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Design and Implementation of an EXTOLL Network-Interface for the
Communication FPGA in the BrainScaleS Neuromorphic Computing System:

Modern computer chips are constantly becoming more and more efficient, providing more
Floating Point Operations per second (FLOPs) by consuming less or equal power than
their predecessors. In spite of this trend, the power consumption of large super-computers
is still enormous: The number one on the Top 500 List, Sunway TaihuLight provides up
to 125 PFLOP/s and consumes power of around 15 MW. The most efficient Super Com-
puting System on the Green 500 List is Shoubu System B which provides 842 TFLOP/s
while consuming 50 kW.
In contrast to that, the human brain can cope with intelligent operations and thoughts and
additionally controls the human body, by only using an amount of about 20 W. The Hu-
man Brain Project (HBP) aims to understand by means of Synthesis Biology how this
inconceivably efficient system works.
The BrainScaleS system at the Kirchhof-Institute for Physics (KIP) in Heidelberg is part
of the HBP and pursues this goal by developing a neuromorphic analog hardware system
in combination with a conventional computing cluster.
Up to now the BrainScaleS system is connected via Ethernet over USB 3.0 cables, which
not only negatively affects latency and bandwidth, but also results in inefficient cabling
density and effort.
This work at hand describes the development of a new network interface for the FPGAs
controlling the data communication between the neuromorphic hardware chips and the
conventional digital system. The new interface will enable the BrainScaleS system to use
the benefits of the EXTOLL network, a high-performance interconnection network, opti-
mised for low latency and high message rates.
This will significantly increase the network-performance of the BrainScaleS system in
terms of latency, message-rate and cabling effort.

Entwurf und Implementierung einer EXTOLL Netzwerkschnittstelle für das
Kommunikations FPGA im neuromorphen BrainScaleS Computer-System:

Moderne Computer-Chips werden immer effizienter, stellen immer mehr FLOPs zur Ver-
fügung und benötigen dabei weniger oder genau so viel Energie wie ihre Vorgänger. Trotz
dieses Trends ist der Energieverbrauch großer Supercomputer immer noch enorm: Die
Nummer eins auf der Top 500 Liste, Sunway TaihuLight leistet 125 PFLOP/s und benötigt
dafür eine elektrische Leistung von ca. 15 MW. Das effizienteste Supercomputer-System
auf der Green 500 Liste ist das Shoubu System B. Es leistet 842 TFLOP/s und verbraucht
eine Leistung von 50 kW.
Im Gegensatz dazu kann das menschliche Gehirn intelligente Operationen und Gedanken
verarbeiten, während es nebenbei den menschlichen Körper steuert. Dazu verbraucht es
lediglich etwa 20 W. Das Human Brain Project (HBP) hat sich zum Ziel gesetzt, durch
Methoden der synthetischen Biologie zu verstehen, wie dieses unglaublich effiziente Sys-
tem funktioniert.
Das BrainScaleS System am Kirchhof-Institut für Physik an der Universität Heidelberg
ist Teil des HBP und verfolgt dieses Ziel durch die Entwicklung eines neuromorphen ana-
logen Hardwaresystems in Verbindung mit einem konventionellen Computer Cluster.
Bisher ist das BrainScaleS System durch Ethernet über USB 3.0 Kabel verbunden. Dies
ist nicht nur ungünstig für Latenz und Bandbreite, sondern resultiert auch in einer ineffi-



zienten Kabeldichte und hohem Verkabelungsaufwand.
Die vorliegende Masterarbeit beschreibt die Entwicklung einer neuen Netzwerkschnitt-
stelle für die FPGAs, welche die Daten-Kommunikation zwischen den neuromorphen
Hardware-Chips und dem konventionellen digitalen System kontrollieren. Die neue
Schnittstelle wird das BrainScaleS System in die Lage versetzten, die Vorteile des
EXTOLL Netzwerkes zu nutzen. Dabei handelt es sich um ein hoch-performantes Verbin-
dungsnetzwerk, welches für niedrige Latenz und hohe Nachrichtenraten optimiert wurde.
Dadurch wird die Netzwerk-Performanz des BrainScaleS Systems im Bereich der Latenz,
der Nachrichten-Rate und des Verkabelungsaufwands signifikant verbessert werden.
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1 Introduction

Modern computer chips are constantly becoming more and more efficient, providing more
FLOPs by consuming less or equal power than their predecessors. However, the power
consumption per Floating Point Operation (FLOP) is still enormous: The number one on
the Top 500 List, Sunway TaihuLight provides up to 125 PFLOP/s and consumes power
of around 15 MW [1]. This is an energy amount of 0.1 nJFLOP−1. The most efficient
Super Computing System on the Green 500 List is Shoubu System B which provides
842 TFLOP/s while consuming 50 kW [2], which is 0.06 nJFLOP−1.
These numbers already sound incredibly low for one Floating Point Operation, but in
contrast to that, the human brain can cope with intelligent operations and thoughts and
additionally controls the human body, by only using an amount of about 20 W. It is diffi-
cult to numeralise the human intelligence in terms of FLOPs. However, just the training
of an artificial neuronal network on a conventional computing system, for the task of
recognising objects in images needs enormous computing power and time compared with
a human.
The Human Brain Project (HBP) aims to understand how this inconceivably efficient sys-
tem of the human brain works. For this purpose, it uses the method of Synthesis Biology
[3]. This means that it tries to understand the biological system from the bottom-up di-
rection instead of using the conventional analytic top-down methodology.
With this work we develop a new network interface for the BrainScaleS neuromorphic
computing system, which is part of the HBP. Up to now, the communication FPGAs are
connected through an Ethernet network using USB 3.0 cables. With the new network
interface, developed in this thesis work, the system will be able to use the benefits of
EXTOLL, a new high-performance interconnection network, optimised for low latency
and high message rates. Using EXTOLL will not only significantly improve latency and
bandwidth of the network, but also significantly decrease the cabling density and effort.

1.1 The Human Brain Project

The HBP is beside Graphene one of two European FET Flagship projects in the Hori-
zon 2020 EU Research and Innovation programme. The HBP aims to bring ahead the
research fields of computing, neuroscience and medicine related to the human brain. It
also includes social and ethical aspects and is therefore a truly interdisciplinary field of
research. [4, 5, 6]
The HBP is composed of six scientific platforms and fields of research:

• Neuroinformatics Platform

• Brain Simulation Platform

• High Performance Analytics & Computing (HPAC) Platform
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• Medical Informatics Platform

• Neuromorphic Computing Platform

• Neurorobotics Platform

These platforms work together to find answers to the underlying theoretical questions of
cognition and ethical reflections. A seventh platform, the HBP Joint Platform provides
a modern infrastructure and gathers tools and services, developed by the different scien-
tific fields of the HBP. It provides access to this infrastructure for scientists, engineers,
developers and students all over the world, having an interest in neuroscience and its
applications. [6]
This work at hand refers to the Neuromorphic Computing Platform (NCP). This part
of the HBP implements models of biological neuronal networks on digital or analogue
hardware-systems. This approach gives the possibility to investigate learning processes
and to implement cognitive computing algorithms in an energy-efficient way with fast
execution speeds and robustness against local hardware-failures.
There are two different approaches towards these NCP goals: The SpiNNaker system, lo-
cated in Manchester (UK) and comprising around 500000 ARM-cores, aims to implement
learning algorithms on a massively parallel system which is designed to work at biologi-
cal real-time. In contrast, the BrainScaleS system, located in Heidelberg (DE), currently
implements around 4 Million neurons and 1 Billion synapses on 20 Wafer Modules. The
biological structures are modelled as analogue electrical circuits. Communication of these
analogue neuromorphic circuits is done via a digital network. [7] The BrainScaleS sys-
tem, to which this thesis is addressed, is to be described in more detail in the following
section.

1.2 The BrainScaleS Neuromorphic Computing
System

The BrainScaleS Neuromorphic Computing System (NCS) (shown in Figure 1.1), of-
ten also referred to as Neuromorphic Physical Model (NM-PM), mainly consists of two
parts: a custom hardware system and a conventional compute cluster. These two parts
work together synchronously through digital network communication. The main compo-
nent of the custom hardware system is the so called Wafer Module. It houses a 20 cm
silicon wafer on a large Printed Circuit Board (PCB). The wafer contains 384 identical
Application Specific Integrated Circuits (ASICs), manufactured in 180 nm CMOS UMC
technology. These ASICs are called High-Input Count Analog Neuronal Network Chip
(HICANN). The HICANNs are manufactured in groups of eight, the so called reticles.
Each HICANN implements physical models of up to 512 neurons and around 115000
synapses. A Wafer Module contains 48 reticles with 8 HICANNs each. The current ver-
sion of the NM-PM system contains 20 of these Wafer Modules and therefore implements
up to 4 million neurons and 0.88 billion synapses.
An exploded view of the Wafer Module can be seen in Figure 1.2. The Wafer is placed in
the middle on a Positioning Mask and connects to the MainPCB on top of it. The FPGA
Communication PCBs (PCBs) are placed between the MainPCB and the Wafer I/O PCBs
around the Wafer.
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Figure 1.1: Rendered View of the NM-PM1 system. 1: Wafer Module, 2: Wafer Module
network switch, 3: analog readout subsystem, 4: Top-of-Rack (ToR) 40 Gbit
network switch, 5: storage server node, 6: computer server node, 7: Wafer
Module power supply, 8: top and bottom fan units for Wafer Module. [8,
p. 31]

Figure 1.2: Exploded view of the design drawing of the Wafer Module. [8, p. 108]

The system can simulate neural activities with an acceleration-factor of typically 104 com-
pared with biological real-time and each modelled neuron can cope with up to 14336 in-
put synapses. Because the system can emulate neural activities on various scales and in
almost arbitrary configurations of neurons and synapses, it is often referred to as Hybrid
Multiscale Facility (HMF). Thereby the hybridity refers to the combination of the analog
neuromorphic hardware and the conventional compute cluster in one system.
The communication of synaptic spike-events between the HICANN-chips is partly carried
out through an on-wafer-network. The communication between different Wafer Modules
and with the compute-cluster is managed by 48 FCPs per Wafer Module, i.e. one FCP per
reticle. These FCPs are each equipped with a Kintex7 FPGA from Xilinx. The layout of
these FPGAs is described in detail in Chapter 2. The FCPs are connected via a 10 Gbit

3



Ethernet network with the compute-cluster. Besides the FCPs, the Wafer Modules are also
connected to Analog Readout Modules (AnaRMs) which digitise the analog membrane
voltages in the modelled neurons.
The power supply of the system is controlled by a Raspberry Pi Computer, which is
connected to the FCPs via an I2C bus.
The user can access and program the NM-PM hardware using the PyNN API for python.
The API hides the mapping and calibration steps from the user. The PyNN API also
provides access to software simulators as for example NEST and NEURON. [8, I-1 - I-2]

1.3 The EXTOLL Network

EXTOLL is a new interconnection network for High-Performance Computing (HPC) sys-
tems. It is optimised for ultra low latency for message-based communication and provides
extremely high hardware message rates. It is designed without network-switching and
is highly scalable. The design is implemented in a single chip, which integrates host-
interface, Network Interface Controller (NIC) and network functions.[9]

Figure 1.3: Block-Diagram of the EXTOLL Hardware-Architecture [10]

A block-diagram of the EXTOLL Hardware-Architecture is shown in Figure 1.3. It shows
the design-structure of an EXTOLL network-chip. On the right side the network-interface
is shown with its seven ports. With these ports it is possible to implement arbitrary direct
network topologies as for example a 3D-Torus. As a 3D-Torus only uses six ports per
node, the seventh Link can be used for an additional connection. The Link-Ports are con-
nected via the EXTOLL Network Switch to the internal network-ports. The Architecture
includes an RMA-engine for Remote Memory Access as well as the VELO-engine, which
provides low latency for small messages between processes. There is also a hardware ad-
dress translation unit that translates between physical and virtual addresses.
The EXTOLL network supports up to 64000 nodes with hundreds of processes each. It
also supports multicast routing with up to 64 multicast-groups. Packets are always deliv-
ered in-order and routing can be adaptive as well as deterministic.[9]
The Remote Memory Access (RMA) unit, which is mainly used in this Thesis, can han-
dle packets with sizes up to 512 B which is referred to as Maximum Transmission Unit
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(MTU). All packets are secured by an automatically generate CRC code transmitted with
the message. Details about the protocol are presented in Chapter 3.
The EXTOLL network-chip is available on the Tourmalet PCB (see Figure 1.4). The
implementation reaches bidirectional bandwidths of up to 8 GBs−1 for each link and has
hop-latencies of under 60 ns. The board can be integrated into servers and PCs through a
standard PCIe x16 Gen3 connector.

