
Department of Physics and Astronomy
Heidelberg University

Master Thesis in Physics
submitted by

Elias Arnold
born in Stuttgart (Germany)

2021

Biologically Inspired Learning in Recurrent Spiking Neural
Networks on Neuromorphic Hardware

This Master Thesis has been carried out by Elias Arnold at the

Kirchho� Institute for Physics in Heidelberg

under the supervision of

Dr. Johannes Schemmel

Biologically Inspired Learning in Recurrent Spiking Neural Networks on
Neuromorphic Hardware

Typically, artificial recurrent neural networks (RNNs) are trained using back-propagation
through time (BPTT). Since this gradient-based learning method requires propagating
information back in time, it lacks biological plausibility. However, approximations to
BPTT enable describing learning rules that only rely on information accessible forward
in time. Such learning rules can also be found for recurrent spiking neural networks
(RSNNs). Since spiking networks model the working principles of the biological brain,
this enables biologically inspired learning, particularly with so-called e-prop learning
algorithms. This thesis investigates the feasibility of e-prop inspired learning on the
neuromorphic BrainScaleS-2 (BSS-2) system, which emulates spiking neural networks
in analog. Two distinct e-prop inspired learning rules are proposed that are compatible
with BSS-2’s intrinsic characteristics. As a first approach, a pattern-generation task
is solved on the neuromorphic substrate via RSNNs with a spike-based learning rule.
Further, a new on-chip plasticity rule is formulated that calculates weight updates with
accumulated correlation measured inherently in parallel by all synapses on the BSS-2
system. The rule’s capability to train RSNNs is demonstrated, and its implementation
on the BSS-2 platform is detailed. Furthermore, software is presented, which provides
modeling abstractions for hardware-in-the-loop and on-chip learning experiments.

Biologisch inspiriertes Lernen in rekurrenten spikenden neuronalen Netzwerken auf
neuromorpher Hardware

Typischerweise werden künstliche rekurrente neuronale Netzwerke mit back-propagation
through time (BPTT) trainiert. Diese gradientenbasierte Lernmethodik ist biologisch
nicht plausibel, da diese Informationen in der Zeit zurück propagiert. Entsprechende
Näherungen von BPTT ermöglichen es jedoch Lernregeln zu formulieren, die nur auf In-
formationen zugreifen, die vorwärts in der Zeit verfügbar sind. Solche Lernregeln können
auch für rekurrente spikende neuronale Netzwerke (RSNN) gefunden werden. Da spikende
Netzwerke Arbeitsprinzipien des biologischen Gehirns modellieren, wird dadurch, insbe-
sondere mit sogenannten e-prop Lernalgorithmen, biologisch inspiriertes Lernen ermög-
licht. Diese Arbeit untersucht die Umsetzbarkeit von e-prop inspiriertem Lernen auf dem
neuromorphen BrainScaleS-2 (BSS-2) System, welches in seinem analogen Kern spiken-
de neuronale Netzwerke emuliert. Dafür werden zwei unterschiedliche e-prop inspirierte
Lernregeln vorgeschlagen, die den Ansprüchen des BSS-2 Systems genügen. In einen ers-
ten Ansatz wird gezeigt, dass eine spike-basierte Lernregel einen Mustergenerierungstask
mit RSNNs auf dem neuromorphen Substrat lösen kann. Darauf aufbauend wird eine
neue on-chip Plastizitätsregel vorgestellt, die mit akkumulierten Spikekorrelationsmes-
sungen Gewichtsänderungen berechnet. Für diese Lernregel wird einerseits gezeigt, dass
sie Lernen in RSNNs ermöglicht und zum anderen wird deren Implementierung auf der
BSS-2 Plattform ausgearbeitet. Darüber hinaus werden Softwarelösungen aufgezeigt, die
Lernen auf dem BSS-2 System in höheren Softwareschichten abstrahieren.

The Reader may pardon this long Discourse,
because the Subject so well deserved it,
and I wanted Art to make it shorter.

Edmund Bohun

Contents

1 Prologue 1
1.1 Thesis Outline . 3

2 Theoretical Background 5
2.1 Computational Neuroscience in a Nutshell 5

2.1.1 Biological Neuron . 5
2.1.2 Leaky-Integrate-and-Fire Model 8

2.2 Introduction to Recurrent Neural Networks 12
2.3 Recurrent Spiking Neural Networks . 15

2.3.1 Network under Consideration . 17
2.3.2 A Learning Framework . 17
2.3.3 Biologically inspired Alternative to BPTT 19

3 Neuromorphic Hardware 25
3.1 The BrainScaleS System . 25
3.2 Correlation Sensors . 29

4 Developed Software 31
4.1 E-prop Framework . 31

4.1.1 Network Representation . 32
4.1.2 Simulating RSNNs in Software . 33
4.1.3 Learning . 34

4.2 Integrating HICANN-X . 35
4.2.1 In-the-loop Learning . 35
4.2.2 Interfacing HX . 36
4.2.3 Routing Algorithm . 38
4.2.4 On-chip Learning . 39
4.2.5 Host-PPU Communication . 43

5 Spike-based Eligibility Propagation 45
5.1 Task . 45

5.1.1 Motivation . 45
5.1.2 Description . 46

5.2 Adjusting the Learning Rule . 46
5.2.1 Consequences . 47

5.3 Simulations . 49
5.3.1 Hardware Constraints . 49
5.3.2 Network Setup and Training Procedure 50

XI

5.3.3 Baseline . 52
5.3.4 Discrete Weights . 54
5.3.5 Small Output Weights . 56

5.4 HICANN-X in the loop . 56
5.4.1 Chip Setup and Training . 57
5.4.2 Application on Hardware . 58
5.4.3 The Role of Recurrence . 60
5.4.4 Investigating Stability . 62

6 On-chip Learning 65
6.1 Learning Rule under Hardware Constraints 65

6.1.1 Utilizing Correlation Measurements 66
6.1.2 Adjusting the Learning Rule . 69

6.2 Simulation . 74
6.2.1 Hardware Constraints . 74
6.2.2 Network Setup and Training Procedure 75
6.2.3 Baseline Experiment . 76
6.2.4 Update Period . 76
6.2.5 The Role of Recurrence . 78

6.3 Implementation on-chip . 80
6.3.1 Speed of Weight Updates . 84

6.4 Single Synapse Experiment . 85
6.4.1 Experiment Setup . 85
6.4.2 Correlation Measurements . 86
6.4.3 Learning Setup . 87
6.4.4 Exemplified Weight Evolution . 87
6.4.5 Synapse Variations . 91

6.5 Full Network . 92
6.5.1 Training Procedure . 93
6.5.2 Result . 93
6.5.3 Possible Issues . 96

7 Epilogue 99
7.1 Outlook . 102

Acknowledgments 105

Acronyms and Technical Terms 115

A Appendix 117
A.1 Parameter . 117

A.1.1 S-prop . 117
A.1.2 On-Chip Learning . 119

A.2 Further Methods . 122
A.2.1 Stochastic Weight Updates . 122

Contents

A.3 Software . 123

XIII

1 Prologue

The human brain has an unparalleled capability to perceive and process complex infor-
mation. As a highly e�cient neural engine, it has evolved to model the environment
and thus shapes human behavior. Especially, its ability to perform operations of high
complexity drives scientists to gain a deeper understanding of its functionality — which
still remains widely elusive — and to learn from its operating principles for application
in artificial counterparts.

In the past years, the field of machine learning has been incredibly successful, primarily by
arranging the most basic idea of neural components, the perceptrons [Rosenblatt, 1958],
into large artificial neural networks (ANNs). ANNs have become a fairly capable tool for
solving advanced tasks comprising pattern recognition, classification, and reinforcement
learning [LeCun et al., 2015; Silver et al., 2016]. A large contribution to the success of
ANNs is due to the increase of computational resources in recent decades, accelerating
the training of networks with reasonable scale by orders of magnitude [Xu et al., 2018].
This comes at the expense of enormous energy consumption [Strubell et al., 2019].

Neural networks in the brain work fundamentally di�erently than ANNs. Biological
neurons are dynamic entities, continuously evolving in time. They form networks by
interconnecting via synapses and, in contrast to most ANNs, communicate information
mainly via the timing of their all-or-nothing spike events [Alberts et al., 1994; Gerst-
ner et al., 2002; M. Petrovici, 2015]. These working principles are modeled with spik-
ing neural networks (SNNs) [Gerstner et al., 2014], which are promising candidates for
energy-e�cient neuromorphic hardware implementations [Pfei�er et al., 2018] of neural
networks, given their (usually) sparse event-based nature.

Such brain-inspired neuromorphic hardware systems [Mead, 1990; Young et al., 2019],
like Intel’s Loihi [Davies et al., 2018], IBM’s TrueNorth [Akopyan et al., 2015], SpiNNaker
[Painkras et al., 2013], Neurogird [Benjamin et al., 2014], or DYNAPs [Moradi et al.,
2018] are developed by many di�erent research collaborations and companies. Due to its
mixed-signal architecture, the accelerated neuromorphic BrainScaleS-2 (BSS-2) system
[Schemmel et al., 2020; Billaudelle et al., 2020] developed at the Heidelberg University
within the Human Brain Project (HBP) [Human Brain Project 2021] collaboration is
particularly interesting. This system implements the dynamics of adaptive exponential
leaky integrate-and-fire neurons [Brette et al., 2005] in analog circuits and communicates
spike events between neurons digitally at high bandwidth. Furthermore, configurable
synapse matrices on its analog network core (ANNCORE) process synaptic activity and
collect correlation information inherently in parallel, thereby enabling learning on the
BSS-2 system. Notably, its ANNCORE is tightly coupled to two digital embedded single
instruction multiple data (SIMD) general-purpose processors with the ability to alter

1

1 Prologue

synaptic weights and neural parameters, and, thus, perform local plasticity on-chip at
high speed [Friedmann, 2013]. Learning on the BSS-2 system has been successfully
demonstrated for di�erent applications [Schreiber, 2020; Weis et al., 2020; Billaudelle
et al., 2021; Cramer et al., 2020; T. Wunderlich et al., 2019].

The underlying topology of neural networks in the brain is di�erent from (deep) feed-
forward networks since the brain is “essentially a multitude of superimposed and ever-
growing loops between the input from the environment and the brain’s outputs” [Buzsáki,
2009]. Experimental findings support that recurrent connections in biological networks
are indeed the fundamental characteristic of circuits in neural tissue [Kandel et al., 2000].
In fact, recurrently connected networks allow the brain to propagate information over
time and thus incorporate memory in tasks it has to perform [Bellec et al., 2019]. How-
ever, it is not clear how the brain enables plasticity in such recurrent spiking neural
networks (RSNNs) [Bellec et al., 2019]. In machine learning, artificial recurrent neural
networks (RNNs) are usually trained with back-propagation through time (BPTT) [Wer-
bos, 1990]. From a biological perspective, this is implausible since it requires propagating
information backward in time to perform synaptic plasticity. A major finding of Bellec
et al. [2019] is that the gradient for BPTT can be factorized into a temporal sum over
products of eligibility traces that can be computed forward in time and learning signals
depending on the network’s error. Learning algorithms emerging from this factorization
that allow for an online merging of learning signals and eligibility traces forward in time
— by providing suitable approximations — are referred to as e-prop [Bellec et al., 2019].
Most importantly, Bellec et al. [2019] find online plasticity rules for learning in RSNNs
that exhibit an appealing biological interpretation. Since these plasticity rules calculate
weight updates simultaneously to the forward pass, they are promising candidates for
neuromorphic on-chip implementations.

This thesis demonstrates e-prop-inspired learning in RSNNs on the BSS-2 system by
solving a pattern-generation task inspired by [Bellec et al., 2019, page 28]. Since BSS-2’s
architecture has di�erent requirements for on-chip implementable learning rules, the rules
derived in [Bellec et al., 2019] are adapted. As a first approach, the eligibility traces are
replaced by approximated spike-based versions [Bellec et al., 2019]. The resulting learn-
ing rule, called spike-based eligibility propagation (s-prop), enables learning with BSS-2
in the loop [Schmitt et al., 2017], where the forward pass is emulated on the neuromor-
phic substrate and weights are optimized o�-chip. After testing s-prop in simulation,
experiments on BSS-2 show that it enables RSNNs to learn a pattern-generation task
surprisingly well. In a second approach, the actual on-chip implementation is tackled.
As this comes with further requirements, an on-chip learning rule is derived based on
accumulated spike correlation information, giving it the name: Neuromorphic Accumu-
lative Spike Propagation (NASProp). Simulations verify the rule’s capability to train
RSNNs. In a single synapse test setup, the on-chip implementation shows the desired
learning behavior.

In the end, a crucial component of this thesis is the development of software, abstracting
the BSS-2 system for experiment execution in the high-level software framework PyTorch

2

1.1 Thesis Outline

[Paszke et al., 2019]. Therefore, all training-related experiments on BSS-2 are controlled
and evaluated within the PyTorch learning environment.

1.1 Thesis Outline

In the following, the structure of this thesis is outlined. Chapter 2 gives an overview of
computational neuroscience with a brief insight into the biological neuron and a math-
ematical description of it, followed by an introduction to RSNNs for which the e-prop
learning framework is described. In Chapter 3, the neuromorphic BSS-2 system is ex-
plained, and necessary properties are elaborated. As a first result, the developed software
for experiments on analog hardware is given in Chapter 4. Here, the abstraction of the
BSS-2 system for experiments in RSNN in high-level software framework PyTorch is ex-
plained. This encompasses the software setup for in-the-loop and on-chip learning and
the description of an event routing algorithm. First experiments with the approximated
s-prop learning rule are conducted in Chapter 5. This includes a discussion of the s-prop
learning rule, its verification in simulated networks, and also experiments on the actual
neuromorphic hardware. The challenge of a full on-chip implementation is tackled in
Chapter 6. Therefore, in this chapter, the adjusted NASProp learning rule is derived.
Motivated by simulations, verifying its feasibility, the learning rule is implemented on-
chip. This implementation is exemplified in a single synapse experiment, after which
full on-chip training is approached. Results are summarized and briefly discussed in
Chapter 7. This also includes a short outlook.

3

2 Theoretical Background

Computational Neuroscience is an interdisciplinary field of research that combines com-
puter science and the biological understanding of the brains in living creatures, therefore,
reaching a wide variety of knowledge and methods. This chapter starts with a biological
description of the brain’s most basic components, the neurons, and will outline a possible
mathematical description of it. Based upon this knowledge, recurrent neural networks
(RNNs) will be considered from a general perspective. This will ease the transition to
recurrent spiking neural networks (RSNNs), for which a biologically inspired learning
algorithm is discussed.

2.1 Computational Neuroscience in a Nutshell

The biological brain of living creatures is fascinating for many reasons. While it performs
complex computations and processes vast amounts of data, its energy consumption re-
mains very low. Therefore, the brain is not just subject to computational neuroscience
but also acts as a paragon to neuromorphic computing and, in particular, to Machine
Learning with (deep) artificial neural networks (ANNs). These disciplines benefit from
each other. While biological experiments and paradigms improve theoretical models and
learning algorithms, computational simulations can refine understanding and predict bi-
ological behavior.

In essence, the brain is a composition of neurons connected via synapses, forming a
neural network. For modeling such networks computationally, it is crucial to align the
mathematical description of the neurons with their biological counterpart. Hence, the
following will give an overview of the biological neuron based on M. A. Petrovici [2015]
and refers to [Alberts et al., 1994] for the biological descriptions in Section 2.1.1 and to
[Gerstner et al., 2002] for the mathematical formulations in Section 2.1.2, if not referenced
otherwise.

2.1.1 Biological Neuron

Neurons are cells consisting of plasma membranes separating the cell’s interior from the
environment they are embedded in. Since this membrane is basically a lipid bilayer,
which allows charge-free small molecules to pass, while being impermeable to charge
carriers, like polar molecules and ions, it can be considered a capacitor. This alone,
however, would be a static system since no charge is exchanged between the neuron’s

5

2 Theoretical Background

interior and the outside. In addition to the lipid bilayer, the membrane includes di�erent
proteins able to transfer specific ions from the neuron’s inside to the outside and vice
versa, enabling a dynamic behavior of the potential between the neuron’s interior and
the environment. In fact, only a few thousand ions crossing a membrane area of 1 µm2

are enough to change the membrane potential by a magnitude of O(10 mV).

The main reason for the cross-membrane potential is the Na+-K+ pump, realized by a
protein in the neuron’s membrane. This protein transfers Na+ ions from the interior of
the cell to the outside, while transporting K+ ions in the other direction into the neuron.
However, the pumping mechanism is unbalanced; more Na+ ions are transported to the
outside than K+ ions to the inside, leaving the neuron’s interior charged negatively. This
increases the ionic gradient, which in turn decreases the ion flow due to pumping, until
a equilibrium state is reached. Thus, the membrane potential in this state is referred
to as the leak or resting potential. Note that this potential is pulled down further by
the K+ channel, allowing only potassium ions to pass. Due to the K+ excess in the
neuron’s interior, created by the Na+-K+ pump, potassium ions use the K+ channel to
flow outwards. This increases the deficit of positive ions in the neuron, yielding a resting
potential of typically ≠70 mV.

Nonetheless, several more protein channels and ions participate in the process described
before. However, since corresponding ion concentrations e�ectively act as batteries with
potential E, and the leakage channels can be understood as conductances g, merging
each, the specific batteries and conductances for di�erent ions into single representative
ones, a neuron can be simplified described by an RC circuit. Hence, using Ohm’s law,
the membrane dynamic of a neuron is described by the ordinary di�erential equation
(ODE)

Cm
dv

dt
= ≠gl (v ≠ El) + I. (2.1)

Here El is the leak potential, gl the leak conductance, Cm the membrane capacitance,
and v the membrane potential. The current I is an external stimulus. The membrane
time constant is given by ·m = Cm/gl. Equation (2.1) describes the fundamental dynamics
of the neuron model described in Section 2.1.2.

Action Potential

So far, the processes discussed apply to cells in general. However, excitable cells — like
neurons — are endowed with additional voltage-gated ion channels providing the capa-
bility to change their membrane potential di�erently. These types of channels are also
ion-specific but adjust their functionality and permeability depending on the membrane
potential vm and give rise to the phenomenon of action potentials (APs). That is, as
soon as the neuron’s membrane potential exceeds a threshold potential Ë, the membrane
depolarizes quickly, resulting in a sharply increasing potential followed by repolarization
of the membrane, pulling the potential below the leak potential. The potential remains
in this state for a time period, called the refractory period, in which the neuron is very
unlikely to create a subsequent AP. Figure 2.1a illustrates this process. The APs are
often referred to as spikes and describe the act of a neuron firing.

6

2.1 Computational Neuroscience in a Nutshell

(a) Action potential (b) Neuron schematics

Figure 2.1: (a) Illustration of an action potential. If the neuron’s membrane potential exceeds a
threshold the membrane potential increases sharply followed by quick reploarization
and a dropping potential. Thereafter, the neuron enters the refractory period.
Image taken from [Iberri, 2007]. (b) Schematic of a neuron. It consists of a soma,
which receives input over its dendrites and outputs its action potential along the
axon. The spike event is distributed to subsequent neurons by the axon terminals.
Image taken from [Jarosz, 2009].

APs enable neurons in a network to exchange information. In fact, spikes are the primary
information carrier in the brain. Hence, a neuron (usually) only provides information
at the occurrence of an AP and, in principle, not by other (usually slower) chemical
processes. The advantage is that information distribution and processing in brains is
very fast while consuming little energy. The following section will give an overview of
how these spike events are communicated in a neural network.

Synapses

Figure 2.1b depicts the structure of a typical neuron. It consists of the cell, described
in the previous sections, referred to as soma. If the neuron exhibits an AP, it travels
from the soma through the axon to the axon terminals. These terminals connect to
the dendrites of subsequent neurons via synapses. A pre-synaptic neuron releasing an
AP triggers a post-synaptic potential (PSP) in the post-synaptic neuron through the
corresponding synapse. This PSP is understood as the temporal modification of post-
synaptic neuron’s membrane potential due to the pre-synaptic spike event. Typically
two distinct classes of PSPs exist. A PSP pushing the membrane potential upwards
has an excitatory e�ect and is called excitatory post-synaptic potential (EPSP). Vice
versa, if the membrane potential is decreased, the PSP is inhibitory and called inhibitory
post-synaptic potential (IPSP). In that way, pre-synaptic neuron partners can time their
action potentials such that the neuron’s membrane potential is modified in a way that
the neuron exhibits a desired behavior, e.g., spike. Note that a neurons’ spatial structure
is very influential on how the received spiking information is processed. Neuron models
neglecting the spatial extent are called point-like models and are usually easier and more
e�cient to implement in software.

7

2 Theoretical Background

The biological functionality of synapses, categorized into chemical and electronical ones,
will not be discussed in detail here. However, to motivate the modeling of PSPs in
Section 2.1.2, the functionality of chemical synapses is described briefly. Roughly, a
pre-synaptic AP causes voltage-gated calcium channels in the axon terminal to open,
resulting in an influx of Ca++ ions. In turn, this releases neurotransmitters to the synaptic
cleft — the space between the axon terminal and the dendrite of the target neuron. The
neurotransmitters activate ligand-gated ion channels in the target neuron’s membrane,
such that ions can move across the membrane and thus change its membrane potential.
The neurotransmitters activate the channels only temporarily until they are removed and
thereby reduce the net influx of ions steadily. This is often modeled by an exponentially
decaying current onto the membrane at the occurrence of a pre-synaptic spike event.

The previous sections provide a rather simplistic description of neurons from a biological
perspective. Note, however, the neurons’ biological and chemical behavior and how they
interact are usually complex processes of which not all are understood yet. Nevertheless,
the properties and functionalities discussed so far will be su�cient to reason a simple
mathematical neuron model in the following.

2.1.2 Leaky-Integrate-and-Fire Model

One of the most basic neuron models has been introduced by Lapicque [1907] and was
later renamed to leaky integrate-and-fire (LIF) model. While this model introduces strong
simplifications of the biological neuron, it describes the dynamics of the membrane poten-
tial su�ciently well for a large field of applications [Bellec et al., 2019; Breitwieser, 2015;
Kanya, 2020] and, therefore, has great relevance. In particular, the model’s simplicity
enables an e�cient implementation in software and on hardware, making it a convenient
choice for neuroscientific simulations and neuromorphic hardware implementations.

The LIF model assumes that the neuron has no spatial extent and is considered point-
like [Gerstner et al., 2014]. This implies that the synaptic currents onto the membrane
are not delayed and a�ect the potential immediately. In contrast, biological observations
show that neurons in the brain di�er much in their size and layout. By strategically
placing inhibitory and excitatory inputs on the dendrites relative to the soma, neurons
exploit the spatial component to exhibit non-linear behavior in their membrane potential,
allowing more complex operations [Gerstner et al., 2014]. However, modeling this spatial
component is computationally expensive and is therefore neglected here.

Further, biological experiments find that individual action potentials do not vary much
and have very similar shapes. This suggests that action potentials do not propagate
information themselves, but the timing of the spike events holds information. Hence,
it seems appropriate for the LIF model to consider spikes as binary stereotyped events,
such that explicit modeling of action potentials is redundant [Gerstner et al., 2014].

8

2.1 Computational Neuroscience in a Nutshell

A LIF neuron is said to “send out” a spike z(t) at time t = ts if the membrane potential
v(t) exceeds a certain threshold Ë,

z(t) =

Y
]

[
1 if v(t) Ø Ë,

0 else,
(2.2)

after which the membrane potential is reset to a reset potential vr for a refractory period
·ref,

v(t) = vr ’t œ (ts, ts + ·ref] . (2.3)
The dynamics of the membrane potential v of a LIF neuron with membrane capacitance
Cm is described by a first order di�erential equation,

Cm
dv

dt
= ≠gleak (v ≠ vl) + Isyn, (2.4)

where a synaptic input current Isyn is integrated onto the membrane modeling the un-
balanced ion concentration in the neurons membrane on present synaptic input. The
membrane potential is permanently striving back towards its equilibrium resting poten-
tial vl with a leakage conductance given by gl. The membrane time constant ·m of a LIF
neuron is then described by

·m = Cm

gl
(2.5)

and defines its temporal extent. Since later chapters will refer rather to the membrane
time constant than to the leakage conductance equation 2.4 is rewritten as

dv

dt
= ≠

1
·m

(v ≠ vl) + Ĩsyn, (2.6)

where Ĩsyn absorbs the constant 1/Cm. This equation describes the fundamental dynamics
of all neurons considered from here on.

Synaptic Input

So far the synaptic current Isyn was not specified in detail but was assumed as an arbitrary
function of time. In neural networks, a neuron j usually receives pre-synaptic spike events
from a pre-synaptic partner i while in turn sending its post-synaptic events to neurons
deeper in the network, acting itself as a pre-synaptic partner. A temporal sequence of
incoming events zi(t) from neuron i is often referred to as a spike train,

zi(t) =
ÿ

s

” (t ≠ ts
i) , (2.7)

where ” denotes the ”-distribution and ts
i the time neuron i spiked. Every pre-synaptic

event triggers a PSP whose shape is defined by a kernel ‘ that convolves the input
spike train zi, and thus modeling the ion influx triggered by a chemical synapse. The
synaptic input current of neuron j is then given by the sum over the weighted PSPs of
all pre-synaptic partners,

Ij,syn(t) =
ÿ

i

wji (‘ ı zi(t)) , (2.8)

9

2 Theoretical Background

Figure 2.2: Computational graph of a
synapse. The pre-synaptic spike trains zi

are convolved by kernels ‘, modeling the
corresponding synaptic current Iji. Neu-
ron j integrates the weighted sum Ij,syn
of the each synaptic currents Iji onto its
membrane. This leads to a change in
the membrane potential inducing a spike
eventually.

j✏i zj
P

i

zi Iji

wji

Ij,syn

where wji is the synaptic strength. A computational graph is given in Figure 2.2.

The kernel ‘ is a synapse-specific property and depends on the extent to which biology
needs to be mimicked. One possibility is given by a di�erence of exponential functions,

‘(t) = A�(t) 1
·rise ≠ ·fall

5
exp

3
≠

t

·rise

4
≠ exp

3
≠

t

·fall

46
, (2.9)

which describes the fast increasing ion influx into the post-synaptic neuron at a pre-
synaptic AP by the first exponential term (neurotransmitters arrive at post-synaptic
neuron) and the subsequent decreasing influx by the second exponential term (neuro-
transmitters are removed). The time constant ·rise adjusts how fast the influx increases
and ·fall how fast the influx decreases. Here, A is an arbitrary scaling factor and � the
Heaviside step function. Assuming the arrival of neurotransmitters to be infinitely fast,
such that ·rise ≠æ 0, gives the commonly used single exponential kernel

‘single(t) = AÕ�(t) exp
A

≠
t

·syn

B

, (2.10)

with ·syn = ·fall and AÕ the scaling factor absorbing 1/·fall. Inserting the kernel in Equa-
tion (2.10) into Equation (2.8) and choosing AÕ = 1 gives the synaptic input current

Ij,syn(t) =
ÿ

i

ÿ

s

wji�(t ≠ ts
i) exp

A

≠
t ≠ ts

·syn

B

. (2.11)

This equation describes the total current onto neuron j’s membrane at time t. Note,
these types of synapses are called current-based. Another approach is conductance-based
synapses which claim to be biologically more plausible and allow describing stochastic
neuron dynamics in the high-conductance state. This, of course, comes with a higher
computational cost and will not be discussed.

Neglecting all temporal e�ects in a synapse, the most simple dynamic is given by a
”-kernel

‘”(t) = A”(t). (2.12)

This leads leads to an input current

I”
j,syn(t) =

ÿ

i

ÿ

s

wji”(t ≠ ts
i) =

ÿ

i

wjiz
t
i , (2.13)

10

2.1 Computational Neuroscience in a Nutshell

Pre

0.00

0.23

I s
y
n
[m

A
]

�60

�55

�50

v
[m

V
]

vleak #

0 50 100 150 200 250

Time [ms]

Post

0.00
0.05

I s
y
n
[m

A
]

0 50 100 150 200 250

Time [ms]

�65

�60

�55

�50

v
[m

V
]

vleak #

Figure 2.3: Example membrane traces simulated with the LIF model. The upper plot shows
the membrane dynamic with a piece-wise constant input current (red). As the
potential (blue) reaches the threshold Ë, the neuron spikes and the membrane is
clamped to the reset potential for a refractory period. In the lower plot the neuron
receives input current from a single exponential synapse kernel (red), triggered by
pre-synaptic spikes.

with the consequence that a pre-synaptic event changes the membrane potential only at
spike-time ts without causing any further current onto the membrane in the future. Of
course, this is a rather rough approximation of chemical synapses and lacks biological
plausibility.

Numerical LIF Neuron

To make the LIF model described by Equation (2.6) accessible in software it needs to be
integrated numerically in discrete time. Therefore a continuous time sequence of length
T is split into N œ N equidistant time steps ”t, such that T = N”t. Then the time tn at
time step n is defined by tn = n”t with n œ [0, N]. One possible approach to define the
LIF model on this discrete time lattice is given by (see [Gerstner et al., 2014]),

vn+1 = –vn + (1 ≠ –)vl + In. (2.14)

11

2 Theoretical Background

Here – denotes a constant decay

– = exp
3

≠
1

·m
”t

4
, (2.15)

and In = Ĩ(tn) the potential modification due to synaptic input current at time tn. If
the membrane potential vn crosses the threshold Ë at time step n, the neuron sends out
a spike, such that z(tn) = zn = 1, after which the membrane potential is pulled towards
the reset potential vr for

nref = ·ref

”t
œ N0 (2.16)

time steps, keeping the neuron in its refractory period. An example is given in figure
2.3.

For a PSP with a single exponential kernel, In is calculated in a similar fashion by

In+1 = “In +
ÿ

i

wiz
n
i (2.17)

with zn
i œ {0, 1} indicating whether pre-synaptic neuron i spiked at time tn, the synaptic

strength wi (absorbing 1/Cm from Ĩ), and “ being the synaptic decay constant

“ = exp
A

≠
1

·syn
”t

B

. (2.18)

All simulations made in the following chapters rely on these definitions.

2.2 Introduction to Recurrent Neural Networks

Recently ANNs have gained great attention in a vast amount of di�erent scientific and
commercial areas and have become arguably one of the most powerful machine learning
tools. Especially very popular architectures of ANNs like feedforward neural networks
(FNNs) or convolutional neural networks (CNNs) have been highly successful in plenty
of di�erent tasks, including classification, reinforcement learning, and object detection
[Silver et al., 2016; Cai et al., 2018]. However, for machine learning tasks that involve
temporal or ordinal sequences, RNNs are often superior. Since this thesis deals with
learning in RSNNs, it seems crucial to elaborate a general mathematical framework that
describes RNNs to ease the transition to spiking networks. A brief look at the basic
structure of FNNs based on Goodfellow et al. [2016, Chapter 6] will help define RNNs
and emphasize the di�erences.

Basically FNNs are (mostly very complex) mappings that receive an input vector x œ RD,
with D the feature dimension, and map it to an output vector y œ RNL≠1 , with NL≠1

the output dimension, via a function � — called model — which is parameterized by a
parameter vector ◊,

y = � (x, ◊) . (2.19)

12

2.2 Introduction to Recurrent Neural Networks

Deep FNNs are typically a composition of L layers where each layer l receives the N l≠1

dimensional output x(l) = y(l≠1)
œ RN l≠1 from the previous layer l ≠ 1 as input and

performs a non-linear operation „l,

y(l) = „l

1
x(l)

---◊l
2

, (2.20)

parametrised by ◊l, such that the whole network is then described by

y = „L≠1 ¶ · · · ¶ „l ¶ · · · ¶ „0(x) (2.21)

with parameters ◊ = {◊l
}

L≠1
l=0 . The first layer l = 0 is referred to as the input layer and

the last layer l = L≠1 is the output layer. All layers in between are hidden layers. While
the input layer usually only provides the input data point x with „0 = id, a hidden layer
in a multi-layer perceptron (MLP) consists of a set of N l neural units {nl

i}
N l≠1
i=0 — called

perceptrons [Rosenblatt, 1958] — which output a weighted sum of the inputs,

o(l)
i =

N l≠1ÿ

j=0
w(l)

ji x(l)
j + b(l)

i , (2.22)

where N l≠1 is the number of units in the previous layer, w(l)
ji the synaptic strength from

neuron j in layer l ≠ 1 to neuron i in layer l and b(l)
i a bias. For the whole set of neurons

in the layer this is a simple linear projection,

o(l) = W(l)x(l) + b(l), (2.23)

where ◊l = {W(l)
œ RN l≠1◊N l

, b(l)
œ RN l

} = {{w(l)
ji }, b(l)

i } is the weight matrix and
the bias vector. To introduce non-linearity the output ol is activated by a (usually)
non-linear activation function a, giving

y(l) = a
1
W(l)x(l) + b(l)

2
. (2.24)

Among others, a widespread activation function is, for instance, the rectified linear unit
(ReLU) [Nair et al., 2010]. The choice of „L≠1 in the output layer depends on the task
and is part of the design process; noteworthy is the softmax activation function often
used for classification tasks. Note that by this definition, a layer l does only receive input
from the earlier layer l ≠ 1; however, usually, FNNs exhibit more complex architectures
but have in common that they are unidirectional and information flows only from earlier
layers to deeper layers in the network. Hence they are called deep feedforward neural
networks.

