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Abstract

Pooling different opinions and weighting them according to their reliability is conducive to making
good decisions. We demonstrate that single cortical neurons, through the biophysics of conductance-
based coupling, perform such complex probabilistic computations via their natural dynamics. While
the effective computation can be described as a feedforward process, the implementation critically
relies on the bidirectional current flow along the dendritic tree. We suggest that dendritic membrane
potentials and conductances encode opinions and their associated reliabilities, on which the soma acts
as a decision maker. Furthermore, we derive gradient-based plasticity rules, allowing neurons to learn
to represent desired target distributions and to weight afferents according to their reliability. Our theory
shows how neurons perform Bayes-optimal cue integration. It also explains various experimental
findings, both on the system and on the single-cell level, and makes new, testable predictions for
intracortical neuron and synapse dynamics.

Introduction
Successful decision making is based on well-considered arguments. This holds as true for individuals
as it does for whole societies. For instance, opinions on proposed legislature may vary between experts,
political parties and special interest groups. How should one combine these different opinions? One might,
for example, integrate the different opinions by weighting them according to their relative reliability,
estimated from their past performance, or demonstrated expertise. The final decision can then be based on
the joint, reliability-weighted opinion, representing a compromise.

Such problems of weighting and combining different opinions are commonplace for our brains.
Whether inputs from neurons with different receptive fields or inputs from different modalities (Fig. 1a),
our cortex needs to combine these uncertain information sources into a coherent whole. Previous work
has demonstrated that multiple interacting neuronal populations can efficiently perform such probabilistic
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computations [1, 2]. These studies provided mechanistic models for the often Bayes-optimal behavior
observed in humans and other animals [3–5]. Here we demonstrate that probabilistic computations are
even deeper ingrained in our biological substrate, in single cortical neurons.

In cortical neurons, each dendritic branch receives information from presynaptic partners and forms
a local membrane potential. We propose this to be the analog of an opinion. In the absence of other
compartments and leak currents, the somatic output, the analog of a decision, would reflect the opinion
of the single branch. However, in the presence of the leak and multiple branches, the soma encodes a
reliability-weighted combination of a prior and additional opinions. We further propose that the reliability
of a dendritic branch with regards to a particular local opinion is encoded in its local conductance,
including conductances elicited by synaptic input. The biophysics of the bidirectional current flow in
cortical neurons with multiple dendritic compartments naturally implements Bayesian opinion weighting
(Fig. 1b), while the output of the neuron encodes decisions based on the pooled opinions.

Formally, the neuronal operation can be described as computing a posterior distribution. The crucial
ingredient is the divisive normalization performed by conductance-based synaptic coupling [6]. While the
dendritic opinion weighting emerges from the recurrent interaction of multiple compartments within the
dendritic tree, at the level of the input-output transfer function, the effective computation can be described
in a feed-forward manner.

Beyond opinion weighting itself, the single-neuron view provides an efficient basis for learning these
weights. Synapses not only learn to reproduce a somatic target activity [7], but they also adjust synaptic
weights to achieve some target variance in the somatic potential. Furthermore, afferents with low reliability
will be adjusted to contribute with a smaller total excitatory and inhibitory conductance to allow other
projections to gain more influence. Implicitly, this allows each dendritic compartment to adjust its relative
reliability according to its past success in contributing to the somatic decision.

In our theoretical framework we derive somatic membrane potential dynamics and synaptic plasticity
jointly via stochastic gradient ascent on the log-posterior distribution of somatic potentials. Simulations
demonstrate successful learning of a prototypical opinion weighting task, and the integration of sensory
cues from different modalities to guide behavior. The trained model allows us to interpret behavioral
and neuronal data from cue integration experiments through a computational lens and to make specific
predictions about both system behavior and single cell dynamics.

Results

Opinion weighting in cortical neurons
We consider a prototypical example of neuronal opinion weighting: the integration of various cues about a
stimulus, for example in early visual areas from different parts of the visual field (Fig. 1a) or in association
areas from different sensory modalities (Fig. 1b).

Due to properties of the stimulus and of our sensory systems, information delivered via various
modalities inherently differs in reliability. Behavioral evidence demonstrates that humans and non-human
animals are able to integrate sensory input from different modalities [e.g., 3–5, 8–13] and prior experience
[e.g., 14, 15], to achieve a similar performance as Bayes-optimal cue-integration models. We suggest that
pyramidal cells across cortex naturally take the average reliability of their inputs into account using two
orthogonal information channels: membrane potentials and conductances.

Consider a situation where your visual sensory apparatus is impaired, for example, due to a deformation
of the lens. Presented with multimodal stimuli that provide auditory and visual cues, you would have
learned to rely more on auditory cues rather than visual input (Fig. 2). When confronted with an animal as
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Figure 1: Dendritic opinion weighting as a canonical neuronal operation across cortex. (a1) Cue integration in
early visual perception judging the orientation of a local edge. (a2) Cue integration in multimodal perception judging
the height of a bar [3]. (b1) Dendritic opinion weighting of visual cues combining information across receptive fields.
(b2) Dendritic opinion weighting of multisensory cues combining information across modalities. This probabilistic
computation is realized by the bidirectional voltage propagation in cortical neurons (colored arrows) that settles at
the pooled somatic opinion (red triangle). The somatic voltage represents the reliability-weighted dendritic opinions
(grey, green, blue), calculated by a biophysical ”consensus finding”.

in Fig. 2a, based on your vision alone, you might expect it to be a cat, but not be certain about it. Hearing
it bark, however, would shift your belief towards it being, with high certainty, a dog. Since current-based
neurons only encode opinions about their preferred feature in the total synaptic current without considering
the relative reliability of different pathways, they can generate wrong decisions: here, a neuron that
integrates auditory and visual cues wrongly signals the presence of a cat to higher cortical areas (Fig. 2b).
In contrast, by using dendritic conductances gd as an additional coding dimension besides effective
dendritic reversal potentials Ed, conductance-based neurons are able to respond correctly by weighting
auditory inputs stronger than visual inputs (Fig. 2c). In the absence of stimuli, the “cat neuron” has a
low prior opinion that a cat may be present, but clearly increases this opinion upon the presentation of an
ambiguous cat-dog image (Fig. 2e, 400−1200ms, d,e). When the animal subsequently barks, the opinion
about the presence of a cat drops, i.e., the somatic membrane potential of the cat neuron hyperpolarizes,
while the reliability for this updated opinion increases, i.e., conductances increase. Consistent with
Bayes-optimal cue-integration models [e.g., 16], the combined estimate shows an increased reliability,
even if the cues are opposing.

The neuronal opinion code
Excitatory and inhibitory conductances targeting a dendritic compartment combine with the dendritic
leak and the associated reversal potentials into a total dendritic transmembrane current Id = gd (Ed−ud).
Here, the local, stimulus-dependent dendritic reversal potential Ed is given by

Ed =
gEEE +gIEI +gLEL

gE +gI +gL , (1)

where excitatory, inhibitory and leak reversal potential are denoted as EE/I/L, and the respective conduc-
tances by gE/I/L. The sum of these three conductances gd = gE +gI +gL represents the isolated dendritic
conductance, which excludes the somato-dendritic coupling. The excitatory and inhibitory conductances
are the product of the synaptic weights times the presynaptic firing rates, gE/I =W E/Ir. Note that in general
Ed is different from the actual dendritic potential ud, which is additionally influenced by the somatic
potential.

