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Abstract

Analog neuromorphic circuits – as other analog designs – suffer from fixed
pattern noise, i.e. deviations in the behaviour of different instances of otherwise
identical circuits. Calibration can facilitate experiments on such devices, by
equalizing their dynamics. In the framework of this thesis we present calibration
algorithms for the BrainScaleS-2 system. In particular we make extensive use of
the embedded plasticity processing unit (PPU) and its vector unit to accelerate
the calibration routines and guarantee their scalability on multi scale systems:
the dynamics of all neurons on a chip can be calibrated on the order of seconds.

These calibration routines lay the foundation for porting a closed-loop ex-
periment to the latest generation of BrainScaleS chips, again fully controlled
by on-chip processors. It implements a neuromorphic agent steered by a neural
model of insect navigation. By performing path integration, the virtual insect
is able to return to its nest after a foraging trip. While the neural dynamics
were emulated on the analog neuromorphic circuit, the agent’s environment,
the sensors, and motor units were simulated by the on-chip PPU.

Zusammenfassung

Analoge neuromorphe Schaltungen weisen aufgrund von Fertigungstoleranzen
Abweichungen im Verhalten verschieder Chipinstanzen auf. Eine Kalibration
kann Experimente auf solchen Geräten erleichtern, indem sie deren Dynamik
angleicht. Im Rahmen dieser Arbeit werden Kalibrationsmechanismen für das
BrainScaleS-2 System vorgestellt. Insbesondere wird dafür der auf dem Chip
implementierte Prozessor (PPU) und die dazugehörige Vektoreinheit verwen-
det, um schnelle Kalibrationsroutinen zu ermöglichen und ihre Skalierbarkeit
bezogen auf Systeme mit mehreren Chips zu gewährleisten. Die Dynamik aller
Neuronen auf einem Chip kann innerhalb von Sekunden kalibriert werden.

Diese Kalibrationsroutinen legen den Grundstein für die Portierung eines
Closed-loop Experiments auf die neueste Generation der BrainScaleS Chips,
welches wiederum selbst vollständig vom implementierten Prozessor gesteuert
wird. Dieses Experiment implementiert ein neuronales Netz, welches die Na-
vigation von Insekten emuliert. Durch Pfadintegration ist das virtuelle Insekt
in der Lage nach seiner Futtersuche zu seinem Nest zurückzukehren. Während
die neuronale Dynamik auf dem analogen neuromorphen Schaltkreis emuliert
wurde, wurden die Umgebung, die Sensoren und die Motorsignale vom einge-
betteten Prozessor simuliert.
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1. Introduction

Traditional computers based on the von Neumann architecture play a key role in
modern science. Supercomputers like the Fugaku are able to perform 488 · 1015
floating-point operations per second [Kodama et al., 2020]. This computational
power is used in various scientific fields, for example in cosmological simulations of
galaxy formations [Vogelsberger et al., 2019] or for processing big data in the ATLAS
experiment at CERN [Borodin et al., 2015].

With these traditional computers it is also possible to realize artificial neural net-
works (ANN). Especially when trained with gradient descent in deep multi-layer
networks, they can be used in many applications [LeCun et al., 2015]. Besides
already widely used tasks like image classification [Krizhevsky et al., 2017] or text
translation [Singh et al., 2017] even the realization of self-driving cars is under devel-
opment [Rao and Frtunikj, 2018]. Using more complex models involving more hidden
layers was the recent strategy for better performance [Bianchini and Scarselli, 2014].

Von Neumann computers are designed to perform arithmetic operations with fast
calculation speed and a low susceptibility to errors. The human brain however is
very creative and flexible, it forms instinct and solves a wide variety of tasks based
on experience and logical conclusions. Artificial neural networks are always bound
to the tasks they were designed for. Besides its flexibility, the human brain only
requires a few watts to perform its task, while supercomputers require power on
the order of megawatts [Mehmood et al., 2018], making the human brain way more
energy efficient for learning tasks. Based on discrete spikes to communicate and
transmit information, spiking neural networks (SNN) are more biologically plausible
to describe the processes in the brain [Tavanaei et al., 2019].

Until recently, the development of traditional computers proceeded at an expo-
nential pace, as expressed by Moore’s law, making it possible to execute more cal-
culations in less time. A wide consensus exists about the ending of this law, so
developing novel principles, like brain-inspired computing [Peper, 2017], is required.
Also the brain’s low energy consumption and flexibility are good reasons for at-
tempting to mimic the brain. A wide variety of neuromorphic systems specialized
for the replication of neural networks exists, like Intel’s Loihi [Davies et al., 2018],
IBM’s TrueNorth [DeBole et al., 2019] and SpiNNaker [Furber et al., 2014].

In this thesis, HICANN-X [Schemmel et al., 2020], the latest iteration of the
BrainScaleS-2 family, was used. The system contains analog and digital parts and
was primarily designed to emulate spiking neural networks, but it can also perform
vector-matrix multiplication used in artificial neural networks [Weis et al., 2020].

One important focus of this thesis is the presentation of new calibration routines
for the analog circuitry. Calibration is necessary for two reasons: Analog circuits
exhibit fixed-pattern deviations between multiple instances of the same design due
to variations in the production process. When supported by the design, these effects
can be equilibriated by suitable configuration routines. In this process, a specific
operating point defined by a set of high-level parameters such as time constants can
be targeted. A calibration routine has to reliably reach the desired targets and do
so with as little overhead as possible. In particular this can be challenging when
considering distributed systems consisting of dozens or even hundreds of individual
ASICs. In this case, a parallel approach was developed using the on-chip digital
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processor. Calibrations for the BrainScaleS-2 family already exist, but compared to
the parallel approach they do not scale with the amount of ASICs. For this reason,
the runtime of the presented calibrations should stay approximately constant even
for larger systems.

We furthermore test our on-chip calibration routines in biological inspired closed-
loop experiments. Some models implementing parts of insect brains get along with
just a few neurons [Stone et al., 2017]. In this thesis such a small-scaled network is
presented implementing a neuromorphic nervous system. This neural network allows
an artificial bee to navigate through a virtual environment finding its way back to
its nest after the search for food. Only 18 neurons are used for the implementation
on the analog part of the chip. The other information necessary to perform this
experiment was simulated on the on-chip processor, including the generation of input
signals, processing of the motor signals and simulating the virtual environment.
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2. HICANN-X: From biology to silicon

The ability to form instinctive and intelligent behavior is made possible by an
estimated 100 billion neurons [Herculano-Houzel, 2012] and 150 trillion synapses
[Pakkenberg et al., 2003] in the human brain. According to a general picture, a
neuron consists of three different parts. The dendrites branch out from the soma
and form synapses with other neurons. This allows the soma to pick up signals
from different synaptic partners. When a critical membrane potential is reached, an
action potential is sent along the axon, where synaptic contacts with other neurons’
dendrites are activated [Eyzaguirre and Kuffler, 1955].

HICANN-X is the latest iteration of the BrainScaleS-2 system, designed to emu-
late synapses, neurons and plasticity models in spiking neural networks [Schemmel
et al., 2020]. The aim is to provide an experimental platform to emulate the brain’s
components to study the dynamics of the brain. In contrast to other systems like
SpiNNaker [Mayr et al., 2019], the neurons and synapses are based on analog cir-
cuits, manufactured in standard 65 nm CMOS technology. Due to this implemen-
tation, biologically inspired networks are emulated in 1000-fold accelerated time on
BrainScaleS-2. Within this thesis all times and parameters are given in the real chip
time domain, not as they would appear in biology.

The chip features 512 silicon neurons receiving input signals from 256 individual
synapses each, so the total number of synapses is 131 072. The neurons are arranged
in two rows with two synapse matrices as one can also conclude from the left picture
in figure 2.1 showing a photograph of the ASIC. Every row is again split into two
halves, resulting in four quadrants of 128 neurons each.

Figure 2.1: Photograph of the bonded HICANN-X ASIC (left) and the hardware
setup (right). The hardware setup includes power and communication
boards with the actual chip being bonded on a SO-DIMM module and
covered by a black cap with a white label.

The right side of figure 2.1 shows the hardware setup used in this thesis, pro-
viding boards for the power supply as well as test connections. It also features a
field programmable gate array (FPGA) that handles the instructions sent by a host
computer via Ethernet to control the HICANN-X chip in real time.

Besides the FPGA also the two on chip microprocessors (plasticity processing unit,
PPU), one for each synapse matrix, are able to control experiments autonomously.
Most work presented in this thesis was done from the PPUs.
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2.1. The neuron circuit

The neuron circuit on HICANN-X emulates the adaptive exponential integrate and
fire model (AdEx) [Brette and Gerstner, 2005], an extension to the classical leaky-
integrate and fire model (LIF). It allows for more realistic action potential shapes
and firing patterns as they appear in biology [Naud et al., 2008]. For this thesis only
the parts from the LIF model are relevant, all AdEx extensions were disabled. The
basic circuitry is shown in figure 2.2. In this model the neuron’s membrane is realized
as a capacitor. An operational transconductance amplifier (OTA) implements the
leak by acting as a pseudo-resistor pulling the membrane to the leak potential Vleak.
Implementing a current-based model [Cavallari et al., 2014], the synaptic inputs are
also realized by OTAs. When a specified threshold potential Vthresh is reached, the
membrane is pulled to a reset potential Vreset. This event is triggered by the spike
threshold comparator, completing the LIF neuron. How long the neuron is pulled to
the reset potential is specified by the refractory time τrefr. The circuitry is explained
in more detail now.

Cmem

2.5V

−

+

−

+

Vref, exc

Vref, inh

excinh

−

+

Vthresh

Vleak

Vreset

reset

leak

exc

inh

Figure 2.2: Simplified schematic of an analog LIF neuron. The membrane capacitor
is the heart of the circuit receiving excitatory and inhibitory synaptic
inputs via OTAs shown on the left. The synaptic lines called “exc” and
“inh” get signals from the synapses. The leak OTA on the right pulls
the membrane back to a leak potential. If a threshold is reached the
comparator on the top right emits a spike and the membrane is pulled
back to the reset potential for an adjustable refractory period.

The leak OTA on the right generates a current onto the membrane which depends
on the transconductance value gleak and the difference between the membrane po-
tential and Vleak. It can be seen as a tunable resistor-like element. After a spike
occurred, the neuron is in the refractory period, which is set digitally by a counter.
During this time, the leak OTA serves as neuron reset and pulls the membrane to
Vreset. The transconductance value can be set individually for both modes to en-
sure a fast reset, while one also gets a higher membrane time constant τmem, which
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depends on the gleak and the membrane capacitance Cmem.
Without additional inputs, the membrane would be kept on the leak potential

or, in case the leak is above the threshold, the neuron would spike regularly, which
is called leak-over-threshold. To get a dynamic system with interactions between
different neuron instances, the synaptic input plays an important role. There are
two instances which are in principle identical and can be seen on the left side in
figure 2.2. The only difference is the changed polarity of the OTA, so the excitatory
input charges the membrane while the inhibitory input discharges it.

The synaptic input lines are marked with “exc” and “inh”, receiving input currents
from the different synapses of the according neuron. These inputs decrease the volt-
age on these lines by an amount ∆U = Qsyn/C, with the charge Qsyn (w) “sinked”
by each individual synapse per event. The line’s capacitance C of the synaptic input
results from the parasitic capacitance Cline of the line and an additional detachable
capacitor Csyn, both not shown in the figure. A tunable resistor-like element Rsyn,
also not shown, pulls the line back to the supply voltage of 1.2V. Every voltage
difference will exponentially decay back to the supply voltage with the synaptic time
constant τsyn, depending on the resistor-like element and the line’s capacitance. If
input events are absent, the reference potential should be be adjusted such that no
current flows on the membrane. The resulting current onto the membrane depends
on the transconductances of the OTAs and the difference between the synaptic lines
potentials and the reference potentials.

2.2. Spike generation and synapses
Propagating spikes through the chip is done digitally. Spikes are generated in the
synapse drivers and send to the synapses as visualized in figure 2.3. These synapse
drivers are able to perform short-term plasticity (STP) [Fioravante and Regehr,
2011], based on synaptic changes resulting from prior activity of the synapses. The
according model used on hardware is derived from the Tsodyks-Markram model
[Tsodyks and Markram, 1997]. For this thesis STP is not of interest and therefore
disabled. As a result, all current pulses send from the drivers will have a length of
4 ns and are not influenced by the STP circuitry.

Every synapse driver is connected to two synapse rows, so 128 drivers are im-
plemented per half. Each row can be individually configured to serve either as
excitatory or inhibitory input. Individual 6-bit weights w and addresses can be set
for every single synapse. While the length of the current stimulus ∆t = 4ns onto the
neuron is determined by the drivers, the height I (w) is modulated in each synapse.
The total emitted charge per spike Qsyn = I · ∆t is the product of both parame-
ters. If the programmed address of the synapse matches with the spike address, this
current stimulus is sent to the neuron in the same column, able to stimulate the
membrane via the synaptic inputs.

There are three sources of events generating spikes with a desired address. One
can either send external spikes manually with the desired address, specify an output
address for a neuron to generate an internal spike when its threshold is reached or
use one of the eight different on chip background spike generators. Each background
spike generator can be configured to send spikes to a desired address, with random
masks also to several addresses. It can either send regular or poisson spike trains,
each can be configured with a desired spiking frequency.

5



neurons neurons

synapse array synapse array

Figure 2.3: Visualisation of the upper chip-half in the analog part of HICANN-X.
The lower chip-half is mirrored downwards. Signals from the synapse
drivers in the middle travel in the synapse array via the synapses to the
according neuron in the column. Two synapse rows are connected to one
driver each.

2.3. Plasticity processing unit
The plasticity processing unit (PPU), a general-purpose 32-bit processor implement-
ing the PowerPC-ISA 2.06 instruction set [Friedmann et al., 2017], was originally
introduced to realize spike time dependent plasticity (STDP) [Bi and Poo, 2001] and
other plasticity rules. It is extended with a custom 1024-bit vector extension, which
can be used for calculation but also for setting hardware parameters in the synapse
array like the weights of synapses. Every chip contains two PPU instances, one for
the upper half of the chip and the other one for the bottom half. Like the FPGA,
they are able to control experiments and set hardware parameters.

They can either be programmed in assembler or in C++. The PPUs are clocked
with 250MHz and have access to 16 kB main memory each. If more memory is
needed, the PPUs can also access external memory in the FPGA to store code or
data. The program binary must be loaded via the FPGA, but afterwards the PPU
can control the whole chip completely independently of the host computer.

Both PPUs are able to read out the columnar analog-to-digital converters (CADCs),
8-bit ADCs. They were initially implemented to read out correlations from synapses
for STDP learning rules, but they can also be used to digitize the membrane po-
tential of each neuron at once. In addition, neuron rate counters can be read out,
which is a individual spike counter for every neuron. The rate counters have 8 bit
and every time a spike is registered, the value is incremented by one. A ninth bit
serves as overflow bit.
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3. Calibration: Executed on-chip
ASICs often suffer from certain manufacturing tolerances, which lead to mismatch
between identically designed components. For example, a local decrease in dopand
concentration could result in a reduced transconductance of a transistor. In digital
systems this usually influences the maximum clock frequency available. In analog
integrated circuitry such deviations directly influence the very properties and dy-
namics of the design. When it comes to neuromorphic designs, a stronger synaptic
input for example could lead to more output spikes because the threshold is reached
faster. To reduce this mismatch between individual neurons and other components,
calibration algorithms are necessary.

The LIF neuron depends on many different parameters, so various calibration
routines have to be developed. On BrainScaleS-2 for each neuron 8 voltages and 16
currents can be uniquely tuned to achieve a desired behaviour. These are generated
by a capacitive memory (CapMem) based on 10 bit parameters [Hock et al., 2013].
10 of these CapMem cells are assigned to the usage of the LIF model. In addition to
the neuron-specific cells, there are also cells that are responsible for quadrant-wide
or chip-wide parameters and are used, for example, in the CADC or the synapse
drivers. Individual calibration of these voltages and currents in the various com-
ponents makes it possible to reduce mismatch. Besides the CapMem also other
component-specific calibration mechanisms are available.

The goal of this thesis was to use the PPU for calibration. This has several advan-
tages, for example during calibration no data and commands have to be exchanged
with the host computer once the program started. So the calibration is completely
independent of network delays and external data inputs. This becomes especially
important for multi-chip systems such as wafer-scale platforms: Since all compu-
tation is performed locally, PPU-based calibration algorithms could exhibit perfect
weak scaling [Shoukourian et al., 2014].