Supervised Learning The parameters ◊ in Equation (2.19) need to be inferred by a
learning process. In supervised training, this is achieved by defining a loss function
Li(�(xi, ◊), yú

i) that measures the quality of the network’s prediction yi compared to a
target value yú

i . Given a training set {xi, yi}
N
i of N individual input-output pairs, the

model’s parameters are optimized by an optimization algorithm in such a way that the

13

2 Theoretical Background

network minimizes L = q
i Li over the dataset while generalizing well to unseen data

xnew. A crucial step is to find a definition of a loss function that suits the task. Even
if there exist plenty of di�erent optimization algorithms to find (sub-) optimal model
parameters, a simple one is stochastic gradient descent (SGD),

�◊l
ij = ≠÷Ò◊l

ij
Li (�(xi, ◊), yú

i) , (2.25)

where ÷ is a learning rate and �◊l
ij the resulting weight update for weight ◊l

ij. The weights
are then updated iteratively for each data point in the training set. This procedure is
repeated over many epochs until convergence. Usually, more sophisticated optimizers,
like the Adam optimizer [Kingma et al., 2017], are used; however, almost all optimizers
have in common that they utilize the gradient of the loss function. Due to the composed
structure of FNNs in Equation (2.21), the chain rule can be applied to calculate the
gradient, allowing to backpropagate the gradient back through the network. This can be
implemented very e�ciently and is known as backpropagation (BP) [Kelley, 1960]. The
supervised learning process will be discussed in more detail in the context of RSNNs in
section 2.3.2.

Recurrent Neural Networks

A FNN gets an feature vector xi as input and outputs a prediction yi. If the input data,
however, is given as a sequence of T elements

Xi =
1
xt

i

2

t=1,...,T
, (2.26)

each element xt
i œ RD, with D the feature dimension, would have to be forwarded by the

network individually. Often, elements in sequences are correlated, meaning an element
xt≠1

i might hold information that helps to explains features in xt
i. Using a simple FNN,

this sequential correlation cannot be exploited, since neurons in FNNs do not maintain an
internal state and information is never related between elements xt

i. RNNs use therefore
recurrent layers with feedback connections that allow to propagate information over the
sequence (the following is based on Goodfellow et al. [2016, Chapter 10]). Assuming the
recurrent network to be a parameterized mapping

yt
i = �rnn

1
xt

i, S
t≠1

---◊
2

, (2.27)

each element in the sequence Xi is forwarded successively, resulting in a predicted se-
quence1

Yi =
1
yt

i

2

t=1,...,T
. (2.28)

Here, S
t≠1 is the internal state of the network that holds processed information of previ-

ous elements xtÕ<t
i , allowing �rnn to incorporate the past into the current prediction yt

i.
This state is updated recursively with each forwarded element xt

i according to
1
xt

i, S
t≠1

2
‘æ S

t, (2.29)

1Since each element in Xi is mapped to one element in Yi this is called a "many-to-many" mapping.
Depending on the task, other approaches are "one-to-many" or "many-to-one" mappings.

14

2.3 Recurrent Spiking Neural Networks

Step t St�1 St St+1

Xi xt�1
i xt

i xt+1
i

yt�1
i yt

i yt+1
i Yi

Figure 2.4: Processing of sequential data
by a RNN. Each element xt

i œ Xi is pro-
cessed individually, resulting in an output
sequence Yi. The recurrent network holds
an internal state S

t that propagates infor-
mation over the sequence.

such that information is propagated along the sequence. Figure 2.4 shows the corre-
sponding computational graph of the unrolled network. As in Equation (2.21) for FNNs,
the mapping �rnn for RNNs is usually given by a composition of layers. However, in
RNNs some layers are recurrent, utilizing the internal state S.

Each neuron nl
j in a recurrent layer l of size N l, as depicted in Figure 2.5, holds an

layer-specific internal state s(l),t
j œ S

t which is shared between the layer’s neurons by
recurrent connections. This allows the layer to perform an operation

s(l),t = f
1
s(l),t≠1, xt

i

---◊l
2

, (2.30)

which maps the neurons’ states from t ≠ 1 to t by a parameterized function f using
the output y(l≠1),t

i = x(l),t
i of the previous layer and the states s(l),t≠1 from the previous

step. Here ◊l denotes the parameters of the operation. s(l),t
œ RN l is the state vector

holding the states of all recurrent neurons in the layer. Concretely, the function f can,
for instance, be a linear projection followed by an activation function a,

s(l),t = a
1
W(l),hhs(l),t≠1 + W(l),ihx(l),t

i + b(l)
2

, (2.31)

with the recurrent weights W(l),hh
œ RN l◊N l weighting the states, W(l),ih

œ RN l≠1◊N l

weighting the inputs x(l),t
i and b(l)

œ RN l the bias vector. The states s(l),t are then for-
warded to the next layer l+1 as input x(l+1),t

i . It is noteworthy that the parameters do not
depend on t and are shared across the sequence. The layer described by Equation (2.31)
is a very simple example and only one out of many possible designs of recurrent layers.
The most common ones are certainly the long short-term memory (LSTM) [Hochreiter
et al., 1997] and the gated recurrent unit (GRU) [Cho et al., 2014].

2.3 Recurrent Spiking Neural Networks

RSNNs follow the general idea of recurrence described in Section 2.2. However, in con-
trast to RNNs, an RSNN contains spiking neurons. In particular, this means a spiking
neuron j also maintains an internal state st

j œ Rd but only exhibit an observable state
zt

j œ {0, 1} that describes the neuron’s output as a binary spike event [Bellec et al., 2019].

15

2 Theoretical Background

Figure 2.5: Visualization of a recurrent spiking
layer. The layer receives input from its preced-
ing layer l ≠ 1 projected onto layer l with weights
Wl,ih. This input is used together with the lay-
ers observable state zt≠1 fed-back with weights
Wl,ih to update the internal states st. The re-
sulting vector zt is forwarded to the subsequent
layer l + 1.

l � 1

snl

sj

s1

l + 1
Wl,hh

Wl,ih

Here, d is the dimension of the neuron’s state, given for LIF neurons by the membrane
potential vt

j with d = 1. In contrast to the recurrent layer in Equation (2.31), spiking
neurons do only expose the observable state zt

j to other neurons but not their internal
state vector st

j [Bellec et al., 2019]. That is, the state s(l),t
j of neuron j in a recurrent

spiking layer l of size N l only depends on other neurons in the layer by the observable
state vector z(l),t. The observable state vector represents the output of all neurons in the
layer. The internal state dynamic of neuron j in layer l is then given by a function M
[Bellec et al., 2019],

s(l),t
j = M

1
s(l),t≠1

j , z(l),t≠1, x(l),t
---◊l

2
, (2.32)

which is mapped to the observable state z(l),t
j by f

z(l),t
j = f

1
s(l),t

j , z(l),t≠1, x(l),t
---◊l

2
, (2.33)

where x(l),t is the input from the previous layer. Specifically, for LIF neurons, M is
defined by Equation (2.14) and f by Equation (2.35). Figure 2.6 shows the corresponding
computational graph.

Figure 2.6: Computational graph of a recurrent
spiking layer unrolled in time. The red nodes de-
scribe the neurons internal states sj , the green
nodes the observable state vector zt. Each inter-
nal state at t is mapped to a new state at t + 1
by M which incorporates the inputs xt, zt≠1 and
st≠1

j . f defines the mapping from the internal
state to the observable state, given by the spike
events zt

j for spiking LIF neurons. Graphic in-
spired by [Bellec et al., 2020].

st�1 st st+1

zt�1 zt zt+1

f

M

xt�1 xt xt+1

E

16

2.3 Recurrent Spiking Neural Networks

2.3.1 Network under Consideration

Without loss of generality, the network considered in the following consists of an input
layer, a single recurrent layer followed by an output layer, as depicted in Figure 2.7 (the
notation follows [Bellec et al., 2019]). The input layer has ni neurons, providing an input
vector xt

œ {0, 1}
ni to the recurrent layer weighted by ◊ih. Each of the nh LIF neurons in

the recurrent layer has an internal state st
j =

Ë
vt

j

È
, evolving according to Equation (2.14)

(for simplicity setting vl = vr = 0 and replacing n with t),

vt+1
j = –vt

j +
ÿ

i

◊ih
jix

t+1
i +

ÿ

i”=j

◊hh
ji zt

i (2.34)

with a ”-kernel as given in Equation (2.13). For LIF neurons, the observable state zt
j is

defined by the Heaviside function

zt
j = �

1
vt

j ≠ Ë
2

, (2.35)

where Ë is the threshold. The observable state vector zt is projected onto the recurrent
layer at t + 1 weighted by ◊hh, as well as on the output layer at t with weights ◊ho. The
output layer is assumed to consist of no leaky integrate (LI) neurons with a membrane
dynamic like LIF neurons, however, without the ability to spike,

yt
k = Ÿyt≠1

k +
ÿ

j

◊ho
kj zt

j. (2.36)

These types of neurons are called readout neurons from here on. Note, readout neu-
rons have a decay constant Ÿ = exp (≠�T/·m,k) to distinguish membrane time constants
between spiking and non-spiking neurons. Due to the simplified network structure, the
layer index l is omitted.

snh

sj

s1

xni

xi

x1

yno

y1

zt�1

yt

st, zt

xt

✓ih

✓hh

✓ho

Figure 2.7: A recurrent spiking neural network
with one input layer, a single recurrent layer con-
sisting of LIF neurons and a output layer with
non-spiking readout neurons. At each time t an
input spike vector xt is integrated in the recur-
rent neurons together with the observable state
vector zt — the spike events from the previ-
ous time step — by recurrent connection. Spike
events arriving at a neuron j change its internal
state st

j , given by the membrane potential. The
recurrent spikes are projected onto the readout
neurons, which define the network’s output yt.

2.3.2 A Learning Framework

In order to enable learning in the network at hand, a learning framework is outlined
as described by Bellec et al. [2019]. For learning, the network’s synaptic weights need

17

2 Theoretical Background

to be adjusted such that the loss function E of the network is minimized. E might
depend on the network’s observable state z or on a subset of it. For a regression task, E
measures the deviation of the readout neuron’s membrane trace yt

k to some target values
yú,t

k . Regardless of the explicit form of E, for gradient-based learning, an expression for
the gradient of E with respect to the network’s weights ◊ih, ◊hh, and ◊ho needs to be
found. Then, the gradient dE

d◊ji
suggests the direction in which the weight ◊ji needs to be

adjusted in order to minimize E. According to Werbos [1990], the gradient with respect
to the recurrent weights ◊hh can be decomposed into

dE

d◊hh
ji

=
ÿ

t

dE

dst
j

·
ˆst

j

ˆ◊hh
ji

, (2.37)

which is widely known as back-propagation through time (BPTT). Assuming the net-
work’s loss to depend exclusively on the observable state vector zt, E = E

1
z1, . . . , zT

2
,

Bellec et al. [2019] factorize the gradient in Equation (2.37) into a sum of products,
dE

d◊hh
ji

=
ÿ

t

Lt
j · et

ji, (2.38)

with Lt
j being the learning signal for neuron j and et

ji the eligibility trace of the corre-
sponding synapse ji (for a proof see [Bellec et al., 2019, page 20-22]). While the learning
signals depend on the network’s error E, the eligibility traces are performance indepen-
dent and represent all local information available at a synapse at time t. Approximated
learning algorithms emerging from Equation (2.38) that can be computed online (i.e.,
forward in time) are referred to as e-prop.

Eligibility Traces

Considering Equation (2.32), the dynamic of the internal state st
j of a neuron j isolated

from all other neurons is given by

Dt≠1
j := ˆ

ˆst≠1
j

M
1
st≠1

j , zt≠1, xt
---◊ih, ◊hh

2
=

ˆst
j

ˆst≠1
j

œ Rd◊d. (2.39)

For LIF neurons, this describes how the membrane potential intrinsically evolves over
time. Further, if the internal state changes with its corresponding weights according to

ˆst
j

ˆ◊hh
ji

:= ˆ

ˆ◊hh
ji

M
1
st≠1

j , zt≠1, xt
---◊ih, ◊hh

2
œ Rd, (2.40)

the derivation of Equation (2.38) arrives at the recursively defined eligibility vectors

‘t
ji = Dt≠1

j · ‘t≠1
ji +

ˆst
j

ˆ◊hh
ji

œ Rd, (2.41)

which, intuitively, propagate local synapse activation information from the past to the
current time t. This will become clear in the context of LIF neurons. The eligibility
traces are then given by

et
ji =

ˆzt
j

ˆst
ji

· ‘t
ji (2.42)

18

2.3 Recurrent Spiking Neural Networks

and quantify how much a synapse ji remembers of its activation in the past. Note,
the eligibility traces are not an approximation and accumulate all contributions to the
gradient, which can be computed forward in time.

Learning Signals

For Equation (2.38) to hold true, the learning signals need to be given by the total
derivative of the loss E with respect to the neuron’s observable state,

Lt
j := dE

dzt
j

. (2.43)

These learning signals define how the activity of neuron j at time t influences the net-
work’s error in the future. The dependency of future errors on the current activity poses
a problem for a biologically-motivated learning rule because the computation of Lt

j re-
quires the knowledge of how much the activity at t is responsible for the network’s error
in the future. In order to calculate the mathematically correct gradient, this future in-
formation needs to be backpropagated through time, which lacks biological plausibility.
Additionally, BPTT it is also not very appealing from a computational point of view;
calculating the learning signals requires saving the network’s states for all times t during
the forward pass, such that afterward, all information is present to perform the backward
pass. This results in locking since the weights can only be updated after a full emulation
of the network. Therefore, Bellec et al. [2019] propose an online approximation of the
learning rules, allowing to compute Lt

j, and thus the gradient, forward in time.

Given an online approximation for the learning signals, Equation (2.38) suggests a clear
learning strategy: At all times t, adjust the weights ◊hh

ji by ≠÷Lt
je

t
ji, either in an online

fashion or accumulative (with ÷ the learning rate). It is important to note that the learn-
ing framework described is not limited to spiking neuron models but can also be applied
to non-spiking networks with appropriate definitions of M and f in Equation (2.32) and
(2.33). In particular, this holds for artificial neural networks with LSTM units.

2.3.3 Biologically inspired Alternative to BPTT

BPTT can be avoided by ignoring the impact of the network’s activity at t on future
errors at tÕ > t and only considering the instantaneous error. Mathematically, this means
expanding the total derivative in the learning signals and neglecting the derivative with
respect to future states [Bellec et al., 2019],

Lt
j = dE

dzt
j

= ˆE

ˆzt
j

+ dE

dst+1
j

ˆst+1
j

ˆzt
j

≠æ L̂t
j = ˆE

ˆzt
j

, (2.44)

such that the approximated learning signals L̂t
j are given by the remaining partial deriva-

tive2. These learning signals can now be computed in a forward-manner. Therefore, the
2Note that this is only one way to find online learning signal. They can for instance also be generated

by a neural network, see [Bellec et al., 2019].

19

2 Theoretical Background

approximated version of the gradient in Eq. (2.38) result in weight updates (fc. Equa-
tion (2.25))

�◊hh
ji = ≠÷

‰dE

d◊hh
ji

= ≠÷
ÿ

t

L̂t
j · et

ji, (2.45)

that can be calculated in parallel to the forward pass. The corresponding computational
graph is visualized in Figure 2.8a.

st�1 st st+1

zt�1 zt zt+1

xt�1 xt xt+1

Eetji

L̂t
j

(a) Computational Graph of et
ji and L̂t

j

st�1 st st+1

zt�1 zt zt+1

xt�1 xt xt+1

ELt
j

(b) Computational Graph of Lt
j

Figure 2.8: Computational graphs for e-prop. (a) Computing the gradient under online approx-
imation requires to compute et

ji and L̂t
j . Both can be calculated in a forward-fashion

without propagating the gradient back in time. (a) Using the mathematical correct
gradient with Lt

j results in BPTT, since the network’s activity at time t influences
the error in the future. BPTT is considered biologically implausible. Graphs re-
produced from [Bellec et al., 2019].

Emerging Learning Rule for LIF Neurons

Now, as a general learning framework for recurrent spiking (and non-spiking) networks
is provided in Section 2.3.2, the corresponding learning rules for the LIF network in
Section 2.3.1 can be specified. A detailed explanation of the following derivation can be
found in [Bellec et al., 2019; Bellec et al., 2020].

In order to calculate the gradient in Equation (2.45), the eligibility traces et
ji and the

learning signals L̂t
j need to be defined for LIF neurons. For the LIF neurons, the functions

M and f are described by Equation (2.34) and Equation (2.35), respectively. Inserting
Equation (2.34) into Equation (2.39) and (2.40), with st

j =
Ë
vt

j

È
, gives

Dt≠1
j = – and

ˆvt
j

ˆ◊hh
ji

= zt≠1
i . (2.46)

20

2.3 Recurrent Spiking Neural Networks

The resulting eligibility vector in Equation (2.41) is then given by the low-pass filtered
recurrent spike train zt

i ,

‘t+1
ji = –‘t

ji + zt
i =

ÿ

tÕÆt

–t≠tÕ
ztÕ

i
def= ẑt

i . (2.47)

For spiking neurons, the partial derivative ˆzt
j

ˆvt
m,j

in Equation (2.42) is ill-defined due to
the discontinuous observable state zt

j. Therefore, this derivative is replaced by a pseudo-
derivative ht

j,

ht
j = “ max

A

0, 1 ≠

vt

j ≠ Ë

Ë

B

, (2.48)

with a tunable smoothing factor “. Finally, inserting ht
j and the expression for ‘t+1

ji into
Equation (2.42) yields the eligibility traces

et+1
ji = ht+1

j · ẑt
i . (2.49)

The learning signals L̂t
j depend on the loss function E. Assuming a regression task, where

the membrane potentials yt
k of the readout neurons have to resample a target trace yú,t

k ,
the loss is given by the residual sum of squares (RSS),

E = 1
2

ÿ

t,k

(yú,t
k ≠ yt

k)2. (2.50)

Inserting the membrane potential yt
k in Equation (2.36) into E and executing the partial

derivative with respect to zt
j gives the online learning signals

L̂t
j =

ÿ

tÕØt

ÿ

k

◊ho
kj

1
ytÕ

k ≠ yú,tÕ

k

2
ŸtÕ≠t. (2.51)

Observe that the learning signals L̂t
j are now given by a sum over the future. For online

learning, this, obviously, is a problem. However, this can be addressed by inserting L̂t
j

and et
ji into Equation (2.45) and interchanging the sum indices,

�◊hh
ji = ≠÷

ÿ

t

ÿ

tÕØt

ÿ

k

◊ho
kj

1
ytÕ

k ≠ yú,tÕ

k

2
ŸtÕ≠tet

ji (2.52)

= ≠÷
ÿ

t

ÿ

k

◊ho
kj

1
yt

k ≠ yú,t
k

2 ÿ

tÕÆt

Ÿt≠tÕ
etÕ

ji. (2.53)

This is the desired online plasticity rule for the recurrent synaptic weights. Due to the
similarity of Equation (2.53) and the approximated gradient in Equation (2.45), the term
q

k ◊ho
kj

1
yt

k ≠ yú,t
k

2
is from here on called learning signal (change in terminology) unless

not explicitly referring to Equation (2.51). The plasticity rule for the input weights ◊ih
ji

can be derived in the same way. In fact, solely replacing the recurrent spike train zt≠1
i

with the input spike train xt
i in Equation (2.46) gives the weight updates �◊ih

ji . The
updates for the output weights are not subject to the e-prop framework and arise from
simple backpropagation,

�◊ho
kj = ≠÷

ÿ

t

1
yt

k ≠ yú,t
k

2 ÿ

tÕÆt

Ÿt≠tÕ
ztÕ

j . (2.54)

21

2 Theoretical Background

Regularization

To prevent the recurrent neurons to fire unrealistically strong a firing rate regularization
term is introduced and added to the weight updates. For an average firing rate f av

j =
”t
T

q
t zt

j of neuron j and a desired target rate f target, the regularization loss is given by

Ereg = 1
2

ÿ

j

1
f av

j ≠ f target
22

. (2.55)

Applying the just derived learning framework gives a regularization weight update for
the recurrent and input weights (see Bellec et al. [2019]),

1
�◊ih, hh

ji

2reg
= ÷reg ÿ

t

”t

T

1
f target

≠ f av
j

2
ht

j ẑ
t≠1
i . (2.56)

with ÷reg being the regularizing learning rate, defining how strong deviations from the
target rate are penalized. The total weight updated it then simply the sum of �◊ih, hh

ji

in Equation (2.53) and
1
�◊ih, hh

ji

2reg
.

Error Broadcasting

In Equation (2.53), the update rule consists of the local eligibility traces et
ji, filtered by the

readout decay Ÿ and weighted by a neuron-specific learning signal q
k ◊ho

kj (yt
k ≠yú,t

k). This
error signal can be related to the experimental finding of error-related negativity (ERN)
in the brain [Bellec et al., 2019]. It is suggested that the ERN is a signal which accounts
for behavioral errors and gates learning. Interestingly, this ERN can be measured before
an error is received by sensory feedback [MacLean et al., 2015, Fig. 4], leading to the
assumption that the brain uses an error prediction network to guide synaptic plasticity.
Further, experimental data shows that error signals emitted in the brain, for instance, by
dopaminergic neurons in form of neuromodulators like dopamine, interact with synapse-
specific eligibility traces [Gerstner et al., 2018]. Therefore, this learning rule has an
appealing biological interpretation. For a more in-depth interpretation, see [Bellec et al.,
2019].

However, when modeling biology, the dependency of the error signal on ◊ho seems prob-
lematic. Usually, the feedback connections from readout neurons are biologically given
by di�erent cells than the feed-forward connections. Therefore, it is unlikely that this
feedback weight ◊ho

kj , given in the error signal (imagine this signal to be transmitted
to neuron j by a feedback connection), has the exact same weight as the feed-forward
connection. Bellec et al. [2019] replace this weight with a random feedback weight Bkj,

�◊hh
ji = ≠÷

ÿ

t

ÿ

k

Bkj

1
yt

k ≠ yú,t
k

2 ÿ

tÕÆt

Ÿt≠tÕ
etÕ

ji. (2.57)

This is motivated by deep FNNs, for which it was found that a great amount of learning
can be realized by replacing the backpropagated error signals with layer-specific randomly
weighted sums of the network’s global output error [Samadi et al., 2017; Nøkland, 2016].

22

2.3 Recurrent Spiking Neural Networks

An example of the derived online plasticity rule for a pattern-generation task can be seen
in Figure 2.9.

Please note, error broadcasting is not element of this thesis and is only shown for the
sake of completeness.

23

2 Theoretical Background

0 100 200 300 400 500 600

Epoch

10
�3

10
�2

10
�1

M
S
E

Direct

Constant

Random 1 ms

Random 20 ms

�1

0

1

y k
=
0
[a
.u
.]

�1

0

1

y k
=
1
[a
.u
.]

�1

0

1

y k
=
2
[a
.u
.]

Target

0 200 400 600 800 1000

Time [ms]

0

5

10

15

N
e
u
r
o
n
I
D

Figure 2.9: Pattern-generation task example trained with e-prop. A input layer provides Pois-
son distributed input events and to a single recurrent layer. The spike events of the
recurrent neurons are integrated onto the membranes of three readout neurons over
a time period of 1 s. Using the described online approximation of the true gradient,
the network can learn to solve the task such that the membrane traces yt

k do resem-
ble the target traces yú,t

k very well. Instead of backpropagating the gradient through
time, it is calculated completely forward in time, making it more plausible from a
biological perspective. The lowermost plot shows the spike events of the 16 first
recurrent neurons. The di�erent colors in the upper plot describe di�erent feedback
strategies. Orange: Direct feedback with feedback weights ◊ho

kj . Red: Same random
feedback matrix Bkj for all times t. Blue: Sampling new feedback weights every
1 ms. Green: Sampling new feedback weights every 20 ms. Network parameters:
ni = 20, nh = 600, no = 3, ·m = 20 ms, ·ref = 5 ms, Ë = 0.6.

24

3 Neuromorphic Hardware

Neuromorphic hardware architectures approach the computation of neural networks by
mimicking the behavior of their biological counterpart. Biologically inspired neuron
models, like the leaky integrate-and-fire (LIF) neuron, are emulated in hardware rather
than being simulated in a discrete fashion numerically [Schemmel et al., 2010]. Therefore,
neurons are realized in-silicio, constituted by electronic components, allowing to build
a system operating massively in parallel. This comes with the advantage that electrical
neurons can have very small time constants, enabling in-silicio neurons to work on a much
smaller time scale than biology. Especially neuro-scientific simulations are promising to
profit from this acceleration. Numerical computer simulations taking weeks, or even
months, can be reduced to merely a few seconds, opening up the possibility to conduct
experiments on a much larger time frame. Further, compared to classical hardware,
simulations on accelerated neuromorphic chips are also considered to be more energy-
e�cient [E. C. Müller, 2014].

3.1 The BrainScaleS System

The BrainScaleS-2 (BSS-2) system is an accelerated neuromorphic hybrid architecture
unifying both digital and analog technologies. On the very heart of the system is the
HICANN-X v2 (HX) chip (full name: HICANN-DLS-SR-HXv2) emulating analog spik-
ing neural networks (SNNs) [Schemmel et al., 2020]. Field-programmable gate arrays
(FPGAs) allow, via Gigabit Ethernet, to configure and control the chip in real-time from
a host computer. Therefore, experiments can be described in software, executed on the
chip, and experiment observables, like spike times, can be accessed via the FPGA on the
host-side. Several software abstraction layers enable high-level experiment descriptions
[E. Müller et al., 2020a] without the need to handle host-chip communication manually.
Notably, BSS-2 extensions for common frameworks like PyNN [Davison et al., 2009] or
PyTorch [Paszke et al., 2019] facilitate chip usage for non-expert users (more on software
in Chapter 4).

As depicted in Figure 3.1, the analog network core (ANNCORE) of HX is split into two
hemispheres. Each hemisphere emulates up to 256 analog neuron circuits, allowing to
perform 512 neural operations in parallel. Neuron circuits on a hemisphere are arranged
on two sides; on each side, a synapse matrix provides 256 synaptic connections to each
neuron compartment, making in total 131,072 synapses on HX. In the following, the
two synapse matrices on the same hemisphere are considered one. The neuron’s binary
spike events are routed via a crossbar within the chip and are injected into the rows

25

3 Neuromorphic Hardware

(a) HICANN-X v2 (b) Chip layout

Figure 3.1: HICANN-X v2 (HX) chip. (a) Single HX chip close-up. The chip is approximately
4 mm ◊ 8 mm in size. Photo taken by Eric Müller, 2020. (b) Schematic block
diagram HX’s analog network core (ANNCORE), which is composed of two hemi-
spheres constituted by two quadrants each. Both hemispheres feature 256 neuron
circuits, synapse matrices with 256 rows, and a digital general purpose processor
(PPU). Among other, the PPU can access synapse weights, correlation data, and
the neurons’ membrane potentials via a vector unit (VU), allowing implementing
high-speed on-chip plasticity rules. Image from [Schemmel et al., 2020].

of the synapse matrices by synapse drivers. All events are annotated with an address
allowing direct addressing to specific groups of synapses and identifying them with the
corresponding neuron when read out with the FPGA. External spike events can be
injected into the chip and directed to synapses using the FPGA but can also be created
on-chip by spike generators. As a crucial element of HX, each hemisphere has a dedicated
digital general purpose processor with the purpose to execute plasticity algorithms on-
chip — hence they are called plasticity processing units (PPUs). Synapses, Neurons, and
PPUs are discussed in more detail in the following paragraphs.

Synapses Synapses have configurable 6 bit weights and 6 bit labels (see Figure 3.2a).
On an incoming spike event, the address carried by the event is compared to the label
stored in the synapse, and on match, the synapse triggers a short analog pulse with a
height proportional to the synaptic weight. This pulse is translated to an exponentially
decaying current onto the membrane of the corresponding neuron, which e�ectively em-
ulates current-based synapses with a single exponential kernel. In addition, each synapse
has a correlation sensor incorporated, described in Section 3.2. A single synapse driver
governs two adjacent synapse rows in a synapse matrix. The synapse driver is configured
to treat the corresponding lines row-wise excitatory or inhibitory. In essence, this means
all synapses on the same row have either an inhibitory or an excitatory e�ect on the
neurons’ membranes. Unused synapse rows can be disabled individually.

On each hemisphere are four PADI bus lines on which the synapse drivers are connected
alternately (see Figure 3.2b). Hence, a PADI bus is connected to 32 drivers. A event on
HX are given by a 13 bit address. While the two uppermost bits select the PADI bus,
the next 5 bits constitute a row_select_address that selects the driver on the bus. The

26

3.1 The BrainScaleS System

(a) Synapse block diagram (b) Synapse matrix

Figure 3.2: Synapses on HICANN-X v2. (a) Pre-synaptic spike events are provided row-wise to
a synapse-row by synapse drivers, the events are 6 bit address is compared to the
6 bit synapse address. On match, an exponential decaying current is triggered on
the neuron’s membrane. The amplitude of the current depends on the synaptic 6
bit weight. Additionally, a correlation sensor measures the correlation between the
pre- and post-synaptic events. Synapses can be configured row-wise excitatory (line
A) or inhibitory (line B). Image from [Friedmann et al., 2017]. (b) Each synapse
driver provides events to two synapse rows and is connected to a specific PADI bus
line. A synapse column projects its events onto one neuron. External and internal
spikes are routed by a crossbar.

lowermost 6 bits are injected into the synapse rows to target specific the synapse labels.
Further, each driver has a 5 bit row_address_compare_mask that configures which bits
of the row_select_address the driver should consider when deciding whether the event
is addressed to it or not.

Neurons The neuron circuits on HX are designed to emulate adaptive exponential
integrate-and-fire (AdEx) neurons in analog [Brette et al., 2005; Naud et al., 2008].
However, they can be configured to behave as LIF neurons according to Equation (2.6).
Due to the neuron’s in-silicio implementation, they have much smaller time constants
than their biological counterparts. While biology usually operates with time constants of
about O(1 ms≠100 ms), neurons on HX can operate approximately O(103) faster. Thus,
experiments on hardware need to be translated to the biological time domain by

1000 · tbio = thw
≠æ 1 µshw = 1 msbio. (3.1)

Experiments in the thesis are always given in the biological time domain.

For neurons on HX to exhibit some desired membrane dynamic, they need to be parame-
terized individually. Therefore, each neuron has 24 analog capacitive memory (CapMem)
cells, which are adjusted appropriately by a calibration process. This allows configuring
the time constants ·m and ·ref, as well potentials Ë, vl and vr as demanded. Since LIF
neurons spike when the membrane potential exceeds the threshold, neuron circuits on
HX have a threshold comparator that detects whether the membrane potential did indeed
cross the threshold and produces a binary spike event correspondingly. This comparator

27

3 Neuromorphic Hardware

Figure 3.3: The plasticity processing unit

(PPU) is a digital general purpose processor
with a vector unit (VU) extension, present
on each hemisphere of HX. The processor
is based on a 32-bit architecture and can
access the synapse matrix rows via the VU
in parallel. It features 16 KiB SRAM and
4 KiB instruction cache. Code, as well as
data, can optionally be placed on an ex-
ternal DRAM allowing to implement larger
PPU programs. The PPU is intended to re-
alize on-chip plasticity rules. Image inspired
by [Friedmann et al., 2017].

can also be turned o�, allowing the membrane potential to evolve freely within the pos-
sible hardware ranges without sending out a spike. For realizing readout neurons on HX,
this non-spiking mode comes in handy. Further, the membrane trace of a single neuron
on HX can be sampled with high resolution by a membrane ADC (MADC).

In order to force a neuron to spikes independently from its membrane potential, neurons
have an excitatory and an inhibitory bypass-mode, which allows excitatory or inhibitory
pre-synaptic spikes to trigger a post-synaptic event immediately. An additional impor-
tant feature is the neuron’s spike counter. Each neuron features a 9 bit digital counter,
which is incremented by one at the occurrence of a post-synaptic spike. The first 8 bits
represent the spike count, while the uppermost bit serves as an overflow detection. These
counters can be reset and read out from the PPU.

Plasticity Processing Unit The analog circuits on HX are tightly coupled to the PPU
[Friedmann, 2013] on each hemisphere. The PPU consists of a microprocessor with a
32-bit PowerISA 2.06 [PowerISA, 2010] architecture that is programmable in C/C++
(and assembler) in connection with a standalone C/C++ compiler, based on a custom
extension of the gcc 8.1 toolchain. Per default, the PPU has a 4 KiB instruction cache
and 16 KiB SRAM. However, depending on the software state, an external DRAM with
up to 128 MB1 is available on which program code as well as data can be placed. This
allows implementing larger programs than possible with the 16 KiB SRAM.

As depicted in Figure 3.3, the PPU has a 128-byte wide vector unit (VU) extension.
While the VU enables the PPU to perform vectorized operations and access the DRAM
vector-wise, its primary purpose is to read and manipulate synaptic weights in the
synapse matrices row-wise in parallel, e�ectively making on-chip plasticity feasible. In
addition, the VU endows the PPUs with the ability to read out analog observables — dig-
itized by 512-channel single-slope analog-to-digital converter (ADC) on each hemisphere
— in parallel. The ADC has two channels per synapse column (casual and acausal, see

1Theoretically, the DRAM can have a size of 1 GiB when using the corresponding software.

28

3.2 Correlation Sensors

Figure 3.4: The correlation sensor measures
the time between a pre- and the next post-
synaptic event by a time to voltage conver-
sion circuit. This voltage is weighted ex-
ponentially and stored in the causal stor-
age. Correspondingly, a anti-causal storage
stores the correlation between a post- and
the next pre-synaptic event. These storages
are digitized by the CADC and read out by
the PPU via the VU. The amplitude and
the time constant of the correlation mea-
surements can be calibrated by two calibra-
tion bits each. Image from [Friedmann et
al., 2017].

Section 3.2) and is referred to as column ADC (CADC) [Schreiber, 2021]. Among oth-
ers, analog observables that can be read out with the VU are membrane potentials and
correlation measurements (see Section 3.2).

