
Department of Physics and Astronomy
Heidelberg University

Bachelor Thesis in Physics
submitted by

Falk Leonard Ebert

born in Münster (Germany)

2021

Real-time Image Classification on Analog Neuromorphic
Hardware

This Bachelor Thesis has been carried out by
Falk Leonard Ebert

at the Kirchhoff Institute for Physics in Heidelberg
under the supervision of
Dr. Johannes Schemmel

3

Real-time Image Classification on Analog Neuromorphic Hardware

As dedicated logic components for accelerating demanding workloads are becoming more
ubiquitous in information technology, new hardware architectures are being explored
for computation beyond the classical von-Neumann paradigm. This thesis demonstrates
real-time classification of handwritten digits using the neuromorphic BrainScaleS-2 archi-
tecture. In contrast to many established accelerators for artificial neural networks which
operate digitally, BrainScaleS-2 is facilitating its analog synapse array to perform vector-
matrix-multiplication. Enabled by the portable and fully integrated BrainScaleS-2 mo-
bile system, images are captured by a standard commercially available camera and pro-
cessed locally. Using an artificial neural network trained on the MNIST data-set, the
BrainScaleS-2 application-specific integrated circuit classifies images at 66.7 Hz with an
average energy-consumption of 10.5 mJ per image. The model is trained in a state-of-
the-art machine learning framework via an extension for the BrainScaleS-2 hardware,
allowing the system to be adapted to many artificial intelligence workloads.

Bilderkennung in Echtzeit mit Analoger Neuromorpher Hardware

Dedizierte Logikkomponenten zur Beschleunigung aufwändiger Berechnungen werden
in der Informationstechnologie immer allgegenwärtiger und inspirieren die Erforschung
neuer Hardwarearchitekturen jenseits des klassischen von-Neumann-Paradigmas. Diese
Arbeit demonstriert die Klassifikation von handgeschriebenen Ziffern in Echtzeit mit der
neuromorphen BrainScaleS-2-Architektur. In Gegensatz zu vielen etablierten, digitalen
Beschleunigern für künstliche neuronale Netze verwendet BrainScaleS-2 ein analoges
Synapsen-Array zur Berechnung von Vektor-Matrix-Multiplikationen. Das tragbare und
vollständig integrierte BrainScaleS-2-Mobilsystem ist in der Lage, Bilder von einer han-
delsüblichen Kamera zu erfassen und lokal zu verarbeiten. Mit Hilfe eines künstlichen
neuronalen Netzwerks, das auf dem MNIST-Datensatz trainiert wurde, klassifiziert der
BrainScaleS-2 Mikrochip Bilder mit einer Frequenz von 66.7 Hz bei einem durchschnit-
tlichen Energieverbrauch von 10.5 mJ pro Bild. Das Modell wird in einem weit ver-
breiteten Framework für maschinelles Lernen über eine Erweiterung für BrainScaleS-2
trainiert, wodurch das System an viele Anwendungen der künstlichen Intelligenz angepasst
werden kann.

5

Contents

1 Introduction 9

2 Methods 11
2.1 BrainScaleS Neuromorphic Hardware . 11

2.1.1 Chip Architecture . 11
2.1.2 Software Framework . 14

2.2 BrainScaleS Mobile System . 15
2.3 System and FPGA Architecture . 16

2.3.1 Vector Generator . 17
2.4 PyTorch Extension . 18
2.5 Graph Based Experiment Notation and Execution 18

2.5.1 Execution Instances . 19
2.5.2 Just-in-Time (JIT) Execution . 20
2.5.3 PPU Mastered Execution . 20

2.6 Modelling Workflow . 21
2.7 Webcam Image Capture . 22

3 Implementation 25
3.1 MNIST Model . 25
3.2 Image Preprocessing . 26
3.3 MAC Operation . 28

3.3.1 HxTorch Integration . 29
3.4 Experiment Execution . 31
3.5 Data Flow . 32

4 Results 35
4.1 MAC Operation . 35
4.2 MNIST Results . 39
4.3 Runner Performance . 41

5 Discussion and Outlook 45
5.1 MAC Operation . 45
5.2 Performance and Data Flow . 46
5.3 Local Execution . 46
5.4 Limitations . 47

6 Acknowledgements 49

7

1 Introduction

In the modern landscape of information technology and manufacturing processes, field-
effect transistors are approaching physical limitations, slowing the performance gains
of long-established general-purpose computing architectures (Theis and Wong, 2017).
These general-purpose architectures are often supplemented by application-specific in-
tegrated circuits (ASICs), which make more efficient use of the computational power
available in silico (Mittal, 2020). Research into new computational architectures spe-
cialized on specific workloads has increased in recent years. Especially for use in the field
of artificial intelligence (AI), new accelerators designed for those workloads are presented
at a very high rate (Chen et al., 2020; Reuther et al., 2020).

The increasing demand for intelligent control systems by for example the automotive
industry (Lee et al., 2018) has fueled research into low latency inference devices for lo-
cal artificial intelligence applications (Edge AI). Especially the high data rates encoun-
tered in tasks such as real-time video analysis benefit considerably from edge computing
(Ananthanarayanan et al., 2017). The increasing use of AI with sensitive data also
highlights the benefits of local processing (Zhao et al., 2018).

Inspired by neuroscientific research, neuromorphic computing tries to mimic the prin-
ciples of the biological nervous system and has lead to the development of many new
architectures (Thakur et al., 2018; Schuman et al., 2017). Understanding the dynamics of
spiking neural networks and improving the energy-efficiency of their electrical imitations
are main areas of research in this field. The BrainScaleS (BSS) neuromorphic architec-
ture presented in Schemmel et al. (2010) is a mixed-signal ASIC capable of emulating
spiking neural networks (Wunderlich et al., 2019; Billaudelle et al., 2019) using analog
electrical circuits. It uses analog circuitry to emulate the spiking behavior as it is more
energy-efficient (Joubert et al., 2012) while using digital components to propagate signals
over larger distances. While originally developed for wafer-scale integration and emula-
tion of large spiking neural networks (Schmitt et al., 2017), its successor BrainScaleS-2
(Schemmel et al., 2020) is additionally capable of accelerating artificial neural networks
(ANNs) (Weis et al., 2020), which makes it applicable to a large set of workloads (Mnih
et al., 2015). Recently it has also been used in the BrainScaleS mobile system, a portable
low energy computing platform for Edge AI and neuromorphic research, which has been
demonstrated by Stradmann et al. (2021).

Making use of the speed of the accelerated neuromorphic architecture of BSS-2, this
thesis demonstrates real-time classification of handwritten digits from the MNIST data-
set (LeCun et al., 2010). Enabled by the portable and fully integrated BSS-2 mobile

9

1 Introduction

system, handwritten digits are captured by a camera and locally processed at interactive
rates, demonstrating the applicability of the BSS-2 architecture to these emerging work-
loads. In contrast to many other processors specialized for embedded AI like Google’s
Edge TPU (Coral) which operate digitally, BSS-2 uses its analog core to perform vector-
matrix multiplications, which has the potential to be more energy efficient (Yamaguchi
et al., 2019).

10

2 Methods

This chapter provides an overview of the different techniques, frameworks and hardware
systems used throughout this thesis. First, a general overview of the BrainScaleS-2 neu-
romorphic architecture and its operating principles is given. The supporting software
framework and hardware abstraction layers that enable flexible usage of this versatile
system are presented afterwards. This thesis uses a specialized hardware setup enabling
standalone operation without the need for a dedicated host computer. Its system ar-
chitecture and principal components are described and finally, the high-level software
frameworks which enable integration with state-of-the-art machine learning workflows
are described and explained in some detail to aid in understanding the following discus-
sions.

2.1 BrainScaleS Neuromorphic Hardware

The HICANN-X-v2 (High Input Count Analog Neural Network) ASIC is the most re-
cent implementation of the BSS-2 architecture and has been presented in Schemmel
et al. (2020). The neuromorphic substrate is manufactured in a 65 nm complementary
metal-oxide-semiconductor (CMOS) process and uses a combination of digital control
logic and analog neuromorphic circuits. The digital part is used for event routing,
communication with the host system and the on-chip plasticity processing unit (PPU),
while the analog core comprises the synapses, neurons and their parameter storage. This
mixed-signal approach plays to the strengths of both techniques while avoiding compli-
cated workarounds to mitigate their respective shortcomings and results in a flexible and
powerful architecture (Wunderlich et al., 2019).

2.1.1 Chip Architecture

To prevent degradation of the analog signals over long distances, the chip’s analog com-
ponents are split into four symmetric quadrants grouped pairwise into hemispheres. Each
hemisphere contains a digital co-processor, the so-called plasticity processing unit (PPU)
capable of executing arbitrary code and connected to the components in a highly parallel
manner. These co-processors allow efficient on-chip learning and flexible usage of the
system as demonstrated by Friedmann et al. (2017). Figure 2.1 shows the arrangement
and size of the functional blocks within the chip while fig. 2.2 shows the layout of a
single quadrant’s analog components in more detail. In total, the BSS-2 chip contains
512 neurons and 512 · 128 · 2 = 217 synapses.

11

2 Methods

Top PPU

CADC

1
2
8

p
a
ir

s

128

Synapse
Array

128 Neurons

CADC

1
2
8

p
a
ir

s

128

Synapse
Array

128 Neurons

Bottom PPU

CADC

1
2
8

p
a
ir

s
128

Synapse
Array

128 Neurons

CADC

1
2
8

p
a
ir

s

128

Synapse
Array

128 Neurons

1
2
8

S
y
n
a
p
se

D
ri

v
e
rs

1
2
8

S
y
n
a
p
se

D
ri

v
e
rs

Event
Rout-

ing

Figure 2.1: Dimensions and approximate layout of the BrainScaleS-2 ASIC’s main components.
External stimulus and neuron spikes are distributed to the synapse drivers or FPGA
by the event routing logic.

As the neuromorphic hardware is intended to be used as an accelerator for emulating
neural networks, it needs to interface with a host computer that provides configuration,
external stimulus and records the experiment’s results. This interface is provided by a
controller based on a Field Programmable Gate Array (FPGA). It contains various sup-
porting logic elements, which execute the experiment and record the results in the form
of timestamped spike-trains or membrane-voltage recordings. High-speed low-voltage
differential signaling (LVDS) links are used to connect the chip and the controller at
high bandwidth. In addition to a low-latency transport protocol for spike-events, these
links also transmit a reliable transaction-based communications protocol (“omnibus”)
for access to configuration parameters and generic memory.

