
Department of Physics and Astronomy
University of Heidelberg

Bachelor Thesis in Physics
submitted by

Mathis Kunold

born in Leimen (Germany)

2020





Towards Structured Data Exchange in Distributed
Neuromorphic Systems

This Bachelor Thesis has been carried out by Mathis Kunold at the
Kirchhoff Institute for Physics in Heidelberg

under the supervision of
Dr. Johannes Schemmel



Abstract

As a step towards structured data exchange of different components used in neuromor-
phic systems, a serialization library called bitsery is tested on a HICANN-DLS v2
prototype setup designed by the Electronic Vision(s) Group during this thesis. This is
done to see how it could potentially be used in future distributed neuromorphic systems,
where multiple processor units perform different experiment control tasks.

To examine how the software performs under the constraints given by the ASIC,
multiple tests will be conducted to ensure functional data exchange. These standalone
tests are then concluded with the application of bitsery for parameter transfer in the
NSEM (Neuromorphic Spike-based Expectation Maximization) experiment.

4



Contents

1 Introduction 7

2 Methods 9
2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The Leaky Integrate and Fire Neuron . . . . . . . . . . . . . . . . 9
2.1.2 Current based Synapses . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Spike-based Expectation Maximization . . . . . . . . . . . . . . . . 10

2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Analog Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Plasticity Processing Unit . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Properties of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Endianness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Experiment Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Software Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 Executing programs on the PPU . . . . . . . . . . . . . . . . . . . 15

2.5 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Concept and Formats . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Bitsery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Usage and Function . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Results 19
3.1 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Large Homogenous Structures . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Nested Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Using bitsery for NSEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Discussion 31

5 Outlook 33

5





1 Introduction

Both to further our undestanding of brain by emulating physical processes happening in
its cells, and as a different approach to the field of machine learning that has seen major
advances and lots of practical uses in the past decade, neuromorphic hardware offers a
lot of new possibilities.

Analog neural networks like the ones built into various systems designed by the
Eletronic Vision(s) Group are able to capitalize on some of the same advantages the
brain has over the conventional Von-Neumann-architecture that is basis of most modern
computers. Such advantages are lower power consumption and increased robustness,
meaning that if one of many artificial neurons on a system is defective, the others con-
tinue to work just fine, while if the Central Processing Unit of ones desktop computer
breaks, the whole systems is no longer able to continue its operation.

That is not to say conventional computer architecture is simply inferior to the brain
and systems that mimic its function in every way, to illustrate: what is 1750303∗4614944
and what did you have for lunch on the 6th of march in 2015? For all of its amazing
feats, the human brain is not nearly as good at arithmetic and storing information as a
conventional computer. To reap the benifits of both of those computing paradigms, the
hybrid chips of the Electronic Vision(s) Group combine an analog neural network with
an embedded processor called the PPU (Plasticity Processing Unit).

One of the central motivations for this development is the simulation of biological
learning. Plasticity and thus learning in the brain is something that happens locally,
between individual neurons or population of them. Adding the PPU as an extra element
for experiment control closer to the analog core helps to decentralize the learning pro-
cesses implemented in a simulation, thus allowing more flexibility and biological realism.
With distributed experiment control arises the need for efficient communication between
its components in order to set parameters for task and to extract data.

In the current setups the chip is connected to a host computer which is used to
control the experiment via a Field-Programmable Gate Array (FPGA), in this context
communication between PPU and host is the primary use case, but future setups will be
more complex. While the HICANN-DLS (Hight Input Count Analog Neural Network
- Digital Learning Systems) line of prototype chips features one PPU [1], the newer
HICANN-X has two of them [2], and plans are being made to build setups with multiple
of those HICANN-X chips.

An obstacle for communication between the host and the PPU lies in differences in
their respective processor architecture. These differences effect how the processors read
sections of memory, thus not allowing it to just copy a data structure from one systems
memory to the other. In order to transmit data structures, they need to be reshaped into
a one-dimensional format from which the recieving system can then reconstruct them

7



1 Introduction

again. Translating data into such a format is called serialization, the subsequent recon-
struction back into structures the processor can work with is known as deserialization.
To achieve this, an open source C++ library called bitsery will be used to serialize
data. Upon verifying that everything goes as expected the time required for the serial-
ization and deserialization of different data structures can be measured to approximate
the speed of those processes.

After verification and benchmarking, the next step is to utilize bitsery in actual ex-
periment where the PPU has to perform its originally intended purpose of making calcu-
lations to adapt the synaptic weights in the neuromorphic part of the chip. Serialization
will be performed together with that to both get parameters for the experiment onto
the memory of the PPU as well as to send results back to the host for data analysis.

The experiment chosen for this test is the Neuromorphic Spike-based Expectation
Maximization [3]. Note that the overall experiment does not change, only the method
of setting parameters, hence the results should be the same as in previous iterations of
the experiment.

8



2 Methods

2.1 Theoretical Background

2.1.1 The Leaky Integrate and Fire Neuron

To emulate the biophysics of a brain, the analog neural networks found on the chips
consist of integrated circuits that approximate the theoretical behavior of neurons and
synapses. While other modes of operation are possible, the one used here is based on
the Leaky Integrate and Fire (LIF) model [4]. It is well suited for simulations since it
requires only one differential equation. This equation describes the electric potential u
on the cell membrane of a neuron.