3.2 Correlation Sensors

Each synapse in the synapse matrix on HX features an additional analog circuit —
the correlation sensor — to measure local correlation information between pre-synaptic
events arriving at a synapse and the post-synaptic spike events of the corresponding
neuron. Correlation measurements in a synaptic connection is the fundamental element
of plenty of Hebbian-inspired plasticity rules [Hebb, 2005], such as spike timing dependent
plasticity (STDP), and is, therefore, a vital component for on-chip learning. As visualized
in the block diagram in Figure 3.4, the sensor accumulates causal correlation between
pre- and post-event pairs and anti-causal (acausal) correlation measurements between
pairs of post- and pre-events simultaneously.

To measure correlation in analog, the sensors need to generate an internal timing between
the latest pre-synaptic (post-synaptic) and the next post-synaptic (pre-synaptic) spike
and translate it into a voltage via a time to voltage conversion circuit. This is achieved
by setting a capacitor C(a)causal to an initial value and triggering a constant discharge
process at the occurrence of a pre-synaptic (post-synaptic) event, which is stopped on
the subsequent post-synaptic (pre-synaptic) spike [Friedmann et al., 2017]. Then, the
voltage on the capacitor is a measure for the time di�erence between the spike pair. This
voltage is scaled via a storage gain parameter, weighted by an exponentially decaying
function, and finally added to the causal (acausal) storage circuits, accumulating the
correlation, as depicted in Figure 3.5. Using the 512-channel CADC (two ADCs, one
causal, and one acausal channel per column), the causal and acausal storages of a whole
synapse row can be measured in parallel via the PPU. This enables the PPU to calculate
on-chip weight updates based on accumulated correlation.

29

3 Neuromorphic Hardware

Since pre-events (post-events) do start the discharge process of capacitor C(a)causal after
a quick reset to its initial value, multiple succeeding pre-events (post-events) do merely
retrigger the measurement; however, they do not change the storage. Therefore, the
sensors do only measure the correlation in a nearest-neighbor fashion.

Due to transistor variations, the sensors are subject to fixed-pattern noise. In order
to take care of this, each synapse is equipped with four digital calibration bits. The
correlation amplitude ÷c can be calibrated by adjusting the storage gain parameter with
a 2 bit digital input. The remaining two bits calibrate the time to voltage conversion
circuit which is defining the correlation time constant ·c.

Figure 3.5: Behavior of the causal correlation
curves. A pre-synaptic event at time tpre trig-
gers the discharge process. At the following
post-synaptic event at tpost the remaining am-
plitude ÷c(tpost) (red line) is read out and ac-
cumulated in the causal storage. Time con-
stant ·c and amplitude ÷c are set by quadrant-
global analog parameters. tpre tpost

÷ c
(t

)

causal storage

·c

30

4 Developed Software

Developing neuromorphic hardware goes hand-in-hand with providing software solutions
that ensure seamless chip usage. Ideally, machine learning implementations on HX are
described in common high-level software frameworks — such as PyTorch [Paszke et al.,
2019] — and executed on the chip implicitly, allowing e�ortless experiment design by
non-expert users. From low-level chip communication to software representations of
experiments conducted on hardware and analog chip configuration, top-level chip usage
requires several levels of chip abstraction to interact smoothly. This comes with many
challenges that need to be tackled. One of them is certainly the interfacing of training in
analog spiking neural networks to the digital learning environment PyTorch — subject
of this chapter and one main element of this thesis.

Experiments conducted in later chapters are based on the software developed and elab-
orated in the following sections. These will encompass the description of a high-level
e-prop experiment framework abstracting execution of experiments with recurrent spik-
ing neural networks (RSNNs) in software and on hardware. Besides simulating networks
of spiking neurons in software, the main focus is here the integration of HX in PyTorch
for learning in RSNNs on hardware.

4.1 E-prop Framework

For simulations and experiments on HX, a top-level EProp framework is developed, writ-
ten in Python and inspired by BindsNET [Hazan et al., 2018]. This framework allows
describing abstract networks of spiking neurons by a high-level interface. Most impor-
tantly, it allows performing learning in RSNNs simulated in software and emulated on HX
by defining several e-prop-inspired online learning rules. The interface is designed such
that learning with HX in-the-loop (see Section 4.2.1) is equally abstracted as learning in
software. This is achieved by interfacing the communication to HX by the C++ PyTorch
extension hxtorch [Spilger et al., 2020]. Since hxtorch supports only non-spiking net-
works, so far, by providing analog matrix multiplications and convolutional operations
[Weis, 2020; Emmel, 2020], support for spiking networks is introduced in Section 4.2
by incorporating grenade [Spilger, 2021]. grenade is a framework that finds graph-
based experiment descriptions for HX. Therefore, a network is defined by populations of
hardware neurons and projections between these populations, which are then mapped to
HX by configuring the chip accordingly and handling all event-routing implicitly. After
providing the network’s inputs, the experiment is executed, and the required network
observables returned by grenade. However, grenade’s default event-routing algorithm

31

4 Developed Software

Figure 4.1: Software stack for experiments on HX. The high-level experiment framework is
implemented in PyTorch, which utilizes hxtorch to perform the forward pass on
HX. Within hxtorch the grenade interface is used to map the network’s topology
to a hardware representation on HX. grenade handles all spike routing, executes
the experiment and returns desired observables. These hardware observables are
translated to PyTorch tensors in hxtorch. The chip is calibrated by calix.

does not support recurrent projections; Hence, a corresponding algorithm for recurrent
networks is contributed (see Section 4.2.3). The chip itself is brought into the desired
working state by calibration with calix [Weis, 2020]. The described software stack is
visualized in Figure 4.1.

4.1.1 Network Representation

In the top-level software layer, network topologies are defined in Model classes, derived
from a PyTorch module AbstractNetwork. Similar to PyNN [Davison et al., 2009; Czier-
linski, 2020], populations of neurons (layers) are added by the method add_population.
As in Listing 4.1, populations are described by the population’s size, neuron-type object,
and the neurons’ parameters. A source population is connected to a target population
via a Synapse type and registered by add_projection. The synapse object implements
the projection’s functionality and handles all synapse-specific properties. In particular,
this includes performing synaptic plasticity according to an online update rule defined
in an injected projection-specific LearningRule class.

In principle, this interface supports network descriptions of arbitrary complexity, of
which, of course, not all can be realized on hardware. Note that the interface is designed
in a plug-in fashion. This is convenient for simulating various functionalities; Di�erent
implementations of neuron types, synapses, and learning rules can be exchanged without
interfering with the network description.

32

4.1 E-prop Framework

Listing 4.1: Desciption of a spiking network in software.

1 class Model(AbstractNetwork):

2 def __init___(self, *args, **kwargs):

3 ...

4 # Input neurons
5 self.add_population(Input(n_i, ...), name="input")

6 # Recurrent neurons
7 self.add_population(CurrentLIFNodes(n_h, ...), name="hidden")

8 # Readout neurons
9 self.add_population(CurrentLINodes(n_o, ...), name="output")

10

11 # Projections
12 self.add_projection(Synapse(learning_rule=LearningRule, ...),

13 source="input", target="hidden")

14 ...

4.1.2 Simulating RSNNs in Software

Simulating RSNNs in software is fundamentally di�erent from emulating spiking net-
works on analog neuromorphic hardware. On HX, spikes are represented event-based
by addresses emitted at spike times and neurons are emulated in continuous time. In
contrast, the simulations here work on a discrete time lattice.1

Therefore, the neuron object in each population (except the input population) stores
the internal states st of its neurons — for instance, the membrane potentials vt

j for
LIF neurons. At each time t, each population in the network receives input from its
corresponding projection, which maps the pre-synaptic events to neuron-specific inputs
to the subsequent population by a dense synaptic weight matrix. The inputs are then
used to evolve the neurons’ internal states by one time step ”t to st+1. After integrating
the internal dynamics, the population exposes an observable state zt+1 serving as input
at step t + 1 to subsequent projections. That is, at all steps t the neuron dynamics in
the whole network are evolved to t + 1 in parallel in terms of time discretization. As
a consequence, there is no time delay due to spatial information flow from an earlier
population to populations deeper in the network. Further, the recurrence in the network
has an adjustable transmission delay given by ”t, in contrast to HX, where spike events
are fed back with fixed (but usually very small) latency. The network is propagated one
time step by calling the models forward method [Paszke et al., 2019] with the network’s
current input events. A computational graph is given in Figure 4.2.

For the network described in Section 2.3.1, the dynamic of recurrent LIF neurons is
implemented in a class CurrentLIFNodes, which integrates membrane potentials nu-
merically according to Equation (2.14) when calling forward. In addition, this class

1In principle, it is also possible to implement event-based simulations. This approach is not considered
in this thesis.

33

4 Developed Software

simulates the synaptic input current by neuron-specific single exponential kernels as in
Equation (2.17). The readout neurons implemented in CurrentLINodes behave identi-
cally, however, without the ability to spike.

Figure 4.2: Computational graph of the network simulation
engine unrolled in time. The network is described by pop-
ulations (red) and projections between populations (blue).
Spiking neurons in population l hold internal states st and
exhibit spikes zt. The projections receive spike events of
population l ≠ 1 at time t ≠ 1 to provide input to the layer
l at t. Projections hold the synaptic weights and propagate
the eligibility vectors ‘t

ji.

zt�1
l�1 zt

l�1 zt+1
l�1

✓, ✏t�1
ji ✓, ✏tji ✓, ✏t+1

ji

st�1
l stl st+1

l

zt�1
l zt

l zt+1
l

4.1.3 Learning

The synapses between two populations are managed by a Synapse object in the network’s
projection. This object holds the synaptic weight matrix as torch.Parameters [Paszke
et al., 2019] and a dedicated LearningRule instance to adjust these synaptic weights ap-
propriately. Therefore, after evolving the network’s populations by ”t, an update method
is called on the synapse object, which, firstly, computes the inputs for the next time step
and, secondly, evokes the plasticity rule instance to compute, depending on the update
rule, parts of the gradient, or the weight updates directly. Hence, this implementation
supports calculating weight updates in parallel to the forward pass.

Since the plasticity rule in a Synapse has full access to its target’s population state
variables z and s and to the eligibility vectors ‘t

ji simulated within each synapse, the
eligibility traces et

ji — and approximations of it — can be computed at each step t. This
local information is either processed directly and merged with externally injected learning
signals Lt

j to compute the contribution of the current time step to the weight update or
stored and used with a sequence of learning signals after simulating the network. In
the first case, the weight updates can be applied on-the-fly to the synaptic weights or
bu�ered and summed up in the end according to Equation (2.45). This is possible
by calling store_gradient on the learning rule instance after forwarding the whole
input sequence, giving the opportunity to post-process accumulated information to a
weight update. The update is then stored in the projection’s parameter tensor as grad
[Paszke et al., 2019] or applied directly to the synaptic weights. While the first allows
taking advantage of PyTorch’s optimizers to optimize the weights more sophisticatedly by
incorporating momentum into the updates, the second is used to model momentum-free
updates as expected on-chip when using the PPU (see Chapter 6).

Eligibility Vectors Eligibility vectors are a crucial element for learning in spiking net-
works. Therefore, they are implemented as a synapse-specific property and are given by

34

4.2 Integrating HICANN-X

the pre-synaptic spike events convolved with an exponential filter (see Equation (2.41)).
In order to simulate hardware-like eligibility vectors, as required in Section 6.1.2, the
vectors can be evolved in di�erent modes. Additionally, the simulation supports fixed-
pattern noise on the decay constants and amplitudes of the vectors for more realistic
behavior (see Section 6.2.1).

4.2 Integrating HICANN-X

To enable learning on hardware, the chip is interfaced to the PyTorch-based EProp frame-
work via hxtorch by utilizing lower-level chip abstraction layers such as haldls and lola
[E. Müller et al., 2020b] encapsulated in grenade. Even though the software developed
within hxtorch is used by EProp, it is not limited to this software layer but can be
accessed, in principal, in all applications written in Python (and also C++).

Learning on HX can be realized in di�erent ways. One approach is in-the-loop training,
discussed in the next section. The implementation of a full on-chip learning environment
is elaborated in Section 4.2.4.

4.2.1 In-the-loop Learning

The EProp framework outlined in the previous section is designed with the goal of per-
forming learning on HX while supporting simulations. For training on HX, the network
is mapped to a hardware representation, and the forward pass is executed on-chip rather
than simulated in software. While emulating the network on HX, observables of inter-
est are recorded and read back to the host computer after processing the whole time
sequence. With these observables, the weights are then optimized on the host side.
This procedure is repeated until convergence of the network and is hence referred to as
hardware-in-the-loop training [Schmitt et al., 2017].

In-the-loop learning is realized for RSNN with a topology described in Section 2.3.1 by
a C++ hxtorch layer, exposed to Python as recurrent_to_readout:

1 y, z = hxtorch.recurrent_to_readout(inputs, w_ih, w_hh, w_ho, runtime=runtime)

Basically, this layer handles all hardware mapping and communication implicitly. Simply
calling the layer will execute a forward-pass on HX. The layer gets the input spikes of
the input layer as a torch.Tensor of shape (n_events, 3). Each element in this tensor
is given by (spike_time, population_id, neuron_id), where spike_time defines in
FPGA clock-cycles the time input neuron neuron_id spikes. population_id associates
neurons with a population (for experiments conducted in this thesis, population_id=0,
since the network considered uses only a single input population). Further, the network’s
dense weight tensors w_ih, w_hh and w_ho are passed to the layer. Due to the 7 bit

35

4 Developed Software

resolution of signed hardware weights (see Section 4.2.3), synaptic weights are provided
as 7 bit signed integers. The runtime argument limits the hardware experiment execution
to the desired time frame. Since during execution, the membrane potential of the readout
neuron is measured with the MADC, which can only sample one hardware neuron, the
layer supports only a readout population of size one. The corresponding membrane
trace is returned as a sequence y that holds the membrane samples annotated with
timestamps. Spike events of the recurrent neurons are given in a tensor z of shape (n_-
events, 3) with elements (spike_time, rec_population_id, neuron_id). Here is
rec_population_id the population ID of the recurrent layer and neuron_id the ID of
a recurrent neuron within this layer.

Weight Updates For an learning rule that only depends on the spike trains zt
j and

the potential of the readout neuron yt
k=0 (as derived in Chapter 5), the layer provides

all required information to optimize weights. Therefore, in each training epoch, the
experiment is executed on hardware, and the returned observables are mapped to a
discrete time lattice of desired resolution. In order to calculate the weight updates, the
network is simulated in software. However, instead of simulating neuron dynamics, the
measured observable states zt are injected at each time t into the network’s populations,
with the e�ect that the simulation resembles the spiking activity of the hardware run.
This allows the learning rules to compute weight updates like in a simulation run. Note,
since the weights are discrete on HX, the updates need to be applied stochastically as
described in Section A.2.1. Hence, the EProp experiment framework provides an adjusted
version of PyTorch’s Adam [Kingma et al., 2017] optimizer that optimizes updates with
momentum but applies them as integers.

As a convenient consequence, the implementation of in-the-loop learning and the design
of the EProp framework make experiments and learning on HX behave almost identical
to simulations. Nonetheless, in-the-loop learning is considerably slower than later full
on-chip learning, described in Section 4.2.4, since the network has to be mapped to HX
in each training epoch due to changing weights.

4.2.2 Interfacing HX

The recurrent_to_readout hxtorch layer uses the grenade [Spilger, 2021] interface
for experiment execution. The grenade C++ interface allows mapping networks to a
hardware representation by describing the network in a NetworkBuilder:

1 grenade::vx::network::NetworkBuilder network_builder;

This builder provides functionality similar to the AbstractNetwork class to add pop-
ulations of neurons. Therefore, a population of software neurons is represented by an
array of hardware neurons (AtomicNeuronOnDLS) and added to the builder. A boolean
record_spike flag indicates whether the population’s spike events are recorded:

36

4.2 Integrating HICANN-X

1 Population::Neurons neurons{AtomicNeuronOnDLS(...), ...};

2 Population population{neurons, record_spikes};

3 auto const population_descriptor = network_builder.add(population);

Input populations correspond to externally injected spike events and do not reserve
hardware neurons. These types of populations are fully defined by the size of the input
layer. The hxtorch layer in the previous section defines three populations: The input
population, the recurrent population, and a size-one population for the readout neuron.
Projections between a source and a target population are added by

1 Projection::Connections projection_conns;

2 projection_conns.push_back({i, j, Weight(std::abs(w_ij))}); // Synapse ij
3 ... // Add all connections
4 Projection projection{Projection::ReceptorType::excitatory,

5 projection_conns, source_descriptor, target_descriptor};

6 network_builder.add(projection);

Since grenade projections are receptor-type specific2 (i.e., excitatory or inhibitory) and
software projections consist of signed weights (i.e., excitatory and inhibitory), each soft-
ware projection is mapped to two hardware projections; An excitatory projection rep-
resenting all connections with positive weights and an inhibitory one for the negative
weights. Hence, the recurrent_to_readout layer uses six di�erent hardware projec-
tions.

Finally, the information in the builder is used to define an event routing on HX. This
is done by the build_routing function developed within the scope of this thesis and
explained in Section 4.2.3. The experiment is described as a computational graph by
using the routing result together with the network and executed via run by taking into
account the network’s inputs:

1 auto const network = network_builder.done();

2 auto const routing_result = build_routing(network);

3 auto const network_graph = build_network_graph(network, routing_result);

4

5 auto const result_map = run(*hxtorch::detail::getConnection(),

hxtorch::detail::getChip(), network_graph, inputs);Òæ

Note, the inputs here are spike events translated implicitly from the input as
torch.Tensor to hardware a�ne data types. After execution, the desired observables
are accessed in the result_map, processed, and returned as PyTorch data types. A ded-
icated interface for MADC recording of the readout neuron’s membrane is also provided
by grenade. More details can be found in [Spilger, 2021].

2This corresponds to the current software state. In the future, grenade projections with signed synapses
are desirable.

37

4 Developed Software

Figure 4.3: Schematic of a synapse matrix on HX. Synapse
drivers are connected alternately to four vertical PADI buses.
Spike events provided on the PADI bus can only reach the
connected synapse drivers. Each PADI bus has 32 synapse
drivers. The neurons are connected to four horizontal lines
alternately in blocks of 32 neurons. External and internal spike
events are routed by a crossbar (lower left). Events can only
“travel” along connected lines. A synapse driver’s rows are
configured inhibitory (bottom) and excitatory (top) in order to
realize signed synapses.

4.2.3 Routing Algorithm

As mentioned, hxtorch creates the network representation on hardware by grenade’s
build_routing algorithm. Per default, this algorithm does not support recurrent pro-
jections and hence is adjusted [Czierlinski, 2020]. The developed implementation is based
on signed synapses. This is, each signed software weight reserves two hardware synapses
— one on an inhibitory row and one on an excitatory row in the same synapse column
and the same synapse driver. Therefore, on each used synapse driver, the bottom row
is configured inhibitory and the top row excitatory (see Figure 4.3). The absolute value
of a negative software weight is placed on the inhibitory row while setting the weight on
the excitatory row to zero and vice versa for positive weights. In e�ect, a software weight
◊sw

ji is then represented on HX by signed integers ◊hw
ji œ [≠63, 63].

The placement algorithm expects dense software projections, split by the sign of the
weights into two disjoint grenade projections — an inhibitory and an excitatory one —
with the same source and target population. Each synapse in the internal projections
(i.e., no external source population) is then placed one after another. Therefore, the
algorithm finds the next synapse driver on a PADI bus (see Figure 4.3) reachable from
the synapse’s source neuron whose column to the target neuron is not occupied by another
used synapse. Then the synapse’s signed weight is placed on the corresponding driver in
the target neuron’s column together with a synapse label. Note, the algorithm sets the
synapse label on the inhibitory and excitatory row and is given by the index of the source
neuron on its crossbar channel. This allows using all synapse drivers on a hemisphere
of HX. A source neuron’s event address associated with a specific synapse driver is
configured equal to the synapse labels in the driver’s rows, such that the neuron’s output
events are matched in these synapses. Synapse drivers used for internal projections have
row_address_compare_masks with bits disabled for the number of synapse drivers used
on the PADI bus.

External populations are realized by injecting external events representing external neu-
rons by event addresses that target synapses on rows of a dedicated driver. The events
are injected at the corresponding PADI bus and carry addresses with a row_select_-
address and a synapse label both, somewhat redundant given by the driver’s ID on the

38

4.2 Integrating HICANN-X

Figure 4.4: To account for negative and positive soft-
ware weights, the grenade routing algorithm allocates
two hardware connections on the same synapse driver
for each software connection. One row mode on a
synapse driver is configured excitatory, corresponding
to positive weights in this row, and the other one as
inhibitory, modeling negative weights. The recurrent
spike events zt

j are fed back via the crossbar and pro-
jected onto the recurrent layer as well as the readout
neuron, thus the recurrent weights ◊hh and the output
weights ◊ho are placed next to each other. The input
weights ◊ih are placed above the recurrent projection.
Note, synapse drivers are grouped chronologically by
PADI buses for illustration purposes.

PADI bus. Used synapses on the rows of the synapse drivers are labeled therefore equally.
For the external synapse drivers to be able to select external events addressed to them,
their row_address_compare_mask is set to 11111. In order to place the connections from
an external to an internal population, the algorithm finds the next unused driver that
contains free synapses to the target neuron and places labels and weights accordingly.
Further, the algorithm assigns each neuron in an external population its event address
which can be accessed with grenade’s interface to provide corresponding event inputs
to the graph execution function run (see Section 4.2.2).

Assuming a network as in Section 2.3.1 and grouping drivers chronologically by PADI
buses the routing algorithm finds a network representation on hardware as given in
Figure 4.4.

Implicit Constraints Since this algorithm uses signed synapses, rows of a software
projection are associated with a synapse driver; therefore, on a single synapse matrix on
HX, this allows for a maximum of 128 software rows. For a topology as in Section 2.3.1
with ni input and nh recurrent neurons, applies ni + nh Æ 128. Further, for internal
populations that feedback events into the synapse matrix, the algorithm only allows the
usage of maximally 32 neurons connected to the same PADI bus since each PADI bus
only provides 32 signed synapse rows. So far, connection placement is only supported on
the top hemisphere on HX.

4.2.4 On-chip Learning

For on-chip learning, a pre-compiled plasticity program is loaded onto the PPU, which
computes weight updates in parallel to the forward pass. Regardless of the explicit form
of the learning rule implementation, a general software architecture for learning on-chip
is proposed in the following and depicted in Figure 4.5.

39

4 Developed Software

Figure 4.5: Software stack for on-chip learn-
ing. grenade loads a plasticity program
onto the PPU, communicates parameters
and triggers the start of the plasticity rule.
After a batch of training trials is completed,
the weights are read back and translated
to software weights stored in the model as
torch.Parameters. On a test trial, the neu-
ron spikes and the membrane potentials of
the readout neurons are sampled and re-
turned.

As a high-level interface, a PyTorch model is derived from a pybinded [Jakob et al., 2017]
hxtorch class RecurrentToReadout written in C++ that inherits torch::nn::Module
[Paszke et al., 2019] to provide the common PyTorch infrastructure:

1 class Model(hxtorch.RecurrentToReadout):

2 def __init__(self, ...):

3 super().__init__(n_i, n_h, n_o, fit_slice=True)

4 ... # Implement other stuff
5

6 model = Model(...)

7 model(inputs, runtime) # Training
8 model.eval() # Inference
9 z, v = model(inputs, runtime)

The hxtorch class assumes a fixed network topology as given in Section 2.3.1 with n_-
i input, n_h recurrent, and n_o output neurons. Its forward method implements the
grenade interface as outlined in the previous section, however, with additional batch
support. This allows performing multiple forward passes after another within the same
grenade graph instance, resulting in an enormous speed up in the training process. When
forwarding a training batch, the model performs on-chip plasticity implicitly without re-
turning any observables. Hence, to test the model’s performance in an inference run,
model.eval() disables PPU learning and configures the forward method to record re-
current spikes and the membranes of the readout neurons. Since a PPU program records
the membranes via the CADC in parallel, this on-chip learning setup allows multiple
readout neurons.

Per default, the neurons are placed column-wise chronologically on HX, i.e., n_h recurrent
neurons followed by n_o output neurons. If fit_slice=True, only every second hardware
neuron is used. In that way, neurons and related synapse columns are placed on the
same vector “slice”. Since a single VU readout accesses either all odd or all even synapse
columns on HX row-wise in parallel3, this e�ectively reduces the number of instructions
needed to read out hardware observables and to process them (since all observables are
present in a single vector) via the VU.

3This is only true for the current chip version. Older chip versions have a di�erent column ordering.

40

4.2 Integrating HICANN-X

Reverse Weight Mapping The main di�erence between on-chip learning and the de-
scribed in-the-loop training is that weights change during experiment execution on HX.
Therefore, after forwarding a batch, it is required to read back hardware weights and
map them to software weight tensors. Hence, the hxtorch forward method employs
an inherent reverse mapping from hardware projections to signed torch.Parameters by
reading out the hardware weight matrix after batch execution is completed and inferring
hardware weight placement from the connections defined by build_routing. It is de-
sirable that such a reverse mapping is performed implicitly within grenade as grenade
also creates the network’s hardware representation and has all mapping information at
hand. This, however, is not implemented yet.

Triggering Plasticity In order to deploy this high-level on-chip learning framework,
grenade is adjusted to trigger PPU plasticity programs. This is enabled by endowing
the grenade graph execution with an optional setup object:

1 auto const result_map = run(*hxtorch::detail::getConnection(),

hxtorch::detail::getChip(), network_graph, inputs, setup);Òæ

This setup provides PPU plasticity-specific functionality such as enable/disable plasticity
and enabling serialization of plasticity parameters (see Section 4.2.5):

1 struct Setup {

2 bool write_settings = false;

3 bool enable_plasticity = false;

4 bool set_masks = true;

5 ...

6 struct Config {

7 PPUParams params = PPUParams();

8 ...

9 row_type row_mask;

10 UpdateParams sample(size_t epoch);

11 };

12 std::map<PPUOnDLS, Config> ppu_configs;

13 };

Further, the setup object holds a Setup::Config instance for each PPU on HX in
ppu_configs which contain a PPUParams object with all constant parameters required
by the PPU to perform learning. In order to make this learning setup configurable in
Python, the RecurrentToReadout class has a Setup instance as a member, which is and
exposed to Python. When calling the forward method, the configured setup is passed
to grenade. Before batch execution, grenade communicates the setup.params object
to the PPU to set up the learning rule.

When grenade executes experiments on HX, it starts a default PPU program which
enters a while-loop around a switch with a case variable of type Status, controlled by

41

4 Developed Software

the host computer within grenade. This switch is expanded by three cases to control
on-chip learning:

• Status::setup_plasticity: Triggered before executing the given batch. This
enables deserialization of the PPUParams object written into the PPU’s SRAM via
bitsery [Vinkelis, 2020] (see Section 4.2.5).

• Status::update_plasticity: Triggered before each execution of each element in
the batch after grenade wrote an UpdateParams object into the PPU’s SRAM.
This object contains trial-specific configurations (such as the synapse row to
perform updates for, random o�sets, etc., see Chapter 6) and is created by
Setup::Config::sample.

• Status::start_plasticity: Triggered right before emulating the network for the
given batch element. This command starts the PPU plasticity program. After the
network is emulated, the plasticity program is stopped and Status::update_-
plasticity repeated for the next batch element.

These steps are repeated for each batch during the training process.

Communicating Network Topology to the PPU For the PPU to be able to address
correct synapses for weight updates, it requires knowledge about the network’s hard-
ware topology. Firstly, this applies to used synapse columns defined by the hardware
populations — more explicitly, the recurrent and the readout neurons — and, secondly,
the used synapse rows. Synapse columns are communicated by boolean mask arrays
spiking_mask and readout_mask in setup.params. The distinction between recur-
rent and readout neurons is necessary since the corresponding projections have di�erent
plasticity rules. Masks are derived implicitly in the forward method if setup.set_-
masks=True and need to be set manually otherwise.

The routing algorithm in Section 4.2.3 identifies rows of the software weight matrices
with synapse drivers (due to signed weights). Hence, used signed hardware rows are given
in row_mask as a dictionary {driver_id: (neuron_rec, is_rec)}, where driver_-
id is the signed row index, is_rec indicates whether the row is used by the recurrent
projection, and neuron_rec gives the hardware neuron index projecting its events in
this row. The routing algorithm places the recurrent and the output projection next to
each other (see Figure 4.4). Hence, is_rec indicates whether the update rule has to
perform weight updates for the recurrent and output weights. Since weight updates for
a row might depend on observables of its corresponding neuron (such as spike counts),
the index neuron_rec is crucial.

Note, the general infrastructure does not depend on the explicit form of Config and can
be adjusted as needed; however, it should have members params and sample. All other
functionality applies to the on-chip training performed in Chapter 6.

Debugging For debugging purposes, the PPU’s mailbox writer is redirected to write
at a specific address range of the external memory. Thus, the hxtorch class provides

42

4.2 Integrating HICANN-X

Figure 4.6: The host to PPU communication is realized
by bitsery, which enables the serialization of arbitrary
objects. An object containing all parameters needed on
the PPU is serialized into a bu�er on the host side. This
bu�er can easily be written into a bu�er on the PPU, and
deserialized into a corresponding object, which then con-
tains the desired data. Since the PPU is a big-endian
system, whereas the host is a little-endian, the host-side
serialization is configured to take the di�erent endianness
into account implicitly. The computational cost to trans-
late between di�erent endieanness is thus on the host-side.
bitsery is easing the host to PPU communication enor-
mously.

a method read_mailbox(n_words, print=False) which reads back data from the ex-
ternal memory and returns it as a byte-array. On demand, the data is reinterpreted as
strings and printed out. Since debugging software for embedded systems, such as PPU
programs, is always challenging, this feature is very convenient.

4.2.5 Host-PPU Communication

Data transfer from the host to the PPU is realized by the C++ header-only serialization
library bitsery [Vinkelis, 2020]. On the host side, the software layers halco and haldls
[E. Müller et al., 2020a] allow creating PPU-memory blocks that can be written (read)
word-wise at (from) specific address blocks of the PPU memory. Therefore, the host
computer can manipulate data on the PPU at runtime. However, turning arbitrary
complex C++ data types manually into memory blocks is inconvenient. Using bitsery’s
serialization tools, (almost) any object can be serialized via a Writer into a buffer,
given as a byte array that can easily be formed to a PPU-memory block and written to
the PPU:

1 Object object_host; // Some object on host
2 uint32_t size = bitsery::quickSerialization<Writer>(buffer, object_host);

3 ... // Write size and buffer to PPU

On the PPU, the bu�er is deserialized via a Reader into a corresponding object in the
PPU-memory:

1 Object object_ppu; // Some object on PPU
2 uint32_t size;

3 auto status =

4 bitsery::quickDeserialization<Reader>({buffer.begin(), size}, object_ppu);

43

4 Developed Software

An important feature of bitsery is that the Writer/Reader for de-/serialization on the
host-side can be configured to assume a particular endianness. Since the host computer
is little-endian whereas the PPU is a big-endian system, the de-/serialization on the host-
side translates between the di�erent endianness implicitly. The schematic is pictured in
Figure 4.6.

In order to enable de-/serialization via bitsery, the corresponding data object has
to provide a serialize method, defining how members are treated. For serializing
std::array<uint8_t, 128> from the host into PPU-specific vector types __vector
uint8_t on the PPU, a customized treatment is developed which reinterprets the data
type implicitly when deserialized on the PPU. This enables serialization of mask ar-
rays into data types the VU can work on. Hence, bitsery allows seamless host-PPU
communication.

44

5 Spike-based Eligibility Propagation

The learning algorithms derived in 2.3.3 cannot trivially be utilized to train recurrent
spiking neural networks (RSNNs) on the HICANN-X v2 (HX). A first attempt to train
RSNNs on the chip can be realized by incorporating a simplifying hardware constraint
into the learning rule. Hence, this chapter will define a spike-based version of e-prop
that allows training on HX in-the-loop. However, this learning rule comes with some
drawbacks and will, therefore, first be simulated and the shortcomings discussed. It will
turn out that under little constraints, the approximated learning rule enables RSNNs
to learn still surprisingly well. Supported by these simulations, the network will then
be trained in-the-loop, where the forward-pass is emulated on HX, and the gradient is
computed on the host-side. This will show that the a pattern-generation task, described
in 5.1.2 can, principally, be solved on HX while introducing a constraint that later on-chip
learning has to do implicitly.

5.1 Task

The e-prop learning framework outlined in Section 2.3.3 is, in principle, applicable to any
definition of a loss function E; however, not all resulting learning rules are realizable on
hardware. Here, a pattern generation-task is motivated in the following and described
thereafter.

5.1.1 Motivation

Since this thesis aims for an e-prop-inspired on-chip learning rule implementation, the
task considered needs to align with the chip’s limits. This means, the chosen task must
not have a loss function E that results in learning signals (and thus in learning rules)
which explicitly depend on observables the plasticity processing unit (PPU) cannot access.
This categorically excludes tasks depending on explicit spike events, such as spike-pattern
generation, since the PPU cannot (e�ciently) access the neurons’ spike times. However,
loss functions utilizing the membrane potentials of the readout neurons are promising
candidates since the membranes can be read out by the PPU using the CADC, provided
the resulting learning rule allows sampling the readout neurons with a feasible rate. Such
tasks comprise the pattern-generation task explained in the following, but also classifi-
cation tasks where sub-sequences of the membrane potential are mapped to probabilities
via the softmax loss (see [Bellec et al., 2019] for details).

45

5 Spike-based Eligibility Propagation

5.1.2 Description

For the regression task mentioned in Section 2.3.3, a recurrent network is trained to
modify the membrane potentials yt

k of a set of readout neurons {nk} such that the
membrane traces minimize the residual sum of squares (RSS) to corresponding target
traces yú,t

k over a time sequence of length T . The target traces can, for instance, be joint
angle velocities of a robotic arm the readout neurons have to resemble. Here, the target
traces yú,t

k are simply a superposition of sinusoids,

yú,t
k = ›k

npÿ

i

wi,k sin
A

2fi

Ti,k
· t · ”t + Ïi,k

B

, (5.1)

with randomly sampled weights wi,k, periods Ti,k, and phases Ïi,k. ›k denotes a scaling
factor adjusting the target pattern such that max(

---yú,t
k

---) = ÷T , with ÷T being the desired
extremum. The time steps t are restricted to the sequence length T , t œ [0, T). This
pattern-generation task is inspired by [Bellec et al., 2019]. For this task, the learning
rules are given in Equation (2.53) and (2.53).