Each quadrant of the chip consists of 128 analog neuron circuits implementing the Adap-
tive Exponential Integrate and Fire (AdEx) model presented in Aamir et al. (2018),
which extends the Leaky Integrate and Fire (LIF) model (Lapicque, 1907). The synapses
are arranged in an array and contain static memory for their parameters. They are con-
nected directly to the PPUs using parallel data lines enabling quick and efficient con-
figuration. Each neuron is connected vertically to a column of 128 signed synapse pairs
making up the array. Two rows of unsigned synapses make up one signed synapse row.
Each signed row is stimulated by one synapse driver circuit which implements short-term
plasticity modulating the pre-synaptic pulse strength (Schemmel et al., 2007). When
a neuron spikes, it sends a digital signal to the event routing logic whose configuration
determines whether this event should be sent to another synapse driver implementing
interconnected neurons or recorded on the controller.

To store parameters for the analog circuitry, each row of neurons is supplemented by
a row of analog parameter storage that is kept synchronized to the quadrant’s digital

12

2.1 BrainScaleS Neuromorphic Hardware

A
n

a
lo

g
C

o
re

Q
u

a
d

ra
n
t

Parameter Storage

N
e
u
ro

n
s

S
y
n
a
p
se

D
ri

v
e
rs

S
y
n
a
p
ti

c
W

e
ig

h
ts

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

I/O
Controller

E
v
en

t
R

o
u

ti
n

g

PPU

CADC
High-
speed

Link to
FPGA

Figure 2.2: Schematic block diagram of a quadrant’s relevant components are shown; their
quantities are not representative. Each neuron is connected to a column of synapse
pairs usually configured as inhibitory and excitatory respectively. The synapse
drivers are driving two rows of unsigned synapses each.

memory block. This capacitive analog memory is presented in more detail in Hock et al.
(2013). For fast parallel readout of the neuron membranes and sensing correlations in
the firing patterns, each column is connected to a channel of the column analog to digital
converted (CADC) controlled by the PPU.

Calibration

Since the manufacturing process for CMOS has inherent variability which is especially
noticeable in analog circuits, not all synapses and neurons behave equally. To achieve
predictable and consistent behavior, the AdEx neuron model incorporates many runtime-
configurable parameters, which allow fine-grained tuning of the circuits’ electrical behav-
ior. This makes the BrainScaleS architecture applicable to different biologically inspired
neuron models and also allows for novel uses of the analog neuromorphic substrate
(Schemmel et al., 2017). Thus, the exact calibration targets depend on the intended
use-case and are presented in more detail in Leibfried (2018) for spiking operation and
in Weis et al. (2020) for acceleration of artificial neural networks.

HAGEN mode

Inspired by earlier hardware systems facilitating analog circuitry such as the Heidelberg
AnaloG Evolvable Neural Network (HAGEN) (Schemmel et al., 2004), the BSS-2 hard-
ware also implements non-spiking operation to accelerate vector-matrix multiplication.
In this aptly named HAGEN mode, the neurons’ membranes are used as integrators
for the post-synaptic currents emanating from the synapse array. The synaptic weight
matrix is used to encode the matrix, while the inputs generated by the synapse drivers
correspond to the input vector. The synapse driver’s short-term plasticity is used to scale

13

2 Methods

the pre-synaptic currents according to the input vector’s entries. After passing through
the synapse matrix, the post-synaptic currents are scaled according to the configured
weight matrix and accumulate on the neuron membranes. Precisely timed readout of the
resulting membrane potentials via the CADC yields the result of the multiply-accumulate
(MAC) operation. To optimize this behavior, the neurons are calibrated for a slow de-
cay towards their resting potential while the synaptic time constant is minimized to
accelerate the integration.

During the experiment described in this thesis, the BSS-2 is used in this non-spiking HA-
GEN mode to accelerate vector-matrix multiplication on the analog neuron membranes.
More details on the exact operating principles can be found in Weis et al. (2020).

2.1.2 Software Framework

Neuromorphic architectures and the interfacing with them pose many challenges in terms
of software control and integration. Making efficient use of the computing resources is an
integral part of the research into neuromorphic architectures (Titirsha et al., 2021) and
providing powerful and user-friendly interfacing options is crucial for widespread adop-
tion of this technology (Moradi and Indiveri, 2014). For the BrainScaleS-2 architecture,
supporting hardware and software infrastructure is presented in Müller et al. (2020a,b)
and continues to be extended to enable flexible and efficient research.

Since the BSS-2 architecture is capable of accelerating several different neuromorphic
computing workloads, the software architecture aims to provide a useful level of abstrac-
tion that provides easy usage for common applications while preserving the flexibility
required for diverse research. Using multiple layers of abstraction, some of which are
briefly outlined below, the software stack provides the ability to integrate the hardware
with high-level description languages allowing for user-friendly operation while also pro-
viding fine-grained control at lower layers if needed. This is only a general overview
of the architecture to aid in understanding the following sections on software develop-
ment. A comprehensive explanation of the architecture can be found in Müller et al.
(2020b).

• Hardware Coordinate System The Hardware Abstraction Layer Coordinate
System (halco, Electronic Vision(s) Group (2021a)) is used to address the large
number of configuration parameters and other components on the system. It pro-
vides a comprehensive interface and reflects the symmetries inherent to the system.

• FPGA Instruction Set The FPGA Instruction Set Compiler (fisch, Electronic
Vision(s) Group (2021b)) abstracts accesses to the systems components (identified
by their coordinates) on the basis of so-called containers while providing basic val-
idation. Writes to (and reads from) these containers are encoded by messages in
the Universal Translator (UT messages) format (Karasenko, 2020). An experiment
is completely described by a sequence of these UT messages. To execute the ex-
periment, its messages are serialized into a playback-program, which is understood

14

2.2 BrainScaleS Mobile System

by the FPGA.

• Hardware Abstraction Layer Building on the aforementioned abstraction lay-
ers, the Hardware Abstraction Layer (haldls, Electronic Vision(s) Group (2021c))
provides nested data structures that consolidate individual hardware into logical
units and provide a higher-level interface (Müller et al., 2020b). This enables a
more succinct description of experiments and allows the hardware to be easily con-
figured without the need for expert knowledge on all component’s inner workings.

This list is not exhaustive as it excludes for example the library implementing communi-
cation with the FPGA as well as the framework for programming the PPUs. There also
exist higher-level abstraction layers enabling descriptive configuration of spiking neural
networks such as PyNN (Davison et al., 2008).

2.2 BrainScaleS Mobile System

The BrainScaleS-2 ASIC is well suited for local artificial intelligence applications because
of its low energy consumption. Stradmann et al. (2021) paired it with a small single-
board computer with an integrated FPGA providing a versatile computing platform for
inference on the edge (fig. 2.3). The direct interface between the computer’s CPU and the
FPGA reduces input and output latency and enables the use of local peripherals.

Figure 2.3: Picture of the BrainScales-2 mobile system. Components form bottom to top:
Ultra96 development board (FPGA based system controller), ASIC Adapter Board,
BSS-2 ASIC bonded to carrier board. Figure from Stradmann et al. (2021).

The BrainScaleS-2 mobile system consists of the following core components:

1. Ultra96 development board (Avnet Inc., 2020)
General purpose development board built around a Xilinx Zynq Multi Processor
System on a Chip (MPSoC), which provides a quad core 64bit ARM processor and

15

2 Methods

programmable logic fabric. Peripherals can be connected over USB and interfaced
with via standard Linux drivers.

2. ASIC Adapter Board (ASICAB)
This adapter board is compatible with the expansion interface of the Ultra96 and
provides power regulation, references and general IO circuitry for the BSS-2 ASIC.

3. HICANN-X Carrier Board
Printed circuit board (PCB) to which the BrainScaleS-2 analog neuromorphic ac-
celerator is bonded. It also contains passive filtering components and a small
integrated circuit (IC) for digitally identifying the chip.

The CPU on the development board runs a Linux operating system and is capable
of running the control software. This eliminates the network latency and bandwidth
limitations present in classical host-based BrainScaleS configurations. For the purpose of
this thesis, a regular consumer webcam is connected to the setup via USB and controlled
using the Video for Linux API (Dirks et al.).

To train the system in conjunction with a distributed computing cluster, a communi-
cations protocol for interfacing over the network (“quiggeldy”) has been developed in
Breitwieser (2021). The playback-program is serialized on the host computer and then
sent to the mobile system over the network, which executes this program and returns
the results the same way.

2.3 System and FPGA Architecture

The FPGA-based system controller’s main function is to control the bidirectional data
transfer between the user’s application and the chip. It receives the encoded playback-
program from the application level and decodes it for pipelined execution. An in-depth
description of the FPGA architecture can be found in Rettig (2019).

This section introduces the architectural differences of the BrainScaleS-2 mobile system.
In contrast to the network-based BSS setups, this system tightly couples the FPGA and
CPU via an Advanced eXtensible Interface (AXI) main communication bus, which is
integrated into the MPSoC. Figure 2.4 shows a functional block diagram of the system’s
components and logic modules of the FPGA fabric, that are relevant to the work in this
thesis.

To run an experiment, the software framework produces a playback program consisting
of UT messages as described in section 2.1.2. These messages encode the experiment’s
static configuration and input data such as neuron events. The playback program is then
loaded into the FPGA’s playback buffer via the internal AXI interconnect. After being
triggered, the executor begins the execution of the experiment. It performs configuration
of the system components via omnibus transactions and generates neuron events which
are transmitted to the BSS-2 ASIC via five high-speed links. During the execution of
the program, all results are recorded by the executor and written into the trace buffer.

16

2.3 System and FPGA Architecture

USB Webcam

ARM CPU

C++ Execution

Runtime

DRAM

PPU External Mem.

A
X

I
In

te
rc

o
n
n
. Programmable Logic

Executor

Vector GeneratorPlayback Buffer

Trace Buffer

Omnibus - AXI Bridge

BrainScaleS ASIC

Analog Core

Event

Routing

PPU

HS Link

UT Events

Omnibus

Figure 2.4: BrainScaleS Mobile System - functional block diagram. The arrow heads denote
data flow direction and bus controllers.

This buffer is then read by the control software and decoded to be available to the user’s
experiment.

The PPU on BSS-2 can also execute arbitrary code and has access to the same on- and
off-chip resources as the executor. In addition, it supports more efficient access to the
analog core via Same Instruction Multiple Data (SIMD) operations. It can for example
be used to quickly read out the neuron membrane potentials via the column digital-
analog-converter (CADC) and has greater bandwidth connectivity to the synram. To
quickly store partial results and other transient data which is not recorded to the trace
buffer, a portion of the system’s DRAM is reserved as the PPU’s external memory. Its
AXI interface is connected to the omnibus infrastructure via a bridge.