One disadvantage of an on-chip calibration is the reduced number of observables,
which are limited to the voltages measured by the CADCs and the spike counters.
Additionally, the development effort is much higher and also more complex. First
steps calibrating BrainScaleS-2 systems on the PPU were made on the predecessor
of HICANN-X, HICANN-DLSv3 [Leibfried, 2018]. Some of these concepts were
also used and extended in this thesis. An important goal was the calibration of
the neuron parameters towards desired target values, which was not possible in the
existing calibration, which in contrast only allowed to equilibriate the dynamics
across neurons without specific targets. As far as possible, every calculation and
configuration was performed on the vector unit in order to keep the computing
overhead as small as possible.

3.1. Software structure

Different parameters need to be calibrated on chip, so a general functions was devel-
oped to handle the calibration algorithm. This generic routine was based on a binary
search since most parameters and their influence on the observables are monotonic.
The calibration should calibrate the according parameters so that the observable is
very close to the given target value. Functions to set the parameter and to get the
resulting observables had to be developed individually for each parameter.
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An issue with the CapMem arises when many CapMem cells are set to the same
digital value. In this case the generated voltage or current in a cell is different
from the value obtained with only one cell active. Due to this crosstalk it is not
possible to use a “standard” binary search with the same starting values for all
CapMem parameters. So a do_binary_search() function was developed. It was
overloaded to take arrays as well as single parameters. Specialized for the calibration
of CapMem values a do_noisy_binary_search() function was developed to deal
with the crosstalk problematic. Both algorithms are based on the same principle.
The following pseudo code illustrates the procedure for both.

1 f o r i in [ 1 . . i t e r a t i o n s ] :
2 se t_bi t = 1 << ( i t e r a t i o n s − 1)
3 binary_add ( var i ab l e , set_bit , max_value )
4 se t_funct ion ( v a r i a b l e )
5 obs_funct ion ( obse rvab l e )
6 dec ide r = dec ide_funct ion ( observable , t a r g e t )
7 i f d e c ide r :
8 binary_sub ( var i ab l e , set_bit , min_value )

Each routine must be given a minimum (min_value) and maximum (max_value)
to define the parameter range. With these values it is calculated how many iterations
(iterations) are necessary to cover the whole parameter range. Both routines start
with the minimum value adding the most significant bit (MSB) to cover the whole
range. For the noisy search a tunable amount of LSBs can be jittered during the
first iteration to counteract the crosstalk problem. Afterwards the same values are
added for all neurons because the jitter is kept for these values. In this thesis,
always 4 bits are jittered at the start leaving a starting range of ±8LSB. On-chip
random registers in the vector unit are used for jittering these values. These random
numbers are generated by different XOR-shifts.

Since it is possible to specify a desired range for the binary search, mostly one
does not have a power of two as sweeping range. So by adding a value which is too
high could result in a parameter outside of the intended range. Using a saturation
at the maximum value however could lead to many parameters being set to the
same value, making the crosstalk problematic appear. Also the jitter for the noisy
search would be lost in such scenario. Whenever a new bit is added, it is checked
if the parameter is above the maximum value, which is done by the binary_add()
function. If that is the case, the overlap is subtracted from the maximum being the
new parameter for the search. With this method the jitter of the noisy search is
kept. The basic principle is illustrated by this pseudo code, the implementation on
the vector unit is further explained in appendix A.1.

1 v a r i a b l e += set_bi t
2 i f v a r i a b l e > max_value :
3 v a r i a b l e −= v a r i a b l e − max_value

For the subtraction, in a few cases, a value below the minimum value can occur
due to the implemented addition. To prevent such cases, the difference from the
minimum is added like it is done for the addition if the parameter is below the
minimum. A binary_sub() takes care of this illustrated by the following pseudo
code. Appendix A.2 explains the implementation on the vector unit.
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1 v a r i a b l e −= set_bi t
2 i f v a r i a b l e < min_value :
3 v a r i a b l e += min_value − v a r i a b l e

An individually specified set_function() is responsible to set the parameters on
hardware. With a given obs_function() the observable influenced by the parameter
is obtained. This observable is used and individually compared to a desired target
value via a given decide_function(). According to this function the added bit is
kept or subtracted.

For the noisy search an additional small binary search at the end is required,
because it could happen that some values cannot reach the top end of the param-
eters range. The number of jittered bits marks the amount of extra iterations. So
calibrating a 10-bit CapMem value with the noisy binary search takes a total of 14
iterations, including the 10-bit sweep in the noisy search and the remaining 4-bit
sweep with a normal binary search.

Most calibrations in this thesis are for parameters generated by the CapMem.
Changing its digital settings will not change the according voltage or current imme-
diately. Each cell is updated individually by a voltage ramp, connecting a capacitor
for each cell at the right time, specified by the 10-bit value. It takes multiple of
these update until the potential on the capacitor reaches the desired value. For
big parameter changes up to 15 updates have to be performed to reach deviations
of less than 1LSB [Hock, 2014]. With an update period of approximately 1.5ms,
a wait of 20ms after configuring a new set of CapMem parameters is used to get
stable voltages or currents before measuring new observables again. This should
yield enough precision for the calibration even for the large parameter changes at
the beginning of the binary search. To get a completely general calibration class this
wait is not implemented directly in the binary search, digital values for example can
change immediately, making waits unnecessary. For the CapMem parameters this
wait is implemented at the start of each obs_function(), which are individual for
each calibration class.

With the implemented algorithm only the same class of parameters can be cal-
ibrated at once. Some parameters however need to be recalibrated after changing
another parameter, which is possible by implementing nested calibrations in the
according observable function. For example, after changing the bias current of the
synaptic input OTA one has to recalibrate the according reference voltage, other-
wise the result will be distorted. Also several calibration mechanism depend on
former calibrated parameters, otherwise they would not be possible on the PPU.
For example, it is not possible to only calibrate the synaptic time constant, different
parameters like the leak or the OTA’s bias current have to be calibrated beforehand.

3.2. Calibration of the CADC

Before attempting to read out the membrane potential or the correlation for the
synapses it is important to calibrate the CADCs [Schreiber, 2021]. A calibration for
the CADCs was already implemented by Weis [2020], where it was performed on
the host computer. The basic principles are the same. However, while in this thesis
an external DAC was used for the reference voltages, in the host based calibration
these are generated by a global CapMem cell.
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To digitize analog voltages the CADCs use a common voltage ramp, which is
individual for every quadrant, and a comparator for each of the 256 channels. The
ramp starts at a tunable voltage and will rise linearly with an adjustable slope. Each
channel has an own 8-bit counter starting when the ramp starts rising. A comparator
in each channel stops the counter if the ramp voltage reaches the observed voltage,
giving the digitized value. The maximum counter value of 255 is reached after
approximately 1 µs. For this reason, the starting voltage (also called offset potential)
and the slope of the ramp must be adjusted to match the desired dynamic range.

The start potential of the voltage ramp and its slope, both generated by quadrant-
global CapMem cells, need to be calibrated. Also due to transistor-level mismatch,
the point of triggering is different for each channel, so the results are shifted by a
certain offset value to compensate this effect, which has to be additionally calibrated.

It is not possible to directly read out the actual ramp offset voltage, so a different
method has to be used to calibrate the according CapMem cell. By applying a lower
potential as reference to the CADCs and using a yet uncalibrated ramp current, a
low digitized read is expected if the ramp offset is close to the reference. This is
however also the case if the ramp offset is above the reference voltage, because then
the comparator will always trigger right at the beginning. To leave some headroom
for individual channel offsets and preventing that the CADCs trigger when the
reference voltage is above the ramp offset voltage, calibrating to a mean value of
20LSB for all channels is considered.

For the slope of the CADC ramp a current charging a capacitor has to be cali-
brated. Since the start of the ramp is already calibrated, a reference voltage should
now just be high enough to mark the end of the desired dynamic range. With this
reference voltage, the current should yield a chosen mean value of 230LSB by de-
fault. Like for the ramp offset, the sought value should not be set to the maximum
of 255LSB to allow for individual channel offset calibration. Both ramp parame-
ters are calibrated with a normal binary search without the use of the vector unit,
because it would make no sense to only put two values inside a vector.

After the ramps between the four quadrants are equalized, each channel offset has
to be calibrated individually. The shift for each channel is determined by applying
a reference voltage in the middle of the dynamic range and triggering a digitization
on all channels. Considering the range of 20LSB to 230LSB, a target value of
125LSB is selected. Every CADC read should give this value if the channel offsets
are equalized. This calibration is not based on a binary search, just one CADC read
is required and the deviation from the target gives the offset value. The calculation
is completely done on the vector unit.

The dynamic range of the CADC can now be tuned by different lower and higher
reference voltages generated by the external DAC. One is limited by the CADC
ramp rising only until 1.2V, while it already starts to be less linear at 1.1V, con-
straining the choice for the upper reference. The lower reference voltage should not
be lower than 0.05V, otherwise a mean read of 20LSB is not possible, because the
comparators directly trigger at the start giving values close to 0LSB. A reliable
calibration of the ramp offset would not be possible anymore.

Figures 3.1 and 3.2 show the characterization of the CADC with an applied ex-
ternal voltage by a DAC. The mean and the standard deviation of the channels in
each quadrant are plotted. For figure 3.1, the CapMem values for ramp offset and
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Figure 3.1: Characterization of the CADC for the uncalibrated state. An external
voltage is applied and the mean and standard deviation of all 256 chan-
nels per quadrant are plotted. Different quadrants differ significantly
due to the uncalibrated CADC ramp, but also the standard deviation is
high showing that the individual channel offsets are not calibrated. The
data was measured on setup 63 with chip 22.

slope are set to the same values for all quadrants with no individual channel offset
set. It is visible that the different ramps are not aligned if uncalibrated and also
the deviations between each channels are high, which is shown by the high standard
deviation of each read. By using calibration, as visible in figure 3.2, the error bars
are much smaller. Also the different voltages match between the different quad-
rants. For the plots a lower reference of 0.05V and a upper reference of 1.1V was
chosen to get the whole dynamic range, which is sufficient for further calibrations
using a calibrated CADC. The standard deviation between 0.2V up to 1V is always
below 1LSB. With these voltages corresponding to 40LSB and 220LSB one LSB
corresponds to approximately 4.5mV

3.3. Voltages

It is not possible to directly connect the output of the CapMem cells to the input of
the CADCs. But as the different voltages required for the LIF neuron are influencing
the membrane directly, it is possible to observe their influence on the membrane.

3.3.1. Leak voltage

With no input currents and spiking disabled, the membrane will stay at the leak
potential. In this case just one CADC read delivers the observable for the calibration.
The membrane time constant, in the worst case scenario around 100 µs, is not of
importance as after every step in the noisy binary search a wait time of 20ms is
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Figure 3.2: Characterization of the CADC for the calibrated state. With an external
voltage applied the mean and standard deviation of all 256 channels per
quadrant are determined and plotted. The characteristic of the different
quadrants is now aligned and also the individual channel offsets are set
that the standard deviation is below 1LSB for input voltages from 0.2V
to 1.1V. Outside of the dynamic range the deviations are higher due to
clipping effects. The data was measured on setup 63 with chip 22.

already taken, which is at least two order of magnitudes higher.
In the current version of HICANN-X there is a source follower between CapMem

cell and the actual “leak input” with a designed drop of 0.6V. Dauer [2020] showed
however that some neurons are just able to get a maximum leak potential of 0.6V.
Such voltages are all readable with the CADC.

3.3.2. Reset voltage

Neuron resets can be triggered manually via the vector unit for all neurons at once.
So reading out the membrane with the CADC after such neuron reset makes is pos-
sible to calibrate it. As the CADC takes around 1 µs for reading out the membrane,
it is important to have a longer refractory time such that the membrane does not
start rising again during readout. Also the reset does not happen instantaneously.
The membrane potential gets pulled to the reset potential by using the leak OTA
with another bias value. So right after triggering a neuron reset an additional wait
has to be implemented to prevent reading out a wrong value.

3.3.3. Threshold voltage

Compared to the other two voltages it is not so easy to directly read out the thresh-
old. Reaching the threshold results in resetting the neuron, by disabling the spike
reset one would just simply not know if the threshold is reached. On HICANN-
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Figure 3.3: A total of 100 000 CADC reads one after the other for neuron 0 on
chip 22 on setup 63 were performed with a constant current applied to
the membrane, which spiked continuously. From this data 100 samples
with a certain number of reads were taken and the maximum in each
sample determined. Afterwards the mean and standard deviation of
each determined maximum value was taken and plotted in the figure.

DLSv3 it was possible to calibrate the threshold with the help of the leak [Leibfried,
2018]. With this method after each iteration the leak was recalibrated to match the
threshold. This was achieved by the spike counters, when spikes are recorded the
leak is above the threshold, otherwise it is below. So the leak was brought to the
point where spiking starts. With disabling spiking it was then easily possible to just
read out the membrane potential with the CADC getting the threshold.

On HICANN-X this method was also implemented and worked just fine but with
some drawbacks. For some neurons the leak is limited to about 0.6V, so for them it
is not possible to get a higher threshold, covering only a part of the settable range.
Another problem is the nested binary search, in ever iteration step another noisy
binary search was executed with another 14 iterations, which makes 196 iterations
in total. This can be circumvented by first calibrating the leak to a desired level
and afterwards calibrating the threshold to the point where spiking begins. In this
case the problematic with the source follower still remains.

A different approach was tested to get higher threshold values. It is possible
to apply a constant current to the membrane via a CapMem cell, so the neuron
starts to spike regularly. By reading the membrane potential continuously with the
CADCs and only taking the maximum for each neuron individually should give a
good guess of the threshold. The verification is shown in figure 3.3. A total of
100 000 CADC reads of a single neuron were recorded and 100 samples taken with a
different number of reads. For each sample the maximum was taken and the mean
and standard deviation between the different maxima calculated and plotted.
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With a small number of reads, i.e. 5 CADC reads, the maximum value cannot be
determined with the CADCs. The mean lies wide away from the true value and the
standard deviation is also high, so everytime a new measurement is taken different
values will occur. So more reads are necessary to better estimate the threshold.
For a number of 500 reads the threshold value can be closely determined within
every sample, shown by a small standard deviation and also with a higher number
of reads the mean value does not change. So the maximum of 500 CADC reads is
taken to estimate the threshold potential in the calibration routine. The CapMem
cell delivering a constant current must not be calibrated as the neuron should spike
several times during these 500 CADC reads, so it is ensured to hit the target read.
Unfortunately, the vector unit does not support unsigned calculations, so a method
to find the maximum of an 8-bit unsigned integer on 8-bit signed arithmetic is
presented in appendix A.3.

To verify the routines for calibrating different potential with the CADCs, the fast
membrane-ADC (MADC) with a sampling frequency of approximately 30MHz can
be used. It can only connect to one neuron at a time and it is only possible to
read it out from the host computer. Voltages are digitized to a 10 bit value, which
can be translated to voltages by comparing the measured value with voltages from
the external DAC. As there is a buffer between the MADC and the membrane,
the voltage readout can be slightly shifted. So only differences in voltages can be
reliable. To get these values, the neuron is brought to regular spiking, so it is possible
to directly extract the reset and threshold potentials from the obtained curves in
the MADC.

Figure 3.4 shows the difference of reset and threshold potential in an uncalibrated
(top left) and a calibrated state (top right). On the bottom right only the reset po-
tential was calibrated and an uncalibrated threshold taken. The reset was calibrated
with a target of 0.2V, while the threshold should be 0.6V, resulting in an expected
difference of 0.4V. For the uncalibrated state the mean of the calibrated values was
taken to get a comparable voltage mean and jittered with 4 bit to prevent crosstalk
problems.

After calibration, the distribution is much more narrow as one can see on the
top right. The standard deviation of the values before calibration was 11.7%, while
after calibration these numbers were brought down to 1.9%. A standard deviation
of 9.0% was found when only calibrating the reset potential. The mean for both
potentials calibrated is 0.390V and so the result differs 2.6% from the expected
result.

The possibility to calibrate towards a wide range of target values is further shown
on the bottom left in figure 3.4. Different target values for the threshold were given,
the reset was always calibrated to be 0.2V. Afterwards, the calibration result was
determined and the mean and standard deviation plotted. In the visualization the
standard deviation is smaller than the size of the points, so all neurons have a similar
reset and threshold. For all data points the target was underestimated by about 5%.

3.4. Membrane time constant
Calibrating time constants on the PPU is much more difficult compared to voltages.
They are typically estimated from digitized traces by means of fitting an exponen-
tially decaying function. This is difficult to perform on the PPUs due to the low
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Figure 3.4: Histograms showing Vthresh − Vres before (top left) and after (top right)
calibration for all 512 neurons of both parameters. On the bottom
right the difference for a calibrated reset and an uncalibrated thresh-
old is visible. The desired target value was 0.4V, with Vres = 0.2V and
Vthresh = 0.6V. The distribution of the voltage difference is narrowed
down by calibration and is close to the target value. For the uncalibrated
CapMem values the mean of the calibrated ones are taken and jittered
to prevent crosstalk problems, to ensure a comparable voltage mean. On
the bottom left a sweep of different target values and the resulting cali-
brated value is plotted with mean and standard deviation. The dashed
line marks the desired target results. Data taken from chip 22 on setup
63.

sampling rate of the CADCs and the limited computational power and resolution of
the PPUs vector units.