5.2 Adjusting the Learning Rule

This section will derive an approximated version of the learning rule given in Equa-
tion (2.53), allowing to train recurrent networks in-the-loop on HX. While this will
result in a simplification of the learning rule, it is also a necessary step towards full
on-chip learning.

The eligibility traces et
ji in the learning rules for the recurrent and input weights depend

on the membrane potentials vt
j via pseudo derivative ht

j. For full on-chip learning using
the PPU, this poses a problem since the membrane potentials of all recurrent neurons
need to be read out in parallel with a high temporal resolution. In principle, this can
be achieved with a sampling rate of about 1.7 msbio using the CADC [Cramer et al.,
2020], which (depending on the speed of the neuron dynamics) arguably is su�cient to
resolve the pseudo derivative. However, the PPU would have to handle a great amount
of data that either needs to be stored during the forward pass and fetched afterwards to
compute the gradient on-chip or the measured membrane potentials need to be used to
calculate the gradient in an online fashion. While the first causes memory issues on the
PPU, the latter would result in a decreasing sampling rate due to intermediate operations
occupying the PPU. Hence, a learning rule independent of the membrane potentials of
the recurrent neurons needs to be found.

Therefore, the pseudo-derivative ht
j in Equation (2.49) is simply replaced with the recur-

rent spike train zt
j. Correspondingly, the eligibility traces become

et+1
ji = ht+1

j · ẑt
i (5.2)

ht
j ¥ zt

j =∆ et+1
ji ¥ zt+1

j · ẑt
i := êt+1

ji . (5.3)

46

5.2 Adjusting the Learning Rule

Replacing the eligibility traces et
ji in Equation (2.53) with the approximation êt

ji gives
the update rule for the recurrent weights

�◊hh
ji = ≠÷

ÿ

t

A
ÿ

k

◊ho
kj

1
yt

k ≠ yú,t
k

2B
ÿ

tÕÆt

Ÿt≠tÕ
êtÕ

ji. (5.4)

The same rule applies to the input weights ◊ih when replacing the recurrent spike train
zt≠1

i with the input spike train xt
i in the eligibility vector ẑt

i . The update rule for the
output projection ◊ho remains una�ected since it does not depend on the membrane
potentials of the recurrent neurons. The firing rate regularization in Equation (2.56) is
also subject to the approximation in Equation (5.3). Although not outlined explicitly,
the idea of replacing the pseudo-derivative with the post-synaptic spike train is also
mentioned in [Bellec et al., 2019].

5.2.1 Consequences

The learning rule in Equation (5.4) is still not implementable on the PPU since it depends
on explicit spike times. However, it can be implemented on HX with in-the-loop training.
The recurrent spike events zt

j can be accessed via the field-programmable gate array
(FPGA) on the host-side, allowing computing the eligibility traces on the host engine.
When assuming a network with a single readout neuron k = 0, the readout membrane
trace yk=0 can be measured by the chip’s MADC, which is capable of sampling the
membrane potential of a single neuron with a high temporal resolution. Now, where all
needed observables {yk=0, {zt

}}
T
t=1 can be accessed on the host-side, the forward pass can

be emulated on HX while the weight updates are calculated o�-chip.

The approximation made in Equation (5.3) does a�ect learning. In Figure 5.1 the ap-
proximated eligibility traces are compared to the true traces. The upper plot visualizes
an artificial spiking setup of a LIF neuron, receiving pre-synaptic events through synapse
ji, causing the neuron j to emit post-synaptic events itself. The second plot shows the
corresponding eligibility vectors ẑt

i together with the pseudo-derivative ht
j and the re-

current spike train zt
j. Each pre-synaptic event starts a synapse-specific exponential

decay with decay constant –, describing the eligibility vectors ẑt
i . According to Equa-

tion (2.49), these vectors are scaled by the pseudo-derivative ht
j, giving the eligibility

traces depicted in the third plot. With the approximation made, the eligibility traces
now have only non-vanishing values at post-synaptic events zt

j = 1 and are then given
by the value of the eligibility vector at the corresponding spike time. These traces are
solely spike-based and have no contributions by the membrane potential of the recurrent
neurons. In essence, this means the learning rule in Equation (5.4) does not rely on any
sub-threshold information. Consequently, the learning rule cannot adjust weights such
that the potential of a neuron close to spiking is modulated in a fashion that a spike in
the future is inhibited or emitted. Since the approximated eligibility vectors are solely
based on spike information propagated along the sequence, this learning rule is named
spike-based eligibility propagation (s-prop) from here on.

47

5 Spike-based Eligibility Propagation

Post

0

10

v j
[a
.u
.]

0 50 100 150 200 250

Time [ms]

Pre

0

1

2

[a
.u
.]

ẑti ht
j ztj = 1

0.0

1.8

[a
.u
.]

etji êtji 6= 0

0 50 100 150 200 250

Time [ms]

0

1

[a
.u
.]

 ? etji  ? êtji

Figure 5.1: Comparison of eligibility traces. The upper plot shows an artificial spiking setup
of a LIF neuron, receiving pre-synaptic events and emitting post-synaptic spikes.
The second plot visualizes the corresponding eligibility vector ẑt

i of a synapse ji
together with the pseudo-derivative hj and the recurrent spike train zt

j . A step
towards on-chip learning is to replace the pseudo derivative ht

j with the recurrent
spike train zt

j . While this approximation has to be done to utilize the correlation
sensors in later chapters, this will enable implementing HX in-the-loop training
since then the weight updates do only depend on the recurrent spikes and the
membrane potential of the readout neuron (assuming a single readout neuron whose
membrane potential is sampled with the MADC). The recurrent spikes and the
readout potential can be sampled with high resolution. As can be seen in the third
graph, the eligibility traces êji under this approximation are only the product of
recurrent spikes and the eligibility vector. Therefore, this approximation neglects
essential information about the neurons sub-threshold behavior. For instance, the
eligibility traces provide no information about whether a neuron is close to spiking
at a certain time or not but do rely solely on spike events. The lowermost plot
shows the eligibility traces filtered with the readout kernel Ÿ. Note, the filtered
traces are scaled for illustrating purposes.

48

5.3 Simulations

However, since the eligibility vectors propagate synapse activation information into the
future, the weight update has a non-vanishing contribution at post-synaptic spike times
zt

j = 1, i.e. êt
ji > 0. Hence, past activity at tÕ < t is held accountable for the network’s

error at time t (given by the learning signal) and thus allows changing the weights such
that an error at t is minimized by adjusting the network’s activity at earlier times.
Therefore, the approximated learning rule seems promising to endow RSNNs with the
capability to learn.

According to Equation (5.3), the eligibility traces êt
ji are always zero if neuron j does

not emit a spike over the whole time sequence, leading to vanishing weight updates.
Consequently, if a neuron j is silent the update rule is not capable of adjusting the
corresponding weights due to missing sub-threshold information. Hence, neuron j stays
silent except if other neurons adjust their activity such that neuron j emits a spike
coincidentally.

In Equation (5.4), the eligibility traces are convolved with the readout decay Ÿ, taking
the temporal extent of the readout neurons {nk} into account. This is shown in the
lowermost plot of Figure 5.1. Intuitively, if a readout neuron receives a pre-synaptic
event, its membrane potential is deflected, after which it strives back towards the resting
potential with time constant ·m,k; a pre-synaptic spike at t, hence, contributes to the
error at tÕ

Ø t. Finally, the convolved eligibility traces are weighted by the learning signal
at each time and summed over the whole sequence, giving the weight update.

After describing the s-prop learning rule it is now evaluated for the task explained in
Section 5.1.2. After verifying the rule in simulations in Section 5.3, it is used to train
RSNNs on HX in Section 5.4.

5.3 Simulations

Testing the update rules given in Equation (5.4) and Equation (2.54) in simulations
will help to find a setting for which training on HX seems possible. Therefore, the
simulations have to take several hardware properties into account. Please note that
the simulations done in the following are meant to show that s-prop enables RSNNs
to solve the pattern-generation task in principle while capturing important hardware
characteristics. However, the simulations do not claim to mimic the chip entirely.

5.3.1 Hardware Constraints

With regard to in-the-loop learning, hardware-specific aspects that might influence learn-
ing include noise in the network emulation process, weight discretization, and the synaptic
input current. These properties are briefly discussed in the following.

49

5 Spike-based Eligibility Propagation

Noise Parameters that are subject to fixed-pattern noisy due to their analog nature
on HX are the synaptic time constant ·syn, the membrane time constants ·m, and the
synaptic strength [Dauer, 2020]. Simulations of the HX environment assume the fixed-
pattern noise of these parameters to be normally distributed around their target values.
Additionally, all neurons integrate Gaussian noise onto their membrane potential. This is
achieved by adding a random o�set, sampled from a normal distribution with zero mean,
to vt

j in Equation (2.35) and yt
k in Equation (2.36) after each numerical integration step.

Discrete Weights Since the synaptic weights on HX are given by signed integers
◊ji œ N63

≠63, the weights in simulations are discretized equally and saturate at the given
boundaries. Therefore, the weight updates are rounded stochastically to corresponding
integers, as described in Section A.2.1, with �◊hw = 1. Stochastic rounding is the pre-
ferred way to handle updates calculated with floating point numbers as this increases
the resolution of the weight updates artificially.

Synaptic Input The e-prop learning rules derived in Chapter 2 assume synapses with
a ”-kernel (see Equation (2.13)). However, on HX, the synapses are emulated with a
single-exponential kernel in analog. Even though the e-prop learning framework allows
for deriving update rules for exponential synaptic kernels, they lack a form that en-
ables on-chip learning and would need to incorporate the assumption of ”-like synapses.1
Therefore, the synaptic time constants are chosen small compared to the membrane time
constants in order to approximate the e�ect of ”-synapses.

Additionally, the simulated network should only operate on parameter ranges feasible on
HX. The used parameters are outlined in the following.

5.3.2 Network Setup and Training Procedure

Training an RSNN is manifold, requiring multiple factors to interact in harmony to
enable successful learning. LIF parameters governing the neuron dynamics, network
complexity, and learning parameters have to be adjusted appropriately. Therefore, the
shared learning and network setup for the simulations is outlined in the following. It is
crucial to keep in mind that the focus of this thesis is to examine the feasibility of e-prop
inspired learning rather than finding fine-tuned networks. Hence, some hyperparameters
chosen in the following remain subject to further optimization but are found to work well
for the task at hand.

1Learning rules with single-exponential kernels use double-exponential filtering of pre-synaptic events
to compute the eligibility vectors and can, therefore, only be modeled by the correlation sensors (cf.

Chapter 6) when assuming a ”-kernel (resulting in the eligibility vectors as given here).

50

5.3 Simulations

Network

Unless stated otherwise, the network consists of an input layer with 30 input neurons
projecting onto a recurrent layer constituted by 70 LIF neurons. Spike events of all
recurrent neurons are projected onto a single leaky integrate (LI) readout neuron as well
as the recurrent layer itself. The neurons are implemented as given in Section 4.1.2. All
projections between layers are dense. The architecture is chosen such that the limitations
of the event routing algorithm on hardware (see Section 4.2.3) are not exhausted. Input
neurons are firing Poisson distributed with a mean inter-spike interval (ISI) of TISI =
40 msbio.

Inspired by Bellec et al. [2019], the recurrent neurons {nj} have vanishing leak and reset
potentials, vl,j = 0 a.u. and vr,j = 0 a.u., respectively. The threshold is set to Ë = 40 a.u..
This value is somewhat related to a relative leak-to-threshold potential of 40 DAC values
of spiking neurons on HX (see Section 5.4.1). Analogously to the recurrent neurons, the
readout neuron leaks towards yl,k=0 = 0 a.u.. All neurons in the network, except the input
neurons, have a membrane time constant ·m,j = ·m,k=0 = 20 msbio. The refractory time
·ref for spiking neurons is chosen as ·ref = 1 msbio. This is a value realizable on HX and
does not decrease the network’s degree of freedom significantly. Synaptic time constants
are chosen to be small compared to the membrane time constants. However, since longer
constants e�ectively yield stronger synaptic inputs, they must not be too small to ensure
a reasonable signal-to-noise ratio for experiments on HX (cf. Section 5.4.1) and are
chosen as ·syn = 2 msbio. This will turn out to work well.

Training

The networks in the simulations are trained over 1000 epochs, where each epoch con-
sists of a single forward pass (trial). The weight updates for the input and recurrent
projections are calculated according to Equation (5.4), the output projection by Equa-
tion (2.54), respectively. Weights are optimized after each epoch by the Adam optimizer
with default parameters suggested in Kingma et al. [2017]. In the case of discrete weights,
the modified optimizer mentioned in Section 4.2.1 (also cf. Section A.2.1) is used. The
input weights are initialized normally distributed with N (µ = 0, ‡ = 15) centered around
zero. In order to reduce the number of silent neurons at the start of the training process,
the recurrent weights are initialized close to zero and sampled from N (µ = 0, ‡ = 1)
since strong inhibitory recurrent connections in RSNNs tend to inhibit activity. This also
is found to stabilize training. The output weights are set to zero at the beginning. Un-
realistically high firing rates are avoided by regularizing the recurrent neurons towards
an average event density of fav = 40 Hzbio. The regularization update

1
�◊ih, hh

ji

2reg
in

Equation (2.56) is added to the s-prop update
1
�◊ih, hh

ji

2s-prop
in Equation (5.4) before

multiplying the sum with the learning rate ÷,

�◊ih, hh
ji = ÷

A
1
÷

1
�◊ih, hh

ji

2s-prop
+

1
�◊ih, hh

ji

2reg
B

. (5.5)

Note that per definition, the learning rate ÷ is also included in the s-prop update and
chancels out the factor 1/÷ in Equation (5.5). The regularization strength is included in

51

5 Spike-based Eligibility Propagation

the regularization update and chosen as ÷reg = 10000. In noisy simulations, noise is ap-
plied as discussed in Section 5.3.1 with a standard deviation of 10% of the corresponding
target value. The Gaussian noise on the membranes is sampled from N (µ = 0,‡ = 0.4).
An overview of all parameters is given in Appendix A.1.

After conducting the hyperparameter-search in Section 5.3.3, the learning rate ÷r for the
input and recurrent weights, as well as the learning rate ÷o for the output projection
are chosen — if not stated otherwise — as ÷r = ÷o = 0.05 (learning rates are renamed
to distinguish between weight matrices). The learning rates are multiplied by a decay
constant of � = 0.8 every 200 epochs.

Target Pattern

As presented in Section 5.1.2, the network is trained to solve the pattern-generation task.
The corresponding target pattern yú,t

k=0 is given in Equation (5.1) by a superposition
of np = 3 sinusoids with uniformly drawn weights wi,k=0 œ [0.5, 2), periods Ti,k=0 œ

[0.6fi, 2fi), and phases Ïi,k=0 œ

Ë
0.5

1000 , 2fi
1000

2
.2 The patterns are rescaled to max(yt,ú

k) =
÷T = 100 in order to mimic a possible range of the readout neuron’s membrane potential
on HX (cf. Section 5.4.1). All networks simulated in the following are trained for an
ensemble of 16 (8 for the hyperparameter-search in Figure 5.2) random patterns.

5.3.3 Baseline

Before conducting simulations incorporating hardware constraints, a model in absence of
any hardware properties is considered. This shows that the network setup and training
procedure, together with the learning rule in Equation (5.4), enables learning in RSNNs
in principle and serves as a baseline later on.

In Figure 5.2, the MSE and the average firing rates of the recurrent neurons are de-
picted over epochs for a range of learning rates ÷o, ÷r œ {0.5, 0.05, 0.03, 0.005}. These
experiments show that firing rates increase for low output learning rates ÷o. Intuitively,
small ÷o result in a slower decreasing error

1
yt

k=0 ≠ yú,t
k=0

2
due to slowly adjusting output

weights ◊ho, and e�ectively, causing the recurrent neurons to fire stronger to account for
the error. Especially for ÷o = 0.005, this results in unstable learning. The same applies
for too large learning rates ÷r, except for ÷o = 0.5, where the loss drops very fast. How-
ever, in this case, the firing rate of the network enters a state with very sparse activity.
The best performance with a moderate activity is observed for ÷o, ÷r = 0.05 and chosen
for experiments in the following.

The baseline experiment is shown in Figure 5.3 in comparison to e-prop. As indicated
by the MSE, s-prop performs slightly worse than e-prop; however, it still solves the
pattern-generation task well. The recurrent neurons learn to form spike clusters and
specialize to specific time periods in order to minimize the error. In the upper-right plot,

2This has turned out to be a bug. However, verification has shown that this does not constraint the
diversity and complexity of considered patterns.

52

5.3 Simulations

Epoch

10
�3

10
�2

10
�1

M
S
E

⌘r = 0.5

⌘o = 0.5 ⌘o = 0.05 ⌘o = 0.03 ⌘o = 0.005

Epoch

0

100

200

300

f a
v
[H

z
b
io
]

⌘r = 0.5

Epoch

10
�3

10
�2

10
�1

M
S
E

⌘r = 0.05

Epoch

100

200

300

f a
v
[H

z
b
io
]

⌘r = 0.05

Epoch

10
�3

10
�2

10
�1

M
S
E

⌘r = 0.03

Epoch

100

200

300
f a

v
[H

z
b
io
]

⌘r = 0.03

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

⌘r = 0.005

0 200 400 600 800 1000

Epoch

100

200

f a
v
[H

z
b
io
]

⌘r = 0.005

Figure 5.2: Experiments for a grid of learning rates ÷o, ÷r œ {0.5, 0.05, 0.03, 0.005}. Left plots
show the MSE over epochs, the plots on the right the corresponding average firing
rates. Output learning rates ÷o are given in the legend, the learning rate ÷r for
input and recurrent projections are denoted on the upper-right of each individual
plot. The confidence bands are standard deviations over the ensemble. Experiment
parameters can be found in Table A.2.

the development of the spiking activity over the training epochs is compared to e-prop.
While e-prop tends to converge to a state with a higher firing rate, s-prop training
tends towards less dense spiking activities. Nevertheless, the standard deviation of the
activity is larger for s-prop than for e-prop, indicating that the spiking activity depends
more on the target pattern for s-prop. Even though the network and training process
is not entirely fine-tuned, the baseline experiment shows that s-prop is able to solve the
pattern-generation task su�ciently.

53

5 Spike-based Eligibility Propagation

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

e-prop

s-prop

0 200 400 600 800 1000

Epoch

20

40

60

80

100

f a
v
[H

z
b
io
]

Target

e-prop

s-prop

�1.0

�0.5

0.0

0.5

1.0

y k
=
0
[a
.u
.]

Target

0 200 400 600 800 1000

Time [msbio]

0

5

10

15

N
e
u
r
o
n
I
D

Figure 5.3: Comparison of e-prop and s-prop. s-prop can still solve the pattern-generation
task well, however, the MSE is slightly worse than for e-prop. The plot in the
middle shows the learned membrane trace after 1000 training epochs, compared to
the target trace, which is resembled well. The lowermost plot depicts the spiking
activity of the first 16 recurrent neurons. It can be seen, that s-prop enables the
recurrent neurons to cluster their activity over certain time ranges. Hence, the
recurrent neurons specialize to provide the right amount of events onto the readout
neuron’s membrane at the right times, in order to minimize the MSE. In the two
uppermost plots, thick lines visualize the ensemble average, the confidence bands
show the corresponding standard deviation. Parameters can be found in Table A.3.

5.3.4 Discrete Weights

The first hardware properties that are incorporated in the simulations are discrete weights
and noise. Therefore, the weights ◊ih,hh,ho are limited to integer values as on HX and
updated stochastically (see Section 5.3.1).

In Figure 5.4 the MSE and the average activities fav are compared between simulations
taking into account di�erent hardware properties. Firstly, it is observed that weight

54

5.3 Simulations

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

Baseline Noisy Discrete Discrete noisy

0 200 400 600 800 1000

Epoch

0

20

40

60

80

f a
v
[H

z
b
io
]

�25 0 25

✓ih [a.u.]

0

10

20

30

40

C
o
u
n
t
s

�10 0 10

✓hh [a.u.]

0

100

200

300

400

C
o
u
n
t
s

�5 0 5

✓ho [a.u.]

0

5

10

15

C
o
u
n
t
s

Figure 5.4: Comparison of the baseline (orange), a “Noisy” (blue) experiment simulated in a
noisy environment, a simulation “discrete” (green) with discrete weights, and a
simulation “Discrete noisy” (red) with both discrete weights and noise. On HX the
synaptic weights have limited resolution. For a signed synapse this means ◊ œ N63

≠63.
In simulation this results in a increasing MSE, as shown in the upper-left plot and
a decreasing firing rate, as depicted in the upper-right plot. The histograms in the
lower plots depict the distributions of learned input weights ◊ih, recurrent weights
◊hh, and output weights ◊ho of the baseline simulation without discretization after
1000 epochs of training. While the input weights cover a wide range of possible
values, the output weights become too small to be resolved by integer weights.
Parameters are given in Table A.4.

discretization yields a considerably increasing MSE. At the same time, the average
firing rate decreases strongly. When considering the histogram of the output weights ◊ho

without discretization, it can be seen that these become small compared to the hardware
weight resolution. Hence, the discrete weights have an insu�cient resolution for solving
the task properly. This is mitigated in the next section. The small output weights are
assumed to result from the high-activity regime in which the network operates; When
many events are projected onto the readout neuron’s membrane, small output weights
su�ce to adjust the neuron’s membrane towards the target trace. Secondly, the impact
of noise is negligible and the simulations in a noisy environment do perform equally well
than without. Since learning is purely gradient-based, the fixed-pattern element in the

55

5 Spike-based Eligibility Propagation

noise is not expected to disturb learning dramatically. However, the Gaussian noise on
the membranes is expected to influence learning. Since this is not the case, a large signal-
to-noise ratio is assumed with neurons being very responsive to synaptic input and thus
reducing the influence of noise on the membranes.

5.3.5 Small Output Weights

An increasing loss due to small output weights can be prevented by increasing the weight
resolution of ◊ho artificially. One possibility to achieve this is to increase the amplitude
of the target pattern and adjust the learning rates appropriately. This causes the output
weight distribution to become broader. On HX, however, this is not possible since this
increases the range in which the readout neuron evolves and would cause the neuron
to exhausts its physical limits. Instead, the synaptic input to the readout neuron is
downscaled by a constant ‡o. Essentially, this corresponds to a decreasing learning rate
÷o, such that, according to Figure 5.2, a higher firing rate and an increasing loss are
expected. This is circumvented by correcting the learning rate, ÷Õ

o = ÷o/‡o. Downscaling
the synaptic input of the readout neuron can be achieved on HX via calibration; hence,
this strategy is in line with on-chip and in-the-loop training.

The e�ect of artificially increasing the output weight resolution in simulation (noisy and
discrete) is shown in Figure 5.5, where losses and activities with ‡o œ {0.1, 0.5, 0.8, 1.0}

are depicted. The MSEs, clearly indicate an improvement in performance with decreasing
‡o. At the same time, the average firing rate increases. For ‡o = 0.1, an MSE3 of about
2.68 · 10≠3

± 1.07 · 10≠3 is obtained, compared to the baseline loss of 1.68 · 10≠3
± 9.38 ·

10≠5, this is slightly worse, however, significantly better than for ‡o = 1 with a loss
of 5.41 · 10≠3

± 2.07 · 10≠3. The histograms exemplify the tendency to larger weights
with decreasing ‡o. These observations show that increasing the output weights allows
the network to learn well with discrete weights and noise. Hence, training with HX
in-the-loop seems promising. This is confirmed in the following section.

5.4 HICANN-X in the loop

The simulations done in the previous sections can, in principle, be mapped directly to HX.
Therefore, instead of simulating the network, it is emulated on HX in analog while the
learning procedure remains widely untouched. The seamless transition from simulating
the network in software to emulating it on HX is enabled by chip abstraction in software
and the developed framework outlined in Section 4.2.1. However, since parameters on
HX, such as synaptic input strength, are subject to calibration, simulation and hardware
runs have no one-to-one correspondence but are aligned closely by an appropriate chip
setup.

3MSE values are given as average over the 50 last epochs.

56

5.4 HICANN-X in the loop

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

�o = 0.1 �o = 0.5 �o = 0.8 �o = 1.0

0 200 400 600 800 1000

Epoch

20

40

60

80

f a
v
[H

z
b
io
]

�20 0 20

✓ho [a.u.]

0

2

4

6

C
o
u
n
t
s

�o = 0.1

�20 0 20

✓ho [a.u.]

0

5

10
C
o
u
n
t
s

�o = 0.5

�20 0 20

✓ho [a.u.]

0

5

10

C
o
u
n
t
s

�o = 0.8

�20 0 20

✓ho [a.u.]

0

5

10

15

C
o
u
n
t
s

�o = 1.0

Weight distribution

Figure 5.5: To gain a higher resolution of the output weights, the strength of the synaptic
connections to the output neuron is scaled by ‡o œ {0.1, 0.5, 0.8, 1.0}, while the
learning rate for the corresponding weights is increased. This ensures a balanced
learning between the input/recurrent weights and the output weights. The upper-
left plot shows the MSE, the upper-right plot the corresponding average activity
for a given ‡o. Smaller ‡o yield decreasing losses and higher firing rates. The
histograms in the lower plots show the learned output weight distributions of a
single example for corresponding ‡o. Parameters are given in Table A.5.

5.4.1 Chip Setup and Training

The chip is calibrated towards desired parameters by the calibration library calix [Weis,
2020]. In order to mimic the simulation, the neuron’s membrane time constants are cho-
sen to ·m = 20 msbio. The leak potential and the reset potential are both calibrated

57

5 Spike-based Eligibility Propagation

to vl = vr = 120 DAC values, while the threshold is set to Ë = 160 DAC values. E�ec-
tively, this realizes a relative rest-to-threshold potential of 40 DAC values. The synaptic
strength of the spiking neurons is adjusted empirically by trying di�erent settings. In-
tuitively, a synapse is calibrated such that a single pre-synaptic event has the ability
to trigger a post-synaptic spike. This is motivated by the simulations, where it can be
seen that input weights get as large as the neurons’ thresholds. Therefore, calibration
targets a synaptic input strength to spiking neurons with Isyn, gm = 800 DAC values (see
[Weis, 2020]). As in Section 5.3.5, the synaptic input strength to the readout neuron
is downscaled with assumed ‡o = 0.1 and calibrated to Isyn, gm = 200 DAC values. For
the readout neuron, the threshold comparator is disabled to impose a non-spiking be-
havior. Synaptic time constants are set to ·syn = 4 msbio globally and the refractory
period to ·ref = 1 msbio. On HX, little longer synaptic time constants than in simula-
tion seem necessary in order to increase the signal-to-noise ratio and make the neurons
more responsive to input. Despite potentially exhausting the approximation of ”-like
synapses (see Section 5.3.1), it poses no serious issue. Input weights are initialized from
a normal distribution ◊ih

init ≥ N (25, 0) and the recurrent weights from ◊hh
init ≥ N (2, 0).

As in simulation, the output weights are initially set to zero, which is found empirically
to work well. The training procedure for training on HX is identical to the simulations
(cf. Section 5.3.2), except fore the learning rates, which are chosen to ÷r = 0.05 and
÷r = 0.02.

Readout Trace

The membrane trace of the readout neuron is measured by the MADC and evolves in
a range yt

k œ [0,1022] ADC values. Via calibration, the leak potential is adjusted such
that the trace can move above and below the membrane’s baseline by roughly the same
amount. After a forward pass, the measured MADC trace is shifted by an o�set ȳ0 to
get a sequence centered around zero with a vanishing baseline, i.e. yt

k ≠ ȳ0. Here, the
o�set is given by the first MADC sample measured in the current trial, ȳ0 = y0

k. The
assumption is that for this sample, the neuron’s potential is still at rest, and there is
no activity present yet. Since subtracting a global o�set in each trail yields a jittering
baseline because of a slightly changing resting potential with each run4, this technique
has proven itself to stabilize training. Finally, the membrane trace is scaled by a tunable
constant ÿ, chosen as ÿ = 0.7.

5.4.2 Application on Hardware

The hardware experiment is visualized in Figure 5.6. On HX, the loss converges towards
3.58 · 10≠3

± 1.28 · 10≠3; this is just slightly worse than the simulation with 2.68 · 10≠3
±

1.07 · 10≠3 and about twice as high as the baseline run with 1.67 · 10≠3
± 0.08 · 10≠3.

The activity of the recurrent layer shows a lower activity on hardware and stabilizes
at around fav = 25 Hzbio. This is due to di�erent weight initialization and di�erent

4This is due to the analog nature of the readout neuron.

58

5.4 HICANN-X in the loop

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

Simulation Hardware Baseline

0 200 400 600 800 1000

Epoch

0

20

40

60

80

100

f a
v
[H

z
b
io
]

�1.0

�0.5

0.0

0.5

1.0

y k
=
0
[a
.u
.]

Target

0 200 400 600 800 1000

Time [msbio]

0

5

10

15

N
e
u
r
o
n
I
D

Figure 5.6: Pattern-generation on HX. The top-left plot shows the MSE over training epochs
compared to the simulation (noise and discrete weights) and the s-prop baseline
experiment (no hardware properties). On the top-right the evolution of the activi-
ties are compared. An example trace is plotted in the middle (after 1000 training
epochs), where the analog membrane trace of the readout neuron on HX resem-
bles the target pattern closely. The lower-most plot shows the spike events of 16
recurrent neurons. Similar to the simulation, spike clusters are formed, indicat-
ing that the network learned to control its activity in order to minimize the MSE.
Parameters are given in Table A.6.

synaptic strengths resulting from the calibration process, e�ectively, yielding a slightly
di�erent experiment setup than in simulation. The network has clearly learned a spike
pattern such that the readout neuron’s membrane is adjusted to resemble the target trace
well. As indicated by the recurrent spike trains, the recurrent neurons learn to cluster

59

5 Spike-based Eligibility Propagation

0 200 400 600 800 1000

Epoch

�40

�20

0

20

✓
[a
.u
.]

✓ih ✓hh ✓ho

�50 0 50

✓ih [a.u.]

0

20

40

C
o
u
n
t
s

�10 0 10

✓hh [a.u.]

0

200

400

600

C
o
u
n
t
s

�20 0 20

✓ho [a.u.]

0

2

4

6

C
o
u
n
t
s

Figure 5.7: Weight evolution of a single hardware run. Although the MSE converges fast, the
model still adjust its weights in later epochs, possibly, due to firing rate regulariza-
tion. This can be seen in the upper plot, where the weights still change after the
MSE remains rather stable (cf. Figure 5.6). In the lower plots the learned weight
distributions for the inputs weights ◊ih, recurrent weights ◊hh and the output weights
◊ho are shown for as an example. Parameters are given in Table A.6.

their activity over short time periods in a sensible manner. The hardware experiment
shows a similar behavior as the simulations and therefore confirms the assumed hardware
properties incorporated in the software experiments. Further, it supports the observation
in Section 5.3.4 that the impact of noise is small since the training process on hardware
yields only a marginally worse performance than in simulations.

The development of the network’s weights is exemplified in Figure 5.7 for a training run
on HX. Interestingly, after Figure 5.6 indicates a converged loss, weights do still change
in later epochs, however, after about 800 epochs they remain rather stable. Presumably,
this is due to the regularization term adjusting the networks firing rates even after the
MSE has stabilized. This remains subject to investigation.

5.4.3 The Role of Recurrence

Since the considered task is not very complex, it possibly can be solved to a fair degree
without recurrent connections. It thus seems necessary to investigate whether s-prop

60

5.4 HICANN-X in the loop

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

Simulation HX HX no rec HX constant rec

0 200 400 600 800 1000

Epoch

0

20

40

60

80

f a
v
[H

z
b
io
]

Figure 5.8: Comparison of networks trained with recurrence, without recurrence and a con-
stant recurrent projection. The left plot shows the development of the MSE over
epochs, the right plot the corresponding average firing frequency of the network’s
spiking neurons. It can be observed, that in simulation (red line, including hardware
constraints) as well as on HX (blue line) the MSE is decreased when recurrent pro-
jections are learned, compared to a model without recurrence (green line). Using
a fixed, i.e. constant over epochs, recurrent projection (same weight distribution
as a the trained recurrent projection, but scrambled), performs equally to non-
recurrent learning. While a fair amount is learned without recurrence, training
recurrent weights with s-prop does indeed decrease the loss. Parameters are given
in Table A.7.

does indeed exhibit the ability to adjust recurrent weights in a meaningful fashion. This
is done in the following experiments.

The most intuitive way to measure the impact of recurrence is, obviously, to compare
performances with and without recurrent connections. Therefore, the experiment on
HX is repeated with the exact same learning and configuration setting, however, with
recurrent weights fixed to zero, e�ectively disabling recurrent exchange of information
(this is a simple spiking FNN).

Since a decreasing performance when discarding the recurrent projection can also be due
to fewer parameters and missing information propagation over time, a further experi-
ment is conducted. Instead of removing recurrence completely, the recurrent weights are
solely excluded from the training process and remain constant over epochs. In order to
ensure a sensible weight distribution, the constant recurrent weights are initialized with
weights from a scrambled but learned recurrent projection (taken from the network of
the corresponding pattern after training for 1000 epochs with learning in the recurrent
projection enabled). This ensures information propagation over time.