2.3.1 Vector Generator

Since the chip is used in HAGEN mode, the input vector of a vector-matrix multiplication
has to be converted into its corresponding spike sequence. To reduce the computational
load of this operation, Stradmann et al. (2021) introduced the vector generator, a real-
time logic module written in SystemVerilog. This module serves as a spike-event source
for the analog core and supports pipelined pre-fetching of data from either a first-in-
first-out (FIFO) queue or (with an additional DMA controller) directly from system
memory. This forgoes the need to encode the input data as spike events in the playback
program and allows it to be transmitted as binary data instead. The vector generator
also supports configuration of many hardware-specific parameters such as the number
of re-sends for each vector entry and the delay between them. In order to achieve accu-
rate timing, it provides a real-time synchronization interface to the PPU via omnibus.
Additionally, it makes use of the synapse drivers’ label-bit (see section 2.1.1) providing
a mechanism to apply a mask to each spike event, which is honored by the synapses.
Placing another weight matrix on the vertically adjacent synapses and configuring them

17

2 Methods

to the appropriate mask, allows a matrix with an input dimension of up to 256 to be
processed side-by-side in one operation. This comes at the cost of using twice the num-
ber of neurons as integrators and needing to sum the activations of each neuron pair
afterwards.

2.4 PyTorch Extension

PyTorch (Paszke et al., 2019) is one of the most popular frameworks for researching
artificial neural networks (ANN) (He, 2019). It provides APIs for modelling neural
networks and also supports automatic differentiation which greatly improves the training
process. HxTorch, an extension for PyTorch, adds support for the BrainScaleS hardware
and has been presented in Spilger et al. (2020); Electronic Vision(s) Group (2021d). It
contains common operations for matrix multiplication where the forward pass can be
executed on BSS-2. It also implements the backward pass which is executed on the host
system’s processor and a hardware emulation mode (“mock mode”), which can be used
to speed up training. A typical training process where the BSS hardware is emulated
for the forward pass is outlined in fig. 2.5.

Training Data Model Parameters

Training

Training Batch

Forward Pass (mock)

Backward Pass

Input Data

Prediction
Target

P
a
ra

m
et

er
U

p
d

a
te

s

M
o
d

el

Data Batch

Figure 2.5: Training with HxTorch in mock mode

This training process is typically repeated with the hardware-based forward pass for
a few epochs in order to compensate for fixed-pattern noise on the hardware. While
calibrating the chip can reduce these fixed-pattern deviations, their remains are not
adequately accounted for by the mock mode’s Gaussian noise. Training with hardware
in the loop can improve an MNIST model’s accuracy on test data by about 6 % (Weis
et al., 2020).

2.5 Graph Based Experiment Notation and Execution

HxTorch’s forward pass consists of several operations - one for each layer or unit in
the model. These operations are translated into graph representations describing the
processing steps which need to be taken on the hardware. Building these representations

18

2.5 Graph Based Experiment Notation and Execution

and executing them on the hardware is handled by the Graph Based Experiment Notation
and Execution (grenade) which is covered in more detail in Spilger (2021a) and can be
found online at Electronic Vision(s) Group (2021e).

This representation as a directed signal-flow graph has several advantages over the naive
approach of a flat, sequential configuration. It represents operations as a collection of
vertices, which are connected by directional edges representing the computational opera-
tions and their interdependence respectively. While being a more intuitive representation
it can also express the digital operations (such as read, store and additions) in between
the various hardware execution steps. This allows experiments to be more naturally
designed and reasoned about since the notation follows the natural data flow through
the network. It also has some technical benefits, since the same vertices can be processed
differently depending on the execution environment allowing for greater flexibility and
optimization for application-specific constraints.

2.5.1 Execution Instances

One central aspect of the technical execution details is the placement of the graph’s
vertices on so-called execution instances. They represent a real-time execution step and
its physical and temporal placement on the hardware. Edges between vertices of the same
execution instance signify immediate, volatile data dependencies like events being sent
to the synapse drivers or the neuron’s membrane potentials after an operation. Edges
between different execution instances on the other hand can only transfer digitized data
stored in memory on either of the PPUs or the FPGA. This grouping of sub-graphs into
execution instances is depicted in fig. 2.6.

External Input (256)

Data Input (256)

Data Output (256)

Data Input (128)

Vector Generator

CADC Readout View

Data Output (128)

Data Input (128)

Vector Generator

CADC Readout View

Data Output (128)

Data Input (128)

Data Input (128)

Addition

Data Output (128)

Graph Input

Graph Output

Figure 2.6: Execution instance assignment depicted for the example of a (simplified) 256x128
matrix multiplication. Different execution instances are indicated by colored boxes
around sub-graphs. The matrix multiplication is split into two parts, since only
128 inputs can be processed at once due to physical limitations of the chip.

19

2 Methods

After placing the vertices on execution instances, their sub-graphs are traversed and
the static configuration is extracted from each vertex. These configuration parame-
ters are bundled into the instance’s configuration playback program. The execution of
the real-time operations depends on the backed and is described in the following para-
graphs.

2.5.2 Just-in-Time (JIT) Execution

The JIT compiler and executor make use of the host computer for most of the digital
calculations and orchestration of the graph. The execution instances are transformed
into a graph as shown in fig. 2.6 which is traversed in order and executed one instance at
a time. For each instance, its static configuration is applied to the chip, after which the
inputs to the instance are pre-processed on the CPU of the host. They are then executed
in real-time and the results are subsequently fetched from the hardware and also post-
processed on the host. Thus, the configuration parameters which are relevant for a
particular execution instance are always applied right before the operation takes place,
which enables the same hardware components to be used with different configuration
across multiple instances.

2.5.3 PPU Mastered Execution

In contrast to the previously described method, the PPU mastered executor makes use
of the SMID CPU embedded in the BrainScaleS-2 hardware for executing the real-time
portion of an execution instance. The PPU is fully programmable and is connected to
the system’s omnibus. Its vector unit and direct access to the CADC enable a more
efficient readout of the neuron membrane potentials after a multiply-accumulate (MAC)
operation. Instead of transferring the results of every execution instance to the host for
processing, the on-chip processor can perform these digital operations, which in principle
allows execution instances to be merged. Optionally, the instance’s static configurations
can be merged as well, which allows the real-time part of the execution to be completely
independent of the host (see fig. 2.7). However, since each execution instance contains
a static configuration program that also need to be merged together, the graphs can
only use a single static configuration for each physical hardware component throughout
the program. This limits the size of networks that can be executed in this manner and
also necessitates spatially efficient mapping of vertices onto the hardware coordinates to
prevent conflicts in their static configuration.

Merging the execution instances and building the execution program requires an addi-
tional compilation step. Initially, the graph of execution instances is traversed to gener-
ate the initial configuration and execution commands for each instance. Afterwards, the
initial configurations and the execution commands are concatenated. In practice, the
execution program is split into three separate playback-programs, which handle loading
the input data to the FPGA, triggering PPU mastered execution and retrieval of the
results respectively. Spilger (2021a) describes the graph execution in more detail.

20

2.6 Modelling Workflow

Config

Load

Exec.

Store

JIT Graph Executor

0 1 2

PPU Mastered Executor

0 1 2

t

0 0 0 0 1 1 1 1 2 2 2 2

t

0 1 2 0 0 1 2 2

Host

FPGA

BSS-2

Figure 2.7: Comparison of just-in-time execution and PPU mastered execution, time axis not
to scale. From top to bottom: Execution instance graph, schematic execution steps
and data flow between system components. For the JIT executor, the processing
steps on the host in between different instances are not shown.

Following the argument of Stradmann et al. (2021), the PPU mastered execution flow is
used in this thesis. Since the goal is inference at interactive rates and MNIST does not
require a very large model, also the static configurations will be merged, restricting the
model to fit completely on one set of hardware components, i.e. one chip.

2.6 Modelling Workflow

This section describes the workflow for designing, training and executing a model in the
framework described above. Defining the model adheres to the usual PyTorch workflow
as described in section 2.4 with the only difference being the use of the HxTorch functions
in the model definition. Their API is designed to be familiar while also providing control
over hardware-specific parameters where necessary. Initial training of the model is done
with the emulated forward pass which does not interact with the grenade hardware
layers. When the model has converged to a suitable accuracy, retraining with hardware
in the loop can be used to further improve the accuracy as mentioned previously.

When executing the forward pass on the hardware, the HxTorch functions are executed
using grenade’s JIT executor. Each function is implemented by a computable repre-
senting the sub-graph of hardware operations necessary to accomplish this computation.
These sub-graphs are executed one at a time during the forward pass, which results in
many round-trips to the hardware per inference batch. In addition to training on the
hardware, the inference can also be traced into a sequence of computables, which com-
prise the complete inference graph and model parameters. The traced sequence can be
serialized and parsed, which allows it to be easily copied into the BSS-2 mobile system

21

2 Methods

for deployment.

For execution, the model’s traced sequence can be transformed into a playback program
using the PPU mastered compiler. This initial compilation step only needs to happen
once and since the static configurations can be merged as well, the playback programs
for initialization and configuration also only need to be executed once. Performing
inference on a single batch of input-data consists of three steps. Firstly, the input data
is transformed into a load program and run on the hardware. The already compiled
execution program is then executed after which the store program returns the model’s
prediction.

2.7 Webcam Image Capture

Capturing a frame from the camera hardware requires interfacing with the camera’s
Linux driver. The Video for Linux API (Dirks et al.) provides a well-supported abstrac-
tion layer and is included in the default configuration of most Linux kernels. To capture
frames from the camera, it needs to be initialized through the API by specifying the
capture parameters, which include the desired data format and resolution. For efficient
and performant frame capture, a memory-mapped ring buffer is chosen, which operates
by directly mapping parts of the camera’s hardware frame buffer into system memory.
The application can request buffers to be dequeued, which allows access to the captured
frame. After processing, the buffer is enqueued again to be filled by the camera once
another frame is available.

Memory-Mapped Frame Buffers

Queued,
Empty Buffers

Active Buffer

Queued,
Full Buffers

Dequeued
Buffer

Camera Sensor

Image Data
Application

Dequeue

Enqueue

Figure 2.8: Schematic flow diagram of ring-buffer based frame capture using a USB webcam.

The maximum number of frame buffers is limited by the size of the camera’s hardware
frame buffer and should be chosen as small as possible to decrease latency since the
buffers are always filled sequentially. However, it needs to be ensured, that at least
one buffer is always available for the camera to fill; otherwise, frames would be dropped.
Assuming that the processing of a frame is consistently faster than the camera can deliver
new frames, two buffers are an ideal configuration for low-latency video capture. For this

22

2.7 Webcam Image Capture

thesis, processing a frame only entails creating a monochrome copy of the buffer. This is
very simple since the camera supplies frames as YUYV-encoded data, which consists of
alternating chroma (U, V) and luminance (Y) values. Copying the luminance values into
a new buffer yields a 8 bit per pixel monochrome copy of the frame. Since the images
will be further downscaled to 28 px × 28 px resolution, the frames are requested at the
lowest resolution supported by the camera (176 px× 144 px).

23

3 Implementation

This section presents the implementation details for various software components in-
volved in the real-time image classification. First, an introduction to the neural network
and the data pre-processing is given. Motivated by the model’s topology, the imple-
mentation of the hardware operations used in the inference is presented with a focus
on optimizations for runtime performance. Finally, the processing steps making up the
execution loop are shown and the resulting data flow is discussed.