In our framework, each dendritic compartment has an associated preferred feature, i.e., an activity
pattern in its afferents which maximizes its reversal potential Ed. We hence identify Ed with the dendritic
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Figure 2: Conductance-based neuronal dynamics naturally implement probabilistic cue integration. (a) A
multisensory stimulus. (b) Current-based neurons can only additively accumulate opinions about their preferred
feature. (c) Conductance-based neurons simultaneously represent opinions and associated reliability. (d) Total
somatic conductances ḡs consisting of leak and synaptic conductances in a multisensory neuron under three
conditions: only visual input (V, blue), only auditory input (A, green), bimodal input (VA, red), and no input (gray).
Before 400ms the visual cue is absent. Before 1200ms the auditory cue is absent. (e) Somatic membrane potentials
us are noisy, time-continuous processes that sample from the somatic distributions in the respective condition.
This histogram on the right shows the somatic voltage distributions between 1250ms and 2250ms. (f) Suggested
microcircuit implementation. Activity r of pyramidal cells from lower areas is projected directly (red lines with
circular markers, W E

i denote excitatory synaptic weights) and indirectly via inhibitory interneurons (circles and black
lines with bar markers, W I

i denote inhibitory synaptic weights) to different dendritic compartments of pyramidal cells
in higher cortical areas. Each pyramidal cell represents a pooled opinion Ēs with some associated inverse variance
ḡs distributed across a corresponding population (overlapping triangle triples, representing pre- and postsynaptic
opinions, respectively).
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Figure 3: Non-linear opinion weighting is achieved through a linear vector summation of conductances. (a)
Non-linear combination of Gaussian probability densities. The pooled mean is a convex combination of the original
means, while the pooled reliability, the inverse variance, is a sum of the individual reliabilities. (b) Stimulus-evoked
excitatory and inhibitory synaptic conductances as two-dimensional vectors (blue and green), as well as the leak
(gray), are linearly summed across dendrites to yield the total somatic conductances (red arrow). The intersections
with the antidiagonal (black line) yield the corresponding dendritic and somatic reversal potentials. This intersection
is a nonlinear operation (see Methods, ”Linear coordinates for nonlinear processing”). The inset shows the full
distributions. Note that the prior can in general be modulated by synaptic conductance elicited by top-down
input (see panel c). (c) Translation of prior (gray) and dendritic (green and blue) opinions and reliabilities into
the corresponding somatic mean voltage and conductances (red). Note that for visualization purposes, the prior
distribution is only partially shown.

opinion about how well presynaptic activity is compatible with its preferred feature. We furthermore
identify the isolated dendritic conductance gd with the reliability of the corresponding dendritic opinion.
Intuitively speaking, the opinion of a dendritic compartment with large dendritic conductance will be more
resilient against different opinions encoded in other compartments.

How are dendritic opinions pooled to jointly determine the output of a neuron? The interaction between
soma and dendrites in cortical neurons naturally form a pooled opinion Ēs as a weighted average of the
individual dendritic opinions Ed

i , with the weight of each dendritic opinion reflecting its reliability gd
i

(Fig. 3c). The reliability of this pooled opinion is reflected by the total somatic conductance ḡs. The
somatic membrane potential us dynamically traces a noisy estimate of the pooled opinion Ēs,

Cu̇s = ḡs (Ēs−us)+ξ

=g0(E0−us)+
D

∑
i=1

α
sd
i
[
gL

i (E
L−us)+gE

i (E
E−us)+gI

i(E
I−us)

]
+ξ , (2)

with membrane capacitance C, and dendro-somatic coupling factors αsd
i = gsd

i /(gsd
i +gd

i ) that result from
the dendro-somatic coupling conductances gsd

i and the isolated dendritic conductances gd
i (see Methods,

”Bayesian theory of somatic potential dynamics” for details).
The corresponding neuronal processing of inputs is a non-linear operation on the level of membrane

potentials, described by sublinear summations [17]. Despite the nonlinear effect of inputs on membrane
potentials, the operations in conductance space are described by purely linear operations. While the
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Figure 4: Dendritic opinion pooling implies stimulus-specific reversal potentials. (a) Average stimulus-evoked
responses for different ranges of prestimulus potentials generated by our model (left) and measured experimentally
(right, from [18]). Vertical arrow indicates stimulus onset corresponding to activation of dendritic input and whisker
touch, respectively. (b) PSP amplitude vs. prestimulus potential generated by our model (left) and measured
experimentally (right, from [18]). Reprinted from Neuron, 69, Crochet, S., Poulet, J. F., Kremer, Y. & Petersen, C.
C., Synaptic mechanisms underlying sparse coding of active touch, 1160–1175., Copyright (2011), with permission
from Elsevier.

dendritic sublinearity gives rise to dendritic opinions, the somatic sublinearity performs a Bayesian
combination of opinions across the dendritic tree (Fig. 3a,c).

The somatic membrane potential is transformed into an instantaneous output rate rs = ρ(us) via some
monotonically increasing transfer function ρ. At any given time, multiple neurons with identical preferred
features will produce different output rates due to random background input. The variance across such an
ensemble reflects the reliability of the somatic opinions and can thus be communicated to downstream
areas (Fig. 2f) which can adjust synaptic weights to take this variability into account.

Stimuli elicit neuron-specific opinions and increase the neuronal reliability
The conductance-centered neuronal opinion weighting framework predicts neuronal response properties
that differ from those of classical current-based neuron models. In the opinion weighting framework, prior
opinions are encoded in the somatic membrane potential in the absence of sensory input. These priors
typically have low reliability, encoded in relatively small conductances. As a consequence the neuron
is more susceptible to background noise, resulting in large membrane potential fluctuations around the
prior potential. When a cue is presented, presynaptic activity increases, thereby pulling postsynaptic
membrane potentials towards the cue-specific reversal potentials Ed, irrespective of their prior value
(Fig. 4a). This phenomenon is observed in electrophysiological recordings from mouse somatosensory
cortex: the change in membrane potential upon whisker stimulation pulls the somatic membrane potential
from variable spontaneous pre-stimulus potentials towards a cue-specific post-stimulus potential (Fig. 4a,
[18]). Besides a change in the average membrane potential, cue onset increases conductances and hence
decreases spontaneous fluctuations.

These effects are signatures of neuronal opinion weighting. Cues provide information about the pres-
ence or absence of a neuron’s preferred feature. Upon cue onset, the prior distribution (i.e., distribution in
the absence of cues) is combined with cue-specific distributions leading to an updated somatic distribution
with adapted mean and reduced variance. If the prior strongly disagrees with cue information, the change
in mean is larger than if prior and cue information are consistent. Importantly, the variance is always
reduced in the presence of new information, regardless of whether it conflicts with previous information or
not; this is a hallmark of Bayesian reasoning.
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We propose that this probabilistic computation underlies the observed stimulus-driven reduction of
variability throughout cortex [19, 20] and explains why stimulus-evoked PSP amplitudes are negatively
correlated with prestimulus potentials [Fig. 4b; also see 18, 21]. In whisker stimulation experiments [18],
the stimulation intensity is encoded by the whisker deflection angle. Our framework predicts that, as
the amplitude of whisker deflections increases, the variance of the post-stimulus potentials decreases.
This prediction is consistent with the recent observation that increasing the contrast of oriented bar
stimuli reduces the variance in the postsynaptic response of orientation-specific neurons in macaque visual
cortex [22]. Furthermore, our model predicts that the nature of stimuli during learning will affect the
impact of sensory cues on electrophysiological quantities and behavior: more reliable priors will cause a
smaller influence of sensory inputs, while increasing stimulus reliability would achieve the opposite effect.
Regardless of training, our model also predicts decreasing influence of the prior for increasing stimulus
intensity.

Bayesian neuronal dynamics
The proposed neuronal opinion weighting can be described in a probabilistic framework of neuronal coding.
This framework allows us to derive the same biophysical dynamics, but from a normative standpoint.