Cm
d

dt
u = gL(u− EL) + I(t)

where Cm is the capacitance of the membrane, gL the conductance of the leak current,
EL the leak potential and I(t) an external input current. With the membrane time
constant τm = Cm

gL
this equation can also be written as

τm
d

dt
u = (u− EL) +

I(t)

gL

In practice, this results in a behavior where the membrane potential exponentially
decays to reach the leak potential if no external stimulus is given. The time constant of
this exponential function is τm. If there is an external current, it will force the membrane
potential in its direction. Upon reaching the threshold Vthres, the neuron spikes and its
membrane potential forced to the value Vreset, where it is held for the refractory time
τref , after which it will again follow the dynamics outlined in the differential equations
above.

2.1.2 Current based Synapses

The dynamics of the synapses connecting these neurons are described by the Current
Based (CuBa) model. Just as the neuron models, this is a property of the neuromorphic
hardware as the synapses are also physically represented by analog circuits on the chip.
In this model, the input current I(t) is divided into

I(t) = Iext + Isyn

where Iext is a arbitrary outside current, Isyn can be well described by looking at the
neurons connected and their spiking behavior. Assuming a set of neurons i is connected

9



2 Methods

with synaptic weights wi and send sets of spikes at the times tsi , then the synaptic input
current to the neuron we are observing is

Isyn(t) =
∑
i

∑
s

wiε(t− tsi )

In the case of an exponential synapse, the synaptic kernel ε is an exponential decay
starting at tsi with the synaptic time constant τsyn. Using this the expression above
becomes

Isyn(t) =
∑
i

∑
s

wiexp

(
−(t− tsi )

τsyn

)
Θ(t− tsi )

When looking at networks of interconnected neurons, the synaptic weights are denoted
in a matrix (wi,k)i,k where one entry is the weight associated with the connection from
neuron i to neuron k.

2.1.3 Spike-based Expectation Maximization

The Expectation Maximization (EM) algorithm is an iterative method to find a
local maximum likelihood approximation of a statistical model with latent variables
[5]. Models for biological neural networks are often not deterministic to reflect high
complexity and stochatic background present in the brain, therefore statistical methods
like this can be useful for such models.

In the following we assume probability distributions of the shape

p(z,y|θ)

where y are observables, z the latent variables and θ is the vector of parameters. One
iteration t of the EM algorithm consists of two steps: first the expectation step (E-step)
where from a distribution with with a set of parameters θ(t) a function

Q(θ|θ(t) = 〈lnp((y)|(z)|θ)〉(z)|(x),θ(t)

is calculated. The parameter set that maximizes this function is then chosen in what
is called the maximization step (M-step) as to be used in the next iteration.

θ(t+1) = argmaxθQ(θ, θ(t))

When repeating these steps, the distributions using the new parameters will converge
towards a maximum likelihood approximation for the model.

In the NSEM experiment, a neural network is modeled as a Boltzmann machine where
each neuron has a binary random variable asigned to it with the value 1 when firing and
0 when inactive. The parameters of the probability distribution are the synptic weights.
The details of the implementation of NSEM can be found in [3].

10



2.2 Hardware

2.2 Hardware

The type of chip used in all subsequent tests and experiments is the HICANN-DLS (Hight
Input Count Analog Neural Network - Digital Learning System) prototype version 2.
While not the newest hybrid chip available, it is overall very stable and has been tried
and tested before. Its latest successor is the HICANN-X, which includes a non-spiking
operating mode similar to a chip called HAGEN (Heidelberg AnaloG Evolvable Neural
Network) and a second PPU on top of the features already present in HICANN-DLS
chips. The X in the name refers to the HAGEN eXtension [2]. Since the scalar section of
the PPU is not subject to any changes, so much the existing software framework made
for HICANN-DLS as well as the software examined throughout this thesis can also be
used on HICANN-X.

2.2.1 Analog Neural Network

In the neuromorphic section of the HICANN-DLS v2, neurons and synapses are physi-
cally emulated by microscopic analog integrated circuits where electrical elemts are used
to represent their biological counterparts, such as leak conductance and membrane ca-
pacity. The chip features 32 neurons and 32 rows of current based synapses, with one
synapse for every neuron each row, making for a total of 1024. A row of synapses can
be set to inhibitory or exitatory. When a spike is routed to a neuron, the signal is first
sent to one or more synapse rows, where it is passed on to the correct synpse based on
a 6 bit address. The weight of each synapse is also encoded in 6 bits, when a spike is
routed to the correct synpse, it will generate a current pulse based on its weight. This
pulse will then travel to the neuron at the bottom of the synapse column where it serves
as input, depending on which the neuron located there may or may not output a spike,
if it does the whole process of a spike being routed to the connected synapses can begin
once more if further connections for the signal to be routed to exist.

Each of the synapse rows is connected to the CADC (Correlation Analog to Digital
Converter), where both a causal and an anti-causal correlation measurements are taken
and digitized with a resolution of 8 bits. For both the causal and anti-causal correlation
measurements there are 32 channels respectively, onto which the 32 synapse rows are
multiplexed. The rates at which neurons output spikes are counted digitally by 10 bit
rate counters.