To calibrate the membrane time constant, the bias of the leak OTA, acting like
a resistor connecting the membrane to the leak potential has to be calibrated. The
time constant is the ratio of the membrane capacitance and the leak transconduc-
tance value (τmem = Cmem/gleak). This membrane capacitance is coarsely config-
urable, so changing this parameter makes a new calibration necessary. The mem-
brane time constant is calibrated by changing the leak OTA bias.

For longer time constants a single timed CADC read can be used for estimation.
After a forced neuron reset, the membrane potential will decay exponentially from
the reset voltage back to the leak potential. After a time of τmem the amplitude has
reached 1/e of the original amplitude, so the voltage will be

Vtau = Vleak − (Vleak − Vres) /e. (3.1)
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Figure 3.5: Histograms showing the membrane time constant of all 512 neurons be-
fore (left) and after (right) calibration for a target value of 60µs. The
distribution of the calibrated state is around the desired target and much
more narrow compared to the uncalibrated distribution. To get a com-
parable mean the mean of the calibrated values was taken and jittered
for the measurement of the uncalibrated values. Chip 22 on setup 63
was used for measurement.

With a known Vres and Vleak this expected value can be calculated. By resetting the
neuron and triggering the CADC right after a wait of τrefr + τmem should then yield
Vtau. If the voltage is higher, the membrane time constant is too short as the leak
is reached faster. In case the voltage is lower, the membrane time constant is too
long, yielding an observable for τmem.

To obtain membrane time constants which are adjustable over two orders of mag-
nitude, each leak OTA has an individual current multiplication and division mode.
Each scales τmem approximately by an order of magnitude. While with the division
mode orders of 100 µs are reached, the multiplication mode enables time constants
around 1 µs. The behaviour of the leak OTA was already investigated by Dauer
[2020]. For membrane time constants above approximately 20 µs the division mode
has to be used, while for times below 2 µs it is the multiplication mode.

For calibrating longer membrane time constants one has to differ between division
and normal mode. To ensure that a calibration routine only takes the desired time
constant and calibrates to a desired value, also the division bit has to be calibrated.
This has to be done before the CapMem calibration using a noisy binary search.
So first of all the CapMem cells are set to (50± 8) LSB in normal mode, where we
expect time constants of approximately 20µs. With the according wait time for the
desired τmem the CADC is read out. If the observed value is above the target, it
shows that the longest possible time constant in normal mode is still to fast, thus
the division mode is required to get longer membrane time constants. Otherwise the
normal mode is used.

The difference between calibrated and uncalibrated membrane time constants is
shown in figure 3.5. The target in this case was set to 60µs and therefore all
neurons are in the division mode. To measure the uncalibrated state, the mean of
the calibrated values was taken and jittered with 4 bit. This was done to get a
comparable mean, which is also visible in figure 3.5. To measure the actual time
constant, the neuron was forced to the reset value and the exponential decay back to
the leak potential was observed with the MADC. By fitting an exponential function
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Figure 3.6: Sweep of different target values and the resulting calibrated membrane
time constant for values between 5 µs up to 100 µs. For calibration we
used a timed CADC conversion after τmem. The mean and standard
deviation for all 512 neurons are plotted as black data points. The
dashed line indicates unity, i.e. the targeted values themselves. Data
taken from setup 63 on chip 22.

to the obtained trace data τmem was extracted. This MADC-based method serves
as verification for the PPU based calibration, because it is a more precise estimate.

With calibration (right) the distribution is much more narrow compared to the
histogram with the uncalibrated data (left). The mean of the calibrated values
is 59.75µs which matches perfectly with the desired target value of 60 µs. With-
out calibration the standard deviation is about 7.6%, brought down to 2.1% after
calibration.

We furthermore attempted to quantify the quality of our verification method. For
this purpose, we repeated the same MADC-based measurement 50 times. Across
these trials we observed a standard deviation of 1%. These deviations can result
from noise on the membrane potential and the resulting differences in the fit.

To ensure that the calibration works for a wide range of membrane time constants
a sweep was done for different target values, which can be seen in figure 3.6. Different
target values from 5 µs up to 100 µs were used for testing and the mean and standard
deviation of all neurons plotted. All values match the target value, showing that it
is possible to calibrate to a desired τmem given in SI-units on the PPU. However,
for values around 30µs we observed increased deviations from the target. In this
region one switches from normal mode to division mode for each neuron individually.
Neurons with a time constant shorter than expected with settings of 50LSB are put
into division mode to get higher time constants. For some of these, however, even a
setting of 1000LSB in division mode yields a time constant about the target. This
issue can be mitigated by improving the switching criteria and lowering the threshold
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of 50LSB. In this case, the characteristics of each CapMem quadrant have to be
considered, as some instances exhibit unreliabilities for lower values [Dauer, 2020].

t

V

Vres

Vthresh

Vleak

τrefr

τmem

Figure 3.7: Sketch of a neuron with Vthresh = Vtau (equation 3.1), resulting in regular
spiking. After a spike occurred the neuron is in refractory mode. Then
the membrane starts rising again until it reached Vthresh within τmem.

To calibrate even smaller time constants in the order of µs, we can not rely on
above’s method, since the CADCs sampling period itself fall in that range. Instead
we can now rely on a leak-over-threshold configuration. By setting Vthresh = Vtau
(see equation 3.1), the neuron will spike regularly as it is sketched in figure 3.7.
This allows to to calibrate τmem with the neuron spike counters. If the membrane
time constant is perfectly calibrated the expected amount of spikes in an interval of
x · (τmem + τrefr) should be x. For higher membrane time constants a lower amount
of registered spikes is expected and vice versa.

For shorter time constants it is important to note that one has to differ between
multiplication and normal mode. For time constants of approximately 2 µs and
below the multiplication mode has to be used. So the multiplication bit has to be
determined before starting with the calibration of the CapMem values. The same
procedure as for longer time constants is used, all neurons are brought to 50LSB
(with noise) and multiplication is enabled. If the maximum reachable time constant
is below the desired one, the multiplication bit is discarded.

To get an overview whether the method is also applicable for different time con-
stants a sweep from 0.5 µs up to 10µs was performed. As one has 8-bit spike counters
it was decided to target for 200 spikes in an according interval. The results can be
seen in figure 3.8. Most data points match the desired value within their standard
deviation. In comparison to figure 3.6 the standard deviations are much higher.
One explanation could be that this calibration method depends on three precali-
brated values instead of two, so the total error increases due to error propagation.
Especially for time constants around 3 µs it was observed that for some neurons the
desired time constant was not be reached in either of the two modes, at least with
the mode selection criterion specified above. In multiplication mode the longest time
constant reachable was below 3 µs, but in normal mode time constants shorter than
4 µs were also not possible within the applied range. So the high standard deviation
in this area is partly due to this problem. Like described above the characteristics
of each quadrant have to be considered individual as done by Dauer [2020].

The offset voltage of the leak OTA unfortunately exhibits a slight dependency on
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Figure 3.8: By using calibration with spikerates different target values from 0.5 µs
up to 10 µs are used and the according calibrated τmem is plotted. Every
data point is the mean and standard deviation for all 512 neurons on
chip 22 (setup 63). The dashed line describes the expected values which
should occur if the calibration is perfect.

the bias current, enough to distort the calibration of τmem. For this reason, while
performing the binary search for both calibration methods, after every leak bias
iteration the leak voltage has to be recalibrated. So in principle it is a nested binary
search, in every iteration step another binary search is performed to calibrate Vleak.
Thus the total amount of iterations is increased to 196 iterations in total compared
to the 14 iterations for a noisy binary search for the whole parameter space.

3.5. Synaptic input

The heart of the synaptic input is an OTA, which generates a current onto the
membrane depending on the difference between its two input potentials and its
transconductance value gsyn. One terminal serves as reference voltage and should
match the baseline of the other potential, which corresponds to of the synaptic
input line idling at 1.2V. Incoming spikes from the synapses now decrease the line
potential, which results in a current output. The resistor-like element controlling
the synaptic time constant pulls the line back to the idling potential. Every synaptic
input has therefore three different parameters which have to be calibrated.

Depending on the excitatory or inhibitory nature of the instance, the charge Q
onto or off the membrane, resulting from an incoming spike, depends on the ampli-
tude on the synaptic input line as a function of the synaptic weight, the synaptic
time constant and the gain of the synaptic OTA. The latter is determined by a bias
current. The emitted current by the OTA depends only on the transconductance
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gsyn and the voltage difference at its inputs:

Isyn, exc (t) = gsyn ·
(
Vref, exc − Vsyn, exc (t)

)
. (3.2)

An incoming spike at t = 0 with a drop of ∆Vspk will decay with a time constant of
τsyn back to the resting potential

Vsyn, exc (t) = Vref, exc −∆Vspk · exp
(
− t

τsyn

)
, (3.3)

resulting in a charge onto the membrane given by

Q =

∫ ∞

0
Isyn, exc (t) dt = ∆Vspk ·gsyn ·

∫ ∞

0
exp

(
− t

τsyn

)
dt = ∆Vspk ·gsyn ·τsyn. (3.4)
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Figure 3.9: An incoming spike from the synapses drops the synaptic input line by
∆Vspk. It is decaying exponentially back to the baseline of 1.2V with
the synaptic time constant τsyn. The total charge Q onto the membrane
is now the integrated area in red.

Figure 3.9 shows a sketch of the synaptic input line with an incoming spike. The
influence of the transconductance value is not visible as it is just responsible for
translating the voltage difference to a current.

3.5.1. Reference voltage

With an optimally calibrated reference voltage, the synaptic input OTA should
not produce any current when the input line is at its baseline of 1.2V. With an
uncalibrated synaptic input, a constant current is emitted. This changes the resting
potential since the current needs to be compensated by the leak. For calibration
this phenomena is used. First of all the membrane potential is read out with the
CADC while the synaptic input is disabled. In this case the CADC value should be
equal to the leak. By enabling the synaptic input, the membrane potential should
change if the synaptic input emits a current. The goal of the calibration is now to
reach the leak potential again with the synaptic input still enabled. This indicates
that the OTA does not output any current.

This calibration works for the excitatory and the inhibitory input the same way,
the only difference is the changed polarity. If the reference voltage is below the base-
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line, the excitatory input OTA will emit a negative current onto the membrane while
the inhibitory input OTA will emit a positive current and vice versa. This method
already worked stable for different leak values on HICANN-DLSv3 [Leibfried, 2018]
and also on the latest prototype it works fine.

3.5.2. Excitatory current

To calibrate the transconductance of the excitatory OTA, one could simply apply
a fixed voltage difference at the OTAs inputs and – after letting the membrane
converge to its equilibrium due to the leak – measure the resulting offset in the
membrane potential. This would correspond to a calibration of the DC contribution.
Instead we can absorb the capacitive mismatch in Cmem by calibrating gsyn over
Cmem. For this purpose we configure a long membrane time constant and opt for
a dynamic calibration using spikerates. Therefore, the synaptic input line can be
pulled to a fixed voltage by an external DAC, resulting in a constant current onto
the membrane according to equation 3.2. The voltage difference forced at the OTA
inputs with the DAC is now called ∆Vsyn. With gsyn · ∆Vsyn · ∆t, the charge Q
onto the membrane in a time interval of ∆t can be calculated. Assuming one would
neglect the leak, with the equation ∆Vmem = Q/Cmem, describing the voltage change
of the membrane potential when a charge Q is put onto it, one gets

Cmem
gsyn

=
∆Vsyn ·∆t

∆Vmem
. (3.5)
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Figure 3.10: Sketch of a membrane potential stimulated with a constant current
when the leak is neglected. The potential rises linearly until the thresh-
old is reached, resetting the neuron to Vres for the refractory time. Af-
terwards the membrane potential again starts to rise.

While ∆Vsyn can be easily adjusted by the external DAC one is left with ∆Vmem
and ∆t. Reading the raise of the membrane for a known time ∆t however should
not give reasonable results as the CADC will be too slow for readout. With a fixed
∆Vmem however it can be easily calibrated via spikerates. The principle is sketched
in figure 3.10. Due to the voltage difference at the synaptic OTA a constant current
controlled proportional to the gain is emitted onto the membrane. With a strong
enough current the neuron will start to continuously emit spikes.

Calibrating to a certain amount of spikes in a certain time interval will now
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calibrate the ratio of Cmem/gsyn. Because the spike counters can register 8-bit values,
it was decided to use 200 spikes. So with a calibration 200 spikes should occur in
a time interval of 200 · (τrefr +∆t). Also the reset and threshold potentials have
to be calibrated, which are set to 0.2V and 0.6V respectively, leaving a ∆Vmem of
0.4V. The external DAC is set to 1V, leaving a ∆Vsyn of 0.2V. So the desired
ratio can be controlled by setting ∆t and the quotient will just be ∆t/2 according
to equation 3.5.

In this entire consideration the leak was neglected. With a small membrane time
constant the leak would have a big influence with this method. So beforehand τmem
was calibrated to be 60µs. With a ∆t in the order of some µs it is justified to neglect
the leak for this calibration. Of course the voltages can be adjusted if desired. With
the synaptic input designed for maximum deviations of approximately 0.2V, the
chosen potentials make use of the whole dynamic range. The smaller the voltage
at the synaptic input and the higher the difference between threshold and reset the
influence of the leak gets higher and must be taken into account.

Before measuring the spikerates, the synaptic reference voltage has to be recali-
brated. That is because the offset between the two inputs can depend on the bias
settings. So a nested binary search is used and in every iteration step another bi-
nary search for calculating Vref, exc is performed. So a total of 196 iterations are
performed. It is worth noting that also a CapMem wait is implemented before every
calibration of the reference voltage to get a stable leak at the beginning.

3.5.3. Inhibitory current

Calibrating the inhibitory synaptic input gain with the same method as the exci-
tatory is basically possible. For this instead of setting the external DAC pulling
the synaptic input line to 1V one could set it to 1.4V, also resulting in a constant
current onto the membrane. The synaptic input line however is just designed for
voltages of 1.2V and below, so this method is not used.

With the help of the excitatory input it still can be calibrated with another
method. As already mentioned in this thesis, the membrane will idle at leak po-
tential if no other inputs are enabled. By connecting both synaptic input lines to
the same potential with an external DAC, the excitatory input will emit a current
onto the membrane, while the inhibitory input pulls charge from the membrane. If
the inhibitory input is stronger than the excitatory the membrane potential will be
below the leak, while it will be higher for a stronger excitatory input. With both
synaptic inputs enabled and a membrane potential equal to the leak, the gain of the
two OTAs should be equal. The membrane potential before connecting the OTAs
to the membrane can be read out with the CADC, marking the target. A binary
search now finds a suitable transconductance value where the excitatory current is
compensated by the inhibitory input. Compared to the excitatory calibration this
is not a “dynamic measurement”. It is better compared to the offset calibration by
waiting for a steady-state and then measure the potential difference.

As in the excitatory calibration the reference voltage has to be recalibrated for
every iteration step. To calibrate the inhibitory input with this method an already
calibrated excitatory input is needed. If different gain values are desired, the excita-
tory gain firstly has to be calibrated to the desired inhibitory gain to calibrate the
latter. Afterwards the excitatory gain can be re-calibrated to its desired value.
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3.5.4. Excitatory synaptic time constant

The charge deposited onto the membrane by an incoming spike is given by equa-
tion 3.4. By neglecting the leak term, the synaptic time constant can be calculated
with the resulting voltage raise on the membrane if the synaptic input is connected
via

τsyn =
Cmem
gsyn

· ∆Vmem
∆Vspk

. (3.6)

It was already shown on HICANN-DLSv3 [Leibfried, 2018] that it is possible to
calibrate the synaptic time constant with spikerates. The same principle as with
the excitatory gain for the OTA is used. By sending in spikes regularly and using a
smallest possible refractory time, the amount of spikes in a certain time interval is
proportional to τsyn.

For the calibration two synapses with weight 63 are connected to each neuron
and receive a poisson spike train with a frequency of 50 kHz from the background
spike generators. The difference ∆Vmem of reset and threshold was kept from the
calibration of the OTA gain with 0.4V. In a time interval of 2.5ms the amount of
registered spikes is calibrated to a target value of 200 spikes.