Figure 1.4: Picture of a Tourmalet PCB.[11]

1.4 Using Extoll for BrainScaleS

To use the EXTOLL network for the BrainScaleS system, the FPGAs and also the FCPs
and Wafer I/O PCBs have to be made compatible with the EXTOLL Network interface.
For this purpose the FPGA design is changed from Ethernet- to EXTOLL-support. This
is described in more detail in Chapter 2. The Network-Interface part of the EXTOLL-
Architecture (Fig. 1.3) is strictly simplified and included into the FPGA. Only one Net-
workport and one Linkport are kept and connected directly. The EXTOLL Network-
Switch is obsolete in this case, as the FPGAs are network-endpoints in the BrainScaleS
system and do not conduct any packet-switching. The Networkport is then interfaced di-
rectly to the remaining FPGA-logic by using a newly designed interface module. This
module is described in detail in Chapter 4 and is the main subject of this work at hand.
The FCP boards are currently connected to the existing network through USB 3.0 and
standard Ethernet plugs and cables. To make them compatible with the EXTOLL network,
an adapter cable has to be built. This cable would have to interface several USB plugs to
one EXTOLL-cable. As one USB 3.0 cable only contains two Super-Speed differential
pairs, forming one communication lane, four USB-plugs are needed to interface the four
lanes of one FPGA. In contrast, an EXTOLL cable contains 12 independent lanes. Thus,
the four USB 3.0 plugs have to be interfaced to one EXTOLL-cable (see Section 8.1.1).
Figure 1.5 shows the planned network topology. Six Kintex FPGAs are connected to-
gether with one concentrator-node which interfaces them to a 3D-Torus of EXTOLL-
nodes. Different configurations of concentrator-nodes have been discussed in [13]. It has
been concluded that the 6:1 configuration offers the best cost - performance relationship.
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Figure 1.5: Network topology for the BrainScaleS EXTOLL network.[12]

With this topology an amount of 320 EXTOLL ASICs is needed to build the network. At
the moment and with the 6:1 topology, the FPGAs have a bandwidth of

6[FPGAs]×4[Lanes]×4.2Gbps = 100.8Gbps

which exactly matches the EXTOLL bandwidth of

12[Lanes]×8.4Gbps = 100.8Gbps

In a future hardware setup of the BrainScaleS system it is planned to redesign the FCP
boards. On this occasion it is envisioned to directly place the EXTOLL concentrator
nodes on the Wafer I/O PCBs. This has some significant advantages. First, this approach
avoids the cabling interface between the I/O boards and the EXTOLL network chips. That
is advantageous because impedance discontinuities between connectors, cables and PCBs
are completely avoided. This significantly improves the signal integrity. Second, this
approach is more cost-efficient, because there is no need for Tourmalet cards to host the
concentrator nodes. Also fewer EXTOLL cables are needed with this approach. Another
advantage is, that the vast number of USB cables (192 per Wafer Module) can be replaced
by much less EXTOLL cables (only 8 per Wafer Module).
With these improvements, it will be possible to double the FPGA bandwidth from 4.2 Gbps
to 8.4 Gbps. In the current implementation this is not possible due to bad signal integrity
over the USB-EXTOLL adapter cables. Unfortunately, then the concentrator nodes can
only use half of the FPGA bandwidth, but this might not be a great problem as the FPGAs
are not expected to work at full capacity all the time. Short bursts can be buffered by
FIFOs in the FPGA-design.
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1.5 Outline

After this brief introduction, Chapter 2 will discuss the overall FPGA structure and the
changes made in the design to support the EXTOLL network. In Chapter 3, the com-
munication protocol, used by the EXTOLL network is presented and explained in detail.
This chapter will also go into details about the implemented communication patterns for
registerfile access and Host-FPGA communication. Then, Chapter 4 will explain the im-
plementation and architectural details of the developed network-interface module. Some
JTAG controller and chain optimisations are described in Chapter 5. The second half of
this thesis starts with the FPGA-Implementation (Chapter 6), followed by the verification
(Chapter 7) and testing (Chapter 8) of the developed interface module. Finally a concep-
tual chapter about the future implementation of pulse-routing is given (Chapter 9) before
the conclusion and future work outlook (Chapter 10).
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2 FPGA Structure

This chapter presents the current FPGA design (Section 2.1) and the changes introduced
during this work (Section 2.2). The purpose of the individual modules is shortly outlined
to convey an overview of the BrainScaleS FPGA structure.

2.1 Ethernet Communication Structure

Figure 2.1: Blockdiagram of the communication-FPGA design as given for Ethernet-
communication.

The given structure of the BrainScaleS communication-FPGA was designed for Ethernet
network communication and is shown in Figure 2.1. This section describes the current
design, before EXTOLL is included. The eight HICANN-interfaces are mainly driven by
the Playback controller for pulse-event communication. The Playback controller reads
data upon experiment start from a 512MB DDR3 memory and feeds the HICANN in-
terfaces with the obtained data. Configuration data is communicated via the HICANN
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ARQ (Automatic Repeat reQuest) module and can be obtained either from the Playback
controller or directly from the Frame decoder / encoder. The ARQ protocol ensures the
correct transmission of the configuration packets by requesting a retransmission when a
transmission error is detected.
All pulse-events that are received on the HICANN interfaces during an experiment are
logged by the Trace controller to a second 512MB DDR3 memory. The Playback mem-
ory is filled by the Playback controller with data from the network-host and through the
Frame decoder at the beginning of each experiment. The Trace memory is then read out
after the experiments end by the Trace controller and sent to the network through the
Frame encoder.
The Frame decoder / encoder module is connected through a FIFO-like interface called
the Application-Layer (AL)-interface over the Host ARQ module to the UDP interface,
which controls the Ethernet communication. The AL-interface provides bidirectional
communication of data-Quad Words (QWs) (64 bit) and an associated type-word (16 bit).
At a time the next QW is requested with a next-signal and validated through a valid-signal
in either direction. The Host ARQ module is also connected to another DDR3 memory
which is of 256MB size. This memory module serves as frame buffer for the retransmis-
sion of corrupted Ethernet packets.
The UDP interface also connects a JTAG controller which provides backdoor access to
some FPGA- and HICANN registers. The JTAG chain connects one FPGA and eight
HICANNs within a reticle. [8, p. 232] It is planned to move the JTAG controller from the
UDP interface behind the AL-interface, where the JTAG-packets are as well under control
of the Host ARQ module. This will also simplify the structure of the UDP interface, as it
is then only connected to the ARQ-module.
Besides all these modules there is also a System monitor which is connected via I2C to the
outside. The System monitor reads the systems temperature and power-supply parameters.
The I2C bus connects all FPGAs to a Raspberry Pi computer. [8, p. 125, 142]

2.2 EXTOLL Communication Structure

The EXTOLL communication structure has some changes in comparison with the given
Ethernet based design. A block diagram of the design is shown in Figure 2.2.
The basic difference is that the UDP interface and the Host ARQ module are replaced by
the EXTOLL Link-Port (LP) / Network-Port (NP) and a special HBP - EXTOLL interface,
which will be developed in this work at hand. This interface will be called Network HMF
Transaction Layer (NHTL) in the further course of this work. All network traffic between
host and FPGA will be directed to the core-logic block through the AL-interface between
NHTL and Frame decoder / encoder.
The design is made configurable through a registerfile. This module collects configura-
tion- and status-registers in a dedicated design entity. Hardware designed by the Computer
Architecture Group and also the EXTOLL designs use automatically generated register-
files. These are defined through a simple TCL script and provide two interfaces, one for
hardware-access and one for software-access. The HW-interface gives access to the fun-
damental functions of each register, whereas the SW-interface grants access to the regis-
ters through an address. Access permissions for read- and / or write-access can be defined
in the TCL-description for both interfaces. The registerfile can also contain other useful
features as for example counter-registers with automatic reset or RAM-like addressing

9



Figure 2.2: Blockdiagram of the communication-FPGA design as designed for EXTOLL-
communication.

regions in the registerfile. Several registerfiles can be organized in a hierarchical struc-
ture including one top-Register File (RF) and several sub-RFs. The registerfile generator
software can be referenced under [14].
The JTAG controller can either be placed behind the AL-interface (dashed connections
in Figure 2.2) or connected to the EXTOLL registerfile (solid connections in Figure 2.2).
Controlling the JTAG module through an EXTOLL registerfile provides significant per-
formance advantages over the current practice of sending JTAG nibbles through the AL-
interface. These advantages are described in more detail in Section 5.1.
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3 The Communication Protocol

This chapter describes the communication protocol that is used for communicating data
and configuration commands between host-computers and the FPGAs. With some modi-
fications this protocol can also be used for the communication among different FPGAs.
EXTOLL Packets are always separated into cells of 64 bit size (1 QW). The first cell of
each EXTOLL packet is always the Start Of Packet (SOP) header. The bit-structure of
this cell is depicted in Figure 3.1. For the meaning of the colour-code see Table 3.1

Figure 3.1: Format of an EXTOLL SOP cell

Colour Meaning

Yellow The field is used in the NHTL Communication Protocol and
has to be filled with correct data.

Grey The field is used in the NHTL Communication Protocol and
contains type-specific information.

White The field is not used in the NHTL Communication Protocol.
The value is either handled don’t care or is fixed to a standard-
value.

Green The field is automatically filled by the EXTOLL-Network-
Port. The value shall not be set by custom-hardware (as e.g.
the NHTL).

Table 3.1: Colour-code used for the packet-format figures.

The SOP cell contains the Destination Node ID (16 bit) as well as a Destination Virtual
Process ID (VPID), which is normally used to identify one out of multiple processes using
the RMA network recourse concurrently. The NHTL interface does not use the VPID
when receiving packets, but has to set the correct VPID when sending responses to the
host. The TU-field (3 bit) identifies the Target Unit (Completer, Responder or Excellerate-
Unit) which is also not used when receiving packets at the NHTL. TU identifies the
host’s completer-unit (3’b001) when sending responses. The TYPE-field is always set
to 12’h004 for RMA packets, identifying the SOP-cell. The setting of this TYPE-
field is important as there are also other management-cells, that are internally used in the
EXTOLL network. The MC-bit determines whether to perform a multicast or not. In case
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of multicast, the Destination Node-ID-field changes its meaning to a multicast-group-ID,
identifying a group of nodes instead of a single node. AVC and DVC together determine
the use of one out of three virtual channels in the EXTOLL network. For the use in
the NHTL, they are fixed to 2’b00. The Traffic Class (TC) identifies independent data
streams in the EXTOLL network, preserving the ordering. It is not used in the context
of the NHTL and therefore fixed to 2’b00. Finally the EXTOLL NP will calculate
and insert a Cyclic Redundancy Checksum (CRC) (16 bit) to ensure correct transmission
of the SOP-cell. RSV denotes reserved bits, that should always be kept 2’b00. [15,
p. 24 ff.]
Behind the SOP-cell, the EXTOLL-packets generally transport the payload-data-cells,
followed by a closing End Of Packet (EOP) cell. This cell contains an automatically
generated packet-CRC for error-correction. Generally the number of payload-data-cells
is limited by the MTU, which has a size of 512 B.

3.1 RMA Protocol

The RMA protocol was originally defined for Remote Memory Access (RMA) transac-
tions. These are normally used for communication between several equitable hosts. In this
context it is used for the communication between a master-host and several slave-FPGAs
and later also for the neighbour traffic between FPGAs (Chapter 9).

3.1.1 RMA Packet-Types

The RMA-Protocol defines ten different packet-types [15, p. 11]. In the context of this
work only six of them are used. These six commands are listed in Table 3.2 together with
their specific use. The overall packet-format for each of these types is shown in Figure
3.2.
As Figure 3.2 shows, the RMA_PUT_QW command is limited by the MTU. By taking
into account the 16 B of header information, this results in a maximum payload size of
496 B (62 QW). Registerfile access packets and notifications are not limited by the MTU
because they are of constant size.

3.1.2 RMA Protocol Format

For the RMA protocol, a network-descriptor is sent after the SOP-cell (for the general
form see Figure 3.3). Depending on the Packet-Type, the network-descriptor consists
of one up to three 64 bit cells and can also contain send- and write- memory-addresses
following the general header-information.
The header contains several fields referring to the source of the packet. These are the
Source Node-ID (16 bit) and the Source VPID (8 bit). The Protection Domain ID (PDID)
(16 bit) is, like the VPID, not used when decoding incoming packets at the NHTL. The
two Error bits indicate whether an error occurred in the network hierarchy with this
packet. The Command-field determines the Packet-Type and is one of the most important
fields in the header. The two Notification bits tell the Completer and / or Responder unit
to create a notification-response packet (see Section 3.2.1). There are also six Modifier
bits: the Remote Registerfile Access (RRA), the Interrupt (INT), Translate Enable (TE)
to enable the Address-Translation-Unit (ATU), the Excellerate Write Access (EWA), the
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Name Encoding Description

RMA_PUT_QW 4’b0011 Used for data communication between
Host and FPGA (both directions) and for
neighbour-traffic between FPGAs.

RMA_PUT_BYTE 4’b0010 Used for Registerfile access write from Host
to FPGA.

RMA_PUT_IMM 4’b0110 Used for short (1 QW) data communication
from host to FPGA. This packet type avoids
the invocation of the DMA-engine when a
packet is sent.

RMA_PUT_NOTI 4’b0101 Used for sending notifications between
FPGA and Host (both directions).

RMA_GET_BYTE 4’b0000 Used for Registerfile access read request
from Host to FPGA.

RMA_GET_BYTE_RSP 4’b1010 Used for Registerfile access read responses
from FPGA to Host.

Table 3.2: RMA-Commands and their usage.

Notification Replicate (NTR) and the Excellerate Read Access (ERA). From these six
bits only the RRA and TE bits are used in the context of this work. [15, p. 27 ff.]

3.2 Registerfile Access

When the registerfile is to be accessed via RMA_PUT_BYTE or RMA_GET_BYTE
commands, the RRA modifier-bit has to be set in the RMA-descriptor.

3.2.1 Write Access

A registerfile entry can be written, using the RMA_PUT_BYTE command. The format of
its network descriptor is shown in Figure 3.4. The Source Node ID defines the network-
address of the requesting host. PDID, Error and MODE[5:1] are ignored as well as the
responder-notification request NOTI[0]. The RRA bit has to be set as for all registerfile
accesses. The Payload Size generally represents the number of actually attached bytes
of payload minus one. In this case the payload-size has to be exactly 8 bytes (Payload
Size = 3’b111) because the registerfile has a width of 64 bit. The next QW following the
network-descriptor-header defines the registerfile-address to which the payload shall be
written.
If the completer-notification request bit NOTI[1] is set, the FPGA-Logic will generate
a Notification PUT request in response (see Figure 3.5). In this descriptor the Source
Node ID represents the network-address of the sending HMF-FPGA. In the corresponding
SOP-cell, the Destination Node ID as well as the Destination VPID are copied from the
previously received header from which this notification has been requested. The NOTI[1]
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Figure 3.2: Overall packet format of the used RMA types.

Figure 3.3: General format of a network descriptor header

bit in the NOTI_PUT descriptor is also copied as well as the Source VPID, which is copied
to the Destination VPID.

The Payload of the Notification is not used here.
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Figure 3.4: Registerfile PUT request network descriptor format

Figure 3.5: Notification PUT request network descriptor format

3.2.2 Read Access

For Read-Access on the registerfile, the host sends an RMA_GET_BYTE request with
the RRA-bit set and the payload-size to be requested exactly equals 8 bytes (Payload Size
= 3’b111) (see Figure 3.6). If the responder-notification request bit is set, a NOTI_PUT
packet is triggered as response in the FPGA-logic as described in Section 3.2.1.
Upon reception of the RMA_GET_BYTE request packet with RRA-bit set, the FPGA-
logic reads out the requested registerfile address and generates a corresponding RMA_-
GET_BYTE_RESP packet containing the answer for the host (see Figure 3.7). The desti-
nation fields in the SOP-cell are copied from the previously received RMA_GET_BYTE
request as well as the PDID, the Translate Enable bit and the NOTI[1] bit. If the NOTI[1]
bit was set, the RMA_GET_BYTE__RESP packet triggers a notification in the host. The
HMF Write Address, which is the destination address in the host memory, is also copied
from the respective field in the RMA_GET_BYTE request descriptor.