The circuits of the analog neural network do not have the same membrane capacity
and leak conductance as the biological neurons they represent. Since the membrane time
constant τm depends on those two parameters, the artificial neurons are accelerated by
an order of O(103) compared to biological neurons.

2.2.2 Plasticity Processing Unit

The Plasticity Processing Unit (PPU) is what makes the HICANN-DLS a hybrid of
neuromorphic and von Neumann architecture. It is a custom designed processor using
the Power Instruction Set Architecture with a general purpose scalar part as well as a

11



2 Methods

vector unit that is able to process either 8 × 16 bit or 16 × 8 bit vectors. Through
the vector unit, the PPU is able to process more data in parallel, which is very useful
for its inteded purpose: making computations to update synaptic weights. These have
the form of matrices, so it is more efficient to process them in parallel compared to
making calculations with a single scalar arithmatic unit. Since it is connected to the
neuromorphic region of the chip, the PPU can be used to configure and read out networks
running there. With this, the chip is able to emulate synaptic plasticity and thus learning
while having a higher degree of independance from the host.

It has a 16 kB memory and uses a 32 bit Power Instruction Set Architecture (Power
ISA) [6]. While experiments that do calculations via the host make use of Python,
software for the PPU has to be written in a lower level programming language to use
the smaller memory efficiently. Most of the software stack available for it uses C++,
although C and assembler also are possible options [7]. Programs written for the PPU
can be compiled with a customized version of the GNU Compiler Collection (GCC).

A quarter of the 16 kB memory is by default reserved from standard usage. This
memory section is called the mailbox, writing data to this mailbox is the standard way
of communication for the PPU so far.

2.3 Properties of Data

Most of the available computers today are based on the von-Neumann-architecture,
which means they consist of a central processing unit (CPU) that is connected to random
access memory (RAM) as well as input and output devices. Instructions and data are
stored in the memory, the CPU executes these instructions and writes results to the
memory. The input allows for interactions with the program flow or the data, the
output devices represent the results of computations in some form. While this is the
underlying principle of almost all modern computers, not every CPU works exactly the
same way. The options for machine code instructions available makes up the instruction
set and the size of its registers which hold pieces of data while they are being processed
dictates what the natural units of data, simply called words are for a given processor
architecture.

In the context of the experimental setup consisting of a host computer and the PPU
on the chip, it is important to know that the host has a x86-64 CPU, which means it has
words of the size 64 bits and uses the x86 instruction set. As mentioned in 2.2.2, the PPU
uses the Power ISA with a wordsize of 32 bits. With these differences in architecture
arise differences in the way data is read and written by processors, therefore serialization
is needed for a device agnostic transfer of data structures.

2.3.1 Endianness

Endianness is a term coined by Cohen 1980 [8] used to describe how the bytes in the
binary representation of data are ordered. In a computer system, endianness is tied to
the processor architecture since the CPU has to interface with the memory to read the
binary data stored there.

12



2.3 Properties of Data

Under Little Endian, the individual bytes that make up a number are ordered in a
way that the least significant byte stands at the first position, the second least significant
byte at the second position and so on, similar to the European style of writing dates,
where the day comes first, then the month, and the year last. When applied to a number
however, this system is counterintuitive sice numbers are usually written the other way
around. As an example, the number 43904110110, which is 1A2B3C4D16 in hexadecimal
will be represented in this way:

0x1a2b3c4d == | 4d | 3c | 2b | 1a |

Little Endian is for example used by the very widespread x86-64 instruction set
architecture to which the host of the experiment setup belongs, along with many modern
consumer machines.

On the other hand, Big Endian orders bytes the other way around, with the most
significant byte first. For a human reader this is much more intuitive when applied to
numbers since it is the order one would write them down in, the bytes of the example
from above will be represented as

0x1a2b3c4d == | 1a | 2b | 3c | 4d |

The Power ISA instruction set of the PPU uses Big Endian [6], which is the primary
reason why data structures cannot just be copied from one system to the other.

Alignment and Padding

On top of the issue of endianness, the other difference between the host computer and
the PPU lies in their respective word size. When interfacing with the memory, code that
writes and reads data aligned to the boundaries of the systems words is more effecient
than it would be without alignment. A word in this context is fundamental data type
that can very depending on the instruction set architecture of a processor [9]. As an
example lets look a data structure made of three 8 bit elements and one 16 bit element
on a 32 bit system that uses big endian just for the sake of better human readability:

struct example_structure

{

uint8_t example_char_array[3] = {0x1a, 0x2b, 0x3c};

uint16_t example_short = 0xffff;

};

Since the sum of its members sizes totals at 40 bits, it is too large to fit into one 32
bit word. If it was stored as an uninterrupted string of bytes, the 16 bit element would
have to be split in half between the first and the second word:

1A 2B 3C FF FF 00 00 00

|--word1--| |--word2--|

13



2 Methods

Since the second word is not filled, the last three bytes are not used, here this is rep-
resented by writing zeros, on actual memory those are just ignored and not overwritten
with zeros, hence they could hold bytes from previous allocations. These bytes get ig-
nored when data from the structure is read. If it was now necessary to access the 16 bit
number from this structure, the CPU would have to load two memory words and puzzle
the number back together. In most application cases this would be considered a waste of
computational resources, which is why the data structure will by default altered during
the compilation of the program be written into the memory as follows:

1A 2B 3C 00 FF FF 00 00

|--word1--| |--word2--|

In this way, the 16 bit number is not split between two words and can therefore be
accessed with less expenditure. The zeros to fill up the first word behave like the ignored
bytes that fill up the second word, they serve no other use then to assure that the relevant
data is in alignment with the word boundaries. Bytes that are used in such a way are
called padding. If the same example structure would be used on a 64 bit architecture,
there would be no need for padding between the 8 bit and the 16 bit elements since
they fit in one word, instead they would be directly next to each other. In the case of
host and PPU, this creates an additional obstacle since the host uses 64 bit words while
the PPU has a word size of 32 bits.

