunsberger, C. Eliasmith, Spiking deep networks with LIF neurons. arXiv [Preprint]
(2015). https://arxiv.org/abs/1510.08829 (Accessed 23 December 2021).

46. J. H. Lee, T. Delbruck, M. Pfeiffer, Training deep spiking neural networks using
backpropagation. Front. Neurosci. 10, 508 (2016).

47. H. Mostafa, Supervised learning based on temporal coding in spiking neural net-
works. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235 (2018).

48. G. Bellec et al., A solution to the learning dilemma for recurrent networks of spiking
neurons. Nat. Commun. 11, 3625 (2020).

49. D. Huh, T. J. Sejnowski, “Gradient descent for spiking neural networks” in Advances
in Neural Information Processing Systems, S. Bengio et al., Eds. (Curran Associates,
Inc., Red Hook, NY, 2018), vol. 31, pp. 1–11.

50. V. Joshi et al., Accurate deep neural network inference using computational phase-
change memory. Nat. Commun. 11, 2473 (2020).

51. T. Dalgaty et al., In situ learning using intrinsic memristor variability via Markov
Chain Monte Carlo sampling. Nat. Electron. 4, 151–161 (2021).

52. S. P. Adhikari, C. Yang, H. Kim, L. O. Chua, Memristor bridge synapse-based neural
network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23, 1426–1435 (2012).

53. Y. Kim, Y. Zhang, P. Li, “A digital neuromorphic VLSI architecture with memristor
crossbar synaptic array for machine learning” in Proceedings of the International
SOC Conference (IEEE, Piscataway, NJ, 2012), pp. 328–333.

54. G. W. Burr et al., Recent progress in phase-change memory technology. IEEE J. Emerg.
Sel. Top. Circuits Syst. 6, 146–162 (2016).

55. S. Moon, K. Shin, D. Jeon, Enhancing reliability of analog neural network processors.
IEEE Trans. Very Large Scale Integr. VLSI Syst. 27, 1455–1459 (2019).

56. S. Schmitt et al., “Neuromorphic hardware in the loop: Training a deep spiking
network on the brainscales wafer-scale system” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, NJ, 2017), pp. 2227–
2234.

57. J. Göltz et al., Fast and energy-efficient neuromorphic deep learning with first-spike
times. Nat. Mach. Intell. 3, 823–835 (2021).

58. P. Yao et al., Fully hardware-implemented memristor convolutional neural network.
Nature 577, 641–646 (2020).

59. L. G. Wright et al., Deep physical neural networks enabled by a back-
propagation algorithm for arbitrary physical systems. arXiv [Preprint] (2021).
https://arxiv.org/abs/2104.13386 (Accessed 23 December 2021).

60. M. Davies, Benchmarks for progress in neuromorphic computing. Nat. Mach. Intell.
1, 386–388 (2019).

61. E. Stromatias et al., Robustness of spiking deep belief networks to noise and reduced
bit precision of neuro-inspired hardware platforms. Front. Neurosci. 9, 222 (2015).

62. S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, D. S. Modha, Backpropagation for
energy-efficient neuromorphic computing. Adv. Neural Inf. Process. Syst. 28, 1117–
1125 (2015).

63. G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, R. K. Krishnamurthy, A 4096-neuron
1m-synapse 3.8-pJ/SOP spiking neural network with on-chip STDP learning and
sparse weights in 10-nm FinFET CMOS. IEEE J. Solid-State Circuits 54, 992–1002
(2019).

64. C. Frenkel, J. D. Legat, D. Bol, Morphic: A 65-nm 738k-synapse/mm2 quad-core
binary-weight digital neuromorphic processor with stochastic spike-driven online
learning. IEEE Trans. Biomed. Circuits Syst. 13, 999–1010 (2019).

65. N. Perez-Nieves, V. C. H. Leung, P. L. Dragotti, D. F. M. Goodman, Neural heterogene-
ity promotes robust learning. Nat. Commun. 12, 5791 (2021).

66. E. Müller et al., Extending brainscales OS for brainscales-2. arXiv [Preprint] (2020).
https://arxiv.org/abs/2003.13750 (Accessed 23 December 2021).

67. K. He, X. Zhang, S. Ren, J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification” in Proceedings of the International
Conference on Computer Vision (IEEE, Piscataway, NJ, 2015), pp. 1026–1034.

Cramer et al.
Surrogate gradients for analog neuromorphic computing

PNAS 9 of 9
https://doi.org/10.1073/pnas.2109194119

D
ow

nl
oa

de
d

by
 g

ue
st

 o
n

Ja
nu

ar
y

18
, 2

02
2

https://doi.org/10.1073/pnas.2109194119