3.1 MNIST Model

As described in Deng (2012), the MNIST data-set is a widely used benchmark in basic
image recognition. The data-set consists of 28 px×28 px monochrome images of single
digits ranging from 0 to 9 and their respective labels. As can be seen in Weis et al.
(2020) and Lecun et al. (2000), even very shallow network topologies consisting only of
fully-connected linear layers can achieve good accuracy of up to 98 percent on the test
data.

Input Neurons (784)

Input Linear (784 x 64)

ReLU (64 x 64)

Output Linear (64 x 10)

Max. Pooling (10 x 1)

Prediction (1)

Figure 3.1: MNIST model topology. The linear layers are fully connected and dimensions are
indicated in brackets.

Since using the PPU mastered execution limits the model’s size (see section 2.5.3), the
following network topology was chosen. The input image data is squashed into a one-
dimensional tensor of length 28 · 28 = 784 . This input data is then fed through a fully
connected layer onto 64 hidden neurons. After applying a Rectified Linear Unit (ReLU),
the hidden neurons are fed into another fully connected layer which maps them onto
the 10 output neurons. A max-pooling operation then selects the output neuron with

25

3 Implementation

the largest activation as the model’s prediction. A visual representation of this model is
shown in fig. 3.1 and an implementation is shown in listing 3.1.

Due to size constraints of the hardware, this is a rather minimal model which forgoes
processing steps like convolutional layers which are typically found in machine learning,
especially with image data. It should be noted, however, that despite its small size, this
model can process the full MNIST input data without any prior downsampling or other
size-reduction techniques.

1 class ModelMNISTSmall(torch.nn.Module):

2 def __init__(self):

3 super (). __init__ ()

4

5 self.fc_1 = torch.nn.Linear (28 * 28, 64, bias = False)

6 self.fc_2 = torch.nn.Linear (64, 10, bias = False)

7 self.relu = torch.nn.ReLU()

8

9 def forward(self, x):

10 x = x.view(-1, 28 * 28)

11 x = self.fc_1(x)

12 x = self.relu(x)

13 x = self.fc_2(x)

14 return x

Listing 3.1: Pure PyTorch implementation of the small MNIST model.

3.2 Image Preprocessing

In order to use images captured by a webcam as inputs to the model, they need to be pre-
processed to match the training data. This consists of downsampling and cropping the
images since virtually no webcams support capturing in arbitrary resolutions and aspect
ratios. The method applied here is average downsampling, for which every pixel in the
input image is mapped non-injectively onto a downscaled output image and averaged
with all other pixels mapped onto the same downscaled coordinate. Parts of the input
image, which do not fit into the desired aspect ratio, are discarded.

In addition to the dimensions of the image, special care also needs to be taken to match
the training data regarding the distribution of pixel values. Specifically, the MNIST
data is formatted such that the pixels which make up the digit have values close to 255
while the background is uniformly close to values of 0. The camera captures images of
black digits on a white background and the downsampled images are distributed very
differently, as fig. 3.2 clearly shows.

In the following, input pixels pi ∈ I denote the values of individual pixels of the captured
and downsampled images. The input pixels are firstly converted to floating-point values
according to eq. (3.1). Afterwards (eq. (3.2)), pixels are divided by a constant threshold
s and restricted to a maximum value of 1 to clip pixels that are brighter than this
threshold. This image is then inverted by subtracting the pixel values from 1 and scaled
back up to the range [0, 31] ⊂ Z corresponding to 5 bit accuracy supported by the vector

26

3.2 Image Preprocessing

0 10 20

0

5

10

15

20

25

Raw Image

0

50

100

150

200

250

0 10 20

0

5

10

15

20

25

Pre-processed Image

0

5

10

15

20

25

30

Figure 3.2: fLTR: Raw downsampled image captured by the camera, image after pre-processing.

generator (eq. (3.3)). A white threshold of s = 0.4 yields good results for the camera
and lighting conditions encountered in testing. The code in listing 3.2 implements this
pre-processing algorithm in C++.

pi,rel =
pi −min (pi ∈ I)

max (pi ∈ I)−min (pi ∈ I)
(3.1)

pi,clip = min
(

1,
pi,rel

s

)
(3.2)

pi,out = 31 · (1− pi,clip) (3.3)

1 void preprocess_image (unsigned char* data,

2 size_t const width,

3 size_t const height)

4 {

5 static const float white_threshold = 0.45;

6 unsigned char min = 255, max = 0;

7 for (size_t i = 0; i < width * height; i++) {

8 min = data[i] < min ? data[i] : min;

9 max = data[i] > max ? data[i] : max;

10 }

11

12 const float min_max_diff = max - min;

13 for (size_t i = 0; i < width * height; i++) {

14 if (min_max_diff == 0) {

15 data[i] = 0;

16 } else {

17 const float normalized = (data[i] - min) / min_max_diff;

18 const float scaled = normalized / white_threshold;

19 data[i] = 31 * (1 - (scaled > 1 ? 1 : scaled));

20 }

21 }

22 }

Listing 3.2: Camera input pre-processing implemented in C++

27

3 Implementation

3.3 MAC Operation

Although the previously presented model is in theory sufficiently small to completely
fit on one chip with no reconfiguration, the large input dimension of the first linear
layer presents a challenge. Referring to section 2.1.1, the chip can only process 128
inputs simultaneously in one analog matrix multiplication due to the limited number of
synapse drivers per column. Processing the 784 inputs of the first linear layer would
require d784 / 128e = 7 separate operations. Making use of the label-bits supported
by the vector generator (see section 2.3.1), the number of operations can be reduced to
d784 / 256e = 4. However, the use of label-bits needs twice the number of output neurons
so that, while it increases the execution speed, it does not allow larger MACs to be placed
on the chip. The absolute size limit for single-chip vector-matrix multiplication stems
from the number of weights available in the synapse matrix, which is 512 · 128 · 2 = 217

for signed matrices (512 neurons, 128 rows of signed synapse pairs per hemisphere and 2
hemispheres). The required execution time scales discretely and linearly with the input
dimension, as it needs to be executed in chunks of 256 entries.

Top PPU

Bottom PPU

0
-

1
2
8

64

1
2
8

-
2
5
6

64

2
5
6

-
3
8
4

64
3
8
4

-
5
1
2

64

5
1
2

-
6
4
0

64

6
4
0

-
7
6
8

64

7
6
8

-
7
8
4

64

Figure 3.3: Placement of the 784 x 64 MAC on the chip. Two adjacent blocks are combined
into one hardware operation through the use of label-bits as indicated by the colors.
The last operation uses only part of the synapse rows.

This spatial and temporal splitting of the MAC operation allows the long input to be
processed on the chip without any reconfiguration in between runs while still leaving
space for up to a 128 x 64 MAC. Due to its capability of filling a whole chip with one
MAC, this operation is referred to as MACSingleChip. To execute this operation on the
hardware, the execution graph connecting the various steps needs to be built.

After determining the placement of sub-operations on the physical chip, the graph input
needs to be stored in memory so that it is available for all following execution instances.
For each partial operation, the corresponding slice of the input data is loaded and a
MACSmall computable is inserted to perform the partial vector-matrix multiplication.

28

3.3 MAC Operation

The computable exposes parameters, which are used to assign it to a hemisphere and
place it via offsets for synapse columns and rows. In fig. 3.4, the construction of the
complete operation is outlined. Each MACSmall computable in a sub-operation corre-
sponds to a colored pair of operations in fig. 3.3.

Graph Input

Placement

S
u

b
-

O
p

er
a
ti

o
n

MACSmall

(opt.) Addition

Additions

Graph Output

784

g
en

er
a
te

s

265

128

64

64

Figure 3.4: Schematic graph con-
struction for MACSingleChip opera-
tions.

A computable’s sub-graph then loads the corre-
sponding input slice into the vector generator, con-
figures the synram for the multiplication and stores
the output of the neurons. If this sub-operation
uses label-bits, its output is split in the middle and
digitally summed to obtain the sub-operations fi-
nal result with the correct output dimension. Fi-
nally, the results of all computables are summed
together, which yields the final result of the MAC
operation.

Mapping of vertices onto the execution instances is
very similar to the exemplary operation in fig. 2.6.
The first instance stores the graph’s external input
for later use. Each MACSmall operation is mapped
onto a separate instance, which begins with load-
ing the input data slice, then performs the vector-
matrix multiplication and finally reads back and

stores the result. In order to simplify the crossing of hemispheres, the additions are
placed onto separate instances as well, so that their results are stored in memory.

It should also be noted that execution instances are assigned to a hemisphere on the
chip, which allows simultaneous execution of two instances when using PPU mastered
execution. For the MACSmall operations, the hemisphere is explicitly specified by the
placement. For all other vertices in the graph, the hemisphere-placement is deduced
from the vertex’s source edge (defaulting to the top PPU), which reduces data transfer
between PPUs. When branches of the graph meet, a synchronization barrier is inserted
into the PPUs’ command queues to ensure that all data is available before continuing
the graph execution. This simultaneous execution allows the complete 784 x 64 MAC
to be executed with just two analog full-chip operations.

3.3.1 HxTorch Integration

As already discussed in section 2.4, integrating with the machine-learning framework re-
quires the implementation of at least a backward-pass for this operation. For increased
training performance, a mock mode for the forward-pass is also crucial. However, since
the MAC operation outlined above behaves just like standard matrix multiplication,
the mock mode and backward-pass are no different from the already existing imple-
mentations for MACs on the hardware, even though those are executed differently on

29

3 Implementation

hardware. The mock mode’s forward-pass quantizes the operation’s inputs and weights
and performs matrix multiplication. The result is then scaled according to the expected
hardware gain, combined with Gaussian noise and finally clamped to the hardware’s
digital range.

HxTorch already provides analogues to PyTorch’s linear layers, which provide useful
abstraction from the primitive computation elements. Listing 3.3 shows how the native
PyTorch layers can be easily substituted with the HxTorch variants. In order to use the
MACSingleChip and MACSmall, the layer’s internal matrix multiplication are reassigned
to the specific variants. Line 3 in listing 3.3 specifies the placement of the second layer
on the chip’s bottom hemisphere with column 192 as its starting column, as is the first
one that is unoccupied following the large input layer (see fig. 3.3).