Further information on the details related to memory and how it is accessed can be
found in [10].

2.4 Experiment Control

2.4.1 Basic Usage

All experimental setups are nodes of the groups cluster that is managed with Slurm

[11], which is used to schedule jobs. As a way to manage dependencies, jobs are run
encapsulated on a virtual environment called containers with singularity [12]. To build
software a tool called waf [13] is used.

2.4.2 Software Framework

For software running on the host there is a hardware abstraction layer called haldls

[14]. It provides things like a classes that represents an entire PPU memory as well as
blocks or individual words. Hardware coordinates are provided by halco [15]. Software
for the PPU makes use of libnux [16] for math functions, macros and functions for the
vector unit and memory management as well as ways to access neurons and synapses
from the PPU. libnux also contains functions to write individual integers or strings
onto the mailbox, but this method of communication is limited when dealing with more
complex data structures.

14



2.5 Serialization

2.4.3 Host

To control the chip from the outside, a host computer interfaces with it via an FPGA.
This host is a node of the groups cluster and can therefore be accessed and given tasks
via Slurm. While the cluster is not homogeneous and the architectures of individual
host machines can differ, they all feature CPUs using the x86-64 instruction set.

2.4.4 Executing programs on the PPU

To control the PPU from the outside, it is possible for the host to access its memory
via the FPGA. On the hostside an object of the type PPUMemory provided by haldls is
initialized and the precompiled binary file containing the PPU program is loaded into
it. This memory can be left as is or individual sections could be altered, for example
data could be written into the mailbox this way before even executing the program.
The memory object can then be loaded onto the actual memory of the PPU where the
program is then executed. It is also possible to send data to the PPU during runtime,
for example during the NSEM experiment parameters are loaded in this way instead
of being written onto the memory object before transfer. In addition to the mailbox
writing functions provided by libnux, the memory of the PPU can also copied by the
host, this again creates a memory object, by knowing where which data is, results of
experiments can be accessed this way.

The entry-point function of a PPU program is called int start(void), other func-
tions can be defined or included from headers to then be invoked while start is running.
Upon finishing, start returns an integer to a fixed address. When the PPU memory is
later transferred to the host, the address of the return code can be accessed with haldls.

2.5 Serialization

2.5.1 Concept and Formats

As mentioned in 1, in its most basic sense the word serialization means to take a data
structure and turn it into a one-dimensional format from which the original data can
then be restored again via the process of deserialization. Ways of doing this can be
diveded into two categories, binary and text based. Serialization is used both to store
data and to transmit it, in the context of enabling more structured communication the
transfer aspect is the more important one. Binary serialization formats perform better
in terms of processor usage, while text based formats are easier to read from a human
perspective than a stream of ones and zeros. One example for a text based serialization
format is JSON (JavaScript Object Notation), since it is derived from the JavaScript
programming language it is often used by Web APIs [17].

2.5.2 Bitsery

bitsery is a header only C++ library for binary serialization developed by Mindaugas
Vinkelis and is available on GitHub under the MIT license [18]. Among other things it

15



2 Methods

allows the user to configure endianness, which is exactly what is needed for communi-
cation between host and PPU. In addition to that, the design choice to make it binary
only instead of including other formats of serialization such as JSON allows it to run very
efficient on little memory which is a strong concern when working within the limits of
the PPU.

2.5.3 Usage and Function

Aside from including the relevant headers, for a structure to be serialized with bitsery

it needs to have a function called serialize. This function needs a templated argu-
ment, written with S as the typename and s as the argument itself in examples given
in the documentation, but this is an arbitrary choice. This template will then work
with the class Serializer for serialization and Deserializer for deserialization respec-
tively, those classes are defined in their own header files and automatically included by
bitsery/bitsery.h.

struct test_structure

{

uint8_t a;

uint64_t b;

uint16_t c[3];

};

template<typename S>

void serialize(S& s, test_structure& o)

{

s.value1b(o.a);

s.value8b(o.b);

s.container2b(o.c);

}

The functions used by the Serializer and Deserializer classes should be used as
follows:

Function Use case

value Fundamental types
valueXb Fundamental types, X being 1, 2, 4 or 8bytes
container Container of fundamental types
containerXb Container with specified element size
text Similar to container, but optimized for text
textXb For a normal string use X = 1
object For nesting structures

Both the container and text functions will need a maximum size specified if the
containers passed into them can be resized. If they have a fixed size, this size will be
used as maximum. Similarly, the byte size specification variants for all of the functions

16



2.5 Serialization

above will serve as template parameters for their unspecified counterparts, e.g. value4b
will invoke value<4>. When using object to serialize a structure nested into the main
one, it should have its own serialize function.

