
Department of Physics and Astronomy

University of Heidelberg

Master’s thesis in Physics

submitted by

Markus Kreft
born in Berlin (Germany)

March 2021

Input-Induced Dynamical States in Homeostatically

Regulated Neuromorphic Recurrent Neural Networks

This Master’s thesis has been carried out by Markus Kreft at the

Kirchhoff-Institute for Physics

Heidelberg University

under the supervision of

Dr. Johannes Schemmel

Abstract

Information processing in recurrent spiking neural networks is of interest to both neuro-
science and novel approaches to computation. The synaptic connections between neurons
in these networks determine their dynamics and function. Precise control of the connec-
tions poses an acute challenge. This thesis leverages a local homeostatic plasticity rule
that regulates synaptic weights based on single neuron spike rates to achieve stable net-
work activity. In this setting the coupling strength of the network to external input allows
control over the specific dynamical regime as characterised by the autocorrelation time.
Networks were implemented on the BrainScaleS-2 neuromorphic hardware system that
enables fast and efficient emulation. For reference, the networks were also simulated
with numerical methods. The same kind of qualitative control of network dynamics was
found for both implementations. In a reservoir computing setting the spiking network
was extended with a linear readout for classification tasks. This setup was analysed
with various spiking datasets. Specifically, the impact of different dynamical states in
the reservoir on classification performance was observed, following the general guiding
principle of critical computing.

Zusammenfassung

Die Verarbeitung von Informationen mit rekurrenten spikenden neuronalen Netzwerken ist
sowohl für die Neurowissenschaft, als auch für neuartige Rechenansätze mit Computern
von Interesse. Die Verbindungen zwischen den Neuronen in solchen Netzwerken bestim-
men deren Dynamik und Funktionsweise. Präzise Kontrolle dieser Verbindungen ist eine
akute Herausforderung. In dieser Arbeit wird eine lokale homöostatische Plastizitätsregel
verwendet, die die synaptischen Gewichte auf Grundlage der Feuerraten einzelner Neuro-
nen reguliert, um stabile Netzwerkaktivität zu erreichen. Unter diesen Umständen kann
der dynamische Zustand, charakterisiert durch die Autokorrelationszeit, über die Stärke
der Koppelung an externen Input gesteuert werden.
Netzwerke wurden auf dem neuromorphen Hardware System BrainScaleS-2 implementiert,
was schnelle und effiziente Emulation ermöglicht. Als Referenz wurden die gleichen Netz-
werke auch mit numerischen Rechnungen simuliert. Für beide Implementierungen wurde
die gleiche qualitative Kontrolle über die Netzwerkdynamik beobachtet. Im Rahmen des
Reservoir Computing wurde das spikende Netzwerk um einen Linearen Readout erweitert
und für Klassifikationsaufgaben genutzt. Der Aufbau wurde mit verschiedenen spikenden
Datensätzen untersucht. Besonders wurde der Einfluss des dynamischen Zustands im Re-
servoir auf die Klassifikation, nach dem Prinzip des Critical Computing, betrachtet.

Contents

1 Introduction 1

2 Background 5
2.1 Biological Principles . 5
2.2 Modelling . 6

2.2.1 Neurons . 7
2.2.2 Synapses . 7

2.3 Reservoir Computing Networks . 8
2.4 Critical Network Dynamics . 8
2.5 Neuromorphic Hardware . 10

3 Methods 15
3.1 Experiment and Network Architecture . 15
3.2 Network Implementation . 16
3.3 Network Simulations . 19
3.4 Datasets . 20

3.4.1 Poisson Patterns . 20
3.4.2 Random Manifolds . 20
3.4.3 Spiking Heidelberg Digits . 21

3.5 Evaluation . 22
3.5.1 Autocorrelation . 23
3.5.2 Linear Classifier . 23
3.5.3 Mutual Information . 23

4 Control of Network Dynamics 25
4.1 Characterization . 25
4.2 Homeostatic Rate Regulation . 28
4.3 Control of Autocorrelation . 31
4.4 Susceptibility . 33

5 Comparison of Hardware and Simulation 35
5.1 Brian Simulations . 35
5.2 Hardware Parameter Constraints . 37
5.3 Synaptic Amplitude Offset . 38
5.4 Synapse Saturation . 39

6 Classification Tasks 43
6.1 Poisson Patterns . 43
6.2 Random Manifolds . 49
6.3 Spiking Heidelberg Digits . 52

iii

Contents

7 Conclusion and Outlook 55

8 Appendix 61

9 References I

Abbreviations VII

List of Figures VII

Acknowledgments XI

Statement of Authorship (Erklärung) XIII

iv

1 Introduction

When John von Neumann described the fundamentals of an electronic computer in his
First Draft of a Report on the EDVAC [von Neumann 1945] he drew inspiration from
McCulloch and Pitts’s description of neurons in the human brain [McCulloch et al. 1943].
From this point of view, every current computer with a von Neumann architecture im-
plements computation in a form of formal neural network. Modern artificial neural net-
works (ANNs) resemble biological networks much closer. These architectures— simulated
on classical computers or run on specialised hardware like inference accelerators—have
gained popularity for computation in recent years. However, programming them, i.e.,
training them to perform a specific task, has proven to be more complicated and costly.
Only the wide availability of computational power allowed to leverage the backpropagation
algorithm [Rumelhart et al. 1986] for the recent machine learning revolution [Schmidhuber
2015; LeCun et al. 2015].
Still, compared to actual neural substrates even these ANNs are very simplified, ef-

fectively only calculating sums of input values. In contrast, the human brain processes
information in continuous time by propagating action potentials between neurons. A sig-
nificant difference to classical computers is the inherently asynchronous approach of these
neural spike events, which may allow for robust but energy efficient computation [Maass
1997]. As might be expected from these considerations, training of such spiking neural
networks (SNNs) has proven even harder and remains a field of active research [Zenke et
al. 2021a]. More advanced network architectures closer to biological models are (1) more
complicated to train for tasks and (2) require vast amounts of computational resources to
solve the time-continuous dynamics.
One approach that addresses the first problem of training is given by the framework of

reservoir computing [Tanaka et al. 2019]. In this setting the network is only used to project
inputs into a high-dimensional state space and actual learning of tasks is implemented by
a simple linear readout trained with traditional regression methods. This circumvents the
problems of supervised training within the SNN. Nonetheless, the connections between
the spiking neurons of the reservoir need to be initialised in some way to achieve stable
dynamics that are favourable for computing. Typically, weights are drawn from predefined
distributions with certain parameters. However, the specific choice of these can influence
network dynamics and stability, which in turn impact the performance of the reservoir.

1

1 Introduction

A more flexible procedure that helps to reach stability and select desired dynamics is
the active homeostatic regulation of connections inside the SNN. The rate-based plasticity
rule by Zierenberg et al. [2018] dynamically adapts synaptic weights based on the spike
activity of postsynaptic neurons. In this setting the synaptic connections self-organise to a
dynamical state that is determined by the strength of external input. Following Cramer et
al. [2020] the coupling to inputs can be controlled by the number of presynaptic connections
from external units into the network. This allows fine control over the network dynamics.

In the reservoir computing setting, this control can be leveraged to chose network
dynamics favourable for tasks. Dynamics close to a phase transition between ordered
and chaotic states have been found to optimise abstract information theoretic measures
and are believed to enable high computational performance [Bertschinger et al. 2004].
This concept, generally known as critical computing, can be investigated by classification
tasks of varying complexity, where more complex tasks require more computational power.
Datasets of spike patterns that allow such control over the difficulty of tasks can be gen-
erated by sampling points from high-dimensional random manifolds [Zenke et al. 2021b].
For more realistic settings, real-world data is provided by the Spiking Heidelberg Digits
dataset [Cramer et al. 2019]. It contains neural spike trains generated from spoken digit
audio recordings using models inspired by the human auditory system. Such auditory
tasks are especially interesting because their intrinsic time dimension allows to leverage
the temporal aspects of SNNs.

The second challenge with biologically inspired networks is the exhaustive computa-
tional cost of solving the equations underlying the time-continuous mechanics. Simulating
these requires vast amounts of numerical calculations. Neuromorphic hardware [Mead
1990] addresses this by instead implementing neurons and synapses directly in dedicated
circuits that emulate the neural substrates. One such neuromorphic hardware platform
is the BrainScaleS system [Schemmel et al. 2010]. Specifically, the second generation
BrainScaleS-2 (BSS-2) [Schemmel et al. 2020] system features the mixed-signal High Input
Count Analog Neural Network (HICANN-X) hardware chip. In addition to analog neurons
and synapses, it comprises an onboard digital processor for the implementation of synap-
tic plasticity in networks. Due to the analog implementation of neurons and synapses in
electronic equivalent circuits the hardware runs at a 1000× speedup of temporal dynamic
compared to biological counterparts. This allows for fast iteration during experiments with
SNNs compared to traditional methods of simulation and also has potentially interesting
applications in real time computation. Crucially, the system’s architecture allows for high
scalability, making the acceleration factor independent of the network size. Combined
with high energy efficiency of the analog implementation this can potentially enable the
emulation of systems much larger than what is currently possible with simulations.

This thesis presents a recurrent spiking neural networks with homeostatic regulation

2

implemented on the BrainScaleS-2 system. The strength of coupling to the external input
is demonstrated to allow control over the dynamical state in the network. An aspect of
interest is the comparison of the behaviour of the neuromorphic hardware to reference
simulations of the underlying equations. The desired regulation of network dynamics can
in principle be achieved on hardware in the same way as in simulation. Various benefits and
constraints of the hardware are analysed. Additionally, first results from using the network
in a reservoir computing setup are demonstrated and the impact of network dynamics on
computation is analysed with different pattern detection tasks.
The thesis is structured as follows: Chapter 2 describes the network models of interest

and introduces the BrainScaleS-2 system. This is followed in Chapter 3 by a descrip-
tion of the specific network architecture and experiment procedures, including details of
the implementation on the neuromorphic hardware system. Chapter 4 demonstrates the
homeostatic regulation of network activity and the control of the dynamical state in ex-
periments on BSS-2. These are compared to simulations of similar networks in Chapter 5.
Various differences between the two implementations and their impact on the network dy-
namics are analysed. The neuromorphic implementation of the SNN is used in a reservoir
computing setup in Chapter 6, where first classification results for different stimuli are
presented. Finally, Chapter 7 draws conclusion from the findings of this thesis and gives
an outlook on possible future work.

Some experiments presented in this thesis were conducted in collaboration with Ben-
jamin Cramer and Johannes Zierenberg and will be contributed to a paper in prepa-
ration [Cramer et al. in prep].

3

2 Background

This chapter begins with a very short introduction to spiking neural networks and their
biological terminology in Section 2.1. Subsequently, specific models for neuron dynamics
are presented in Section 2.2. Section 2.3 briefly gives an overview of the general framework
of reservoir computing followed by a description of critical dynamics in corresponding
networks in Section 2.4. The BrainScaleS-2 hardware system that acts as a basis for
neural emulation is described in Section 2.5. Section 3.4 describes datasets that are used
for classification tasks and Section 3.5 presents methods for the evaluation of the network
response.

2.1 Biological Principles

The human brain performs computation in a network of connected nerve cells that share
information by propagating electrical pulses. (A comprehensive overview is given e.g., by
Gerstner et al. [2014].) While numerous types of neurons can be distinguished, a single
cell is typically divided into three main parts, the dendrites, the soma, and the axon, as
schematically drawn in Figure 2.1. Dendrites are the inputs to the neuron and transmit
signals originating from other neurons. The central unit of the neuron is called the soma
which processes these signals in a non-linear way. The generated output is then passed
through the axon to neighboring neurons. Axons can stretch over macroscopic distances
leading to non-local connections in the brain.
Processing in the soma makes use of ion channels in the cell membrane that allow

to build up a voltage potential depending on the charge of the ions passing through.
Without input from other neurons, the potential inside the neuron is in an equilibrium
state of constant polarization compared to the surroundings. If input arrives in form of
an electrical charge through a dendrite, the voltage across the membrane changes from
its resting state. Once the membrane potential reaches a threshold value, it exhibits a
steep depolarization followed by a phase of hyperpolarization. If such an action potential
is emitted, the neuron is said to fire a spike that it passes along the axon to other neurons.
Sequences of single neuron spikes are referred to as spike trains.
Connections between the axon of one neuron and the dendrites of another are called

synapses. Most common are chemical synapses. There, the axon of the presynaptic neuron
comes close to the dendrite of the postsynaptic neuron leaving a small gap, the synaptic

5

2 Background

Figure 2.1: Schematic illustration of
two neurons connected by a synapse.
The dendrites and axon of the presy-
naptic neuron j are indicated with ar-
rows, the triangle highlights the soma.
The synaptic cleft is encircled. Figure
adapted from Gerstner et al. [2014].

cleft (Fig. 2.1). A presynaptic action potential that arrives at the cleft leads to the release
of neurotransmitters. These diffuse to the postsynaptic neuron, where they can facilitate
the passage of certain ions through the channels in the membrane leading to the buildup
of a postsynaptic potential (PSP). In effect, the electrical pulse is transmitted from one
neuron to another.

The strength of synaptic connections is determined by the amount of neurotransmitters
released in the synapse and the type and number of ion channels activated in the postsy-
naptic neuron. This is specified by a synaptic weight. If a presynaptic spike increases the
postsynaptic membrane potential, a synapse is termed excitatory, if it leads to a decrease
of the potential it is called inhibitory.

In general, the weights between neurons are not static, but can change over time. This
is referred to as synaptic plasticity and plays an important role in learning of specific
information. In the human brain there are many different mechanisms that regulate neuron
connectivity. For this thesis, homeostatic regulation of neuron rates which maintains
steady network activity is of interest.

2.2 Modelling

In this section the specific neuron and synapse models used for experiments are described.
They abstract the observations from biology by describing the dynamics of voltages and
currents in neurons with differential equations.

6

2.2 Modelling

2.2.1 Neurons

The leaky integrate-and-fire (LIF) neuron is a widely used model for single neuron dy-
namics based on the assumption that only the timing of neural spikes is important for
information processing. Thus, the dynamics of the membrane are defined only until a cer-
tain threshold potential is reached. At this point in time, a spike event is registered and
the membrane is reset [Gerstner et al. 2014]. The membrane potential uj(t) of a neuron j
is governed by

τmem
duj(t)

dt = − [uj(t)− uleak] + Ij(t)
gleak

. (2.1)

with the membrane time constant τmem, the leak conductance gleak = Cm/τmem and the
leak potential uleak, as well as the total input current Ij(t). The neuron fires a spike when
the membrane potential reaches the threshold uthres

uj(tkj) ≥ uthres , (2.2)

defining the k-th spike time tkj of the neuron j. Subsequently, the membrane potential is
clamped to the reset potential ureset for the duration of one refractory period τref .

2.2.2 Synapses

The leaky synapse model describes the flow of current between pre- and postsynaptic
neurons. Currents Iij(t) from input units i to neurons j are modeled by

τ exc
syn

dIij(t)
dt = −Iij(t) + I in

ij (t) , (2.3)

τ inh
syn

dIij(t)
dt = −Iij(t)− I in

ij (t) , (2.4)

for excitatory and inhibitory synapses respectively, with the corresponding synaptic time
constants τ exc

syn and τ inh
syn . The input current I in

ij is determined by the times tki of the k-th
spikes of input i

I in
ij (t) =

∑
k

I0 · wij · δ
(
t− tki − dsyn

)
, (2.5)

with synaptic weights wij , amplitude I0 and the synaptic delay dsyn. The sum

Ij(t) =
∑
i

Iij(t) (2.6)

of presynaptic input currents enters into Eq. (2.1) for the neuron membrane potentials.

7

2 Background

2.3 Reservoir Computing Networks

Reservoir computing [Tanaka et al. 2019] is a general framework for computation with
networks of connected units capable of information transfer and processing, usually using
a sparsely connected recurrent neural network (RNN). Reservoir networks are also com-
monly known as echo state networks [Jaeger 2001] or liquid state machines [Maass et al.
2002] which describe similar approaches that were independently developed.
The setup consist of the reservoir network itself and a readout layer. A characteristic

aspect of the architecture is its approach to training. Typically, synaptic weights in the
reservoir are initialised by drawing random values from a certain distribution and remain
fixed, while output connections are trained for a specific task. The reservoir only acts as
a non-linear filter that receives input to some of its units and transforms it into a high-
dimensional state space. A simple extraction mechanism like a linear classifier implements
the readout and takes care of actual learning of presented data.
Specifically, the framework can be used for computation with spiking neurons. This

foregoes the problem of calculating error signals from spikes times which is generally
required for supervised methods of training.