3.3 Host - FPGA Communication

The communication between the host and the FPGA core-logic has to be driven across
the application-layer interface at the Frame decoder / encoder. This interface is very
similar to a FIFO-interface and communicates 64bit of payload-data along with 16bit of
type-information (payload-type). (See Section 2.1)
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Figure 3.6: Registerfile GET request network descriptor format

Figure 3.7: Registerfile GET response network descriptor format

3.3.1 Payload Types

There are five (four if JTAG Access is omitted) different payload-types which are listed
in Table 3.3.

Hex.-Code Type Direction

0x0C5A FPGA Playback Data Host→ FPGA
0x0CA5 FPGA Trace/Pulse Host← FPGA
0x0C1B FPGA Configuration Host↔ FPGA
0x2A1B HICANN Configuration Host↔ FPGA
0x06A4 [ JTAG Access ] Host↔ FPGA

Table 3.3: Application Layer Payload Types

FPGA Playback Data describes initialisation data containing spike-events for certain
synapses on the underlying HICANN-chips and configuration commands for the
HICANNs. These data are forwarded to the DDR3 Playback-Memory on the FCP where
they are kept until the experiment starts. FPGA Playback Data are only communicated in
the direction from host to FPGA.
FPGA Trace/Pulse describes the experiment-results data. It contains tracked spike-events
and configuration responses from the HICANNs. Currently these data are gathered in the
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DDR3 Trace-Memory on the FCP until the experiment ends. When the experiment is
finished, the Trace-Memory is read out and sent altogether to the host. In future versions
of the HMF-FPGA design these data will directly be sent to the host as they occur at the
HICANN interfaces. FPGA Trace/Pulse data is only communicated in the direction from
FPGA to host.
FPGA Configuration packets carry, as the name already tells, configuration commands
for the HMF-FPGA core-logic. In the newest version of the HMF-FPGA design these
commands always generate a response packet, delivering acknowledgement information
back to the host-software, that the configuration has been successful. Accordingly, this
packet type can occur in both directions between the host and the NHTL interface logic.
HICANN Configuration packets carry, in analogy to the FPGA Configuration packets,
configuration commands for accessing the internal registerfile of the underlying HICANN-
ASICs. They can be distinguished into read- and write-requests and also produce answers
back to the host-software. Hence this packet type can also occur in both directions be-
tween the host and the NHTL logic.
JTAG Access packets deliver up to now JTAG nibble data for controlling the Joint Test
Action Group controller module, that was formerly directly connected to the Ethernet in-
terface. The responses back to the host contain the monitored TDI-bits from the JTAG
chain. The current HMF-FPGA design implements the JTAG-controller directly behind
the Frame-Decoder/Encoder, which is why this packet type was defined. In the EXTOLL
implementation, which is under development with this work, the JTAG controller will
directly be connected to an EXTOLL registerfile and can be accessed through RRA-
commands over the EXTOLL network. Consequently this packet type will become obso-
lete in the future and is therefore considered as deprecated throughout this work.

3.3.2 Direction Host to FPGA

By sending RMA_PUT_QW or RMA_PUT_IMM packets to the FPGA, the AL-interface
can be fed with all supported types of data, shown in Table 3.3. These packets are recog-
nised by the nhtl_completer module and directly forwarded to the application-layer inter-
face through an asynchronous FIFO (to cross the clk-domain border between EXTOLL
and HMF).
Playback-data packets are shifted into the playback memory by the FPGA core-logic
and kept there to feed the experiment with initialisation data or to feed the HICANNs
with configuration requests. FPGA-config and HICANN-config packets, consisting of
1 QW each produce an answer also of 64 bit length. These answers are generated by the
HMF-FPGA-core logic or the HICANN-chips themselves respectively. By sending spe-
cial FPGA-config packets, the neural experiment can be started or stopped. One of these
FPGA-config packets can request the core-logic to read out all the traced data from the
trace-memory and push the traced events through the application-layer interface towards
the network.

Playback Data

For communication of FPGA Playback Data from the host to the FPGA, the host sends
RMA_PUT_QW packets. The header format of this packet-type is shown in Figure 3.8.
The Payload Size has to be a multiple of 8B and is always the maximum payload size of
62 QW until the last packet is transferred, which is usually less than 62 QW.
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Figure 3.8: Host to FPGA PUT-QW network descriptor format

Configuration Data

Shorter payload types like configuration commands (FPGA and HICANN) are sent using
RMA_PUT_IMM packets. These provide the advantage of avoiding the DMA-access by
sending the 64bit of payload data directly with the packet-header. Thereby the network
performance can be increased. The header format of RMA_PUT_IMM packets is shown
in Figure 3.9.

Figure 3.9: Host to FPGA PUT-IMM network descriptor format

For both, playback- and configuration-data the Payload Type is encoded in the 16 upper-
most bits of the HMF Write Address which is not used otherwise when communicating
towards the FPGA.
If the completer-notification bit (NOTI[1]) is set, the NHTL logic triggers the generation
of an RMA_PUT_NOTI packet in the direction back to the host. The payload-field of the
notification packet is left empty. The Source Node ID and the Source VPID as well as the
PDID of the requesting RMA_PUT_QW header are copied to the respective fields of the
notification SOP-cell and network descriptor (see Figure 3.5 in Section 3.2.1).

3.3.3 Direction FPGA to Host

For sending back data from the FPGA to the host, a very similar network descriptor as in
Section 3.3.2 is used. The header format of these packets is shown in Figure 3.10. The

18



Payload Size again is a multiple of 8B and is set to maximum size until the last packet is
transferred. The last payload-QW which marks the end of traced pulses always contains
the word 0xE11D. This is called the End Of Trace (EOT) marker.
When the host is used as destination node, the Payload Type cannot be directly encoded
into the address field. This is because the host-software strictly interprets the 64bit field
as memory address (either as physical if TE is set or as logical otherwise).

Figure 3.10: FPGA to Host PUT-QW network descriptor format

To solve this problem, there are two different possibilities which shall be evaluated.
One solution would be to request the transmission of a given payload type explicitly by
sending a GET-QW command from the host to the FPGA. In this case, the GET-QW
header would have to contain the exact number of data-bytes to request from the FPGA.
However this information cannot easily be derived at the host, as it is a priori unknown
to software, how much data is being contained in the trace-memory. The software cannot
know how many packets to request and how many bytes the last packet shall contain.
The second and preferred solution to the problem is to configure the header informa-
tion including a host memory address for each payload type into the FPGA register-
file. Of the five possible payload types only the Trace-Data (0x0CA5) and FPGA-
/HICANN-Configurations (0x0C1B / 0x2A1B) (and also JTAG (0x06A4)) appear on
the Application-Layer-Interface directing to the host. So we configure the hosts Node
ID, PDID, VPID and one write-address for each occurring type into the registerfile. The
JTAG-Responses can be omitted because the JTAG-controller will be reimplemented to
be controlled directly through a registerfile (see Section 5.1).
The AL-interface does not deliver information about the exact number of payload QWs
that are to be sent to the host. Nonetheless this is not a big problem to the solution, because
the EOT-marker signals when the transfer is complete. This can be used to determine the
Payload Size, as described in Section 4.1.
Trace-Data are always sent back to the host with maximum payload-size of 62 QW as
opposed to configuration responses, which are sent back separately as single QW payload.
This handling saves the logic, required to aggregate the configuration responses to bigger
packets as for trace-data responses. Usually configuration packets are not sent in high
numbers, so this simplification does not have a big impact on performance. In contrary,
it would be inefficient to wait until enough configuration responses have been generated
to fill a whole packet. Furthermore this would create the possibility of deadlocks, when
the logic waits for configuration responses to fill a packet, but blocks the AL-interface
because the current data-item is for example of trace-data type. This would have to be
solved by introducing a timeout which would significantly impact on latency.
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Trace-Data and HICANN-Configuration responses are sent directly to the host. They are
being notified from time to time as described in Section 3.3.4 while FPGA-Configuration
responses are sent to the host with the completer-notification-bit set to true, telling the
host to insert the packet header into its notification queue. This is because FPGA-Config-
urations are mostly sent as single commands whereas HICANN-Configurations are also
sent in bulk (around 100 commands) before an experiment-start. Notifying every single
response would then put excessive load on the notification queue in the host.

3.3.4 Payload Notifications

Figure 3.11: FPGA to Host notification format

As described in the Section before, the NHTL logic notifies the host software from time to
time about the number of trace-data- and HICANN-configuration packets sent. A trace-
notification is sent either when an EOT-marker is detected, or if the number of packets
sent to the host exceeds a configured limit, or in case of low traffic when a timeout-
counter asserts a configured limit of clock-cycles. HICANN-configuration notifications
are sent with a similar condition except for the EOT-marker, which is not applicable to
configuration responses.

Figure 3.12: Host to FPGA notification format

These notification packets contain the number of QWs, currently sent to the host. For
trace-notifications, this number will mostly be the configured limit number of packets
times the maximum payload size of 62 QW. It can be less than that in case of EOT or
timeout triggering the notification. For HICANN-configuration notifications this number
always equals the number of sent packets, as these are always of 1 QW length. Beside the
number of QWs, the notification packets also contain the number of successful attempts to
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configure the put-address and host buffer-space in the registerfile for the according type.
This enables the host software always to identify the correct memory-location where the
notified data can be accessed. Furthermore they are tagged with the respective type, they
refer to. The packet-structure of these notifications is shown in Figure 3.11.
The host software on its part must also send notifications to the NHTL logic from time
to time, acknowledging the number of QWs processed from the memory buffer. The host
can at the earliest send a notification after a respective notification packet from the FPGA
has arrived and the thereby notified data has been processed. These notifications free the
host-memory space, used in form of a ring-buffer, for continued use by the NHTL module.
They are also tagged with the payload-type which they refer to. The packet-structure of
this type of notification is shown in Figure 3.12. For more information on the purpose of
these notifications and the buffer control see Section 4.5.
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4 The NHTL-Architecture &
Implementation

This chapter describes the architectural and implementation details of the Network HMF
Transaction Layer (NHTL)-interface module, developed throughout this work. Section 4.1
introduces the interface-signals and signal-groups of the NHTL main-module and contin-
ues giving an overview of the submodules and data-paths through the NHTL-interface.
The control-structures for these data-paths are also described in detail. The following
sections then go into the details of the NHTL sub-modules, namely the NHTL-completer
(Section 4.2), the NHTL-responder (Section 4.4) and the NHTL Ringbuffer Controller
(Section 4.5). Section 4.3 describes the Remote Registerfile Access (RRA) architecture
and goes into detail about the different configuration registers in the NHTL-interface. Last
but not least, a short section about the different clock-domains and -frequencies is given
in Section 4.6.

4.1 NHTL-Top

Figure 4.1: Interface block diagram of the NHTL-Top module. The Registerfile interface,
shown in Figure 2.2 is not included here for the sake of simplicity.
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Figure 4.2: Block diagram of the overall NHTL module and its interfaces.

The general interface structure of the EXTOLL interface module, which is also called
Network HMF Transaction Layer (NHTL) is shown in Figure 4.1. There are two major
interfaces.
The Network-Port (NP) interface transports the network-packets to and from the EXTOLL
NP. The interface is FIFO-like, i.e. it provides empty-, full-, shift-out- and
valid-signals. The start of each network-packet is marked with an SOP-signal and the
end of each packet is marked with an EOP-signal. The EOP-signal consists of two bits
for being able to distinguish, whether the first or the second QW in the 128 bit data bus
is the End Of Packet (EOP). The EOP signal tells the EXTOLL NP to generate an EOP
cell marking the end of the network transaction. On the sending side of the interface, the
stop-signal indicates, that the NHTL shall finish the current packet-transmission, but
must not start a new one until the signal is again deasserted. The error-signal indicates
an erroneous data-transfer since the last SOP-signal and is not used in the NHTL imple-
mentation. [16]
The NHTL is also connected to the AL-interface of the HMF-core-logic. This interface
is also very FIFO-like, but implements a next-signal in both directions in addition to a
valid-signal. Asserting the next-signal without valid asserted is not allowed. The
data is divided into two buses. One transports the main payload of 64 bit, i.e. one QW.
The additional data-bus provides a 16 bit data type. The possible types that can occur, are
listed in Section 3.3.1 (Table 3.3). The AL-interface as well as the EXTOLL NP-interface
are both bidirectional, i.e. the interfaces are each implemented once per direction. While
the NP-interface denotes the direction directly in the signal-names, the AL-interface has
two sub-interfaces called AL-read and AL-write. The former one reads data from the
network while the latter one writes to the network. [8, p. 155]
The architecture of the NHTL-Top module is shown as block-diagram in Figure 4.2. In-
coming packets from the network are processed in the NHTL-Completer submodule first.
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They are sorted into different FIFOs for further handling. Registerfile accesses are shifted
into the RRA-FIFO between the completer and the RRA-module. If there is a notifica-
tion request bit in the packets network-descriptor, a notification-request is generated and
inserted into the NOTI-FIFO. Notifications from the host are communicated to the ring-
buffer-control modules to let them decrement their filling-level.
All other packets containing Host-FPGA communication payload for the HMF core-logic
are shifted into an asynchronous FIFO across the clock-border, together with their type-
information. Before the data is shifted into this asynchronous FIFO, the Least Significant
Word (LSW) (1 QW) which is acquired together with the network descriptor has to be de-
layed for one cycle. This is to ensure that the LSW is shifted into the FIFO together with
the Most Significant Word (MSW) (1 QW) which is acquired one cycle later, together
with the next LSW. In Figure 4.2 this is depicted as “payload shifting”.
Behind the clock-domain-border, the 128 bit wide data from the FIFO (LSW and MSW)
have to be multiplexed onto the AL-interface, which only takes 64 bit in one clock-cycle.
The multiplexer is controlled by a minimal two-state-FSM, which is shown in Figure 4.3a.
It alternately reads the LSW and the MSW from the FIFO (The FIFO-format is shown in
Figure 4.4 in the next Section). If the LSW has an eop-marker, the FSM waits in the
RD_LSW state because in this case the MSW would not be valid. In both states the FSM
waits until the AL-interface requests the next data-word. The FIFO is told to shift-out in
the state RD_MSW or in case of eop also in the state RD_LSW.