For given synaptic weights W and presynaptic rates r that encode information about sensory stimuli,
we propose that the soma computes a posterior distribution over its membrane potential p(us|W,r).
Absent any sensory input, we assume the somatic voltage follows a Gaussian prior p(us|E0,g0). Its
mean represents the prior somatic opinion E0 and its variance is the inverse of the prior reliability g0 (cf.
Fig. 3); these parameters are determined by a combination of leak and non-sensory (top-down or lateral)
inputs. Consistent with experimental data [23] we assume Gaussian dendritic likelihoods p(Ed

i |us,gd
i ) with

dendritic reversal potentials Ed
i and isolated dendritic conductances gd

i determined by synaptic weights
and presynaptic rates as discussed above. The dendritic likelihoods quantify the statistical relationship
between dendritic opinions and the somatic potential. Intuitively speaking, they describe how compatible
a certain somatic potential us is with a dendritic reversal potential Ed

i . Note that this relation is of purely
statistical, not causal nature – biophysically, dendritic reversal potentials Ed

i cause somatic potentials, not
the other way around. To perform probabilistic inference, the soma computes the posterior via Bayes’
theorem:

p(us|W,r) ∝ likelihood×prior = e−
ḡs

2λe
(us−Ēs)

2
. (3)

Here, ḡs represents the total somatic conductance, and Ēs the pooled somatic opinion, which is given by
the convex combination of the somatic and dendritic opinions, weighted by their respective reliabilities
and dendro-somatic coupling factors (see Methods, ”Bayesian theory of somatic potential dynamics” and
Fig. 3). The exploration parameter λe relates conductances to membrane potential fluctuations. In general,
this parameter depends on neuronal properties, for example, on the amplitude of background inputs and
the spatial structure of the cell.

To obtain the somatic membrane potential dynamics from its statistics, we postulate that the soma
performs noisy gradient ascent on the log-posterior of the somatic potential:

Cu̇s = λe
∂

∂us
log p(us|W,r)+ξ = ḡs (Ēs−us)+ξ . (4)

The additive noise ξ represents white noise with variance 2Cλe, arising, for example, from unspecific
background inputs [24, 25]. For fixed presynaptic activity r, the average somatic membrane potential
hence represents a maximum-a-posteriori estimate (MAP, [16]), while its variance is inversely proportional
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Figure 5: Single neuron dynamics as Bayesian inference. (a) Biophysical dynamics bidirectionally couple somatic
and dendritic membrane potentials (Eqs. 6, 7). (b) Their steady state can be interpreted as a computing the posterior
p(us |E0,g0,E

d,gd) from the somatic prior p(us|E0,g0) and dendritic likelihoods p(Ed
i |us,gd

i ).

to the total somatic conductance ḡs. The effective time constant of the somatic dynamics is τ =C/ḡs, thus
enabling us to converge faster to reliable MAP estimates for larger ḡs.

The dynamics derived here from Bayesian inference are identical to the somatic membrane potential
dynamics in bidirectionally-coupled multi-compartment models with leaky integrator dynamics and
conductance-based synaptic coupling under the assumption of fast dendritic responses (Eqn. 2). In other
words, the biophysical system effectively computes the posterior distribution via its natural evolution
over time. This suggests a fundamental role of conductance-based dynamics for Bayesian neuronal
computation, which also extends to synaptic plasticity, as we discuss in the following.

Gradient-based synaptic dynamics
A fixed stimulus determines the somatic membrane potential distribution and – as shown in the previous
section – the somatic membrane potential dynamics will continuously sample from this distribution. Prior
to learning, this distribution will typically be different from a desired distribution as predicted, for example,
by past sensory experience or cross-modal input. We refer to such input-dependent desired distributions as
target distributions.

We define learning our framework as adapting synaptic weights W to increase the probability of
observing samples u∗s from the target distribution. Formally, learning reduces the Kullback-Leibler
divergence between the target distribution p∗(us|r) and the somatic distribution p(us|W,r). This is
achieved through gradient ascent on the (log-)posterior somatic probability of target potentials u∗s sampled
from the target distribution, resulting in the following dynamics for excitatory and inhibitory weights:

Ẇ E/I
i ∝ λe

∂

∂W E
i

log p(u∗s |W,r) ∝

[
(u∗s − Ēs)

(
EE/I− Ẽd

i

)
︸ ︷︷ ︸

=∆µE/I
i

+
αsd

i
2

(
λe

ḡs
− (u∗s − Ēs)

2
)

︸ ︷︷ ︸
=∆σ2

]
r , (5)

with Ẽd
i = αsd

i Ēs+(1−αsd
i )Ed

i , where αsd
i describes an effective coupling strength (see Methods, ”Weight

dynamics” for details).
All dynamic quantities arising in the synaptic plasticity rule are neuron-local. The dendritic potentials

Ed
i are available at the synaptic site, as well as the presynaptic rates r. We hypothesize that the backpropa-

gating action potential rate that codes for u∗s can influence dendritic synapses [26]. Furthermore, the total
conductance ḡs determines the effective time constant by which the somatic membrane potential fluctuates
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Figure 6: Dendritic predictive plasticity performs error correction and reliability matching. (a) A neuron
receives input via two different input channels with different noise amplitudes (green and blue). Synaptic plasticity
adapts the mean (µ) and variance (σ2) of the somatic membrane potential (red) towards the target (black). (b1)
Excitatory and inhibitory weights per input channel. Dashed vertical line indicates onset of learning. (b2) Top: ratio
of excitatory and total synaptic weights. Bottom: total synaptic weights.

and could be measured through its temporal correlation length. The exact molecular mechanisms by which
these terms are computed in the synapses remain a topic for future research.

Joint learning of somatic mean and variance
The total postsynaptic error is composed of an error in the mean ∆µE/I

i and an error in the variance ∆σ2

(Eqn. 5). By these two mechanisms, the adaptation of the excitatory and inhibitory synapses jointly
reduces both errors, the error in the mean and the error in the variance. To simultaneously adjust both the
mean and variance freely, the two degrees of freedom offered by separate excitation and inhibition are
required.

To illustrate these learning principles we consider a toy example in which a neuron receives input
via two different input channels with different noise amplitudes. Initially neither the average somatic
membrane potential, nor its variance match the target distribution (Fig. 6a, left). Over the course of
learning, the ratio of excitatory to inhibitory weights increases to allow the somatic membrane potential to
match the average target potential and the total strength of both excitatory and inhibitory inputs increases
to match the variance of the target (Fig. 6a, right; b1). Excitatory and inhibitory weights hence first
move into opposite directions to match the average, and later move in identical directions to match the
variance (Fig. 6b1). While the relative strength of excitation and inhibition after learning is comparable
for both input channels (Fig. 6b2, top), the total synaptic strength of the less noisy input channel is
significantly larger (Fig. 6b2, bottom), reflecting its larger reliability in producing the desired somatic
potentials. Intuitively speaking, our plasticity rule adjusts the relative weights of all afferents such that
those with high correlation to target potentials are stronger than those with weak correlation.

Our plasticity rules for excitatory and inhibitory synapses thus predict that initially excitatory and
inhibitory synaptic strengths move in opposite directions to jointly match the average somatic membrane
potential to the target potential. Second, after this mismatch has been sufficiently reduced, excitatory and
inhibitory strengths covary in order to match the variance of the target distribution.