2.4 Critical Network Dynamics

The concept of criticality is considered a guiding principle for selecting optimal dynamics
in neural networks. Systems operating close to a critical point, a (second-order) phase
transition between order and chaos, maximise various processing measures like correlation
length, information transfer, and susceptibility [Barnett et al. 2013; Tkačik et al. 2015;
Wilting et al. 2018a]. Therefore, criticality is believed to positively impact computational
performance. Systems at the ‘edge of chaos,’ nearing a critical transition, are proposed
to benefit complex tasks [Langton 1990; Bertschinger et al. 2004; Boedecker et al. 2012;
Muñoz 2018]. However, tuning networks precisely towards such a critical point is chal-
lenging. Synaptic plasticity algorithms can enable a network to adapt its connections by
itself. Ideally, the weights should self-organise to a state of desired dynamics based on
local information alone.
Theoretical considerations for the design of plasticity used in this thesis follow Zierenberg

et al. [2018]. The dynamical regime of a network subjected to a rate-based homeostatic
plasticity rule can be controlled by the frequency of the input stimulus. This is motivated in
the framework of a driven branching process [T. E. Harris 1963] with branching parameter
m and external input rate h. Spike generation is modeled at discrete intervals. On average,
a spike at timestep t causes m postsynaptic spikes in the next step, such that the expected

8

2.4 Critical Network Dynamics

total network activity At becomes

E(At+1|At) = mAt +Nh∆t , (2.7)

in a network with N units and a duration of ∆t between timesteps. For m < 1 this process
behaves sub-critically, cascades of activity fade out over time and the temporal average of
the network activity converges to a stationary value

〈A〉 = 1
T

T∑
t=1

At
T→∞−−−−→ Nh∆t

1−m =: A∞ . (2.8)

Assuming a homogeneous rate distribution between all neurons in the network implies a
mean neuron spike rate

ν = h

1−m , (2.9)

that becomes constant for a branching parameter m ∈ [0, 1) at finite input rate h ∈ [0,∞).

Plasticity in the network is designed to maintain a target firing rate νtarget by adapting
all presynaptic connections wij of neuron j base on its local firing activity aj , t. Weight
updates at timescale T are implemented as

∆wij,t = (νtarget∆t− aj,t)
(∆t
T

)
. (2.10)

For sufficiently slow plasticity (∆t/T → 0) the updates become small ∆wij,t ≈ 0 and
dynamics are solely determined by the average weights. These allow to estimate an effective
branching parameter. With Eq. (2.9) the mean-field solution is approximated by

m = 1− h/νtarget . (2.11)

Thus, the input strength can be used as a control parameter to determine network dynam-
ics. For low input rates, the homeostasis strengthens recurrent connections to maintain the
targeted output rate, leading to higher correlations and networks with a larger branching
parameter closer to criticality.

In experimental settings, dynamics can be quantified by the autocorrelation (AC) of
network activity. For a subcritical branching process, the autocorrelation function is given
by [Wilting et al. 2018b]

C(t) = mt . (2.12)

Comparison with an exponential decay

C(t) = e−t∆t/τ , (2.13)

9

2 Background

Figure 2.2: Sketch of different network dynamics characterised by their autocorrelation. The
network states range from bursting over fluctuating to input-driven, depending on the external input
rate. The dynamical regimes are classified by the branching parameter and the autocorrelation time
(solid lines). For low inputs the homeostatic timescale leads to resonances that cause bursting
behaviour. Figure taken from Zierenberg et al. [2018].

yields the autocorrelation time
τ = −∆t/ ln(m) , (2.14)

which diverges at m = 1 where the process has a critical phase transition.
Figure 2.2 shows three distinct dynamical regimes determined by the rate of the external

input. With decreasing stimulation rate, the networks compensates missing input by
generating more internal activation, tuning the system closer to a critical state. The
activity passes from the input-driven regime to fluctuating dynamics. For even less inputs,
dynamics are limited by the homeostatic timescale (Eq. 2.10) which leads to resonance
effects that create bursts with an effective branching parameter resembling supercritical
behaviour.
These mean-field consideration were also shown to function for networks of spiking

neurons. Specifically, control of criticality was previously demonstrated with a different
form of plasticity on neuromorphic hardware with LIF neurons [Cramer et al. 2020].

2.5 Neuromorphic Hardware

The BrainScaleS-2 (BSS-2) platform [Schemmel et al. 2020; Friedmann et al. 2017] is
an accelerated mixed-signal analog neuromorphic hardware system. At its core is the
HICANN-X v2 ASIC, a fully custom neuromorphic silicon chip manufactured in a CMOS

10

2.5 Neuromorphic Hardware

(a) HICANN-X ASIC (b) Cube Setup

Figure 2.3: Photographs of the BrainScaleS-2 system. (a) The die shot portrays the of HICANN-X
v2 ASIC. The two reflective areas contain the synapse arrays of the upper and lower half, with
the neuron blocks and capacitive memory cells in between. (b) Single-chip cube setups feature a
HICANN-X chip under the white plastic cap (top left) bonded onto the chip-carrier PCB. An FPGA
(not visible on the back) handles communication to the host computer. Photographs taken from
Müller et al. [2020].

65 mm process (pictured in Fig. 2.3a). It implements neurons and synapses in analog
equivalent circuits that emulate their dynamics, while spikes are digitised and routed as
events. The system has characteristic timescales that are about 1000× faster than biolog-
ical equivalents. This speedup allows for extremely fast and energy efficient emulation of
neural dynamics.

The analog network core of HICANN-X features 512 neuron cells that are arranged in
four quadrants, a left and right part of the top and bottom halves of the chip (Fig. 2.4).
Single neuron circuits emulate the adaptive exponential integrate-and-fire (AdEx) model
[Brette et al. 2005] by implementing the neuron membrane with a capacitor. The 131 072
synapses are placed in four grids of 256 × 128 each, where every column contains 256
synapses that pass postsynaptic currents to the neuron in that column, giving each neuron
256 possible presynaptic partners. Every row in the grid receives inputs from a synapse
driver that is located on the side of the grid and provides presynaptic inputs. One synapse
driver sends spike to two rows, the synapses in each of which can be configured to be either
excitatory or inhibitory. The drivers receive external input spikes and can simultaneously
pass the output spike events from the neurons back into the network. This way RNNs
can be configured (cf. Section 3.2). Analog voltages and currents are stored in capacitive
memory (CapMem) cells [Hock et al. 2013].

To reduce input/output load, HICANN-X has integrated on-chip spike generators that
can produce Poisson spike trains with configurable frequency. Using these as background
noise sources allows much faster experiments than when providing all spikes as external

11

2 Background

Figure 2.4: Layout of the BrainScaleS-2 full-size ASIC. The HICANN-X analog core is symmetric
between the top and bottom half. Each half contains a PPU co-processor and a left and a right
quadrant. A quadrant contains a row of 128 neurons and an array of 256× 128 synapses. Additional
components for digital control and event handling on the left side are highlighted. Figure taken from
Grübl et al. [2020].

events, especially at high frequencies when many spike events would need to be transferred.
The bandwidth for off-chip spike transfer can be reserved for structured input.
For observation of analog parameter values, HICANN-X has multiple analog-to-digital

converters (ADCs). The fast membrane ADC (MADC) can record voltage traces of sin-
gle neurons with high temporal precision. The columnar ADC (CADC) has a reduced
sampling rate but provides simultaneous access to traces of 128 components in parallel.
In addition to the analog components, BSS-2 features two general purpose co-processors

located in the top and bottom half of the chip (Fig. 2.4). Each of these plasticity processing
units (PPUs) has access to the parameters of the neurons and synapses, allowing for closed-
loop experiments implemented purely on-chip. They can also control and read the neuron
rate counters that measure spike rates of each neuron over a specified interval. The PPUs
implement the PowerISA instruction set architecture and feature a single instruction,
multiple data (SIMD) vector extension. It can handle 128 × 8 bit vectors to perform
calculations for multiple synapses in parallel [Friedmann et al. 2017; Grübl et al. 2020]. It
also allows to configure synaptic weights in parallel. The PPUs are programmed in C++

12

2.5 Neuromorphic Hardware

using inline assembler instructions for efficient use of the SIMD extension [Friedmann and
Pehle 2018].
In the cube setups (Fig. 2.3b) used for this thesis, a field-programmable gate ar-

ray (FPGA) handles communication over 1-Gigabit Ethernet with a host computer. Ex-
periment procedures are controlled by software1 written in Python, using the hardware
abstraction layers provided by the BSS-2 Operating System [Müller et al. 2020].

1The software for experiments is available in the model-hw-wavy repository hosted on the group-internal
site at https://gerrit.bioai.eu/plugins/gitiles/model-hw-wavy

13

https://gerrit.bioai.eu/plugins/gitiles/model-hw-wavy

3 Methods

In this chapter the methods and implementation details for experiments presented in this
thesis are described. Section 3.1 begins with an overview of the network architecture and
experimental procedures. Details of the implementation of the recurrent network on the
BrainScaleS-2 system are given in Section 3.2. Simulations of the same networks that
are compared to the hardware results for validation purposes, are outlined in Section 3.3.
Finally, Section 3.4 describes the datasets that are used for classification tasks and Sec-
tion 3.5 provides methods for evaluation of the network response.

3.1 Experiment and Network Architecture

Experiments in this thesis can be separated into different stages. The main component
is the spiking neural network implemented on the BrainScaleS-2 system. It is realised as
a sparsely connected recurrent neural network with N exc excitatory and N inh inhibitory
leaky integrate-and-fire neurons with leaky synapses. An input population of size Nin

projects spikes into the network and contains excitatory and inhibitory units in same
ratio as the network itself. However, the average number of connections from the input
population into the network, the indegree Kin and within the network itself, the recurrent
sparsity Krec, are configured differently.
Tying in with the work of Zierenberg et al. [2018], synaptic weights within and between

the network populations are treated equally and are dynamically adapted in the adaptation
phase. During this time, the synapses are exposed to the homeostatic plasticity rule, while
the network receives input as homogeneous Poisson noise. However, following Cramer et
al. [2020] the indegree of the network is used to select the dynamical state, instead of
changing the input population rate. Since postsynaptic inputs to the neurons in the
network are added up, the effect for single neurons is comparable to changing the rate
directly (cf. neuron layout in Section 2.5). This approach has the benefit that desired
network dynamics can be controlled independently of the input stimulus. For classification
tasks, adapting the stimulus rate would have the undesired effect of changing the task at
hand. In contrast to Zierenberg et al., only a fraction of weights is actually changed at
each plasticity update. This has a significant effect on the stability of the homeostasis.
Network dynamics are determined from static experiments with fixed weights after adap-

tation. The network response to Poisson noise is recorded and evaluated with statistical

15

3 Methods

1 1 0 0

0 0 1 0

1 1 1 1

1 1 0 1

0 0 0 1

‘0’

‘1’

input spikes reservoir output spikes state at label yt

Figure 3.1: Overview of the full reservoir computing setup for classification tasks. Input spikes are
created in a preprocessing stage. They are fed into the recurrent network with an average indegree of
Kin channels per neurons. The reservoir features sparsely connected excitatory and inhibitory neurons
that generate output spikes. For classification tasks, the spike trains are binned to obtain the reservoir
state at at timestep t, which is used to train a linear classifier to predict the labels yt. In isolation,
the network dynamics are analysed with Poisson inputs.

measures (c.f Section 3.5). A specific interest of this thesis is the analysis of network
dynamics for different amounts Kin of coupling to the input.
In the reservoir computing framework, the SNN with fixed weights is stimulated with

the input spikes from specific datasets (cf. Section 3.4) and provides output to a linear
classifier in the readout stage (cf. Section 3.5). A schematic overview of the full reservoir
computing setup is shown in Figure 3.1.

3.2 Network Implementation

All 512 neurons circuits available on HICANN-X are used to implement one large recurrent
network. The adaptive exponential integrate-and-fire (AdEx) neurons are configured to
approximate LIF behaviour by disabling the exponential term. The synapse grids of the
four quadrants are abstracted as a single array of size 256 × 512. Each synapse (i, j)
receives input from the driver in its row i and generates a current that is passed to the
neuron in its column j. Figure 3.2 shows a schematic view of the connectivity.

Recurrence and quadrant interconnection is achieved by using the address coding capa-
bility of the digital spike routing system [Schemmel et al. 2020]. Every spike feed to the
synapse drivers is marked with a specific 6 bit integer source address label. A synapse is
configured with a corresponding decoder address and only transmits spikes with matching
addresses. The four most significant bits of the label are used to implement the synapse
grid abstractions. The two remaining least significant bits distinguish four different kinds

16

3.2 Network Implementation

tk0 tk1 tk2 tk3 tk4 tk5 tk6 tk7

sl
0

sl
1

sl
2

sl
3

PPU 1

ν0 ν1 ν2 ν3

PPU 2

ν4 ν5 ν6 ν7

Figure 3.2: Schematic view of the abstracted synapse array on HICANN-X. Neurons (circles)
from the top (blue) and bottom (green) half of the chip emit spike events tki . Synapse drivers
(triangles) forward both these recurrent spikes and additional external inputs sl

i (red) to the synapses
in the array (colored dots). The synapses in each row are either all excitatory or all inhibitory. Synapses
are sensitive to events of one of the sources and transmit postsynaptic current to the neuron in their
column. The PPUs have access to the neural firing rates νi of the neurons in their respective half as
well as the weights of the synapses. Figure adapted from Cramer et al. [in prep].

of inputs to the synapses. The 256 output spike channels from neurons in the upper and
lower half of the HICANN-X (cf. Figure 2.4), as well as 256 unique external spike channels
are labeled with three separate addresses. No spikes are send labeled with the fourth one.
The drivers in both the upper and the lower half receive these spikes such that connections
across the two halves of the chip are made. This routing results in the recurrent neural
network with N = 512 units and Nin = 256 inputs.
At the beginning of an experiment, the decoder address of each synapse is configured to
one static value. An average number of Krec/2 randomly chosen synapses per neuron is
configured with the address of spikes from the lower and upper half each. This creates
a sparse network where each neuron has on average Krec recurrent presynaptic partners.
A further average number of Kin random synapses of each neuron transmit the external
spike events. This number selects the desired input strength. The rest of synapses is
configured to the remaining fourth address with which no spikes are labeled, enforcing
sparsity because the synapses effectively do not contribute to the network.
Following Dale’s law [Dale 1934], neurons generate output that is either purely excitatory

or inhibitory by configuring the synapse drivers for each row accordingly. A fixed number
of N inh

in = 51 randomly selected drivers in each half of the chip is chosen to be inhibitory
corresponding to about 20 % inhibition in line with observations from biology.

Plasticity

The homeostatic plasticity rule motivated in Section 2.4 is implemented on the PPUs.
Both run separately and are responsible for updating the synapses in their respective half

17

3 Methods

of the chip during the adaptation phase. They are triggered simultaneously by an update
signal from the FPGA.
Weights are stored as 6 bit unsigned integer values that saturate at their minimal and

maximal value respectively. At the beginning of an experiment, weights are initialised at
zero. In intervals of ∆T = Teq + Tmeas they receive negative feedback that pushes the
individual postsynaptic firing rate νj of neuron j towards the target νtarget

∆wij = η · (νtarget − νj) , (3.1)

with the learning rate η that acts as a scaling between firing rates and weights. Rates νj
are measured only during a period of Tmeas, after the network dynamics have equilibrated
for a duration of Teq.

Crucially, only an average fraction of pupdate randomly chosen weights is updated. The
procedure is implemented on the PPUs by drawing a random value xij ∼ U(0, 1) for
every synapse. A weight wij is only updated if xij < pupdate, else the previous value is
kept. Random values are obtained with the accelerated on-chip Xorshift random number
generators (RNGs). The dedicated generators enable fast plasticity updates.
The driving force of the branching model is provided by the on-chip spike background

sources of HICANN-X. They generate homogeneous Poisson spikes from independent
processes for the 256 input channels. The average rate is set to ν = 10 Hz.