Data from the AL-interface directing to the network is demultiplexed to a second asyn-
chronous FIFO across the clock-domain-border, also together with the 16 bit type infor-
mation. This demultiplexer is also controlled by a minimal two-state FSM, which is
shown in Figure 4.3b. The FSM waits in WR_LSW state if there is an eop. It also waits
in any state if the AL interface is not valid and new. The interface-value is said to be new
when a next value is being requested. It is not new any more when a new value has been
valid for one clock-cycle. The FIFO is told to shift-in always in the state WR_MSW or in
case of eop also in state WR_LSW. Again this is constrained to a new and valid value.

The QWs arriving at the AL-interface are carefully monitored with different counters and
triggers to define the completeness of outgoing packets and to generate notifications for
the host. The problem of the unknown payload-size at the AL-interface, described in
Section 3.3.3 is solved here by counting the payload words when inserting them into the
asynchronous FIFO towards the NHTL-Responder. When the maximum payload-size is
reached or an EOT marker is detected in the payload, the counter will be cleared and the
counted number of payload words is inserted to another asynchronous FIFO across the
clock-domain-border.
This FIFO can be used by three different packet-types, which can in principle occur inde-
pendently of each other. These are, according to the Sections 3.3.3 and 3.3.4, AL-write-
data packets and HICANN-configuration-response- or trace-data-notifications. To resolve
this access conflict, an arbiter is instantiated, that decides with given priorities, which of
the requested packet-types is inserted. The AL-interface has to be stalled always, when a
request is pending at the arbiter to prevent race-conditions.
Back in the EXTOLL-clock-domain, now the MSW has to be delayed, as the first LSW
will be sent to the network together with the packet-header. The NHTL-Responder sub-
module processes the packet-information from the FIFOs, including the NOTI-FIFO, the
RRA-output-FIFO and the asynchronous FIFOs containing data and packet-information
from the core-logic.
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(a) state diagram of the MUX-FSM (b) state diagram of the DEMUX-
FSM

Figure 4.3: MUX- / DEMUX-logic FSMs

The ring-buffer-control submodules provide information on whether the host has enough
memory space allocated to cash the network data. If this is not the case, the packet is
stalled and waits for the host to notify more space.

4.1.1 FIFO-Formats

The asynchronous FIFOs instantiated in the NHTL-Top module are designed with the
data format shown in the Figures 4.4 and 4.5.

Figure 4.4: Format of the asynchronous Data-FIFOs between the AL-interface and com-
pleter / responder.

The asynchronous FIFO between the NHTL-Completer and the AL-interface, as well as
the FIFO in the opposite direction, between the AL-interface and the NHTL-Responder,
are designed with the same layout, shown in Figure 4.4. The first 64 bit contain the Least
Significant Word (LSW) (64 bit), followed by the Most Significant Word (MSW) (64 bit).
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Together this are 128 bit, which is the amount of data that is transmitted in parallel at the
EXTOLL NP-interface.
The subsequent 16 bit in the FIFO (position [143:128]) carry the type-information (see
Section 3.3.1). The last two bits (position [145:144]) carry the information, whether the
LSW or the MSW is an End Of Packet (EOP). As the LSW is delayed between the NHTL-
Completer and the AL-interface and the MSW is delayed between the AL-interface and
the NHTL-Responder, this delay also has to be applied to the corresponding EOP-bits.

Figure 4.5: Format of the asynchronous packet-information FIFO.

The second asynchronous FIFO between the AL-interface and the NHTL-Responder
buffers corresponding packet-information for the data in the first FIFO, described above.
This FIFO either carries the 6 bit number of payload-QWs to include in the current trace-
data-packet or the 29 bit number of packets for a notification to the host. Both numbers
are packed overlapping each other, as they belong to different packet types and cannot
occur together in one FIFO-entry. To be able to distinguish between these packet types,
there are two bits at position {30:29} that trigger a notification-packet or a notification-bit
in e.g. an FPGA-configuration-response packet. If the NOTI-PKT bit is set, the position
{28:0} is interpreted as number of packets for notification. Otherwise, the position {5:0}
is interpreted as number of payload-QWs for a trace-data-packet. In case of a notification
packet, the bits {46:31} define the type-information for the notification-header.
For each non-notification-packet, defined in this FIFO, the data-FIFO must contain the
given number of QWs until the next eop-bit is set. Otherwise the two FIFOs are not
consistent with each other.

4.2 NHTL-Completer

The completer-module processes the incoming network packets and distributes them ac-
cording to their protocol-content (see Chapter 3).
This module is mainly driven by a simple FSM with three states (LD_HEAD, LD_ADDR
and LD_DATA). This FSM is shown in Figure 4.6. At reset, the FSM is in the state LD_-
HEAD and waits there until the next two network cells are shifted out of the EXTOLL
network-port. The np_shiftout signal has to coincide with a positive np_sop signal which
indicates the start of a new network-packet. In this state (LD_HEAD) the completer
stores the EXTOLL packet header, consisting of the SOP-cell and the network-descriptor-
header, into two 64bit registers.
The next state of the FSM is LD_ADDR. In this state the NHTL-Completer stores the
request address which can, depending on the packet type, be a registerfile write- / read-
address or the payload-type of the transported Host-FPGA communication data. The
NHTL-Completer also determines the actual packet type from the RMA network descrip-
tor header and updates the corresponding event- and error-counters in the register file.
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Figure 4.6: State-diagram of the completer FSM with transition conditions.

In case of registerfile access it configures the input-register for the RRA-FIFO. In case
of Host-FPGA communication it configures the input- and shiftin-register of the asyn-
chronous payload-FIFO towards the AL-interface. In case of a notification request, the
respective data is shifted into the NOTI-FIFO.
From the second state the FSM can pass either back to the reset-state LD_HEAD if one
of the np_eop signals is high, i.e. the packet is finished with the first payload-cell, or the
next state is LD_DATA in case there is more payload-data to process and the packet is not
finished yet. As for all transitions the FSM in any case waits for the next np_shiftout to
occur.
In the third state (LD_DATA) the NHTL-Completer loads further data to the asynchronous
payload-FIFO. The FSM returns to the reset-state (LD_HEAD) when np_eop is asserted
as it does in LD_ADDR state.

4.3 Registerfile access (RRA)

The registerfile accesses are processed by the RRA-module. This forwards the request,
stated per RMA_PUT_BYTE or RMA_GET_BYTE command with RRA-modifier set,
to the Top-RF which is instantiated outside the NHTL on the HMF top level. From
here the request travels through the RF-hierarchy down to the corresponding sub-RF,
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e.g. the NHTL-RF, which is again instantiated inside the NHTL. In case of a read/-
request, the RF-response travels back on the same path and is finally inserted into the
RRA-response-FIFO between the RRA-module and the NHTL-Responder. Here, in the
NHTL-Responder-module, the response is inserted into an RMA_GET_BYTE_RESP
packet and sent back to the host using the header-information copied from the RMA_-
GET_BYTE request at the NHTL-Completer.
The ring-buffer modules (see Section 4.5) start their initialisation cycles when all configu-
ration registers are written at least once and the respective registers config_partner_host_-
3 (see Figure 4.9) or config_partner_host_6 (see Figure 4.12) have been written with the
init-bit set.

4.3.1 NHTL configuration registers

To configure the communication with the host-computer, one at first must define the de-
sired partner-host in the registerfile. The registerfile provides eight registers for this pur-
pose (config_partner_host_[1 – 6] and config_[trace/hicann]_noti_behav). These must all
be written by software at least once. Changes can be made independently in most cases.
A detailed overview of the configuration registers is given in the following figures and
paragraphs. The address-map of the configuration-registers is shown in Table 4.1.

Register Address

config_partner_host_1 0x1090
config_partner_host_2 0x1098
config_partner_host_3 0x10a0
config_partner_host_4 0x10a8
config_partner_host_5 0x10b0
config_partner_host_6 0x10b8
config_trace_noti_behav 0x10c0
config_hicann_noti_behav 0x10c8

Table 4.1: Address-map of the NHTL configuration-registerfile.

config_partner_host_1

Figure 4.7: register-map of config_partner_host_1

This register contains the fundamental configuration data for building the communication
headers when sending trace-data or configuration-responses from FPGA to host. For the
MODE[5:0] field, only the third bit (MODE[2], Translate Enable) has an effect, as all
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other bits are treated as don’t care. This bit determines whether the address is treated as
physical or virtual address (see also Section 3.1.2 and Figure 3.3).

config_partner_host_2

Figure 4.8: register-map of config_partner_host_2

This register defines the host-memory start address for the trace-data ringbuffer. It should
contain a virtual address. It should be configured together with the following register,
config_partner_host_3.

config_partner_host_3

Figure 4.9: register-map of config_partner_host_3

This register mainly defines the allocated memory size for the trace-data ringbuffer in
Byte-units. The buffer must at least be larger than 2 kB. This is because the almost-full
threshold is hard-wired to be 4 maximum-sized EXTOLL-packets:

buf_space [B]> (4×62QW≈ 2kB) (4.1)

The 1b-field trace_put_buffer_init (abbreviated in figure as t.p.b.i) triggers, when set, the
initialisation process in the NHTL_ringbuffer_cntrl module for the trace-data ringbuffer.
This bit must always be set when changes in ringbuffer size, or -start-address are to be
configured. It must be assured, that no data-transfer is running while the configuration
is done. The two fields marked in red-orange are read-only-accessible and represent the
number of times that the ringbuffer-configuration-process has been run with new size
and / or start-address.

config_partner_host_4

This register defines the host-memory-address for FPGA-config responses. It should con-
tain a virtual address. The FPGA-interface writes responses of this type always to this
same address.
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Figure 4.10: register-map of config_partner_host_4

config_partner_host_5

Figure 4.11: register-map of config_partner_host_5

This register is analogue to the register config_partner_host_2 (see Figure 4.8), but in con-
trast this register defines the start-address for the HICANN-config responses ringbuffer.

config_partner_host_6

Figure 4.12: register-map of config_partner_host_6

This register is analogue to the register config_partner_host_3 (see Figure 4.9), but in
contrast like config_partner_host_5 (see Figure 4.11) it defines the size of the HICANN-
config response ringbuffer. The 1 bit field hicann_put_space_init (h.p.b.i) at position 48
triggers the initialisation process like t.b.b.i at config_partner_host_3.

config_trace_noti_behav

This register defines two things concerning the trace-data notification-behaviour: The
timeout-period in [clkcyc] and the notification-frequency (period) in [pkt]. The corre-
sponding clock-frequency is 125 MHz.
It is important, to configure the notification frequency such, that a notification is generated
in any case before the ringbuffer can become (almost-) full:

frequency [pkt]<
buf_space [B]
512Bpkt−1 −4pkt (4.2)
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Figure 4.13: register-map of config_trace_noti_behav

If the notifications would be generated more rarely, it could occur, that for example a big
trace-data transfer fills the host-buffer and is stalled. The host on its part cannot process
the received data, because it has not received a notification telling him the amount of valid
data in the buffer. This situation is called a deadlock. To solve this, it would be necessary
to work with virtual channels in the NHTL-logic, so that a time-out-generated notification
could overtake the stalled data-transfer. However, this is rather complicated to realise and
would change most of the NHTL-architecture, not to mention the significantly increased
need for hardware-logic in the FPGA. Fortunately this deadlock-situation can be avoided
by correct configuration of the notification-frequency in relation to the available buffer-
space and the almost-full-threshold, which is defined as four maximum-sized EXTOLL-
packets (4×496B≈ 2kB).

config_hicann_noti_behav

Figure 4.14: register-map of config_hicann_noti_behav

This register is analogue to the register config_trace_noti_behav (see Figure 4.13), but de-
fines the timeout-period and frequency for the HICANN-response notification behaviour.

4.3.2 NHTL Error- and Performance-Counters

The NHTL registerfile also contains a number of error- and status-counter-registers. These
are listed in the Tables 4.2 and 4.3 below. All of these counter registers are equipped with
a reinit signal which is asserted when a special register at address 0x1048 is written with
an arbitrary value.

4.4 NHTL-Responder

All outgoing EXTOLL packets are processed by the NHTL-Responder. This module
merges all communication onto the EXTOLL network-port. Notification responses are
generated with top priority from the requests in the NOTI-FIFO. If there are no noti-
fication requests, then the NHTL-Responder forwards the registerfile responses to the
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Register Address Description

perf_cnt_rra_put_rcvd 0x1000 The number of RRA-put commands re-
ceived in the NHTL-Completer

perf_cnt_rra_get_rcvd 0x1008 The number of RRA-get commands re-
ceived in the NHTL-Completer

perf_cnt_rma_put_rcvd 0x1010 The total number of RMA-put com-
mands received in the NHTL-Completer

perf_cnt_rma_noti_put_rcvd 0x1018 The number of RMA-notification-
put-requests received in the NHTL-
Completer

perf_cnt_playb_data_rcvd 0x1020 The number of playback data packets re-
ceived in the NHTL-Completer

perf_cnt_fpga_conf_rcvd 0x1028 The number of FPGA-configuration
packets received in the NHTL-
Completer

perf_cnt_hicann_conf_rcvd 0x1030 The number of HICANN-configuration
packets received in the NHTL-
Completer

perf_cnt_jtag_data_rcvd 0x1038 The number of JTAG-nibble packets
received in NHTL-Completer. This
counter should be deprecated because
JTAG data is no more transferred in
form of nibbles, but directly controlled
through a registerfile.

perf_cnt_ngbr_data_rcvd 0x1040 The number of Neighbour pulse-data
packets received in NHTL-Completer.