61

5 Spike-based Eligibility Propagation

As shown in Figure 5.8, the experiments with constant recurrence and without recur-
rence perform equally well (MSE: 7.71 · 10≠3

± 2.35 · 10≠3 and 7.49 · 10≠3
± 2.62 · 10≠3),

while incorporating learning within the recurrent projection does, in fact, improve the
performance (MSE: 3.61 · 10≠3

± 1.28 · 10≠3). Hence, s-prop enables learning in RSNNs;
however, the task at hand combined with the network setup does not heavily rely on
recurrence since a significant amount can be learned without. It is assumed that the role
of recurrence is increased as the network’s degree of freedom is further constrained, for
instance, by increasing ·ref (more in Chapter 7). Nonetheless, the task-selection and the
chosen network parameters have proven themselves to be a good choice as a first step
towards neuromorphic on-chip learning since the e�ects of learning recurrence are clearly
visible. Note, the network considered is by no means fully tuned; this is subject to future
works.

5.4.4 Investigating Stability

Emulating networks on analog neuromorphic hardware is not deterministic. Di�erent
runs yield slightly varying analog network parameters and noise on the membranes, and
as a result, di�ering forward passes. Especially in recurrent networks, this can pose
a problem since variations in the network emulation process are propagated along the
sequence and can evoke completely di�erent spike patterns. To investigate this, the
trained networks are used for inference and are emulated over 100 epochs with learning
disabled. The results are depicted in Figure 5.9.

The MSE loss shows the e�ect of analog network emulation immediately. It jitters around
its mean with an average ensemble standard deviation of 1.14 · 10≠3

± 0.49 · 10≠3 over
epochs, as indicated by the box-plot. While the network’s average firing frequency fav
remains largely constant, on average, the firing rate of a particular recurrent neuron
j has a standard deviation of 1.412 Hzbio ± 0.787 Hzbio between inference runs. For a
considered sequence length of 1000 msbio, this corresponds to a trial-to-trial variation
of about 1.5 spikes per recurrent neuron on average. For the example pattern in the
figure, the best and worst inference trials do not vary much. Even in the worst trial, the
pattern is resembled quite well. This advocates the assumption in Section 5.4.3 that the
network does not rely essentially on recurrence and suggests that the network propagates
information over short time windows to fine-tune performance, however, not along the
whole sequence. In that way, spike-time deviations at the beginning of the sequence do
not have a big impact on the network’s error at later times. In fact, this is expected since
the information content encoded on the membranes disintegrates with the membrane time
constants. Therefore, LIF neurons are not able to propagate information over longer time
frames. Generally, the preferred choice for tasks that require higher temporal processing
capabilities are LIF neurons with adaption (see Section 7.1) [Bellec et al., 2019; Brette
et al., 2005].

With the results obtained in the previous sections, the next step is to finally adjust the
learning rules to be implementable on the PPU and investigate their feasibility. This is
done in the next chapter.

62

5.4 HICANN-X in the loop

0 20 40 60 80 100

Epoch

0.002

0.004

0.006

0.008

M
S
E

Average Example

0 200 400 600 800 1000

Time [msbio]

�1.0

�0.5

0.0

0.5

1.0

y k
=
0
[a
.u
.]

Best Worst

0 20 40 60 80 100

Epoch

15

20

25

30

35

f a
v
[H

z
b
io
]

0.0 0.5 1.0 1.5 2.0

Average Std(fj) [Hzbio]

0.0000 0.0005 0.0010 0.0015

Average Std(MSE)

Figure 5.9: After training, inference of the learned model is performed on HX for 100 trials.
Due to the analog nature of the chip, HX is subject to noise, yielding di�erent
results in each trial. This can be seen in the upper-left plot depicting the MSE over
inference trials. “Average” corresponds to the ensemble average, ”Example“ to the
pattern shown in the upper-right plot. Here, the best and worst inference trials are
shown. Both do resemble the target pattern. The stability of the average ensemble
firing rate is depicted in the lower-left over epochs and remains rather constant.
The lower-right box-plot shows the average standard deviation of the MSE and the
average standard divination of the firing frequency of a recurrent neuron j, both
over epochs, i.e. error bars are uncertainties over the ensemble. Parameters are
given in Table A.8.

63

6 On-chip Learning

After demonstrating e-prop-inspired learning with HX in-the-loop in the previous chap-
ter, the desire arises to implement on-chip learning using the PPU. This comes with
additional di�culties and constraints that need to be handled. In particular, this in-
cludes an approximated learning rule that operates with PPU-accessible observables. At
the same time, full on-chip learning can exploit several advantages. Since plasticity is
computed on-chip in parallel to the forward pass, the speed-up factor of HX can be fully
exploited, and time-consuming data transfers between host and HX avoided. While this
is expected to be very energy-e�cient, a neuromorphic on-chip implementation is also
appealing from a biological perspective; Like the brain deploys dedicated error compu-
tation networks generating learning signals in order to perform synaptic plasticity in
certain brain areas [Buzzell et al., 2017], on HX, the calculation of weight updates and
the emulation of the actual analog neural network are also both done in parallel on the
same substrate.

This chapter proposes a mathematical derivation of an adjusted learning rule that turns
out to be a promising candidate for a PPU implementation. Simulations verify that this
rule enables learning in RSNNs in general and also when incorporating basic hardware
constraints. Finally, the plasticity rule is implemented and tested on the actual hardware.
This also includes a final discussion of encountered issues.

6.1 Learning Rule under Hardware Constraints

Full on-chip learning is only feasible under constraints defined by the hardware. A direct
implementation of the learning rule described in Section 5.2 on HX is not possible for
reasons becoming evident in the following. However, an adjusted plasticity rule can be
found that indeed enables on-chip learning. While in-the-loop training computes the
backward-pass on the host side, full on-chip learning uses the PPU to perform weight
updates by incorporating correlation measurements. Therefore, the adjusted learning
rule makes rather rough approximations; nonetheless, the on-chip implementation comes
with the advantage of fast batch execution. This is assumed to partially outweigh the
simplifications made when learning with a reasonably small learning rate.

The main issue that arises with the learning rule in Equation (2.53) is the limited access
to the neurons’ state variables vt and zt via the PPU. As already discussed in Section 5.2,
measuring the membrane potentials vt

j of the recurrent neurons is undesirable. In contrast
to in-the-loop training with s-prop, as described in Chapter 5, where the backward pass is
performed on the host-side by incorporating the recurrent spike trains zt

j, the PPU is not

65

6 On-chip Learning

capable of accessing the latter (at least not trivially, possible workarounds can be found
and are discussed in Chapter 7). Since these observables need to be known explicitly
at each time step t to calculate the eligibility trace et

ji, it is infeasible to implement the
original e-prop as well as the s-prop algorithm on-chip. Thus, the challenge is to find a
good representation of et

ji by observables the PPU has access to.

6.1.1 Utilizing Correlation Measurements

Under the assumption made in Equation (5.3), the approximated spike-based eligibility
traces êt

ji become the exponentially filtered pre-synaptic spike trains zt
i evaluated at a

post-synaptic spike event ztÕØt
j . The causal correlation sensors on HX show a very similar

behavior: A pre-synaptic spike triggers an exponential decay with a time constant ·c, and
the remaining amplitude is read out on the next post-synaptic event (see Section 3.2). It
is thus a natural step to utilized these sensors in order to model the eligibility traces on-
chip. This is convenient since the correlations sensors emulate an approximated version
of the traces without any computational cost on the PPU and can be digitized by the
CADC and read out with the VU. However, the behavior of the correlation sensors di�ers
in two di�erent aspects from the spike-based traces êt

ji. They measure the correlation in
a nearest-neighbor approximation and allow only access to accumulated correlation. This
will be clarified and discussed in detail now. Please remember for the following that t is
a dimensionless time step and t · ”t the actual time.

Nearest-Neighbour Approximation

The eligibility vectors ẑt
i in Equation (5.3) quantify how much a synapse ji remembers

of its activation history. Each pre-synaptic event zt
i = 1 adds an exponential decay, with

decay constant –, to the eligibility vectors ẑt
i , which correspondingly propagates past

activation information into the future. In Equation (5.3), the eligibility vectors ẑt
i are

accessed on a post-synaptic event zt
j = 1, giving the eligibility traces êt

ji only a non-
vanishing value if the post-synaptic neuron j spiked. It is thus su�cient to know the
eligibility vectors at all post-synaptic events.

Ideally, one would like the correlations sensors to model the same additive behavior such
that a correlation measurement on a post-synaptic event at time step tÕ

Ø t corresponds
to êtÕ

ji and contains propagated information of all past pre-synaptic activations. Since the
correlation sensors are implemented as analog circuits, this poses two problems. Firstly, if
a pre-synaptic neuron i fires strongly, it causes a high activation of the synapse. However,
the correlation sensors model the eligibility vectors by charge, so they have an upper limit.
Secondly, the charge in the correlation sensor is accumulated to the storage capacitor
at a post-synaptic event. To preserve the activation history of all past pre-synaptic
events, the current charge, representing the eligibility vector, needs to be measured and
copied, resulting in a more complex sensor circuit requiring more space on the chip
die [Breitwieser, 2015]. The correlation sensors on HX implement the eligibility traces,
therefore, in a nearest-neighbor approximation. A pre-synaptic event puts the eligibility

66

6.1 Learning Rule under Hardware Constraints

vector to an initial amplitude ÷c, and the next post-synaptic event applies the charge to
the storage capacitor after which the eligibility vector is reset to zero. The charge applied
to the storage at time step tÕ is then a measure for the eligibility trace ênn,tÕ

ji under nearest-
neighbor approximation. A direct consequence is that these eligibility traces contain only
activation information from the most recent pre-synaptic event. This scheme is depicted
and compared to the spike-based eligibility traces in Figure 6.1.

Pre

Time [ms]

0.0

0.5

1.0

1.5

2.0

ẑ i
[a

.u
.]

Eligibility traces êt ”= 0

Time [ms]
0.0

0.5

1.0

1.5

ẑco
rr

i
[a

.u
.]

Eligibility traces ênn,t ”= 0

0 50 100 150 200 250
Time [ms]

Post

Figure 6.1: Comparison of spike-based eligibility vectors and the eligibility vectors emulated
by the correlation sensors. A synapse ji receives pre-synaptic events (uppermost
ticks) and the corresponding neurons emits post-synaptic spikes (lowermost ticks).
For s-prop, the eligibility traces are the exponentially filtered pre-synaptic spikes
(blue line in the upper plot, depicting the eligibility vector ẑi) evaluated at a post-
synaptic event (orange dots). The correlation sensor emulate the vectors ẑcorr

i in a
nearest–neighbor fashion (lower plot) and are measured (corresponding to ênn,tpost ,
orange dots) and reset by each post-synaptic event.

The exponentially decaying correlation amplitude ÷t
ji emulated by the causal correlation

sensors is (numerically) described by

÷t
ji =

Y
]

[
÷c exp

Ë
≠

1
·c

(t ≠ tpre
i) ”t

È
if tpre

i Æ t Æ tpost
j

0 else,
(6.1)

where ÷c is the initial amplitude restored in the correlation sensor at the latest pre-
synaptic event at time step tpre

i . tpost
j is the subsequent post-synaptic spike-time, i.e.

ztpost
j = 1. Assuming the correlation time constant ·c to be equal to the membrane time

67

6 On-chip Learning

constant ·m of the recurrent neurons gives for t œ

Ë
tpre
i , tpost

j

È

·c = ·m =∆ ÷t
ji = ÷c exp

5
≠

1
·m

(t ≠ tpre
i) ”t

6
= ÷c · –t≠tpre

i . (6.2)

Here, the exponential term is identified with the membrane decay constant – defined in
Equation (2.15). In comparison to the eligibility vectors in Equation (5.3), the correlation
amplitude in Equation (6.2) does not propagate any information from activations tÕ <
tpre
i . Thus, when modeling ẑt

i by ÷t
ji, this means that the sum over previous time steps

tÕ in Equation (2.47) has only a contribution for tÕ = tpre
i and the eligibility vectors ‘nn,t

ji

under nearest neighbor approximation become

‘nn,t
ji := 1

÷c
÷t

ji =

Y
]

[
–t≠tpre

i if tpre
i Æ t Æ tpost

j

0 else.
(6.3)

According to Equation (5.3), the eligibility traces are then given by

enn,t
ji = zt

j · ‘nn,t≠1
ji . (6.4)

These eligibility traces have only non-vanishing values for post-synaptic spike times tpost,
i.e. ztpost

j = 1, and are provided by ‘nn,tpost≠1
ji . This corresponds to the amplitude applied

to the correlation storage at the post-synaptic event divided by ÷c,

enn,t
ji = 1

÷c
÷t≠1

ji · zt
j. (6.5)

Note, the minus one in the time index t ≠ 1 of the eligibility vectors is due to a recurrent
transmission latency of ”t. The eligibility vectors for the input projection are obtained
by replacing the recurrent spike train zt≠1

i (i.e. the corresponding pre-synaptic spike
time) with the inputs xt

i since there is no transmission delay per definition. On HX, the
recurrent latency is usually very small1 and, therefore, ÷t≠1

ji ¥ ÷t
ji can be assumed. Thus,

on HX, recurrent and input synapses have the same eligibility traces.

Accumulated Correlation

To use the eligibility traces in Equation (6.5), they need to be known at each step t. As
already mentioned, the correlation sensors, however, store the correlation information
in a storage capacitor (see Section 3.2). After resetting the causal storages, the sensors
start to accumulate correlation information of all pre-post spike pairs occurring in a given
time interval P until the storage is read out and reset again. Since the PPU can only
access the amount of accumulated correlation in the storage, precise time information is
lost. The consequence is that enn,t

ji cannot be known exactly, and the update rule has
to deal with accumulated traces. Still, the accumulated correlation readout is a proxy
for the activation of a synapse in the time period P and therefore contains valuable
information. Hence, it is promising to use accumulated correlation measurements to
model accumulated eligibility traces.

1Compared to the latency in simulations done in this chapter.

68

6.1 Learning Rule under Hardware Constraints

tNP

· · · en�1
ji enji · · ·

· · · yn�1
k

yn
k · · ·

t0 t1 tn�2 tn�1 tn tn+1tn+1

Accumulate

Update Period P

Reset Readout

Figure 6.2: Assumed time line of correlation and membrane readouts. Before each update
interval n of length P , the correlation is reset and then read out at tn to compute
eacc,n. yn

k corresponds to the membrane readout and is used to calculate the learning
signal.

Discretising the whole time sequence of length T into NP intervals of size P , such that
T = NP · P with P itself discretized by P = p · ”t œ N, the correlation sensors are read
out at time tn = n · P (note, tn has the dimension of a time and corresponds to the time
step t = n · p,), where n œ [1, NP]. The correlation accumulated at the end of interval n
is then given by

cn
ji =

npÿ

t=(n≠1)p+1
÷t≠1

ji · zt
j, (6.6)

if the correlation storage is reset at the beginning of each interval tn≠1. Here again,
the sum has only a contribution if zt

j = 1, corresponding to a post-synaptic spike on
which the amplitude ÷t≠1

ji is applied to the storage. Accumulating the eligibility traces
in Equation (6.5) over the same interval gives

eacc,n
ji = 1

÷c

npÿ

t=(n≠1)p+1
÷t≠1

ji · zt
j = 1

÷c
cn

ji. (6.7)

Incorporating the expression in Equation (6.7) into the update rule and assuming cn
ji

is described with su�cient accuracy by the correlation sensors allows now an on-chip
implementation.

6.1.2 Adjusting the Learning Rule

An on-chip update rule for the recurrent weights can be derived starting from the update
in Equation (2.45). In addition to the accumulative eligibility traces eacc,n

ji , appropriate
learning signals L̂t

ji need to be found.

According to Equation (2.44), the learning signals are task-specific and depend on the
error function E. Choices of E that result in learning signals depending on observables
inaccessible by the PPU are obviously not realizable on-chip (cf. Section 5.1.2). The

69

6 On-chip Learning

residual sum of squares (RSS) used in the pattern-generation task depends on the mem-
brane potentials yt

k of the readout neurons, resulting in suitable learning signals if the
membranes are measured with a feasible sample rate 1/P via the CADC. Therefore, this
task is qualified for an on-chip implementation. Assuming P to be the time interval in
which the correlation sensors accumulate correlation information as in Equation (6.7), a
correlation readout coincides with a membrane readout. This is visualized in Figure 6.2.
For the pattern-generation task the learning signals L̂t

j are given in Equation (2.51).
Since these learning signals assume yt to be sampled with 1/”t, they need to be adjusted.
Therefore, the time step t is replaced with the update interval index n and ”t with
the update period P . Then, the learning signals access the readout membranes only at
tn = nP = n · p · ”t and are assumed as

L̂n
j :=

ÿ

k

◊ho
kj

ÿ

nÕØn

1
ynÕ

k ≠ yú,nÕ

k

2
Ÿ̂nÕ≠n, (6.8)

where ynÕ
k is the membrane potential of the readout neuron k at time tnÕ = nÕP , yú,nÕ

k

the corresponding target value, and Ÿ̂ = Ÿp = ŸP/”t = exp (≠P/·m) the decay constant.
Discretising the sum in Equation (2.45) over t into NP intervals of length p = P/”t,

‰dE

d◊hh
ji

=
ÿ

t

L̂t
j · et

ji =
NPÿ

n=1

npÿ

t=(n≠1)p+1
L̂t

j · et
ji, (6.9)

and assuming L̂n
j to be constant in the interval ((n ≠ 1)p, np], suggests under nearest-

neighbor approximation

NPÿ

n=1
L̂n

j

npÿ

t=(n≠1)p+1
enn,t

ji ¥

NPÿ

n=1
L̂n

j · eacc,n
ji =:

A
dE

d◊hh
ji

Bacc

. (6.10)

Inserting the definitions of eacc,n
ji in Equation (6.7) and L̂n

j in Equation (6.8) yields the
on-chip learning rule for the recurrent weights,

1
�◊hh

ji

2on-chip
= ≠÷Õ

A
dE

d◊hh
ji

Bacc

(6.11)

= ≠÷Õ 1
÷c

NPÿ

n=1

ÿ

k

◊ho
kj

ÿ

nÕØn

1
ynÕ

k ≠ yú,nÕ

k

2
Ÿ̂nÕ≠ncn

ji (6.12)

= ≠÷
NPÿ

n=1

ÿ

k

◊ho
kj

1
ynÕ

k ≠ yú,nÕ

k

2 ÿ

nÕÆn

Ÿ̂n≠nÕ
cnÕ

ji . (6.13)

Here ÷ denotes the learning rate which absorbs the constant 1/÷c. In the last step, the sum
indices are swapped and renamed such that the sum over future intervals becomes a sum
over the past. Since Ÿ̂ is a decay constant of the readout neurons, the sum propagates the
correlation readouts cnÕ

ji from the past into the present, taking into account contributions
to the current error from neuron activities in past intervals. If the period P is much larger

70

6.1 Learning Rule under Hardware Constraints

than the time window of the readout neurons (i.e. their membrane time constant), the
contribution from previous intervals vanishes.

The update rule uses only accumulated information collected in each time interval
((n ≠ 1)P, nP]. For the weight update in Equation (6.13), this means that correlation
information of all pre-post spike pairs accumulated in an interval is considered equally
responsible for the error

1
ynÕ

k ≠ yú,nÕ

k

2
in the contribution to the weight update at tn.

This is a distortion of reality since — for instance — a high synapse activation at the
beginning of an interval should be more responsible for errors at times tÕ < tn than for
errors at tn. Note, however, as the true eligibility traces propagate activation information
into the future, the high activity at the beginning of an interval is supposed to impact
the weight update at time tn, but just by the amount propagated by –.

The update rule for the input weights ◊ih
ji can be inferred analogously for the recurrent

weights by replacing the correlation measurements cn
ji of the recurrent synapses with

correlation measurements of the input synapses. This is simply achieved by expressing
the eligibility traces eacc,n

ji in Equation (6.7) with the eligibility traces enn,t
ji of the input

synapses (see Section 6.1.1).

Output Weights

So far, the on-chip learning rules for the input and recurrent weights are derived. When
considering the update rule for the output weights in Equation (2.54), the weight update
again depends on the spike train zt

j of the recurrent neurons filtered by the readout
decay Ÿ. As for the recurrent update rule, each pre-synaptic event — here the spikes
of the recurrent neurons — triggers an exponential decay. However, due to non-spiking
readout neurons, this behavior cannot be modeled by the correlation sensors since they
only accumulate correlation on post-synaptic events. In order to avoid the dependence
on explicit spike times, the neurons spike counters are used, accumulating spikes within
the interval P (see Section 3.1). These counters can be read out and reset by the PPU
and are, therefore, a convenient choice to adjust the output update rule.

Assuming the counter ’j of neuron j to be reset at time tn≠1, the counter readout after
time interval P = p · ”t at time tn is given by

’n
j =

npÿ

t=(n≠1)p+1
zt

j (6.14)

and corresponds to the number of accumulated spike events in P . If the counter is read
out simultaneously with the membrane potential yn

k , the update rule in Equation (2.54)
can be written as

1
�◊ho

kj

2on-chip
= ≠÷

NPÿ

n=1
(yn

k ≠ yú,n
k)

ÿ

nÕÆn

Ÿ̂n≠nÕ
’nÕ

j , (6.15)

where the spike train zt
j is replaced by the counter ’n

j and ”t in Ÿ is replaced with
P . In consequence, the signed error

1
yt

k ≠ yú,t
k

2
at each time step t is not weighted by

71

6 On-chip Learning

t = �P 0 P 2P nP (NP � 1)P NPPt0 t1 t2 tn+1 tNP

y1
k y2

k yn+1
k

y
NP
k

e1 e2 en+1 eNPO↵set t̃

Accumulate

Update Period P

Reset Readout

Figure 6.3: In order to make the on-chip learning rule take all elements of the time sequence
into account, in each trial a new random o�set t̃ is sampled. Therefore, the sequence
is augmented by one interval such that accumulation begins at t0 = ≠P + t̃. In this
way, each trial considers di�erent time intervals.

the propagated spike events zt
j anymore, but the error at time tn is weighted by the

accumulated spikes propagated by Ÿ̂. As for correlation, all events at times tÕ
œ (tn≠1, tn]

are thus held equally responsible for the signed error at tn.

Since the learning rules in Equation (6.13) and (6.15) propagate spike information along
the sequence by Ÿ̂ (and implicitly by the correlation sensors), their neuromorphic imple-
mentation is referred to as Neuromorphic Accumulative Spike Propagation (NASProp)
from here on.

Regularization

The adjustments for the eligibility traces can also be applied to the regularization update
in Equation (2.56). Here, the term ht

j ẑ
t≠1
i is replaced with the correlation measurements

in Equation (6.7). The sum over t is split into chunks of size P = p · ”t and summed up
over n,

�◊ih,hh
ji = ÷reg

1
f target

≠ f av
j

2 ÿ

n

eacc,n
ji . (6.16)

The average firing rates f av
j can be computed on-chip by reading out the recurrent neu-

rons’ spike counters.

Random O�sets

The on-chip update rules consider the readout traces yú,t
k only at times tn = nP , respec-

tively time steps t = n · p. Hence, errors at time steps tÕ
œ ((n ≠ 1)p, np) have never a

contribution to the weight update, and ytÕ
k is allowed to evolve freely within this interval.

This, of course, poses a problem since the traces yt
k are supposed to minimize the error

to yú,t
k over the whole time sequence.

This issue is counteracted by introducing a random o�set. Therefore, the time sequence
is augmented in the beginning by one interval of length P , such that the sequence starts

72

6.1 Learning Rule under Hardware Constraints

0.0

0.2

p

p(zpre
= 1) p(zpost

= 1)

0 50 100 150 200 250 300

Time [ms]

0.000

0.002

0.004

0.006

0.008

0.010

he
i
(
n
o
r
m
a
li
z
e
d
)
[a
.u
.]

hêti
heacc,niP=50

heacc,niP=20

henn,ti
hec,ni

Figure 6.4: Qualitative comparison of di�erent eligibility trace approximations for a single
synapse. To create a artificial spiking environment, pre-synaptic events are sampled
from a distribution p(zpre = 1) and post-synaptic spikes are drawn uniformly. The
expected eligibility traces ÈeÍ are the traces et averaged over many trials, each with
newly sampled spike events. A more in-depth interpretation is given in the text.

at time ≠P . Instead of having constant time points tn over which the weight update is
calculated, in each training trial a new random o�set t̃ œ [0, P) is drawn to shift tn,

tn = ≠P + t̃ + nP with n œ NÆNp
0 . (6.17)

Since the sum over n in the update rules starts at n = 1, the first contribution to
the update is at tn=1 > 0; however, accumulating starts at tn=0 < 0. For time steps
t < 0, the input activity xt<0

i and the target trace yú,t<0
k are assumed to be zero. This

leads to non-zero contributions in the first interval for t Ø 0 only. See Figure 6.3 for
clarification.

When using a di�erent o�set in each training trial, each weight update will take distinct
time points tn of the target pattern yn

k into account, such that over many epochs, the
whole pattern contributes to weight updates, and the network can learn to minimize the
error over all time steps t. Further, this will weight the corresponding learning signals
with di�erent synapse activation information given by the accumulated eligibility traces
with every trial. Thus, as depicted in Figure 6.4, a random o�set allows the learning
algorithm to gain a more realistic image of the networks spiking activity as the training
process evolves.

In Figure 6.4, an artificial spiking setup is created. Be aware that this is meant as a toy
example supposed to show the qualitative behavior of the di�erent approximations made.
Here, pre-synaptic spike events are sampled from a distribution p(zt,pre = 1), modeling
the activation of a synapse. In order to calculate eligibility traces, post-synaptic events

73

6 On-chip Learning

are drawn uniformly. The resulting eligibility traces for di�erent approximations are
calculated and averaged over many experiments, given by the expected eligibility trace
ÈeÍ over t. Here, Èêt

Í corresponds to the traces under spike-based approximation made
in Equation (5.3). In comparison to Èenn,t

Í (nearest-neighbor approximation), the traces
êt do resemble the amount of activity at a specific time much better — a high synapse
activation results in bigger eligibility traces. This is because the traces êt are additive
where each pre-synaptic event triggers an additional exponential decay, while the traces
enn,t do discard the activation history on each pre-synaptic event (and on each post-
synaptic event). This is also reflected by the position of the corresponding maxima.
The maxima of Èêt

Í do not coincide with the activation maxima given by p(zt,pre = 1)
since the eligibility vectors propagate the activation information into to future, such that
the pre-synaptic events push the eligibility traces within the propagation time window
(here given by the membrane time constant · = 20 ms). In essence, this means that a
spiking activity a time step tÕ < t in the past is held accountable for the error the trace yt

k

produces at t. In contrast, the maxima of Èenn,t
Í are rather coincidental with the maxima

of p(zt,pre = 1) since the synapse remembers only the latest pre-synaptic event at a given
time step t. The averaged accumulated traces in Equation (6.7) are visualized by Èec,n

Í

with P = 50 ms. Here, no random o�set is used, such that the trace is only given at time
tn = nP , and the weight update is limited to this information in all training trials. This
trace has low resolution and, therefore, cannot represent the underlying spiking activity
properly. The random o�set t̃ does somewhat remedy this, as can be seen by the average
trace Èeacc,n

ÍP =50. Over many training trials, these expected eligibility traces captured
the shape of Èêt

Í much better because, in each trial, the spiking activity is considered in
di�erent time intervals. However, the maxima are shifted with respect to the spike-based
traces êt as well as to enn,t. This is due to the accumulating nature of these traces, where
the eligibility traces under nearest-neighbor approximation, accumulated over a period
P , is assigned to the time tn at the end of the corresponding interval. Hence, as P
increases, more past spiking activities are taken into account and are penalized for the
error at tn. The traces Èeacc,n

ÍP converge towards Èenn,t
Í for P æ ”t.

6.2 Simulation

Before proposing a feasible on-chip implementation, the learning rule derived is subject
to investigation in simulation. This will encompass a baseline simulation, showing that
the learning rule enables learning in RSNNs in principle, followed by simulations that
take hardware properties into account. Before explaining the training procedure, the
hardware constraints are discussed.

6.2.1 Hardware Constraints

Basic hardware properties like weight discretization and noise, as outlined in Sec-
tion 5.3.1, do apply here as well. Additionally, three aspects need to be considered:

74

6.2 Simulation

Firstly, on-chip weight optimization, secondly, firing rate regularization on the PPU, and
lastly, noise in the correlation sensors.

So far, no sophisticated weight optimizer is implemented on the PPU. While this is
possibly part of future works, the on-chip weight updates cannot be optimized e�ciently
with momentum at the time of writing. Consequently, simulations should rely solely on
momentum-free SGD-like weight optimization, meaning applying weight updates directly
as given by the learning rules without further processing.

On-chip firing-rate regularization can only be achieved by accessing the spike counts of
all recurrent neurons with the PPU. While this is preferably done rather fast via VU
access, for the current chip version, this is solely achievable by reading out and resetting
all counters successively with the scalar unit. As shown in Table 6.2, this is very time-
consuming.2 Nonetheless, regularization can be implemented with the scalar unit since
this requires reading out the spike counters only at the end of the sequence (and not
at each tn) and, hence, is not time-critical. However, regularization is not implemented
on-chip yet. Simulations will take this into account.

On HX, correlation is measured in analog and subject to fixed-pattern noise (see Fig-
ure 3.5). Hence, the correlation amplitudes ÷c and the correlation time constants ·c di�er
from synapse to synapse. In simulations, these constants are sampled from a normal dis-
tribution N (÷target

c , ‡÷c) and N (· target
c , ‡·c), respectively, with ÷target

c and · target
c being the

desired means and the corresponding ‡ the expected standard deviations. The standard
deviations are assumed to be 10% of the means. The sampled values do not change over
training epochs.

6.2.2 Network Setup and Training Procedure

To align the experiments with s-prop in Chapter 5 to the simulation done in the following,
the network setup and chosen LIF constants in Section 5.3.2 remain untouched. This
also applies to the general training procedure and task definition.

Additionally, in each training trial, a new random o�set t̃ is drawn uniformly from the
set {t̃ œ N0|0 Æ t̃ < P}. The update periods are set to P œ {25 msbio, 50 msbio} if
not stated otherwise. The baseline experiments use non-discrete weights, optimized by
the Adam optimizer with learning rates ÷r, ÷o = 0.03. Hardware-close experiments have
discrete weights ◊ œ N63

≠63. Therefore, the weight updates are rounded stochastically (see
Section A.2.1) and applied directly to the weights with adjusted learning rates of ÷r =
9 · 10≠5 and ÷o = 1 · 10≠4 without further processing. These learning rates were found to
work well after a hyperparameter-search. Note, simulations with discrete weights utilize
additional artificial weight resolution enlargement as described in Section 5.3.5 with
‡o = 0.1. For experiments with regularization, the average firing rates f av

j are regularized

2For the current on-chip implementation in Section 6.3 this does not pose an issue for the output weight
updates in Eq. (6.15) (which also need counter readouts) since in each update interval n only a single

counter is accessed (cf. Section 6.3) which can be achieved in a reasonable time.

75

6 On-chip Learning

towards f target = 40 Hzbio with a regularization strength of ÷reg = 5000 according to
Equation (6.16). The remaining parameters and procedures are given in Section 5.3.2 if
not replaced here.

6.2.3 Baseline Experiment

In order to have a baseline to simulations with hardware characteristics and to show
that the on-chip learning rules enable learning in RSNNs, an experiment without any
hardware constrains is conducted with P = 25 msbio and P = 50 msbio. The training
process is visualized in Figure 6.5.

Both runs, with P = 25 msbio and P = 50 msbio, converge properly. The shorter update
period results in a loss of about 1.54 ·10≠3

±0.48 ·10≠3 and the longer update period in a
loss of 3.15 · 10≠3

± 0.96 · 10≠3, which is just slightly worse. Compared to e-prop, the loss
with P = 25 msbio is just marginally above. However, this comparison is arguably unfair
since training parameters are not tuned for e-prop but NASProp. This also becomes
visible for the average firing rates. For NASProp, the firing rates are regularized close to
the target, while the networks recurrent neurons fire much stronger when trained with
e-prop. It is observed that e-prop needs to be regularized stronger.3 The example trace
in the figure gives an impression of how well the task can be solved with P = 50 msbio.
Here, the actual readout trace yt

k=0 imitates the target sequence narrowly. As for s-prop,
the network learns to form spike clusters, indicating that the network learns to specialize
its activity to dedicated time windows to minimize the network’s error.

6.2.4 Update Period

The baseline experiments in Section 6.2.3 indicate a dependency of the network’s perfor-
mance on the update period P . This is investigated in the following since later on-chip
implementations on HX will define a minimal update period P (see Section 6.3.1). Ad-
ditionally, the discussed properties of the HX chip are incorporated into the simulation.
All simulations are done for P œ {p œ NÆ120

10 |p mod 10 = 0}. The results are depicted
in Figure 6.6. It is observed that SGD-like weight optimization results in an increasing
loss compared to Adam weight optimization. Using discrete weights with SGD does
increase the MSE further. Noticeable, however, is that (similar to s-prop) introducing
noise does not a�ect the performance severely. One explanation is that gradient-based
learning can mitigate the e�ect of fixed-pattern noise by adjusting weights appropriately.
The Gaussian noise on the membranes is assumed to be negligible due to a large signal-
to-noise ratio. Further, turning o� regularization does result in equal performance as
with. Admittedly, the e�ect of turning o� regularization is considered in the selection
of the learning rates to ensure good performance without regularization. Nonetheless,
no regularization, of course, results in di�erent average firing rates. The example runs
in the figure (upper-right) show that the traces get rough with a large P = 100 msbio

3e-prop training with stronger regularization is shown in Figure 5.3.

76

6.2 Simulation

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

e-prop P = 25msbio P = 50msbio

0 200 400 600 800 1000

Epoch

20

40

60

80

100

f a
v
[H

z
b
io
]

Target

�1.0

�0.5

0.0

0.5

1.0

y k
=
0
[a
.u
.]