1 def mnist_matmul_out (x: torch.Tensor, other: torch.Tensor, ..., mock: bool):

2 return hxtorch.mac_small(x, other, labels = None, mock = mock, ...,

3 hemisphere = 1, start_row = 0, start_column = 192)

4

5 class ModelMNISTSmall(torch.nn.Module):

6 def __init__(self, mock: bool):

7 super (). __init__ ()

8 self.mock = mock

9 if (mock):

10 hxtorch.init(hxtorch.MockParameter(noise_std = 1.6, gain = 0.0018))

11 else:

12 hxtorch.init()

13

14 self.fc_1 = hxtorch.nn.Linear (28 * 28, 64, ..., mock = mock)

15 self.fc_2 = hxtorch.nn.Linear (64, 10, ..., mock = mock)

16 self.relu = hxtorch.nn.ConvertingReLU(mock = mock);

17

18 # use specific matmul operations for efficient hardware execution

19 self.fc_1._matmul = hxtorch.mac_single_chip

20 self.fc_2._matmul = mnist_matmul_out

21

22 def forward(self, x):

23 x = x.view(-1, 28 * 28)

24 x = self.fc_1(x)

25 x = self.relu(x)

26 x = self.fc_2(x)

27 return x

28

29 def serialize_to_grenade(self, destination_file: Path):

30 dummy_inputs = torch.zeros ((1, 28 * 28), dtype = torch.float)

31 hxtorch.no_init ()

32

33 tracer = hxtorch.InferenceTracer(str(destination_file.resolve ()))

34 tracer.start()

35 hxtorch.argmax(self(dummy_inputs), dim = 1, keepdim = True)

36 tracer.stop()

37 hxtorch.release ()

Listing 3.3: HxTorch implementation of the MNIST model. Some parameters have been omit-
ted for brevity. The linear layer’s internal matrix multiplications are replaced with
variants with better runtime-efficiency.

30

3.4 Experiment Execution

Another difference from the plain PyTorch model (listing 3.1) is the use of a Converting
ReLU. In the hardware-based forward-pass, this ReLU scales its result to 5 bit accuracy,
so that it can be directly fed into the next layer while in mock-mode it just applies
the linear rectifier. Section 2.6 describes the training procedure. To trace the model’s
execution graph after training, the serialization method in listing 3.3 is executed on a
trained model using hardware execution. For tracing, a vector of dummy inputs is fed
into the model while the InferenceTracer logs all instantiations of computables used
in the model’s execution. This sequence of computables and their parameters is then
serialized into a binary file.

3.4 Experiment Execution

This section describes in detail the steps which are taken at runtime to execute the model
with live image data input. The program (runner) is implemented in C++ for increased
performance and native interfacing with both the V4L2 API and grenade.

The runner is invoked with file paths to a setup calibration, the traced model sequence
and an output file to which timing information is logged during the execution. Firstly,
a connection to the webcam is established and the ring-buffer is allocated. Then, the
model sequence is loaded and converted into an execution graph to which the calibration
is prepended. This graph is then transformed into playback-programs via grenade’s PPU
mastered sequence-graph-compiler as outlined in section 2.5.3. Afterwards, a connection
to the BSS-2 hardware is established and the initialization program is executed, which
applies all static configuration to the chip, including the model’s weights.

Following the initialization procedure, the program enters its main loop, which gracefully
exits when receiving a SIGINT interrupt signal. In the main loop, an image is captured at
the webcam’s minimum resolution and converted into a monochrome image which is then
downsampled to 28 x 28 px. This image is then pre-processed to obtain the model’s input
data. The compiled graph’s load-step then compiles input data into a playback-program,
which is executed on the hardware followed by the execution program. After the on-chip
operations are complete, the store program is executed to obtain the model’s prediction.
Listing 3.4 shows the execution steps for a single frame after image acquisition and
pre-processing.

31

3 Implementation

1 CamdigitsRunner::output_data_t CamdigitsRunner::run_inference(

2 input_data_t const& data)

3 {

4 // Compile load-program

5 std::vector<input_data_t> inputs (1, data);

6 auto copy_data_program = compiled_graph->load(inputs).done ();

7

8 // Execute playback-programs

9 stadls::vx::v2::run(connection, copy_data_program);

10 stadls::vx::v2::run(connection, run_inference_program.value ());

11 stadls::vx::v2::run(connection, copy_results_program.value ());

12

13 // Extract result

14 auto const result_variant = compiled_graph->process_store ();

15 auto const result = std::get<std::vector<std::vector<output_data_t>>>(

16 result_variant);

17

18 return result.at(0).at(0);

19 }

Listing 3.4: Inference of a single pre-processed frame on the hardware. Profiling and validation
has been omitted for brevity.

To make quantitative statements on the runner’s performance and to identify potential
bottlenecks, it is necessary to measure the runtime of certain parts of the inference loop.
This can be achieved very simply by noting the time just before and after the interesting
section and calculating their difference as shown in listing 3.5.

1 using namespace std::chrono;

2 auto const before = high_resolution_clock::now ();

3

4 // Section, for which the runtime will be measured

5 runner.run_inference(input_data);

6

7 auto const after = high_resolution_clock::now ();

8 auto const duration_us = duration_cast<microseconds>(after - before).count ();

Listing 3.5: Measuring the runtime of a code section.

However, special care should be taken to avoid creating noticeable overhead with the
measurement itself, since retrieving the current time and calculating the difference also
requires some CPU cycles. A way to avoid this is choosing sufficiently coarse sections of
code so that the measurement overhead becomes negligible with respect to the section’s
runtime.

3.5 Data Flow

Analyzing the path data takes through the system’s components during inference pro-
vides insight into potential performance bottlenecks as well. In contrast to measuring
the runtime of certain operations during a fixed task as presented in the previous section,
a more general analysis allows extrapolation to previously unseen usage patterns.

During the initialization phase, the data flow resembles traditional usage of the Brain-

32

3.5 Data Flow

ScaleS system. The PPU program and containers for the hardware parameters are
packed into a playback-program, which is uploaded to the FPGA’s playback buffer
through the BSS-2 mobile system’s AXI interface (see fig. 2.4). The executor is then
triggered, processes the playback-program and, upon completion, signals this to the
framework as described by the authors of Müller et al. (2020b).

The real-time part of the program follows a slightly different pattern since it is optimized
for high throughput. When running directly on the BSS-2 mobile system’s ARM CPU,
the execution runtime can directly write data to the portion of DRAM, which is used
as the PPU’s external memory. This significantly simplifies the data path for loading
data onto the hardware, as no containers need to be compiled into a playback-program
which is then sequentially executed on the FPGA. As described in section 2.2, the BSS-2
mobile system can also be used over the network via quiggeldy with an external host
computer running the experiment. In this case, no direct access to the DRAM is possible
and the runtime falls back to container-based data transfer.

The data path from external memory into the analog core using the vector generator
has already been outlined in section 2.3.1. It is possible to transfer data directly and
asynchronously from memory into the vector generator as has been demonstrated in
Stradmann et al. (2021). However, that requires the FPGA to provide a direct memory
access (DMA) stream for each hemisphere of the chip and the integration of this data
flow is not in scope for this thesis. Instead, each PPU reads the data from external
memory and writes it into its vector generator’s FIFO, effectively replacing the DMA
engine.

DRAM

FPGA

Omnibus Bridge

DMA Engine

Vector Generator

BSS-2

PPU

Analog
Core

1

2
3

4
1

2

3

Figure 3.5: Data flow during the real-time-portion of the execution. Blue arrows show the
data flow for PPU-based access to the vector generator, whereas orange ones show
DMA-based operation (not used in this thesis).

The DMA-based operation offers a performance advantage, particularly for big chunks
for input data, since the PPU is not involved in the load process. But for the relatively
small data chunks (784 bytes per frame) processed in the MNIST model, this inefficiency
is not critical.

33

4 Results

In this chapter, the results will be presented with a focus on runtime performance starting
with a demonstration of the newly implemented MAC operation. Then, the MNIST
model’s accuracy in different execution environments is presented. Finally, results of
profiling the inference loop are shown.

4.1 MAC Operation

Results from testing the MACSingleChip operation presented in section 3.3 are discussed
in more detail in this section focusing on two aspects. Firstly it is important, that it
correctly executes the vector-matrix multiplication for input sizes ≤ 256. Secondly, it
must yield correct results for inputs that are split across multiple partial MACs which
verifies the digital addition of the partial results.

0 20 40 60 80 100 120

Output Neuron

0

20

40

60

80

100

120

In
p

u
t

V
ec

to
r

In
d

ex
i

−60

−40

−20

0

20

Figure 4.1: 128 x 128 vector-matrix multiplication using the MACSingleChip operation. Results
for 128 input vectors (~vi)j = (31 · δi,j)j and a weight-matrix Wi,j = 63 · δi,j . While
these dimensions do not use any special placement on the chip, this shows expected
results. Note the artifacts for some neurons in some batches.

35

4 Results

For verifying the vector-matrix multiplication, it is executed with a fixed weight-matrix
for a set of input vectors (fig. 4.1). For example, a simple diagonal test writes a diagonal
20 x 10 weight-matrix to the chip and then sends 20 input vectors of length 20, each
with one ascending element at maximum activation and all others at zero activation.
This sweep of the input vector verifies the correct functionality of each synapse driver
and output neuron used in the MAC operation but only the synapses on the diagonal
are tested here. Since the input vectors are converted into spike-events by the vector
generator, this test also verifies the correct mapping of vector entries to spike labels,
which is illustrated in fig. 4.2.

230

240

250
PADI 0

PADI 1

PADI 2

PADI 3

0 50 100 150 200 250

Vector Entry Index i

0

10

20

30

S
y
n
ap

se
R

ow
In

d
ex

j

Figure 4.2: Vector generator look-up-table (LUT) entries for an input vector of length 256
using label-bits. Each PADI bus controls 32 synapse drivers, serving two synapse
rows each. The driver’s index on the PADI is given by jpadi = bj / 4c. The last
bit of jpadi is used to address two different sets of synapses (each set contains an
inhibitory and an excitatory synapse) from the same synapse driver.

Since the MACSingleChip operation is designed to be very performant in PPU mastered
mode, its performance is also analyzed. Table 4.1 lists execution times for different input
dimensions and fixed output dimension of 64. For runs using the JIT executor, the graph
is recompiled with new input data during each execution since this is representative of its
typical usage as a backend for HxTorch. In the PPU mastered mode, the initialization
comprising graph construction, compilation and chip configuration is not measured.

36

4.1 MAC Operation

Executor Input dim. Partial MACs Graph Execution [ms] Exec. on Chip [ms]

JIT

64 1 235.23 ± 3.77 11.80 ± 0.05
96 1 236.11 ± 2.80 11.82 ± 0.08
128 1 235.71 ± 3.15 11.81 ± 0.05
192 1 with labels 267.04 ± 5.63 11.94 ± 0.06
256 1 with labels 245.37 ± 3.73 11.89 ± 0.05
512 2 with labels 479.93 ± 8.80 23.78 ± 0.08
768 3 with labels 486.35 ± 7.82 24.09 ± 0.09
784 3 with labels + 1 496.58 ± 7.17 24.37 ± 0.12
1024 4 with labels 502.33 ± 8.22 24.46 ± 0.27

PPU

64 1 4.65 ± 0.34 0.58 ± 0.04
96 1 4.48 ± 0.14 0.59 ± 0.04
128 1 4.97 ± 0.43 0.59 ± 0.04
192 1 with labels 5.86 ± 0.34 0.68 ± 0.04
256 1 with labels 5.45 ± 0.53 0.68 ± 0.04
512 2 with labels 6.37 ± 0.47 0.84 ± 0.04
768 3 with labels 7.30 ± 0.53 0.97 ± 0.04
784 3 with labels + 1 7.64 ± 0.63 0.96 ± 0.06
1024 4 with labels 8.44 ± 0.46 1.02 ± 0.05

Table 4.1: Comparison of graph execution times for one MACSingleChip operation in JIT and
PPU mastered executors with statistics from 100 runs. The output dimension is
always 64. Partial MACs describes the number of partial MACs placed on the
synram. The graph execution time comprises one execution of the graph with fresh,
random data and excludes initialization in PPU mastered mode. The execution
time on chip is the cumulative hardware execution time of all playback programs
executed.