Table 4.2: Status-counter registers in the NHTL registerfile.

network port.
If there are also no registerfile communication responses pending, the NHTL-Responder
is free to build packets from the asynchronous payload- and packet-information- FIFOs.
For details on the structure of this FIFO see Section 4.1.1.
This module is, like the NHTL-Completer (see Section 4.2) driven by a simple three-
state-FSM. The FSMs state diagram is shown in Figure 4.15.
At reset, this FSM starts in the state SD_HEAD. While in this state, the NHTL-Responder
waits for one of the four FIFOs to become not empty. Unless the np_stop signal is
asserted, a pre-wired network descriptor header, suitable for the respective packet type
(see Section 3.3.3) is buffered in the np_data output-register, now containing the header-
information, delivered by the respective FIFO. The np_sop and np_valid signals are set in
the corresponding output-register. The active data-source which was selected by priority
is stored in a register for reference in the other states.
When the header has been sent, the FSM descends to the second state SD_ADDR. In this
state the NHTL-Responder sends the pre-wired address information together with the first
64bit data-word. The np_valid signal is asserted and in case of notification-response or
RF-response also the np_eop signal. If the data-source is the asynchronous payload-FIFO
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Register Address Description

err_cnt_invalid_command_rcvd 0x1050 Request Command was not RMA_-
PUT_QW (don’t care for RRA-bit) or
RMA_GET_QW (with RRA-bit set)
nor RMA_PUT_NOTI or RMA_PUT_-
IMM.

err_cnt_invalid_type_rcvd 0x1058 The payload-type, encoded in the
destination-address of RMA_PUT_QW
or RMA_PUT_IMM was not a valid
type for the data-decoder

err_cnt_invalid_payload_size 0x1060 The payload-size was not a multiple
of 8 Bytes for RMA_PUT_QW or ex-
ceeded the exact value of 8 B with RRA-
modifier set.

err_cnt_fields_error 0x1068 One of the Error-bits in the received
command was set.

err_cnt_fields_mode 0x1070 The received command had ERA, NTR,
EWA or INT modifiers set

err_cnt_invalid_rra_adr 0x1078 The RRA module returned an invalid_-
address flag due to an address, requested
out of the registerfile-range.

err_cnt_undefined_host 0x1080 The configuration registers were not
fully configured at least once, but the
FPGA tried to send data to host.

err_cnt_cfg_resp_addr_reinit 0x1088 It was attempted to reinit the FPGA-
config-response-address.

Table 4.3: Error-counter registers in the NHTL registerfile.

from the AL-interface, the eop-flag is being read from a special bit of this FIFO.
The FSM then descends either back to SD_HEAD if np_eop has been asserted or to
the third state SD_DATA, where further 64bit data-words are sent until the eop-flag is
asserted.

4.5 Ringbuffer Controller

Payload of the types Trace / Pulse Data and HICANN Configuration are sent to the host,
addressing a ring-buffer in host-memory. By following this approach, the host-software
does not need to memory-allocate the full amount of 512MB possible trace data for each
FPGA in the network. Instead only a small buffer of a few MB size has to be allocated,
which significantly lowers the requirements on the host-computer.
The ring-buffer controller module ensures, that the target-address, to which the packets are
sent, does not exceed the limitations configured in the registerfile. These limits comprise
the start-address, at which the ring-buffer begins, and its size, given in Bytes (registers
config_partner_host_{2,3,5,6}).
After it has been initialised, the controller continuously calculates the current write-
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Figure 4.15: State-diagram of the responder FSM with transition conditions.

address to be used by the NHTL-Responder. To do so, it implements a fill-level-calculator
that continuously monitors the filling level of the host-memory ring-buffer. For being able
to increment this level together with the write-address, the NHTL-Responder has to tell
the controller how many QWs of data it is going to send to the host. The host software in
turn must send acknowledgement notifications (see Figure 3.12) to inform the ring-buffer
controller when parts of the ring-buffer are ready for reuse. This information is always for-
warded to the controller module by the NHTL-Completer when such a notification packet
is received. Upon receipt of an acknowledgement notification the ring-buffer controller
decrements its fill-level by the acknowledged number of QWs.
The controller-module automatically resets the address pointer when it reaches the end-
address defined by the buffer-size. The pointer cannot exceed the limit before it is reset.
This is ensured by a trigger-counter in front of the AL-interface, in NHTL-Top, that al-
ways triggers an EOP marker when the number of Trace-/Pulse-QWs sent to the host
reaches the configured buffer-size. This approach also ensures, that no packet is wrapped
around the buffer-boundary. These precautions significantly reduce the complexity of the
hardware-logic and the host-software.
When the fill-level-calculator approaches the configured buffer-size by a fixed safety mar-
gin, a stop-signal is issued, to prevent the NHTL-Responder from sending another packet
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Figure 4.16: Interface block-diagram of the NHTL_ringbuffer_cntrl module.

to the host until the software has acknowledged the reusability for parts of the configured
buffer.
A block-diagram of the interface-structure is shown in Figure 4.16. The interface is di-
vided into three different signal groups. One side of the interface controls the initialisation
and is connected to the registerfile in NHTL-Top. The incrementation interface, shown on
top of the module-block in Figure 4.16 is directed to the NHTL-Responder and also com-
municates the currently valid write-address for the next EXTOLL-packet to be sent to the
host-buffer.
The remaining decrementation interface is depicted on the modules bottom-edge and is
directed to the NHTL-Completer from which it collects decrementation notifications into
a FIFO to gradually lower the filling level of the buffer.
The nhtl_ringbuffer_cntrl module must be initialised with values for the start-address,
the available buffer-space in QW-units and the safety-threshold for the almost-full stop-
signal, also in QW-units. An initialisation sequence is started by a one-cycle-pulse on the
init_start signal (see Figure 4.16) and involves the calculation of the end-address from
the initialised start-address and available buffer-space. Once the initialisation sequence is
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done, the nhtl_ringbuffer_cntrl module signals the validity of the write-address, which at
this point equals the start-address, and acknowledges the completion of the initialisation
phase.
When a valid increment-value is asserted at the responder-interface, this value has to be
held active at the interface until the action is acknowledged by the ringbuffer-controller.
This action comprises both, the incrementation of the filling-level and the write-address
and is only then executed if the decrement-level-FIFO is empty. Otherwise (if the FIFO
is not empty), the freeing of buffer-space has higher priority than writing the next chunk
of data.

4.5.1 Implementation using DSPs

To implement the behaviour described in the preceding paragraphs, the
nhtl_ringbuffer_cntrl module uses Digital Signal Processors (DSPs). These are given
hardware blocks in an FPGA that can be used for digital calculations in hardware. Fig-
ure 4.17 shows a block-diagram of the internal structure of a DSP. DSPs can be configured
in each clock-cycle using the 5 bit INMODE, the 7 bit OPMODE and the 3 bit CARRYIN-
SEL inputs. More general settings of DSPs are available over Verilog parameters. The
cascading in- and outputs, depicted on the vertical block-borders in Figure 4.17 can only
be used directly between DSPs. These ports are located in the hardware so that they di-
rectly contact neighbouring DSPs in one slice. Connections to external logic and registers
have to be made to the ports on the vertical block borders. Each DSP can handle up to
48 bit in parallel at its data-inputs.

Figure 4.17: Internal block-diagram of a DSP [17, p. 8]

For the ringbuffer-controller, the DSPs are configured to calculate the next write-address,
the filling-level of the ringbuffer, the end-address for wrap-around triggering, and the
free-space value to trigger the almost-full stop-signal to the NHTL-Responder. Because
the EXTOLL network, as well as the most current computer systems work with 64 bit
memory-addresses, two DSPs have to be combined for address-calculations.
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Address Calculation - Increment-DSP

The 64 bit address-incrementation is carried out by two DSPs which are connected by the
carry-signal using the cascading ports. The use of these ports is advantageous because
it allows the synthesis tool to use neighbouring DSPs directly besides each other in an
FPGA DSP-slice. This implies short functional paths and facilitates timing closure for
higher clock frequencies.
These two DSPs are configured to increment the result by a given value when an increment-
enable signal is asserted. On assertion of a load-enable signal, the DSPs load a new value
without reusing the previous result. This mode can be combined with the increment mode.
The DSPs are configured with input-registers to facilitate timing when capturing the input
values from the logic-stage in front.
For normal operation the address is incremented by the number of bytes sent to the host.
When the address reaches the end-address, the DSPs are re-loaded with the start-address.

End-Address Calculation - Adder-DSP

The 64 bit end-address calculation is carried out by two DSPs as for the address-incremen-
tation. In this case the DSPs are configured to simply add the input operands, start-address
and buffer-size. Because there is no logical loop in the adder, there is no compelling need
to guard the DSP with an enable signal as for an incrementer / decrementer.
There is also no need for input-registers at the DSPs inputs because the operands of this
calculation are directly taken from registers without logic in between.

Level Calculation - Increment- / Decrement-DSP

The 29 bit level-calculation is carried out by one DSP, which is configured similar to the
increment DSPs for address-calculation. But in difference, its ALUMODE is configured
to switch between incrementing and decrementing the level, depending on a 1 bit mode-
input. The mode is prioritised by control logic, to decrement if the decrement-FIFO is not
empty.
The size of 29 bit for the level in QW-units is chosen as this corresponds to a 32 bit counter
in Byte-units. This allows for buffer-sizes up to 4 GB.

Free-Space Calculation - Subtractor-DSP

To calculate the free buffer-space, the filling-level has to be subtracted from the overall
available buffer-space. For this purpose one DSP is configured similar to the DSPs for
the end-address calculation. The DSP is configured to calculate the difference from the
input-operands. Again there is no need for guarding the operation with an enable signal
and also no need for input-registers.

4.5.2 FSMs for Calculation Timing

The Figures 4.18a and 4.18b show the two FSMs which have been implemented to man-
age the initialisation and calculation sequences and control the acknowledgement signals
for init, increment, write-address and decrement-shiftout. The states of these FSMs are
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presented in detail in Table 4.4. As can be seen in Figure 4.18, all states with the excep-
tion of the idle-states are only visited for one clock cycle, which is why they are called
cycles rather than states in Table 4.4.

Init-State Init-Actions

INIT_IDLE The controller is not in initialisation mode and is free for calculation.
INIT_0 In this cycle, the level-DSP prepares its input-registers for a load-reset.

The initialisation values are captured to registers from the interface.
INIT_1 In this cycle, the first end-address-DSP calculates the lower 48 bit of the

end-address and a carry-signal for the next DSP. The level-increment-
DSP loads its reset-value and the address-increment-DSPs both prepare
their input-registers for loading the start-address.

INIT_2 In this cycle, the second end-address-DSP calculates the upper 16 bit of
the end-address considering the carry-bit from the first DSP. The first
address-increment-DSP loads the lower 48 bit of the start-address.

INIT_3 In this cycle, the second address-increment-DSP loads the upper 16 bit
of the start-address. At the same time, the address_valid output-register
is activated, init_done is asserted and buffer_afull is reset to false.

Calc-State Calculation-Actions

CALC_IDLE There is no calculation going on. The controller is free for (re-) initiali-
sation.

CALC_0 In the first cycle, the address_valid output-register is set to false. The
level-DSP and the two address-DSPs input-registers become valid.

CALC_1 In the second cycle, the level-DSP is active and either increments or
decrements the level, depending on the mode. In case of increment-
mode, the first address-DSP calculates the lower 48 bit of the incre-
mented write-address.

CALC_2 In this cycle, the free-space-DSP calculates the difference of avail-
able buffer-space and the current filling-level, calculated in the previ-
ous cycle. In case of increment-mode, the second address-DSP calcu-
lates the upper 16 bit of the incremented write-address and the incre-
ment interface is being acknowledged. In case of decrement-mode, the
decrement-FIFO shifts out. The address will be valid after this cycle, if
the lower 48 bit don’t equal the respective end-address-bits, i.e. surely
no wraparound has to be done.

CALC_3 In this cycle the address-DSP will prepare for wraparound if the end-
address is reached. Otherwise the write-address will become valid af-
ter this cycle. If the free-space is smaller than the initialised safety-
threshold, the buffer_afull signal will assert the stop-condition for the
NHTL-Responder. If no wraparound condition is detected, the next cy-
cle will be skipped.

CALC_4 In case of wraparound this is the last cycle and both address-DSPs load
the start-address. After this cycle the new write-address will finally be
valid.

Table 4.4: Details on the initialisation and calculation cycles.
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The state-diagrams in Figure 4.18 show two possible transitions from the respective final
state back to the start. One transition goes back to the IDLE-state and the other goes
directly back to the first actual cycle in case another init- or calculation-action is already
issued at the interface.
The Calculation FSM (Figure 4.18b) has two possible end-states, CALC_3 or CALC_-
4, depending on whether there is a wraparound or not. Although the new write-address
can already be valid after CALC_2, the CALC_3 cycle has to be visited in any case to
calculate the stop-condition for the NHTL-Responder.

(a) State diagram of the ring-buffer
initialisation-FSM

(b) State diagram of the ring-buffer calculation-FSM

Figure 4.18: FSMs for the ring-buffer controller

The Init-FSM (Figure 4.18a) only starts from INIT_IDLE when there is no calculation
going on, i.e. the Calculation-FSM (Figure 4.18b) is in state CALC_IDLE, and there
is no valid input, i.e. the Calculation-FSM won’t start in this cycle. If this is the first
initialisation, the Init-FSM starts anyway.
The Calculation-FSM analogously starts only if the Init-FSM is in INIT_IDLE and if the
initialisation data is already valid. Thereby the address-calculations are prioritised over
re-initialisation of the controller. This ensures, that reinit only happens when all memory-
free (decrement-) operations are done.
Anyhow it can happen, that an init_start pulse is missed because a calculation is going
on. In this case the respective registerfile-command (see Figures 4.9 and 4.12) has to be
re-asserted. Generally it should be assured, that no transfer is going on while reinitialising
the ringbuffer-controller.

4.6 Clock-domains

The NHTL-Top module is divided into two clock-domains. The first one, including the
main NHTL-logic, runs at the speed of the EXTOLL network-port, which is 210 MHz.
With 128 bit parallel data-width and 8b/10b coding this gives a network data-rate of
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8.4 Gbit s−1 on four lanes. The second clock-domain contains the HMF core-logic and
runs at a speed of 125 MHz. The border between the two clock-domains is synchronised
by asynchronous FIFOs that carry data and packet-information from one domain to the
other.
The overall FPGA design contains some more clock-domains controlling the differential
communication with the HICANN chips and the EXTOLL link-port. All clocks in the
design are generated using Mixed-Mode Clock Managers (MMCMs) and Phase Locked
Loops (PLLs), instantiated as Xilinx® Intellectual Property (IP) blocks on the FPGA. All
clock-domains share one common 50 MHz reference-clock that is globally generated on
each Wafer Module and distributed to all FPGAs on that Wafer Module. [8, p. 139, 142]
The accuracy of the clock generation is estimated to ±100 ppm [18]. This leads to the
problem, that the generated clocks on different Wafer Modules gradually run apart. With
1 ppm accuracy 1 s experiment time would lead to a clock-drift of 1 µs, which corresponds
to a biological time of 10 ms with the speedup factor of 104. To solve this problem, the
Wafer Modules also support a future many-wafer system where the reference clock is
centrally generated and distributed to all Wafer Modules.
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5 JTAG Optimisations

This rather short chapter describes the optimisations regarding the JTAG access to the
HICANNs and some registers in the FPGA. Section 5.1 explains the general functionality
of the JTAG Test Access Port (TAP) controller and its counterpart, the JTAG master-
controller. An FSM based controller is used instead of the given bit-transaction-based
one. Section 5.2 describes the optimisations conducted to the JTAG chain as a whole,
meaning the replacement of the TAP controller in the FPGA with an EXTOLL accessible
registerfile.