This autonomous setup with the fully on-chip implementation of homeostatic network
adaptation avoids any input/output communication bottlenecks and allows for extremely
fast and efficient experiments.

Parameter Noise

Due to the analog nature of circuits on BSS-2, manufacturing tolerances that allow for
transistor mismatch lead to parameter fluctuations. The resulting fixed-pattern noise can
be compensated to a certain degree by calibrating analog parameters to their desired target
values [Brüderle et al. 2011; Neftci et al. 2011]. On HICANN-X this can be achieved by
the configurability of parameters stored in the capacitive memory cells. For this thesis,
the calix framework [Weis 2020] is used to calibrate neurons and synapses with a binary
search algorithm. It makes use of the on-chip CADC for fast measurements of voltages
and the MADC for precisely determining time constants.
While calix operates on hardware parameters, throughout this thesis all values are

given in the biological equivalent domain by accounting for the 1000× speedup. Target
values for time constants are chosen to be comparable to biological systems and voltages
are selected to utilise the maximal dynamic range available on the hardware.

18

3.3 Network Simulations

Table 8.1 in the Appendix lists all network parameters and their configured values. This
includes mean values for measurements of neuron and synapse parameters presented in
Chapter 4.

3.3 Network Simulations

For verification purposes the SNN is also implemented in software. In the controlled
simulation environment the network configuration can be influenced in more detail and
all quantities are directly available for observation. Additionally, the effect of parameter
and temporal noise can be investigated by adding various levels of randomness to the
parameters and the ideal solutions of equations. Comparing the network dynamics between
hardware and simulation allows drawing conclusions about which aspects of the setup are
important for achieving desired results. Also, unexpected behaviour of the hardware
system can be detected by comparison of single neuron behaviour.
The setup is implemented in the brian2 simulator [Stimberg et al. 2019]. It allows

the simple definition of neuron populations and their synaptic connections, while still
permitting detailed control of all configurations when required. For integrations, the Euler
method with a timestep of dt = 10 µs is chosen. Neuron and synapse parameters are set
to the same values that are measured on hardware (cf. Section 4.1). Fixed-pattern noise
is realised by drawing parameters for individual units from Gaussian distributions with
the same mean and standard deviation as estimated from the measurements. Additional
temporal white noise with a standard deviation of σu = 2 mV ·

√
2dt/τmem is added to the

membrane potentials to roughly corresponds to observations of the hardware behaviour.
There are slight differences in the exact implementation of the network architecture

compared to the hardware. Instead of using a single sparse connection matrix to de-
fine all synaptic weights, separate populations for excitatory and inhibitory neurons and
input populations are defined and each has separate synapse groups. This specifically
means that, while the synapse drivers on BSS-2 are shared between external and recur-
rent synapses, separate input realizations are used in brian2. The average numbers of
connections are however configured identically. Therefore, this at most impacts the real-
ization of fixed-patten noise.
As a further validity check, the Euler integrations of neuron equations were also calcu-

lated directly using numpy [C. R. Harris et al. 2020]. The use of two separate simulations
helped to identify and work out mismatches between implementations during development
of experiments. The numpy simulation also allows for even more flexibility and enables
implementing a network topology with a single weight matrix closer to that realised on
hardware.

19

3 Methods

3.4 Datasets

In the extended reservoir computing setup for classification tasks, external spike patterns
from spatio-temporal datasets are fed into the network. To analyse the effect of network
dynamics on computational performance, the datasets that are described in the following
have different levels of complexity.

3.4.1 Poisson Patterns

A simple spiking classification dataset is constructed by generating two classes of random
Poisson spike patterns. Each class contains 1000 samples from identical Poisson patterns
that differ by an amount of additional noise. The task is to discern between the two
classes. The readout is trained on 75 % of the samples with the remaining ones used for
testing.
The noise for the patterns is realised differently for two distinct stimulation paradigms.

Either, the samples of the dataset are sent in addition to the background sources that are
kept running after network adaptation. In that case all samples of a class are exactly the
same and noise is determined by the background sources. This approach also means that
the total input rate to the reservoir is larger than during adaptation. This case draws
inspiration from biological observations, where a constant noise flow of neural activity
is observed. Alternatively, the on-chip sources are disconnected from the reservoir after
weight adaptation, and it only receives external input. Then, the rate of the input is
selected to be the same as during adaptation and the impact of different amounts of noise
added to the external spike patterns is analysed.

3.4.2 Random Manifolds

Synthetic datasets of varying complexity can be created using the randman1 method by
Zenke et al. [2021b]. Spikes patterns of a dataset are generated by drawing samples from
smooth random manifolds. The D-dimensional manifold is defined by a smooth function
f : [0, 1)D → [0, τrand)M that maps real-valued vectors to the M -dimensional embedding
space. For each embedding dimension i ∈ {1, ...,M}, it is determined by the expansion in
the Fourier basis

fi(~x) =
∏
j∈D

[
ncutoff∑
k=1

1
kα
θAijk sin

(
2π
(
kxjθ

B
ijk + θCijk

))]
, (3.2)

with parameters θLijk ∼ U(0, 1), L ∈ A,B,C drawn independent and identically from a
uniform distribution. The highest Fourier mode is set to ncutoff = 1000.

1https://github.com/fzenke/randman

20

https://github.com/fzenke/randman

3.4 Datasets

α = 3 α = 2 α = 1 α = 0.5

Figure 3.3: Examples from the random manifold dataset. One-dimensional example manifolds in
three-dimensional embedding space are drawn for four values of the smoothness parameter α. For
every smoothness, data from two different manifold is shown to demonstrate the difference between
classes of the resulting datasets. From each manifold, 1000 random data points are plotted. Figures
are created using the implementation provided by Zenke et al. [2021b].

To build a dataset of spike patterns, one such manifold is generated for each class c.
Samples are then obtained by repeatedly sampling random points on the manifold from the
hypercube [0, 1)D and mapping these into the embedding space. This results in a vector
with M different entries in the range from 0 to τrand. These entries are interpreted as
the single unit spike firing times of M input channels. Thus, each input channel contains
exactly one spike and the embedding space dimension determines the number of unique
inputs. The timescale τrand selects the effective rate of the stimulus.
The parameters D, α and c control the difficulty of the classification task. Specifically, α

determines the smoothness of the spatial manifold variations, with small values increasing
the high-frequency content. This effect is visualised in Figure 3.3 for sample manifolds in
three-dimensional embedding space. Each plot shows samples from two distinct manifolds.
Discerning between a larger number of classes c makes the task more difficult.

3.4.3 Spiking Heidelberg Digits

The Spiking Heidelberg Digits (SHD) dataset [Cramer et al. 2019] contains spike patterns
generated from recordings of spoken digits. Auditory data is especially interesting because
of its natural temporal dimension. With such data, SNNs can potentially leverage their
time continuous nature compared to traditional ANNs. The dataset contains spikes gen-
erated from multiple utterances of the digits ‘0’ to ‘9’ in English and German language
by 12 different speakers. For the creation of spike patterns in SHD, raw audio signals are
processed with a chain of models inspired by the human cochlea that is depicted in Fig-
ure 3.4. The basilar membrane of the inner ear is modelled in a hydrodynamic simulation
with a linear fluid that causes spatial frequency dispersion. Here, the tangential mem-
brane velocity carries information about certain frequency segments in the audio signal.
At Nch = 700 positions with equal spacing on the membrane, transmitter based hair cells
generate spikes depending on the membrane velocity. Outputs from NHC = 40 hair cells

21

3 Methods

(a) Recording (b) Cutting (c) Basilar membrane (d) Hair cells (e) Bushy cells(a) Recording (b) Cutting (c) Basilar membrane (d) Hair cells (e) Bushy cells(a) Recording (b) Cutting (c) Basilar membrane (d) Hair cells (e) Bushy cells

Figure 3.4: Spike generation for the SHD dataset. Audio signals (b) of digit recordings (a) are
feed to a hydrodynamic basilar membrane simulation (c). Hair cells (d) that sit at certain frequency
selective elements generate phase-coded spike trains. Bushy cells (e) increase phase-locking by inte-
grating spikes from multiple hair cells at the same membrane position. Figure adapted from Cramer
et al. [2019].

at each membrane position are integrated by bushy cells to increase phase-locking.
Samples of different speakers show considerable spread in their mean rate and duration.

To limit the impact of this, and generally reduce the amount of data, only the samples
of the first two speakers are used. These are more similar in duration. Input spike trains
for the reservoir are generated by selecting 256 of the 700 channels equally spaced in the
interval from 250 to 600. The higher and lower channels relate to corresponding extremes
in the frequency of the audio signal and for most samples contain only few spikes (cf.
Figure 3.4e). These spike trains are thresholded by neglecting spikes at times before
the activity first rises above and after it last falls below a rate of 15 Hz. This filtering
avoids periods of near silence. To generate stimuli of specific input rate, spike trains
are further homogeneously downsampled in time by repeatedly selecting random spikes
without replacement until the desired rate is reached. Ten such samples are drawn from
each unique recording of the two speakers from both the training and testing sets of SHD.
All resulting samples are randomly separated into custom testing and training sets with a
75 % – 25 % split. The classification task is constructed by always comparing the samples
of two specific digits in the set.

3.5 Evaluation

The spiking networks produce output as neural spikes sequences. These contain neuron
labels and timestamps for all events emitted during an experiment. For further processing,
discrete activity traces are calculated from the spike trains. Time is binned at a step
size of ∆t and histograms are calculated to obtain either the neuron wise activity aj,t,
j ∈ {1, ..., N} or the population activity At = ∑N

j=1 aj,t which count the number of spikes

22

3.5 Evaluation

in the interval [t, t+ ∆t]. If not stated differently, the bin width for single neuron activity
is chosen to correspond to the refractory period ∆t = τref . This leaves at most one spike
per bin for each neuron.
Statistical quantities are generally estimated from multiple network realizations. If not

stated otherwise, the median over 100 different stochastic seeds is calculated and errors
indicate the 95 % confidence intervals.

3.5.1 Autocorrelation

The autocorrelation time τ is an important measure to characterise the dynamical state
of the network (cf. Section 2.4). The population autocorrelation function of the network
activity with a total length of T timesteps is estimated by

C(k) =
∑T−k
t=1 (At − Āk)(At+k − Ā′k)∑T−k

t=1 (At − Āk)2
, (3.3)

with Āk = 1
T−k

∑T−k
t=1 At and Ā′k = 1

T−k
∑T−k
t=1 At+k, the mean of the observed time series

and the shifted time series respectively [Spitzner et al. 2020].
The autocorrelation time is then determined by fitting C(k) with an exponential decay

C(k) = C0e
−k∆t/τ . (3.4)

Fits are performed in Python with the scipy.optimize.curve_fit function [Virtanen
et al. 2020].

3.5.2 Linear Classifier

In the reservoir computing setup for classification tasks, the network state is extracted
with a liner regression readout. At every timestep t, a linear readout maps the network
activity state vector at of size N onto the dummy coded binary label yt of the n-class
classification task

yt = Mat , (3.5)

with the n × N weight matrix M . The classifier is trained with linear regression on the
training data and the accuracy score is evaluated on the testing samples. In this thesis
the LinearRegression implementation from the scikit-learn toolbox [Pedregosa et al.
2011] is used.

3.5.3 Mutual Information

Apart from the classification accuracy, the mutual information (MI) I between classifier
predictions and input label is used. It allows a quantization of classification results that is

23

3 Methods

less specific to a certain task compared to the accuracy because it highlights the correla-
tions between labels and predictions. The information theoretic measure is derived from
the entropy H by

I(X;Y) = H(X)−H(X|Y) . (3.6)

It quantifies the amount of information in one random variable X minus the additional
information gained from observing X given observation of another variable Y . This leaves
only the information already known from Y , which is common to both variables without
observation of the other. Inserting the definition of entropy yields

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y) log
(
p(x, y)
p(x) p(y)

)
, (3.7)

with the individual and shared probability distributions p respectively. The logarithm is
to base 2, generating results in binary digits (bits). The MI is calculated with the metrics

score implementations from scikit-learn.

24

4 Control of Network Dynamics

In this chapter the general behaviour of the neuromorphic hardware and the implemented
network are investigated. Characterization results of the noisy hardware parameters are
presented in Section 4.1. They demonstrate the ability to configure desired behaviour of
single neurons. Section 4.2 deals with the full network and the regulation of population
activity with plasticity. In Section 4.3 the tuning of critical dynamics is analysed.

4.1 Characterization

Before conducting experiments with neuron populations, single neuron parameters are
calibrated. Figure 4.1 shows the distribution of time constants and potentials before and
after calibration with calix. Recordings were taken with the MADC directly from the
host computer. Calibration significantly reduces the spread of parameter values. These
measurements are especially necessary to determine the parameters for the reference imple-
mentations in simulation (cf. Chapter 5). For the uncalibrated measurements, parameters
were configured to the mean values of the calibration results and varied by a random
jitter. Average values of potentials were chosen to exhaust the dynamic range between
reset, leakage, and threshold potentials available on the hardware. Time constant strike
a balance between large temporal dynamics and low levels of noise.

An important parameter for network dynamics is the synaptic amplitude I0 (cf. Eq. 2.5).
Since it scales the total current that flows onto the postsynaptic membrane it has a similar
effect as the indegree Kin that is used to tune the network state. Therefore, it is important
to accurately determine this value and ensure its stability. Figure 4.2c shows excitatory
postsynaptic potentials (EPSPs) for different synaptic weights. The neuron of which the
membrane voltage is recorded, was stimulated with a single spike at time t = 10 ms.
Measurements were performed for every value of the 6 bit synaptic weight w and averaged
over traces for all 512 neurons. The previously measured leak potentials are subtracted
from the membrane traces.

In this single spike setting, the coupled differential equations Eq. (2.1) and Eq. (2.3)
are easily solved (e.g., using the method of variation of constants). The solution for the

25

4 Control of Network Dynamics

10 20 30

τmem (ms)

0

100

200

C
o

u
n

ts

(a) Membrane time constant

calib

uncalib

0 10 20

τ exc
syn (ms)

(b) Exc. synaptic time contant

0 10 20

τ inh
syn (ms)

(c) Inh. synaptic time contant

300 400 500 600

uleak (mV)

0

100

200

C
o

u
n

ts

(d) Leak potential

600 700 800 900

uthres (mV)

(e) Threshold potential

200 300 400 500

ureset (mV)

(f) Reset potential

Figure 4.1: Distribution of time constants and potentials before and after calibration. Calibra-
tion significantly reduces parameter variation across synapses. All values are given in the biological
equivalent time domain.

26

4.1 Characterization

0 200 400 600

uexc
0 (mV)

0

100

200

C
o

u
n

ts
(a) Exc. synaptic amplitude

calib

uncalib

−600 −400 −200 0

uinh
0 (mV)

(b) Inh. synaptic amplitude

0 10 20 30 40 50 60

w

−200

−100

0

100

200

u
0

(m
V

)

(d) Synaptic amplitudes

excitatory

inhibitory

0 50 100 150

Time (ms)

0

10

20

30

40

50

u
−
u

le
a
k

(m
V

)

(c) EPSPs

0

10

20

30

40

50

60

W
ei

g
h

t
w

−10

10

Figure 4.2: Measurement of the synaptic amplitude and its dependence on the synaptic weight.
(a) The spread of u0 across different neurons is reduced by applying calibration. (c) Stimulation of
a neuron with a single presynaptic spike and different weights leads to increasing EPSPs. (d) The
effective synaptic amplitude depends linearly on the weight. Errors indicate the standard deviation of
the average over all neurons. The insert highlights the offset in the relation of weights and current.

membrane potential from the time of arrival of the single spike is

u(t) = u0(w) · τsyn
τsyn − τmem

·
(
e−t/τsyn − e−t/τmem

)
+ uleak . (4.1)

The amplitude u0(w) = I0/gleak · w is determined by the synaptic amplitude and leak
conductance and in theory scales linearly with the weight w. Equation (4.1) can be fitted
to the single neuron traces (Fig. 4.2c) to determine the true relation between the current
placed on the postsynaptic membrane and the synaptic weight. Here, the time constant
in the equation were preselected to the target values of the calibration to achieve a more
stable fit. The distribution of u0 across all neurons is shown in Figure 4.2a, where the
values are estimated from the EPSPs with maximal weight.