In addition to the serialize function, is is also necessary to define a Buffer, which
will then hold the serialized data. The Buffer is a container of uint8_t with a fixed
size. This will be used together with adapter classes for input and output that have
templates specified with Buffer.

using namespace bitsery;

using Buffer = std::array<uint8_t, 200>;

using OutputAdapter = OutputBufferAdapter<Buffer>;

using InputAdapter = InputBufferAdapter<Buffer>;

Buffer buffer;

With all of those requirements met, the easiest way to serialize and deserialize is to use
the quickSerialization and quickDeserialization functions with the OutputAdapter
and InputAdapter as template parameters. The first function takes the Buffer and the
structure as arguments, puts the serialized structure into the buffer and return the size
written, the latter needs as arguments the buffer, the size of the serialized structure on
the buffer and a result structure into which the function will write the serialized data.
quickDeserialization returns a tuple containing a boolean that indicates wether or
not the deserialization was successful and a code to specify the error in the case one
occurs.

test_structure example = {2, 3, {4, 5, 6}};

test_structure result;

auto written_size = quickSerialization<OutputAdapter>(

buffer, data

);

auto state = quickDeserialization<InputAdapter>(

{buffer.begin(), written_size}, result

);

The example above does of course happen on the same processor, in our use case
one of those steps would happen on the host, the other on the PPU. To account for
the difference in endianness of the two systems, the adapters need another template
parameter in form of an endianness configuration struct. To not concern the limited
ressources of the PPU with this extra step, this configuration has been happening on
the hosts side for all of the test conducted. Having the option to decide on which side
of a data transfer this step is taken was an important part of the library choice.

struct ppu_endianness_config

{

17



2 Methods

using namespace bitsery

static constexpr EndiannessType Endianness

= EndiannessType::BigEndian;

static constexpr bool CheckDataErrors = true;

static constexpr bool CheckAdapterErrors = true;

};

After defining the Buffer, the adapters using this custom configuration would then
be initialized as

using OutputAdapter =

OutputBufferAdapter<Buffer, ppu_endianness_config>;

using InputAdapter =

InputBufferAdapter<Buffer, ppu_endianness_config>;

With this configuration in place, the host will serialize to and deserialize from a form
that can be used without further work on a big endian system like the PPU.

18



3 Results

3.1 Verification

Before taking any quantitative measurements concerning bitsery or using it in the
context of a more complex experiment, it had to be verified that serialization and de-
serialization work as intended on the hardware. The test make use of the Google Test
(gtest) library for C++, where test functions will report failure or success based de-
pending on wether or not specified conditions are met after the test function has been
executed.

The least intricate of those test was to serialize and deserialize data structures only on
the host, since it uses a very common CPU architecture which in turn means programs
written for it can be compiled with the standard version of the GCC compiler, after that
serialization and deserialization could be tested on the PPU, the final test case would
involve both devices transmitting serialized data.

All of these tests would involve easier, homogenous structures with properly aligned
members, but also heterogenous structures that would purposefully invoke padding.
Nesting structures were also tested at a later stage.

As expected, the test to verify bitsery on the experiment host succeeded without
issues, which paved the way for tests involving the PPU.

Using the PPU, the test was similar to the one done on the host; serialization and
deserialization would both take place on the PPU now. Similar to the test before, some
structures would cause the compiler to pad them were examined. Instead of using gtest,
success or failure would be econded in the return code of the start function.

To run this test program on the PPU, the precompiled binary file would be loaded via
a host program. After a small waiting period ensuring the PPU would have completed
its program, the memory would be loaded back to the hosts memory where the return
code can then be checked to see if the test succeeded.

Just like on the host, the test on the PPU also succeeded.

With bitsery being confirmed to work on both of the relevant components of the
setup, the next step was to actually test serialization and deserialization in the context
of data exchange between the host and the PPU. For this purpose, the binary file would
be loaded into a PPU memory object on the host again, but before loading it onto
the PPU, the host program would alter is by writing a Buffer containing a serialized
structure into the mailbox region of the memory object.

When injecting extra data to a PPU program in this way, an extra step is necessary.
When a binary file is transferred from the host it is formatted by reversing the byte order
of each 32 bit section (i.e. PPU memory word). Any data injected into the binary file will

19



3 Results

undergo the same formatting, counteracting this is not difficult since it is an involution;
cancelling itself out when applied twice. For this purpose the following function is used:

template<typename T, size_t size>

void htonl_on_buffer(std::array<T, size>& buffer)

{

uint32_t* ptr = reinterpret_cast<uint32_t*>(buffer);

for(int i = 0;

i < size_to_wordcount(size);

i++) {

*ptr = htonl(*ptr);

ptr++;

}

}

where size_to_wordcount returns the amount of 32 bit words a data structure with
size size would take up. The function htonl takes a 32 bit value as argument and
changes its byte order, it is included via the arpa/inet.h header [19]. With this extra
operation applied to the Buffer and using the extra endianness configuration shown
at the end of 2.5.3, data that has been serialized on the host and transferred with the
binary file can be successfully deserialized on the PPU.

With a successful transfer of serialized data from the host to the PPU, the last step to
verify that bitsery works as intended on the hardware setup is to try a tranfer in the
other direction. With the same correction for the word-wise byte reordering as above,
this also succeeds.