Learning Bayes-optimal cue combinations
We next consider a multisensory integration task in which a rat has to judge whether the angle of a grating
is larger than 45◦ or not, using whisker touching (T) and visual inspection (V), see Fig. 7a and [13]. In
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Figure 7: Learning Bayes-optimal inference of orientations from multimodal stimuli. (a) Experimental setup
[see also 13]. (b) Network model. (c) Accuracy of the MAP estimate (MAP, dark gray), the trained model with
bimodal cues (VT, red), unweighted average of visual and tactile cues (unw. avg., light gray), and the trained model
with only visual (V, blue) and tactile cues (T, green), respectively. Error bars denotes standard error of the mean
over 25 experiments, each consisting of 20000 trials. (d) Psychometric curves of the model. Dots: subsampled data,
solid lines: fit of complementary error function. The inset shows the benefit of bimodal stimulation over unimodal
stimulation. The benefit is measured by the difference between the average loss in unimodal (V, T) and the average
loss in bimodal (VT) conditions. (e) Psychometric curves for rat 1 [13] for comparison. Reprinted from Neuron, 97,
Nikbakht, N., Tafreshiha, A., Zoccolan, D. & Diamond, M. E., Supralinear and supramodal integration of visual and
tactile signals in rats: psychophysics and neuronal mechanisms, 626–639, Copyright (2018), with permission from
Elsevier.

this example, projections are clustered according to modality on dendritic compartments. In general,
this clustering is not necessarily determined by modality but could also reflect, for example, lower-level
features, or specific intracortical pathways. In our setup, uncertainty in the sensory input from the two
modalities is modeled by different levels of additive noise. The binary classification is performed by
two multisensory output neurons that are trained to encode the features > 45◦ and < 45◦, respectively.
Technically, we assume the target distribution is a narrow Gaussian centered around a stimulus-dependent
target potential. For example, for the neuron encoding orientations > 45◦, the target potential would be
high for ground truth orientations > 45◦ and it would be low otherwise. The output neurons receive input
from populations of feature detectors encoding information about visual and tactile cues, respectively
(Fig. 7b).

The performance of the model neurons after learning matches well the Bayes-optimal MAP estimates
that make use of knowledge about the exact relative noise variances. In contrast, averaging the two cues
with equal weighting, and thus not exploiting the conductance-based opinion pooling, or considering only
one of the two cues, would result in lower performance (Fig. 7c). Furthermore, the psychophysical curves
of the trained model match well to experimental data obtained in a comparable setup (Fig. 7d,e).

Cross-modal suppression is caused by reliability-weighted opinions
Using the trained network from the previous section, we next consider the firing rate of the output neuron
that prefers orientations > 45◦ for conflicting cues with a specific mismatch. We assume a stimulus
orientation > 45◦ generates a separate cue for each modality, where, as an example we assume the visual
cue to be more vertical than the tactile cue (Fig. 8a) which result in different dendritic reversal potentials
Ed

i . In the following we identify the reliability of a stimulus with its intensity. Intuitively speaking, a weak
stimulus is less reliable than a strong one.

When cues are presented simultaneously at low stimulus intensity, the output neurons fire stronger than
in unimodal conditions (Fig. 8b). However, when presented simultaneously at high stimulus intensity the
cues suppress each other, i.e., the resulting firing rate is less than the maximal rate in unimodal conditions
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Figure 8: Cross-modal suppression as reliability-weighted opinion pooling. (a) Experimental setup (compare
Fig. 7). (b) Firing rate of the output neuron encoding orientations > 45◦ for unimodal stimulation (V,T) and bimodal
stimulation (VT). Dashed lines indicate the limit of no stimulation (gray), and infinitely strong tactile (green) and
visual (blue) stimulation, respectively. Inset shows zoom in for high stimulation intensities. (c) Firing rate of a
neuron from macaque MSTd in response to misaligned visual (blue) and vestibular (green) cues with a mismatch
of ∆ = 60◦. Modified from [27]. Reprinted from Neuron, 95, Ohshiro, T., Angelaki, D. E. & DeAngelis, G. C.,
A neural signature of divisive normalization at the level of multisensory integration in primate cortex, 399–411,
Copyright (2017), with permission from Elsevier.

(Fig. 8b). This phenomenon is known as cross-modal suppression [27, 28].
In the context of the opinion weighting, this counterintuitive interaction of multimodal cues arises as a

consequence of the pooled opinion being a weighted average of the two unimodal opinions and the prior
opinion. For low stimulus intensity the prior opinion dominates; since the evidence from either modality
is only weak, the opinion arriving from a second modality always constitutes additional evidence that the
preferred stimulus is present. Thus, the pooled opinion is pulled farther away from the prior in the bimodal
condition as compared to the unimodal one. For high stimulus intensity the prior does not play a role and
the pooled opinion becomes a weighted average of the two modality-specific opinions. As one cue is more
aligned with the neuron’s preferred feature than the other, the weighted average appears as a suppression
(Fig. 8). We thus propose that the computational principle of dendritic opinion pooling underlies other
versions of cross-modal suppression [e.g., 6, 27–29], and also explains unimodal suppression arising from
superimposing cues [e.g., 30–32], or superimposing sensory inputs and optogenetic stimulation [33, 34].

Discussion
The biophysics of cortical neurons can be interpreted in a Bayesian framework as reliability-weighted
opinion pooling. In this framework, neurons encode posterior distributions via the mean and variance
of their somatic membrane potential. We derived both membrane and weight dynamics from stochastic
gradient ascent on a posterior distribution. Our plasticity rule naturally accommodates the relative
reliabilities of different pathways by scaling up the relative weights of those inputs that have a high
correlation to target potentials. The targets may themselves be formed by peri-somatic input from
other modalities, or by more informed predictive input from other cortical areas. We demonstrated
successful learning in a multisensory integration task in which modalities were different in their reliability.
Without being explicitly constructed for this purpose, the trained model reproduces several experimental
findings. Furthermore, it makes new experimental predictions, in particular regarding neuronal uncertainty
representation and its learning. Our model adds support for the relevance of synaptic conductances

11



in shaping neuronal besides normalizing responses [6], and adapting the neuronal response time scale
[35–38]. Previous work that stressed the sublinear voltage summation in conductance-based dendrites
[17] is reinterpreted here from a functional perspective.

A common view of dendritic processing interprets the dendritic trees of neurons as two-layer networks,
where non-linear responses are generated in dendritic branches and combined additively at the soma
[39]. While such a view holds true for the distal tips, it can not hold for the entirety of the dendritic
arborization [40]. Our current work thus provides a new paradigm that is particularly suited to synapses
on proximal and intermediate dendritic branches (see also Supplement E, Fig 10). Furthermore, we have
only considered synapses of which the conductance does not depend on the local membrane voltage.
Excitatory synapses in pyramidal cells are known to express N-methyl-D-aspartate (NMDA) channels,
whose conductance depends on the local voltage [41]. These synapses elicit strong supra-linear responses
[42] which cause a massive increase of the isolated dendritic conductance and both dendritic and somatic
potentials. In our present framework such responses correspond to an absolute certainty that a given
feature is present in the input modality targeting the dendritic branch. Dendritic Ca-spikes, that originate in
the apical dendrites of certain pyramidal cells [43, 44], could also correspond to such strong opinions. Our
normative framework provides a mathematical underpinning for understanding such nonlinear effects. For
example, synaptic conductances could be modeled to depend on the respective dendritic reversal potentials.
While the principle of conductance-based opinion pooling applies independently of how conductances
were generated, the dynamics of such a model would differ from the ones presented here.

Bayesian inference has previously been suggested as an operation on the level of a neuronal population
in space [1, 16, 45] or in time [11, 46, 47]. In our framework, to read out the reliability of a single neuron’s
opinion about the presence of its presynaptic feature, postsynaptic neurons either have to average across
time or across a population of neurons that encode the same feature. Our single-neuron description of
Bayesian inference is complementary to these population-based models. Other recent work also considers
the neuronal representation and learning of uncertainty. In line with our plasticity rules, natural-gradient-
descent learning for spiking neurons [48] predicts small learning rates for unreliable afferents. A different
approach to representing and learning uncertainty is based on synaptic weights rather than membrane
potentials and conductances [49]. In this model each synapse represents a distribution over synaptic
weights and plasticity adapts the parameters of this distribution. While this represents an interesting
complementary hypothesis, this normative view does not incorporate neuronal membrane dynamics.