Average amplitudes for all weights are plotted in Figure 4.2d for excitatory and in-
hibitory synapses. The linear relation shows a small, negative offset for weight zero. An
excitatory synapse that is configured with weight zero to not transmit spikes, can have
a small inhibitory effect. (This is also visible from the slightly negative amplitude of the

27

4 Control of Network Dynamics

0 100 200 300 400 500

Update

0

5

10

15

F
ir

in
g

ra
te

(H
z)

(a) Rate

0 100 200 300 400 500

Update

0

20

40

W
ei

g
h

t
w
ij

(b) Mean Weight

−50 −25 0 25 50

Weight wij

100

101

102

103

104

105

C
o

u
n

ts

(c) Weights

1

50

100

150

200

250

300

350

400

450

500

U
p

d
a

te

Figure 4.3: Evolution of the network rate and weight distribution during the adaptation phase.
An experiment with indegree Kin = 130 is shown. (a) The network activity increases during early
plasticity updates until it reaches the target value. This is caused by the homeostasis probabilistically
increasing synaptic weights rapidly from their initial values at zero. (b) The mean weight (red) is
increased during early updates. Individual weights (grey) are only changed at average intervals of
1/pupdate. Only a selection of weight traces is shown. (c) Peaks in the weight distribution lie at
multiples of 5, the maximal possible positive weight update determined by η · νtarget.

EPSP in Figure 4.2c.) Conversely, an inhibitory synapse can have a small excitatory effect.
Crucially, this violates Dale’s law to an extent, as synapses are no longer purely excitatory
or inhibitory. For the experiments in this chapter, the finding is ignored, but its impact
is further analysed in Chapter 5. The configuration of sparsity in the reservoir is not
effected by this behaviour, since it is realised using the address coding scheme and not by
setting the synaptic weights to zero. Still, plastic weights controlled by the homeostatic
regulation are exposed to this limitation.

4.2 Homeostatic Rate Regulation

In this section, the accurate regulation of the network rate with the plasticity rule Eq. (3.1)
is demonstrated. Figure 4.3a shows the development of the average single neuron firing
rate over 500 plasticity updates during the adaptation phase. After every update, a static
experiment with fixed weights and a duration of T = 80 s is recorded to obtain rate
averages. To that end, the on-chip spike sources are simply kept running after adaptation.
At the beginning of the experiment all weights are initialised at zero, thus no output

is produced. The homeostasis therefore increases a fraction pupdate of weights by the
maximum possible value of η · νtarget = 5. This is also visible in Figure 4.3c, which depicts
the evolution of the weight distribution. Especially during the early updates, there are

28

4.2 Homeostatic Rate Regulation

0

100

200

300

400

500

N
eu

ro
n

(a) Spikes

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time t (s)

0

20

40

A
t

(H
z)

(b) Population activity

7 8 9 10 11 12 13

Firing rate (Hz)

0

10

20

30

40

C
o

u
n

ts

(c) Neuron rate distribution

Figure 4.4: Spike raster plot and single neuron rate distribution after homeostatic regulation.
(a) Spike times of all 512 units visualise the network dynamics. An extract of an experiment after
adaptation with indegree Kin = 130 is shown. (b) The population activity is estimated from the spike
events. (c) Average single unit spike rates estimated over the whole experiment of 80 s closely spread
around the target value.

sharp peaks in the distribution at multiples of 5. The network tries to push as many of
its weights as allowed by pupdate as high as possible during these early updates.

The development of the mean weight after each update is plotted in Figure 4.3b. Here
again it can be seen that during the first updates the weights increase by the maximum
possible rate allowed by the homeostasis. The figure also show the evolution of a number of
randomly chosen individual weights. They change more frequently during early updates,
but stay constant for an average of the inverse update probability 1/pupdate = 40 updates.

After a few dozen updates the network starts to generate output spikes and the rate
increases. A number of synapses have become strong enough to generate postsynaptic
currents that can increase the membranes of some neurons above the threshold. Even
though inhibitory weights are exposed to the same update rule and treated in exactly the
same way, the larger number of excitatory synapses leads to a net positive current. The
speed of this initial increase is determined by the update probability, a larger value leads
to a faster rise in activity (data not shown). It has an effect comparable to a learning rate.

When the output rate surpasses the target, the homeostasis decreases the weights, re-
ducing the network rate again. As a result, the rate fluctuates around the target value.
A distribution of the 512 single neuron rates is shown in Figure 4.4 estimated from the
final static experiment after adaptation. They closely spread around the target value. The
figure also depicts an exemplary spike raster plot of the activity after the final update.
The update probability influences the stability of the final activity, larger pupdate lead

29

4 Control of Network Dynamics

0 100 200 300 400 500

Update

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

F
ir

in
g

ra
te

(H
z)

50

70

90

110

130

150

170

190

K
in

Figure 4.5: Development of the network activity for different indegrees. The network activity
reaches the target value faster for higher Kin. In contrast, with less input at low indegrees, single
synapses are more important and need stronger weights to generate the same output. This also leads
to strengthening of recurrent synapses leading to self-amplifications and larger fluctuations in the
mean firing rate.

more fluctuations. A homeostasis that acts on all weight simultaneously, would lead to
extreme overshoots not capable of stabilizing dynamics, justifying the probabilistic ap-
proach. However, because of the integer arithmetics there is a minimum values for pupdate

below which any positive updates are floored to zero, such that weights are never updated.

The total postsynaptic current to a single neuron membrane not only depends on the
value of the weights, but also the indegree Kin. In Figure 4.5, the rate development
is plotted for different values of Kin. For higher values, corresponding to more input
projections per neuron, the target rate is reached faster. At lower Kin, the network takes
longer to build up activity; here weights need to be larger to compensate for the reduced
input. This is demonstrated by the distribution of the weights after the final update in
Figure 4.6b. For smaller Kin there are more large weights. At Kin = 50 the distribution
even starts to saturate, such that it appears to be cut off at high weights. The impact of
this will be further shown in simulation in Chapter 5.

However, the indegree also impacts the stability of the network rate. While the target
rate is generally reached for a wide range of values (Fig. 4.6a), it becomes less accurate
at lower Kin. With fewer inputs, more emphasis is placed on individual synapses and
single weight updates have a larger impact on the neuron rates. Additionally, recurrent
connections are also strengthened in this situation leading to self-amplifying behaviour.
Thus, the activity starts to fluctuate around the target more strongly (cf. Figure 4.5).

30

4.3 Control of Autocorrelation

50 100 150

Average indegree Kin

0

2

4

6

8

10

12

14

F
ir

in
g

ra
te

(H
z)

(a) Rate

−50 −25 0 25 50

Weight wij

100

101

102

103

104

C
o

u
n

ts

(b) Weights

50

70

90

110

130

150

170

190

K
in

Figure 4.6: Average network activity and weight distributions for different indegrees. (a) The
network rate reaches the target value of the homeostasis for a wide range of indegrees. (b) The
weight distribution shows more large weights towards lower Kin placing more importance on single
synapses. At Kin = 50 the distribution starts to saturate such that it is cut off at high weights.

4.3 Control of Autocorrelation

The autocorrelation (AC) is used to characterise the network dynamics for different in-
degrees. Figure 4.7a shows the autocorrelation function estimated by Eq. (3.3) from the
activity of static experiments for various values of Kin. The dependence of the time con-
stant as estimated by an exponential fit (Eq. 3.4) on the indegree is plotted in Figure 4.7b.

At low indegrees, recurrent connections in the network are strengthened, increasing in-
ternal correlations and maintaining activity. This manifests in an increase of AC timescale
towards lower indegrees which expresses the increase in memory in the network. In the
framework of a branching process as described in Section 2.4, the AC time constant is a
measure for the branching parameter, and therefore the dynamical state of the network.
The change of τ over more than one order of magnitude demonstrates the control of the
dynamical regime in the network that is achieved with the indegree.

Figure 4.8 shows spike rasters and corresponding network activity for excerpts of the
static runs from which the AC is estimated. The different dynamical regimes (cf. Fig-
ure 2.2) are clearly visibly. For low indegree Kin = 50 the activity is fluctuating, showing
intervals of larger bursts. At high indegree Kin = 190 it is more homogeneous in time
and synchronisation appears only on smaller timescales in very short bursts. Going to
even lower indegrees would make the network unstable and lead to bistable activity with
intervals of extreme spiking or near silence. This effect generates higher variation in the
population rate between different trials, which is to some extend already visible in Fig-
ure 4.6a for Kin = 50.

31

4 Control of Network Dynamics

0.0 0.1 0.2 0.3 0.4 0.5

Time lag ∆t (s)

0.0

0.2

0.4

0.6

0.8

C
∆
t

(a) AC function

50 75 100 125 150 175

Average indegree Kin

10−2

10−1

τ
(s

)

(b) AC time constant

50

70

90

110

130

150

170

190

K
in

Figure 4.7: Autocorrelation functions and time constants for different indegrees. (a) The auto-
correlation functions are estimated from static experiments after adaptation with various indegrees.
Their exponential decay justifies the fit with a corresponding function. (b) Autocorrelation times τ
monotonically depend on the indegree, which allows selecting desired network dynamics by choosing
the coupling to external input.

0

200

400

N
eu

ro
n

(a) Low indegree (b) High indegree

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time t (s)

0

25

A
t

(H
z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time t (s)

Figure 4.8: Spike raster plots and population activity of networks in different dynamical regimes.
(a) At low indegree of Kin = 50 the activity shows fluctuations on diverse timescale with large bursts
and more quiet intervals. (b) For high indegrees Kin = 190 activity changes more homogeneously on
shorter timescales.

32

4.4 Susceptibility

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

Time t (s)

−0.2

0.0

0.2

0.4

0.6

0.8

A
t
−
Ā

(H
z)

(a) Activity

50 75 100 125 150 175

Average indegree Kin

110

115

120

125

130

135

χ

(b) Susceptibility

50

70

90

110

130

150

170

190

K
in

Figure 4.9: Perturbed network activity and susceptibility for different indegrees. The input
Poisson noise is perturbed by an additional spike at t = 0. (a) The response of the network activity is
visible much longer for systems at low indegree. (b) A susceptibility can be defined by the number of
additional spikes caused by the perturbation. Data is averaged over experiments with a perturbation
for every input neuron as well as 1000 different statistical realizations. Confidence intervals are only
estimated over the statistical seeds.

4.4 Susceptibility

The different dynamical states can also be demonstrated in another way. Drawing from
the model of a branching process (Sec. 2.4), the activity at one timestep will depend on
the activity in a previous step by means of the branching parameter m (Eq. 2.7). For a
close-to-critical network with m nearing one, this means that a single spike will result in a
strong response of the network at later steps. Instead of looking at internal activity, here
the input Poisson stimulus is perturbed by a single additional spike. This is achieved by
sending an external spike event to the chip on top of the noise generated by the on-chip
background sources. In Figure 4.9a the normalised network activity in response to a spike
sent at time t = 0 is plotted. The spike is sent to each of the 256 input channels once and
results are averaged. Additionally, each curve is averaged over 1000 network realizations
with different statistical seeds. Confidence intervals are only calculated from the 1000
realizations after averaging over neurons. Despite the large number of trials, the intervals
are quite big for the lowest Kin, hinting at less stability in the network. All graphs are
corrected to the mean activity before the perturbation.
Systems with low indegree, which show higher AC, maintain the perturbation much

longer in the output activity. These systems exhibit a large amount of fading memory. At
high indegrees the activity promptly return to its base level. In this input-driven regime,
past activity is less relevant. However, the maximum peak is higher, input-driven networks
instantaneously react much more pronounced to the perturbation.
The extra activity caused by the perturbation determines a measure of susceptibility χ.

33

4 Control of Network Dynamics

It can be estimated from the difference of average spike numbers before and after the per-
turbation in the intervals [−0.2 s, 0) and [0, 0.2 s]. As indicative for a system approaching
a phase transition, χ increases towards low indegrees (Fig. 4.9b).

34

5 Comparison of Hardware and Simulation

The results presented in the previous chapter demonstrate that it is generally possible to
achieve fine control over dynamics in the homeostatically regulated networks on neuro-
morphic hardware. Now, specific intricacies of implementing experiments on the analog
hardware system are examined. To that effect comparisons with an implementation of the
reservoir in simulation are drawn. Section 5.1 gives the result from the simulation and
discusses the differences to those from hardware. In Section 5.2 the influence of hardware
constrains on the results are analysed by specifically removing these in simulation. The
synaptic amplitude offset previously mentioned in Chapter 4 is further analysed in Sec-
tion 5.3. Finally, Section 5.4 describes an undesired behaviour of the hardware synapse
implementation found during experiments, that can explain some differences found be-
tween hardware and simulation.
Simulation results are only averaged over 50 network realizations with different statis-

tical seeds as they run considerably longer than emulations on chip.

5.1 Brian Simulations

Figure 5.1 shows the population rates and weight distributions obtained from simulations
with various network indegrees, in the same way this was shown in Figure 4.6 for the
implementation on BrainScaleS-2. Similarly, Figure 5.2 depicts the AC functions and time
constants from simulation, comparable to those on hardware (Fig. 4.7). These figures
demonstrate the same kind of control of network regimes with timescales from tens to
hundreds of milliseconds. However, towards low indegrees the networks in simulation start
to getting unstable as seen from the rate plot. Also, the weights (Fig. 5.1b) exhibits much
more saturation than previously observed on hardware. A difference is also directly visible
in Figure 5.3 which compares the raster activity plots from hardware and simulation at
Kin = 50. For the simulation the activity already shows extreme phases of spiking, which
is not yet the case on hardware at the same indegree.

This difference in dynamics is not a result of generally lower stability in the simulated
network, but rather the consequence of a global shift in the indegree regime between
hardware and simulation. At Kin = 50 the AC time in simulation is considerably larger
than on hardware, so much so that the AC function does not really follow an exponential
decay for some of the network instantiations and estimation of confidence intervals fails

35

5 Comparison of Hardware and Simulation

50 100 150

Average indegree Kin

0

2

4

6

8

10

12

14

F
ir

in
g

ra
te

(H
z)

(a) Rate

−50 −25 0 25 50

Weight wij

100

101

102

103

104

C
o

u
n

ts

(b) Weights

50

70

90

110

130

150

170

190

K
in

Figure 5.1: Average network activity and weight distributions for simulations with different
indegrees. (a) The network firing rate approaches the target of the plasticity rule for a range of
indegrees. Towards low Kin larger errors hint at instability in the network. In fact, for the lowest
value the estimation of confidence intervals fails and errors are not shown. (b) The weight distribution
shows even larger saturation at Kin than on hardware.

0.0 0.1 0.2 0.3 0.4 0.5

Time lag ∆t (s)

0.0

0.2

0.4

0.6

0.8

C
∆
t

(a) AC function

50 75 100 125 150 175

Average indegree Kin

10−2

10−1

τ
(s

)

(b) AC time constant

50

70

90

110

130

150

170

190

K
in

Figure 5.2: Autocorrelation functions and time constants for simulations with different inde-
gree. Autocorrelation in simulation is generally larger than on the hardware for the same indegree
range. (a) The autocorrelation function for Ki = 50 barely resembles an exponential decay. (b)
The corresponding fit shows a much larger AC time compared to the hardware, but fails to estimate
confidence intervals for this indegree.

36

5.2 Hardware Parameter Constraints

0

200

400

N
eu

ro
n

(a) Hardware (b) Simulation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time t (s)

0

25

A
t

(H
z)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time t (s)

Figure 5.3: Comparison of spike raster plots from hardware and simulation. At the same indegree
ofKin = 50 the dynamics in software are considerably less stable than on the hardware. The simulation
already exhibits states of extreme spiking that are observed on hardware only for lower indegree. This
indicates a shift of the hardware dynamics towards the input-driven regime.

(Fig. 5.2). In Figure 5.4 the AC time constants from hardware and simulation are plotted
together for direct comparison. The curves seem to be shifted along the indegree axis by
roughly ∆Kin = 25.
While the exact reason for this shift is not understood in full detail with certainty at

the time of writing, the following sections highlight various differences between simulation
and hardware and evaluate their possible impact to obtain a reasonable explanation for
the observation. In any case, the experiments presented demonstrate that qualitatively
the same behaviour is observed both on hardware and in simulation.