3.2 Benchmarks

3.2.1 Large Homogenous Structures

After verifying serialization and deserialization work as inteded on both devices of the
experimental setup, the next step was to quantify their performance on the PPU. To
give a rough speed estimate under favorable conditions, the first series of test used data
structures only containing an array of unsigned integers with varying sizes, for example:

struct test_structure

{

uint16_t arr[128];

};

The serialization functions to such a structures just needs one container function
with no specified maximum size since the array is fixed. All of the structures tested had
sizes ranging from 64 to 1536 bytes, with a version for unsigned integers of 8, 16, 32 and
64 bits. Those test were generated from a template file via a python script. In addition
to that, each of those tests was compiled with different three compiler optimization

20



3.2 Benchmarks

Figure 3.1: Serialization and deserialization times for large homogeneous structures

options. -O0 is the default with no optimization, instead offering lower compile times
which is useful for debugging, -O2 which is optimized for faster run times and -Os to
create smaller binaries, both of the latter two options come at the expense of longer
compile times.

To measure the time needed for both processes on the PPU libnux/time.h is used.
Instead of conventional units for time, the function it features return their measurement
in number of PPU cycles. Both the PPU and FPGA operate on the same clock rate
of 100 MHz, 100 clock cycles per microsecond. The time is measured both before and
after each serialization and deserialization, then the difference is calculated. The time
differences of both the serialization and deserialization are then serialized themselves and
later deserialized and saved in a file by the host. An extra measure taken here is that all
variables involved in the processes are afterwards passed into a do_not_optimize_away

to prevent the compiler from omitting steps in the process. This may seem strange, but
accessing for example the entries of the result structure after the deserialization outside of
the time measurement has had an effect on these measurements. In a fixed configuration,
the time measurements are completely deterministic, giving the exact same number of
cycles for a given structure over multiple runs.

Shown in 3.1 are the serialization and deserialization times for each unsigned integer
size and compiler option. The dashed lines between those measurements represent linear
fits that assumened

21



3 Results

t = a ∗ s+ b

with t being the time, s the size of the structures, a the number of cycles needed for
one byte of data and b the overhead. While the processes themselves are deterministic,
the error of a fit through data points can be given by the squared diagonal entries of
its covariance matrix. In this case however, the correlation with linear growth was very
strong, thus the errors of the fit are negligibly small. With the lines being almost parallel,
the parameter a corresponding to their gradients is almost equal for all of these mea-
surements, with compiler options and the difference of serialization and deserialization
only affecting the overhead b, visible in the graphs as the distance between the lines.

The mean of all those fits puts the parameter a at the value

a = (0, 8745± 0.0001)
PPUcycles

byte

For the different values obtained via linear fit, the errors for a given by the covariance
matrix are several oders of magnitude smaller, in the range of 10−12, and are therefore
negligible. The standard deviation of the different values for a is σa = 0.002. With 24
values, the error of the mean is therefore

δa =
σa
24

= 9.2 ∗ 10−5 ≈ 1 ∗ 10−4

This result should be taken with a grain of salt since the structures examined are very
simple, more complex ones will not behave exactly in this linear speed to size relationas
their complexity generates additional overhead. What this result shows is that under
ideal conditions, serialization and deserialization with bitsery can achieve high speeds
on our hardware, with the aforementioned clock rate of 100 MHz that means less than
100 nanoseconds per byte in this case case.

3.2.2 Nested Structures

In actual use cases, structures rarely consist of flat, homogeneous arrays only. To see
how bitsery would perform with added depth, nested structures where tested. Imple-
mentation and measurement and done similar to the ones in 3.2.1. The measurements
method for during this test is identical to the ones 3.2.1, only the shape of the structures
is different.

The first test case would have had a base structure used as the only member for the
first nested one, then the first nested structure as only content within the second one
and so on, up to five levels of nesting above the base structure. In this first test case, no
extra data was added per nesting step, so each of those structures had the same size as
the one it is derived from. This base structure had the form:

struct base_struct

{

uint8_t base_a = 0xff;

22



3.2 Benchmarks

Figure 3.2: Serialization and deserialization times for constant sized nested structures

uint64_t base_b = 0x1a2b00003c4d;

uint16_t base_c = 0x5678;

uint32_t base_d = 0x1234abcd;

};

Each consecutive nested structure for this test thus had the following shape:

struct nested_const_N // 1 < N <= 5

{

nested_const_N-1 content;

// in case N=1: base_struct content;

};

As shown in figure 3.2, both variants of compiler optimization resulted in no extra
time being needed for deeper nesting, compared to the debug option which grew with
extra depth. Since the nested structures scored the exact same results as the flat base
structure with higher optimization, it could be that the compiler flattened them when
no extra data is added.

23



3 Results

For the next test, the structures would be homogeneously increased in size with each
additional level of nesting. Level 0 for this test was the same base structure used for
the previous test, with each extra nesting step the previous structure would be used as
content along with a fixed piece of extra data. In one measurement, the extra content
consisted of a single uint32_t, the second measurement instead added an array of five 64
bit unsigned integers with each nesting step, which resulted in structures of the shapes:

struct nested_const_N // 1 < N <= 5

{

// for the 4 byte growth

uint32_t extra_content_N;

// for the 40 byte growth

uint64_t extra_content_N[5];

// both of those growths using

nested_const_N-1 content;

// in case N=1: base_struct content;

};

An interesting observation to make here is that in the second measurement shown in
figure 3.3, the times for both processes are not significantly higher than the ones in the
first one, even though the growth for the second one was 10 times larger. This shows
serves to illustrate that using containers instead of single values can speed the process
up significantly.