In conclusion, we suggest that single cortical neurons are naturally equipped with the “cognitive capa-
bility” of Bayes-optimal opinion pooling. Moreover, our gradient-based formulation opens a promising
avenue to explain the dynamics of hierarchically organized networks of such neurons. Our framework
demonstrates that the conductance-based nature of synaptic coupling may not be an artifact of the bio-
logical substrate, but rather enables single neurons to perform efficient probabilistic inference previously
thought to be realized only at the circuit level.

Methods

Equivalent somato-dendritic circuit
The excitatory and inhibitory dendritic conductances, gE

i and gI
i , are driven by the presynaptic firing rates

r(t) through synaptic weights W E/I
i and have the form gE/I

i (t) =W E/I
i r(t). For notational simplicity we

drop the time argument in the following. The dynamics of the somatic voltage us and dendritic voltages ud
i

12



for the D dendrites projecting to the soma read as

C u̇s = g0(E0−us)+
D

∑
i=1

gsd
i (ud

i −us) (6)

Cd
i u̇d

i = gL
i (E

L−ud
i )+gE

i (E
E−ud

i )+gI
i(E

I−ud
i )+gds

i (us−ud
i ) , (7)

where C and Cd are the somatic and dendritic capacitances, EL/E/I the reversal potentials for the leak, the
excitatory and inhibitory currents, gsd

i the transfer conductance from the ith dendrite to the soma, and gds
i

in the reverse direction.
We assume that Cds are small, so that dendritic dynamics are much faster than somatic dynamics and

can thus be assumed to be in equilibrium. We can thus set u̇d
i to zero and rearrange Eqn. 7 to obtain

ud
i −us =

gd
i

gd
i +gds

i
(Ed

i −us) . (8)

Plugging Eqn. 8 into Eqn. 6 and using the shorthand notation αsd
i =

gsd
i

gds
i +gd

i
, we obtain

Cu̇s = g0(E0−us)+
D

∑
i=1

α
sd
i gd

i (E
d
i −us) . (9)

This is equivalent to gradient descent (−∂E/∂us) on the energy function

E(us) =
g0

2
(E0−us)

2 +
D

∑
i=1

αsd
i gd

i
2

(Ed
i −us)

2 , (10)

which also represents the log-posterior of the somatic potential distribution, as we discuss below.

Bayesian theory of somatic potential dynamics
Above, we have outlined a bottom-up derivation of somatic dynamics from the biophysics of structured
neurons. In the following, we consider a probabilistic view of single neuron computation and demonstrate
that this top-down approach yields exactly the same somatic membrane potential dynamics.

The assumption of Gaussian membrane potential densities throughout reflects the fact that the summa-
tion of many independent synaptic inputs generally yields a normal distribution, according to the central
limit theorem and in agreement with experimental data [23]. We thus consider a prior distribution over us
of the form

p(us|E0,g0) =
1
Z0

e−
g0
2λe

(E0−us)
2
, (11)

with parameters λe,g0,E0 and normalization constant Z0. Similarly, we define the dendritic likelihood for
us as

p(Ed
i |us,gd

i ) =
1

Zd
i

e−
αsd

i gd
i

2λe
(Ed

i −us)
2
, (12)

with parameters αsd
i ,Ed

i ,g
d
i . According to Bayes’ rule, the posterior distribution of the somatic membrane

potential us is proportional to the product of the dendritic likelihoods and the prior. If we further assume
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that dendrites are conditionally independent (conditional independence of dendritic likelihoods given the
somatic potential), their joint likelihood p(Ed |us,g

d) factorizes, yielding

p(us |E0,g0,E
d,gd) ∝ p(Ed |us,g

d)p(us|E0,g0) =
D

∏
i=1

p(Ed
i |us,gd

i )p(us|E0,g0) . (13)

Plugging in Eqs. 11 and 12, we can derive that the posterior is a Gaussian density over us with mean

Ēs =
g0E0 +∑

D
i=1 αsd

i gd
i Ed

i

g0 +∑
D
i=1 αsd

i gd
i

(14)

and variance

ḡs = g0 +
D

∑
i=1

α
sd
i gd

i . (15)

We thus obtain
p(us|W,r)≡ p(us |E0,g0,E

d,gd) =
1
Z

e−
ḡs

2λe
(us−Ēs)

2
, (16)

with normalization factor Z =
√

2πλe
ḡs

. We switched in Eqn. 16 to the conditioning on W and the presynaptic

rates r since these uniquely determine the dendritic and somatic conductances (gd), and thus also the
corresponding reversal potentials (Ed). Here, we use the conventional linear relationship g =Wr between
conductances and presynaptic rates. For more complex synapses with nonlinear transmission of the
type g = f (w,r), where f can be an arbitrary function, our derivation holds similarly, but would yield a
modified plasticity rule.

The energy function from Eqn. 10 is equivalent to E(us) =−λe log p(us|W,r)−λe logZ = ḡs
2 (us− Ēs)

2.
Since Z is independent of us, the somatic membrane potential dynamics from Eqn. 9 minimizes the energy
E while maximizing the log-posterior,

Cu̇s =−
∂E
∂us

= λe
∂

∂us
log p(us|W,r) . (17)

In this form, the somatic voltage moves towards the maximum-a-posteriori estimate (MAP) of us. The
stochastic version of Eqn. 17 with Gaussian additive noise leads to Eqn. 2 in the Results, effectively
implementing Langevin sampling from the posterior distribution.

Weight dynamics
The KL between the target distribution p∗ and the somatic membrane potential distribution can be written
as

KL[p∗(us|r)|p(us|W,r)] =−S(p∗)−Ep∗ [log p(us|W,r)] . (18)

The entropy S of the target distribution p∗ is independent of the synaptic weights W . Stochastic gradient
descent on the KL divergence therefore leads to a learning rule for excitatory and inhibitory synapses that
can be directly derived from Eqn. 16 (see SI):

Ẇ E/I
i ∝ λe

∂

∂W E/I
i

log p(u∗s |W,r) = α
sd
i

[
(u∗s − Ēs)

(
EE/I− Ẽd

i

)
+

αds
i
2

(
λe

ḡs
− (u∗s − Ēs)

2
)]

r , (19)
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with αsd
i =

gsd
i

gds
i +gd

i
, αds

i =
gds

i
gds

i +gd
i

and Ẽd
i = αds

i Ēs +(1−αds
i )Ed

i , see also Eqn. 5 in the Results, where we

assumed symmetric coupling conductances between dendritic compartments and soma, i.e., gsd
i = gds

i .
As discussed in the main text, the two terms in the plasticity rule roughly correspond to adapting the

mean and variance of the somatic distribution. However, the second term ∝
λe
ḡs
− (u∗s − Ēs)

2 depends not
only on a mismatch in the variance, but also on a mismatch in the mean of the distribution. To highlight
this, we rewrite the sample u∗s as the target mean plus a sample from N (0,1) scaled with the target
variance: λe

ḡs
− (µ∗+σ∗ξ∗− Ēs)

2. In this form, one can easily see that only after Ēs matches the mean of

the target distribution will the synapses adapt to match λe
ḡs

to the target variance σ∗2.
In the absence of a target distribution, the neuron essentially sets its own targets. On average, weight

changes in the absence of a target distribution are hence zero.
Since for conductance-based synapses only non-negative weights are meaningful, we define the

minimal synaptic weight as zero.

Linear coordinates for nonlinear processing
The interplay of conductances and potentials can be visualized in a Cartesian plane spanned by inhibitory
and excitatory conductances (Fig. 9). To simplify the picture, we neglect leak conductances and assume
strong dendritic couplings gsd,gds. The state of a single dendrite is fully determined by its inhibitory and
excitatory synaptic conductances and can be represented by a vector (gI,gE). As we assume the prior
conductance is zero, the total conductance at the soma is given by the sum of dendritic conductances.
Thus, the soma itself can be represented by a vector that is the sum of the dendritic conductance vectors.
Furthermore, the length of these vectors is proportional to the reliability of the opinion encoded by their
associated compartments.