5.2 Hardware Parameter Constraints

In simulation, the impact of parameter and temporal noise can be directly analysed by
changing the stochasticity introduced into the equations. This can be used to rule out
that the actual noise realised on hardware was estimated wrongly, which might impact
the dynamical regime in the conducted simulations. To this end the ideal equations are
solved without any fixed-pattern or temporal noise. In the comparison in Figure 5.4 the
resulting network firing rates and AC time constants for the indegree range are plotted.
The absence of noise does not have any apparent impact on the network dynamics. The
homeostatic regulation seems to work independently from the noise levels on hardware.
Therefore, it is highly unlikely that differences in parameter noise realization could cause
the observed shift in dynamics.
Another specific implementation detail determined by the hardware is the use of integer

weights with saturating arithmetics. In simulation this constraint is explicitly introduced

37

5 Comparison of Hardware and Simulation

50 75 100 125 150 175

Average indegree Kin

0

2

4

6

8

10

12

14

F
ir

in
g

ra
te

(H
z)

(a) Rate

50 75 100 125 150 175

Average indegree Kin

10−2

10−1

τ
(s

)

(b) AC time constant

Hardware

Simulation

Sim no int

Sim no noise

Increased τsyn

Figure 5.4: Direct comparison of average firing rates and autocorrelation time constant between
hardware and simulation. (a) The average firing rates for all experiments fall around the target of
the homeostatic plasticity. For simulations at lowest indegree, values vary stronger indicating less
network stability. (b) Autocorrelation time constants between hardware and simulation seem to be
shifted along the indegree axis by about ∆Kin = 25. Time constant for simulations without various
constraints of the hardware barely differ, indicating that they do not impact dynamics noticeably.

by integer casting. To analyse the impact of these arithmetics, this step can simply
be omitted. In that case, the weight distribution shown in Figure 5.5 does not exhibit
the saturation at maximal values that was previously observed on hardware (Fig. 4.6).
However, this change also does not have a significant impact on network dynamics. The
output rates lie close to the target within the range expected from the estimated errors
and the AC times, plotted in the comparison in Figure 5.4, show no significant difference
to the simulation with integer arithmetics. Thus, the restriction to integer weights on
hardware does not have an impact on the working of the homeostatic plasticity.

5.3 Synaptic Amplitude Offset

The offset in the synaptic amplitude (cf. Figure 4.2) that was discovered in Section 4.1
was also incorporated into the implementation of the simulation. Reference simulations
without the offset show no difference in the resulting dynamics, ruling it out as the cause
of the shift in the dynamical regime between hardware and simulation. This justifies that
the offset was excluded from further discussion in Chapter 4. Within a certain degree the
experiments presented in this thesis do not depend on strict adherence to Dale’s law.
Still, a fix for the behaviour on chip is presented which could be used for experiment

where such strict adherence is required. It is achieved by simply disallowing weights with
values of zero to be realised in the network. Using the plasticity mechanism implemented
on the PPUs, any weight that would be set to zero is instead clipped at a value of one.
Effectively, the saturation regime already present in the integer arithmetic is simply re-

38

5.4 Synapse Saturation

50 100 150

Average indegree Kin

0

2

4

6

8

10

12

14

F
ir

in
g

ra
te

(H
z)

(a) Rate

−100 −50 0 50 100

Weight wij

100

101

102

103

104

C
o

u
n

ts

(b) Weights

50

70

90

110

130

150

170

190

K
in

Figure 5.5: Average network activity and weight distribution for simulations without integer
weights. Histograms of the weight distribution are still binned at integer values. However, the
extended range reveals that the distribution does not saturate at large weights. This is in contrast
to the distribution on hardware that is cut off at the maximal weight possible in saturating integer
arithmetics.

duced by a single value. Because the offset does not exactly correspond to the synaptic
amplitude, this leads to a slightly positive average EPSP for the lowest weight. All realised
synapses will always leak a small amount of current whenever an input event is received.
Still, this is potentially more desirable than violating Dale’s law in certain situations. Es-
pecially, sparsity can be implemented by the address coding scheme that is not impacted
by these leaks, omitting the requirement for zero valued weights. Experiment with this
clipping mechanism on hardware showed no impact on the observed dynamics (thus data
is not shown).

5.4 Synapse Saturation

During analysis of the shift between hardware and simulation, an undesired behaviour of
the current version of the HICANN-X silicon implementation was discovered. To highlight
the effect, Figure 5.6 shows simple rate tuning characterizations for a feed forward network
configuration. The network is set up in the same way as in previous experiments, but no
recurrent connections are realised: Krec = 0. It receives purely excitatory Poisson input
of different rate (color coded in the figure). The dependence of the network output rate
on the input degree is plotted. As expected, higher input rates and larger Kin lead to
stronger network activity. However, the rate of the network implemented on hardware
starts to saturate in comparison to the simulations. A maximum possible spike rate lies at
around 250 Hz. This effect goes beyond a plain saturation of the synaptic input currents.

While sustained activity of such large rates is rarely required, this can have an influence
on the network dynamics in the adaptation phase of the homeostatic regulation. For input

39

5 Comparison of Hardware and Simulation

25 50 75 100 125 150 175

Average indegree Kin

0

50

100

150

200

250

300

350

400

F
ir

in
g

ra
te

(H
z)

Hardware

Simulation

1

5

10

20

40

In
p

u
t

ra
te
ν

(H
z)

Figure 5.6: Comparison of network rate tuning curves from hardware and simulation. The
dependence of the output firing rate on the indegree is plotted for different stimulation rates of a
feed-forward network without recurrence. Input is purely excitatory. Saturation of firing rates from
the hardware (solid lines) can be seen in comparison to the implementation in simulation (dashed
lines).

spikes with a fixed rate of 10 Hz the saturation is negligible. However, the recurrent spikes
can reach much higher frequencies during adaptation, especially in the regime with low
coupling to the input where recurrence is generally more important (cf. Figure 4.5). A
saturation of high rates at these lower indegrees means that the network depends more
strongly on the activity provided by the input spikes, resulting in more input-driven dy-
namics. This corresponds to a network with higher indegree, which is exactly what is
observed with the shift in the AC time constants.
While writing this thesis, a bug in the synaptic input circuits was discovered that

leads to a rate dependence of the synaptic time constants and can explain the observed
behaviour. At higher rates the effective time constant are smaller than expected, so the
synaptic current decays faster. This decreases the synaptic input strength which leads to
lower firing rates. To demonstrate that this can in principle explain the observed shift
in the AC times, the synaptic time constants are calibrated to a higher target value of
τsyn = 15 ms. This setting is compared to the previous experiments with the original value
of τsyn = 10 ms, and indeed the shift is decreased (Fig. 5.4). While this goes to show
that the effect impacts the AC timescale in the expected way, the rate dependence of
time constant itself is not easily fixed by a re-calibration. This poses a problem for the
dynamical adaptation of the rate. Time constants can only be tuned to correspond to the
correct values for a selected rate, e.g., that of the steady state. Thus, the observation only
acts as an indicator of the underlying cause of the shift. Especially, the synaptic amplitude
also had to be decreased for the network with larger τsyn to avoid the usual saturation
of synaptic input currents that occurs for large synaptic currents, further deforming the
result.

40

5.4 Synapse Saturation

Still, the analysis demonstrates that the bug can plausibly explain the shift between
hardware and simulation, though other effects can not be ruled out completely. While
the hardware will be adapted in future silicon versions, for now the behaviour can be
counteracted to a certain degree. The homeostatic regulation is impacted by this only
quantitatively anyways, qualitatively the expected behaviour is observed regardless of the
saturation.

41

6 Classification Tasks

This chapter presents first results obtained by using the SNN in a reservoir setup for
classification tasks. The network itself is augmented by a linear readout layer as was shown
in Figure 3.1. In the following sections, samples of the respective datasets (cf. Section 3.4)
are injected into networks that were homeostatically adapted at different indegrees. This
allows to analyse the impact of the dynamical state on classification performance.

6.1 Poisson Patterns

Sets of Poisson patterns are used to investigate the influence of signal-to-noise ratio and
input rate changes on classification. The task is designed to discern between two randomly
generated Poisson patterns. Two versions of signal-to-noise realizations are differentiated.
In the simplest case, the stimuli are sent as external spikes in addition to the events
generated by the background sources that are left running after the adaptation phase
with a rate of νadapt. When presenting the patterns, the total stimulation rate for the
network is then νadapt + νext. Here, a rate scaling factor γ is defined as the relation
of external and background rates νext = γ · νadapt, which determines the signal-to-noise
ratio. In more detail, it also determines the amount of extra activity to the reservoir
during pattern presentation compared to the adaptation phase. For γ = 0 the network
only receives noise, just like in the previous static experiments. Increasing γ introduces
additional spikes that elicit a stronger response from the network. This setting is similar
to the perturbation in Section 4.4, but goes beyond a simple perturbation. Instead a linear
readout is tasked to discern between different patterns of perturbations.
In Figure 6.1 the performance of classifiers trained on the single neuron activity vectors

at at different timesteps is shown. It is quantified by the MI between predictions and
labels. Beneath that, the mean network activity at each timestep is plotted. The patterns
of interest start at t = 25 ms and last until t = 50 ms as indicated by the dashed lines. The
rate scaling factor for this experiment is γ = 4, the network sees in total five times the
activity during the stimulus than before and after.
The onset of patterns is clearly visible by an increase of the classifier performance. Si-

multaneously, the network activity can be seen rising considerable from the target value
of 10 Hz that was adjusted by the homeostasis. During the presentation of Poisson pat-
tern, the classification performance is similar for all network indegrees. Towards the end,

43

6 Classification Tasks

10−3

10−2

10−1

I
(b

it
)

0 20 40 60 80 100 120 140

Time t (ms)

0

100

A
t

(H
z) 50

90

130

K
in

Figure 6.1: Classification performance for the Poisson pattern task during persistent back-
ground noise stimulation. The linear readout acts on the activity vectors at different timesteps in
the network response. Patterns last from 25 ms to 50 ms indicated by the dashed lines. For low net-
work indegrees the classifier demonstrates larger fading memory, while the performance is the same
for all networks during the patterns (top). The fading of activity is also visible in the population rate
(bottom).

the network activity starts to decrease for input-driven networks and afterwards rapidly
converges back to the target rate. In contrast, for the fluctuating dynamical regime that
exhibits large autocorrelations, the activity fades much slower. This is what is expected
from the results for the susceptibility in Section 4.4. Here, the perturbation with the
stimulus is much stronger and therefore the activity is less noisy despite averaging over
a smaller number of statistical seeds. It still fades on a timescale of about 100 ms for an
indegree of Kin = 50.
This fading memory is also visible in the classification performance. For high indegrees

the MI drops to chance level faster than for networks with lower indegree. The performance
is significantly higher even 40 ms after the end of the pattern, indicating that the networks
maintains usable information during that time. This is in accordance with the larger
autocorrelation time observed for these networks.
The impact of the rate scaling factor is visualised in Figure 6.2. There, the dependence

of the classifier performance on γ is drawn at three positions in the time development that
was previously shown. At the beginning of the pattern at t = 30 ms, networks with high
indegree perform slightly better than those with lower input coupling, especially for little
additional input at low γ. These networks are highly input-driven and can react rapidly
to the available information. The situation is inverted after the stimulus at t = 80 ms.
Networks closer to criticality outperform input-driven ones, especially for high scaling
factors the network response remains informative. During pattern presentation, network
dynamics have little impact on the performance, but MI generally increases for larger γ
with a stronger signal-to-noise ratio.

44

6.1 Poisson Patterns

10−3

10−2

10−1

I
(b

it
)

(a) t = 30 ms (b) t = 60 ms (c) t = 80 ms

10−1 100

Scaling γ

25
50
75

A
t

(H
z)

10−1 100

Scaling γ

25

50

10−1 100

Scaling γ

20

40 50

90

130

K
in

Figure 6.2: Dependence of the classification performance for Poisson patterns on the rate
scaling factor. The relation is shown at three different points in times of the network activity. A
larger scaling factor generally results in higher performance. (a) At the beginning of the patterns,
input-driven networks demonstrate a small classification advantage. (b) Towards the end of the
patterns, there is no significant difference in performance between networks of varying dynamics. (c)
After the stimulation, networks with low indegree outperform input-driven ones. This is especially
pronounced for large scaling factors that correspond to a strong perturbation of input activity.

0.50

0.75

1.00

I
(b

it
)

0 20 40 60 80 100 120 140

Time t (ms)

0

50

A
t

(H
z) 50

90

130

K
in

Figure 6.3: Classification accuracy on the input spikes of the Poisson patterns during persistent
background noise stimulation. During pattern presentation the direct readout achieves perfect
accuracy, while the predictions before and after lie at chance level (top). The activity of the input
stimulus rises during the patterns from 10 Hz to 50 Hz indicating the scaling factor of γ = 4. Since the
input stimulus to all networks is exactly the same except for noise realizations, no difference between
colours is expected in this plot. (Binning is performed forward in time such that the last state before
pattern onset already contains spikes from the patterns.)

45

6 Classification Tasks

0.50

0.75

1.00

A
cc

u
ra

cy
(%

)

Training Samples

0 20 40 60 80 100 120 140

Time t (ms)

0.50

0.75

1.00

A
cc

u
ra

cy
(%

)

Testing Samples

50

90

130

K
in

Figure 6.4: Training and testing accuracy on the Poisson patterns during persistent background
noise stimulation. The readout can fit a significant portion of the training data even before and
after the patterns, increasing the baseline accuracy. The classifier reaches a maximal testing accuracy
of 97 % during pattern presentation, but maintains above chance level performance even after the
patterns ended.

To infer an estimate of complexity of this simple task, the input spike activity is sent
directly to the linear readout without processing them with the neuromorphic reservoir. In
this case, the accuracy of the classifier (fraction of correctly labeled predictions) is show
in Figure 6.3. During pattern presentation the classifier achieves perfect performance,
but it drops immediately afterwards, as neither the input spikes nor the classifier exhibit
memory on their own. The patterns themselves are fully linearly separable. The activity
of the input plotted below clearly shows the increase during pattern presentation.
The low complexity of the task is also demonstrated by estimating the performance on

training samples instead of the separate testing set (Fig. 6.4 top). Again the classification
accuracy is shown in this situation. Quite extreme overfitting of the training data can be
observed. The considerably large readout can easily separate the relatively few samples of
the testing set. This demonstrates the relative simplicity of the two class task. Here the
problem is addressed by working with the separate testing set, but for more complicated
datasets overfitting is generally undesirable and can lead to bad performance.
For completeness, Figure 6.4 also shows the accuracy score on the testing data (bottom

panel). At peak performance, the setup labels 97 % of the testing data correctly, compared
to a chance level of 50 % for the given two class task. In contrast to the performance on
the input patterns, the reservoir setup still achieves above chance level accuracy long after
the patterns ended. The accuracy generally shows the same behaviour as the MI score
and for comparisons in the following only the MI will be shown.

This analysis allows to conclude that the instantaneous performance during pattern

46

6.1 Poisson Patterns

10−3

10−2

10−1

I
(b

it
)

0 20 40 60 80 100 120 140

Time t (ms)

0

20

A
t

(H
z) 50

100

150

K
in

Figure 6.5: Classification performance on the Poisson patterns without background noise. Pat-
terns in this plot have a signal-to-noise ratio of s = 0.75. (a) The MI between predictions and labels
rises during pattern presentation and maintains fading memory afterwards. (b) Meanwhile, the net-
work activity stays constant throughout the stimulus. Fading memory is an effect not only due to the
sensitivity to rate perturbations.

presentation on the simple, linearly separable task is not impacted by the dynamical
state of the network. This conforms with the experiments from Cramer et al. [2020] that
found no benefit of critical dynamics for simple tasks. Nevertheless, the network closer to
criticality is shown to exhibit larger fading memory for high input scaling which could be
of interest in some situations.

In an alternative experiment, the spike sources are disabled during the introduction of
the external stimulus. In this case the rate of the external spikes is chosen to be exactly
νadapt, i.e., the network will receive the same amount of activity as during adaptation.
Classification of just two Poisson patterns without any noise can lead to overfitting, since,
even given the intrinsic noise levels on the hardware substrate, the network response
will be very similar for identical input. Therefore, noise is now added directly to the
external stimulus when it is created on the host computer. This is achieved by sampling
patterns at a lower rate of νstim = s · νadapt and adding random Poisson spikes of frequency
νnoise = (1− s) · νadapt to each sample individually, with the signal-to-noise ratio 0 ≤ s ≤ 1.