Furthermore, a set of flat structures containing the same data as their nested coun-
terparts where used for measurements in the same way to see how nesting effects the
performance. The resulting serialization and deserialization times for -O0 and -O2 can
be seen in figure 3.4. Not pictured is -Os, which is similar to -O0, only slightly faster.
When comparing the plots for the two compiler option we can see that for -O2 that the
deserialization times get very similar for both nested and flat structures.

24



3.2 Benchmarks

Figure 3.3: Serialization and deserialization times for homogeneously growing nested
structures

25



3 Results

Figure 3.4: Serialization and deserialization times for homogeneously growing nested
structures and their flat counterparts

26



3.2 Benchmarks

Figure 3.5: Serialization and deserialization times for inhomogeneously growing nested
structures and their flat counterparts

The structures chosen for the final test grow inhomogeneously. Starting with the same
base structure as with the previous two tests, does not add the same content with each
nesting level. The extra content added varies between the four usnigned integer types
and arrays containing them. Just like for the homogeneous structures, these have flat
counterparts containing the same data. The comparison between flat and nested for one
of the measurements can be seen in figure 3.5. To produce the measurements shown in
figure 3.5 the following pieces of extra data where added with each nesting step.

Nesting level Added data

1 uint32_t extra_content_1[4]

2 uint64_t extra_content_2

3 uint8_t extra_content_3[10]

4 uint16_t extra_content_4

5 uint64_t extra_content_5[5]

Just like with the homogeneous measurements, the plot for the -O2 shows little dif-
ference between nested and flat deserialization speeds, here it even goes to the extend
that the nested structures developes an advantage over the flat one towards the end.
This could be observed with multiple structure configurations. The prominent dip of
the nested curve between the 4th and 5t data point is however unique to this specific

27



3 Results

measurement, with different added contents such a behaviour could not be reproduced.

28



3.3 Using bitsery for NSEM

Figure 3.6: Raster plot comparing the spikes generated by the neurons with the input,
parameters serialized with bitsery

3.3 Using bitsery for NSEM

The part of the NSEM experiment where bitsery was used to serialize parameters is
the one described in section 3.7 of [3]. In this experiment, three neurons recieve a 5 by
5 pixel image as input, each pixel here is one synapse connected to the neuron.

Since the neurons of the analog neural network are accelerated compared to biological
ones (see 2.2.1), in the case of this experiment by a factor of 975, the times and frequences
that follow are meant as biological equivalents, not the actual values on hardware. Hence
a measurement time of 10000sbio does not mean the experiment takes almost three hours,
but it simulates this time in a biological network while taking only about 10s on the
hardware.

The different pictures used as input are horizontal bars at different heights. Pixels
that are part of a bar recieve a spike train of 70Hzbio while the background pixels get
an input of 10Hzbio. Every 0.5sbio a picture is randomly selected and presented to the
network. Of the parameters given to the experiment, three where in this run serialized
with bitsery, those being the periods for homeostasis and SEM as well as the timeframe
of the experiment. The spikes generated by the three neurons after 9500sbio can be seen
in a raster plot in figure 3.6. Those spikes mostly overlap with the given inputs since
each neuron reacts to one of the images, thus spiking at a much higher rate than the
other two. This is the same behaviour that can be observed without bitsery, see [3]
and [7].

29





4 Discussion

Over the course of this thesis, serialization with bitsery on the HICANN-DLS v2 pro-
totype chip has been done successfully in a variety of test scenarios and even a scientific
use case.

Starting with the verification of serialization and deserialization on the hardware it
could be seen that the light weight design of the library allows it to run successfully
within the constraints of the PPU. The subsequent test of data transfer between the
host computer and the HICANN-DLS v2 has shown that bitsery provides the ability
for device agnostic exchange of structured data with configurable endianness that is
needed for our use case.

The subsequent benchmarking with large array structures not only shows that it is
possible to handle large amounts of data with bitsery, but also shows linear behaviour
of serialization and deserialization times with structure size and gives an estimate of how
fast the serialization and deserialization can be under ideal conditions.

Nesting data structures within each other has not lead to dramatic drops in perfor-
mance, especially with the -O2 compiler option the difference is often negligible. The
two different measurements for homogeneous growth of nested structures also show how
well arrays work with bitsery, since the increase in serialization time between is very
little even though the growths differ by a factor of 10. For future uses it might be
advantageous to remember this.

The counterintuitive measurements of faster deserialization times for nested structures
over flat ones in the test for inhomogeneously growing nested structures as well as the
strange dip that can be seen in Figure 3.5 could be caused by the fact that in these
structures, containers and single values both are added during the growth steps. This
is however purely speculative, another hypothesis regarding this behaviour was that the
serialization function of a nested structure has to call less functions from the Serializer
class, but this is unlikely. Analyzing the binaries with objdump has shown that the
nested structures make calls to the Serializer and Deserializer more often than the
flat ones.