Target

0 200 400 600 800 1000

Time [msbio]

0

5

10

15

N
e
u
r
o
n
I
D

Figure 6.5: NASProp baseline experiments in comparison to e-prop. The upper-left plot shows
the MSE over epochs, with the red and blue line corresponding to training with
NASProp and the gray line to e-prop. A bigger update period P yields increas-
ing losses. The upper-right plot shows the corresponding average activity of the
recurrent layer. The lower plot exemplifies the performance of NASProp with
P = 50 msbio after 1000 training epochs, where the readout traces resembles the
target closely. The lower part shows the activity of the 16 recurrent neurons over the
time sequence. It can be observed that the network clusters its activity. Parameters
are given in Table A.9.

but they still follow the general curvature of the target trace. All simulations exhibit a
relatively linear dependency on P . While the baseline MSEs do only increase slightly
with P , for simulations with discrete weights, the MSE increases faster. However, these
simulations show that even if an increasing P decreases performance, acceptable results
can still be achieved with a longer P , as indicated by the example traces.

Although the simulations do not capture all properties of HX, these simulations motivate
the step towards implementing the learning rules on HX using the PPU.

77

6 On-chip Learning

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

P = 50msbio

0 250 500 750 1000

Time [msbio]

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

y m
,k

=
0
[a
.u
.]

P = 100msbio

Best Worst

20 40 60 80 100 120

P [msbio]

0.00

0.01

0.02

0.03

0.04

0.05

M
S
E

Baseline

SGD

SGD, discrete

SGD, discrete, noisy

SGD, discrete, noisy, no reg.

Figure 6.6: NASProp performances in dependence of P . “SGD” corresponds to the simula-
tion without any hardware properties, but using SGD for weight updates, “SGD,
discrete” introduces additional weight discretization and “SGD, dicrete, noisy” is
the simulation done in a noisy environment. In addition, “SGD, discrete, noisy,
no reg.” does neglect any firing rate penalization. The upper-left plot shows the
MSE over epochs for the di�erent learning settings, trained with P = 50 msbio. On
the upper-right, the best and worst performing traces are given together with their
target, both trained with P = 100 msbio. Even with long update periods, the traces
do still follow the general idea of the target pattern. In the lower plot, the MSE loss
is depicted over the update period P (ensemble average over the last 50 epochs).
It can be observed that the loss increases linearly with P . For discrete weights the
loss increases faster. Parameters are given in Table A.10.

6.2.5 The Role of Recurrence

As learning recurrence is a crucial element of this thesis, the NASProp learning rules
should exhibit positive e�ects when training recurrent weights. Therefore, similar to the
experiments in Section 5.4.3, performances are compared between recurrent and non-

78

6.2 Simulation

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

P = 50 msbio

Baseline Simulation Baseline no rec. Simulation no rec.

0 200 400 600 800 1000

Epoch

10
�3

10
�2

10
�1

M
S
E

P = 100 msbio

Figure 6.7: Comparison of non-recurrent and recurrent NASProp training with P = 50 msbio
(left) and P = 100 msbio (right). The orange (recurrent) and red (non-recurrent)
lines correspond to training without hardware constrains. Blue (recurrent) and
violet (non-recurrent) curves incorporate hardware constraints (noise and discrete
weights). In both cases it can be observed that using recurrent connections does
clearly improve the performance. Parameters are given in Table A.11.

P = 50 msbio P = 100 msbio

Setup [10≠3] [10≠3]

Baseline 3.15 ± 0.95 8.12 ± 3.30
Baseline no rec. 14.77 ± 6.76 38.18 ± 17.27
Simulation 11.51 ± 2.99 28.66 ± 6.63
Simulation no rec. 28.51 ± 8.66 65.14 ± 24.04

Table 6.1: Ensemble average MSEs
of the experiments in Figure 6.7.
The errors denote the standard de-
viation over the ensemble.

recurrent networks, both trained with the update rules at hand. The training process is
shown in Figure 6.7 and the resulting MSEs are summarized in Table 6.1.

The figure compares performances of the baseline setup and the simulation setup with
hardware constrains between corresponding non-recurrent and recurrent networks, both
trained with P = 50 msbio and P = 100 msbio. The baseline and the simulation exper-
iments converge to lower MSE values for both update periods when adding recurrent
connections. This MSE values in Table 6.1 support this and show an increasing error
compared to the mean values as recurrence is removed, suggesting that the network’s
performance depends stronger on the target patterns. Even though the baseline network
seems to exploit the recurrence stronger than the network with hardware constraints,
both do benefit from it. Hence, these experiments suggest that NASProp enables RSNNs
to utilize their recurrent connections in a meaningful fashion.

79

6 On-chip Learning

The simulations and experiments in the previous sections indicate that the NASProp
learning rules can solve the pattern-generation task su�ciently, even when taking hard-
ware properties into account and using longer update periods P . At this point, it hence
seems promising to implement NASProp on the PPU to enable on-chip plasticity. This
is approached in the subsequent sections.

6.3 Implementation on-chip

The learning rule described in Equation (6.13) and (6.15) is implemented in a class
NASProp written in C++ based on 8-bit fractional arithmetic. On the PPU, this class is
instantiated as rule when the PPU program is loaded by grenade (see Section 4.2.4)
and performs on-chip weight updates. This section will outline the implementation and
discuss associated issues.

Training Preparation

Learning on-chip is abstracted in software as outlined in Section 4.2.4. Before batch
execution, PPU parameters PPUParams are serialized onto the PPU into an object setup.
This object contains hyperparameters RuleParams for the learning rule and is set by
rule.setup(setup.params). This object defines the update period P by period and
the number of weight updates n_periods needed for update timing. Additionally, this
setup object adjusts some debugging options, like logging of parameters and update
times.

1 struct PPUParams {

2 // ... Ctors
3 uint32_t period;

4 uint32_t n_periods;

5 uint32_t runtime;

6 bool log_params;

7 bool log_timing;

8 RuleParams params;

9 };

1 struct UpdateParams {

2 // ... Ctors
3 uint8_t row;

4 uint8_t neuron_rec;

5 uint32_t offset;

6 bool is_rec_row;

7 std::array<int8_t, 100>

target;Òæ

8 };

The params object contains all constant parameters (i.e., parameters that do not change
from trial to trial) needed for learning, such as Ÿ̂, ÷, and boolean masks defining the
network’s topology (see Section 4.2.4). Dynamic parameters (i.e., parameters changing
from trial to trial) are serialized onto the PPU before the execution of every single trial
and are given by an instance of type UpdateParams. Firstly, since the learning rule
performs synapse-row-wise updates (cf. following sections), this object tells the learning
rule which row to perform updates for and, secondly, whether this row is part of the
recurrent projection by is_rec_row. Here neuron_rec is the index of the recurrent
neuron projecting into the row. The trial’s random o�set t̃ is given by offset. The

80

6.3 Implementation on-chip

0 250 500 750 1000

Time [msbio]

�50

0

50

100

y
⇤,

t
k
=
0

t̃ = 93msbio t̃ = 48msbio

Figure 6.8: The target pattern yú,t
k is com-

municated to the PPU with an 8-bit resolu-
tion. The PPU does only need to know the
pattern’s values at update times tn. These
values change with each trial due to the ran-
dom o�set. Two examples are depicted by
the dots for di�erent o�sets.

target pattern at the expected weight updates at tn for the current o�set is given by
target with an 8-bit resolution (see Figure 6.8). Note, all data in this object is sampled
randomly before each training trial (by Setup::Config::sample, see Section 4.2.4).

Timing

When grenade triggers the start of the plasticity rule, the weight updates are timed on
the PPU-side as defined in Algorithm 1. Therefore, weight updates at tn are calculated
when the method update is called on the learning rule. Before the first update period
begins — after the random o�set t̃ has passed — some hardware observables need to be
reset by calling prelude.

Algorithm 1 Timing of Weight Updates
1: Input n_periods, offset

2: procedure Timing Û While forward pass
3: wait(offset) Û Wait for o�set t̃
4: rule.prelude() Û Reset observables, measure baselines
5: for n Ω 1 to n_periods do
6: wait(period) Û Wait for period P
7: rule.update() Û Calcualte weight updates
8: end for
9: end procedure

Row-wise Updates

The on-chip implementation is designed to perform synapse-row-wise updates, such that
with each training trial, only the weights on a single signed hardware row are updated.
This is motivated by the VU, which allows accessing hardware observables row-wise and
performing vector arithmetic to process this data in parallel. This would still allow to
loop over all used hardware rows and thus compute updates for all used weights, which is
desirable. However, computing these updates requires measuring the correlation at each

81

6 On-chip Learning

Table 6.2: Time measurements
of PPU operations. The column
label row addresses operations
corresponding to a signed row
(correlation, weights) and neu-
ron a single neuron (counter),
respectively. All corresponds to
128 signed rows, resp. 128 neu-
rons. Time units are given in
hardware time. Cycles corre-
spond to PPU processing cycles.

Operation
Row / Neuron All
[cycles] [µs] [cycles] [µs]

Correlation read 402 1.608 49712 198.8
Correlation reset 151 0.604 54781 219.12
Counter read 276 1.104 33740 134.96
Counter reset 20 0.08 2621 10.484
Weights read 137 0.548 14755 59.02
Weights write 40 0.160 3078 12.312

time tn followed by a reset (plus all operations necessary to compute the final update).
As each measurement is time-consuming (see Table 6.2), this is rather slow and would
result in time delays between rows-wise updates and thus biased weights4. Assuming a
time sequence of 1000 msbio, measuring the correlation for 128 signed rows alone already
takes about 20% of the whole sequence for each tn. This is only acceptable if the relative
time delay between row-wise updates is reduced by slowing down the neuron dynamics
and considering much longer sequences (this is subject to future work), or as stated, by
only updating a single signed row with each trial. Due to the speed-up factor of HX,
row-wise updates are not assumed to pose a big issue as the total weight update (i.e
update of all weights at once) is expected to be approximated well over many epochs,
updating di�erent rows with a small enough learning rate.

Calculating Weight Updates

The learning rules in Equation (6.13) can be written as,

�◊{ih, hh}
ji = ≠÷

ÿ

n

�◊{ih, hh},n
ji , (6.18)

where �◊{ih, hh},n
ji is the contribution to the weight update at tn. Note, for row-wise

updates i is constant within each trial (cf. Figure 4.4). In order to compute �◊{ih, hh},n
ji

for the weights ◊ih and ◊hh, the learning rule requires reading out the correlation cn
ji for

the eligibility traces and the membrane potentials yn
k to compute the learning signals

(so far only a single readout neuron is supported, therefore index k is omitted in the
following.). Since both observables are measured via the CADC, the PPU redirects the
CADC to digitize the desired analog entity. The resulting 8-bit values are read out
by the VU and stored in a 128 8-bit word vector, with the vectors entries at index j
corresponding to neuron j. Therefore, the network’s neurons on HX are only placed on
even columns, such that all used neuron columns are on the same “vector slice” (see
Section 4.2.4). This reduces the VU instructions needed, and thus the time to read out

4Provided each row update assumes the same learning signal, i.e., membrane readout and target value.
If this were not the case, for each row, the target pattern taking into account this delay would need
to be provided together with the corresponding membrane readouts.

82

6.3 Implementation on-chip

and process observables . In addition to the correlation and membrane measurements,
the output weights ◊ho

0j need to be given (see Equation (6.13)). Due to the routing
algorithm in Section 4.2.3, these weights are arranged in columns. Hence, they are read
out once before batch execution and stored in a vector where the entry of output weight
(0,j) matches the index of the corresponding recurrent neuron column j relative to row-
wise vector readouts. This eases later vector operations enormously. Once the output
weights are read out, the vector keeps track of corresponding updates such that no further
column-wise access is required across trials.

The CADC measurements are shifted by their baseline, measured before trial execution,
and converted from uint8 to a signed int8 representation. The signed error (yú,n

≠

yn) is equal for all used neuron columns, and is calculated with the scalar unit and
subsequently provided in a vector. This vector is multiplied with the vector holding ◊ho

0j ,
giving the learning signals ◊ho

0j (yú,n
≠ yn). Correlation measurements cn

ji at tn are added
to a propagation vector which is propagated at each n by multiplication with the decay
constant Ÿ̂ and afterward multiplied with the learning signals, finally giving the weight
updates. Thus, the nth contribution to weight update is calculated in parallel for the
given row according to the summand in Equation (6.13).

As depicted in Figure 4.4, recurrent and output weights ◊{hh,ho} are arranged next to
each other in a synapse row on HX, while rows used for the input projection hold input
weights ◊ih exclusively. Hence, for the first row type, two distinct learning rules need to
be applied. Therefore, these two row-types are distinguished by is_rec_row. Due to
the similarity of the learning rule for recurrent and output weights, the weight update
�◊ho

0j can be computed together with �◊hh
ji by replacing the correlation in the correlation

readout vector at the index of the readout neuron’s column with the corresponding spike
counter readout ’n

j of the recurrent neuron j at index neuron_rec. In contrary to the
input and recurrent weight updates, the signed error for the output weights (yú,n

≠ yn)
is not multiplied with ◊ho

0j and is masked out when calculating the learning signals by
multiplying the signed error (yú,n

≠ yn) and ◊ho
0j vectors.

Applying Stochastic Weight Updates

The resulting weight updates are given in a vector �◊n with int8 entries �◊n
l (where l

indexes the vector) and cannot be applied directly to the 6-bit synaptic hardware weights.
Instead, each weight update in �◊n is interpreted as a signed 8-bit fractional two’s-
complement number with lower bound ≠128 æ ≠1F and upper bound 127 æ 0.9921875F.
Then, the updates in �◊n at update time tn are rounded stochastically with probability
p according to,

�◊hw,n
l =

Y
]

[
sign (�◊n

l) · 1 with p =
---�◊n

l,F

0 with 1 ≠ p,
(6.19)

where �◊hw,n is the resulting hardware update vector for the synapses in the considered
(signed) row. In order to compute the stochastic updates on the PPU, the chip’s random
number generator is used, which allows sampling 128-byte vectors r uniformly. The
random entries of r are bit-shifted to the right, yielding positive signed 8-bit values,

83

6 On-chip Learning

Table 6.3: Time measurements of NASProp

operations. “Time critical” describes mea-
surements and resets of all observables that
should be done in a minimal time window.
“Time critical rec. row” encompasses addi-
tional counter readout. Time values are av-
eraged over 100 measurements and refer to
accumulating updates.

Operation
Time

[cycles] [µs]

NASProp::update 13137 52.548
NASProp::prelude 458 1.832
NASProp::set_params 3355 13.42
Time critical 1282 5.128
Time critical rec. row 1800 7.2

which can be compared element-wise to |�◊n
| to decide whether to adjust a weight ◊l

by 1 · sign (�◊n
l) or not. Finally, the updates are applied to the synaptic weight directly

on-the-fly or are accumulated according to

�◊hw =
ÿ

n

�◊hw,n (6.20)

and applied after calculating the last update at tN . As making weight update less
probable corresponds to reducing the learning rate, the random numbers in r can be bit-
shifted additionally, which e�ectively makes updates more (shift to the right) or less (shift
to the left) likely. Stochastic updates can also be applied to the accumulated updates
�◊hw which decreases the learning rate even more. Note, the PPU places negative weights
on the inhibitory row of the signed synapse row, and positive weights on the excitatory
row as required in Section 4.2.3.

Fractional Arithmetic

The learning rules are implemented on the PPU in assembler code using the VU’s in-
struction set [Friedmann et al., 2020]. Vector operations are performed in saturating
fractional arithmetic to prevent overflow as the instruction set does not provide normal
saturating byte-vector operations with overflow detection. Since the learning rule in
Equation (6.13) is a three-factor rule (weight, signed error, correlation) that runs easily
into overflow when operating on 8-bit data representations, saturating arithmetic is im-
portant. However, as shown later, for a three-factor rule, fractional arithmetic can result
in vanishing weight updates if the factors become too small.

6.3.1 Speed of Weight Updates

In theory, the weight updates are computed at times tn. However, in practice, the PPU
takes time for measurements and calculations. While the time the PPU needs to compute
an update �◊n defines a minimal update period P (which preferably is small), the actual
duration of the computation is not time-critical if the weight updates are accumulated.

Table 6.3 shows the operating times of NASProp methods. If updates are accumulated,
calculating the updates of a signed synapse row takes about 53 msbio. Taking into account

84

6.4 Single Synapse Experiment

j
✓exc
ji

✓inh
ji

⌫post

⌫post

⌫pre

wpost
jp Figure 6.9: Setup for a single signed synapse

experiment. The synapse ji receives
Poisson-like pre-synaptic spike events with
frequency ‹pre

ji . Neuron j is triggered
to spike with frequency ‹post

ji , by events
through synapse jp. This is possible by en-
abling the neuron’s bypass mode and dis-
abling the synaptic connection from signed
synapse ji to neuron j.

a safety margin, an update period of P = 60 msbio is realistic. Ideally, measurements and
resets of all required observables should happen at tn to coincide with the provided target
yú,n. As the PPU accesses and resets observables successively, this is not possible, and
measurements are time-shifted to each other, which possibly biases the updates. There-
fore, these time-critical operations are done at the very beginning of NASProp::update
and take about 5.128 msbio for an input row and 7.2 msbio if a recurrent row is updated
(due to additional counter readout). Considering a total time sequence of 1000 msbio with
P = 100 msbio, the time-critical operations for N = 10 updates require about 5.128%, re-
spectively 7.2%, of the whole sequence. Hence, the total time-shift in observable related
computations is not assumed to impact the updates dramatically; however this remains
to be investigated.

6.4 Single Synapse Experiment

In order to test the on-chip implementation of learning rule on HX, an artificial single-
synapse learning environment is set up. This allows verifying the implementation in a
simple experiment. Since writing PPU programs in assembler code is prone to errors,
such test-driven development is crucial.

6.4.1 Experiment Setup

To investigate the weight evolution of a signed synapse ji over time, according to Equa-
tion (6.13), the synapse requires pre-synaptic input and post-synaptic spike events in
order to measure correlation. However, since only a single synapse is considered, it is
di�cult for the target neuron j to exhibit a reasonable spiking behavior. Fortunately,
the learning rule does not depend on the neuron’s membrane dynamic, and post-synaptic
spike events can be triggered artificially. Therefore, on HX, post-synaptic spikes are im-
posed through another synapse jp with weight wpost

jp . By enabling the bypass-mode for
neuron j, each pre-synaptic event arriving in synapse jp will cause neuron j (almost)
immediately to spike. To prevent events through synapse ji to trigger spikes itself, the
connection from synapse ji to neuron j is disabled. In e�ect, the correlation sensor

85

6 On-chip Learning

Figure 6.10: Example correlation between
pre- and post-events over �t for a subset of
synapses on HX. Due to transistor varia-
tions, each synapse measures the correlation
slightly di�erent. The curve di�er in ampli-
tude, time constant and o�set. Some synapses
behave rather undesired and have rough, non-
exponential correlation traces. This is as-
sumed to be due to a hardware bug in the
current chip release. Parameters are given in
Table A.12.

20 40 60 80 100

�t [msbio]

0

5

10

15

20

⌘ c
[C

A
D
C

V
a
lu
e
s
/
s
p
ik
e
p
a
ir
]

Exponential fit

Average

in synapse ji measures correlation due to pre-synaptic events in synapse ji and post-
synaptic events of neuron j enforced by synapse pj. Figure 6.9 visualizes the setup. The
signed synapses weight ◊ji is realized by a weight ◊inh

ji on an inhibitory synapse row, and
a weight ◊exc

ji on an excitatory row (cf. Section 4.2.3). Pre- and post-synaptic events are
generated by the on-chip spike-generator as Poisson-spike trains with mean frequency
‹pre and ‹post, respectively.

6.4.2 Correlation Measurements

Since the learning rule for the input and recurrent weights depends on correlation mea-
surements, the shape of the correlation curves influences learning. The learning rule
in Equation (6.13) requires the correlation time constant to be equal to the membrane
time constant of the recurrent neurons, i.e. ·c = ·m. Assuming ·m = 20 msbio, the
correlation sensors on HX are parameterized to meet this requirement as close as pos-
sible. Since correlation sensors measure correlation in analog, they di�er from synapse
to synapse and are subject to fixed-pattern noise (see Section 3.2). This can be seen in
Figure 6.10, which depicts the measured correlation amplitude of several synapses over
the time di�erence between a pre-synaptic and a post-synaptic spike event �t. While
some curves are smooth, others are rather rough and do not satisfy the requirement of an
exponential dependence of the amplitude on �t. It remains to be investigated how the
variation of correlation curves disturbs learning. An exponential fit on the average curve
(red dots) suggests a time constant of · av

c = 20.179 msbio and a correlation amplitude of
÷av

c = 13.475 CADC values per spike pair. The synapses’ correlation calibration bits are
chosen such that the synapses’ correlation curves are as close to the target as possible.

86

6.4 Single Synapse Experiment

6.4.3 Learning Setup

In order to mimic learning in a full network setup, solving the pattern-generation task,
each training epoch considers a sequence of length T = 1000 msbio (+P due to the
random o�set) and an update period of P = 100 msbio, making NP = 10 updates per
trial. Assuming ·m,k = 20 msbio for the readout neuron, Ÿ̂ is approximately zero.5 In each
epoch, a new o�set is drawn uniformly. The updates at tn are accumulated and applied
at the end of the sequence. When considering only a single synapse, the membrane of
the readout neuron does not receive any input and cannot follow a given target pattern.
Therefore, the error signal (yú,n

k=0 ≠ yn
k=0) = 100 CADC values is kept constant. Both the

pre- and post-synaptic average firing frequency is chosen to ‹pre = ‹post = 100 Hzbio. If
these parameters change, it is stated explicitly. Note, the experiment configurations in
the following do not claim to exhibit a realistic learning environment by any means but
are intended to emphasize crucial learning characteristics.

6.4.4 Exemplified Weight Evolution

For the single synapse setup just stated, the weight evolution is investigated for recurrent
and output weights. Updating input weights behaves equally to the recurrent weights.

Recurrent and Input Weight

As suggested by the NASProp plasticity rule in Equation (6.13), the weight update �◊hh
ji

has a positive sign if the output weight ◊ho
kj and the signed error (yú,n

k ≠ yn
k) are positive.

Thus, when pinning the output weight to a constant value ◊ho
kj = 25 a.u., the recurrent

weight, initialized as ◊hh
ji = ≠63 a.u., is expected to increase approximately linearly over

epochs if the correlation readout remains constant on average.

In Figure 6.11, this behavior is confirmed. Over approximately 90 epochs, the weight
◊hh constantly grows until it saturates at ◊hh = 63 a.u.. When the weight changes its
sign from minus (red) to plus (blue), the PPU places the weight from the inhibitory
to the excitatory hardware row. The jitter in the weight evolution is due to stochastic
updates and the stochasticity of correlation readouts owing to Poisson-like spike events.
The middle plot in the figure shows the weight update �◊hh,n at each tn for each epoch
(i.e. NP = 10 update values per epoch). Note, even if the update might indicate a
weight increase, ◊hh does not adapt the update immediately since updates are applied
accumulatively at the end of each epoch. The lowermost plot depicts the correlation
measured before each update computation.

5This is because Ÿ̂ is represented on the PPU by a positive fractional signed 8-bit number with a smaller
precision than Ÿ̂ = exp(≠P/·m) for the given values.

87

6 On-chip Learning

�63

�40

�20

0

20

40

63

✓h
h
[a
.u
.]

✓ho ✓hhinh ✓hhexc

0

1�✓hh,n

[a.u.]

0 20 40 60 80 100

Epoch

0

40
cn

[CADC

values]

Figure 6.11: Weight evolution of a single recurrent synapse. Due to a constant output weight
◊ho and a constant signed error of 100 a.u., the weight ◊hh increases linearly over
epochs. This is shown in the upper plot. The red line corresponds to the inhibitory
weight and the blue to the excitatory, respectively. For each epoch, the middle
plot shows the corresponding updates at tn. The updates get accumulated over
N = 10 update intervals and are applied in the end of each trial. The lower plot
shows the corresponding correlation readouts. Parameters are given in Table A.13.

Output Weights

The output weight update �◊ho depends, according to Equation (6.15), only on the
signed error and the counter readout. Since the spike counts are always positive, the
weight ◊ho must change at each update n in the direction given by the error’s sign.

This is also observed in Figure 6.12. The output weight ◊ho, initialized at ◊ho = ≠63 a.u.,
adjusts constantly upwards — again with a stochastic component — until saturation.
The corresponding counter readouts ’n fluctuate around È’n

Í = 9.326 spikes per update
period, as demanded by the post-synaptic event density of ‹post = 100 Hzbio and P =
100 msbio.

As the output weight changes, it influences the evolution of the recurrent weight update
�◊hh. As long as the output weight ◊ho has a negative sign (red), the recurrent weight
◊hh decreases, however, not linearly but slower with decreasing output weight until it
reaches a minimum where ◊ho approaches zero. When ◊ho becomes positive (blue), the
recurrent weight does increase as well. The corresponding updates are given by �◊hh,n

and are negative for epochs with a negative output weight.

Generally, the weight evolutions shown in the upper plots are expected to flip signs
when choosing a negative signed error (yú,n

k ≠ yn
k). This is visualized in the upper plot

in Figure 6.13. Here, the first 100 epochs assume a positive error signal, and the next
100 epochs a negative one. As long as the error signal is positive, the output weight

88

6.4 Single Synapse Experiment

�63

�40

�20

0

20

40

63

✓
[a
.u
.]

✓hh ✓hoinh ✓hoexc

�1

0

1�✓hh,n

[a.u.]

0

1�✓ho,n

[a.u.]

0

40cn

[CADC

values]

0 20 40 60 80 100

Epoch

0

10⇣n

Figure 6.12: Weight evolution of a output weight ◊ho. Since this weight is element of the re-
current plasticity rule, the evolution of weight ◊hh depends on it. The uppermost
plot shows the development of these weights over epochs. Updates are applied ac-
cumulative. For each epoch the updates at tn are depicted by �◊hh,n and �◊ho,n,
respectively. The corresponding correlation readout for the recurrent weight up-
date cn is shown in orange, the counter readout ’n for the output weight update
in red. Both observables fluctuate due to the Poisson-like pre- and post-synaptic
spike events. Parameters are given in Table A.14.

◊ho increases. After the error flips its sign, the weight decreases again. Correspondingly,
in epochs with positive error, the recurrent weight ◊hh decreases as long as the output
weight is negative. When the output weight becomes positive, ◊hh increases. However,
if the error signal has a negative sign, the recurrent weight decreases for positive and
increases for negative output weights. This is exactly what the learning rules suggest.

Error Signal

In Figure 6.13, the middle plot shows the evolution of a recurrent weight with di�erent
signed errors (colors), (yú,n

k ≠ yn
k) œ {≠100, ≠80, ≠40, ≠20, 20, 40, 80, 100} CADC values.

Measurements are averaged over 20 runs with di�erent seeds. Again, the output weight
◊ho = 30 a.u. remains constant. The recurrent weight is initialized to the maximum value
with the inverse sign as the corresponding error signal. For runs with a negative error
signal, the recurrent weight decreases constantly. Correspondingly, if the error signal is
positive, the weight increases. As desired, the speed of weight adjustment increases with

89

6 On-chip Learning

0 25 50 75 100 125 150 175 200

Epoch

�63

�40

�20

0

20

40

63

✓
[a
.u
.]

y⇤,n � yn
= 100 [CADC values] y⇤,n � yn

= �100 [CADC values]

✓hh

✓hoexc

✓hoinh

0 10 20 30 40 50 60 70 80 90 100

Epoch

�63

�40

�20

0

20

40

63

✓h
h
[a
.u
.]

0 10 20 30 40 50 60 70 80 90 100

Epoch

�63

�40

�20

0

20

40

63

✓h
h
[a
.u
.]

10

20

30

40

50

T
p
o
st

IS
I

[m
s
b
io
]

�100

�50

0

50

100

y
⇤,

n
�

y
n
[C

A
D
C

v
a
lu
e
s
]

Figure 6.13: Investigation of weight development over epochs. Upper: Example of relative
weight development of a recurrent weight ◊hh (violet) and a corresponding output
weight ◊ho. After 100 epochs the error signal changes its sign. The output weight
evolves into the direction of the error signal. For a positive error, ◊hh changes
into the direction given by the output weight’s sign. And vice versa for a negative
error. Parameters: Table A.15. Middle: Weight development of the recurrent
weight for di�erent error signals, indicated by the color for a constant output
weight. Curves are averaged over 20 runs. Parameters: Table A.16. Lower: Weight
development of the recurrent weight for di�erent post-synaptic inter-spike intervals
T post

ISI , indicated by the color. Curves are averaged over 20 runs. Parameters:
Table A.15, Table A.16, Table A.17.

90

6.4 Single Synapse Experiment

the absolute value of the error signal |yú,n
k ≠yn

k | and for small errors, the weight does only
change slowly. For |yú,n

k ≠ yn
k | = 20 CADC values, the weight remains almost constant.

Choosing smaller errors (or smaller ◊hh), would result in vanishing weight updates due
to fractional multiplications in the learning rule.

Correlation

By increasing the post-synaptic inter-spike interval T post
ISI (i.e., decreasing ‹post), the cor-

relation sensor should accumulate less correlation. Consequently, for a constant learning
signal, the recurrent weight must change slower. This is confirmed in the lowermost
plot in Figure 6.13. Increasing T post

ISI (indicated by the colors), yields smaller correla-
tion readouts and thus less weight adjustments on average. Hence, the weight increases
slower.

Finally, the observations show the desired behavior and verify the on-chip PPU plasticity
implementation within the scope of testing. Furthermore, this single synapse experiment
gives a clear insight into how NASProp learning behaves and adjusts weights.

6.4.5 Synapse Variations

The correlation curves in Figure 6.10 suggest a varying weight update dynamic between
synapses, since the actually correlation readout di�ers widely. Di�ering correlation mea-
surements translate into a changing weight updates in two ways. Firstly, a smaller (big-
ger) correlation amplitude of a synapse corresponds to a smaller (bigger) synapse-specific
learning rate as this decreases (increases) the correlation readout cn

ji. Secondly, a smaller
(larger) correlation time constant leads to a smaller (bigger) penalization of a wrongly
placed post-synaptic spike event since the correlation curve models the eligibility vector,
which itself tracks how much a pre-synaptic event is responsible for the networks error at
the occurrence of the next post-synaptic spike (see Section 6.1.2). Hence, smaller (big-
ger) time constant yield smaller (bigger) correlation readouts cn

ji at tn and, e�ectively,
giving di�erent absolute update contributions at time tn.

The just discussed e�ect is visualized in Figure 6.14. Here, the speed of weight adjustment
is compared between 70 di�erent synapses on the same synapse row, again with constant
signed error, and constant output weight, as in Section 6.4.4. Therefore, the weight
traces are assumed to be approximately a linear function of the epoch. Then, a linear
function is fitted on each weight trajectory such that the slope of the function is a proxy
of how fast a particular synapse adjusts its weight.

As can be seen in the given figure, the weights of 10 example traces (faint violet) develop
di�erently fast. The weight of the “fastest” synapse is increased by 4.063 a.u. per epoch on
average over 10 runs (dotted orange line), while the “slowest” synaptic weight is increased
much slower with only 0.769 weight increments per epoch (dotted red line). The synapse-
ensemble mean suggest that a synapse changes its weight by 2.337 a.u. ± 0.914 a.u. per
epoch on average.

91

6 On-chip Learning

0 20 40 60 80 100

Epoch

�63

�40

�20

0

20

40

63

✓h
h
[a
.u
.]

Average Min Max

0 10 20

Epoch

10

20

30

40

50

cn
[a
.u
.]

Figure 6.14: The left plot shows 10 example traces of di�erent synapses (faint violet). On each
weight trace, a linear function is fitted to get a proxy of the average speed of
weight growth. The fits are averaged over 10 runs. The blue line corresponds to
the average weight evolution over 70 considered synapses. The “slowest” chang-
ing synaptic weight is depicted by the dotted red line, and the “fastest” weight
evolution by the dotted blue line. The faint blue area shows the standard devi-
ation, with borders being the slope of the average line plus/minus the standard
deviation of all slopes (averaged over 10 runs). The right plot depicts the corre-
sponding measured correlation after each update period n. Here, the blue line is
the synapse-ensemble mean at each tn. The drops are due to the random o�set
causing less correlation accumulation in the first update interval of each epoch.
The correlation measurement depicted in red, corresponds to the “fastest” increas-
ing synapse, and the correlation shown in blue to the “slowest” increasing synapse.
Correlation measurements are also averaged over 10 runs. Parameters are given
in Table A.18.

For the “fastest” increasing synapse in the figure is significantly more correlation mea-
sured than for the “slowest” synapse. This is due to correlation curve variation and
explains the di�erent speeds of weight adjustment. Since the time interval t œ [≠P, 0) of
a certain trail is per definition free of activity (due to the random o�set), the first corre-
lation readout cn=1, accumulating correlation in t œ (≠P + t̃, t̃], contains less correlation
than for update intervals n > 1. This is why the correlation averaged over the synapse
ensemble drops in the beginning of each epoch.

6.5 Full Network

The previous sections aim all towards the higher goal of actual training a full-scale
network on-chip. This challenge is motivated by the simulations in Section 6.2 and sup-

92

6.5 Full Network

ported by the verification of the learning rule implementation presented in the previous
Section 6.4. However, at the time of writing, this goal is not entirely reached yet. There-
fore, this section is intended to show that the general software setup, as outlined in
Section 4.2.4, provides the ability to perform on-chip learning by using high-level chip
abstraction software frameworks in principle. Further, the obtained results for a given
training procedure are shown, and the encountered issues are discussed.