As already shown by Weis [2020], the voltage drop ∆Vspk on the synaptic input
line for events with maximum weight depends on the physical location on the chip.
With the synapse drivers in the middle of each chip half, the neurons located closer
to the drivers have higher voltage drops at the synaptic input compared to neurons
far away at the border of the chip. So it is expected, according to equation 3.6,
that the calibrated synaptic time constant for neurons closer to the drivers in the
middle should be calibrated to a lower value. Figure 3.11 shows a measurement
of τsyn after calibration with the former described algorithm. It clearly shows the
deviations depending on the location of each neuron. With only 32 neurons on
DLSv3 this behavior was not visible. For verification, the synaptic time constant
was obtained by fitting an exponential to the synaptic input after an incoming spike.
This method is also error-prone due to fitting errors, but it is still a good measure
of the calibration quality.

To counteract this difference a weight calibration was developed to ensure the
same ∆Vspk for every neuron to get comparable synaptic time constants. For this
purpose, the CADC can be used because it is also able to read out the synaptic input
line. As the tunable-resistance Rsyn influencing the synaptic time constant can not
be completely switched off one has to set it to its maximum value. Otherwise with
time constants in the range of some µs the CADC, taking approximately 1 µs for
a readout, is too slow to reliably measure ∆Vspk. For the calibration, again two
synapses are used per neuron, with one set to 63 and the other to a value of 32. The
latter synapse is now tuned such that the difference of a CADC read before a spike
and right afterwards is the same for all neurons. With the tuned synapse weights it
should be now possible to counteract the differences in each quadrant for the time
constants.

In figure 3.12 the calibrated τsyn for each neuron depending on its location on the
chip with calibrated synapse weights is plotted. Within each quadrant the neurons
now have a comparable synaptic time constant, the standard deviation within each
quadrant is around 3.3%. Compared to the calibration with uncalibrated synaptic
weights the time constants are calibrated to higher values. This is due to the lower
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Figure 3.11: Calibrated τsyn with spikes incoming from two synapses of maximum
weight. The four subplots represent the hardware layout in four quad-
rants with the drivers located in the middle of each chip half (upper
and lower). Center neurons are calibrated with a lower synaptic time
constant because the drop at the synaptic input ∆Vspk is higher. Data
was measured on chip 22, setup 63.

total weight resulting in a lower ∆Vspk and thus a higher time constant. Comparing
the neurons across a chip shows large differences between the quadrants. In quadrant
0 (top left), for example, all calibrated time constants are in the order of 1 µs higher
compared to the other quadrants. Aiming for same time constants chip-wide, and
also on different chips, this accuracy is not sufficient.

One reason for the inaccuracies can be the slightly different resistance of the
resistor-like elements. With a CapMem value set to zero the resistance should be
at its maximum. Due to different CapMem ramps in each quadrant this value is
expected to slightly differ [Dauer, 2020]. With a spike charging the synaptic input
line not simultaneously but with a time of 4 ns a lower resistor would already allow
a lower ∆Vspk because more charge is already pulled from the line. This should
however be just a small effect with time constants expected to be on the order of
10µs. A bigger influence could have the sampling time of the CADC, taking around
1 µs. With smaller resistances the synaptic input is pulled back faster to the baseline,
thus the “real” ∆Vspk is calibrated higher.
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Figure 3.12: τsyn is calibrated via spikerates with former calibrated synaptic weights
to ensure the same ∆Vspk for all neurons. The four subplots show the
hardware layout forming four quadrants. In each quadrant all neurons
have a comparable synaptic time constant, while by comparing different
quadrants with each other this is not the case. Data taken from chip
22, setup 63.

While calibrating the synaptic time constant with spikerates works in principle,
it still has some drawbacks. With the presented method its working for moderate
time constants around 5 µs. For longer time constants saturation could occur on the
synaptic input. This can be however circumvented by using different input rates
depending on the desired time constant. But there is still the problem that the
refractory time is set to 1.28 µs. During this time signals on the synaptic input line
do not affect the membrane. For the calibration of the OTA’s gain this does not
pose a problem because the synaptic input line voltage is fixed. With a dynamic
line potential information is lost, which can be a bigger problem for smaller τsyn.

Besides these issues it also lacks the possibility to calibrate the synaptic time con-
stant to specified targets, the problem is the unknown conversion factor of spikerates
corresponding to SI-values. That is the case because ∆Vspk cannot be determined
properly with the CADCs. The routine still can be used to counteract the mismatch
between different neurons in a quadrant to calibrate neurons to match an already
calibrated one.
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Figure 3.13: Simplified schematic of the excitatory synaptic input (looks the same
for the inhibitory input with changed OTA polarity). Spikes coming
from the synapse array are inserted on the left. These are charging the
parasitic capacitance Cline and, in case the switch Ssyn is closed, also
the small capacitor Csyn. These are charging the parasitic capacitance
Cline and an additional small capacitance Csyn. The switch Ssyn lies in
between. Via the tunable resistance Rsyn the line potential is pulled
back to the supply voltage of 1.2V. A current proportional to the
voltage difference of the reference voltage and the line potential is then
emitted to the membrane via an OTA through the switch Smem. Via
the debug pin, separated by the switch Sdebug from the input line, an
external voltage can be connected.

So a different approach was developed to force a consistent ∆Vspk for every neuron
independent of the quadrant or even chip. Figure 3.13 shows a simplified schematic
of the synaptic input and surrounding circuits.

With a closed Ssyn the synaptic input could now be charged to a desired ∆Vspk with
an external DAC via the debug input. By previously opening Smem the membrane
would be unaffected by the resulting current. By opening Sdebug and closing Smem
simultaneously, the membrane capacitor could be used to integrate the decaying
signal from the synaptic input by reading the membrane potential with the CADC.
In contrast to the other switches, Smem can not be switched via the vector unit
resulting in an inefficient scaling and imprecise timing, since the switching has to be
done individually for every neuron

But via another method the external DAC can still be used to generate a fixed
∆Vspk. By closing Sdebug and opening Ssyn the line capacitance Cline can be precharged
to a voltage provided by an external DAC. After opening Sdebug , closing Ssyn will
result in charge being shared between the precharged Cline and Csyn which was pulled
to 1.2V by Rsyn. The voltage will result as

∆Vspk =
(
1.2V − Vdebug

)
· Cline
Cline + Csyn

. (3.7)

Considering extracted parasitics, we estimate Cline = 590 fF and Csyn = 481 fF.
With this method “fake” spikes can be generated with amplitudes independent of
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Figure 3.14: Traces of the membrane and synaptic input. The signal on the synaptic
input is generated via a fake-spike at t = 0 and decaying back to its
baseline afterwards, while the OTA emits a current onto the membrane
resulting in a rise of the membrane potential. Due to the leak the
membrane potential slowly decays back to the leak voltage. The strong
black and red curve belongs to a Rsyn bias value of 100LSB resulting
in a longer synaptic time constant compared to the light black and red
curve belonging to a bias value of 150LSB and a shorter time constant.
With longer time constants the membrane potential is higher. Neuron
0 was measured on setup 63 with chip 22.

instance, quadrant and even chip. The integration of a fake-spike on the membrane
is shown in figure 3.14. Starting from a low leak potential, the membrane starts
rising due to the signal on the synaptic input. It is clearly visible that for a longer
τsyn the rise in the membrane potential is higher compared to shorter time constants.
But also the leak has an effect pulling the membrane potential back. Considering
the synaptic input’s parameters as well as the membrane dynamics we find

∆Vmem =
∆Vspk · τsyn

Cmem
gsyn

·
(
1− τsyn

τmem

) ·
exp

−
τsyn · ln

(
τsyn
τmem

)
τsyn − τmem

− exp

−
τmem · ln

(
τsyn
τmem

)
τsyn − τmem

 .

(3.8)

The derivation of this equation can be found in appendix A.4. By neglecting the leak,
i.e. τmem → ∞, one arrives at equation 3.6. By continuously reading the membrane
potential with the CADCs and only taking the maximum read should then deliver
a suitable estimate of ∆Vmem even with a sampling period of 1 µs. Of course the
leak potential has to be deducted from the maximum value. This procedure was
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Figure 3.15: τsyn was calibrated using different target ∆Vmem. The mean and stan-
dard deviation of all 512 neurons on chip 22 (setup 63) are plotted as
data points. In red the curve of a fit according to equation 3.8 is visible.
The fitted curve describes the course of the data points very well and
all points match within the standard deviation.

completely implemented on the vector unit following the same algorithm already
used for the threshold calibration (further described in appendix A.3). Again, a
noisy binary search was used to calibrate τsyn.

The exact correspondence between τsyn and ∆Vmem was determined by sweeping
the latter and measuring the former by means of the MADC and fitting an expo-
nential decay. In particular, we took the mean across all neurons. The results can
be seen in figure 3.15. Furthermore, equation 3.8 was fitted to the given data also
included in the plot. For the fit of equation 3.8, we inserted all known or previously
calibrated values, resulting in ∆Vspk as the last free parameter. The ratio Cmem/gsyn
was previously calibrated to 1 µs and the membrane time constant to 60 µs. The leak
was calibrated to a low voltage of 0.2V to ensure a high dynamic integration range
without the occurrence of saturation. Fake-spikes were generated with an external
voltage of 1V.

According to the fit, a ∆Vspk of 0.12V occurs in this scenario. According to
equation 3.7, the ratio Cline/ (Cline + Csyn) can be calculated for the fit to 0.60.
From extracted parasitics this value can be calculated to be 0.55. Both values
slightly differ, which can be explained with various reasons. Firstly, the assumption
was made that the other parameters given in equation 3.8 are perfectly set without
considering any errors. Also the extracted parasitics can have slight deviations
compared to the real chip.

Especially in the range between 1 µs to 10 µs we observed a good correspondence
between measured data and the fit function, which can now be used to determine a
calibration target ∆Vmem according to a targeted time constant.
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Figure 3.16: Histograms showing the excitatory synaptic time constant of all 512
neurons before (left) and after (right) calibration for a target value of
6 µs on chip 22 (setup 63). To get a comparable distribution with the
same mean, the mean of the calibrated CapMem values was taken and
jittered for the measurement of the uncalibrated values. The calibrated
distribution is much more narrow and centered around the target value.

Calibration results for a target of 6 µs can be seen in figure 3.16. We take the
mean of the calibrated CapMem values with noise to estimate the uncalibrated data
shown on the left side. The standard deviation is in this case 23.8%, including a
outlier at 12.86µs. After calibration (right) the standard deviation was brought
down to 3.4% and also the outlier would be calibrated. This is the same standard
deviation as with the spikerate based calibration within each quadrant. The mean of
all calibrated neurons is 6.27 µs, which is 3.8% off the desired target value. Similar
deviations can be also found in the host based calibration [Weis, 2020].

To ensure that this calibration method also works on other chips we repeated the
sweep shown in figure 3.15. The results can be seen in figure 3.17. It shows that
for a range from 0.1V up to 0.7V the different data points match perfectly. This
corresponds to time constants from approximately 1 µs up to 8 µs. So by determining
the desired ∆Vmem with the once determined fit of equation 3.8 can calibrate the
synaptic time constant of all setups.

Outside of this boundary the standard deviation of some setups is increased com-
pared to other setups. For example setup 73 has a large standard deviation for
voltage differences higher than 0.8V, which corresponds to a potential of 1V con-
sidering the leak of 0.2V. That is the case because the CADCs saturate differently
on different setups, especially with the host-based calibration [Weis, 2020]. The
calibration of the CADCs presented in chapter 3.2 was developed after the data for
the sweep was acquired and the CADCs were calibrated with the routine of Weis
[2020]. So for some neurons the time constant was calibrated too high, because of
the saturation it was not able to get a higher ∆Vmem and so the time constant was
further increased in the binary search. Effects like this can be easily circumvented
by using a different debug voltage to optimize ∆Vspk and thus getting another rise
in the membrane potential matching the CADC characteristics. Therefore another
sweeps with different fits have to be executed.
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Figure 3.17: Calibrating τsyn with different ∆Vmem as target on different chips/se-
tups. Every data point marks mean and the standard deviation of all
512 neurons on the according chip. In black, the data was gathered
from chip 22 on setup 63. Data from chip 30 on setup 69 is drawn in
red, while chip 31 on setup 73 is plotted in blue. For target ∆mem in
the range of 0.1V up to 0.7V all curves match with each other. Out-
side of this boundary for some setups the standard deviation is clearly
increased compared to other setups. For lower values this is especially
the case for setup 69, while for higher values this is more the case of
setup 73.

3.5.5. Inhibitory synaptic time constant

Calibrating the inhibitory synaptic time constant could work based on the same
principle as the excitatory one. In principle one just has to determine the drop of
the membrane potential instead of the raise. As already mentioned, the leak just
can be set for some neurons to a maximum value of approximate 0.6V. This would
just allow a dynamic range of ∆Vmem up to 0.4V, for lower voltages than 0.2V the
CADC will not be able to read it. So a different approach was used to calibrate the
inhibitory τsyn with the help of the excitatory synaptic time constant.

By sending in equally-sized fake-spikes to both synaptic inputs simultaneously,
the membrane potential should rise if the excitatory synaptic time constant is longer
than the inhibitory time constant (if the gain of both OTAs is identical). That is
because the excitatory input puts more charge to the membrane. For τsyn, inh >
τsyn, exc however the membrane potential will drop. So like for the excitatory input
the rise in the membrane potential can be determined with the CADCs. A value
above zero indicates a stronger excitatory input, while a value around zero indicates
a stronger inhibitory input. So a binary search has to find the point where the the
value starts rising. Setting the target to a rise of 2LSB gives a good guess for the
inhibitory time constant, also including noise on the membrane. In this case the
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Figure 3.18: Inhibitory synaptic time constant of all neurons before (left) and after
(right) calibration on chip 22 (setup 63). Calibrating the time constant
narrows the distribution which is approximately centered around the
target value of 6 µs. Uncalibrated CapMem values are determined by
the mean of the calibrated values with noise to get a similar mean.

inhibitory input is barely able to counteract the excitatory input, thus showing both
time constants are equal.

Figure 3.18 shows calibration results for a target value of 6 µs in histograms for
all 512 neurons. Both fake spikes were generated with a debug potential of 1V.
Again the uncalibrated values are selected as a noisy mean of the calibrated Cap-
Mem values. In this case the standard deviation is about 24.0%, which is equal to
the measurement from the excitatory input, which makes sense as both circuitry are
designed identically. Also a big outlier of 13.16 µs is contained in the dataset. Cali-
brating the inhibitory time constant with the method described above the standard
deviation is brought down to 4.9% with a mean of 6.43 µs.

Compared to the excitatory synaptic time constant the standard deviation is a
little bit higher. This is expected as the whole calibration also depends on the results
of the excitatory time constant. The standard deviation for τsyn, exc was 3.4%.
Supposing that for a perfectly calibrated excitatory τsyn the standard deviation for
the inhibitory would be also 3.4%, one can calculate by error propagation an error
of 4.8% taking into account that the excitatory time constant is also not perfect.
This is exactly the standard deviation obtained by measuring. The systematic shift
of the mean could be explained by a slightly different synaptic line capacitance
Cline of the inhibitory input compared to the excitatory input. This could result
from asymmetries in the layout resulting in different parasitic capacitance, hence
influencing the amplitudes of the fake events.

The calibrated inhibitory synaptic time constant always depends on the value of
the excitatory one. This is further shown by comparing both obtained means and
standard deviations in a plot visible in figure 3.19. If the excitatory and inhibitory
time constants match, they would lie on the dashed grey line. For the whole range
we observed a good correspondence between calibrated excitatory synaptic time
constant and the according inhibitory time constant. So we can conclude that it is
possible to calibrate τsyn, inh with the help of τsyn, exc.

Figure 3.20 shows different set target values for τsyn, exc and τsyn, inh and the
resulting calibrated value. An external voltage of 1V was used for this sweep to
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Figure 3.19: The excitatory synaptic time constant was calibrated and afterwards
the inhibitory time constant was calibrated to the same target value.
Every data point is the mean of τsyn, exc and the according calibrated
τsyn, inh with the standard deviation of all 512 neurons on chip 22 (setup
63). The dashed grey line describes the point where τsyn, exc = τsyn, inh.
The mean of the inhibitory time constants is always slightly above the
grey line, so compared to its excitatory counterpart its always a little
bit longer.
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Figure 3.20: Sweep of different target values for the excitatory (left) and inhibitory
(right) synaptic time constant and the resulting calibrated value. The
mean and standard deviation of τsyn for all 512 neurons on setup 63
on chip 22 is shown. Matching target and result is marked with the
grey dashed line. An external voltage of 1V was used to generate the
fake-spikes used in the calibration. With this potential, time constants
can be calibrated from about 1 µs to 10 µs.

generate ∆Vspk. For both calibrations low standard deviations occur, thus indicating
with each step the neurons synaptic time constants are equalized. Also the calibrated
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values match closely the target values, showing that it is possible to give SI-units
and get the according value on hardware. With the used external voltage of 1V
an area from 1 µs up to 10µs can be covered. As already mentioned, for shorter
synaptic time constants a lower external potential should be used to get a better
response on the membrane with a bigger ∆Vspk, while the standard deviation for
longer time constants could be lowered by a higher external potential. Both would
make a new fit necessary.