This simple, linear construction also allows us to determine the membrane potentials of individual
compartments. For this, we need to construct the antidiagonal segment connecting the points (1,0) and
(0,1). If one identifies the endpoints of this segment with the synaptic reversal potentials, i.e., EI→ (1,0)
and EE→ (0,1), the antidiagonal can be viewed as a linear map of all possible membrane potentials. With
this construction, the membrane potential of a compartment (dendritic or somatic) is simply given by the
intersection of its conductance vector with the antidiagonal. Formally, this intersection is a nonlinear
operation and instantiates a convex combination, the core computation that connects neuronal biophysics
to Bayesian inference (Fig. 3).

This simple construction allows us to easily visualize the effects of synaptic weight changes on
the dendritic and somatic opinions. For example, increasing the inhibitory conductance of a certain
compartment will have a twofold effect: its opinion about the presence of its preferred feature will
decrease (the intersection will move towards EI), while simultaneously increasing its reliability (the vector
will become longer).

In the following, we give a simple geometric proof that the intersection u of a conductance vector
(gI,gE) with the antidiagonal indeed represents the correct membrane potential of the compartment. The
coordinates of this intersection are easy to calculate as the solution to the system of equations that define
the two lines x/y = gI/gE and y = 1− x, with

(x,y) =
(

gI

gI +gE ,
gE

gI +gE

)
. (20)

The ratio of these coordinates is also the ratio of the two resulting segments on the antidiagonal: (EE−
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Figure 9: The nonlinear membrane potential and synaptic dynamics expressed in linear conductance coordi-
nates. Dendrites can be represented as vectors defined by their inhibitory and excitatory conductances (blue and
green arrows). In these coordinates, the soma is itself represented by a vector that is simply the sum of dendritic
vectors (red arrow). The antidiagonal (gray) spans the range of all possible membrane voltages, from E I to EE.
The membrane potential of any given compartment is given by the intersection of its conductance vector with the
antidiagonal.

u)/(u−EI) = x/y. Solving for u yields

u =
gIEI +gEEE

gI +gE , (21)

which represents the sought convex combination.

Simulation details
In the following we provide additional detail on simulations. Numerical values for all parameters can be
found in the corresponding tables.

Details to Fig. 4 We consider the trained network from Fig. 7, but now use a finite somatic capacitance
C. The differential equation of the output neurons (Eqn. 2) is integrated on a time grid of spacing ∆t with
an explicit Runge-Kutta method of order 3(2) from SciPy 1.4.1 [50]. To mimic background noise we
generate “noise” cues, identical for both modalities, from a normal distribution N (µb,σ

2
b) and convert

these into rates rb via the two populations of feature detectors. We consider an additional “signal” cue,
also identical across modalities and trials, which generates additional rates r′ via the feature detectors. The
input rate for the output neurons is then computed as r = γr′+(1− γ)rb, where γ = γbefore before stimulus
onset and γ = γafter after stimulus onset. For visualization purposes, we shift the scale of membrane
potentials by −8mV in the figure.

Details to Fig. 6 We consider a neuron following instantaneous versions of Eqn. 2. It has D compart-
ments with infinitely strong coupling of the dendritic compartments to the soma gds,gsd→ ∞. In each
trial, we sample a ground truth input rate r ∼ N (µr,σ

2
r ), and from this rate we generate noisy rates

rV ∼ N (r,σ2
V),r

T ∼ N (r,σ2
T) with modality-specific noise amplitudes σV,σT, respectively. We avoid

non-positive input rates by replacing them with rmin. We introduce an additional neuron with just a single
compartments which generates target membrane potentials u∗ from the ground truth input rate r and a
random weight matrix. The second neuron receives the noisy input rates and should learn to mimic the
distribution of somatic target potentials by learning synaptic weights via Eqn. 5. We train for a certain
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Parameter name Value Description
Ntrials 40 number of trials
µnoise,σnoise 35◦,15◦ mean/std. of noise orientations
θstimulus 44◦ stimulus orientation
γbefore,γafter 0.0,0.88 rel. signal contrast before/after stimulus onset
dt 0.2ms integration time step
T 100ms simulation duration
C 50pF somatic membrane capacitance
λe 100.0nSmV2 neuronal exploration constant

Table 1: Parameters used in Fig. 4. Remaining parameters defined in Tab. 3.

Parameter name Value Description
N 1 number of neurons
D 2 number of dendritic compartments per neuron
gL

0 0.25nS somatic leak conductance
gL

i 0.025nS dendritic leak conductance
wmin

init ,w
max
init 0.0nSs,0.019nSs min/max value of initial excitatory weights

wmin
init ,w

max
init 0.0nSs,0.21nSs min/max value of initial inhibitory weights

wmin
init ,w

max
init 0.0nSs,1.07nSs min/max value of target excitatory weights

wmin
init ,w

max
init 0.0nSs,7.0nSs min/max value of target inhibitory weights

η 1.25 ·10−3 learning rate
Ntrials 110000 number of trials
∆ttrial 10ms trial duration
r∗ N (1.2 1

s ,0.5
1
s ) distribution of input rates

rmin 0.001 1
s minimal input rate

σT 0.3 1
s noise amplitude of tactile modality

σV 0.01875 1
s noise amplitude of visual modality

Table 2: Parameters used in Fig. 6. Remaining parameters defined in Tab. 3.

number of trials Ntrials, and for visualization purposes convert trial number into time by defining a trial
duration of ∆ttrial.

Details to Fig. 7 We consider N output neurons each with D dendritic compartments. Their dynamics
are described by Eqn.2, but for computational efficiency we consider an instantaneous version of with
C→ 0. We furthermore assume infinitely strong coupling of the dendritic compartments to the soma
gds,gsd→ ∞. We use a softplus activation function ρ(us) = log(1+ exp(us)).

We define two homogeneous input populations of NT and NV feature detectors, respectively, with
Gaussian tuning curves. The output rate of a feature detector in response to a cue with orientation θ is
given by:

r(θ) = rmin +(rmax− rmin)e−
κ

2 (θ−θ′)2
, (22)

with minimal rate rmin, maximal rate rmax, concentration κ and preferred orientation θ′. The preferred
orientations θ′ are homogeneously covering the interval [θfd

min,θ
fd
max]. All feature detectors from one

population project to one dendritic compartment of each output neuron via plastic connections.
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Each output neuron additionally receives an input from one presynaptic neuron with fixed rate but
plastic weight, allowing it to adjust its prior opinions.

Initial weights are randomly sampled from a zero-mean normal distribution with standard deviation
σw

init. Training proceeds as follows. From a ground-truth orientation θ∗ two cues, θV, and θT, are generated
by sampling from a Gaussian distribution around a true stimulus value with modality-specific noise
amplitudes σV and σT). The true orientation θ∗ determines the output neurons target rates and hence,
via the inverse activation function, target membrane potentials. The output neuron which should prefer
orientations > 45◦ is trained to respond with a rate r∗low if θ < 45◦ and with a rate r∗high if θ≥ 45◦. The
other output neuron is trained in the opposite fashion. Weight changes are following Eqn. 5. To speed
up training we use batches of size b for Ntrain trials with ground truth orientations θ∗ sampled uniformly
from [θtrain

min ,θ
train
max ]. During training, with probability pbimodal cues are provided via both modalities, while

1− pbimodal of all trials are unimodal, i.e., feature detectors of one modality remain silent.
For testing the output neurons are asked to classify Ntest cues uniformly sampled from [θtest

min,θ
test
max],

again perturbed by modality specific noise. The classification is performed on the combined rate of the two
output neurons r = 0.5

(
r0 +(rlow + rhigh− r1)

)
, where r0 is the rate of the neuron preferring orientations

> 45◦ and r1 the rate of the other output neuron. A ground truth orientation θ∗ is classified as >= 45◦ if
r >= rlow +0.5

(
rhigh− rlow

)
.