Using bitsery with the NSEM experiment has reproduced the previous results and
can therefore be considered a success. The fact that only three parameters where se-
rialized is mostly due to time constraints; serializing even more of them would require
more work on the experiment code and in some cases minor changes on the software
architecture, but based on the good results so far there should not be any fundamental
issues. It shows that bitsery can be used in a more complex setting where interaction
with the analog neural network core takes place.

31





5 Outlook

Looking at the results so far, bitsery seems suitable for future applications in hybrid
neuromorphic systems.

Since PPU code should be portable from HICANN-DLS to HICANN-X with few to
no issues future tests can be moved to this new platform instead. Here the interesting
new challenge would be to transfer data between the two PPUs on the chip. Further
down the line the hybrid design is planned to be integrated on wafer scale [2], in such a
setup data exchange for decentralized experiment control would be even more beneficial.

When using bitsery for more experiments, it would be advantageous to have an API
that allows to send and recieve structured data with the different experiment control
units. With such software, it would be possible to stop using the mailbox for commu-
nication, thus freeing up the 4 kB currently reserved for it and allowing more complex
PPU programs.

With such improvements to data exchange, setups with multiple hybrid chips could
have increasing flexibility in the way experiments can be controlled. This would allow
for large decentralized simulation of parts of the human brain with increasing biological
realism. For example in a configuration where multiple PPUs handle plasticity for pop-
ulations of neurons in a larger simulation, changes in parameters communicated between
them could be used to simulate the influence chemicals like dopamine have on learning.

33





Bibliography

[1] S. A. Aamir, Y. Stradmann, P. Müller, C. Pehle, A. Hartel, A. Grübl, J. Schemmel,
and K. Meier. An accelerated lif neuronal network array for a large-scale mixed-
signal neuromorphic architecture. IEEE Transactions on Circuits and Systems I:
Regular Papers, 65(12):4299–4312, 2018.

[2] Johannes Schemmel, Sebastian Billaudelle, Phillip Dauer, and Johannes Weis. Ac-
celerated analog neuromorphic computing, 2020.

[3] Philipp Spilger. Spike-based expectation maximization on the hicann-dlsv2 neuro-
morphic chip. Bachelorarbeit, Universität Heidelberg, 11 2018.

[4] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

[6] Power ISA™ version 2.06 revision b. Technical report, IBM Corporation, 2010.

[7] Eric Müller, Christian Mauch, Philipp Spilger, Oliver Julien Breitwieser, Johann
Klähn, David Stöckel, Timo Wunderlich, and Johannes Schemmel. Extending brain-
scales os for brainscales-2, 2020.

[8] D. Cohen. On holy wars and a plea for peace. Computer, 14(10):48–54, 1981.

[9] Intel® 64 and ia-32 architecturessoftware developer’s manualvolume 1:basic archi-
tecture. Technical report, Intel Corporation, 2019.

[10] Ulrich Drepper. What every programmer should know about memory. Technical
report, Red Hat, Inc., November 2007.

[11] Slurm workload manager.

[12] G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific containers for
mobility of compute. PLoS ONE 12(5), 2017.

[13] Thomas Nagy. The Waf Book. 2010.

[14] haldls repository on github.

[15] halco repository on github.

35



Bibliography

[16] libnux repository on github.

[17] Douglas Crockfort. Introducing json.

[18] Mindaugas Vinkelis. bitsery repository on github.

[19] Byte order conversion.

36



Appendix

Used Hardware Setup

Component Identifier

Board Name Fantasio
Chip ID 30
FPGA ID B291656

Used Software

Software item Commit ID or other identifier

Singularity container /containers/stable/2020-03-27_1.img

ppu-toolchain ppu-toolchain/2020-03-17-1

waf waf/2020-03-23-1

libnux Ie099a28e0157f9430c57b4f128eb410717d781b8 (CS 10181)
haldls I03406fb2cefc4a4250f8a8a627bcbfc8b0c0d2c8 (CS 8335)
model-hw-nsem I22e0a777f5a82cf5ced243e0947c3c47ee465b2e (CS 10032)
bitsery 501d60f67d7bb4bc824b5c58101ca0a6eaa5c7b6

37





Acknowledgments / Danksagung

Ich möchte mich bedanken bei:
Dr. JohannesSchemmel für die Betreuung meiner Arbeit
Eric und Philipp dafür, dass sie mich eingearbeitet und mir viele neue Dinge beige-

bracht haben, und für die viele konstruktive Kritik zu Code und der geschriebenen
Arbeit

Sebastian Schmitt für die Vorlesung ”Brain Inspired Computing” im letzten Som-
mersemester, die dazu ermutigt hat, meinen Bachelor in dieser Arbeitsgruppe zu schreiben

Der gesamten Electronic Vision(s) Gruppe für die freundliche Arbeitsatmosphäre
Meinen Eltern und meinem Bruder ihre Unterstützung zu Hause
Furthermore I would like to thank Mindaugas Vinkelis for this great serialization

library he made, without which this thesis would have looked very different.
This work would not have been possible without the founding the Eletronic Vision(s)

Group recieves from the Human Brain Project (HBP) since this is what enables the
development of new systems and prototypes.

39





Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

41