6.5.1 Training Procedure

As in simulations, a network with ni = 30 input neurons and nh = 70 recurrent neurons,
projecting on a single readout neuron, is considered. According to the routing algorithm
in Section 4.2.3, HX allocates nh + ni = 100 signed synapse rows for this. Since only a
single row is updated in each trial, a batch size of 100 is used. Each element in this batch
holds a randomly sampled o�set with corresponding targets yn,ú and a randomly chosen
row to perform updates for. This ensures that each row is updated once per batch
execution on average. The network’s inputs remain equal across batches and epochs.
After each epoch, a test trial is performed. Di�erent update periods P have been tried
out. In order to be in line with the single synapse experiment and to ensure enough
correlation accumulation, the period is chosen as P = 100 msbio. Input neurons are firing
Poisson-distributed with Tisi = 20 msbio. The input weights are initialized from a normal
distribution N (µ = 0, ‡ = 20), and the recurrent and output weights are sampled from
N (µ = 0,‡ = 1). The correlation sensors are parameterized as in Section 6.4.2, and
neurons are configured as in Section 5.4.

For demonstration purposes, two simple target patterns are chosen. The first target
is simply a sinus with a period 2T ; the second pattern has the same period but is
additionally shifted by T (see Figure 6.15).

6.5.2 Result

While many di�erent settings and parameters have been tested out, a sweet spot in
which learning is successful is not yet found. The so far achieved results are depicted
in Figure 6.15. The two di�erent patterns are labeled as “Positive” (first pattern) and
“Negative” (second pattern), respectively.

It can be observed that for both patterns, the loss drops until around epoch 30, after
which it stabilizes at an MSE of about 0.2 and does not decrease any further. However,
since the average firing rate decreases slightly until epoch 200, the network still adjusts
its weights even if the loss does not improve anymore. This mainly results from an
increasing number of neurons becoming silent. The two example trials show that the
network can learn the sign of the target patterns but cannot capture the target’s actual
shape.

93

6 On-chip Learning

0 50 100 150 200

Epoch

0.2

0.3

0.4

0.5

M
S
E

Positive

Negative

0 50 100 150 200

Epoch

0

20

40

60

80

100

f a
v
[H

z
b
io
]

Positive

Negative

Time [msbio]

0

50

100

y k
=
0
[a
.u
.]

Target

0 250 500 750 1000

Time [msbio]

�100

�50

0

y k
=
0
[a
.u
.]

Target

Figure 6.15: Example of full on-chip learning for two di�erent target patterns. The label “Pos-
itive” corresponds to the first target pattern in the lower plot and “Negative” to
the second pattern. The confidence bands are the standard deviation over multiple
training runs. The upper-left plot depicts the evolution of the MSE over epochs.
The loss converges fast to a rather constant value, indicating that the network
does not improve its performance anymore. The upper-right plot shows the av-
erage firing rates over epochs. For both patterns, the network’s neurons decrease
their activity slightly. In the lower the “learned” example traces in comparison
to their target pattern are exemplified. While the networks are able to adjust
the readout neurons membrane trace into the right direction, the curvature of the
pattern is not captured. Parameters are given in Table A.19.

94

6.5 Full Network

0 25 50 75 100 125 150 175 200

Epoch

�50

0

50

✓i
h
[a
.u
.]

0 25 50 75 100 125 150 175 200

Epoch

�20

�10

0

✓h
h
[a
.u
.]

0 25 50 75 100 125 150 175 200

Epoch

�10

�5

0

5

✓h
o
[a
.u
.]

Figure 6.16: Weight evolution in a single training process. The upper plot shows the input
weights ◊ih, which are initialized broadly and develop towards smaller values. Some
recurrent weights ◊hh in the middle plot increase with the epochs; however, most
weights tend towards negative values. In the lower plot, the development of the
output weights ◊ho is shown. In contrary to the recurrent weights, these weights
learn a narrow distribution, approximately centered around zero. Parameters are
given in Table A.19.

In Figure 6.16, the evolution of the network’s weights over epochs is exemplified. It is
observed that the weights ◊ih of the input projection develop towards smaller values over
epochs. However, in some epochs, some weights are getting increased occasionally. The
same phenomenon can be seen for the recurrent weights ◊hh. While some weights become
larger, the vast majority of the weights are getting decreased. The tendency towards
smaller weights in the input and recurrent projection is also the reason for the decreasing
firing rates in Figure 6.15 since synaptic input becomes more and more inhibitory. In
contrast, the output weights ◊ho learn a rather centered but narrow distribution. The
behavior of the output weights seems plausible since similar observations are made in
simulations (see Figure 5.7 for s-prop), which suggests that the “learned” sign of the

95

6 On-chip Learning

traces in Figure 6.15 is only due to the output weights, without contributions of recurrent
and input weight adjustments. So far, this observation of falling weights is not fully
understood; however, possible reasons are discussed in the next section.

6.5.3 Possible Issues

Due to absent learning success, possible issues are discussed, and strategies to overcome
them are proposed.

Vanishing Updates due to Fractional Arithmetic

The most di�cult part of implementing the update rule on the PPU is to exploit the avail-
able vector arithmetic properly since the VU operates on vectors of 128 bytes. Therefore,
the weight updates are preferably calculated with 8-bit values. For the input and recur-
rent weights, this is challenging since the plasticity rule in Equation (6.13) is essentially
the product of three factors: The correlation readout, the signed error, and the output
weights. Multiplying these factors results most certainly in overflow. This is especially
a problem when working with signed bytes because overflow might change the update’s
sign. For this reason, fractional arithmetic is used. While this does prevent overflow,
another issue arises. Multiplying two fractional numbers, a and b, always gives a number
c = a · b Æ min(a,b), such that for a three-factor learning rule, vanishing weight updates
are likely. Hence, the range in which the update rule performs well is small; Correlation
readouts, counter readouts, and learning signals need to be scaled appropriately.

A first attempt to address this issue is to implement the rule with a 16-bit resolution.
This is possible since the VU allows packing 8-bit vectors into two 16-bit vectors, on
which the VU is also able to operate. This doubles the number of operations the PPU
has to perform and, thus, increases the minimal P . Nonetheless, a 16-bit implementation
is already under development; unfortunately, it is not fully finished yet.

The preferred way to find optimal operating ranges and appropriate scales for the fac-
tors in the learning rule is to incorporate PPU-like arithmetic into the simulations. This
is already achieved by using the Python library fxpmath [Franco, 2021], which allows
performing arbitrary fixed-point fractional arithmetic. Since this was implemented as
the thesis approaches its end, results are not present yet. Implementing fractional arith-
metic in Python comes at the cost of heavily increasing simulation times. However, first
attempts have shown that 8-bit fractional arithmetic can indeed make training di�cult
when factors are not scaled appropriately.

Regularization

The observed behavior that neurons tend to become silent as weights become more in-
hibitory with epochs might be impacted positively by applying firing rate regularization
updates to the weights. In that way, a tilting learning dynamic can be prevented by

96

6.5 Full Network

pulling neurons towards a target event frequency. Hence, an important step is to im-
plement on-chip firing rate regularization. As mentioned in Section 6.2.1, this can be
achieved by accessing the spike counters with the scalar-unit.

Weight Updates and Bugs

Admittedly, the e�ect of falling weights in Figure 6.16 appears to have structure. Even
after extensive debugging of the PPU plasticity rule implementation, and its verification
within the scope of the single synapse experiment, it might be possible that bugs remained
undiscovered. On the one hand, that concerns the implementation on the PPU side,
where, for instance, the subtle e�ects of 8-bit vector operations are biasing the weight
updates into a certain direction due to limited resolution. And on the other hand,
the software for the full network setup on the host side might not behave as expected
(see Section 4.2.4). This, for instance, could (even though highly unlikely) comprise a
wrongly communicated network topology from the host to the PPU. In order to exclude
bugs, more tests and artificial learning setups should be created, where each addresses
simple scenarios with predictive behavior. A first step is done with the single synapse
experiment in Section 6.4.

Correlation Measurements

Since the learning rule for the input and recurrent projections depends on the correlation
readout, the quality of the correlation curves in the current chip version might disturb
learning. For some synapses, the correlation measurement does not represent (even if
noise is neglected) the actual spike information in a given update interval n. As a
consequence, this can cause a total weight update �◊ij in the wrong direction. This is
because, if — for instance — the learning signal q

k ◊ho
kj (yú,n

k ≠ yn
k) in an update interval

n is weighted more strongly by the correlation readout than it should and in a later
interval nÕ the signed error flips its sign and the learning signal is weighted less than
expected, then the weight update �◊ij = q

n �◊n
ij changes not just its absolute value,

but also its sign relative to the “true” weight update.

A first step to investigate the e�ect of non-representative correlation measurements is to
perform NASProp in-the-loop training by incorporating actual correlation readouts. In
this way, other di�culties for on-chip learning, such as vanishing updates due to fractional
arithmetic, and update computations with limited 8-bit precision, can be excluded and
weight updates can be calculated as in simulation by solely replacing the simulated
correlation with the correlation measurements. This allows verifying that learning can
work with analog correlation readouts. Therefore, for each update interval n in a trial,
the correlation is written into the external memory and accessed to calculate the weight
update on the host side. However, this only allows for row-wise updates, since correlation
measurements are still time extensive and can only be measured for a single row in a trial
(see Section 6.3). A possible workaround is to perform the same forward pass multiple
times (without weight updates in between), and measure correlation for all used hardware
rows successively with each trial. In that way, the obtained correlation measurements of

97

6 On-chip Learning

all rows can then be used to compute updates for all weights at once. The updates are
then applied from the hosted side as explained in Section 4.2.1.

98

7 Epilogue

This thesis approaches the challenge of realizing a biologically inspired learning algorithm
for recurrent spiking neural networks on the analog neuromorphic BrainScaleS-2 (BSS-2)
system. This complex task is structured into three parts building upon each other:
Software development, in-the-loop training with a spike-based learning rule, and finally,
implementing an e-prop-inspired [Bellec et al., 2019] plasticity rule on-chip. For each of
these elements, the results are summarized and briefly discussed in the following.

To facilitate learning on HICANN-X v2 (HX), the high-level Python experiment frame-
work EProp is developed. This framework allows describing abstract networks of spiking
neurons within the PyTorch infrastructure by defining populations of neurons and pro-
jections between them. Weights in a projection are adjusted by online learning rules of
arbitrary form. Here, the e-prop, as well as the s-prop and the NASProp plasticity rules,
are implemented, enabling learning in RSNNs in simulation and on the actual hardware.
Therefore, the main task is to integrate the analog chip into the framework such that ex-
periments can be mapped to HX and transparently executed as in software simulations.
This is achieved in two di�erent ways.

Firstly, for in-the-loop training, the forward pass is done on HX, and the weights are
optimized on the host. For this purpose, a recurrent_to_readout layer is developed
within the PyTorch extension hxtorch. This layer is exposed to Python, operates on
PyTorch data types, and enables seamless emulation of the network on HX by utilizing
the grenade interface. In order to map the abstract network topology to a represen-
tation on hardware, a routing algorithm is developed, supporting signed synapses and
recurrence. This introduces support for recurrent spiking neural networks in hxtorch.

Secondly, for on-chip learning, a PyTorch module is contributed to hxtorch, which
interfaces HX and performs all software-to-hardware mapping implicitly while allowing
monitoring training within PyTorch’s ecosystem. Finally, the classes’ forward method
triggers a network emulation run including on-chip weight updates.

The experiments conducted in this thesis demonstrate the success of abstracting learn-
ing on HX with the developed software in high-level software layers and underpin its
importance.

The first step towards e-prop-inspired learning on hardware is achieved with HX in-
the-loop and an approximated learning rule. The membrane potentials of the recurrent
neurons in the eligibility traces are replaced with the neurons’ post-synaptic spike trains.
This allows calculating approximated weight updates with knowledge of spike times and
the readout neuron’s membrane trace only, and, hence, is called spike-based eligibility
propagation (s-prop). On the one hand, this facilitates an initial implementation on HX
since the spikes emitted during emulation of the network in analog can be read out easily

99

Epilogue

together with the readout neuron’s membrane trace from the host computer. On the
other hand, this approximation allows utilizing the correlation sensors for full on-chip
learning.

The s-prop learning rule is used to train a network consisting of a single recurrent
spiking layer and a readout neuron to solve a pattern-generation task. This task is cho-
sen due to its simplicity, making it a suitable choice to approach on-chip learning while
satisfying the hardware constraints defined by the system architecture.

A baseline simulation shows that s-prop can solve this task, in principle, surprisingly
well. Incorporating basic hardware constraints, like noise and discrete weights, yields an
increasing MSE and dropping network activity. It is observed that the output weights
learn a narrow distribution, which is insu�ciently resolved by discrete integer weights.
Small output weights are assumed to be a result of the high-activity regime in which the
network operates. These weights are enlarged by decreasing the synaptic strength to the
readout neuron and scaling up the output learning rate. This ensures that the membrane
trace of the readout neuron does not exhaust its physical boundaries while training on
HX as possible when up-scaling the target’s amplitude to achieve the same e�ect. Sim-
ulations show that this technique improves learning when using discrete weights.

Further, the e�ect of fixed-pattern noise on the network’s parameters and Gaussian
noise on the membranes seems negligible. However, experiments on HX perform almost
equally well as in simulation. This suggests a good signal-to-noise ratio and neurons being
very responsive to synaptic input, such that deviations on the neurons’ membranes due
to noise do not disturb learning significantly. This originates from the broad weight ini-
tialization of the input projection, ensuring a reasonable spiking activity in the network,
which is necessary for spike-based learning. It is assumed that the e�ect of fixed-pattern
noise is mostly absorbed by gradient-based learning.

Finally, the learning procedure is mapped directly to HX. This seamless transition
is enabled by the hardware abstraction in software. With in-the-loop training on HX,
an MSE of about 3.58 · 10≠3 is achieved for the pattern-generation task. This is just
slightly worse than the simulation with hardware constraints, which reaches an MSE of
2.68 · 10≠3, and thus confirms the feasibility of the pattern-generation task for on-chip
learning and demonstrates learning in RSNNs on neuromorphic hardware by describing
experiments in high-level software. In comparison to the simulation, the network has a
sparser activity on hardware. This is due to experiment setup and suggests that good
results can still be obtained when the network operates at lower firing rates.

In order to investigate whether s-prop does indeed enable learning recurrence, the
hardware experiment is repeated without recurrent connections. Additionally, a further
experiment with a fixed recurrent connection pattern, initialized by a scrambled learned
recurrent weight matrix, is conducted to ensure recurrent spike-information exchange
along the sequence. Section 5.4.3 shows that both experiments result in worse perfor-
mance than with learning recurrence, indicating that s-prop endows RSNNs with the
ability to exploit recurrence in a sensible manner. Nonetheless, a significant amount of
the task can be learned without recurrence. The network does not rely heavily on it,
suggesting that information is not propagated along the whole sequence but only over
short time periods to refine the network. Besides the network’s complexity, this is due
to the nature of LIF neurons whose information content encoded in the membranes dis-

100

integrates with their time constants. However, especially these properties make the task
and the network’s setup an excellent choice to approach on-chip learning; While recur-
rence clearly improves learning, the weak dependency makes training less challenging
and, thus, facilitates the first step towards a full on-chip implementation.

For on-chip learning, an adjusted learning rule is derived based on the e-prop learning
framework. The learning rule for the recurrent and input projection uses the correla-
tion sensors to emulate eligibility traces on HX in analog. Besides the s-prop assump-
tion, this requires two additional approximations: Eligibility traces are modeled in a
nearest-neighbor fashion and get accumulated over a time period P . This eliminates the
dependence of the s-prop rule on exact spike times and can, therefore, e�ciently be im-
plemented on the PPU. For the output weight updates, this is achieved by utilizing the
spike counters. Since these learning rules propagate accumulated spike information over
time, they are referred to as Neuromorphic Accumulative Spike Propagation (NASProp).

NASProp is simulated in software. A baseline simulation in Figure 6.5 shows that
NASProp can solve the pattern-generation task properly with P = 25 msbio. Increasing
the accumulation period to P = 50 msbio increases the MSE from 1.54 ·10≠3 to 3.15 ·10≠3.
Since the PPU implementation defines a minimal P by the number of required opera-
tions to compute an online update, the dependence of the network’s performance on P is
investigated in Figure 6.6. Here, simulations consider hardware constraints and perform
weight updates in an SGD-manner since weights cannot be optimized more sophisticated
on the PPU. For weight optimization with Adam, the loss increases only slightly with P .
Using SGD weight optimization causes the MSE to increases faster; however, it yields
good results with small update periods. As for s-prop, discrete weights decrease perfor-
mance further. Nonetheless examples show, that even with P = 100 msbio, acceptable
results can be achieved and justify an on-chip implementation.

In simulations, the network’s performance is compared to a network without recur-
rence, also trained with NASProp. Especially when updating weights with the Adam
optimizer, recurrence increases performance significantly. The same holds for simulations
in the hardware environment. Therefore, NASProp is capable of adjusting recurrent con-
nections in a meaningful manner.

Finally, the NASProp learning rules are implemented in a PPU program, able to
perform on-chip plasticity. This allows for a considerably faster learning process than
in-the-loop training since (almost) no data is transferred between host and HX and, thus,
makes training energy e�cient. The learning rule on the PPU is mainly implemented in
assembler code by utilizing the VU’s instruction set and, hence, is able to perform vec-
torized weight updates based on 8-bit fractional arithmetic. To save computation time,
in each trial, the PPU computes updates for a single randomly chosen hardware row in
parallel to the forward pass by utilizing correlation measurements. A single weight row
update along the sequence requires only about 53 msbio = 53µshw and defines the min-
imal achievable update period P . Time-critical measurements, i.e., correlation, counter
and membrane readout, and resets, are achieved within 7 msbio.

On-chip implementations are prone to errors. In order to test the implementation, a
single synapse experiment is set up in a spiking environment. Experiments confirm the
desired weight dynamic over epochs. The recurrent weight is observed to be adjusted

101

Epilogue

slower with decreasing correlation measurements into the direction of the learning signal;
the output weights follow the direction of the error’s sign and updates become smaller
as the error decreases. Correlations sensors are analog circuits and, thus, subject to
variation. Experiments in Figure 6.14 show that this causes di�erent synapse-specific
learning rates. In this artificial learning setup, the speed of weight adaption ranges from
0.769 a.u. per epoch to 4.063 a.u. per epoch between di�erent synapses. The author dis-
cussed and worked on the correlation sensor noise with hardware experts. However, a
satisfying result was not reached in time with the end of this work.

In the final step, the PPU implementation is used to train the full network on-chip.
The network “learns” to adjust the readout neuron’s membrane potential in the correct
direction; however, the curvature of the pattern cannot be captured (see Figure 6.15).
As result, the MSE drops rather fast until it maintains a constant value and performance
does not increase further. It is assumed that the implementation is able to only adjust
the output weights properly. Input and recurrent weights are observed to evolve over
epochs but drift towards inhibitory weights. Reasons for this behavior are discussed,
and possibilities to overcome them proposed. One critical point is the 8-bit fractional
multiplications when computing weight updates; this results easily in vanishing updates.
Appropriate scaling of factors can be found by incorporating PPU-like vector operations
into the simulations. Another possibility is the noisiness of correlation measurements
which might bias updates. This could be investigated by performing NASProp in-the-
loop training with actual correlation readouts. Lastly, an implementation bug cannot
be excluded, and is assumed to be hidden somewhere. As debugging PPU-programs is
challenging, more test and predictable experiments are needed.

Although the on-chip implementation has not reached its working state yet, overcom-
ing discussed issues will most certainly enable full on-chip learning. Therefore, this thesis
has taken a crucial first step towards biologically inspired full on-chip learning on analog
neuromorphic hardware.

7.1 Outlook

This thesis should be considered a first investigation of the feasibility of e-prop-inspired
learning on HX. Therefore, not all aspects of this broad task could have been taken into
account. Crucial elements of future work are briefly outlined in the following.

The software developed in this thesis has the potential to be reused and extended. Espe-
cially, the routing algorithm with signed synapses is appealing for plenty of applications.
Such functionality should be provided by grenade per default. Since, at the moment,
only projections with a specific receptor type are available (i.e., excitatory or inhibitory),
this requires the development of projections with a signed receptor type (cf. Section 4.2).
Additionally, the edge cases of the current implementation need to be worked out, and
routing on both hemispheres of HX should be enabled.

The developed hxtorch layer allows easy usage for non-expert users and promises to

102

7.1 Outlook

facilitate in-the-loop training for many applications. However, the current implementa-
tion only allows recording the membrane of a single neuron. Since many applications
require measuring membrane potentials of more than one neuron, this layer could be ex-
tended with the capability to sample all neurons’ membranes via the CADC in parallel.
This would open up the possibility for seamless training on HX with plenty of di�erent
learning rules, such as SuperSpike [Zenke et al., 2018; Kanya, 2020] or BPTT with surro-
gate gradients [Cramer et al., 2020], within PyTorch’s ecosystem. In principle, this can
also enable solving the pattern-generation task for more than one readout neuron with
HX in the loop (an initial version of the CADC readout in the grenade layer is already
in progress).

The s-prop learning rule is a promising candidate for a broad range of di�erent applica-
tions on HX. In order to improve the pattern-generation task and to exploit the recurrent
nature of the network even further, its parameters should be investigated in more depth.
In particular, this encompasses the number of input neurons and their firing frequency,
but also the network’s topology in general. Additionally, the LIF parameters of the
neurons on HX, such as refractory periods, membrane time constants, and thresholds,
should be tuned appropriately. Certainly, it would be interesting to see how the network
can handle the analog environment as its complexity decreases. Eventually, s-prop can
be benchmarked for the pattern-generation task with parameters as proposed by Bellec
et al. [2019].

LIF neurons are not the preferred choice for tasks that demand propagation of infor-
mation over longer time periods since their temporal extent is limited by the membrane
time constant. Instead, Long short-term memory spiking neural networks (LSNNs) use,
therefore, LIF neurons with threshold adaptation [Bellec et al., 2019], where the thresh-
old increases with each post-synaptic spike, after which it leaks back towards a baseline-
threshold with an adaptation time constant that is usually much longer than the mem-
brane time constant. Hence, the information encoded in the threshold is propagated over
longer time periods. For such neurons, e-prop learning rules are derived in Bellec et al.
[2019]. However, HX emulates adaptive exponential integrate-and-fire (AdEx) neurons
with an adaptation current, where each post-synaptic spike increases a current flowing
o� the membrane, after which the current decays back towards a baseline. Hence, they
can, principally, also encode information in their adaptation variable and, thus, prop-
agate information along the sequence. In order to tackle more exciting tasks, learning
rules need to be derived for AdEx neurons within the e-prop learning framework and
the feasibility of their implementation on HX— by incorporating the s-prop assumption
— investigated. This would allow solving advanced classification tasks and could also
enable performing biologically inspired reinforcement learning with HX in-the-loop.

Before considering on-chip learning in LSNNs, the step towards a working on-chip imple-
mentation of NASProp done in this thesis needs to be completed. Di�erent possibilities
to achieve this have already been discussed (see Section 6.5.3). Only a working and
optimized implementation will allow investigating further properties such as speed and
energy consumption, both significant aspects of neuromorphic computing.

Regarding the current chip version, solving the issues with the correlation sensors to
gain more realistic eligibility vectors is encouraged and assumed to ease learning. Fur-

103

Epilogue

ther, providing vector-unit access to the spike counters would facilitate incorporating
firing rate regularization into the learning rule. Nonetheless, this can, technically, also
be achieved with slow scalar-unit spike counter readouts (see Section 6.2.1). In the long
term, implementing regularization updates is essential as this stabilizes the learning dy-
namics.

As it has been seen that more sophisticated weight optimization algorithms improve
learning dramatically, future works have to examine the possibility of implementing ad-
vanced optimizers on the PPU. Even though no e�ort has been put into this, it is well
imaginable that the external memory could be used to store momentum matrices that
can be accessed to compute weight updates. As accessing the external memory from
the PPU is slow, this can cause issues when weight updates need to be computed with
low latency. However, if weight updates are not time-critical this can be a promising
approach.

Thinking into the future, the e-prop idea of synapse-specific eligibility traces combined
with externally provided learning signals is generally appealing for multi-chip setups.
Therefore, local information, processed in analog by the correlation sensors, is merged
with appropriately designed learning signals — calculated by the di�erent chips on the
setup — to compute weight updates. While this comes with the di�culty of design-
ing suitable learning signals, it would undoubtedly be a big step towards learning in
functional large-scale spiking neural networks and could challenge machine learning per-
formances with artificial neural networks in plenty of di�erent tasks. Due to accelerated
neuromorphic hardware this would also come with the benefit of high energy-e�ciency
and low processing latency.

These outlined possibilities are only a subset of further research on e-prop inspired learn-
ing in RSNNs on neuromorphic hardware. Therefore, the work in this thesis unfolds a
broad field of applications waiting to be explored.

104

Acknowledgments

This thesis has been carried out in a tough year in di�cult times and would have never
been possible without the contribution of many people on di�erent levels, to whom I
want to express my deepest gratitude.

First and foremost, I would like to thank Dr. Johannes Schemmel for giving me the
opportunity to be part of the Electronic Vision(s) group and agreeing to be my supervi-
sor.

I extend my thanks to the whole Electronic Vision(s) group for the support and great
atmosphere. I am looking forward to finally meet you in person.

I am incredibly grateful to Dr. Eric Müller for being my advisor and guide throughout
this thesis. His valuable knowledge, e�ort, and support have majorly shaped this work.

Further, I thank Philipp Spilger and Oliver Breitwieser for the help in plenty software-
related issues and Johannes Weis for patiently answering uncountable hardware-related
questions. I really appreciate all your e�ort. In addition, I thank Sebastian Billaudelle
and Benjamin Cramer for all the modeling discussions, information, and advice.

I am deeply grateful for all my brothers and sisters who remind me that there is more
in life. Each of you is truly special. Without the support of my parents Magdalene and
Jörg Arnold, this thesis would not have been possible. They encouraged my throughout
my studies and beyond. You are my inspiration. Finally, I want to express my deepest
gratitude to Malin, who gave me so much strength and has been incredibly patient.

The work carried out in this Master’s Thesis used systems, which received funding from
the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under the Specific Grant Agreements Nos. 785907 and 945539 (Human Brain Project,
HBP)

105

Bibliography

Akopyan, F., J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang,
R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha (2015). TrueNorth: Design
and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
34.10, pp. 1537–1557. doi: 10.1109/TCAD.2015.2474396.

Alberts, B., D. Bray, J. Lewis, M. Ra�, K. Roberts, and J. D. Watsonx (1994). Molecular
Biology of the Cell, third edition. Garland Publishing, Inc. Chap. 10 and 11. isbn:
0815316208.

Bellec, G., F. Scherr, E. Hajek, D. Salaj, R. Legenstein, and W. Maass (2019). Biologically
inspired alternatives to backpropagation through time for learning in recurrent neural
nets. arXiv: 1901.09049 [cs.NE].

Bellec, G., F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and W. Maass
(2020). A solution to the learning dilemma for recurrent networks of spiking neurons.
In: Nature Communications 11.1, p. 3625. doi: 10.1038/s41467-020-17236-y. url:
https://doi.org/10.1038/s41467-020-17236-y.

Benjamin, B., P. Gao, E. McQuinn, S. Choudhary, A. Chandrasekaran, J.-M. Bussat, R.
Alvarez-Icaza, J. Arthur, P. Merolla, and K. Boahen (May 2014). Neurogrid: A Mixed-
Analog-Digital Multichip System for Large-Scale Neural Simulations. In: Proceedings
of the IEEE 102, pp. 1–18. doi: 10.1109/JPROC.2014.2313565.

Billaudelle, S., B. Cramer, M. A. Petrovici, K. Schreiber, D. Kappel, J. Schemmel, and
K. Meier (2021). Structural plasticity on an accelerated analog neuromorphic hardware
system. In: Neural Networks 133. 0893-6080, pp. 11–20. doi: https://doi.org/10.
1016/j.neunet.2020.09.024. url: http://www.sciencedirect.com/science/
article/pii/S0893608020303555.

Billaudelle, S., Y. Stradmann, K. Schreiber, B. Cramer, A. Baumbach, D. Dold, J. Göltz,
A. F. Kungl, T. C. Wunderlich, A. Hartel, et al. (2020). Versatile emulation of spiking
neural networks on an accelerated neuromorphic substrate. In: 2020 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). IEEE, pp. 1–5.

Breitwieser, O. J. (2015). Towards a Neuromorphic Implementation of Spike-Based Ex-
pectation Maximization. MA thesis. University of Heidelberg, pp. 61–66.

107

https://doi.org/10.1109/TCAD.2015.2474396
https://arxiv.org/abs/1901.09049
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/https://doi.org/10.1016/j.neunet.2020.09.024
https://doi.org/https://doi.org/10.1016/j.neunet.2020.09.024
http://www.sciencedirect.com/science/article/pii/S0893608020303555
http://www.sciencedirect.com/science/article/pii/S0893608020303555

Bibliography

Brette, R. and W. Gerstner (2005). Adaptive Exponential Integrate-and-Fire Model as
an E�ective Description of Neuronal Activity. In: J. Neurophysiol. 94, pp. 3637–3642.
doi: 10.1152/jn.00686.2005.

Buzsáki, G. (Jan. 2009). Rhythms of The Brain. In: xiv, 448 p. isbn: 9780195301069
(alk. paper) 0195301064 (alk. paper). doi: 10.1093/acprof:oso/9780195301069.
001.0001.

Buzzell, G., J. Richards, L. White, T. Barker, D. Pine, and N. Fox (May 2017). Devel-
opment of the error-monitoring system from ages 9–35: Unique insight provided by
MRI-constrained source localization of EEG. In: NeuroImage 157. doi: 10.1016/j.
neuroimage.2017.05.045.

Cai, Z. and N. Vasconcelos (June 2018). Cascade R-CNN: Delving Into High Quality
Object Detection. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Cho, K., B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio (2014). Learning Phrase Representations using RNN Encoder-Decoder for
Statistical Machine Translation. arXiv: 1406.1078 [cs.CL].

Cramer, B., S. Billaudelle, S. Kanya, A. Leibfried, A. Grübl, V. Karasenko, C. Pehle, K.
Schreiber, Y. Stradmann, J. Weis, J. Schemmel, and F. Zenke (2020). Training spiking
multi-layer networks with surrogate gradients on an analog neuromorphic substrate.
In: CoRR abs/2006.07239. arXiv: 2006.07239. url: https://arxiv.org/abs/2006.
07239.

Czierlinski, M. (2020). PyNN for BrainScaleS-2. Bachelorarbeit. Universität Heidelberg.

Dauer, P. (2020). Characterization of silicon neurons on HICANN-X v2. Bachelorarbeit.
Universität Heidelberg.

Davies, M., N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P.
Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S.
McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H.
Wang (2018). Loihi: A Neuromorphic Manycore Processor with On-Chip Learning. In:
IEEE Micro 38.1, pp. 82–99. doi: 10.1109/MM.2018.112130359.

Davison, A. P., D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinet,
and P. Yger (2009). PyNN: a common interface for neuronal network simulators. In:
Front. Neuroinform. 2.11. doi: 3389/neuro.11.011.2008.

Emmel, A. (Nov. 2020). Inference with Convolutional Neural Networks on Analog Neu-
romorphic Hardware. Master’s Thesis. Universität Heidelberg.

Friedmann, S., J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier (2017). Demon-
strating Hybrid Learning in a Flexible Neuromorphic Hardware System. In: IEEE
Transactions on Biomedical Circuits and Systems 11, pp. 128–142. doi: 10.1109/
TBCAS.2016.2579164.

108

https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
https://doi.org/10.1093/acprof:oso/9780195301069.001.0001
https://doi.org/10.1016/j.neuroimage.2017.05.045
https://doi.org/10.1016/j.neuroimage.2017.05.045
https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/2006.07239
https://arxiv.org/abs/2006.07239
https://arxiv.org/abs/2006.07239
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/3389/neuro.11.011.2008
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/TBCAS.2016.2579164

Bibliography

Friedmann, S. (2013). A new approach to learning in neuromorphic hardware. PhD thesis.
Heidelberg, Univ., Diss., 2013.

Friedmann, S. and C. Pehle (2020). Nux User Guide.

Gerstner, W. and W. Kistler (2002). Spiking Neuron Models: Single Neurons, Popula-
tions, Plasticity. Cambridge University Press.

Gerstner, W., W. M. Kistler, R. Naud, and L. Paninski (2014). Neuronal Dynamics: From
Single Neurons to Networks and Models of Cognition. USA: Cambridge University
Press. isbn: 1107635195.

Gerstner, W., M. Lehmann, V. Liakoni, D. Corneil, and J. Brea (2018). Eligibility Traces
and Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-
Factor Learning Rules. In: Frontiers in Neural Circuits 12, p. 53. issn: 1662-5110. doi:
10.3389/fncir.2018.00053. url: https://www.frontiersin.org/article/10.
3389/fncir.2018.00053.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. The MIT Press. isbn:
0262035618.

Hebb, D. (2005). The Organization of Behavior: A Neuropsychological Theory. Tay-
lor & Francis. isbn: 9781135631918. url: https://books.google.de/books?id=
uyV5AgAAQBAJ.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. In: Neural compu-
tation 9.8, pp. 1735–1780.

Human Brain Project (2021). https://www.humanbrainproject.eu/en/. Accessed:
2021-06-16.

Iberri, D. (2007). File:Action potential.svg. url: https://upload.wikimedia.org/
wikipedia/commons/4/4a/Action_potential.svg (visited on 05/17/2021).

Jarosz, Q. (2009). File:Neuron Hand-tuned.svg. url: https://upload.wikimedia.org/
wikipedia/commons/b/bc/Neuron_Hand-tuned.svg (visited on 05/17/2021).

Kandel, E., J. Jessell, J. Schwartz, T. Jessell, P. of Biochemistry, M. Molecular Biophysics
Thomas M Jessell, S. Mack, and J. Dodd (2000). Principles of Neural Science, Fourth
Edition. McGraw-Hill Companies, Incorporated. isbn: 9780838577011.