Details to Fig. 8 We consider the trained network from Fig. 7. Here we set the cues provided to the
feature detectors of the tactile and visual modality to fixed values θV,θT, respectively. We introduce two
additional parameters, the stimulus intensities cV,cT, which linearly scale the rates of all feature detectors
of the respective modality. For visualization purposes we scale the rate of the output neuron by a factor
rscale.
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Parameter name Value Description
N 2 number of neurons
D 3 number of dendritic compartments per neuron
gL

0 1.0nS somatic leak conductance
gL

i 0.2nS dendritic leak conductance
EE,EI 0mV,−85mV exc. /inh. reversal potentials
EL −70mV leak potential
λe 1.0nSmV2 neuronal exploration constant
C → 0 somatic membrane capacitance
gsd

i ,gds
i → ∞ somato-dendritic/dendro-somatic coupling conductance

NT,NV 70 number of feature detectors per modality
[θfd

min,θ
fd
max] [−315◦,405◦] min/max preferred orientations of feature detectors

κ 6.0 1
deg2 concentration (inverse variance) of feature detectors

rlow,rhigh 0.75 1
s ,16.0 1

s min/max rates of feature detectors
wmin

init ,w
max
init 0.0nSs,0.005nSs min/max value of initial excitatory weights

wmin
init ,w

max
init 0.0nSs,0.024nSs min/max value of initial inhibitory weights

η 0.25 ·10−4 learning rate
σT 28.5◦ tactile noise amplitude
σV 13.5◦ visual noise amplitude
[θtrain

min ,θ
train
max ] [−270◦,360◦] min/max of training orientations

[θtest
min,θ

test
max] [−135◦,225◦] min/max of testing orientations

θdb 45◦ decision boundary
Ntrain 400000 number of training trials
Ntest 500000 number of testing trials
pbimodal 0.9 probability of a bimodal trial during training
b 12 batch size
r∗low,r

∗
high 0.75 1

s ,16.0 1
s low/high target rates

Table 3: Parameters used in Fig. 7.

Parameter name Value Description
θT 65◦ orientation of tactile cue
θV 50◦ orientation of visual cue
cT,cV [10−3,102] stimulus contrasts of tactile and visual modality
rscale 2.5 output rate scaling factor

Table 4: Parameters used in Fig. 8. Remaining parameters defined in Tab. 3.
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Supplements

A Definitions
The following definitions are used throughout the supplementary material and main manuscript:

us =somatic membrane potential
λe =neuronal exploration parameter

W E/I
i =excitatory/inhibitory synaptic weights onto dendrite i

r =presynaptic rates

gL
i =leak conductance on dendrite i

gE/I
i =W E/I

i r,excitatory/inhibitory conductance on dendrite i

EL/E/I =leak/excitatory/inhibitory reversal potential
g0 =prior conductance
E0 =prior potential

gd
i =gE

i +gI
i +gL

i isolated dendritic conductance

Ed
i =

gE
i EE +gI

iE
I +gL

i EL

gE
i +gI

i +gL
i

dendritic reversal potential

gsd
i =dendro-somatic coupling conductance

gds
i =somato-dendritic coupling conductance

α
sd
i =

gsd
i

gds
i +gd

i
dendro-somatic coupling factor

α
ds
i =

gds
i

gds
i +gd

i
somato-dendritic coupling factor

ḡs =g0 +
D

∑
i=1

α
sd
i gd

i total somatic condutance

Ēs =
1
ḡs

(
g0E0 +

D

∑
i=1

α
sd
i gd

i Ed
i

)
pooled somatic opinion

B Derivation of the somatic potential distribution
We consider the prior distribution on us of the form

p(us|E0,g0) =
1
Z0

e−
g0
2λe

(E0−us)
2
. (23)

We consider the dendritic likelihood functions for us:

p(Ed
i |us,gd

i ) =
1

Zd
i

e−
αsd

i gd
i

2λe
(Ed

i −us)
2
. (24)
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The posterior over us is given by

p(us |E0,g0,E
d,gd) ∝ p(Ed |us,g

d)p(us|E0,g0) =
D

∏
i=1

p(Ed
i |us,gd

i )p(us|E0,g0) . (25)

We first consider the unnormalized posterior, and rewrite it, dropping all terms constant in us:

D

∏
i=1

p(Ed
i |us,gd

i )p(us|E0,g0) ∝ e−
g0
2λe

(us−E0)
2 D

∏
i=1

e−
αsd

i gd
i

2λe
(us−Ed

i )
2

∝ e
− g0+∑

D
i=1 αsd

i gd
i

2λe

(
u2

s−2us
g0E0+∑

D
i=1 αsd

i gd
i Ed

i
g0+∑

D
i=1 αsd

i gd
i

)
(26)

∝ e−
ḡs

2λe
(us−Ēs)

2
(27)

As the density needs to be normalized, we can compute the normalization factor Z directly from this form
as a Gaussian integral:

Z =
∫

dus e−
ḡs

2λe
(us−Ēs)

2

=

√
2πλe

ḡs
(28)

This finally results in the somatic potential distribution:

p(us|W,r) =
1
Z

e−
ḡs

2λe
(us−Ēs)

2
. (29)

C Derivation of membrane potential dynamics
We introduce the energy E as the negative logarithm of p:

E(us,W,r) :=− log p(us|W,r) . (30)

We obtain potential dynamics from gradient descent on E:

cmu̇s =−λe
∂

∂us
E(us,W,r)

=λe
∂

∂us
log p(us|W,r)

=λe
∂

∂us

(
− ḡs

2λe
(us− Ēs)

2 +
1
2

log
ḡs

2πλe

)
=ḡs(Ēs−us)

=g0(E0−us)+
D

∑
i=1

α
sd
i
(
gL

i (E
L−us)+gE

i (E
E−us)+gI

i(E
I−us)

)
. (31)

24



D Derivation of weight dynamics
We want to obtain weight dynamics that approximate gradient descent on the KL:

−λe
∂

∂W E/I
i

Er [KL(p∗(us|r)‖p(us|W,r))] (32)

We first rewrite the KL:

KL(p∗(us|r)‖p(us|W,r)) =
∫

dus p∗(us|r) log
p∗(us|r)

p(us|W,r)

=
∫

dus p∗(us|r) log p∗(us|r)−
∫

dus p∗(us|r) log p(us|W,r)

=−S(p∗(us|r))−Eus [log p(us|W,r)]

Here, we can drop the first term as it does not depend on W . We perform stochastic gradient descent in
r and us, i.e., we drop the averages and use single samples r ∼ p∗(r),u∗ ∼ p∗(us|r):

λe
∂

∂W E/I
i

Er [Eus [log p(us|W,r)]] =λe
∂

∂W E/I
i

∫
dr p∗(r)

∫
dus p∗(us|r) log p(us|W,r)

≈λe
∂

∂W E/I
i

log p(u∗|W,r) , (33)

where in the last step we plugged in the empirical distribution for p∗(r)p∗(us|r) consisting of Dirac-delta
functions centered on the data points (r,u∗). We set

Ẇ E/I
i = ηλe

∂

∂W E/I
i

log p(u∗|W,r) (34)

with some fixed learning rate η.
We compute the derivative:

λe
∂

∂W E/I
i

log p(us|W,r) =λe
∂

∂W E/I
i

(
− ḡs

2λe
(us− Ēs)