3.6. Performance and scalability
All calibration routines presented in this chapter are able to calibrate to a certain
target value, including also the equalization of mismatch between different neurons.
The runtime of individual routines never exceeded 5 s. In the following chapter
the runtime of the individual calibration schemes are reviewed and also assessed
according to their scalability for multi-chip systems such as wafer-scale platforms.

In order to ensure a reliable readout, we started by calibrating the CADC itself.
The calibration is split into three parts taking 420ms in total. The first and second
part calibrate the CADC ramp and take approximately 204ms each including 10
iterations. In each iteration a wait of 20ms is implemented for the CapMem to
reach a stable output. These waits dominate with a total contribution of 200ms.
Reading out the CADC and the according calculations are therefore done in about
4ms. The last part calibrating the channel offsets just includes one CADC read and
subtraction executed on the vector unit, so the runtime is only about 2.3ms. Each
of these parts require individual voltages supplied by the external DAC. However,
programming and settling times do not pose a major contribution to the overall
runtime.

The presented calibration routines form a rather complex dependency tree. This
becomes especially apparent when considering the calibration of the inhibitory synap-
tic time constant, which is estimated by assuming all other parameters besides the
threshold to be known (Still other parameters needed a calibrated threshold to be
set). We hence analyzed the performance of this routine and all of its dependency.
When targeting a set of LIF parameters different to the ones used for the τsyn, inh
calibration, the respective routines have to be called separately afterwards, adding
to the total runtime of the calibration. The calibration sequence is visualized in
figure 3.21. This flowchart includes the time for individual calibration routines, all
together take about 16 s in total until τsyn, inh is calibrated. To get the other param-
eters calibrated differently, one has to go the flowchart backwards accordingly.

First of all the reset potential must be calibrated. The reset is then used in the
calibration for the membrane time constant (Calibration for long time constants
with the CADC). This calibration also needs a calibrated leak, which is recalibrated
after every iteration because the gain of the leak OTA influences the leak potential.
Afterwards the leak is again calibrated but at the same voltage as the reset poten-
tial, which is important for the remaining calibrations. Afterwards the threshold
is calibrated, together with the reset important for the calibration of the following
excitatory synaptic input OTA bias. In every iteration the according reference po-
tential is calibrated. With the calibrated bias also the synaptic time constant can
be calibrated. Afterwards also the inhibitory synaptic input can be calibrated with
the help of the excitatory one completing the LIF-neuron parameters.
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Figure 3.21: Flowchart showing the process of calibrating the inhibitory synaptic
time constant and the other necessary LIF-neuron parameters to do so.
The orange boxes are the main calibrations, while the red boxes with
rounded borders are helper calibrations which are executed in every
iteration of a main calibration. Every box also includes the runtime of
each calibration. Starting with the reset the membrane time constant
is calibrated together with the leak. By recalibrating the leak and with
a calibrated threshold the bias of the excitatory synaptic input OTA
can be calibrated together with its reference potential. Afterwards the
excitatory synaptic time constant can be calibrated followed by the
inhibitory synaptic input depending on all former calibrations.
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Calibrating the potentials is quick as one can see in the flowchart, mostly taking
about 0.3 s. The reset potential takes about 0.29 s performing a total of 14 iterations.
Taking into account that after every iteration a wait of 20ms is used for the CapMem
to get in equilibrium, 0.28 s have already passed. So the rest, getting the observable
and calculating how to set the bits, is done in only 0.01 s. A faster calibration just can
be reached by revisiting the CapMem. The same applies to the leak potential also
taking 0.29 s. A CADC read taking approximately 1.5 µs is four orders of magnitude
smaller than the wait for the CapMem, explaining these differences. The calibration
of the threshold potential takes a little longer with 0.30 s. Here the CADC is read
out for 500 times being 3.7% of one CapMem wait of 20ms. This explains the
slightly higher runtime. For the synaptic reference potentials the CADC is also read
out just once, but the runtime is 0.31 s. The higher runtime can be explained that
at the start of the calibration the leak potential as reference is read out with the
CADC. Beforehand a wait of 20ms is performed because the reference is calibrated
within the OTA’s bias calibration and a changed bias needs another wait until the
true CapMem value is reached. So waiting for the CapMem takes 0.30 s in this
calibration.

Calibrating the synaptic time constants takes a little bit longer with 0.43 s. With
14 iterations each, the wait for the CapMem is the biggest part with 0.28 s. The
remaining time is mostly for getting the observable, calculating which bit must be
set is just barely noticeable as this happens completely on the vector unit. Each
observable resulted as the mean over 5 individual measurements. To ensure that
the membrane potential is back to the leak after a former observation a generous
wait is implemented after every fake spike. This ensures that even with a large
time constant of 60 µs the leak is comfortably reached. Every observation, including
the generation of the fake spike with CADC readout and the following wait, takes
about 1ms. Only half of the neurons can be covered with one vector unit instance.
Determining the maximum in an array as explained in appendix A.3 takes 8 vector
instructions. These extra vector instructions take about 0.3 µs each. With the
CADC taking about 1.5 µs for readout this is a significant additional expense which
is missing in the time critical measurement of the maximum CADC value. So the
neurons are splitted, first the observable of the one half is determined followed by
the other half. Summing up all single iterations, the time for getting all observables
is about 10ms. Getting the observables makes up the remaining time of 0.14 s.
A neuron reset could make this generous wait redundant, pulling the membrane
back the reset potential which should be in this case equal to the resting potential.
Sending just one spike and determining the maximum read of all neurons at once
would also be possible to reduce the runtime to be around 0.30 s, but at the expense
of accuracy.

The calibration of the membrane time constant takes however 4.39 s. This is a
nested binary search with a leak potential calibration in every iteration step. So
4.06 s are used for recalibrating the leak potentials. With 14 iterations also 20ms
for the CapMem ramp have to be taken into account taking another 0.28 s. The
remaining 0.05 s are made up of calculating offsets and reading out the membrane
potential with the CADC, taking approximately the time of the desired time con-
stant. This could slightly change for different target values, but in comparison to the
remaining runtime this would not be a significant change. In the flowchart also the
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Figure 3.22: Dependency of the different OTA bias settings and the resulting cali-
brated input voltage in LSB. On the top left different leak bias settings
are set (with noise) and the leak was calibrated. Four different neurons
are shown with different dependencies. On the top right the difference
of the maximum and minimum calibrated leak setting is put in an his-
togram for all 512 neurons. The same is done on the bottom. Here on
the left the difference of the maximum and minimum calibrated refer-
ence potential of the excitatory input OTA is shown, while on the right
the inhibitory input is visible. Data was taken on chip 22 on setup 63.

search for the division bit was not taken into account, because a long time constant
was used for the further calibrations with division always enabled. Calibrating other
desired membrane time constants the division bit search has to be done adding an-
other 20ms CapMem wait. For the calibration of short time constants via spikerates
a similar runtime is expected. Due to a longer observation interval it should take a
little bit longer, but not significantly longer.

The calibration of the OTA bias takes 4.66 s for the excitatory and 4.77 s for the
inhibitory input. In both calibrations the reference potential is recalibrated in every
iteration step. With 14 iterations each this are 4.34 s only used for the calibration of
the reference potential. Additionally, the wait for the CapMem ramp has also taken
into account with another 0.28 s. For the excitatory input only 0.04 s are therefore
left used for getting the observables and calculation. The inhibitory bias calibration
takes a little bit longer. Here beforehand another CapMem wait is performed because
the baseline is determined with the CADC.

A big influence on the runtime has the recalibration of leak and reference poten-
tials. So it was further investigated whether a complete recalibration is necessary.
In figure 3.22 on the top left one can see the dependency of different leak OTA bias
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settings and the resulting calibrated leak potential in LSB for four different neurons.
For some neurons, the leak settings barely change as it is the case for the black curve.
Other neurons need higher leak settings with an higher OTA bias, like it is the case
for the red line or the other way around, like it is the case for the blue line. The
green line shows a saturation effect. For some neurons with an bias of 1000LSB the
desired leak potential is due to the source follower and the saturated CapMem ramp
not reachable. Thus the leak is set to its maximum value by the binary search.

Visualizing this for all neurons has been done in the histogram on the top right.
The maximum difference of the calibrated leak potential values in LSB for sweep-
ing the leak OTA settings from 50LSB to 1000LSB is visible. One can see that
most neurons only differ by 100LSB for the whole range. Some however have de-
viations above 400LSB, which are all saturated like the green curve on the left
explaining these big differences. In all of these cases the true leak potential is the
same for 850LSB and 1000LSB, so it would not matter if the 1000LSB are not
reached. Dauer [2020] already showed that the leak potential is saturated for values
of 850LSB. The result shows that a 9-bit sweep, covering a range of 511LSB, is
enough to cover the whole range comfortably. So based on a calibration of Vleak at
the start of the τmem calibration, a normal binary search with less iterations should
be enough for recalibrating the former in every iteration of the latter. A noisy bi-
nary search would not be necessary as the already calibrated leak values still differ
from each other, so instead of 14 iterations in every recalibration just 9 iterations
are needed reducing the runtime significantly.

It is also not always necessary to execute a noisy binary search for the whole 10-
bit τmem parameter space, as one could use the global mean of all chips as starting
point and just do 8 iterations, which also covers all desired target values. Of course
the 4-bit sweep at the end remains. The starting point of a desired target value still
has to be determined beforehand with several sweeps. So 12 iterations compared
to 14 iterations on cost of the flexibility could be done. Another positive aspect
is that in this case the Vleak calibration also needs less sweeps because it does not
have to cover the whole range of the leak bias OTA. With a reduced τmem range, a
7-bit sweep could be sufficient for recalibrating, so reducing the runtime by a half
should be possible. In this case however, one also has to pay attention with the
division/multiplication mode.

The two plots at the bottom show how the maximum and minimum value differ if
the synaptic input bias current is sweeped for the whole range, with the excitatory on
the left and the inhibitory on the right. The results are comparable to the leak OTA.
So the same optimizations as with the leak OTA can be done here. With a reference
potential calibrated at the start of the bias current calibration, for recalibration a
7-bit sweep should be enough for all neurons. So for all three OTA bias calibrations
the runtime could be approximately halved by this method.

Another possibility is to reduce the 20ms wait time for the CapMem ramp, be-
cause this time almost alone determines the entire runtime. Of course if the value
is initially set from an unknown value before, these 20ms are important to ensure a
stable voltage or current. Otherwise the most significant bit could be set incorrectly
making the remaining calibration unusable. But coming closer to the least signif-
icant bit, each CapMem cell reaches its equilibrium faster. In this case the 20ms
could be lowered. So using a wait time depending on the previous state can reduce
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the runtime significantly. At every start of a calibration a wait time of 20ms could
be used, but with every bit further set the wait can be reduced by 1ms. Also for the
4-bit binary search at the end of the noisy search just small waits around 10ms can
be used because the CapMem voltages or currents do not change that much with
such small settings. Using this could reduce the runtime of all CapMem based cali-
brations. As the settings of the CapMem approximate the true value exponentially,
this has to be further investigated if it makes routines more inaccurate. If that is the
case, one has to discuss if the faster runtime excuses slight calibration deviations.

Using both optimizations as presented, the runtime for the whole LIF calibration
could be brought down to less than 15 s for the whole chip. These 15 s include
also the recalibration of the membrane time constant and the different potentials.
Desired values for these parameters often vary from the value needed for the synaptic
time constant calibration. So this recalibration always has to be considered.

This runtime will be also the same for multi-chip systems including many HICANN-
X chips, as every HICANN-X calibrates itself as the amount of PPUs also scales
with the amount of chips. Compared to the calibration of one wafer on BrainScaleS-
1, taking 768 hours or 32 days [Schmidt, 2014], a runtime of 15 s for a potential
BrainScaleS-2 wafer is a big improvement. The calibration is still very flexible and
every neuron can be calibrated with individual parameters, because the target is
given as an array. Such calibration speeds would also make calibration frameworks
and databases obsolete, as they were used on BrainScaleS-1 [Müller et al., 2020],
because for every experiment just a fast recalibration could be done.

3.7. Further calibration algorithms
The current calibration framework makes it possible to calibrate the whole biological
parameters of the LIF neuron on the PPU as well as the CADC. Still other cali-
bratable parameters exist on the chip, which were not presented in this thesis. On
the biological side, also the adaptive exponential integrate and fire model (AdEx)
extension to the LIF neuron need calibration. The possibility to do this was al-
ready investigated by Dauer [2020]. Also different multicompartment parameters
have to be calibrated if one wants to use these features. The different potentials
in this model can be read out with the CADC marking a potential observable for
calibration algorithms.

It was also already shown that the synapse drivers can be calibrated with the
PPU on DLSv3 [Leibfried, 2018] to use short term plasticity. Also calibrating the
neuron more technically, that incoming spikes are integrated on the membrane, like
it is done in the hagen mode [Weis, 2020], should be possible. Some experiments
also need different technical calibrations. Getting a target output spikerate with a
certain input rate, or depending on synaptic weights is an important calibration for
the insects experiment in chapter 4. These calibrations also were done on the PPU
and can be found experiment related in section 4.4. Other experiments could also
benefit from such calibrations and it is shown that it is possible to do so on the
PPU.
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4. Insects: Accelerated emulation on hardware
The simulation of large areas of the brain is one of the main reasons for the devel-
opment of neuromorphic hardware. As mentioned in section 2, the human brain has
100 billion neurons and its computational complexity far exceeds the computational
capabilities of contemporary hardware. Insect brains however are much smaller, the
brain of the honeybee for example contains about one million neurons with a vol-
ume of approximately 1mm3 [Menzel and Giurfa, 2001]. Nevertheless, the cognitive
abilities of insects are remarkable and manifold.

For example, it was shown that paper wasps of the species Polistes fuscatus are
able to recognize the faces of other individuals [Chittka and Dyer, 2012]. This
allows for building a social hierarchy through a series of one-on-one fights, afterwards
individuals recognize their opponents avoiding the repetition of potentially costly
battles. Other experiments showed that insects are even able to acquire complex
behavior. Loukola et al. [2017] trained bumblebees to transport a small ball to
a defined location to gain reward. This was not achieved by trial and error, but
mostly by observing other bees which already acquired the skill. Even numerical
competence is possible with the seemingly simple nervous system. Howard et al.
[2019] showed that trained honeybees in a Y-maze are able to add or subtract one
element of the sample stimulus. With yellow color they had to choose the way
with one stimulus subtracted, while a blue color indicated an addition of one to the
sample stimulus.

New measurement techniques even allow more insights to neural processes. For ex-
ample it was made possible to map and reconstruct the whole synaptic connectivity
of fruit flys of the species Drosophila melanogaster via electron microscopy [Zheng
et al., 2018]. Based on such studies, different areas of insect brains can be further
studied. One example is a neural model, which is able to reproduce the path of a bee
returning to its nest after searching for food [Stone et al., 2017]. Such small models
can now be implemented on neuromorphic hardware for further investigation.

This model was already implemented by Schreiber [2021] on the older chip version
HICANN-DLSv2. The whole environment and the body was simulated on the PPU,
while the neural model was implemented on the analog core. Sensor and motor
complexes were implemented on the PPU connecting to the physical neuromorphic
network. For this purpose we developed an experiment-specific calibration scheme
and the network was implemented on HICANN-X using its new features like the
background spike generators.

4.1. Path integration

In times past, sailors had to navigate without GPS. To avoid getting lost on the
ocean without landscape features, a way had to be found to determine the position.
Estimating the position relative to a departure point by keeping track of the distance
covered and direction of travel is called dead reckoning [Rogne et al., 2016]. Inertial
navigation systems in ships use this mechanism to determine their location relying
on compass information paired with speed measurement or acceleration data. De-
viations in these data is summed up over time, thus exact measurements and data
interpretations are necessary.

It was shown that different insect species are able to navigate based on the same
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principle, referred to as path integration [Heinze et al., 2018]. Different ways have
been evolved in different species to gather compass information. Some species de-
veloped the “human way” of getting compass information, using the magnetic field
of the earth [Riveros and Srygley, 2008]. But also the polarized skylight [Schwarz
et al., 2011], the position of the sun [Wehner, 1984] or even the moon [Dacke et al.,
2004] are used in other species gathering the required compass information.

Outbound
Inbound

Food
Nest 10m

Figure 4.1: The foraging journey of the desert ant Cataglyphis fortis using path inte-
gration. Searching for food, it is travelling 354.50m (blue path) starting
from its nest. After food is found it directly returns home (orange path)
travelling 113.20m. Image taken and modified from Heinze et al. [2018].