5.1 JTAG Controller

Figure 5.1: State diagram of the JTAG TAP Controller as defined by the JTAG stan-
dard. [19]

The JTAG standard defines five pins: Test Clock (TCK), Test Mode Select (TMS), Test
Data In (TDI), Test Data Out (TDO) and Test Reset (TRST). The TMS pin controls the
state of a finite state machine called the TAP-controller and is sampled at every posedge
of TCK. The state-diagram of the TAP-controller is shown in Figure 5.1.
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When the state SELECT-DR-SCAN is left with (TMS == 1) and SELECT-IR-SCAN
is left with (TMS == 0), instructions can be shifted into the instruction-registers through
the chain. When this is done, depending on the instructions, data-registers are selected
and can be shifted by leaving the state SELECT-DR-SCAN with (TMS == 0). In the
CAPTURE-* states the functional registers are captured to the scan-chain while in the
UPDATE-* states, the functional registers are updated with new data from the scan-chain.
The PAUSE-* states render the possibility to reload the data-buffer for shifting large
amounts of data. [20, 21]
The TAP-FSM is meant to control the JTAG-slaves in the chain. Additionally there must
also be a master-controller which controls the signals TMS, TCK and TRST respectively
and manages the data flow through the chain (TDI and TDO).
In the HMF environment, JTAG (Joint Test Action Group) is used for backdoor access
to the FPGAs and HICANN-chips. The JTAG-Chains connect one FPGA and eight
HICANNs respectively and are accessed via network-interface. In the FPGA-design, the
JTAG controller was placed directly at the UDP-interface. To ensure correct transmission
of the JTAG data over the Ethernet network, up to now the controller will be moved behind
the Host-ARQ module, which implements a retransmission protocol (see Section 2.1).

Figure 5.2: Block-diagram of the JTAG master-controller FSM designed by [22] at the
Computer Architecture Group. The colour-code highlights linked state-
transitions. Each logical state is divided into two functional states, to con-
trol TMS with a coincident posedge of TCK. Dashed lines represent default-
transitions.

Up to now the master-controller was implemented to receive so-called JTAG-nibbles from
the host via network (Type 0x06A4, see Section 3.3.1). These nibbles include 4 bit of
data indicating the state of the three JTAG output pins (TCK, TMS, TDO) and whether
the input pin (TDI) shall be monitored. To make this work, each state-transition in the
TAP-Controllers and each data-bit requires to transfer two nibbles, i.e. 1 B from the host
to the FPGA via network, which is quite inefficient.
To improve the efficiency when controlling the JTAG-chain, the JTAG master-controller

42



at hand is replaced by a module which was developed by [22]. This module uses an FSM
which is shown in Figure 5.2.

(a) Structure-diagram of the JTAG command-register.

(b) Structure-diagram of the JTAG status-register.

Figure 5.3: Structure-diagrams of the JTAG registers.

The used JTAG master-controller is managed through a generated registerfile which is
connected to the EXTOLL registerfile interface. It can efficiently be controlled through
EXTOLL-RMA packets with the RRA-modifier-bit set (see Section 3.2). This registerfile
contains a command- and a status-register as well as a send- and a receive-data-buffer.
The two registers are shown in Figure 5.3.

Value Meaning Description

3’b000 TAP-Reset This command controls the TAP-FSM to go to the
reset-state.

3’b001 Read/Write IR This command controls the TAP-FSM to shift the
instruction-register.

3’b010 Read/Write DR This command controls the TAP-FSM to shift the se-
lected data-register. Prior to this command a data-
register must be selected by shifting an address into
the instruction register.

3’b100 Enable Idle Clock
Generation

This command controls the TAP-FSM to generate
TCK even in IDLE state.

3’b101 Disable Idle
Clock Generation

This command takes back the effect of the previously
described command.

Table 5.1: Description of the type-field in the JTAG cmd-register.

The command register (Figure 5.3a) contains four fields. The type-field is 3 bit wide and
controls the operation mode of the JTAG master-controller. For detailed description of the
type-field see Table 5.1. The length-field defines the number of bits to shift from the send-
buffer through the JTAG-chain and into the receive-buffer. With a 10 bit wide length-field,
it is possible to shift up to 1024 bit which is also the size of the data-buffers (16 × 64 bit).
The pause-bit tells the controller to go into PAUSE-* state after shifting the data from the
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send-buffer. The execute-bit must be set to start the execution of the specified command.
After the execution has completed, the controller resets the execute-bit to its inactive state.
The status register (Figure 5.3b) contains two fields. The clk_gen_enabled field indicates,
whether the clock generation is activated while the FSM is in IDLE state (see Figure 5.2).
The second field, namely the paused-bit indicates whether the TAP-FSM is currently in
PAUSE-* state or not.
The two data-buffers are implemented as RAM-Blocks in the registerfile and provide
space for up to 16 QW (1024 bit) of JTAG-data respectively.

5.2 FPGA JTAG Registers as EXTOLL RF

Figure 5.4: The JTAG-Chain setup and the available instructions for HICANNs and
FPGA TAP.

The JTAG interface provides backdoor-access to a number of registers and actions related
to the initialisation of the HICANN communication channels in the FPGA. The chain-
setup is shown together with a list of the available instructions in Figure 5.4.
Instructions marked with ’R’ are mapped to read-only data-registers, while instructions
marked with ’W’ are mapped to write-only data-registers and ’RW’ instructions indicate
both readable and writeable data-registers. Instructions marked with ’I’ are not mapped
to any data-register. Instead they trigger an action in the HICANN-chips.
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To improve the transfer-efficiency, the JTAG-registers located in the FPGA can be directly
implemented as EXTOLL-accessible registerfile. This supersedes the necessity of trans-
ferring an instruction for each access to one of these registers. In total this avoids at least
three of four registerfile-access packets, necessary to instruct the JTAG-controller (1: Fill
send_buffer with instruction, 2: write cmd_reg to send instruction (and poll for success),
3: fill send_buffer with data, 4: write cmd_reg to send data (and poll for success)). Instead,
the data can now directly be sent to the respective register. Additionally the JTAG-chain
to access the HICANN-TAPs is now shortened by one instruction- and data-register less.
Furthermore, space in the FPGA implementation area is freed, as the TAP-controller is
not needed any more. The optimised JTAG-Chain is shown in Figure 5.5.

Figure 5.5: The optimised JTAG-Chain setup. The FPGA-JTAG-RF-TAP has been re-
placed with an EXTOLL-compatible registerfile.
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6 FPGA-Implementation

This chapter first introduces the general properties of the used Xilinx® FPGA (Sec-
tion 6.1) before describing the used tool-environment (Section 6.2). The distribution
of the floorplan over the FPGA is explained in Section 6.3. Section 6.4 then presents
the representative results of an implementation run constrained with the previously de-
scribed floorplan using the mentioned tool-environment. Finally Section 6.5 summarizes
the available procedures for flashing the implemented design onto the FPGAs as a bitfile.

6.1 Xilinx FPGA

The Xilinx® FPGAs used for the BrainScaleS system are of the type Kintex®-7
(XC7K160T). This device belongs to the 7 Series FPGAs. The Kintex®-7 Family is
optimized for best price-performance and doubles its performance compared with the
previous generation of Xilinx FPGAs. Besides the Kintex® Family, there are also the
Spartan®, the Artix®, and the Virtex® Families. The Kintex® XC7K160T is the second
smallest FPGA in its Family and comprises 162240 Logic Cells, 25350 Configurable
Logic Blocks (CLBs), 600 Digital Signal Processors (DSPs), 11700 kbit of Block-RAM
(RAM) and 8 Clock Management Tiles (CMTs), each containing a PLL and an MMCM.
Each CLB contains 4 Lookup Tables (LUTs) and 8 Flip Flops (FFs). [23]

6.2 Tool-Environment

To implement the design, described in the previous Chapters, onto the FPGA architecture,
the Xilinx® Vivado® tool-environment is used. The source-code and constraint-files, de-
scribing the design, are gathered by a make-script that creates a Vivado® project-file and
includes all sources to it.
With this project-file, the design can be evolved through the design-flow traversing the
steps Synthesis, Place and Route. When all the implementation-steps are done, a Bit-
stream can be generated for directly programming the FPGA fabric.
Throughout these implementation steps various analysis-runs can be started and evaluated
from the Vivado® GUI. Useful analysis-runs are for example the Timing Report, the DRC
Report, the Utilisation Report or the Power Report. For debug purposes, there is also a
Schematic Viewer. This can be useful to check e.g. the connections between high level
module interfaces.

6.3 FPGA-Floorplan

After Synthesis, the design should be constrained to a reasonable floorplan to facilitate
timing closure on the FPGA and to make the design more clearly arranged. Creating a
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reasonable floorplan also helps using the available implementation space on the FPGA in
an ideal way.

Figure 6.1: Floorplan for the BrainScaleS FPGA design. [Screenshot from Vivado]

Figure 6.1 shows a screenshot of the implemented design in the Vivado® Device view.
The colour code for the module leaf-cells is explained in Table 6.1.
The main interfaces are the HICANN-IFs and the EXTOLL partition containing the
EXTOLL NP and the LP. Besides these two interfaces, there are also the DDR3 mem-
ory interfaces. All these main interfaces are placed at the borders of the design. The
EXTOLL partition is placed at the top-right corner of the FPGA and the eight HICANN
interfaces are placed around the bottom-right corner. In Figure 6.1 the HICANN inter-
faces are coloured alternately in yellow and green, so they can be distinguished from each
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colour location module / partition

grey top-right corner EXTOLL partition (NP, LP)
light-green / yellow bottom-right corner 8 × HICANN-interface
dark-blue bottom-left playback-memory DDR3-interface
orange top-left trace-memeory DDR3-interface
light-blue center-top NHTL-top and submodules
pink center core-logic
purple everywhere registerfile

Table 6.1: Colour code from Figure 6.1

other. The memory interfaces are placed at the remaining left edge of the design. The
decision, where to place the interfaces at the FPGA borders is not arbitrary, but depends
on the location of the respective interface-pins on the FCP board-layout.
The remaining design parts, namely the NHTL interface and the core-logic are placed in
the centre of the FPGA, whereat the NHTL interface has to be placed near the EXTOLL
partition at the centre-top. The core-logic and the remaining small modules (e.g. the I2C
interface) are placed automatically on the remaining space in the FPGA centre region to
optimize timing. It can be seen in Figure 6.1, that the leaf-cells belonging to the regis-
terfile (coloured in purple) are spread across the whole FPGA to where they particularly
belong to.

6.4 Implementation Results

After synthesis and implementation of the design timing- and utilization-reports can be
analysed. The timing-report tells, whether the constraints stated for the timing of func-
tional paths in the design could be met by the synthesis and implementation tool. It also
tells how much margin is left in case of success or how much the implementation misses
the constraints. Concretely, the timing summary is shown in Figure 6.2.

Figure 6.2: Screenshot of the timing summary in Vivado®. Worst Slack respectively refers
to the minimal safety-margin left for timing-closure, while the Total Slack
respectively refers to the sum of negative slack Endpoints where the timing is
not reached.

The report shows, that the timing is met and the design has been successfully imple-
mented. The Setup-time is the time that a functional signal must arrive at the input of a
Flip-Flop before the next positive clock-edge. In the implemented design it is satisfied
for all paths ending at a Flip-Flop and the minimal margin left is 0.176 ns. However this
number is not quite meaningful because the Vivado® implementation engine stops opti-
mization once timing is met. If this number was negative, the timing would be missed.
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This could have several reasons as for example inappropriate placement or to high clock
frequency constraints.
The Hold-time is the time, a functional signal must stay stable after the current positive
clock-edge. Again this constraint is satisfied in the implemented design for all Flip-Flops.
The Pulse-Width slack is a measure for the quality of clock signals in the design. This
type of constraints controls the clock-waveform and skew. Skew is referred to as the
time-difference between the arrivals of the same clock-signal at different Flip-Flops in a
design. The skew should be as low as possible because otherwise the output-values of
different Flip-Flops are not valid at the same time and therefore cannot be combined in
logical gates and functions.

Figure 6.3: Screenshot of the utilization summary in Vivado.

A Screenshot of the utilization report summary is shown in Figure 6.3. As can be clearly
seen from the table and the diagram, the design easyly fits into the FPGA and there is still
some amount of space left. LUT, FF, BRAM and DSP represent the main components in
an FPGA, while GT and IO refer to input and output units. MMCM and PLL are clocking
resources. The remaining space can later be used for the pulse-routing implementation.
A concept for this pulse-routing is described in Chapter 9.
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6.5 Flashing the FPGA

Before the FPGA can be programmed, a bitstream has to be generated using the Vivado®

software. This can be done after synthesis and implementation have completed success-
fully. The FPGA can then be flashed, using a JTAG-based USB programmer. This device
can be seen in Figure 8.1a.
The firmware can either be programmed directly onto the FPGA, or into an internal Flash-
Memory. In the former case, the FPGA must be reprogrammed after each power-cycle.
In the latter case, the firmware stays stable in the Flash-Memory, but a boot-loader is re-
quired on the FPGA to load the design from the Flash upon power-up.
In the course of this work both methods are used: The test-system uses the direct method,
while the BrainScaleS system FPGAs are programmed to Flash (for details see Chap-
ter 8). That is because reprogramming 48 FPGAs each time that a Wafer-Module is
power-cycled, is quite time-consuming. For the test-system, only containing four FPGAs,
this can be accepted for the advantage of not requiring a boot-loader.
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7 Verification

The Universal Verification Methodology (UVM) used to verify the functionality of the
NHTL interface is described in Section 7.1 at the beginning of this chapter. The chap-
ter continues with the description of the testbench implementation (Section 7.2) and the
implemented test-cases in Section 7.3. Finally, the regression method is explained in
Section 7.4

7.1 A UVM Testbench

The NHTL-design, which is described in detail in the previous chapters, is verified, us-
ing the Universal Verification Methodology (UVM) and the System Verilog hardware
description and programming language.