Figure 6.5 depicts the classification performance and activity over time for a stimulus
with s = 0.75. The MI again increases at the beginning of pattern presentation and
then shows fading memory afterwards. In contrast to before, the average network activity
remains nearly constant throughout the whole experiment. There is no indication of a
rate perturbation. Still, the amount of fading memory is dependent on the dynamical
state. The later spikes in the network output hold more information on the pattern at low
indegree than at high indegree. This demonstrates that the characteristic autocorrelation
in the more critical network is not only responsible for an increased sensitivity to rate

47

6 Classification Tasks

10−3

10−2

10−1

I
(b

it
)

(a) t = 30 ms (b) t = 60 ms (c) t = 80 ms

0.25 0.50 0.75 1.00

SNR s

0

20

A
t

(H
z)

0.25 0.50 0.75 1.00

SNR s

0.25 0.50 0.75 1.00

SNR s

50

100

150

K
in

Figure 6.6: Dependence of the classification performance for Poisson patterns on the signal-
to-noise ratio. The relation shown again for three different times of the network activity. A larger
signal-to-noise ratio increases performance throughout the experiment. (a) At the beginning and (b)
shortly after pattern presentation, the input-driven network shows a performance benefit. (c) Later
on the network with low indegree demonstrates more fading memory.

changes. Another difference to the previous task with increased input rate is the behaviour
during pattern presentation. While the input-driven network can immediately make use
of information, delays in the network closest to criticality now degrade performance at
that point in time.
The impact of the signal-to-noise ratio s is demonstrated in Figure 6.6. Again, the

testing performance at three points in time is plotted against the ratio in the first row.
As expected, the network activity remains constant for all values of s. The classification
performance increases with growing signal-to-noise ratio. However, larger s also result in
more overfitting on the training samples which can be undesired (data not shown). The
dynamical state impacts performance in the same way for all signal-to-noise ratios, during
the stimulus input-driven dynamics are favourable while fading memory of fluctuations
can be leveraged at later times.

Observations made for these two stimulation paradigms help to design the experiment
setup for the spatio-temporal patterns in the following sections. From a biological view,
arguments for both forms of stimulation can be made. Baseline activity in the brain
generally exhibit a background state of noisy spiking [Softky et al. 1993; Zenke et al. 2013].
Additional stimuli may be encoded on top of that background noise. But information from
other brain areas can also be encoded in the seemingly random spikes.
Following the demonstrations so far, a practical consideration is made. The stimuli

of the datasets analysed in the next sections are distributed less homogeneously in time
than the Poisson patterns. If the background sources were instantly disconnected from
the network at a specific time, and the activity of a presented pattern is at a low level

48

6.2 Random Manifolds

at that moment, the removal alone would lead to a rate perturbation. To avoid such
phases of silence in the network input a certain amount of noise is desired in any case.
Therefore, the background noise sources are kept connected to the network throughout all
experiments. This also helps to forego overfitting of stimuli with low noise found in the
Poisson patterns with s = 1.

6.2 Random Manifolds

In this thesis, the real interest for the reservoir setup is its application to tasks with
different levels of complexity. Especially, the influence of network dynamics in these sit-
uations can be analysed. It was found that critical-like dynamics only benefit complex
n-bit parity tasks with large history lengths n [Cramer et al. 2020]. The random manifolds
(cf. Section 3.4.2) can be similarly controlled in their complexity. However, their linear
separability highly depends on the embedding space dimension. For more dimensions the
dataset is more easily separable by a classifier that has correspondingly larger readout. To
limit the number of classes and samples needed to a reasonable number and still construct
a task for many input channels that is not fully linearly separable, different samples from
the same manifold are combined to create a single stimulus. Manifolds with 8 embed-
ding dimensions are generated and the 256 input channels are constructed by stacking 32
independent samples. The task is then to discern between 8 possible classes build from
different manifolds. Per class, 1000 such full size stimuli are drawn which are then split in
a 75 % – 25 % training to testing ratio. The separability of the resulting dataset is tested
with a linear support-vector machine (SVM) which is trained directly on the embedding
space vectors before generating spikes.

By setting the stimulus timescale to τrand = 25 ms, the average rate of the spike patterns
alone is νstim = 1/τrand = 40 Hz. This activity is injected in addition to the background
stimulus with νadapt = 10 Hz leading to a scaling factor of γ = 4.

Task complexity is first controlled by the number of manifold dimensions D at a fixed
value of high frequency content α = 3. A simple task is created with D = 1. The SVM
achieves an accuracy of (99.9± 0.1) % (average and standard deviation over 10 datasets
with newly created manifolds), indicating a highly separable, simple task. For a more
complex setting D = 4 is used. At (52± 5) % accuracy, SVM performance is much lower.
The chance level of the 8 class task is at 12.5 %.

The MI score between reservoir predictions and labels of the testing set is plotted
for both complexities in Figure 6.7. Patterns are presented in the interval from zero
to 25 ms indicated by the dashed lines. As a first observation, overall performance on
the simple task with D = 1 is indeed better, while a larger manifold dimensions degrades
the classification performance. However, looking at the mean network activity over the

49

6 Classification Tasks

10−3

10−2

10−1

I
(b

it
)

(a) Simple

10−3

10−2

10−1

(b) Complex

0 20 40 60 80

Time t (ms)

0

100

A
t

(H
z)

0 20 40 60 80

Time t (ms)

50

100

150

K
in

Figure 6.7: Classification performance on the random manifold task for different manifold
dimensions. The MI score (top) and network activity (bottom) of reservoirs at different indegrees
are plotted over time. Grey lines show the respective quantities for the input spike patterns. Stimuli
are presented during the interval marked with the dashed lines. The manifold dimension does indeed
impact overall classification performance, but also determines the clustering of spikes in the patterns.
Networks at lower indegree respond stronger to patterns with a more pronounced peak in the activity
that constitutes a stronger rate perturbation. Averages are taken over multiple instantiations of the
dataset to reduce dependence on the specific manifolds chosen.

course of the stimulus, plotted in the bottom of the figure, it becomes visible that good
performance is tightly coupled to the rate. The grey lines in the lower plot indicate the
average input rates of the manifold spike patterns over time. In the simple task the
rate is spread across the full duration of the patterns with a broad maximum towards
the centre. In contrast, for the complex setting activity is much more clustered in a
sharp peak at the centre of the interval. This is a direct consequence of the equations
for the manifolds (Eq. 3.2) where the product is taken over more factors for larger D.
Thus, the kind of complexity afforded by the manifold dimension is strongly related to
the concentration of patterns in time. Different kinds of normalization are conceivable
to circumvent this effect. However, simple approaches like cutting spikes off at selected
stimulus borders would reduce the total rate for the spread out patterns at high D, while
letting them saturate at the borders would shift the clustering to the edges. The effect of
more advanced normalization techniques like sigmoidal or logarithmic scaling remains to
be analysed in future experiments.

For the reservoir networks the clustering of spikes acts as a shorter but stronger pertur-
bation. For both complexities the fading response of the network is clearly visible in the
activity. Networks with lower indegree react stronger to these rate changes. Correspond-
ingly, their performance gain is larger in the tasks with large D where activity is more
clustered. Fading memory makes up some of the performance even during the stimulus,
since most spikes of the patterns are already sent before the end. In contrast, for the

50

6.2 Random Manifolds

simple case fading memory is mostly only relevant after the end of the stimulus, before
that the input activity stays at high levels.
An interesting observation to note is that in both cases the network activity initially

starts to decay after reaching a first peak, but then a second smaller peak appears towards
the end of the stimulus. This reaction to the sustained perturbation is already hinted at for
the Poisson pattern in Figure 6.1. But for the manifolds, especially in the high-dimensional
case, this can be seen to directly impact the classification. The input-driven networks show
a second peak in performance at a corresponding time. This oscillating of activity during
the stimulus may be related to the intrinsic timescales of the network. The second peak
appears around 20 ms after the first one, which correspond to the values of the membrane
time constants.
While these qualitative observations are in line with the expectations for tasks that

depend on sustained memory, it is also important to take a look at absolute performance
values. The average score of the linear readout trained directly on the input spikes created
from the manifolds is plotted in the figure in grey. Throughout the stimulus the direct
inputs are generally more informative and performance is better. It only drops to chance
levels after the patterns end, as the inputs hold no memory. This indicates that the
reservoir is not necessarily advantageous for tasks during the presentation of patterns.
These observations also demonstrate that the simple linear readout is very powerful on

its own. In fact, the direct readout performs perfectly at a certain point in the input spike
pattern even for the complex task where the SVM only achieved around 50 % accuracy
directly on the embedding space vectors. The high performance on certain activity slices
touches on a general problem with time-continuous tasks that is further discussed in
Chapter 7. Specifically here it can be questioned in how far the dimensionality of manifolds
really impacts the difficulty of classifying the resulting patterns. The spike generation
approach used here produces stimuli that can clearly be linearly separated during intervals
of clustered activity. Naturally, this could be addressed by increasing the number of classes
in the dataset, which would however also impact experiment durations and increase the
amount of data that needs to be handled.

As an alternative, task difficulty can be controlled by the scaling α of high frequency
content in the manifold. The simple task is again generated with α = 3 and D = 1,
but for the complex case the dimension is kept fixed and more high frequency content is
introduced by setting α = 0.7. In this case, the resulting embedding space vectors can still
be separated fairly well, with the linear SVM achieving (97.3± 1.7) % accuracy. However,
the spikes generated from the vectors are much more difficult do discern. The performance
is drawn in Figure 6.8. Even the direct readout that previously performed very good at
least at a certain point in time, does not reach perfect performance for α = 0.7. This

51

6 Classification Tasks

10−3

10−2

10−1

I
(b

it
)

(a) Simple

10−3

10−2

10−1

(b) Complex

0 20 40 60 80

Time t (ms)

0

100

A
t

(H
z)

0 20 40 60 80

Time t (ms)

50

100

150

K
in

Figure 6.8: Classification performance on the random manifold task with different spatial high
frequency content. The scaling of high frequency content by α can determine the complexity of the
task. At low values, classification on both the input spikes and by the network is generally better.
Increasing α degrades performance in all cases while not significantly changing the network activities.
While fading memory is generally larger at lower indegree, it is similarly reduced by high complexity
for all network dynamics.

difficulty manifests also in overall degraded performance by the reservoir. Especially, the
duration of fading memory is also reduced.
The clustering effect in the activity is now avoided since both complexities are created

from manifolds with the same dimension. Corresponding network activity also looks very
similar for both cases. This also means that classification is not purely related to rate
effects, since the networks perform much better on the simple task with large α. Interest-
ingly, this is the case for all networks with different indegrees. While more critical network
dynamics overall benefit performance in both cases, no particular impact for more complex
tasks is observed.

6.3 Spiking Heidelberg Digits

As a final outlook on real world data, the performance of the reservoir setup on selected
samples of the SHD dataset is considered. Digit patterns are prepared as described in Sec-
tion 3.4.3 and homogeneously downsampled to the desired frequency of νstim = γ · νadapt.
The classification of two specific digit pairs is shown in Figures 6.9 and 6.10 for a scaling of
γ = 1 and γ = 3 respectively. More combinations of digit pair are shown in the overview
Figures 8.1 and 8.2 in the Appendix. Results are only averaged over 50 statistical network
realizations to keep the amount of data needed to be saved and classified at cost. Also,
because of the considerably longer duration of the stimuli, activity is binned at ∆t = 5 ms
instead of the previous value of the refractory period ∆t = τref = 2 ms.
For this dataset it is even more difficult to determine a measure of complexity. As

52

6.3 Spiking Heidelberg Digits

10−3

10−2

10−1

I
(b

it
)

(a) ’zwei’ vs ’drei’

10−3

10−2

10−1

(b) ’nine’ vs ’drei’

0 200 400 600

Time t (ms)

0

50

A
t

(H
z)

0 200 400 600

Time t (ms)

50

100

150

K
in

Figure 6.9: Classification performance on samples of the SHD dataset with low input scaling.
The selected samples from the digits ‘zwei’ and ‘drei’ and those from ‘nine’ and ‘drei’ are classified
against each other. The lower plots show the average population rates. Grey lines indicate the per-
formance and activity for the input spike patterns. While the network generally degrades performance
during the presentation of the digits, it can introduce fading memory for some cases.

10−3

10−2

10−1

I
(b

it
)

(a) ’zwei’ vs ’drei’

10−3

10−2

10−1

(b) ’nine’ vs ’drei’

0 200 400 600

Time t (ms)

0

50

A
t

(H
z)

0 200 400 600

Time t (ms)

50

100

150

K
in

Figure 6.10: Classification performance on samples of the SHD dataset with high input scaling.
Increasing the input stimulus rate significantly improves performance of the reservoir setup, pushing
it closer to that achieved by the direct readout. This is especially pronounced for networks with lower
indegree which starts to show an advantage beyond fading memory even during the digit duration.

53

6 Classification Tasks

the grey curves in the figures indicate, the tasks are generally better classified by the
direct readout of the input spikes. This again demonstrates how powerful the ensembles
of readouts at multiple points in time are. However, the reservoir can add fading memory
to the output. The mean durations of the two digits being classified in each plot are drawn
as dashed lines. For certain combinations of digits, like ‘zwei’ and ‘drei,’ high performance
is maintained long after the end of the digits when classifying spikes from the reservoir
compared to using those from the inputs directly. As would be expected, this is more
pronounced for networks at lower indegrees. The same effect is also visible in the network
activity which exhibits fading memory.
However, increased spike rates to not necessarily correlate with better performance of the

classifiers. For one, during the duration of the digits, rates from the network are generally
larger than those of the input spikes, but performance is still lower. Additionally, there are
combinations of digits, for example ‘nine’ and ‘drei’ shown in Figure 6.9b, for which none
of the reservoirs shows any memory at all even though fading activity is visible. In these
cases the input spikes are already much less informative as indicated by the performance
of the classifiers on the input, which is however also not directly represented in their rate.
Interestingly, the behaviour for specific digits does not seem to be related to any intuitive

feeling about the complexity of the task. For instance one might expect that discerning
‘zwei’ from ‘drei’ might be rather difficult, especially during the ending of the digits, as
they end with the same phone ‘ei.’ But in fact, this is one of the combinations for which
the networks achieves the best performance. In this case, ‘zwei’ can generally be discerned
rather good from the other digits (Fig. 8.1). These facts hint at the possibility that precise
alignment of the samples in the dataset my be necessary to observe such effects. A quick
visual glance at the digits recording patterns indeed shows that the exact positioning of
phones scatters between samples.
The input scaling factor γ is overall strongly coupled to classification performance.

For γ = 3 the network performance is increased closer to that achieved on the inputs.
Especially, networks with lower indegree benefit from this which is again expected from
the observations of the susceptibility and the previous tasks. Both, the fading memory
and the performance during the digit is increased for lower indegree.
One point regarding the observations of all tasks that was not addressed so far is the

possible impact of the rate saturation. In Section 5.4 it was observed that neuron firing
rates in the hardware implementation start to saturate much earlier than expected. For
tasks with large γ, input rates of up to 50 Hz can be reached, leading to strong network
responses with activity temporarily reaching up to 100 Hz. These activities lie in the
saturation regime of the neurons. While the additional non-linear behaviour resulting from
this does not necessarily degrade performance, saturation is generally undesired since it
limits the dynamical range of a system.