2 +
1
2

log
ḡs

2πλe

)
=− 1

2
∂ḡs

∂W E/I
i

(us− Ēs)
2− ḡs

2
∂

∂W E/I
i

(us− Ēs)
2 +

λe

2
∂

∂W E/I
i

log ḡs (35)

We compute the derivative:

∂ḡs

∂W E/I
i

=
∂

∂W E/I
i

(
g0 +

D

∑
d=1

gsd
i

gds
i +gd

i
gd

i

)

=
∂

∂W E/I
i

gsd
i

gds
i +gd

i
gd

i

=

(
∂

∂W E/I
i

gsd
i

gds
i +gd

i

)
gd

i +
gsd

i

gds
i +gd

i

∂

∂W E/I
i

gd
i

=

(
−

gsd
i

(gds
i +gd

i )
2

∂

∂W E/I
i

gd
i

)
gd

i +
gsd

i

gds
i +gd

i

∂

∂W E/I
i

gd
i

=

[(
−

gsd
i

(gds
i +gd

i )
2

)
gd

i +
gsd

i

gds
i +gd

i

]
r

=α
sd
i α

ds
i r (36)
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with αsd
i := gsd

i
gds

i +gd
i

and αds
i := gds

i
gds

i +gd
i
. Note that for symmetric coupling conductances αsd

i = αds
i .

We compute the derivative:

∂

∂W E/I
i

(us− Ēs)
2 =−2(us− Ēs)

∂

∂W E/I
i

Ēs

=−2(us− Ēs)
∂

∂W E/I
i
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1
ḡs

(
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D
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d=1
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i
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i +gd

i
gd

i Ed
i
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=−2(us− Ēs)

(
− 1

ḡs
Ēs

∂ḡs

∂W E/I
i

+
1
g0

∂

∂W E/I
i

[
gsd

i
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i +gd

i
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i Ed
i

])
=−2(us− Ēs)

(
− 1

ḡs
Ēs

∂ḡs

∂W E/I
i

+
1
ḡs

[
∂

∂W E/I
i

gsd
i

gds
i +gd

i

]
gd

i Ed
i +

1
ḡs

[
gsd

i

gds
i +gd

i

]
EE/Ir

)
=−2(us− Ēs)

(
− 1

ḡs
Ēsα

sd
i α

ds
i r−

αsd
i

ḡs

[
1

gds +gd
i

r
]

gd
i Ed

i +
αsd

i
ḡs

EE/Ir
)

=−2(us− Ēs)
αsd

i
ḡs

(
−Ēsα

ds
i −

[
gd

i

gds +gd
i

]
Ed

i +EE/I
)

r

=−2(us− Ēs)
αsd

i
ḡs

(
EE/I−

[
α

ds
i Ēs +(1−α

ds
i )Ed

i

])
r (37)

We compute the derivative:

∂

∂W E/I
i

log ḡs =
1
ḡs

∂ḡs

∂W E/I
i

=
1
ḡs

α
sd
i α

ds
i r (38)

We now put everything together, yielding:

λe
∂

∂W E/I
i

log p(u∗|W,r) =− 1
2

∂ḡs

∂W E/I
i

(u∗− Ēs)
2− ḡs

2
∂

∂W E/I
i

(u∗− Ēs)
2 +

λe

2
∂

∂W E/I
i

log ḡs

=− 1
2

α
sd
i α

ds
i r(u∗− Ēs)

2 +(u∗− Ēs)α
sd
i

(
EE/I−

[
α

ds
i Ēs +(1−α

ds
i )Ed

i
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r+

1
2

λe

ḡs
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sd
i α

ds
i r
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[
(u∗− Ēs)

(
EE/I−

[
α

ds
i Ēs +(1−α
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i )Ed

i

])
−

αds
i
2

(
(u∗− Ēs)

2− λe

ḡs
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α

sd
i r

=

[
(u∗− Ēs)

(
EE/I− Ẽd

i

)
−

αds
i
2

(
(u∗− Ēs)

2− λe

ḡs

)]
α

sd
i r (39)

where we introduced Ẽd
i = αds

i Ēs +(1−αds
i )Ed

i .

E Dendritic parameters
Our approach relies on two assumptions with respect to the biophysical model (Eqs. 6, 7): the capaci-
tances of the dendritic compartments are small compared to the somatic capacitance and the dendritic
conductances gd

i are able to overrule the somatic prior g0. A recently developed dendritic simplification

26



Figure 10: Parameters of the reduced compartmental model as derived from a detailed morphological model.
(a) A detailed L5 Pyramidal cell model (left) is reduced to a configuration with one dendritic compartment on
each of seven main basal subtrees (right). (b) Ratio of dendritic to somatic capacitance, for increasing distances
between the dendritic sites and the soma. The box indicates the lower and upper quartile values and the orange bar
the median. The whiskers indicate the minimal and maximal values. The ratio is always much smaller than one,
supporting our approximation of using the instantaneous solution for the dendritic voltage. (c) Effective dendritic
conductance at the soma, αsd

i gd
i , as a function of the isolated dendritic conductance gd

i . This quantity represents the
effective reliability of the dendritic opinion as read out at the soma. It saturates at the level of the somato-dendritic
coupling conductance gsd

i . (d) Ratio of the somato-dendritic coupling conductance to the somatic leak conductance
for increasing distance between the dendritic site and the soma. When this ratio is larger than one, a single branch
can overrule the somatic prior. Otherwise, multiple branches have to cooperate to overrule the prior. The inset shows
a magnified version for dendritic sites farther than 50 µm from the soma.

framework [51] allows us to systematically reduce full biophysical models to obtain the parameters of
the reduced compartmental models (Eqs. 6, 7) used in this work. Given a set of dendritic locations
on the morphology along the dendritic tree, this approach yields capacitances, leak conductances and
coupling conductances for the simplified model that optimally reproduce the dynamics of the full model,
at those chosen locations (Fig. 10a). This, in turns, allows us to assert the validity of the aforementioned
assumptions.

We use a detailed biophysical model of an L5 pyramidal cell [52]. Without synaptic input, the ion
channels in this model collectively determine the cell’s prior, encoded in the resting membrane potential
and the total conductance at rest. Per dendritic segment, we aggregate these conductance contributions
into a single, prior conductance. Formally, this conductance is a passive leak, and the resulting model is a
passive model with the same prior (and morphology) as the detailed model.

Then, we choose dendritic sites that allow us to test the validity of our assumptions. The morphology
has seven basal dendritic subtrees with branches of at least 200µm. In each subtree, we select one such
branch (green in Fig. 10a), and place a single dendritic location on each of those branches at a given
distance from the soma. We increase the distance between soma and dendritic sites in increments of 20 µm
and derive a reduced compartmental model for each configuration (Fig. 10a). We then compare the ratios
of dendritic capacitance Cd

i and somatic capacitance C for the seven compartments i ∈ {1, . . . ,7}. We find
that these ratio are much smaller than one, no matter the distance from the soma (Fig. 10b).

Then, we asses the theoretical maximum degree to which synapses placed at the dendritic sites
under investigation can contribute to overruling the somatic prior. The effective dendritic conductance
of compartment i, measured at the soma, is given by αsd

i gd
i (Eqn. 9). This function has an asymptotic

maximum at the dendro-somatic coupling conductance gsd
i (Fig. 10c). In consequence, gsd

i is the theoretical
maximal conductance that dendritic synapses in compartment i can exert at the soma. We thus need to
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compare gsd
i with the somatic prior g0 (Fig. 10d). For a distance between soma and dendritic site smaller

than ∼ 50µm, we find that a single branch can overrule the prior, as the ratio gsd
i /g0 is typically larger than

one. For larger distances, multiple branches have to collaborate to overrule the prior (Fig. 10D, inset).
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