Figure 7.1: Generic structure of a testbench.[24]

The generic structure of a verification testbench is shown in Figure 7.1. The Design
under Verification (DUV) is provided with input from a Stimulus Generator. The design
is checked for correctness by comparing its output with a Reference Model which works
on the same inputs from the Stimulus Generator.
The general structure of a UVM testbench is shown in Figure 7.2. The different inter-
faces of the DUV are controlled and monitored by so-called Interface Universal Verifi-
cation Components (UVCs). These contain a Bus Functional Model (BFM), a Sequence
Driver (Drv) for controlling the interface, and a Monitor (Mon) to observe the interface
signals. The Sequence Driver feeds the BFM with programmed and random-generated
test-sequences. The Interface Monitors forward their observations to the overall Module
UVC. The Module Monitor collects all observations and feeds them to the Reference
Model and the Scoreboard. The Scoreboard (SCB) compares the results from the DUV
and the Reference Model and stores the comparison results for later analysis. Error mes-
sages are thrown for failed tests.
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Figure 7.2: General structure of a UVM testbench. [24]

7.2 NHTL-Testbench

The structure of the NHTL testbench is shown in Figure 7.3. The DUV, which is the nhtl_-
top module, mainly has two bidirectional interfaces. One of them contacts the EXTOLL
network-port, the other one connects the application layer. Both interfaces are observed
by Monitors and controlled by Sequence Drivers. The direction towards the nhtl_top
is controlled by the master-drivers, while the opposite direction is controlled by slave-
drivers. The drivers them selves are controlled by two Sequencers, fed by the different
tests.

Figure 7.3: Structure of the NHTL-Testbench.

The Scoreboard (SCB) collects transactions from the interface-monitors and notifies the
test-sequence about received packets trough four message-boxes. This facilitates the test
to generate responses for packets at the Application-Layer and notification-acknowledges
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from the network-host. The hbp_type message-box transports one bit of information, de-
scribing the type of the requested response packet (1’b0: FPGA-Config, 1’b1:
HICANN-Config). In case of FPGA-Config the request usually triggers a normal re-
sponse of 1 QW length, which is signalled through the hbp_read message-box containing
a 0. But in case of trace-data readout-request, the hbp_read message-box is written with
a random number of requested QWs.
When the scoreboard detects a payload-notification packet at the network-port interface, it
writes a 1’b1 to the ack_type message-box in case of a HICANN-Config notification and
a 1’b0 in case of Trace-Data notification. The number of QWs to acknowledge equals
the number of QWs notified and is written in both cases to the ack_val message-box.

7.3 Verification-Tests

The following test-sequences were implemented to verify the functional behaviour of the
nhtl_top module:

7.3.1 configure_host_node

This sequence writes the configuration registers in the nhtl-registerfile through RRA net-
work packets. The notification frequency for HICANN-Config responses is constrained
to obey the configuration constraints described in Section 4.3.1 on page 31. The configu-
ration sequence is used by the other test-sequences to initialise the DUV.

7.3.2 put_fpgaConf_test

This test-sequence charges the DUV with randomised FPGA-config requests at the net-
work-interface and also generates responses for those requests which the scoreboard suc-
cessfully detects at the AL-interface. The test will run until all asserted requests have
been received at the AL-interface. In case of an error, present in the DUV, this can lead
to an infinite test-loop, that has to be killed manually or with a timeout. As it happens, the
generated FPGA-config packets may also trigger the generation of trace-pulse data.

7.3.3 put_hicannConf_test

This test-sequence charges the DUV with randomised HICANN-configuration packets.
Those packets, that successfully reach the AL-interface trigger responses back to the net-
work-host. Notifications arriving at the network-interface trigger an acknowledgement-
notification back to the DUV. Like for the put_fpgaConf_test, this test can lead to an
infinite test-loop if the DUV is incorrect and not all packets arrive at the AL-interface.

7.3.4 put_pbdata_test

This test simply feeds the network-interface with packets containing playback-data for
the AL-interface. The Scoreboard will check, that the packets have all arrived at the
AL-interface, after the test has finished sending them over the NP-interface.
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7.3.5 put_random_test

The put_random_test combines all previously described test-sequences and randomly
sends alternating FPGA-Config, HICANN-Config, and playback-data packets. Config-
uration packets trigger responses at the AL-interface and payload-notification packets
trigger acknowledgements at the NP-interface.

7.3.6 read_test

This test sends special FPGA-config packets to the NP-interface that trigger trace-data-
readout responses at the AL-interface. Notification packets are acknowledged at the
network-interface.

7.4 Regression

In a regression run one or more tests are executed automatically and repeated many times
with different random seeds. By doing so, the design is run under very different condi-
tions. This helps finding bugs in the design, that usually don’t occur and could easily be
missed by only simulating the design a few times. When a bug is found, a report message
is logged. The design can then be simulated with the respective seed that led to the bug to
analyse and fix it. When the bug is fixed, the regression is rerun again to verify, that the
design still works after the bug-fix.
The NHTL-regression runs the five tests, described above in Section 7.3. The configure_-
host_node sequence is called by each of these tests and doesn’t have to be run separately.
The regression tool records the logs from all runs and sorts them into categories for suc-
cessful, failed and unfinished. When a test runs for a very long time, it is aborted by
timeout and logged as unfinished.
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8 Testing

This chapter is about the test-setup for testing the developed FPGA-design. Section 8.1
describes the hardware test-setup also called Cube-Setup that hosts four FCPs and up to 16
HICANNs. Also the used interface adapter from USB 3.0 to EXTOLL is described here.
Section 8.2 shortly describes the software environment, necessary to use the EXTOLL
network and communicate with the NHTL interface in the BrainScaleS FPGAs. The
individual tests to check the reachability of the registerfile and the JTAG TAP controller
in the HICANN chips are described in Section 8.3.

8.1 The Test-Setup

8.1.1 Cube-Setup

For being able to test the design and its communication with Host and HICANN-chips,
a special test-setup of the BrainScaleS system is provided. This setup is shown in Fig-
ure 8.1. It hosts four FCPs between an IO-board on top and an FPGA-IBoard-interface
board underneath.

(a) Top-view on the Cube-Setup. (b) Bottom-view on the Cube-Setup.

Figure 8.1: Photos of the Cube-Setup for testing of the FPGA-design and communication
with Host and HICANNs.

The IO-board on top of the FCPs interfaces the network with 16 USB 3.0 plugs and
four additional Ethernet connectors. Each FCP is assigned to four of these USB plugs.
These four USB-ports are combined to one EXTOLL-cable adapter that directly con-
nects the respective FPGA to the host-server containing an EXTOLL Tourmalet card.
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The connection-scheme of these USB-to-EXTOLL adapters is shown in Figure 8.2. An
EXTOLL cable plug provides connections for 12 lanes, each consisting of two differential
signal-pairs RX+/- and TX+/-. Each of these lanes is mapped to one USB-plug respec-
tively. Because only two of these adapters are available for testing, also only two of the
four available FPGAs can be connected over the EXTOLL network to the host-server.
The board also provides side-band access through a USB 2.0 connection for low level
I2C configurations. The FPGAs can be programmed via a Xilinx® USB-JTAG program-
mer (see Figure 8.1a). The Cube-setup has to be provided with 12 V power-supply. This
is realised using a conventional PC power-supply unit. The Cube-Setup is cooled by a
standard PC-fan.

Figure 8.2: Connection scheme of the EXTOLL to USB 3.0 adapter-cable. In the USB
socket part, RX and TX are defined from the FPGAs point of view. For the
EXTOLL cable RX and TX are related to the host. The small arrows indicate
the logic data direction.

The bottom PCB in the Cube-setup interfaces two of the FPGAs to one IBoard respec-
tively. An IBoard interfaces the setup with up to eight HICANNs contained on four
HICANN-module cards. The IBoard has to be provided with 13.8 V power-supply. To
provide this voltage, an adjustable lab-power-supply unit is used. Then the IBoard can
provide the HICANN-modules with the required supply-voltages. In the actual test-setup
given, only one IBoard and one HICANN-module is connected. The HICANN-module
used, does actually only contain one HICANN chip. The IBoard and the HICANN-
module can be seen in Figure 8.1b. The IBoard is marked with a sticker, labelled IB2
and the HICANN-module is connected to it on the bottom left in the image.
The JTAG chain, connecting the HICANN-chips with the FPGA has to be configured us-
ing a dedicated jumper-setup on the IBoard. This jumper-setup can be seen in Figure 8.3.
The configuration containing the blue jumper horizontally shorts the JTAG-chain over the
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non-existent HICANN-chip while the configuration with two vertical jumpers on the right
connects the available HICANN to the chain.

Figure 8.3: Photo of the HICANN-JTAG jumper-setup on the IBoard.

8.1.2 Wafer-Test-Setup

In addition to the Cube-Setup, which is described in the section above and located in the
hardware-lab in Mannheim, also a second test setup is used. This setup connects two
FPGAs of one Wafer-Module on the BrainScaleS system in Heidelberg. Each of these
FPGAs is connected to eight HICANNs on the wafer. Hence, this setup allows for more
realistic tests, than the Cube-Setup. As explained in Section 6.5, the FPGAs on the wafer-
module are not programmed directly. Instead the Firmware is flashed into a persistent
memory on the FPGA.

8.2 Software

The software required to start up the Cube-Setup for test is shortly described below.

8.2.1 HMF-Software

Before the FPGAs can be programmed using Xilinx® Vivado®, the FPGAs have to be
turned on. This task can be performed via the I2C-interface. This interface is available
through the USB 2.0 connector on the top-board of the Cube-setup. Alternatively the
I2C-interface can directly be accessed by a Raspberry-Pi computer. When accessing the
interface through the USB 2.0 connector a simple python-script on the host-computer
controls the power-management functions in the Cube-Setup. When the FPGAs are all
turned on, they can be programmed through the USB-JTAG programmer.
If the Cube-Setup shall use HICANNs connected to the IBoard, a second python-script
has to be executed to configure the various supply-voltages provided by the IBoard for
the HICANN chips. This script also uses the USB 2.0 connector on the top-PCB of the
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Cube-Setup. This again can alternatively be done by a Raspberry-Pi computer directly
connected to the I2C bus. This can be especially advantageous, as the Texas-Instruments®

USB 2.0 chip on the Cube-Setup can sometimes behave rather unstable. However the
USB-connection was sufficient for the purpose of testing in this work and therefore posed
the simplest solution for configuring the Cube-Setup.

8.2.2 Extoll-Software

In order to use the Tourmalet network-card, the host-server must at first have the EXTOLL-
drivers installed. When the FPGAs are turned on and programmed, the network topology
as well as the node-IDs for all connected nodes have to be defined in a special file called
network.td. When this is done, the network-discovery software called EXTOLL-EMP
can configure the Tourmalet-card and set up the routing tables for the described topology.
When the network is completely set up and configured correctly, it can now be used for
communication between host and FPGAs. For this purpose a special API called libHBP
is under development, based upon the basic EXTOLL-RMA software-API. The devel-
opment of the libHBP is not part of this thesis work. The libHBP provides functions for
Remote Registerfile Access (RRA) and for sending and receiving general RMA-packets.
It maps the available HBP commands (described in Chapter 3) into user friendly function
calls.

8.3 Individual Tests

To demonstrate the functionalities of the design, developed in the course of this work, the
following tests are conducted using the Cube-setup described in Section 8.1.1.

8.3.1 Registerfile

The first simple test to be performed on the design is checking, that the registerfile is
accessible over the EXTOLL network. For this purpose at first the register at address
0x8008 belonging to the sub-registerfile info-rf can be read, as it contains the well-
known and previously configured node-ID and the Global Unique Identifier (GUID) of
the respective FPGA.
When this has been successful, an arbitrary read-write register should be written and read-
out in sequence. Thereby also the write-access to the registerfile can be checked.
Another test is to check, if the registerfile replacing the JTAG-TAP (test_hicann_-
if_rf) registers in the FPGA (see Section 5.2) is correctly connected to the eight
HICANN-interfaces. To check this, debug logic is inserted in the design. To do so, the
respective locations have to be marked in the HDL-code before synthesis. The Xilinx®

Vivado® software then automatically implements the required hardware-logic into the de-
sign. The FPGAs JTAG-programming interface can then be used with Vivado® to monitor
the previously marked nets in the design at runtime. Arbitrary triggers can be defined on
these nets. When the trigger asserts, the debug-logic logs 1024 clock-cycles and transfers
them over the programming interface.
Now the former JTAG registers are configured using the RRA-API-commands and
checked for correct implementation in the design using the debug interface.
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8.3.2 JTAG

To test the JTAG interface controller (see Section 5.1), the same methodology as for the
registerfile-test is used. Debug-logic is inserted into the JTAG-controller at nets defining
the state of the FSM. Also the actual JTAG signals are monitored with debug-logic. Then
the controller is configured and operated through RRA-commands over the EXTOLL
network. For successful testing, it has to be assured, that the IBoard and HICANN-
module are powered on and connected to one of the FPGAs connected to the EXTOLL
network.

Figure 8.4: Waveform of the debug-signals while writing 0x25a5 and reading 0x77a4
to and from the SET_IBIAS register at JTAG-instruction-address 0x07 in the
HICANN. The TDI-signal (output from the FPGA) is coloured orange while
the TDO (input to the FPGA) is coloured magenta.

To check the functionality of the JTAG interface, the READID register in the HICANN
registerfile is read. If the JTAG works, this register should return a value of 0x14849434.
If this was successful, a read-write register is selected to be written and read-out in se-
quence to check the write-access to the HICANN-JTAG interface. While doing these
transfers, the JTAG-signals are monitored and verified for correctness.
A screenshot of the Vivado® Hardware Manager while monitoring the transfer of 15 bit
to the SET_IBIAS JTAG register in the HICANN is shown in Figure 8.4. The trigger has
been configured to start monitoring the hardware, when the cmd_execute bit in the
JTAG-control-register has been set. The test shows, that the JTAG controller and chain
work perfectly well.
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9 Pulse-Routing Concept

This chapter gives a theoretic consideration of the pulse-routing design space. A first de-
sign for neighbour pulse routing has been proposed in [13], excluding the aspect of FPGA
to host communication. That proposed design is going to be re-evaluated in this chapter
under consideration of the developed network-interface structure.
Section 9.1 describes the generation of pulse-events and their handling at the on-wafer
networks. The neuromorphic pulse-events are compared with biological spikes in neu-
rons and synapses. Subsequently Section 9.2 gives an overview of the different routing
strategies i.e. Point-to-Point Routing, Multicast Routing and Broadcast Routing. The dif-
ferent strategies are discussed in terms of applicability to the EXTOLL network. In Sec-
tion 9.3, a Lookup Table (LUT) architecture is suggested for the future implementation
of the pulse-routing module. Furthermore, an addressing scheme as well as a strategy for
Multicast Routing groups is discussed. The global interrupt capabilities of the EXTOLL
network are shortly described in Section 9.4 and their usability for a synchronous reset
of all FPGA systime counters is pointed out. Finally, Section 9.5 shows the necessary
modifications in the overall FPGA design to implement the pulse-event routing and to tie
it directly to the EXTOLL interface.