54

7 Conclusion and Outlook

The main results of the experiments presented in this thesis are the successful regulation
of network activity with the homeostatic plasticity rule, and the control of the dynamical
regime achieved in consequence. In Chapter 4 the probabilistic homeostasis was demon-
strated to stabilise network activity in recurrent neural networks on a neuromorphic sub-
strate despite the fixed-pattern deviations between neurons. The synaptic connections
self-organise to an equilibrium distribution where inhibition balances excitation. Stability
was achieved for networks of various couplings to the external input. Only towards very
low coupling strengths the homeostasis fails to stabilise activity and a bistable state of
near silence or extreme bursting was observed. Because the homeostasis only depends on
local information of single neuron firing rates and it is implemented fully on the hardware
chip, it is scalable to networks of larger size. As long as similar amount of presynaptic
input can be provided to each neuron, the homeostasis should be able to stabilise network
population activity. Particularly with neuromorphic hardware systems of larger scales
becoming available, such mechanisms will be of interest.
As a second result, this thesis shows that the network indegree allows fine control of

dynamics over a range of different states. Networks that are strongly coupled to the ex-
ternal driving force exhibit input-driven dynamics with short autocorrelation timescales.
Conversely, in networks with low indegree the increased significance of recurrent connec-
tions was observed to generate fluctuating dynamics that exhibit autocorrelation on the
scale of hundreds of milliseconds. These results can be compared to similar effects in bi-
ological substrates. It was proposed that autocorrelations and fluctuations hierarchically
increase across the cerebral cortex from sensory to frontal areas as less and less activity
is projected between areas [Murray et al. 2014]. There, timescales are suggested to reflect
specializations for task-relevant computations.
The findings obtained with the BSS-2 hardware system were validated using reference

simulations in Chapter 5. The comparison showed qualitatively the same kind of be-
haviour on hardware and in simulation. Simulations also demonstrated that parameter
noise and integer weight arithmetics have no significant impact on the functionality of the
homeostatic plasticity. Therefore, these properties of the hardware system have not been
found to limit the possibilities for experiments. The results on noise fluctuations also indi-
cate that precise calibration of model parameters may not be needed at the level used for

55

7 Conclusion and Outlook

experiments in this thesis. Observations from initial experiments without explicit neuron
calibration seem to confirm this. This fact could impact experiment workflows consider-
ably, since substrate specific calibration can be time-consuming. This is especially true on
larger systems.
While the qualitative behaviour was the same between hardware and simulation, a

mismatch between the specific ranges of input coupling was found. This could be traced
back to a saturation effect in the synapses affecting the synaptic time constants. Apart
from shifting the operating point needed to achieve a specific dynamics state, it does
however not degrade the functioning of the homeostasis. It is expected that a fix in the
underlying synapse circuits on future version of the HICANN-X chip will at least partially
remediate the observed shift by eliminating the observed saturation.

Time and Energy Considerations

One striking advantage of working with the current BSS-2 system is the ability for rapid it-
eration afforded by the high speedup of emulation. A precise evaluation of time and energy
consumption would be of little interest for the given experiments since it highly depends
on the specific computer hardware chosen. Simulations in this thesis were not optimised
for performance beyond the standard behaviour of the brian2 simulator. Furthermore,
the BrainScaleS-2 system is a research platform still of limited size and availability, and
is built on a completely different manufacturing process than modern processors. Thus, a
direct comparison would be unfair to conventional processors in terms of their availabil-
ity but unfair to BSS-2 in terms of efficiency. Nonetheless, the general behaviour of the
systems as it was experienced during experimentation shall be discussed.
Owing to the high speedup of network emulation on BSS-2 and the fully on-chip imple-

mentation of the plasticity rule, a single experiment consisting of a network adaptation
phase and subsequent static run is executed in a few seconds of wall-clock time. This
includes experiment initialization overhead which does not need to be repeated when
conducting multiple experiments in succession. As such, a parameter sweep with 1000
successive network realizations could be completed in under half an hour. In contrast, a
brian2 simulation of an individual network configuration with the same experiment setup
has a runtime in the order of ten hours when executed on a single thread of an Intel Xeon
6130 CPU. The specific duration can vary by several hours depending on the regime of
the network dynamics. These values were obtained with the chosen integration timestep
of ∆t = 10 µs. On BSS-2, digital time events are handled with a precision in the order of
nanoseconds, which corresponds to a biological equivalent time of around 1 µs. Thus, spike
times on the neuromorphic hardware can be up to an order of magnitude more precise com-
pared to the simulations. Seen the other way around, simulations with similar precision
would need multiple days instead of seconds for a single experiment, since the timestep

56

scales the experiment duration fairly linearly. Though it is arguable if such precise spike
times are really necessary for all experiments [Heidarpur et al. 2020]. In any case, there is
a huge difference in the way experiments can be conducted with the hardware compared to
simulation. Instead of being able to nearly instantly observe the impact of changes made
to the network, the experimenter has to wait days before receiving feedback. Of cause,
the wide availability of conventional compute power allows to easily parallelise multiple
simulations. Still, the long time for completion of a single homeostatic adaptation can
not be bypassed by this. Furthermore, multiplexing of experiments is in principle also
possible with the hardware system, especially as more setups become available. Especially
the experiments presented here should be very portable since they are not significantly
impacted by fixed-pattern deviations between hardware realizations.
An obvious impact of the differences in single experiment run time is the energy con-

sumption. While again a precise comparison is not sensible for this thesis, especially
because simulations could be ported to GPUs which show considerable advantages over
CPU implementations [e.g. Stimberg et al. 2020], rough estimates are presented. The
processors used for simulation have a TDP of 125 W. A single threaded load can be
roughly estimated to consume power in the order of tens of watts. With an approximate
run time of 15 h for a single experiment this corresponds to an energy in the order of
1 MJ. On HICANN-X, the homeostatic adaptation experiment is in principle executed
fully on-chip, with the background sources providing the driving force and the PPUs up-
dating weights. This means that the host computer and FPGA are not required during
experiments. Preliminary measurements indicate a power consumption of only 100 mW by
HICANN-X alone. However, this does not include the full level of input/output operations
and experiment control needed to record spike events for evaluation. In principle, these
are not required during the network adaptation phase. Still, a more conservative estimate
given by the power consumption of a cube setup in the order of watts. Using the above
time duration for hardware experiment sweeps gives single experiment energy costs in the
order of 10 J, which still puts five orders of magnitude between hardware and simulation.
Especially when conducting vast amounts of experiments, but also for future systems of
larger size, this difference can have an enormous impact.

Outlook on Reservoir Computing and Tasks

For a first test of the applicability of the achieved control of network dynamics, the impact
of critical-like behaviour in reservoir computing networks was analysed. Finding suitable
tasks with varying levels of complexity proved quite difficult. While previous work suggests
that the fluctuating regime in dynamical systems is generally favourable for computation,
for the tasks considered here this was found to be mostly expressed in an increased amount
of fading memory in the systems. This behaviour directly corresponds to the larger auto-

57

7 Conclusion and Outlook

correlations and increased susceptibility to rate perturbations measured for these states.
In fact, classification performance of the linear readout was found to be tightly related
to the rate perturbation introduced by stimuli. The time development of the network
rate alone was observed to strongly correlate with the fading memory in systems of low
input coupling. Still, an increased amount of memory in the fluctuating regime was also
observed for homogeneous inputs that did not involve a substantial rate perturbation.
However, memory alone is not necessarily a condition for good computation. On the

contrary, maximal classification performance during stimulus presentation was generally
degraded by using the reservoir, compared to the best performance of a readout directly
on the input spikes. For the random manifolds the direct classification of input spikes
even outperformed the SVMs operating on the embedding vectors before spike generation.
This demonstrates the considerable power of the linear readout alone. However, the input
spikes trivially contain no memory after the end of a stimulus.
At this point, an important question for time-continuous classification tasks becomes

clear: At what point in time is the prediction of the classifier wanted? The ensembles of
readouts trained at successive times of the network state used in this thesis were instructive
to gain insight into the working of the network, but do not present a practical system for
computation in any real application. Just in the opposite, for a keyword spotting task a
primary interest is the detection of the time at which information is present at all. For true
time-continuous operations on longer stimuli both is needed, to realise when information
of interest is available and then integrate that over time.
One way to address the readout issue could be the use of a single classifier that is

trained on the activity states from all points in time. This could also significantly reduce
overfitting, as such a classifier has far fewer parameters compared to the full ensemble.
The settings could further be explored in future experiments with stimuli constructed from
sequences of patterns by tasking the network to predict the labels of a full sequences.
Another approach to the reservoir setup that has not been explored thus far is the

adaptation of the network weights during stimulation with structured inputs similar to
those of the tasks, instead of using homogeneous Poisson noise. This way the network
may incorporate certain features inherent to the stimuli and develop preferred paths of
connectivity between neurons. This would be different to the current setting, where quite
on the contrary the homeostasis homogeneously affects synapses and equalises the activity
response. Going beyond reservoir computing, the plasticity rule could even be combined
with supervised training methods for SNNs like backpropagation with surrogate gradients.
These could benefit from the overall network stability achieved by the homeostasis. This
may also be applicable to the initialisation problem of weights in deep spiking networks,
where the homeostasis could help reduce training times by establishing an initial state of
moderate activity.

58

The influence of the saturation effect observed in Figure 5.6, on the working of the reser-
voir setup remains to be evaluated in future version of HICANN-X that do not show this
behaviour of synapses. Performing these experiments in simulation would be computation-
ally much more challenging for the reasons discussed above. Even working with hardware,
the size of the datasets had a noticeable impact mostly caused by the input/output op-
erations of spike transfer to and from the chip. The latter of these operations may be
addressed by implementing the readout mechanisms on HICANN-X directly, building on
Cramer et al. [2021] for a spiking or Stradmann et al. [2021] for a non-spiking approach.
In summary, the relevance of this work for future use with tasks lies in the stability and

control of network dynamics achieved by the homeostatic plasticity. These are a necessary
requirement in any large recurrent network. Future experiments will show if the results can
be leveraged in reservoir computing or similar approaches beyond the simple classification
analysis presented here.

59

8 Appendix

Parameter Symbol Value

Leak potential uleak (455± 11) mV
Threshold potential uth (741± 6) mV
Reset potential ureset (325± 5) mV
Refractory period τref 2 ms
Membrane time constant τmem (20.2± 0.6) ms
Synaptic time constant τ exc

syn (10.1± 0.3) ms
τ inh

syn (10.1± 0.3) ms
Synaptic delay dsyn 1 ms
Synaptic amplitude Iexc

0 /gleak (3.36± 0.47) mV
I inh

0 /gleak (3.74± 0.52) mV
Synaptic amplitude offset δIexc

0 /gleak (−1.7± 2.3) mV
δI inh

0 /gleak (2.4± 2.5) mV

Number of neurons N 512
Number of input channels Nin 256
Number of inhibitory neurons N inh 102
Number of inhibitory input channels N inh

in 51
Number of recurrent presynaptic neurons Krec 38
Initial weight winit

ij 0 bit

Homeostatic target frequency νtarget 10 Hz
Homeostatic measurement duration Tmeas 1 s
Homeostatic equilibration time Teq 1 s
Learning rate η 0.5 s
Homeostatic update probability pupdate 2.5 %

Input frequency ν 10 Hz
Static experiment duration T 80 s

Table 8.1: List of default model parameters. Values are given in the biological equivalent time
domain. Errors indicate the standard deviation of the measurements in Section 4.1.

61

8 Appendix

10−2

100

I
(b

it
)

‘zero’ vs ‘nine’

0
50

A
t

(H
z)

10−2

100

I
(b

it
)

‘zero’ vs ‘null’

0
50

A
t

(H
z)

10−2

100

I
(b

it
)

‘zero’ vs ‘zwei’

0
50

A
t

(H
z)

10−2

100

I
(b

it
)

‘zero’ vs ‘drei’

0
50

A
t

(H
z)

10−2

100

I
(b

it
)

‘zero’ vs ‘neun’

0 500

t (ms)

0
50

A
t

(H
z)

‘nine’ vs ‘null’

‘nine’ vs ‘zwei’

‘nine’ vs ‘drei’

‘nine’ vs ‘neun’

0 500

t (ms)

‘null’ vs ‘zwei’

‘null’ vs ‘drei’

‘null’ vs ‘neun’

0 500

t (ms)

‘zwei’ vs ‘drei’

‘zwei’ vs ‘neun’

0 500

t (ms)

‘drei’ vs ‘neun’

0 500

t (ms)

50

100

150

K
in

Figure 8.1: Overview of the classification performance on multiple samples of the SHD dataset
with low input scaling. One-to-one classification performance and average population rates are
shown for reservoirs adapted at different indegree. Grey lines indicate the same quantities for the
input spike patterns directly and the mean digit duration is shown. While the reservoir setup generally
degrades performance during the presentation of the digits, it can introduce fading memory in some
cases. Specific digits like ‘zwei’ can usually be discerned quite easily, while cases that involve ‘neun’
are overall more difficult.

62

10−2

100

I
(b

it
)

‘zero’ vs ‘nine’

0
50

A
t

(H
z)

10−2

100

I
(b

it
)

‘zero’ vs ‘null’

0
50

A
t

(H
z)

10−2

100

I
(b

it
)

‘zero’ vs ‘zwei’

0
50

A
t

(H
z)

10−2

100

I
(b

it
)

‘zero’ vs ‘drei’

0
50

A
t

(H
z)

10−2

100

I
(b

it
)

‘zero’ vs ‘neun’

0 500

t (ms)

0
50

A
t

(H
z)

‘nine’ vs ‘null’

‘nine’ vs ‘zwei’

‘nine’ vs ‘drei’

‘nine’ vs ‘neun’

0 500

t (ms)

‘null’ vs ‘zwei’

‘null’ vs ‘drei’

‘null’ vs ‘neun’

0 500

t (ms)

‘zwei’ vs ‘drei’

‘zwei’ vs ‘neun’

0 500

t (ms)

‘drei’ vs ‘neun’

0 500

t (ms)

50

100

150

K
in

Figure 8.2: Overview of the classification performance on multiple samples of the SHD dataset
with high input scaling. Increasing the input rate of the digits generally leads to better performance
of the reservoir, closer to that observed directly on the input. This is especially pronounced for
networks with low indegree, which start to show an advantage over input-driven ones not only in
fading memory but also at points during the presentation of digits.

63

9 References

Barnett, L., Lizier, J. T., Harré, M., Seth, A. K., and Bossomaier, T. (2013). „Information
Flow in a Kinetic Ising Model Peaks in the Disordered Phase“. Phys. Rev. Lett. 111
(17), p. 177203. doi: 10.1103/PhysRevLett.111.177203.

Bertschinger, N. and Natschläger, T. (2004). „Real-time computation at the edge of chaos
in recurrent neural networks“. Neural Computation 16 (7), pp. 1413–1436. doi: 10.

1162/089976604323057443.

Boedecker, J., Obst, O., Lizier, J. T., Mayer, N. M., and Asada, M. (2012). „Information
processing in echo state networks at the edge of chaos“. Theory in Biosciences 131,
pp. 205–213. doi: 10.1007/s12064-011-0146-8.

Brette, R. and Gerstner, W. (2005). „Adaptive exponential integrate-and-fire model as an
effective description of neuronal activity“. Journal of neurophysiology 94 (5), pp. 3637–
42. doi: 10.1152/jn.00686.2005.

Brüderle, D. et al. (2011). „A comprehensive workflow for general-purpose neural modeling
with highly configurable neuromorphic hardware systems“. Biological Cybernetics 104,
pp. 263–296. doi: 10.1007/s00422-011-0435-9.

Cramer, B., Stöckel, D., Kreft, M., Wibral, M., Schemmel, J., Meier, K., and Priesemann,
V. (2020). „Control of criticality and computation in spiking neuromorphic networks
with plasticity“. Nature Communications 11 (1), p. 2853. doi: 10.1038/s41467-020-

16548-3.

Cramer, B., Billaudelle, S., Kanya, S., Leibfried, A., Grübl, A., Karasenko, V., Pehle, C.,
Schreiber, K., Stradmann, Y., Weis, J., Schemmel, J., and Zenke, F. (2021). Surrogate
gradients for analog neuromorphic computing. arXiv: 2006.07239.

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. (2019). Heidelberg Spiking
Datasets. doi: 10.21227/51gn-m114.

I

https://doi.org/10.1103/PhysRevLett.111.177203
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1162/089976604323057443
https://doi.org/10.1007/s12064-011-0146-8
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1007/s00422-011-0435-9
https://doi.org/10.1038/s41467-020-16548-3
https://doi.org/10.1038/s41467-020-16548-3
https://arxiv.org/abs/2006.07239
https://doi.org/10.21227/51gn-m114

9 References

Cramer, B., Zierenberg, J., Kreft, M., Billaudelle, S., Schemmel, J., and Priesemann,
V. (in prep). „Homeostatically induced autocorrelations in networks of excitatory and
inhibitory neurons inside the excitation-dominated regime“.

Dale, H. (1934). „Pharmacology and Nerve Endings“. British medical journal 2 (3859),
pp. 1161–1163. doi: 10.1136/bmj.2.3859.1161.

Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., and Meier, K. (2017).
„Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System“. IEEE
Transactions on Biomedical Circuits and Systems 11 (1), pp. 128–142. doi: 10.1109/

TBCAS.2016.2579164.