An example for the foraging journey of insects is given in figure 4.1. The journey
was observed from the ant Cataglyphis fortis living in the Saharan desert, an almost
featureless environment. For path integration it uses its internal compass and the
travelled distance is determined by a pedometer [Ronacher, 2020], so it counts its
steps. This was impressively revealed by lengthening (attaching stilts) or shortening
the legs [Wittlinger et al., 2006]. With longer legs the ant walked in the correct
direction, but overestimated the distance by walking past its nest. Smaller stepsizes
however made the ant to expect the nest entry too early on its home trajectory, but
still walked in the right direction.

While land-bound species are able to use pedometry, flying insects are not able
to gather step information. Their speed measurement is mostly derived from visual
cues [Srinivasan et al., 2000]. The exact mechanism transporting the raw optical
input information inside the brain is still a topic of ongoing research [Yakubowski
et al., 2016]. In honeybees, however, neurons can be found that provide information
about the optical flow [Stone et al., 2017].

4.2. Neural model

Path integration in the brain of insects is done in an area called central complex
[Le Moël et al., 2019] located in the very center of the brain. This region is highly
conserved among various insect species doing path integration, like in locusts [Heinze
and Homberg, 2007] and butterflies [Heinze and Reppert, 2011]. Fossils suggest that
this brain region already was contained in arthropods 520 million years ago [Ma
et al., 2012], thus showing it evolved for many species. It is further composed
of 4 neuropilar substructures, the protocerebral bridge, the fan-shaped body, the
ellipsoid body and the paired noduli [Popov et al., 2003]. Figure 4.2 shows an 3D
reconstruction of the central complex of a female Megalopta genalis bee.
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Protocerebral bridge

Fan-shaped body

Noduli Ellipsoid body

Figure 4.2: Reconstruction of the central complex of a female Megalopta genalis with
its four parts, the protocerebral bridge, the fan-shaped body, the ellipsoid
body and the paired noduli. Image taken from insectbraindb.org, based
on data from Stone et al. [2017], with added labels.

Stone et al. [2017] proposed a complete physiological model able to reproduce the
biological path integration phenomena for the sweat bee Megalopta genalis. This
section should give a rough overview on the basic principle of the model, especially
the important parts which are necessary to understand the neuromorphic imple-
mentation. The reference for this section is therefore Stone et al. [2017] and is not
referencing at each point individually.

Providing input to the two noduli, the tangential noduli (TN) neurons are re-
sponsible for the optical flow information. Two of them are necessary to encode the
speed measurement serving as an odometer, one for each side (left and right). As
already mentioned, how the raw optical information influences the TN neurons is
still an unknown mechanism.

Performing path integration also needs information about the current head direc-
tion, which is provided by a compass network subdivided into three stages. So-called
tangential lower division of the central body (TL) neurons collect orientational in-
formation outside of the central complex. The central body lower in this case is
referred to the ellipsoid body. TL neurons project their orientational input to the
columnar lower division of the central body, type 1 (CL1) neurons. As visible in
figure 4.2, the ellipsoid body does not have a separation into two hemispheres. It
appears that spatial information merges from different sides of the brain outside of
the central complex. Last but not least, the CL1 neurons project to the inhibitory
tangential protocerebral bridge, type 1 (TB1) neurons. These are located in the
protocerebral bridge and are well separated in both hemispheres and each compart-
ment represents a specific heading direction. Both halves of the protocerebral bridge
reflects the compass information from CL1 neurons.

Compass information from the TB1 neurons and optical flow information from the
TN neurons are projected into the columnar protocerebral bridge/upper division of
the central body, type 4 (CPU4) neurons that stretch through the entire central
complex. With both important informations available for path integration, it is
assumed that the CPU4 neurons encode the information about the nest position.
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Figure 4.3: Simplified visualization of the path integration network. Black lines de-
note excitatory, blue lines denote inhibitory synaptic connections. Each
circle, besides the TN neurons, describes a subpopulation of 8 neurons
each. Every population is assigned to a different compass direction sep-
arated by 45◦ (except for the CPU1 neurons). The connections visible
always connect populations with the same orientation. This is not the
case for the CPU4 to CPU1 connections with a shift of 45% clockwise
or counterclockwise, depending on the hemisphere and the connection
of pontine to CPU1 with a shift of 180%. Different colors indicate the
different tasks of the populations.

Located in the fan-shaped body, the columnar protocerebral bridge/upper division
of the central body, type 1 (CPU1) neurons receive input from CPU4 neurons and
also collect compass information from the TB1 neurons. Their information converges
into brain regions responsible for premotoric control. The summed activity of the
CPU1 neurons in each hemisphere is therefore taken as steering signal.

Figure 4.3 shows the network with reduced complexity with an abstract represen-
tation of the model. It has to be mentioned that the TL, CL1, TB1, CPU4 and
pontine populations are split into eight subpopulations which are assigned to unique
directions. Also the CPU1 population is split into eight subpopulations, which are
not directly assigned to a certain compass direction because for the steering direc-
tion just the hemisphere matters. The TN neurons are only split into left and right
hemisphere as they deliver odometric information.

Starting from the compass information, the 16 TL cells (eight per hemisphere)
inhibit on CL1 neurons of the same compass direction. The compass direction is
preserved for the connection between CL1 and TB1, with the latter receiving two
inputs per subpopulation. Since the information of the TB1 is the same for the
two protocerebral bridge compartments, the effective vector information is like one
population of TB1 neurons as shown in the figure.

The TB1 neurons now inhibit the lateral CPU4 and CPU1 populations with the
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compass direction of each neuron is kept. Each subpopulation of the CPU4 neurons
receives further input from the TN neurons, which is the same for all in each hemi-
sphere. Excitatory output of the CPU4 population now goes to the pontine neurons
with preserved compass direction, while the connection to the CPU1 population is
slightly different. The connection of the neurons is cyclically permuted by one angu-
lar resolution (45%), clockwise, or counterclockwise, depending on the hemisphere.
This enables the comparison (in the CPU1 neurons) of the stored nest direction (in
the CPU4 neurons) to the current head direction.

This can be illustrated with an example. If the head direction is off by one
angular resolution from the target, on one hemisphere the inhibitory TB1 signals will
cancel out the stronger activation from the CPU4 neurons. In the same directional
population on the other hemisphere, the activation from the CPU4 population is
however not canceled out by the TB1 signals, resulting in a higher CPU1 activity
compared to the other hemisphere. Thus the summed up activity of the whole CPU1
population marks a steering signal for returning home. The whole system is further
stabilized by the inhibitory connections of the pontine neurons to the CPU1 neurons,
at which the compass direction is rotated by 180◦.

To simulate the described network, different assumptions have to be made and
put into formulas. First of all, a simple firing rate model was used for each neuron
by Stone et al. [2017]. Thus, the output firing rate rj of neuron j is described as a
sigmoid function

rj =
1(

1 + e−(a·Ij−b)
) . (4.1)

This rate is dimensionless and can only take values between 0 and 1. The synaptic
input Ij is the weighted sum of all neurons i acting on neuron j

Ij =
∑
i

wij · ri. (4.2)

Here wij describes the synaptic weight connecting neuron i with neuron j. These
weights only take values of 0 (no connection), 1 (excitatory) and −1 (inhibitory).
The parameters a and b are individually tuned for every neuron population. Equa-
tion 4.1 is universal for all neurons in the model, while the input Ij is different for
the TN, TL and CPU4 neurons. For this reason, these will now be described in
more detail.

The physical state of the insect has five degrees of freedom, the head orientation
φ, the position ~x and the velocity ~v, with ~x and ~v being two-dimensional vectors. It
makes sense to switch to polar coordinates for the velocity, thus depending on the
direction of movement Θ and the absolute velocity v

~v = v ·
(

cos (Θ)
sin (Θ)

)
. (4.3)

The difference of φ and Θ is visualized in figure 4.4. It shows the difference between
head direction and direction of movement. Both angles can be different because of
effects like wind and thus have to be considered differently in the model.

According to Schreiber [2021], the internal states of the TN cells given in Stone
et al. [2017] had some minor mistake in the written equations. Thus, the internal
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Figure 4.4: Visualization of the insect coordinates. The travelled distance of the
insect from time t to t+1 is equal to the velocity vector ~v, with Θ being
the direction of flight. The angles φ(t) and φ(t+1) describe the head
direction of the current and the following time step, with their difference
∆φ. The head direction is not necessary equal to the direction of flight.

states were derived by Schreiber [2021] as

ITN,L/R = ±v · sin (Θ− φ± φTN)∓ ρ · φ̇. (4.4)

In this case, φTN can be called sensitivity angle of the TN neurons. Depending
on this angle, the direction is determined which evokes the biggest response in the
TN neurons. Flying orthogonally to this direction, the response however would be
minimal. For the model φTN = π/2 was used, thus delivering

ITN,L/R = v · cos (Θ− φ)∓ ρ · φ̇. (4.5)

Here, ρ is a constant and proportional to the distance between the two eyes and the
change of the head direction is described by φ̇.

As already mentioned, also the TL compass neurons implement their own internal
state. With a population of eight neurons, which are separated by π/4 in angular
representation, their output activity encodes the head orientation (neurons indexed
by j = {0, ..., 7}):

ITL,L/R,j = sin
(
φ+

j · π
4

)
. (4.6)

The according output rate can be determined with equation 4.1 passed to the TB1
neurons. As already mentioned, each subpopulation receives input from two CL1
neurons. However, the TB1 neurons also inhibit their own neighbors, thus the
internal state is given by

ITB1,j =
2

3
· r(t+1)

CL1,j +
1

3
·

7∑
i=0

wij · r(t)TB1,i. (4.7)

The inhibitory connections to other cells in the same population functionally imple-
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ments a ring-attractor network. There is no self inhibition, so wij = 0 for i = j. The
weights between other subpopulations are determined by their represented direction.
For opposite neurons the inhibition is maximal with wij = −1 for i = (j + 4)%4.
This causes weakly activated cells to become even weaker, resulting in highly active
cells to be even more active due to more inactive inputs.

For the CPU4 integrator neurons the state is given by

I
(t+1)
CPU4,L/R,i = I

(t)
CPU4,L/R,i + h ·

(
r
(t+1)
TN,L/R − r

(t+1)
TB1,i − k

)
. (4.8)

So the CPU4 neurons receive input from TB1 and TN neurons and also depend on
their own previous state. The constants h and k define the coupling strength and
the damping.

The output frequency of the CPU1 neurons can be calculated with equation 4.1,
with the internal state given by equation 4.2. Their influence on the motoric output
is however calculated from the sum of each hemispherical population:

∆φ = µ ·

(∑
i

rCPU1,R,i −
∑
i

rCPU1,L,i

)
. (4.9)

So the change in the head direction is determined by the difference of the summed
activities in each half. The parameter µ is a heuristically chosen scaling constant.

4.3. Hardware model

As already mentioned, the experiment was already implemented on HICANN-DLSv2
by Schreiber [2021]. Therefore, the whole network size was reduced to fit on the
previous prototype with only 32 neurons available. Also some simplifications were
made and the neurons had to be calibrated for being usable. With the calibration
being one of the most challenging tasks, the goal was to develop a flexible calibration
that the experiment can be easily deployed on different chips without human fine
tuning. This was not the case on the former implementation. So based on the
work of Schreiber [2021], the network, which will be presented in the following, was
reimplemented on HICANN-X also using some of its new features.

Within the model of Stone et al. [2017] spikerates were used to model the neuron
dynamics. Thus, using LIF based neurons and connecting them with each other
is a plausible approach to implement the model. The LIF firing rates must first
be normalized to the interval of zero to one because spikes are just discrete values.
With the amount of spikes occurring in a certain time interval, the spikerate can
be determined. This spikerate depends on the inputs and furthermore the LIF
parameters, such as the gain of the synaptic input OTA. With a minimum rate
of zero spikes, the lowest possible spikerate is naturally given. For the maximum
rate Schreiber [2021] used a rate of rmax = 100 kHz. This was motivated by the
observation of rates of 150Hz in Megalopta genalis Stone et al. [2017] in biology,
thus with a speedup factor of approximately 1000, a hardware rate of 100 kHz is
plausible. Of course also a different rate can be chosen for normalization.

The network implemented on the hardware is visualized in figure 4.5. First of
all, the TL and CL1 populations for the compass direction are completely left out
and only TB1 neurons with four neurons per population instead of eight are used.
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Figure 4.5: Hardware network implemented on HICANN-X. The TB1 and TN pop-
ulation are marking the input of the network and are fully virtually sim-
ulated. Acting on CPU4 and CPU1 populations, which are implemented
on the analog core, the output signals of the CPU1 neurons are added on
separate motor neurons responsible for the steering signal. Each popu-
lation just contains four neurons instead of eight. Black arrows describe
excitatory, blue arrows inhibitory synaptic connections.

This does not represent a problem, because the whole compass information is also
contained in the TB1 population. They are not implemented as hardware neurons on
the analog core, instead the compass signals are generated by the background spike
generators introduced on HICANN-X. The rate output on hardware can therefore
be calculated with

rTB1,j =
rmax
2

·
(
1 + sin

(
φ+

j · π
2

))
, (4.10)

which is in line with equation 4.6. The four neurons are indexed with j = {0, ..., 3}.
With eight spike sources in total even the full model using eight directions could be
implemented.

In the model on hardware it was further assumed that the head direction is always
identical with the direction of flight, i.e. φ = Θ. Thus from equation 4.5 follows

rTN,L/R = rmax ·
(

v

vmax
∓ ρ · φ̇

)
, (4.11)

with ρ = 0.614 set for the hardware experiment. Also the velocity was assumed to
be constant for the whole experimental run, specifically v/vmax = 0.5 was used.
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Implementing the CPU4 dynamics given by equation 4.8 is more challenging. It
shows that each state also depends on its previous state, thus the path integration
time constants are in the order of seconds, or minutes in the biological time domain.
On HICANN-X the neurons can be configured for time constants in the range of up
to approximately 100 µs. This is, however, not sufficient to implement the required
integration dynamics. For this reason an extraneural mechanism is considered, which
operates on the synapses. These store according to their weight the home vector.
So it is desired to have a wide weight-range, not given by a synaptic weight of 63
at maximum. If the precision should be high, then the maximal accessible spatial
range is low for such a low dynamic weight range and vice versa. Therefore 16
synapses were merged together per CPU4 neuron to a “supersynapse”. This allows
roughly a 10-bit integer range from 0 to 1008 = 16 · 63 for the weights. Based on
equation 4.8, the weights wCPU4,L/R,i are updated according to the rates of the TB1
and TN neurons with

w
(t+1)
CPU4,L/R,i = w

(t)
CPU4,L/R,i +

h

rmax
·
(
r
(t+1)
TN,L/R − r

(t+1)
TB1,i − k

)
. (4.12)

These weights have to be transformed into spikes, by means of a constant background
source activating the supersynapses with a rate of 100 kHz. With a weight of 1008
the output rate should be 100 kHz, for a weight of 0 of course also the output rate
should be 0 kHz with a linear behavior between these weights. The calibration is
further described in section 4.4.1. With this implementation the connections to the
CPU4 neurons in figure 4.5 excite or inhibit the neurons just by weight changes.
Integration starts with a weight of 504 being in the middle of the weight range with
an approximate output frequency of 50 kHz.

In the model of Stone et al. [2017] the excitatory connection between CPU4 and
CPU1 is shifted by the neighboring compass direction clockwise or counterclockwise,
respectively. This shift is not implemented in the hardware model. Instead the
inhibitory TB1 connection is shifted to get the same effect. At the end it does not
matter which connection is shifted, because the CPU1 neurons are not assigned to a
specific compass direction and all rates on one hemisphere are summed up at the end.
Without the restriction of Dale’s principle [Strata and Harvey, 1999] on hardware,
describing that the synaptic connections of a neuron to other cells performs the
same chemical action, the pontine neurons could be left out. They just had the
same output rate as input rate, but inhibited on the CPU1 neurons shifted by 180◦.
Therefore the inhibitory connection from CPU4 to CPU1 is shifted by 180◦.

For the CPU1 neurons one should use a sigmoid function as given by equation 4.1.
This is however not easily implementable on the hardware, so Schreiber [2021] used
another target response:

rout = rexc ·
(
1− c · rinh

rmax

)
. (4.13)

With a factor c = 0.5 the output rate would be 50 kHz when both inputs fire with
100 kHz. The output rate also increases linearly with the excitatory rate for a fixed
inhibitory input and vice versa. Most crucial is the response at the operating point
in the middle of the sigmoid function at x = 0. In this area the sigmoid function can
be approximated to be linear and with the summed activities on the left and right
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subpopulations, so being not sigmoid should not effect the network’s behavior. The
calibration algorithm is further described in section 4.4.2.