Here, each execution consists of compiling the load-program with new data and executing
it, followed by the execution- and store-program. This is also representative of the
operation’s usage in the runner.

A significant reduction in execution time for the duration on-chip and the whole graph
can be observed when executing via the PPU in comparison to the JIT executor. It
can also be observed that with a constant output dimension the execution time only
depends on the number of partial MAC operations. An operation using label-bits causes
a slight increase in execution time in comparison to the same operation without labels.
This is to be expected since the vector generator generates double the input events.
This shows, that this input generation is not a significant contributor to the overall
execution duration but rather the memory operations and post-processing the membrane
potentials.

Finally, the results of the MACSingleChip operation are also examined for correctness
on larger input dimensions. In fig. 4.3, a vector-matrix multiplication for a 1024 x 64

37

4 Results

0

10

20

30

40

50

60

0 20 40 60

Output Neuron

960

970

980

990

1000

1010

1020

−100

−75

−50

−25

0

25

50

75

In
p
u
t

V
ec

to
r

In
d
ex

i

Figure 4.3: Vector-matrix multiplication for a 1024 x 64 matrix Wi,j = 63·δ(imod 64), j using the
MACSingleChip operation. Results for i ∈ [65, 959] have been omitted for brevity.
Strong artifacts can be noticed on beginning of partial MACs as well as a higher
overall noise floor.

matrix is executed in the same way as outlined above. Since the results of this operation
are accumulated on 7 sets of 64 neurons (fig. 3.3), which are digitally added afterwards,
the overall noise floor is increased in comparison to the single MAC in fig. 4.1, which is
to be expected. The result shows the repeating diagonal throughout the full height of
the input vector, which confirms that the operation correctly executes the partial MACs
and accumulates their results. However, in addition to occasional neurons with strong
negative membrane potential, strong artifacts can be seen for the first 5 rows of each new
partial MAC (imod 256 ≤ 5). Possible causes for this are discussed in chapter 5.

38

4.2 MNIST Results

4.2 MNIST Results

In this section, the accuracy and training performance of the neural network model is
presented. Different implementations are compared in training speed and efficiency as
well as in their accuracy on test data. For all implementations, the Adam Optimizer [51]
is used with a learning rate of lr = 10−3 and a numerical stability factor of ε = 10−7.
Training is conducted with a batch size of 100 and CrossEntropyLoss [52] on the model’s
prediction against the true labels.

For comparing the training speed of the different implementations, they are executed on
the same 8-core CPU (AMD Ryzen 4700u) using 8 threads.

0.93

0.94

0.95

0.96

0.97

Native PyTorch

0 20 40 60 80 100

Epoch

0.0

0.1

0.2

Mock HxTorch

0 20 40 60 80 100

Epoch

T
es

t
A

cc
u

ra
cy

Figure 4.4: Comparison of the model’s accuracy on test data during training for native PyTorch
and HxTorch running in mock-mode. The initial accuracy before training varies
due to the random initialization of weights.

Native PyTorch

The model’s implementation using only native PyTorch components presented in list-
ing 3.1 is trained on the MNIST data-set. Its accuracy on test data reaches 95.9 % after
about 80 epochs that take an average of 2.87 s. During training, the CPU is fully utilized
while running at 3.9 GHz on all cores.

HxTorch in Mock-mode

Using the hardware emulating forward-pass, the model presented in listing 3.3 is trained
in the same way. The accuracy on test data is slightly better than the native PyTorch
implementation and reaches 96.5 % after around 70 epochs. However, the epochs take
considerably longer to compute, averaging 34.89 s while not fully leveraging the available

39

4 Results

CPU performance. The training is utilizing only one core to 100 % at 4.2 GHz and three
more to ∼60 % at 1.9 GHz.

HxTorch with Hardware in the Loop

0.0 2.5 5.0 7.5 10.0

Epoch

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy

Figure 4.5: Re-training of the HxTorch model
on BSS-2 for 10 epochs. Note the low accuracy
before the first epoch.

Evaluating the mock-trained model with
the forward-pass on BSS-2 yields an accu-
racy of just 20 % which points to a strong
mismatch between the previous emulation
and the hardware itself. Re-training the
model on hardware for 10 epochs increases
its accuracy substantially to 62 % on test
data. This on-chip training is limited by
the hardware’s speed and results in only
light CPU utilization. While this perfor-
mance is well below the expected level for
the hardware, it shows the potential for
re-training to adapt to slight inaccuracies
of the analog substrate.

Further investigation points to a problem
with the analog calibration (section 2.1.1)
of the setup, whose results are shown in
fig. 4.6. If we assume the model to predict

the label randomly and the MNIST test-set to be balanced, the expected accuracy of
this random model is P (ŷ = i | y = i) = 10 %. This shows that the trained model is able
to make some correct predictions even with non-ideal analog accuracy.

0 50 100

Output Neuron

−100

−50

0

50

100

N
eu

ro
n

A
ct

iv
at

io
n

Hardware Emulation

Input Activation

0

5

10

0 50 100

Output Neuron

BSS-2

Figure 4.6: Linearity plot of a 128 × 128 matrix multiplication for emulation and hardware
execution. The weight matrix is increasing linearly from −63 to +63 from left to
right. Output neurons 64 through 128 show strong irregularities.

40

4.3 Runner Performance

4.3 Runner Performance

In this section, the performance of the whole inference loop is presented. This includes
image acquisition, downsampling, pre-processing and inference on the hardware. The
measurements of the step’s execution time are performed as described in listing 3.5.

0 5 10 15 20 25 30 35 40

Time [ms]

Capture ≈ 15.97 ms

Pre-processing ≈ 0.12 ms

Encoding ≈ 0.16 ms

Load ≈ 6.88 ms

Inference ≈ 4.53 ms

Store ≈ 4.38 ms

Process ≈ 0.04 ms

Total ≈ 32.07 ms

Host-PC via Network

Completion Times
Mean

Extrema

Median

Mean Duration

0 5 10 15 20 25 30 35 40

Time [ms]

Capture ≈ 20.80 ms

Pre-processing ≈ 0.62 ms

Encoding ≈ 9.13 ms

Load ≈ 0.18 ms

Inference ≈ 0.44 ms

Store ≈ 0.55 ms

Process ≈ 0.22 ms

Total ≈ 31.93 ms

BSS-2 Mobile Setup

Figure 4.7: Runtime of inference steps with statistics from more than 4000 frames. The violin
plots show only the variations in duration of their respective step. Both execu-
tion environments use the PPU mastered executor. Note the larger extrema for
execution via the network, which rarely reach up to 44 ms for a complete frame.

Figure 4.7 compares the runtime of the PPU mastered inference loop between execution
locally on the BSS-2 mobile system and remotely over the network via quiggeldy on

41

4 Results

a host computer. Both variants saturate the webcam’s 30 FPS, which correspond to
33.3 ms per frame. Since the total inference of a frame takes less than that, the Capture
step blocks until a new frame is available.

The BSS-2 mobile system has a significantly slower CPU, which is especially noticeable
in steps that require computation, such as Pre-processing and Encoding. The hardware
execution steps (Load, Inference and Store) however execute very quickly and more than
make up that. The Load step is especially quick since the data is not transferred in the
playback-program and instead written directly into the FPGA’s memory during Encod-
ing. Because of this tight coupling of FPGA and CPU, the step’s durations don’t vary
much except for Capture, whose distribution shows two distinct accumulations on either
side of the mean duration. This points to an intermittent, small delay when accessing
the camera’s frame buffer, which explains the slower peak. Since the processing of that
frame is therefore delayed, the next frame will be available just as much quicker, causing
the second, faster peak.

Using a regular host computer and interfacing with the setup via a network interface in-
troduces greater round-trip times for the hardware execution steps. However, the much
more powerful CPU is able to quickly pre-process and encode the image data. Spikes in
network latency occur sporadically and can delay the processing of some frames, which
in turn makes the next frame available more quickly. This is reflected in the distributions
of hardware execution steps and frame capture. Noteworthy is also the comparatively
long duration for executing the Load program, which is most likely due to a larger
playback-program being transmitted and executed. This hypothesis is also supported
by the measurements in table 4.2 since the load program containing the image data
takes twice as long to execute on the chip. Still, this mode of execution is limited by the
webcam’s frame-rate and not by the inference on BSS-2 hardware.

Host Load [µs] Inference [µs] Store [µs] Total [µs]

BSS-2 Mobile System 82.3 ± 30.1 421.3 ± 24.8 422.0 ± 40.9 925.6 ± 56.7
x86 Host Computer 191.4 ± 4.5 413.3 ± 10.1 362.1 ± 39.10 966.9 ± 40.6

Table 4.2: Comparison of on-chip execution times for the inference steps from fig. 4.7 for dif-
ferent hosts. Note the significantly quicker Load operation for the mobile system.

It should also be noted, that these results are in agreement with table 4.1, which mea-
sures the sum of Encoding through Process as the total graph execution time. Comparing
the measurements of on-chip execution times from table 4.2 with previous results shows,
that a 784× 64 MAC takes 0.96 ms on-chip, while the whole model takes 0.97 ms. This
might be surprising, considering the complete model also computes a ReLu, a second
small MAC and max-pooling. However, the Store operations return the complete MAC
result in the isolated test, whereas the model’s output is a single number, which makes

42

4.3 Runner Performance

up for this difference.

A detailed analysis of the JIT executor’s performance with the whole model is not
conducted, since previous measurements already rule it out for real-time inference. For
example, the 784×64 MAC alone takes around 500 ms for graph-execution and even the
on-chip execution time of 24 ms is close to the frame-time limit of 33.3 ms.

43

5 Discussion and Outlook

In this chapter, the previous results are discussed further and analyzed critically. This
thesis presents new hardware operations to enable real-time image recognition on the
BrainScaleS-2 mobile system.