Kanya, S. (2020). Deep Learning on Analog Neuromorphic Hardware. Masterarbeit. Uni-
versität Heidelberg.

Kelley, H. J. (1960). Gradient theory of optimal flight paths. In: Ars Journal 30.10,
pp. 947–954.

Kingma, D. P. and J. Ba (2017). Adam: A Method for Stochastic Optimization. arXiv:
1412.6980 [cs.LG].

109

https://doi.org/10.3389/fncir.2018.00053
https://www.frontiersin.org/article/10.3389/fncir.2018.00053
https://www.frontiersin.org/article/10.3389/fncir.2018.00053
https://books.google.de/books?id=uyV5AgAAQBAJ
https://books.google.de/books?id=uyV5AgAAQBAJ
https://www.humanbrainproject.eu/en/
https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg
https://upload.wikimedia.org/wikipedia/commons/4/4a/Action_potential.svg
https://upload.wikimedia.org/wikipedia/commons/b/bc/Neuron_Hand-tuned.svg
https://upload.wikimedia.org/wikipedia/commons/b/bc/Neuron_Hand-tuned.svg
https://arxiv.org/abs/1412.6980

Bibliography

Kurtzer, G. M., V. Sochat, and M. W. Bauer (May 2017). Singularity: Scientific contain-
ers for mobility of compute. In: PLOS ONE 12.5, pp. 1–20. doi: 10.1371/journal.
pone.0177459. url: https://doi.org/10.1371/journal.pone.0177459.

Lapicque, L. (1907). Recherches Quantitatives sur l’Excitation Electrique des Nerfs
Traitée comme une Polarization. In: Journal de Physiologie et Pathologie General 9,
pp. 620–635.

LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning. In: Nature 521.7553, pp. 436–
444. doi: 10.1038/nature14539. url: https://doi.org/10.1038/nature14539.

MacLean, S., C. Hassall, Y. Ishigami, O. Krigolson, and G. Eskes (2015). Using brain
potentials to understand prism adaptation: the error-related negativity and the P300.
In: Frontiers in Human Neuroscience 9.

Mead, C. (1990). Neuromorphic electronic systems. In: Proceedings of the IEEE 78.10,
pp. 1629–1636. doi: 10.1109/5.58356.

Moradi, S., N. Qiao, F. Stefanini, and G. Indiveri (2018). A Scalable Multicore Archi-
tecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asyn-
chronous Processors (DYNAPs). In: IEEE Transactions on Biomedical Circuits and
Systems 12.1, pp. 106–122. doi: 10.1109/TBCAS.2017.2759700.

Müller, E. C. (2014). Novel Operation Modes of Accelerated Neuromorphic Hardware.
HD-KIP 14-98. PhD thesis. Ruprecht-Karls-Universität Heidelberg. url: http://www.
kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112.

Müller, E., C. Mauch, P. Spilger, O. J. Breitwieser, J. Klähn, D. Stöckel, T. Wunderlich,
and J. Schemmel (Mar. 2020a). Extending BrainScaleS OS for BrainScaleS-2. In: arXiv
preprint. arXiv: 2003.13750 [cs.NE]. url: http://arxiv.org/abs/2003.13750.

Müller, E., S. Schmitt, C. Mauch, H. Schmidt, J. Montes, J. Ilmberger, J. Klähn, F.
Passenberg, C. Koke, M. Kleider, S. Jeltsch, M. Güttler, D. Husmann, S. Billaudelle,
P. Müller, A. Grübl, J. Kaiser, J. Weidner, B. Vogginger, J. Partzsch, C. Mayr, and
J. Schemmel (Mar. 2020b). The Operating System of the Neuromorphic BrainScaleS-1
System. In: arXiv preprint. arXiv: 2003.13749 [cs.NE]. url: http://arxiv.org/
abs/2003.13749.

Nair, V. and G. E. Hinton (2010). Rectified Linear Units Improve Restricted Boltzmann
Machines. In: ICML. Ed. by J. Fürnkranz and T. Joachims. Omnipress, pp. 807–814.
url: http://dblp.uni-trier.de/db/conf/icml/icml2010.html#NairH10.

Naud, R., N. Marcille, C. Clopath, and W. Gerstner (Nov. 2008). Firing patterns in the
adaptive exponential integrate-and-fire model. In: Biological Cybernetics 99.4, pp. 335–
347. doi: 10.1007/s00422- 008- 0264- 7. url: http://dx.doi.org/10.1007/
s00422-008-0264-7.

Nøkland, A. (2016). Direct Feedback Alignment Provides Learning in Deep Neural Net-
works. arXiv: 1609.01596 [stat.ML].

110

https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/TBCAS.2017.2759700
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
http://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3112
https://arxiv.org/abs/2003.13750
http://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13749
http://arxiv.org/abs/2003.13749
http://arxiv.org/abs/2003.13749
http://dblp.uni-trier.de/db/conf/icml/icml2010.html#NairH10
https://doi.org/10.1007/s00422-008-0264-7
http://dx.doi.org/10.1007/s00422-008-0264-7
http://dx.doi.org/10.1007/s00422-008-0264-7
https://arxiv.org/abs/1609.01596

Bibliography

Painkras, E., L. A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. R. Lester,
A. D. Brown, and S. B. Furber (2013). SpiNNaker: A 1-W 18-Core System-on-Chip
for Massively-Parallel Neural Network Simulation. In: IEEE Journal of Solid-State
Circuits 48.8, pp. 1943–1953. doi: 10.1109/JSSC.2013.2259038.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala (2019). PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., pp. 8024–8035. url:
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

Petrovici, M. (2015). Function vs. Substrate: Theory and Models for Neuromorphic Hard-
ware. PhD thesis.

Petrovici, M. A. (2015). Form vs. Function - Theory and Models for Neuronal Substrates.
PhD thesis. Universität Heidelberg.

Pfei�er, M. and T. Pfeil (2018). Deep Learning With Spiking Neurons: Opportunities
and Challenges. In: Frontiers in Neuroscience 12, p. 774. issn: 1662-453X. doi: 10.
3389/fnins.2018.00774. url: https://www.frontiersin.org/article/10.3389/
fnins.2018.00774.

PowerISA (July 2010). PowerISA Version 2.06 Revision B. Specification. Power.org. url:
http://www.power.org/resources/reading/.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. In: Psychological Review 65.6, pp. 386–408. issn: 0033-295X.
doi: 10.1037/h0042519. url: http://dx.doi.org/10.1037/h0042519.

Samadi, A., T. Lillicrap, and D. Tweed (Jan. 2017). Deep Learning with Dynamic Spiking
Neurons and Fixed Feedback Weights. In: Neural Computation 29, pp. 1–25. doi:
10.1162/NECO_a_00929.

Schemmel, J., S. Billaudelle, P. Dauer, and J. Weis (2020). Accelerated Analog Neuro-
morphic Computing. In: arXiv 2003.11996. cs.NE. url: https://arxiv.org/abs/
2003.11996.

Schemmel, J., D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner (2010). A
wafer-scale neuromorphic hardware system for large-scale neural modeling. In: 2010
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1947–1950. doi:
10.1109/ISCAS.2010.5536970.

Schmitt, S., J. Klähn, G. Bellec, A. Grübl, M. Güttler, A. Hartel, S. Hartmann, D.
Husmann, K. Husmann, S. Jeltsch, V. Karasenko, M. Kleider, C. Koke, A. Kononov,
C. Mauch, E. Müller, P. Müller, J. Partzsch, M. A. Petrovici, S. Schiefer, S. Scholze,
V. Thanasoulis, B. Vogginger, R. Legenstein, W. Maass, C. Mayr, R. Schü�ny, J.

111

https://doi.org/10.1109/JSSC.2013.2259038
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fnins.2018.00774
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
https://www.frontiersin.org/article/10.3389/fnins.2018.00774
http://www.power.org/resources/reading/
https://doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519
https://doi.org/10.1162/NECO_a_00929
https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/2003.11996
https://doi.org/10.1109/ISCAS.2010.5536970

Bibliography

Schemmel, and K. Meier (2017). Neuromorphic hardware in the loop: Training a deep
spiking network on the BrainScaleS wafer-scale system. In: 2017 International Joint
Conference on Neural Networks (IJCNN), pp. 2227–2234. doi: 10.1109/IJCNN.2017.
7966125.

Schreiber, K. (2020). Closed-loop experiments on the BrainScaleS-2 architecture. In:

Schreiber, K. (Jan. 2021). Accelerated neuromorphic cybernetics. PhD thesis. Universität
Heidelberg.

Silver, D., A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N.
Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis (Jan. 2016). Mastering the game of Go with deep neural networks and
tree search. In: Nature 529, pp. 484–489. doi: 10.1038/nature16961.

Spilger, P. (2021). From Neural Network Descriptions to Neuromorphic Hardware — A
Signal-Flow Graph Compiler Approach. Masterarbeit. Universität Heidelberg.

Spilger, P., E. Müller, A. Emmel, A. Leibfried, C. Mauch, C. Pehle, J. Weis, O. Bre-
itwieser, S. Billaudelle, S. Schmitt, T. C. Wunderlich, Y. Stradmann, and J. Schemmel
(2020). hxtorch: PyTorch for BrainScaleS-2 — Perceptrons on Analog Neuromorphic
Hardware. In: IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge,
and Mobile for Embedded Machine Learning. Cham: Springer International Publishing,
pp. 189–200. isbn: 978-3-030-66770-2. doi: 10.1007/978-3-030-66770-2_14.

Strubell, E., A. Ganesh, and A. McCallum (July 2019). Energy and Policy Considera-
tions for Deep Learning in NLP. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association for Compu-
tational Linguistics, pp. 3645–3650. doi: 10 . 18653 / v1 / P19 - 1355. url: https :
//www.aclweb.org/anthology/P19-1355.

Weis, J. (Sept. 2020). Inference with Artificial Neural Networks on Neuromorphic Hard-
ware. Master’s thesis. Universität Heidelberg.

Weis, J., P. Spilger, S. Billaudelle, Y. Stradmann, A. Emmel, E. Müller, O. Breitwieser,
A. Grübl, J. Ilmberger, V. Karasenko, M. Kleider, C. Mauch, K. Schreiber, and J.
Schemmel (2020). Inference with Artificial Neural Networks on Analog Neuromorphic
Hardware. In: IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge,
and Mobile for Embedded Machine Learning. Vol. 1325. Springer International Pub-
lishing, pp. 201–212.

Werbos, P. (Nov. 1990). Backpropagation through time: what it does and how to do it.
In: Proceedings of the IEEE 78, pp. 1550–1560. doi: 10.1109/5.58337.

Wunderlich, T., A. F. Kungl, E. Müller, A. Hartel, Y. Stradmann, S. A. Aamir, A.
Grübl, A. Heimbrecht, K. Schreiber, D. Stöckel, C. Pehle, S. Billaudelle, G. Kiene,
C. Mauch, J. Schemmel, K. Meier, and M. A. Petrovici (2019). Demonstrating Ad-
vantages of Neuromorphic Computation: A Pilot Study. In: Frontiers in Neuroscience

112

https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/978-3-030-66770-2_14
https://doi.org/10.18653/v1/P19-1355
https://www.aclweb.org/anthology/P19-1355
https://www.aclweb.org/anthology/P19-1355
https://doi.org/10.1109/5.58337

SOFTWARE REFERENCES

13, p. 260. issn: 1662-453X. doi: 10.3389/fnins.2019.00260. url: https://www.
frontiersin.org/article/10.3389/fnins.2019.00260.

Xu, X., Y. Ding, S. X. Hu, M. Niemier, J. Cong, Y. Hu, and Y. Shi (2018). Scaling for
edge inference of deep neural networks. In: Nature Electronics 1.4, pp. 216–222. doi:
10.1038/s41928-018-0059-3. url: https://doi.org/10.1038/s41928-018-0059-
3.

Young, A. R., M. E. Dean, J. S. Plank, and G. S. Rose (2019). A Review of Spiking
Neuromorphic Hardware Communication Systems. In: IEEE Access 7, pp. 135606–
135620. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2941772.

Zenke, F. and S. Ganguli (June 2018). SuperSpike: Supervised Learning in Multilayer
Spiking Neural Networks. In: Neural Computation 30.6, pp. 1514–1541. issn: 1530-
888X. doi: 10.1162/neco_a_01086. url: http://dx.doi.org/10.1162/neco_a_
01086.

Software References

Franco (2021). fxpmath. https://github.com/francof2a/fxpmath.

Hazan, H., D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi, H. T. Siegelmann, and
R. Kozma (2018). BindsNET: A Machine Learning-Oriented Spiking Neural Networks
Library in Python. In: Frontiers in Neuroinformatics 12, p. 89. issn: 1662-5196. doi:
10.3389/fninf.2018.00089. url: https://www.frontiersin.org/article/10.
3389/fninf.2018.00089.

Jakob, W., J. Rhinelander, and D. Moldovan (2017). pybind11 – Seamless operability
between C++11 and Python. https://github.com/pybind/pybind11.

Vinkelis, M. (2020). Bitsery. https://github.com/fraillt/bitsery.

113

https://doi.org/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://www.frontiersin.org/article/10.3389/fnins.2019.00260
https://doi.org/10.1038/s41928-018-0059-3
https://doi.org/10.1038/s41928-018-0059-3
https://doi.org/10.1038/s41928-018-0059-3
https://doi.org/10.1109/ACCESS.2019.2941772
https://doi.org/10.1162/neco_a_01086
http://dx.doi.org/10.1162/neco_a_01086
http://dx.doi.org/10.1162/neco_a_01086
https://github.com/francof2a/fxpmath
https://doi.org/10.3389/fninf.2018.00089
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://github.com/fraillt/bitsery

Acronyms and Technical Terms

ADC analog-to-digital converter . (pp. 28, 29)

AdEx adaptive exponential integrate-and-fire . (pp. 27, 103)

ANN artificial neural network . (pp. 1, 5, 12)

ANNCORE analog network core . (pp. 1, 25)

AP action potential . (pp. 6, 7, 10)

BP backpropagation . (p. 14)

BPTT back-propagation through time . (pp. V, VII, 2, 18–20, 102)

BSS-2 BrainScaleS-2 . (pp. V, VII, 1–3, 25, 99)

CADC column ADC. (pp. 29, 28, 29, 40, 45, 46, 66, 69, 82, 83, 102)

CapMem capacitive memory . (p. 27)

CNN convolutional neural network . (p. 12)

e-prop eligibility propagation. (pp. 3, 31, 45, 50, 52, 53, 65, 76, 99)

EPSP excitatory post-synaptic potential . (p. 7)

ERN error-related negativity . (p. 22)

FNN feedforward neural network . (pp. 12–14, 22, 61)

FPGA field-programmable gate array . (pp. 25, 47)

GRU gated recurrent unit . (p. 15)

HBP Human Brain Project . (p. 1)

HX HICANN-X v2. (pp. 25–28, 27–29, 31, 33, 35–38, 37–41, 45–47, 49–53, 56, 58,
60–62, 65, 66, 68, 75–77, 81–83, 85, 86, 93, 99, 101–103, 122)

IPSP inhibitory post-synaptic potential . (p. 7)

ISI inter-spike interval . (p. 50)

LI leaky integrate. (pp. 17, 50)

LIF leaky integrate-and-fire. (pp. 8, 9, 11, 15–18, 20, 25, 27, 33, 47, 50, 62, 75, 99, 103)

LSNN long short-term memory spiking neural network . (p. 103)

115

LSTM long short-term memory . (pp. 15, 19)

MADC membrane ADC . (pp. 27, 35, 37, 47, 58)

MLP multi-layer perceptron . (p. 13)

NASProp Neuromorphic Accumulative Spike Propagation. (pp. 2, 3, 72, 76, 77, 79, 87,
91, 97, 99, 101, 103)

ODE ordinary di�erential equation. (p. 6)

PPU plasticity processing unit. (pp. 25, 28, 29, 34, 39–43, 42–47, 62, 65, 66, 68, 69, 71,
74, 75, 77, 79–85, 87, 86, 91, 96, 97, 101, 103, 122)

PSP post-synaptic potential . (pp. 7, 9, 12)

ReLU rectified linear unit . (p. 13)

RNN recurrent neural network . (pp. V, 2, 5, 12, 14, 15)

RSNN recurrent spiking neural network . (pp. V, VII, 2, 3, 5, 12, 14, 15, 17, 31, 33, 35,
45, 47, 49–52, 61, 65, 74, 76, 79, 99, 104)

RSS residual sum of squares . (pp. 21, 45, 69)

s-prop spike-based eligibility propagation (pp. 2, 3, 47, 49, 52, 53, 58, 60, 61, 65, 75, 76,
99)

SGD stochastic gradient descent. (pp. 13, 75, 76, 101)

SIMD single instruction multiple data . (p. 1)

SNN spiking neural network . (pp. 1, 25)

STDP spike timing dependent plasticity . (p. 29)

VU vector unit (pp. 25, 28, 29, 28, 40, 44, 66, 75, 81, 82, 84, 96, 101)

116

A Appendix

A.1 Parameter

Parameter tables for individual experiments refer to a Parameter Base, accumulating
common parameters. If parameters of an individual experiment are also given in the
parameter base, they are overwritten by the experiment-specific ones. Time units are
always given in msbio.

A.1.1 S-prop

Table A.1: Parameter Base

Parameter Value
Learning
Regularization
strength ÷reg

10000

f target 40 Hzbio
� 0.8, every 200 epochs
Optimizer Adam
Simulation
”T 1 msbio
T 1000 msbio
Network
ni 30
nh 70
no 1
Std(◊ih)init 15
Std(◊hh)init 1
Std(◊ho)init 0
Neurons
·syn 2 msbio
·ref 1 msbio
·h

m 20 msbio
·o

m 20 msbio
vleak 0 a.u.
vr 0 a.u.
vth 40 a.u.

Data
÷T 100
np 3
wi,k [0.5, 2)
Ti,k [0.6fi, 2fi)
Ïi,k

0.5
1000 , 2fi

1000
"

T in
ISI 40 msbio, Poisson

Table A.2: Grid Search

Parameter Value
Parameter Base Table A.1
÷r, ÷o {0.5, 0.05, 0.03, 0.005}

Table A.3: Baseline

Parameter Value
Parameter Base Table A.1
÷r, ÷o 0.05
e-prop specific
“ 3

Table A.4: Stochastic Weight Updates

Parameter Value
Parameter Base Table A.1
÷r, ÷o 0.05
Weights ◊ œ N63

≠63
Noise
Gaussian noise on
membranes

≥ N (0, 0.4), Gaussian

·syn ≥ N (2, 0.2), Gaussian
·m ≥ N (20, 2), Gaussian
Synaptic strength scale ≥ N (1, 0.1), Gaussian

117

Table A.5: Small Output Weights

Parameter Value
Parameter Base Table A.1
÷r, ÷o 0.05
‡o œ {0.1, 0.5, 0.8, 1.0}
Weights ◊ œ N63

≠63
Noise
Gaussian noise on
membranes

≥ N (0, 0.4), Gaussian

·syn ≥ N (2, 0.2), Gaussian
·m ≥ N (20, 2), Gaussian
Synaptic strength scale ≥ N (1, 0.1), Gaussian

Table A.6: Hardware Experiment

Parameter Value
Parameter Base Table A.1
÷r 0.05
÷o 0.02
‡o 0.1
Weights ◊ œ N63

≠63
Std(◊ih)init 25
Std(◊hh)init 2
Std(◊ho)init 0
Neurons
·syn 4 ms
·ref 1 ms
Isyn, gm spiking neu-
rons

800 DAC Values

Isyn, gm readout neu-
ron

200 DAC Values

vleak 120 DAC Values
vr 120 DAC Values
vth 160 DAC Values

Table A.7: Role of Recurrence

Parameter Value
Parameter Base Table A.6
Non-recurrent
◊hh 0 for all epochs
Liquid

◊hh
Constant for all epochs.
Initialized from scrambled
learned recurrent projection

Table A.8: Stability

Parameter Value
Parameter Base Table A.6
÷r, ÷o 0.0

◊ih, ◊hh, ◊ho Given by projections trained
for 1000 epochs

Epochs 100

118

A.1.2 On-Chip Learning

Simulation

Table A.9: Baseline

Parameter Value
Parameter Base Table A.1
÷r, ÷o 0.03
÷reg 5000
NASProp
P {25, 50} msbio
e-prop specific
“ 3

Table A.10: P sweep

Parameter Value
Parameter Base Table A.1

P
{10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 110, 120} msbio

Baseline Table A.9
SGD
Optimizer SGD
÷r 9 · 10≠5

÷o 1 · 10≠4

÷reg 5000
SGD, discrete In addition to above
‡o 0.1
Weights ◊ œ N63

≠63
SGD, discrete, noisy In addition to above
Gaussian noise on
membranes

≥ N (0, 0.4), Gaussian

·syn ≥ N (2, 0.2), Gaussian
·m ≥ N (20, 2), Gaussian
Synaptic strength scale ≥ N (1, 0.1), Gaussian
·c ≥ N (20, 2), Gaussian
÷c ≥ N (1, 0.1), Gaussian
SGD, discrete, noisy no
reg

In addition to above

÷reg 0

Table A.11: Recurrence

Parameter Value
Parameter Base Table A.1
P {50, 100} msbio
÷reg 5000
Baseline
÷r 3 · 10≠2

÷o 3 · 10≠2

Simulation
÷r 9 · 10≠5

÷o 1 · 10≠4

Optimizer SGD
‡o 0.1
Weights ◊ œ N63

≠63
Gaussian noise on
membranes

≥ N (0, 0.4), Gaussian

·syn ≥ N (2, 0.2), Gaussian
·m ≥ N (20, 2), Gaussian
·c ≥ N (20, 2), Gaussian
÷c ≥ N (1, 0.1), Gaussian
Synaptic strength scale ≥ N (1, 0.1), Gaussian

119

Single Synapse Experiment

Table A.12: Correlation Base

Parameter Value
Cube Setup 69
Constants
Target ÷c 15 a.u. per pre-post pair
Target ·c 20 msbio
Analog Parameters
mux_dac_25 3200
syn_i_bias_corout 400
syn_i_bias_ramp 45
syn_i_bias_store 50
Calibration
amp_calibs,
time_calibs

Chosen such that error to
target curve is minimized.

Table A.13: Example

Parameter Value
Cube Setup 69
Correlation Base Table A.12
Training
Epochs 100
◊ho

init 25 a.u., fixed
◊hh

init ≠63 a.u.
yú,n ≠ yn 100 CADC values
Rec Neuron ID 0 (on HX)
Out Neuron ID 60 (on HX)
Signed row ID 0 (on HX)
T pre

ISI 10 msbio, Poisson
T post

ISI 10 msbio, Poisson
P 100 msbio
T 1000 msbio
Updates Accumulative

Info
Random numbers are
bit-shifted by 3 positions to
the right.

Table A.14: Example Output Weight

Parameter Value
Cube Setup 69
Correlation Base Table A.12
Training
Epochs 100
◊ho

init ≠63 a.u., variable
◊hh

init ≠30 a.u.
yú,n ≠ yn 100 CADC values
Rec Neuron ID 0 (on HX)
Out Neuron ID 60 (on HX)
Signed row ID 0 (on HX)
T pre

ISI 10 msbio, Poisson
T post

ISI 10 msbio, Poisson
P 100 msbio
T 1000 msbio
Updates Accumulative

Info
Random numbers are
bit-shifted by 2 positions to
the right.

Table A.15: Example Error Sign Change

Parameter Value
Cube Setup 69
Correlation Base Table A.12
Training
Epochs 200
◊ho

init ≠30 a.u., variable
◊hh

init ≠63 a.u.
yú,n ≠ yn {100, ≠100} CADC values
Rec Neuron ID 0 (on HX)
Out Neuron ID 60 (on HX)
Signed row ID 0 (on HX)
T pre

ISI 10 msbio, Poisson
T post

ISI 10 msbio, Poisson
P 100 msbio
T 1000 msbio
Updates Accumulative

Info
Random numbers are
bit-shifted by 2 positions to
the right.

Table A.16: Error Sweep

Parameter Value
Cube Setup 69
Correlation Base Table A.12
Training
Epochs 100
Runs 20, with di�erent seeds
◊ho

init 30 a.u., fixed
◊hh

init {≠63 a.u., 63 a.u.}

yú,n ≠ yn
{100, 80, 60, 40, 20, 10, ≠10,
≠20, ≠40, ≠60, ≠80, ≠100}
CADC values

Rec Neuron ID 0 (on HX)
Out Neuron ID 60 (on HX)
Signed row ID 0 (on HX)
T pre

ISI 10 msbio, Poisson
T post

ISI 10 msbio, Poisson
P 100 msbio
T 1000 msbio
Updates Accumulative

Info
Random numbers are
bit-shifted by 3 positions to
the right.

120

Table A.17: Correlation Sweep

Parameter Value
Cube Setup 69
Correlation Base Table A.12
Training
Epochs 100
Runs 20, with di�erent seeds
◊ho

init 30 a.u., fixed
◊hh

init {≠63 a.u., 63 a.u.}
yú,n ≠ yn 100 CADC values
Rec Neuron ID 0 (on HX)
Out Neuron ID 60 (on HX)
Signed row ID 0 (on HX)
T pre

ISI 10 msbio, Poisson

T post
ISI

{2, 5, 10, 20, 30, 40} msbio,
Poisson

P 100 msbio
T 1000 msbio
Updates Accumulative

Info
Random numbers are
bit-shifted by 3 positions to
the right.

Table A.18: Multiple Synapses

Parameter Value
Cube Setup 69
Parameter Base Table A.13
Rec Neuron ID [0, 138], every second (on HX)
Out Neuron ID 140 (on HX)
Signed row ID 0 (on HX)

On-Chip Full Network

Table A.19: Full Network on-chip

Parameter Value
Correlation Base Table A.12
Learning
Epochs 200
T 1000 msbio
P 100 msbio
Updates Accumulative
Batch size 100

Info
Random numbers are
bit-shifted by 2 positions to
the right.

Network
ni 30
nh 70
no 1
Std(◊ih)init 25
Std(◊hh)init 1
Std(◊ho)init 1
Neurons
·syn 4 ms
·ref 1 ms
Isyn, gm spiking neu-
rons

800 a.u.

Isyn, gm readout neu-
ron

200 a.u.

vleak 120 a.u.
vr 120 a.u.
vth 160 a.u.

Data
÷T 100
np 1
wi,k 1
Ti,k 2000 msbio
Ïi,k {0, 100} msbio
T in

ISI 20 msbio, Poisson 121

A.2 Further Methods

A.2.1 Stochastic Weight Updates

A crucial hardware property that has to be taken into account when implementing learn-
ing on HX are the discretized synaptic weights described in Section 3.1. On hardware a
weight is given by a integer n œ N63

0 which increments the synaptic strength with �◊hw.
These increments are subject to chip setup and calibration. For gradient-based learn-
ing, the knowledge of their actual value is not so critical. However, to increase learning
accuracy they should be chosen such, that the learned hardware weights

◊hw
ji = n · �◊hw with n œ {0, . . . , 63} (A.1)

exploit the possible range without saturating. The issue with these discrete weights arises
when performing weight updates. Assuming a weight update �◊ji, the weights ◊hw, old

ji

are adjusted according to
◊hw, new

ji = ◊hw, old
ji + �◊ji. (A.2)

Since the weight updates are usually smaller than the increments on hardware, the new
weights cannot be calculated directly. One possible solution is to round �◊ji to the
nearest multiple of �◊hw. However, if the updates are too small, the weights remain
constant. The solution proposed are stochastic weight updates [Breitwieser, 2015]. That
is, the weights are increased by the updates up rounded to the next higher multiple of
the hardware increment Á�◊jiË with a probability p given by the decimal number of the
given update,

p = �◊ji ≠ Â�◊jiÊ

�◊hw . (A.3)

Here Â�◊jiÊ denotes the down rounded update to the next lower multiple of the hardware
increment. Correspondingly, the weights are updated according to

◊hw, new
ji = ◊hw, old

ji +

Y
]

[
Á�◊hw

Ë with p

0 with 1 ≠ p,
(A.4)

which leads to the correct gradient on average over many training epochs. In simulation
and for in-the-loop training, as described in Section 4.2.1, this can be implemented easily
on the host-side. For on-chip learning on the PPU the on-chip random number generator
is utilized to update the weights stochastically.

122

A.3 Software

Experiments conducted in this thesis used to the software state in Table A.20.

Table A.20: Software State

Repository Commit-Hash Commit Message

libnux 94a8fc588365ba180573817f1d45deb22937d786 Safety commit of final msc state for EA

haldls 0c75dfdcc48d9377ebf5eabef31be4800faee427 Safety commit of final msc state for EA

code-format 5d55a9952d4b6400fa5b2baeff9be546e45bf76d Pylint: Disable ’duplicate-code’

warning

logger bc006238ecfdc483d5b96ce5f5bb62e5a93e99dd Add log4cxx_level_v2

halco 6aded742a6694adff5a1296e66ddc08894b4e4b6 Update README

hate c7483cedc3d76b8e7a4a65e7bc9a423131f40ce1 Enable ccache in CI

hxcomm a91f0cdc5d6470a060a0adadccf7b33a1c2d42a7 Add initial doc/ for user documentation

pywrap 83ddbad8a114b4730b82d299e8bd9da2a6ca5ebb Support builds w/o generating Python

bindings

fisch cef78ebf3aa8e009f5d7b2a2120b377d0fddb59f Add initial doc/ for user documentation

rant 4fc2cc3689c9b141708dafbcc5f9d3c7c2b7f18d Update to gtest 2.0.0

ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6 Add .gitreview

lib-boost-patches 2d7e07d4e74827c42d9e1a51f8d180af9907f7cb Update content description in Readme

sctrltp 227a5ddc0333b88a2a043e1927c1f549b8247487 Handle init response over multiple

packets

hwdb fa2060f560bacf0dd91294dbd44f64524073997e Update cube 3’s triggers for FPGA 0

visions-slurm 5e7ea560235b068fc12f26e3f0d002d415f76cf9 Add hwdb yaml environment export

flange fcde2aafe69805487789ca0b1a8a245caf5fb8ed Support builds w/o generating Python

bindings

lib-rcf 5b16326ae30ee08a322a6569887ca8bd2684c252 Fixes for log4cxx@0.11.0

bss-hw-params a82226052ae8e434c1a4b4f9ec781ff1578427d9 Add compatibility constant for cube_-

ethernet

grenade 80985b242cc7b76278410c4bc9b4322795448335 Safety commit of final msc state for EA

pyublas fb538e8c313a3f04d1a5b77200d192fece3ea901 Add .gitreview

model-hw-eprop ea86d3d88778b76f2b0282821e3952dbbd77ff16 Safety commit of final msc state for EA

calix 5b3871532c000dfb7572034386ac49edb5b3c696 Individually select leak div. or mult.

hxtorch f7221ad40f6e73de72faa256784e1fad40a2330f Safety commit of final msc state for EA

Used singularity [Kurtzer et al., 2017] container is given in Table A.21.

Table A.21: Container

Path /containers/stable/2021-03-26_1.img

App dls

Overlay /containers/manual/mueller/overlays/2020-12-15_2.img

123

Erklärung:

Ich versichere, dass ich diese Arbeit selbständig verfasst habe und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, 21 Juni 2021
.......................................

(Unterschrift)

	1 Prologue
	1.1 Thesis Outline

	2 Theoretical Background
	2.1 Computational Neuroscience in a Nutshell
	2.1.1 Biological Neuron
	2.1.2 Leaky-Integrate-and-Fire Model

	2.2 Introduction to Recurrent Neural Networks
	2.3 Recurrent Spiking Neural Networks
	2.3.1 Network under Consideration
	2.3.2 A Learning Framework
	2.3.3 Biologically inspired Alternative to BPTT

	3 Neuromorphic Hardware
	3.1 The BrainScaleS System
	3.2 Correlation Sensors

	4 Developed Software
	4.1 E-prop Framework
	4.1.1 Network Representation
	4.1.2 Simulating RSNNs in Software
	4.1.3 Learning

	4.2 Integrating HICANN-X
	4.2.1 In-the-loop Learning
	4.2.2 Interfacing HX
	4.2.3 Routing Algorithm
	4.2.4 On-chip Learning
	4.2.5 Host-PPU Communication

	5 Spike-based Eligibility Propagation
	5.1 Task
	5.1.1 Motivation
	5.1.2 Description

	5.2 Adjusting the Learning Rule
	5.2.1 Consequences

	5.3 Simulations
	5.3.1 Hardware Constraints
	5.3.2 Network Setup and Training Procedure
	5.3.3 Baseline
	5.3.4 Discrete Weights
	5.3.5 Small Output Weights

	5.4 HICANN-X in the loop
	5.4.1 Chip Setup and Training
	5.4.2 Application on Hardware
	5.4.3 The Role of Recurrence
	5.4.4 Investigating Stability

	6 On-chip Learning
	6.1 Learning Rule under Hardware Constraints
	6.1.1 Utilizing Correlation Measurements
	6.1.2 Adjusting the Learning Rule

	6.2 Simulation
	6.2.1 Hardware Constraints
	6.2.2 Network Setup and Training Procedure
	6.2.3 Baseline Experiment
	6.2.4 Update Period
	6.2.5 The Role of Recurrence

	6.3 Implementation on-chip
	6.3.1 Speed of Weight Updates

	6.4 Single Synapse Experiment
	6.4.1 Experiment Setup
	6.4.2 Correlation Measurements
	6.4.3 Learning Setup
	6.4.4 Exemplified Weight Evolution
	6.4.5 Synapse Variations

	6.5 Full Network
	6.5.1 Training Procedure
	6.5.2 Result
	6.5.3 Possible Issues

	7 Epilogue
	7.1 Outlook

	Acknowledgments
	Acronyms and Technical Terms
	A Appendix
	A.1 Parameter
	A.1.1 S-prop
	A.1.2 On-Chip Learning

	A.2 Further Methods
	A.2.1 Stochastic Weight Updates

	A.3 Software