Last but not least, the motor neurons have to be considered. Receiving excitatory
input from all CPU1 neurons of the same hemisphere, they are responsible for the
summation of the individual CPU1 rates. So the steering signals is calculated from
the output rates of the two motor neurons as

∆φ = ∆Θ =
µ

rmax
· (rM,L − rM,R) , (4.14)

with the parameter µ = 0.982. Without inhibitory input signals the same calibration
as for the CPU1 neurons can be used, because a linear dependency on the input rate
can also be used to sum these up.

4.4. Calibration

We developed special calibration routines for the neurons involved in the insect ex-
periment based on the calibration algorithms presented in chapter 3. To do so, the
gain of the synaptic input OTA and the synaptic time constant were fine tuned
after an initial calibration of the LIF parameters. The aim was to replicate the neu-
ron responses specified in the model presented above. Furthermore, the calibration
should be flexible and run without human influence on different chips. From now on
the calibration of CPU4 neurons is referred to as a weight-rate calibration, because
the output rate depends on weights: rate (weight). The same applies for the CPU1
calibration being called rate-rate calibration with the output rate depending on dif-
ferent input rates: rate (rate). Each neuron involved in the experiment is calibrated
individually instead of all neurons at once. This is done due to a bug found in the
synapses, the spike’s amplitudes differ if signals are send to only one or all neurons.
A detailed description of the problem is given in appendix A.5.

4.4.1. Integrating neurons

To get an output rate depending on the weight, the synapses of the weight-rate neu-
rons are activated with a rate of 100 kHz. With currently only 4 of the 8 background
spike sources active, one of the remaining sources could be used for this. However,
since the full model would require 8 compass directions, it would use all background
spike sources. Equation 4.10 shows that the rates of opposing compass direction
neurons always sum up to 100 kHz. Therefore, two opposing compass directions can
be used to generate the input of the CPU4 neurons. These two spike sources are also
connected to different CPU1 neurons. So they have to be distinguishable and cannot
fire to the same synapse to excite the CPU4 neurons. As a result, two synapses are
configured with an equal weight, each receiving spikes from a single spike source.
With this method 32 synapses per neuron have to be allocated instead of 16.

Before the precise calibration procedure starts, the LIF parameters of all neurons
are calibrated with the routines presented in chapter 3. The neuron properties in

48



0 200 400 600 800 1000

wCPU4 [LSB]

0

20

40

60

80

100
r o

ut
[k
H
z]

Figure 4.6: Weight-rate calibration of 8 neurons in quadrant 0 on chip 22 on setup 63.
The output rate of each neuron depends on the total weight. Indicated
by the dotted line is the desired target curve. This target is closely
reached by the calibrated cuves, while for weights below 600 the output
rates are a little bit higher, a rate of 100 kHz is closely not reached with
the highest weight of 1008.

SI-units were heuristically chosen, to obtain optimal results.

Vleak = 0.50V τsyn, exc = 8 µs Cmem
gsyn, exc

= 1 µs

Vreset = 0.20V τsyn, inh = 8 µs Cmem
gsyn, inh

= 1 µs

Vthresh = 0.60V τmem = 60 µs τrefr = 0.32 µs

For the weight-rate calibration, the inhibitory input is not required as the synapses
just receive excitatory spikes. Therefore, the inhibitory input is completely disabled
for this type of neurons. Its synaptic time constant and the gain of its OTA is
still calibrated initially, because these values also serve as a basis for the rate-rate
calibration presented later.

For the calibration the excitatory time constant was dimensioned close to the
period of the input frequency of 100 kHz, which is 10 µs. This benefits the calibration
as the synaptic input line potential will be always stimulated, resulting in a constant
current onto the membrane. The resulting output frequency can afterwards be scaled
with the transconductance value of the input OTA. A output rate of 75 kHz was
targeted with a weight of 756 scaled by gsyn, exc.

Figure 4.6 shows the resulting calibration of 8 neurons in quadrant 0. These were
randomly selected and later used in the experiment. In principle every neuron can
be used for the experiment, because cherry-picking was not necessary. Also every
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neuron closely matches the target, indicated by the dotted curve. The experiment
starts with a weight of 504, at this point a rate of 50 kHz is desired as this rate
marks the equilibrium. However, the rate for all neurons is a little bit higher at his
point lying around 54 kHz.

Unfortunately the small deviations from the target behavior could not be miti-
gated. That is because the output response of LIF-neurons follow the frequency-
current (f-I) relationship [Bogaard et al., 2009], which is not described by a linear
function. A stronger leak for example (smaller Vleak or smaller τmem) will cause an
even bigger deviation. This can be explained that for a strong leak in combination
with small weights the output rate is zero, because the threshold is not reached. At
a certain weight, the output rate starts to increase more and more in this scenario.
Shifting the curve with the synaptic input bias, that at the maximum weight also
the maximum rate is reached, will result further deviations. Also a bigger refractory
time limits the output rate, thus it is set to a small value. The same effect was
observed for smaller synaptic time constants.

4.4.2. Steering neurons

In contrast to the weight-rate calibration, the CPU1 neurons do not rely on synaptic
modulation. They receive one excitatory and two inhibitory spike inputs. So again
some initial LIF parameters are chosen heuristically in SI-units.

Vleak = 0.50V τsyn, exc = 8 µs Cmem
gsyn, exc

= 1 µs

Vreset = 0.20V τsyn, inh = 8 µs Cmem
gsyn, inh

= 1 µs

Vthresh = 0.85V τmem = 60 µs τrefr = 0.8 µs

These starting values except for Vthresh and τrefr are the same as for the weight-rate
starting values. This time of course, the inhibitory input is of importance.

Analog to the weight-rate calibration routine the synaptic time constants are
dimensioned as two long values. Again this should ensure a constant current from
both synaptic OTAs to the membrane. Scaling the transconductance values to
desired output rates splits the calibration into two parts:

1. Expect an output of 100 kHz with an excitatory rate of 100 kHz and no in-
hibitory input by adjusting gsyn, exc.

2. gsyn, inh is tuned to get an output of 50 kHz with both inputs firing at the
maximum frequency of 100 kHz.

Figures 4.7 and 4.8 are showing the result of the calibration. Like for the weight-
rate calibration, the 8 neurons are randomly selected from quadrant 1. Indicated
by the dashed line, the working point with an output frequency of 50 kHz is well
defined. The individual deviations are similar for all neurons, thus the inter-neuron
deviation is less significant compared to the deviation of the target result. Higher
rates than expected appeared for a low inhibitory input. However, the input rates
of the CPU1 neurons only seldomly fall in this range. A low inhibitory input from
CPU4 neurons implies also a high excitatory input from the CPU4 compass direction
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Figure 4.7: Resulting output rate of the CPU1 neurons with different excitatory
and inhibitory input. The dashed line marks the region where a rate of
50 kHz is expected. 8 random selected neurons on quadrant 1 measured
on chip 22 on setup 63.
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Figure 4.8: Deviation of the calibrated output rate from the expected rate described
by equation 4.13. The dashed line describes the region with an expected
output rate of 50 kHz. All neurons have a similar deviation pattern, the
rate is higher for a small inhibitory rate with moderate excitatory rates
and smaller for high excitatory rates with a moderate inhibitory input.
As all neurons behave slightly similar, so the deviation from the target
is more significant. Same neurons used as in figure 4.7.

counterpart. Thus, the output would be rather in the lower right corner, resulting
in less deviations. Also the TB1 neurons inhibit the CPU1 neurons, making an
inhibitory rate of zero unlikely. In contrast to the deviations for low inhibitory input,
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lower rates than expected were observed for high excitatory input rates. With the
deviations being low, this should be also no problem. Considering that such high
rates only appear for strongly integrated CPU4 neurons, the insect should still find
back to its nest and in their equilibrium for excitatory input rates of 50 kHz, the
deviations are lower.

The same calibration is also used for the motor neurons to sum up the excitatory
rates of every CPU1 neuron per hemisphere. In this case, the inhibitory rate is
always zero and just the excitatory input rates are varied. For this setting higher
rates as expected are measured, but this should be minor, because the deviations
are similar for every neuron and in the end just the difference between the motor
neurons is of importance. The steering neurons (CPU1 and motor) also have no
influence on the stored home vector. Thus, the information of the travelled path is
just contained in the CPU4 neurons. If the steering however is inaccurate, then the
nest is still not reached, but the information about its position is kept.

4.5. Experiment

At the beginning of every experiment different parameters are transferred from the
host computer onto the PPU. First of all, a random seed is given to determine the
random walk at the beginning. Also a total runtime tstop is given. After treturn the
insect will stop its outbound journey and returns home to its nest. The parame-
ters k (CPU4 decay) and h (CPU4 update scaling) for the CPU4 weight update
(equation 4.12) are also chosen at the beginning. All parameters are integer values,
because the PPU does not provide hardware support for floating point operations.
Parameters like µ from equation 4.14 and ρ from equation 4.11 can still be given as
fractional numbers, because the angles on hardware are integers running from 0 to
1023, like it was done by Schreiber [2021]. The sine function is then implemented as
a lookup table filled with int16_t, the maximum values there represent -1 and 1,
respectively. Converting them to int32_t for multiplications and further division is
done afterwards, resulting in fractional numbers.

Besides transferring some parameters to the PPU, the host computer also config-
ures the chip and loads the calibration. The whole routing is also determined by the
host computer and the initial CPU4 weights are set to 504. Afterwards, the whole
experiment runs independently on the PPU executing the simulation and generating
the sensory input spike sources.

In the current implementation, the background spike sources continuously feed
the network with spikes and the involved neurons spike according to their input.
With the PPU, the number of spikes in a certain time interval is determined, which
gives the spikerate. The state of the network changes when the weights of the CPU4
neurons are updated according to the update rule given by equation 4.12. Currently
the whole experiment can be divided into four subcycles:

1. Extract TN and TB1 rates according to the state of the insect and update the
background spike generators. Also update position according to the velocity.

a) If the insect is on its outbound journey, perform the random walk.

b) If the insect is on its journey to the nest, update the position according
to the rates of the motor neurons.
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Figure 4.9: Trajectory of a insect with outbound and inbound paths emulated on
hardware. Starting from the nest, the outbound path (black) is deter-
mined by a random seed. The food location is marked with a X and
afterwards the insect returns home (blue). Close to the nest it starts to
loop around it. On the right the same seed was given and three different
inbound paths from three different setups are shown. The blue path was
recorded on chip 22 on setup 63, the red path on chip 30 on setup 69
and the gold path on chip 31 on setup 73.

2. Calculate the update of the CPU4 weights.

3. Update CPU4 weights and the simulation state. Also get the amount of spikes
in the spike counters for a certain interval.

4. Save insect position and neuron rates in the FPGA memory.

A total of 2000 steps are chosen for tstop, with the return starting after 500 steps.
The total runtime is mostly influenced by the length of the time interval, in which the
amount of spikes is registered. Other parts in each step just have a small contribution
to the total runtime. But also additional waits can be added to scale down the
execution time to real time. Then it would be also possible to use the network in
robotic applications with external odometer and compass inputs. That is because
the network runs continuously in the background while the update steps are done
discretely. In the original implementation from Schreiber [2021] the experiment was
executed with 1000-fold acceleration, scaling down the observation interval makes
this also possible on HICANN-X. Also the whole 2D environment, simulated with
int16_t for x and y direction, is calculated faster because of a faster PPU clock
speed of 250MHz compared to 98MHz on HICANN-DLSv2.

Figure 4.9 shows the trajectory of an insectoid agent performing path integration
on hardware. The outbound path in black, starting from the nest, is performed by
a random walk predefined by the random input seed. After treturn is reached, on
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Figure 4.10: Activity of the network, for the trajectory shown in figure 4.9. The
spike rate of each neuron and the according step is shown. The shad-
ing represents the firing rates (white for a rate of zero and black for
100 kHz as the maximum). It is clearly visible that the CPU4 neurons
integrate the already travelled path by moving away from the initial
rate of 50 kHz. On the returning journey, they again approach their
equilibrium with an output rate of 50 kHz.

hardware after 500 steps, the insect starts to get back based on the motor neuron
signals. Also about the same amount of steps are necessary afterwards to come back
close to the nest. Within a total of tstop = 2000 steps the simulation stops. As one
can see in the figure, at the end the insect loops around the nest. In biology it would
find the nest entrance based on other visual cues or scents [Butler et al., 1969]. This
is not included in the model and so it steers around the nest position.

On the right in figure 4.9, the inbound path is shown for different setups and chips
with the same outbound. Every setup had its own calibration and afterwards the
experiment was conducted. It shows that the nest is reached and looped around on
every setup. Therefore on can conclude that with the calibration, the experiment
runs on every hardware setup independent of manual human interaction.

The network activity for the trajectory on the left side in figure 4.9 of each individ-
ual neuron is visible in figure 4.10. During the outbound path, the different compass
directions are directly visible. With the path mostly facing a northern direction at
the beginning, the according TB1 neuron is expected to be highly active. When
the insect moves eastwards at the beginning of the outbound journey an increase
of activity of the third neuron is registered, therefore it marks the east direction.
According to equation 4.12, the compass signals inhibit the weights of the CPU4
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neurons. Therefore, the northern CPU4 neurons spike less and less, while the rates
for the southern CPU4 neurons increase. Unfortunately, the odometric influence of
the TN neurons on each CPU4 hemisphere can only hardly be recognized in the
visualization.

After 500 steps, the insect starts to move according to its motor signals, which are
represented by the summed CPU1 rates. It is visible that the first four neurons of all
CPU1 neurons have a smaller rate if summed up compared to the other four neurons
at this point. The latter belong to the lower hemisphere representing the population
for the steering signal to the right. Thus, the insect moves to the right according
to equation 4.9. Afterwards the path is a straight line in south-west direction, the
northern TB1 activity changed to a low rate. Also the different CPU4 neurons start
to approach to their initial rate of 50 kHz. The CPU1 sum is the same for both
hemispheres, this explains the straight path to the nest direction.

After approximately 900 steps, the closer surrounding of the nest is reached and
the insect starts to loop around it. Compass rates are always changing with the
head direction. The rates of the CPU4 neurons however now remain around 50 kHz.
According to the compass input, the rates of the steering neurons also change con-
stantly. Therefore the motor signals always correct the current path resulting in
these loops.

To perform the experiment as described above, also the parameters h and k from
equation 4.12 need to be adjusted. So these parameters were sweeped to determine
the best parameter set for a successful experiment. The result of the sweep is
illustrated in figures 4.11 and 4.12. Figure 4.11 gives a more intuitive visualization
of the sweep and the influences of the different parameters, while figure 4.12 gives a
more qualitative description.

With the CPU4 update scaling h, the sensitivity of the integrator is controlled. If
the set value is too small, a lower precision of the homing vector is to be expected.
As a result, the data points are further away from the nest, which can be seen in
figure 4.11 and also on the top right of figure 4.12. Also the radii of each individual
loops is much higher. The advantage of lower values however is that clipping does
not occur, which is a big problem for higher values of h. Clipping occurs if the
lowest or highest possible weight, respectively, is reached during the random walk.
In this case the home vector is shifted because path information is lost, so the insect
does not find back to the true location of its nest. These outliers can be seen in
figure 4.11 with trace points at the end of the box. Also the qualitative view from
figure 4.12 shows that the different trajectories differ from each other. Due to the
stronger response even for smaller changes, the standard deviation of individual
loops is smaller. The looped center however differs from the true location of the
nest after clipping.

The CPU4 update scaling k however serves as damping constant for the CPU4
weights. Positive values for k ensure that the overall CPU4 weights go down by
time, while negative values do the opposite according to equation 4.12. Figure 4.11
suggests that for positive values of k the individual loops are bigger compared to
the negative values. In figure 4.12 on the bottom right, this observation can be
confirmed. This could be due to an overall smaller output rate of the CPU4 neurons
with smaller weights by time. The CPU1 neurons have therefore a smaller excitatory
input, thus the steering signals are also smaller resulting in bigger loops. Higher
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Figure 4.11: Sweep of h and k and their resulting influence on the network perfor-
mance. Data is based on 100 independent experiments for each param-
eter set with different starting seeds. In each square only the looping
phase for t > tstop/2 is considered in the histogram, with the middle as
nest. From the nest, each direction spreads by 6000 (simulation units).
The number of samples is encoded by the color from bright to dark.

excitatory input, corresponding to negative values of k, seem to benefit the individual
looping radii.

Looking at figure 4.11, a value of k = −2 or k = −4 combined with a value of
h = 0.034 seems to be the best choice. All trajectories seem to be located around the
center with no outliers with these combinations. Also the individual looping radii
seem to be small. This estimation is confirmed by figure 4.12. The mean distance
from the origin and also the standard deviation across different loops is smallest for
h = 0.034 and k = −4. Also like shown on the bottom right each individual loop
has a small standard deviation, thus finding the true location of the nest is done
best with this parameter set.