To achieve real-time inference, the capabilities and constraints of the analog, neuro-
morphic substrate are analyzed. Subsequently, a machine learning model capable of
classifying the images with good accuracy is developed. Due to the limited number of
model-weights available on the chip without reconfiguration, the model’s size is reduced
to satisfy this constraint. Building on previous techniques, namely the graph-based PPU
mastered execution, a new scheme for executing large analog vector-matrix multiplica-
tions is presented. This newly developed MAC makes use of efficient placement of partial
operations to forego the need for re-configuring the chip’s synapse matrix during infer-
ence while also enabling simultaneous execution on both hemispheres of the chip. This
MAC operation is subsequently validated, which verifies its principal functionality. Its
performance is further examined for different input dimensions and compared between
the JIT executor and the PPU mastered execution mode. Finally, the real-time inference
loop including image capture, pre-processing and execution on the hardware is presented
and profiled.

5.1 MAC Operation

As already mentioned in section 4.1, the MAC operation does not perform as expected
with regard to the accuracy of its results. This is very obvious in fig. 4.6 and affects
only certain portions of the chip. The problem persists across different hardware setups
ruling out hardware-related issues indicating a problem with the software. Since the
relative timing of event input and neuron readout has to be very precise, this anomaly
could be caused by the new operation introducing previously unseen latency to certain
steps. However, the existing MAC operations designed for smaller matrices show the
same behavior and the calibration routine which does not use the graph-based execution
runtime also produces unusual results. This suggests an issue in the underlying hardware
abstraction layers. Further investigation of the changes to these lower software layers
is ongoing and qualitative analysis of the new MAC operation suggests that it is in
principle capable of accurate operation.

45

5 Discussion and Outlook

5.2 Performance and Data Flow

The performance of the real-time image inference loop is presented in section 4.1. Its
runtime performance is shown for JIT execution and in the PPU mastered mode. In
the latter, an on-chip runtime of just 1.02 ms for a 1024 × 64 MAC is observed, which
is ideal for runtime-critical applications such as live image recognition. Furthermore,
image acquisition and pre-processing steps are outlined and the complete inference loop
is profiled. Those results show that the inference loop is capable of processing one frame
in under 15 ms on the BSS-2 mobile system, which saturates the webcam with its 30 FPS
and theoretically enables frame-rates exceeding 60 FPS. The data also shows that real-
time inference is possible with an external host computer that interfaces with the BSS-2
mobile system over the network. While the distribution of runtime with regard to the
processing steps deviates from the completely local inference, the complete processing is
only slightly slower and sufficient for real-time operation.

Potential for further improvement lies with the transfer of image data to the chip since it
is currently processed by the graph-based executor framework and makes up a large por-
tion of the processing time. Since the system is already using an FPGA-based controller,
the captured frames could be fetched from memory and pre-processed using dedicated
logic. This approach combines well with the DMA-based data flow outlined in fig. 3.5.
Better performance is expected for this mode of operating the vector generator since
it forgoes the need to copy the input data with the PPU. However, this would require
multi-channel DMA to operate both hemisphere’s vector generators simultaneously and
implementation of the pre-processing in register-transfer-level (RTL) logic.

Future work could also develop a completely PPU mastered inference loop. Quite a
substantial performance gain is expected since it eliminates the Load and Store steps
from the inference loop and allows the CPU to pre-process frames in parallel to the on-
chip inference. Additionally, the overhead introduced by decoding playback-programs
and encoding trace data as well as their transfer can be avoided.

5.3 Local Execution

The presented hardware operations allow for standalone operation of the BSS-2 mobile
system with a larger set of models. Its average energy consumption of 5.6 W for the
complete system and 700 mW for the BSS-2 ASIC as measured by Stradmann et al.
(2021) makes it well suited for use in edge computation devices or in densely packed data-
centers. With classification taking 15 ms as demonstrated, the energy required to process
one image is ESystem = 5.6 W · 15 ms = 84.0 mJ and EASIC = 10.5 mJ respectively. This
power can easily be provided by a battery for portable applications like quad-copters or
rovers, which opens up possibilities for interesting research projects.

46

5.4 Limitations

5.4 Limitations

The main limitation of this approach to real-time inference is its constraint to models
that do not exceed the size of the chip. Larger models require reconfiguration of the
weight matrix. Grenade currently only implements access to the synapse weights via
the narrow slow control data path, where updating the complete synapse array requires
around 5 ms as measured by Weis et al. (2020). However, the PPU’s vector unit is
connected to the synapses in a highly parallel manner and can write one complete row
of weights in 20 clock-cycles as measured by Spilger (2021b). Assuming immediate
access to the new configuration data (possible with pre-fetching) and a frequency of
250 MHz for the PPU, this corresponds to 80 ns. Thus, a complete reconfiguration of
the synapse array consisting of 256 unsigned rows per hemisphere is possible in just
20.5 µs. Integration of this update mechanism into the software abstraction layers has
great potential for future work on larger models.

47

6 Acknowledgements

The work carried out in this report used systems, which received funding from the Euro-
pean Union’s Horizon 2020 Framework Programme for Research and Innovation under
the Specific Grant Agreements Nos. 720270, 785907 and 945539 (Human Brain Project,
HBP), from the BMBF (16ES1127), and from the Lautenschläger-Forschungspreis 2018
for Karlheinz Meier.

49

Bibliography

Thomas N. Theis and H.-S. Philip Wong. The end of moore’s law: A new beginning for
information technology. Computing in Science Engineering, 19(2):41–50, 2017.

Sparsh Mittal. A survey of fpga-based accelerators for convolutional neural networks.
Neural Computing and Applications, 32(4):1109–1139, Feb 2020. ISSN 1433-3058.
URL https://doi.org/10.1007/s00521-018-3761-1.

Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. A survey of ac-
celerator architectures for deep neural networks. Engineering, 6(3):264–274, 2020.
ISSN 2095-8099. URL https://www.sciencedirect.com/science/article/pii/

S2095809919306356.

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and
Jeremy Kepner. Survey of machine learning accelerators. 2020 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), Sep 2020.

Yen-Lin Lee, Pei-Kuei Tsung, and Max Wu. Techology trend of edge ai. In 2018
International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pages
1–2, 2018.

Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bod́ık, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. Real-time video ana-
lytics: The killer app for edge computing. Computer, 50(10):58–67, 2017.

Jianxin Zhao, Richard Mortier, Jon Crowcroft, and Liang Wang. Privacy-preserving
machine learning based data analytics on edge devices. In Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, AIES ’18, page 341–346, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450360128.
URL https://doi.org/10.1145/3278721.3278778.

Chetan Singh Thakur, Jamal Molin, Gert Cauwenberghs, Giacomo Indiveri, Kundan
Kumar, Ning Qiao, Johannes Schemmel, Runchun Wang, Elisabetta Chicca, Jen-
nifer Olson Hasler, Jae sun Seo, Shimeng Yu, Yu Cao, André van Schaik, and Ralph
Etienne-Cummings. Large-scale neuromorphic spiking array processors: A quest to
mimic the brain, 2018, 1805.08932.

Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell,
Mark E. Dean, Garrett S. Rose, and James S. Plank. A survey of neuromorphic
computing and neural networks in hardware, 2017, 1705.06963.

51

https://doi.org/10.1007/s00521-018-3761-1
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://doi.org/10.1145/3278721.3278778

Bibliography

J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner. A wafer-
scale neuromorphic hardware system for large-scale neural modeling. Proceedings of
the 2010 IEEE International Symposium on Circuits and Systems (ISCAS”10), pages
1947–1950, 2010.

Timo Wunderlich, Akos F. Kungl, Eric Müller, Andreas Hartel, Yannik Stradmann,
Syed Ahmed Aamir, Andreas Grübl, Arthur Heimbrecht, Korbinian Schreiber, David
Stöckel, Christian Pehle, Sebastian Billaudelle, Gerd Kiene, Christian Mauch, Jo-
hannes Schemmel, Karlheinz Meier, and Mihai A. Petrovici. Demonstrating advan-
tages of neuromorphic computation: A pilot study. Frontiers in Neuroscience, 13:260,
2019. ISSN 1662-453X.

Sebastian Billaudelle, Yannik Stradmann, Korbinian Schreiber, Benjamin Cramer, An-
dreas Baumbach, Dominik Dold, Julian Göltz, Akos F. Kungl, Timo C. Wunderlich,
Andreas Hartel, Eric Müller, Oliver Breitwieser, Christian Mauch, Mitja Kleider, An-
dreas Grübl, David Stöckel, Christian Pehle, Arthur Heimbrecht, Philipp Spilger, Gerd
Kiene, Vitali Karasenko, Walter Senn, Mihai A. Petrovici, Johannes Schemmel, and
Karlheinz Meier. Versatile emulation of spiking neural networks on an accelerated
neuromorphic substrate, 2019, 1912.12980.

A. Joubert, B. Belhadj, O. Temam, and R. Héliot. Hardware spiking neurons design:
Analog or digital? In The 2012 International Joint Conference on Neural Networks
(IJCNN), pages 1–5, 2012.

Sebastian Schmitt, Johann Klaehn, Guillaume Bellec, Andreas Gruebl, Maurice Guet-
tler, Andreas Hartel, Stephan Hartmann, Dan Husmann, Kai Husmann, Vitali
Karasenko, Mitja Kleider, Christoph Koke, Christian Mauch, Eric Mueller, Paul
Mueller, Johannes Partzsch, Mihai A. Petrovici, Stefan Schiefer, Stefan Scholze,
Bernhard Vogginger, Robert Legenstein, Wolfgang Maass, Christian Mayr, Johannes
Schemmel, and Karlheinz Meier. Neuromorphic hardware in the loop: Training
a deep spiking network on the brainscales wafer-scale system. Proceedings of the
2017 IEEE International Joint Conference on Neural Networks, 2017. URL http:

//ieeexplore.ieee.org/document/7966125/.

Johannes Schemmel, Sebastian Billaudelle, Phillip Dauer, and Johannes Weis. Acceler-
ated analog neuromorphic computing, 2020, 2003.11996.

Johannes Weis, Philipp Spilger, Sebastian Billaudelle, Yannik Stradmann, Arne Emmel,
Eric Müller, Oliver Breitwieser, Andreas Grübl, Joscha Ilmberger, Vitali Karasenko,
Mitja Kleider, Christian Mauch, Korbinian Schreiber, and Johannes Schemmel. Infer-
ence with artificial neural networks on analog neuromorphic hardware. In IoT Streams
for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Ma-
chine Learning, volume 1325, pages 201–212. Springer International Publishing, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

52

http://ieeexplore.ieee.org/document/7966125/
http://ieeexplore.ieee.org/document/7966125/

Bibliography

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, Feb
2015. ISSN 1476-4687. URL https://doi.org/10.1038/nature14236.

Yannik Stradmann, Sebastian Billaudelle, Oliver Breitwieser, Falk Leonard Ebert, Arne
Emmel, Dan Husmann, Joscha Ilmberger, Eric Müller, Philipp Spilger, Johannes Weis,
and Johannes Schemmel. Demonstrating analog inference on the brainscales-2 mobile
system, 2021, 2103.15960.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Coral. Coral mini pcie accelerator. https://coral.ai/docs/mini-pcie/datasheet/.
[Online; accessed 24/06/2021].