Friedmann and Pehle (2018). Nux User Guide. Tech. rep. available at https://github.

com/electronicvisions/nux. Electronic Vision(s).

Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition. Cambridge University Press.
isbn: 978-1-107-63519-7.

Grübl, A., Billaudelle, S., Cramer, B., Karasenko, V., and Schemmel, J. (2020). „Verifica-
tion and Design Methods for the BrainScaleS Neuromorphic Hardware System“. Journal
of Signal Processing Systems. doi: 10.1007/s11265-020-01558-7.

Harris, C. R. et al. (2020). „Array programming with NumPy“. Nature 585 (7825), pp. 357–
362. doi: 10.1038/s41586-020-2649-2.

Harris, T. E. (1963). The Theory of Branching Processes. Berlin: Springer. isbn: 978-3-
642-51868-3.

Heidarpur, M., Ahmadi, A., and Ahmadi, M. (2020). „Time Step Impact on Performance
and Accuracy of Izhikevich Neuron: Software Simulation and Hardware Implementa-
tion“. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5.
doi: 10.1109/ISCAS45731.2020.9180632.

Hock, M., Hartel, A., Schemmel, J., and Meier, K. (2013). „An analog dynamic memory
array for neuromorphic hardware“. 2013 European Conference on Circuit Theory and
Design (ECCTD), pp. 1–4. doi: 10.1109/ECCTD.2013.6662229.

Jaeger, H. (2001). „The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note“. German National Research Center for Information
Technology GMD Technical Report 148 (34), p. 13.

II

https://doi.org/10.1136/bmj.2.3859.1161
https://doi.org/10.1109/TBCAS.2016.2579164
https://doi.org/10.1109/TBCAS.2016.2579164
https://github.com/electronicvisions/nux
https://github.com/electronicvisions/nux
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/ISCAS45731.2020.9180632
https://doi.org/10.1109/ECCTD.2013.6662229

9 References

Langton, C. G. (1990). „Computation at the edge of chaos: Phase transitions and emergent
computation“. Physica D: Nonlinear Phenomena 42 (1), pp. 12–37. doi: 10.1016/0167-

2789(90)90064-V.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). „Deep learning“. Nature 521, pp. 436–444.
doi: 10.1038/nature14539.

Maass, W., Natschläger, T., and Markram, H. (2002). „Real-time computing without
stable states: a new framework for neural computation based on perturbations“. Neural
Computation 14 (11), pp. 2531–60. doi: 10.1162/089976602760407955.

Maass, W. (1997). „Networks of spiking neurons: The third generation of neural network
models“. Neural Networks 10 (9), pp. 1659–1671. doi: 10.1016/S0893-6080(97)00011-

7.

McCulloch, W. and Pitts, W. (1943). „A logical calculus of the ideas immanent in nervous
activity“. Bull. Math. Biophysics 5, pp. 115–133. doi: 10.1007/BF02478259.

Mead, C. (1990). „Neuromorphic electronic systems“. Proceedings of the IEEE 78 (10),
pp. 1629–1636. doi: 10.1109/5.58356.

Müller, E., Mauch, C., Spilger, P., Breitwieser, O. J., Klähn, J., Stöckel, D., Wunderlich,
T., and Schemmel, J. (2020). Extending BrainScaleS OS for BrainScaleS-2. arXiv: 2003.

13750.

Muñoz, M. A. (2018). „Colloquium: Criticality and dynamical scaling in living systems“.
Rev. Mod. Phys. 90 (3), p. 031001. doi: 10.1103/RevModPhys.90.031001. url: https:

//link.aps.org/doi/10.1103/RevModPhys.90.031001.

Murray, J. D., Bernacchia, A., Freedman, D. J., Romo, R., Wallis, J. D., Cai, X., Padoa-
Schioppa, C., Pasternak, T., Seo, H., Lee, D., and Wang, X.-J. (2014). „A hierarchy of
intrinsic timescales across primate cortex“. Nature Neuroscience 17 (12), pp. 1661–1663.
doi: 10.1038/nn.3862.

Neftci, E., Chicca, E., Indiveri, G., and Douglas, R. (2011). „A Systematic Method for
Configuring VLSI Networks of Spiking Neurons“. Neural Computation 23 (10), pp. 2457–
2497. doi: 10.1162/NECO_a_00182.

Pedregosa, F. et al. (2011). „Scikit-learn: Machine Learning in Python“. Journal of Ma-
chine Learning Research 12, pp. 2825–2830.

III

https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1016/0167-2789(90)90064-V
https://doi.org/10.1038/nature14539
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/5.58356
https://arxiv.org/abs/2003.13750
https://arxiv.org/abs/2003.13750
https://doi.org/10.1103/RevModPhys.90.031001
https://link.aps.org/doi/10.1103/RevModPhys.90.031001
https://link.aps.org/doi/10.1103/RevModPhys.90.031001
https://doi.org/10.1038/nn.3862
https://doi.org/10.1162/NECO_a_00182

9 References

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). „Learning representations
by back-propagating errors“. Nature 323 (6088), pp. 533–536. doi: 10.1038/323533a0.

Schemmel, J., Brüderle, D., Grübl, A., Hock, M., Meier, K., and Millner, S. (2010). „A
wafer-scale neuromorphic hardware system for large-scale neural modeling“. Proceedings
of 2010 IEEE International Symposium on Circuits and Systems, pp. 1947–1950. doi:
10.1109/ISCAS.2010.5536970.

Schemmel, J., Billaudelle, S., Dauer, P., and Weis, J. (2020). Accelerated Analog Neuro-
morphic Computing. arXiv: 2003.11996.

Schmidhuber, J. (2015). „Deep learning in neural networks: An overview“. Neural Networks
61, pp. 85–117. doi: 10.1016/j.neunet.2014.09.003.

Softky, W. and Koch, C. (1993). „The highly irregular firing of cortical cells is inconsistent
with temporal integration of random EPSPs“. Journal of Neuroscience 13 (1), pp. 334–
350. doi: 10.1523/JNEUROSCI.13-01-00334.1993.

Spitzner, F. P., Dehning, J., Wilting, J., Hagemann, A., Neto, J. P., Zierenberg, J., and
Priesemann, V. (2020). MR. Estimator, a toolbox to determine intrinsic timescales from
subsampled spiking activity. arXiv: 2007.03367.

Stimberg, M., Brette, R., and Goodman, D. F. (2019). „Brian 2, an Intuitive and Efficient
Neural Simulator“. eLife 8. doi: 10.7554/eLife.47314.

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2020). „Brian2GeNN: accelerating
spiking neural network simulations with graphics hardware“. Scientific Reports 10 (1),
p. 410. doi: 10.1038/s41598-019-54957-7.

Stradmann, Y., Billaudelle, S., Breitwieser, O., Ebert, F. L., Emmel, A., Husmann, D.,
Ilmberger, J., Müller, E., Spilger, P., Weis, J., and Schemmel, J. (2021). Demonstrating
Analog Inference on the BrainScaleS-2 Mobile System. arXiv: 2103.15960.

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S., Numata,
H., Nakano, D., and Hirose, A. (2019). „Recent advances in physical reservoir computing:
A review“. Neural Networks 115, pp. 100–123. doi: 10.1016/j.neunet.2019.03.005.

Tkačik, G., Mora, T., Marre, O., Amodei, D., Palmer, S. E., Berry, M. J., and Bialek,
W. (2015). „Thermodynamics and signatures of criticality in a network of neurons“.
Proceedings of the National Academy of Sciences 112 (37), pp. 11508–11513. doi: 10.

1073/pnas.1514188112.

IV

https://doi.org/10.1038/323533a0
https://doi.org/10.1109/ISCAS.2010.5536970
https://arxiv.org/abs/2003.11996
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1523/JNEUROSCI.13-01-00334.1993
https://arxiv.org/abs/2007.03367
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1038/s41598-019-54957-7
https://arxiv.org/abs/2103.15960
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1073/pnas.1514188112
https://doi.org/10.1073/pnas.1514188112

9 References

Virtanen, P. et al. (2020). „SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python“. Nature Methods 17, pp. 261–272. doi: 10.1038/s41592-019-0686-2.

von Neumann, J. (1945). First Draft of a Report on the EDVAC. http://web.mit.edu/

STS.035/www/PDFs/edvac.pdf. (PDF), retrieved January 8, 2021.

Weis, J. (2020). „Inference with Artificial Neural Networks on Neuromorphic Hardware“.
Master’s thesis. Universität Heidelberg.

Wilting, J., Dehning, J., Pinheiro Neto, J., Rudelt, L., Wibral, M., Zierenberg, J., and
Priesemann, V. (2018a). „Operating in a Reverberating Regime Enables Rapid Tuning
of Network States to Task Requirements“. Frontiers in Systems Neuroscience 12, p. 55.
doi: 10.3389/fnsys.2018.00055.

Wilting, J. and Priesemann, V. (2018b). „Inferring collective dynamical states from widely
unobserved systems“. Nature Communications 9 (1), p. 2325. doi: 10.1038/s41467-

018-04725-4.

Zenke, F., Bohté, S. M., Clopath, C., Comşa, I. M., Göltz, J., Maass, W., Masquelier, T.,
Naud, R., Neftci, E. O., Petrovici, M. A., Scherr, F., and Goodman, D. F. (2021a). „Vi-
sualizing a joint future of neuroscience and neuromorphic engineering“. Neuron 109 (4),
pp. 571–575. doi: 10.1016/j.neuron.2021.01.009.

Zenke, F., Hennequin, G., and Gerstner, W. (2013). „Synaptic Plasticity in Neural Net-
works Needs Homeostasis with a Fast Rate Detector“. PLOS Computational Biology
9 (11), pp. 1–14. doi: 10.1371/journal.pcbi.1003330.

Zenke, F. and Vogels, T. P. (2021b). „The Remarkable Robustness of Surrogate Gradient
Learning for Instilling Complex Function in Spiking Neural Networks“. Neural Compu-
tation, pp. 1–27. doi: 10.1162/neco_a_01367.

Zierenberg, J., Wilting, J., and Priesemann, V. (2018). „Homeostatic Plasticity and Ex-
ternal Input Shape Neural Network Dynamics“. Phys. Rev. X 8 (3), pp. 031018–15. doi:
10.1103/PhysRevX.8.031018.

V

https://doi.org/10.1038/s41592-019-0686-2
http://web.mit.edu/STS.035/www/PDFs/edvac.pdf
http://web.mit.edu/STS.035/www/PDFs/edvac.pdf
https://doi.org/10.3389/fnsys.2018.00055
https://doi.org/10.1038/s41467-018-04725-4
https://doi.org/10.1038/s41467-018-04725-4
https://doi.org/10.1016/j.neuron.2021.01.009
https://doi.org/10.1371/journal.pcbi.1003330
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.1103/PhysRevX.8.031018

Abbreviations

AC autocorrelation

ADC analog-to-digital converter

AdEx adaptive exponential integrate-and-fire

ANN artificial neural network

ASIC application-specific integrated circuit

BSS-2 BrainScaleS-2

CADC columnar ADC

CapMem capacitive memory

CPU central processing unit

EPSP excitatory postsynaptic potential

FPGA field-programmable gate array

GPU graphics processing unit

HICANN-X High Input Count Analog Neural Network

LIF leaky integrate-and-fire

MADC membrane ADC

MI mutual information

PCB printed circuit board

PPU plasticity processing unit

PSP postsynaptic potential

RNG random number generator

RNN recurrent neural network

SHD Spiking Heidelberg Digits

SIMD single instruction, multiple data

SNN spiking neural network

SVM support-vector machine

TDP thermal design power

VII

List of Figures

2.1 Schematic illustration of two neurons connected by a synapse 6
2.2 Sketch of different network dynamics characterised by their autocorrelation 10
2.3 Photographs of the BrainScaleS-2 system 11
2.4 Layout of the BrainScaleS-2 full-size ASIC 12

3.1 Overview of the full reservoir computing setup for classification tasks 16
3.2 Schematic view of the abstracted synapse array on HICANN-X 17
3.3 Examples from the random manifold dataset 21
3.4 Spike generation for the SHD dataset . 22

4.1 Distribution of time constants and potentials before and after calibration . 26
4.2 Measurement of the synaptic amplitude and its dependence on the synaptic

weight . 27
4.3 Evolution of the network rate and weight distribution during the adaptation

phase . 28
4.4 Spike raster plot and single neuron rate distribution after homeostatic reg-

ulation . 29
4.5 Development of the network activity for different indegrees 30
4.6 Average network activity and weight distributions for different indegrees . . 31
4.7 Autocorrelation functions and time constants for different indegrees 32
4.8 Spike raster plots and population activity of networks in different dynamical

regimes . 32
4.9 Perturbed network activity and susceptibility for different indegrees 33

5.1 Average network activity and weight distributions for simulations with dif-
ferent indegrees . 36

5.2 Autocorrelation functions and time constants for simulations with different
indegree . 36

5.3 Comparison of spike raster plots from hardware and simulation 37
5.4 Direct comparison of average firing rates and autocorrelation time constant

between hardware and simulation . 38
5.5 Average network activity and weight distribution for simulations without

integer weights . 39

IX

List of Figures

5.6 Comparison of network rate tuning curves from hardware and simulation . 40

6.1 Classification performance for the Poisson pattern task during persistent
background noise stimulation . 44

6.2 Dependence of the classification performance for Poisson patterns on the
rate scaling factor . 45

6.3 Classification accuracy on the input spikes of the Poisson patterns during
persistent background noise stimulation . 45

6.4 Training and testing accuracy on the Poisson patterns during persistent
background noise stimulation . 46

6.5 Classification performance on the Poisson patterns without background noise 47
6.6 Dependence of the classification performance for Poisson patterns on the

signal-to-noise ratio . 48
6.7 Classification performance on the random manifold task for different man-

ifold dimensions . 50
6.8 Classification performance on the random manifold task with different spa-

tial high frequency content . 52
6.9 Classification performance on samples of the SHD dataset with low input

scaling . 53
6.10 Classification performance on samples of the SHD dataset with high input

scaling . 53

8.1 Overview of the classification performance on multiple samples of the SHD
dataset with low input scaling . 62

8.2 Overview of the classification performance on multiple samples of the SHD
dataset with high input scaling . 63

X

Acknowledgments

I thank Dr. Johannes Schemmel for supervising my thesis and all his work in developing
the hardware that enabled my experiments.
I thank Professor Schäfer for taking the time from his usual areas of interest to co-examine
my thesis.
Special thanks go to Benjamin Cramer for patiently and carefully overseeing my experi-
ments and always helping to work out any problems.
Thanks go to Johannes Zierenberg for the joint work on simulations, fruitful discussions,
and help with theoretical questions.

I thank Benjamin, Jakob, and Johannes for proofreading the thesis and finding mistakes
from syntax to semantics.
Thanks to Oliver, Christian, and Eric for their help with any technical problems during
my work.
I thank all past and present members of the Electronic Vision(s) group for designing,
developing, and operating the systems that enabled my work.
Finally, I thank my family and friends for their support and inspiration throughout my
studies.

The work carried out in this Master’s thesis used systems, which received funding from
the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under the Specific Grant Agreements Nos. 720270, 785907, and 945539 (Human Brain
Project, HBP)

XI

Statement of Authorship (Erklärung)

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, 31.03.2021

Ort, Datum Markus Kreft

XIII

	Introduction
	Background
	Biological Principles
	Modelling
	Neurons
	Synapses

	Reservoir Computing Networks
	Critical Network Dynamics
	Neuromorphic Hardware

	Methods
	Experiment and Network Architecture
	Network Implementation
	Network Simulations
	Datasets
	Poisson Patterns
	Random Manifolds
	Spiking Heidelberg Digits

	Evaluation
	Autocorrelation
	Linear Classifier
	Mutual Information

	Control of Network Dynamics
	Characterization
	Homeostatic Rate Regulation
	Control of Autocorrelation
	Susceptibility

	Comparison of Hardware and Simulation
	Brian Simulations
	Hardware Parameter Constraints
	Synaptic Amplitude Offset
	Synapse Saturation

	Classification Tasks
	Poisson Patterns
	Random Manifolds
	Spiking Heidelberg Digits

	Conclusion and Outlook
	Appendix
	References
	Abbreviations
	List of Figures
	Acknowledgments
	Statement of Authorship (Erklärung)