With this parameter set also the trajectories from figure 4.9 were recorded. It
was also used for figure 4.13, showing the outbound and inbound trajectories for 30
different experiments.
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Figure 4.12: Sweep of h and k and their resulting influence on the network perfor-
mance. Data is based on 100 independent experiments for each pa-
rameter set with different starting seeds. Only the looping phase for
t > tstop/2 is considered. In the top left plot, the distance of the mean
from the nest is visible. The plot on the top right shows the mean
distance from the nest of all curve points. Higher values indicate that
there are points which are far away from the nest. On the bottom left
the standard deviation of the looping radii for all data points is plotted.
This indicates whether the insect returns to the same point repeatedly,
or if it scatters. Last but not least, the plot on the bottom right shows
the standard deviation of each single looping radii. Small values indi-
cate tight individual loops. The units correspond to the simulation unit
on the hardware.
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Figure 4.13: Outbound and inbound trajectories of 30 different experiments with
different seed. All return trajectories are looping around the nest. Data
taken from chip 22 on setup 63.
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5. Discussion and Outlook

In this thesis we presented calibration routines fully relying on BrainScaleS-2’s em-
bedded processor (PPU). For this purpose we only accessed observables available to
the PPUs, including spike rates via the spike counters and voltages via the CADCs.
Utilizing the developed calibration routines, we ported a closed-loop experiment to
the latest generation of BrainScaleS-2 chips. In particular, we emulated an agent
steered by a neural, insect-inspired path integration circuit on its return from for-
aging trips.

Calibrating the CADCs, the standard deviation between the individual channels
was brought down below 1LSB, which corresponds to 4.5mV. The whole routine
could be executed within 0.5 s. After calibration the CADCs were used to in turn
calibrate the different potentials parameterizing the LIF neuron model. It was pos-
sible to reduce the individual mismatch across the neurons of an ASIC. Exemplary
for the threshold, the standard deviation was brought to about 2% of the mean
value. Also different target values in SI-units can be selected, the threshold is then
adjusted to be within 5% of the target. For each voltage parameter, the calibration
takes approximately 0.3 s for the whole chip.

Other technical parameters and the remaining LIF-parameters, including the
membrane time constant and the two synaptic time constants, were also calibrated.
Different approaches were discussed to estimate these quantities from the limited
observables available to the PPU. The results were verified with host-based meth-
ods. Calibrating the membrane time constant took approximately 4.5 s and yielded
a standard deviation of 2%. Different target values can be flexible reached, the fact
that only minor systematic deviations could be observed validated our approach.
Taking about 0.5 s, the calibration for the synaptic time constants can reduce the
individual mismatch between neurons to below 5%. With an accuracy of about
7%, different target values can be flexibly reached. Since these calibration routines
depend on previously calibrated quantities inaccuracies from error-propagation are
expected.

For the closed-loop experiment, we further developed model-specific calibration
routines to tune the neurons towards a desired high-level behaviour. The model of
insect path integration made it possible for an insectoid agent to return to its nest
after a flyout phase simulated by a random walk. This closed-loop experiment was
completely implemented on-chip, the network of neurons was emulated by the analog
core, while simulating the surrounding and trace of the bee was implemented on the
PPU. Our calibration algorithms allowed to replicate the experiment on multiple
chips and experimental setups.

Currently the whole parameter set of the LIF-neuron can be calibrated to specific
target values in less than 30 s. Different methods and optimizations were discussed
to even further reduce the total runtime. The presented algorithms can also be used
to calibrate multiple HICANN-X chips in parallel. Since the number of PPUs scale
with the chip count, this will be able without increasing the overall runtime.

Currently the implemented model for path integration is restricted to four neurons
per population and some simplifications were made in the compass signal generation.
The insect experiment was originally designed for HICANN-DLSv2 which only of-
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fered a limited number of neurons, on HICANN-X these restrictions no longer apply.
So the original model with eight neurons per population and an extended emula-
tion of the compass directions by including also TL and CL populations could be
investigated. Additional components of the original model, e.g. wind, could in the
future also be included. Further extensions such as obstacles avoidance could then
also be investigated. Since the model can be slowed down to operate at real time,
the model could be used to steer a physical robot by incorporating observables from
its actual surroundings.

During the implementation of the calibration routines and execution of the insect
experiment some shortcomings of the current hardware implementation became ap-
parent and led to first changes for later revisions. Their improvements could facilitate
calibration and experiments in the future. An increased range for the leak potential
is already under consideration. In addition, a switch to fully disable the leak term
was inserted.

Furthermore, an extension of the synaptic array’s memory control could allow
accessing neuronal spike counters and configuration as well as the CapMem cells via
the vector unit. Currently data from the vector unit has to be transmitted to the
general purpose part of the PPU in order to adjust or read these parameters. In
addition an extended instruction set with unsigned and signed operations would be
desirable.
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A. Appendix
A.1. Assembly for binary add function
Adding different bits in the binary search is done on the vector unit. The code
can be found below using four different vector registers. Firstly, the var register
stores the currently used CapMem value. Which bit is set is determined by the bit
register. The max register marks the maximum value which should not be exceeded.
Last but not least, a help register is used to temporarily store some calculations.
In this case just the halfword algorithms are described for int16_t. The same also
works for byte operations, but the instructions have slightly different names.

1 ”fxvaddhm %[var ] , %[var ] , %[ b i t ] , 0\n”
2 ” fxvsubhm %[ help ] , %[var ] , %[max ] , 0\n”
3 ” fxvcmph %[ help ] \ n”
4 ” fxvsubhm %[ help ] , %[max ] , %[ he lp ] , 1\n”
5 ” f x v s e l %[var ] , %[var ] , %[ he lp ] , 1\n”

In the first line, the bit is added to the current values by a modulo addition. As
the instructions only operate on signed integers, the halfword mode only allows the
iteration of 15 bits and the byte mode only allows 7 bit sweeps. Afterwards, the
maximum is subtracted from the gained new parameter and stored in the helper
register. This register is now compared to zero and in the vector condition register
(VCR) [Friedmann and Pehle, 2020] it is stored, whether is was above, below or
equal to zero. If the parameter was bigger than the maximum, the difference is
subtracted from the maximum (line 4) and according to the condition, the sweeped
parameter is selected in line 5.

A.2. Assembly for binary subtract function
For the subtraction in the binary search a similar algorithm is used. Another register
is of importance called zero, which is just filled with zeros. Of course also the
maximum register max was replaced with the minimum register min. Before the
subtraction is executed, the decide_func() stores in the VCR whether the bit
should be subtracted or not.

1 ” f x v s e l %[ he lp ] , %[ zero ] , %[ b i t ] , 1\n”
2 ” fxvsubhm %[var ] , %[var ] , %[ he lp ] , 0\n”
3 ” fxvsubhm %[ help ] , %[min ] , %[var ] , 0\n”
4 ” fxvcmph %[ help ] \ n”
5 ” f x v s e l %[ he lp ] , %[ zero ] , %[ he lp ] , 1\n”
6 ”fxvaddhm %[ help ] , %[min ] , %[ he lp ] , 0\n”
7 ” f x v s e l %[var ] , %[var ] , %[ he lp ] , 1\n”

First of all, according to the VCR, the helper register gets filled with zeros or
the bit which was previously added. Afterwards, the helper is subtracted from the
sweeped parameter (line 2). Thus, subtracting a zero means keeping the bit and
nothing will change for this parameter in the following. In line 3, the variable gets
subtracted from the minimum to make it possible to determine whether it is above
or below the minimum. Therefore in line 4 the register is compared to zero and the
result is stored in the VCR. If the result was above zero, thus indicating the variable
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was below the minimum, then the difference is added to the minimum value in line
5 and 6 to prevent crosstalk by setting many parameters to the minimum. Last but
not least, the right parameter is chosen at the end.

A.3. Assembly of maximum algorithm

Determining the maximum value of the CADC fast, using the vector unit, has some
caveats. That is because each CADC has 8 bit precision and the output is unsigned.
The vector unit however only supports signed operations, thus the most significant
bit marks a range of 128LSB to 255LSB, but vector operations will treat these
values as negatives because of the two’s complement. Shifting the values one by
right would prevent this problem, but in this case 1 bit of precision would be lost.

max − cadc max ∈ {0, ..., 127} max ∈ {128, ..., 255}
(I) (II)

cadc ∈ {0, ..., 127} > 0: max bigger > 0: Never happens
< 0: cadc bigger < 0: max bigger

(III) (IV)
cadc ∈ {128, ..., 255} > 0: cadc bigger > 0: max bigger

< 0: Never happens < 0: cadc bigger

Table A.1: Different cases if one calculates max − cadc with an saturating function
for unsigned 8-bit integers on 8-bit signed arithmetic.

There are four different cases if the latest obtained value from the CADC is
subtracted with a saturating function from the currently determined maximum.
These are visualized in table A.1. Normally if the result would be below zero, one
would update the maximum because the current CADC read is bigger. But as
seen in table A.1, this is not the case for all cases. In case (I) the MSB is not set
and the subtraction delivers a result as expected. The same happens for case (IV),
for example a CADC read of 255LSB, corresponding to a two’s complement of −1,
subtracted from a maximum value of 128LSB, corresponding to a two’s complement
of −128, gives a negative value and thus the maximum would be updated. Case (II)
shows a different behaviour. The maximum value is treated as negative value, while
the latest CADC read is positive. A saturating subtraction always delivers a negative
value, so the maximum would be updated. In reality the maximum is bigger because
of the MSB, so this step would be wrong. The same happens for case (III), here
the subtraction is always positive while the current CADC read is bigger than the
maximum. The following assembly code takes care of this problem.

1 ” fxvshb %[ s h i f t ] , %[cadc ] , −7\n”
2 ” fxvshb %[ d i f f ] , %[max ] , −7\n”
3 ” fxvsubbm %[ s h i f t ] , %[ s h i f t ] , %[ d i f f ] \ n”
4 ” fxvsubb f s %[ d i f f ] , %[max ] , %[cadc ] \ n”
5 ” fxvcmpb %[ s h i f t ] \ n”
6 ”fxvaddbm %[ d i f f ] , %[ d i f f ] , %[adder ] , 3\n”
7 ” fxvcmpb %[ d i f f ] \ n”
8 ” f x v s e l %[max ] , %[max ] , %[cadc ] , 1\n”
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To overcome the problem one first has to distinguish between the different cases.
By shifting the values from max and cadc for 7 bits to the right, only the MSB is
left. This is done in line 1 and 2. Subtracting both resulting values in line 3 gives
a measure which case is reached. A result of 0 says that either case (I) or (IV) is
given, the comparison is done in line 5. The saturating subtraction of cadc from
max is done in line 4. For case (I) and (IV) a adder register is added by a modulo
operation in line 6. This register is filled with a number of 128, or −128 in signed
arithmetic, respectively, to change the sign and to align all four cases. According to
the sign, the new maximum is now selected in line 7 and 8.

A.4. Differential equation for synaptic input

The voltage at the synaptic input with an incoming spike can be described with:

Vsyn, exc (t) = Vref, exc −∆Vspk · exp
(
− t

τsyn

)
.

So the current onto the membrane can be calculated with:

Isyn, exc (t) = gsyn ·
(
Vref, exc − Vsyn (t)

)
= Q̇syn, exc.

The leak current depends on the membrane potential with gleak = Cmem
τmem

:

Ileak (t) = gleak · (Vleak − Vmem (t)) = Q̇leak.

With Qmem(t) = Cmem · Vmem(t) the change of the membrane potential can be
calculated with the given currents from synaptic input and leak:

Q̇mem = Cmem · V̇mem = Q̇syn, exc + Q̇leak.

This leads to a first order differential equation:

V̇mem =
gsyn
Cmem

·∆Vspk · exp
(
− t

τsyn

)
+

1

τmem
· Vleak − 1

τmem
Vmem.

Solving the equation gives

Vmem (t) =
∆Vspk · τsyn

Cmem
gsyn

·
(

τsyn
τmem

− 1
) · exp

(
− t

τsyn

)
+ Vleak + k1 · exp

(
− t

τmem

)
,

with k1 as integration constant. The constraint Vmem = Vleak for t = 0 delivers the
solved equation:

Vmem (t) =
∆Vsyn · τsyn

Cmem
gsyn

·
(
1− τsyn

τmem

) ·
(

exp
(
− t

τmem

)
− exp

(
− t

τsyn

))
+ Vleak.

(A.1)
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Neglecting the leak, i.e. τmem → ∞, the membrane potential will rise according to
equation 3.6 with the following function of time:

Vmem (t) =
∆Vsyn · τsyn

Cmem
gsyn

·
(
1− exp

(
t

τsyn

))
+ Vleak.

The time tmax, indicating when the maximum of equation A.1 is reached, can be
determined by the derivative ∂Vmem

∂t
!
= 0 giving

tmax =
τsyn · τmem · ln

(
τsyn
τmem

)
τsyn − τmem

.

Inserted into equation A.1 gives equation 3.8:

∆Vmem =
∆Vsyn · τsyn

Cmem
gsyn

·
(
1− τsyn

τmem

) ·
exp

−
τsyn · ln

(
τsyn
τmem

)
τsyn − τmem

− exp

−
τmem · ln

(
τsyn
τmem

)
τsyn − τmem

 .

With leak potentially disabled (τmem → ∞), it results in equation 3.6

∆Vmem =
∆Vsyn · τsyn

Cmem
gsyn

,

thus indicating that it is the right analytical solution for the problem.

A.5. Synapse bug

The first idea was to calibrate all neurons at once for weight-rate and rate-rate and
use cherry-picked neurons at the end, which match the desired characteristic best.
First results looked promising and all neurons matched more or less the desired
characteristics, even cherry-picking would not be necessary. With the calibrated
values, the experiment however did not work as expected and the output rates
were much smaller as expected and observed by the calibration. The problem that
occurred can be seen in figure A.1. When for every neuron 16 synapses are active
with weight 63, like it is used in the calibration, the amplitude ∆Vspk is much bigger
compared to only one synapse column with 16 synapses active of the according
neuron.

This effect was not expected and makes it impossible to use a spike based cali-
bration for all neurons, while just some of them are used later in the experiment.
Because of this, also the problem with the rate based calibration of the excitatory
synaptic time constant τsyn, exc, shown in section 3.5.4, could be explained. It is just
not easily possible to control ∆Vspk generated by a spike which travelled through
the synapse array.

In order to better understand the problem, a sweep was made measuring one neu-
ron receiving input from 16 synapses with weight 63 and determining the resulting
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Figure A.1: Incoming spike on the synaptic input. With only the 16 synapses of the
target neuron active (weight 63), the amplitude ∆Vspk is way smaller
(red curve) than for all 16 synapses of all neurons active (black curve).
Data measured for neuron 0 on chip 22 on setup 63.
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Figure A.2: ∆Vspk of neuron 0 with 16 synapses active (weight 63). The amount of
active synapses of other neurons was sweeped according to the neuron
number. Amplitudes get higher for more synapse columns active until
neuron 128 is reached (marked by the dashed line). Thus, indicating it
is just a quadrant-wide effect because quadrant 0 ends there. Mean of
50 measurements taken for each data point, on chip 22 on setup 63.
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∆Vspk for a different number of other neurons also receiving input from their 16
synapses in the same row. 50 measurements per data point were taken and mean
and standard deviation are visible in figure A.2. It is clearly visible that for a small
amount of active neuron columns with 16 synapses active, the amplitude of a incom-
ing spike is about 60LSB. For more neuron columns this rises linearly and reaches
amplitudes above 140LSB for 127 neurons columns active. Afterwards ∆Vspk is the
same even when more neuron columns are active. This is the case because neuron
128 is already assigned to quadrant 1, thus indicating it is just a quadrant-wide
effect. The border of quadrant 0 is marked with the dashed line.

Because of this bug, the calibration has to be done individually for every neuron
that ∆Vspk is also the same for the experiment with just 18 neurons active. For
the supersynapses also a lower synapse current had to be chosen which defines the
amplitude of the synaptic current pulses for each quadrant. Thus, 8 neurons are
calibrated on quadrant 0 for weight-rate, while 10 neurons on quadrant 1 are cali-
brated for rate-rate (8 for CPU1 and 2 for the motor neurons). Also by just using
the neurons on the same chip hemisphere makes it possible to tune the weights on
the same PPU, thus the other PPU is disabled.

The reason for this is expected to result from a transistor included in every synapse
instance. Every incoming spike slightly changes the Gate-Source voltage shared
across all synapses within a quadrant. With only some synapses spiking simultane-
ously this effect is just barely visible. But with 128x16 synapses spiking at once,
the voltage shift significantly changes the drain current of the transistor resulting
in a visible effect. For normal experiments this bug should not be a hard problem,
because normally such a big number of synapses do not fire at once. Calibrating
all neurons at once with simultaneous spikes in many synapses however makes the
problem appear.
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