Masatoshi Yamaguchi, Goki Iwamoto, Hakaru Tamukoh, and Takashi Morie. An energy-
efficient time-domain analog vlsi neural network processor based on a pulse-width
modulation approach, 2019, 1902.07707.

Simon Friedmann, Johannes Schemmel, Andreas Grübl, Andreas Hartel, Matthias Hock,
and Karlheinz Meier. Demonstrating hybrid learning in a flexible neuromorphic hard-
ware system. IEEE Transactions on Biomedical Circuits and Systems, 11(1):128–142,
2017.

Syed Aamir, Paul Müller, Gerd Kiene, Laura Kriener, Yannik Stradmann, Johannes
Schemmel, and Karlheinz Meier. A mixed-signal structured adex neuron for acceler-
ated neuromorphic cores, 04 2018.

Louis Lapicque. Recherches quantitatives sur l’excitation électrique des nerfs traitée
comme une polarisation. J. Physiol. Pathol. Gen., 9:620–635, 1907.

Johannes Schemmel, Daniel Bruderle, Karlheinz Meier, and Boris Ostendorf. Modeling
synaptic plasticity within networks of highly accelerated i f neurons. In 2007 IEEE
International Symposium on Circuits and Systems, pages 3367–3370, 2007.

Matthias Hock, Andreas Hartel, Johannes Schemmel, and Karlheinz Meier. An analog
dynamic memory array for neuromorphic hardware. In 2013 European Conference on
Circuit Theory and Design (ECCTD), pages 1–4, 2013.

Johannes Schemmel, Laura Kriener, Paul Müller, and Karlheinz Meier. An accelerated
analog neuromorphic hardware system emulating nmda- and calcium-based non-linear
dendrites, 2017, 1703.07286.

Aron Leibfried. On-chip calibration of analog neuromorphic circuits. Bachelor’s thesis,
Universität Heidelberg, 2018.

Johannes Schemmel, Steffen Hohmann, Karlheinz Meier, and Felix Schürmann. A mixed-
mode analog neural network using current-steering synapses: Special issue on current
mode circuit techniques. Analog Integrated Circuits and Signal Processing, 38, 02 2004.

53

https://doi.org/10.1038/nature14236
https://coral.ai/docs/mini-pcie/datasheet/

Bibliography

Twisha Titirsha, Shihao Song, Adarsha Balaji, and Anup Das. On the role of system
software in energy management of neuromorphic computing. In Proceedings of the 18th
ACM International Conference on Computing Frontiers, CF ’21, page 124–132, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384049.
URL https://doi.org/10.1145/3457388.3458664.

Saber Moradi and Giacomo Indiveri. An event-based neural network architecture with
an asynchronous programmable synaptic memory. IEEE Transactions on Biomedical
Circuits and Systems, 8(1):98–107, 2014.

Eric Müller, Sebastian Schmitt, Christian Mauch, Sebastian Billaudelle, Andreas Grübl,
Maurice Güttler, Dan Husmann, Joscha Ilmberger, Sebastian Jeltsch, Jakob Kaiser,
Johann Klähn, Mitja Kleider, Christoph Koke, José Montes, Paul Müller, Johannes
Partzsch, Felix Passenberg, Hartmut Schmidt, Bernhard Vogginger, Jonas Weidner,
Christian Mayr, and Johannes Schemmel. The operating system of the neuromorphic
brainscales-1 system, 2020a, 2003.13749.

Eric Müller, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann Klähn,
David Stöckel, Timo Wunderlich, and Johannes Schemmel. Extending brainscales os
for brainscales-2, 2020b, 2003.13750.

Electronic Vision(s) Group. Coordinates for hicann-based and hicann-dls-based neuro-
morphic systems. https://github.com/electronicvisions/halco, 2021a. [Online;
accessed 25/06/2021].

Electronic Vision(s) Group. Fpga instruction set compiler for hicann. https://github.
com/electronicvisions/fisch, 2021b. [Online; accessed 25/06/2021].

Vitali Karasenko. Von Neumann bottlenecks in non-von Neumann computing architec-
tures. PhD thesis, Universität Heidelberg, 2020.

Electronic Vision(s) Group. Hardware abstraction layer (and stateful encapsulation) for
the hicann-dls. https://github.com/electronicvisions/haldls, 2021c. [Online;
accessed 25/06/2021].

A. P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet,
and P. Yger. PyNN: a common interface for neuronal network simulators. Front.
Neuroinform., 2, 2008.

Avnet Inc. Ultra96-v2 - xilinx zynq mpsoc development board. https://www.

avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/

ultra96-v2/, 2020. [Online; accessed 25/06/2021].

Bill Dirks, Michael H. Schimek, Hans Verkuil, Martin Rubli, Andy Walls, Muralidharan
Karicheri, Mauro Carvalho Chehab, Pawel Osciak, Sakari Ailus, and Antti Palosaari.
Video for linux api version 2 (v4l2 api) specification. https://www.kernel.org/doc/
html/v4.9/media/uapi/v4l/v4l2.html. [Online; accessed 07/06/2021].

54

https://doi.org/10.1145/3457388.3458664
https://github.com/electronicvisions/halco
https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/fisch
https://github.com/electronicvisions/haldls
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/ultra96-v2/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/ultra96-v2/
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/ultra96-v2/
https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/v4l2.html
https://www.kernel.org/doc/html/v4.9/media/uapi/v4l/v4l2.html

Bibliography

Oliver Breitwieser. [unpublished doctoral dissertation]. PhD thesis, Universität Heidel-
berg, 2021.

Marco Rettig. Characterizing the event interface of the hicann-x. Bachelor’s thesis,
Universität Heidelberg, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran As-
sociates, Inc., 2019.

Horace He. The state of machine learning frameworks in 2019. The Gradient, 2019.

Philipp Spilger, Eric Müller, Arne Emmel, Aron Leibfried, Christian Mauch, Christian
Pehle, Johannes Weis, Oliver Breitwieser, Sebastian Billaudelle, Sebastian Schmitt,
Timo C. Wunderlich, Yannik Stradmann, and Johannes Schemmel. hxtorch: Pytorch
for brainscales-2 – perceptrons on analog neuromorphic hardware, 2020, 2006.13138.

Electronic Vision(s) Group. Pytorch for brainscales-2. https://github.com/

electronicvisions/hxtorch, 2021d. [Online; accessed 25/06/2021].

Philipp Spilger. From neural network descriptions to neuromorphic hardware — a signal-
flow graph compiler approach. Master’s thesis, Universität Heidelberg, 2021a.

Electronic Vision(s) Group. Graph-based experiment notation and data-flow execu-
tion. https://github.com/electronicvisions/grenade, 2021e. [Online; accessed
25/06/2021].

Li Deng. The mnist database of handwritten digit images for machine learning research
[best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

Yann Lecun, Larry Jackel, Corinna Cortes, John Denker, Harris Drucker, Isabelle Guyon,
Urs Muller, Eduard Sackinger, Patrice Simard, and Vladimir Vapnik. Learning algo-
rithms for classification: A comparison on handwritten digit recognition. The Statis-
tical Mechanics Perspective, 07 2000.

Torch Contributors. Adam - pytorch 1.9.0 documentation. https://pytorch.

org/docs/stable/generated/torch.optim.Adam.html, 2019a. [Online; accessed
18/06/2021].

Torch Contributors. Crossentropyloss - pytorch 1.9.0 documentation. https://pytorch.
org/docs/stable/generated/torch.nn.CrossEntropyLoss.html, 2019b. [Online;
accessed 18/06/2021].

Phillip Spilger. Private communication, 2021b.

55

https://github.com/electronicvisions/hxtorch
https://github.com/electronicvisions/hxtorch
https://github.com/electronicvisions/grenade
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Appendix

Software Versions

Table 6.1 lists the repositories used throughout this thesis and their respective version
(identified by the git commit-hash). The model-hw-camdigits repository contains
the model implementation and the runner program, which is also interfacing with the
camera. Additional instructions for configuring the BrainScaleS-2 mobile system can be
found in the documentation of the model-hw-hdbioai repository.

All software was run inside the container built on June 16th 2021.

Repository Commit-Hash

hate c7483cedc3d76b8e7a4a65e7bc9a423131f40ce1

model-hw-camdigits 0d02c3e22ba3d010da45b921c4796ab027aae630

hxcomm 19bdf2a67352ecca1f6616b5a414ea3a3f7e4862

grenade 30205b7e54da7f943d18b6b9e9d97d87bfc2a668

logger bc006238ecfdc483d5b96ce5f5bb62e5a93e99dd

code-format 5d55a9952d4b6400fa5b2baeff9be546e45bf76d

haldls cccab5f722d0515c925cf465d4b380332e70911e

calix 9de767d8508e1e39c2ac785c95cea04ac4863ef0

hxtorch 2e20bd1780824dac08917ed61641d35c4a7336a2

sctrltp 59a991f6d85ceaf81dbcf8958969a724958aba3c

rant 4fc2cc3689c9b141708dafbcc5f9d3c7c2b7f18d

hwdb 9355f93596fcff2ab05973a63b62fb87b1bf6671

visions-slurm 5e7ea560235b068fc12f26e3f0d002d415f76cf9

flange fcde2aafe69805487789ca0b1a8a245caf5fb8ed

lib-rcf 5b16326ae30ee08a322a6569887ca8bd2684c252

halco 5410b82a0f7a2e732913204a974023577c80850e

libnux 9a47fe6daf7298697c650029f72d81035df37197

fisch 5c59c0902ba2e4c4c9edf50b6d6b31ab00ef6700

ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6

pywrap 83ddbad8a114b4730b82d299e8bd9da2a6ca5ebb

lib-boost-patches 2d7e07d4e74827c42d9e1a51f8d180af9907f7cb

waf 816d5bc48ba2abc4ac22f2b44d94d322bf992b9c

Table 6.1: Version control commit-hashes for the repositories used in this thesis.

57

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 30.06.2021,

59

	Introduction
	Methods
	BrainScaleS Neuromorphic Hardware
	Chip Architecture
	Software Framework

	BrainScaleS Mobile System
	System and FPGA Architecture
	Vector Generator

	PyTorch Extension
	Graph Based Experiment Notation and Execution
	Execution Instances
	Just-in-Time (JIT) Execution
	PPU Mastered Execution

	Modelling Workflow
	Webcam Image Capture

	Implementation
	MNIST Model
	Image Preprocessing
	MAC Operation
	HxTorch Integration

	Experiment Execution
	Data Flow

	Results
	MAC Operation
	MNIST Results
	Runner Performance

	Discussion and Outlook
	MAC Operation
	Performance and Data Flow
	Local Execution
	Limitations

	Acknowledgements