9.1 Pulse Communication

9.1.1 Event Generation in the Neuromorphic Circuits

Biological neuronal networks handle the communication between their neurons by send-
ing bio-electrical spikes over synapses connecting one source neuron with many desti-
nation neurons. Spikes are emitted by presynaptic neurons to the axons and received
by the postsynaptic neurons at the dendrites (compare Figure 9.1). This synaptic spike
communication is modelled with so-called pulse-events in the BrainScaleS NCS.
The neurons on the HICANN-chips generate pulses consisting of a freely configurable
6 bit destination synapse-address. The generated pulses are emitted into the on-wafer
Level 1 (L1) network, which is configured for each experiment. These 6 bit packets are
read-out and digitised into the also on-wafer-located Level 2 (L2) network. For this pur-
pose, there are 8 Synchronous Parallel L1 (SPL1) synchronisation channels belonging to
each HICANN. The 3 bit address of the respective SPL1 channel is added to the 6 bit
packet, when synchronised into the L2 network. The time when these packets are gen-
erated for the L2 network is recorded and added to the pulse-event packet as a 15 bit
timestamp. The resulting pulse-event packet is shown in Figure 9.2a. The L2 network
now transports these packets to the FPGA HICANN-interfaces. As one FPGA concen-
trates the pulse-events from eight HICANNs, another 3 bit HICANN-address is added to
the packet. The resulting pulse-event is shown in Figure 9.2b. [26]
When passing the HICANN-interface in the FPGA, the timestamp can optionally be mod-
ified by adding a configurable delay. This is referred to as axonal delay and results in a
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Figure 9.1: The anatomy of a multipolar neuron, showing a presynaptic and a postsynaptic
cell. In particular the Axon and the Dendrite are shown. [25]

timestamp, now representing the desired arrival-time at the destination HICANN. For
each source Neuron on a HICANN, a different delay may be configured in the respective
FPGA HICANN-interface. [26]

(a) Pulse-event format comming from the HICANNs to the FPGA-HICANN-interfaces.

(b) Pulse-event format used in AL and network with additional source HICANN address (bits
{11:9}).

Figure 9.2: Pulse-event-Formats in the BrainScaleS System.

9.1.2 Event Routing between Neuromorphic Circuits

Based on the given source HICANN- and SPL1-address, the routing logic has to trans-
port the pulse-event to the target HICANN. The destination HICANN will then inject
the received pulse-events into the SPL1-channels. Finally the 6 bit synapse-address is
injected to the L1 network where the target-neuromorphic circuits can consume the in-
coming pulse-events. The neurons can again be configured, to listen only to a specific
6 bit target-address. [26]
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Biological synapses as depicted in Figure 9.1 always have a constant propagation delay.
In contrast to that, in computational packet-based networks, the propagation delay of a
packet strongly depends on the stress, currently posed on the whole network. For being
able to accurately model the biological networks, a Neuromorphic Computing System has
to keep this temporal jitter as low as possible. This jitter should not exceed 1 ms biological
time, corresponding to 100 ns with the current speedup-factor of 104 in the BrainScaleS
NCS [26].
To achieve this, pulse-events are buffered when they arrive at a destination HICANN-
interface and sorted using a custom developed heap sorting memory according to their
arrival-timestamp. When the difference between the next pulse’s timestamp and the cur-
rent system-time is lower than a pre-configured limit, the respective pulse-event is re-
leased down to the HICANN-chip. This mechanism ensures, that the events always arrive
at the destination neuron according to their configured synaptic delay. The delays must
thereby be defined according to the expected network-transmission delay plus a bit of
safety overhead. [8, p. 148 ff.]
Finally, the on-wafer SPL1 channel will emit the pulse-event exactly at the given desti-
nation timestamp. The hardware buffer-space for achieving this is limited to eight entries
per channel. Therefore the FPGA mustn’t forward “to many events to early”. [26]
In some future NCS implementation it could be considered to not only model axonal de-
lays at the sending FPGA, but also dendritic delays at the receiving FPGAs. However, this
will require much more buffer-space and configurable logic to define individual dendritic
delays for each neuron and to buffer the events for the configured time before they are
released.

9.2 Routing Strategies

9.2.1 Neuromorphic Network Topologies

Neurons in biological neuronal networks usually fan-out to several hundreds of target
neurons and fan-in from several hundreds to thousands of source neurons. Ideally these
neurons are mapped to the NCS in a way that most of these connections can be realised
in the on-wafer L1 network. As the modelled networks grow larger, this constraint cannot
fully be satisfied and the network has to be spread over several wafers. Many require-
ments on the inter-wafer routing strategies can be derived from the modelled neuronal
network topology. As described and analysed in [27, Chapter 5.1], there are two major
topologies: Uniform Random Networks (URNs) and Local Random Networks (LRNs).
In URNs all neurons have the same probability to be connected to each other, whereas
in LRNs the connection-probability decays exponentially with the connection-distance.
Despite of this probability-decay, most presynaptic neurons for a given neuron in a bio-
logical neural network are located outside the “local volume”. This is because the con-
sidered cylindrical volume increases quadratically with the radius. [28] Therefore there
might still be a significant amount of synaptic connections to be modelled across several
wafers.
A special case of LRNs are feed-forward connected neuron populations. Based on these
topologies, different routing strategies can be imagined.
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Point-to-Point Routing

Figure 9.3: Schematic diagram of the Point-to-Point routing topology. Only one source-
and destination-FPGA is shown for the sake of simplicity.

With this routing strategy, one neuron associated with a source FPGA is connected to
destination neurons at exactly one target FPGA. The router at each FPGA will have to
calculate a target HICANN and SPL1 channel based on the respective source HICANN
and SPL1 channel. Pulse events may be replicated to several HICANNs and / or SPL1
channels at the target FPGA, realising a “local multicast” for the neuron populations. [26]
A schematic view of this topology is shown in Figure 9.3. To keep the simplicity, only one
source-target pair is depicted. In a real implementation there would of course be different
destination FPGAs for most of the neurons associated to the source-FPGA.
This strategy would well be suitable for Local Random Networks where neurons have a
relatively low fanout, i.e. have relatively few postsynaptic connections still fitting to one
FPGA.
This routing strategy requires a lookup-table on the sending side of the connections. The
table has to map the incoming pulse-events to a destination Node ID (NDID). To realise
the local multicast, a second mapping has to be done at the target-FPGA, distributing the
incoming packets to one or multiple HICANNs and SPL1-channels.

Multicast Routing

With this strategy, in contrast to Point-to-Point routing, neurons associated with one
FPGA can be connected to several neurons located at more than one target-FPGA. In
addition to that, also the “local multicast” can still be implemented. This routing model
is very close to biology, as connections between neurons can be modelled most flexibly.
[26]
Figure 9.4 shows again a schematic view of this routing model. As can be seen, one
FPGA fans out to several other FPGAs, but there are still many FPGAs in the network,
that are not addressed by the pulse-event transaction from a particular neuron.
This model is, like Point-to-Point routing, suitable for LRNs, but allows for much higher
neuron-fanout, as postsynaptic connections now can be distributed over several FPGAs.
The EXTOLL network already supports multicast-messages by replacing the destination
NDID with a Multicast Group ID (MC-GID) and setting the MC bit in the SOP-header.
The EXTOLL network only supports 64 different MC-GIDs. However, these MC-GIDs
can be reused for disjunct multicast-groups giving a lot of flexibility to the EXTOLL
multicast-implementation. The only actual restriction is, that the same MC-GID must not
be used twice for one EXTOLL Tourmalet inport (see Figure 1.3).
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Figure 9.4: Schematic diagram of the Multicast routing topology. Only one source-FPGA
is shown for the sake of simplicity.

Broadcast Routing

When the modelled neuronal network is getting very large, each neuron will send and
receive pulse-events to and from several thousands of post- and presynaptic neurons. De-
pending on the mapping of these source- and target-neurons, the connectivity of one neu-
ron could be distributed over almost all other FPGAs. In this case it might be the best
solution to broadcast every outgoing event to all other FPGAs in the network. The target
FPGAs would then have to filter the incoming stream of pulses for relevant events to for-
ward them to the intended SPL1 channels. [26]
This is illustrated in Figure 9.5. In difference to multicast routing (see Figure 9.4) the
pulses are now forwarded to all FPGAs, but filtered there, while for multicast routing
they don’t need to be filtered, as they are not sent to irrelevant FPGAs.
This strategy would especially be suitable for big Uniform Random Networks where the
connection-probability is the same for every neuron-pair in the network.
However, broadcasting every upcoming event to all FPGAs in the network is a rather
bad strategy, as any interconnection-network would easily develop massive congestion
with this kind of load. Moreover, the target-FPGAs would be massively congested while
filtering out relevant events and local-multicasting them to several HICANNs and SPL1-
channels.

SpiNNaker-like Multicast Routing

The SpiNNaker System implements pulse routing, using a special custom-developed
packet-router, which is located on the neuromorphic computing chips. The routed packets
do not contain information about their destination. The routing decisions are made solely
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Figure 9.5: Schematic diagram of the Broadcast routing topology. Only one source-FPGA
is shown for the sake of simplicity.

depending on the source neuron-address. The SpiNNaker-network is organised as a two-
dimensional triangular torus. Deadlocks and lifelocks are avoided by dropping packets in
the routers. The SpiNNaker network supports multicast operations and specially devel-
oped routing-algorithms are used to calculate the routing tables. [29]
Direct reuse of the SpiNNaker routing algorithms is not possible, as the EXTOLL net-
work implements routing based on the destination Node IDs of the participating network
nodes. Furthermore, the EXTOLL network-switching nodes are not able to evaluate the
packet-payload directly for making the next routing-decision as SpiNNaker does. This
would have to be realised by sending pulse-events hopping from one FPGA to another
and evaluating the packet at each hop. This would inevitably introduce higher latencies
and logic requirements for the FPGAs. Therefore this is not considered a viable solution
for the BrainScaleS routing with EXTOLL.

9.3 Proposing a Routing Architecture

9.3.1 Table-based Routing

The desired routing strategy for the BrainScaleS system is a multicast FPGA-routing
combined with local multicast for HICANNs and SPL1-channels. As described in Sec-
tion 9.2.1 on page 62, an NCS might require very many connections between modelled
neurons, which will ideally be mostly realised in the on-wafer networks of the Brain-
ScaleS system. However it is likely, that there are still a lot of off-wafer connections
to be implemented. Defining a routing-table at the sending side is not a great problem,
as there are only 64 SPL1-channels under control of an FPGA, implying also 64 entries
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in the lookup-table. The receiving side of the connection is more tricky, as the local
multicast will have to distinguish the incoming pulses from their origin in the network.
This network-source is the 16 bit NDID combined with at least the 3 bit HICANN-ID and
the 3 bit SPL1-channel. This yields a total theoretically possible number of 222 connec-
tion sources. Under the assumption of maximally connecting to four neighbouring Wafer
Modules, there are still

4[Wafers]×48[FPGAs]×64[SPL1-channels] = 12288

possible connection-sources. A routing-table with such many entries would be horribly
slow and would not even fit into the FPGA.
To solve this problem reasonable restrictions have to be made for the routing. It is there-
fore considered reasonable to restrict the possible number of connection-sources to a rela-
tively low value. The algorithm, mapping the neural network to the BrainScaleS hardware

Figure 9.6: Structure of the lookup-tables for pulse-routing between source- and
destination-FPGAs.
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must hereby be constrained to place the connected neurons as locally as possible across
the Wafer Modules to implement as much connections as possible through the on-wafer
networks. The connection sources in the off-wafer network are not identified with their
source-NDID and SPL1-channel number, but with a configurable GUID that uniquely
identifies each connection source-FPGA for one destination-FPGA. Like the EXTOLL
Multicast Group ID, these GUIDs may be reused for disjunct fanin-groups.

Figure 9.6 shows the suggested routing-table architecture. Pulse-events arising from
the neuromorphic hardware at one FPGA contain a 12 bit identifier which is used for
indexing-access to the first routing-table at the sending FPGA. This table contains 212 =
4kE, each consisting of the destination NDID, a flag for the MC-bit, as well as a new
destination synapse-ID and the configured source GUID. By also making the destina-
tion synapse-ID configurable, more flexibility is given to the mapping-algorithm for the
neuronal network. The information from this routing-table is packed together with the
timestamp from the pulse-event into a network-packet and sent through the network to
the desired destination. The size of this table-buffer calculates to:

4kE×4BE−1 = 16kB

With BRAMs having a size of 4.5 kB in the used FPGA, this can be easily implemented
using four Block-RAMs.

At the target-FPGA the 9 bit source-GUID is used to index a second lookup-table con-
taining 64 bit masking-entries. These bit-masks tell the FPGA-logic the HICANN- and
SPL1-channel-IDs to forward the received pulse-event. The destination synapse-ID and
the timestamp are both extracted from the network-packet. The size of this table-buffer
calculates to:

512E×8BE−1 = 4kB

This adds one more BRAM to the FPGA-implementation. If there are still BRAM-
resources left, it could be considered to expand the source-GUID. With a BRAM-size
of 4.5 kB up to 4 bit could be added, while still only using four BRAMs for the first rout-
ing table. This would imply 213 = 8kE in the second lookup-table, finally consuming
64 kB and 16 Block-RAMs.

9.3.2 Node-ID Addressing Scheme

The EXTOLL Node IDs for the FPGAs are configured during the networks setup-phase.
To simplify the configuration, the NDID can be divided into different tags. One such tag
would be the number of the FPGA with respect to the wafer belonging to that FPGA.
As there are 48 FPGAs at each wafer, 6 bit are sufficient to encode this part of the NDID.
The remaining 10 bit of the Node ID would then denote the number of the Wafer Modules.
The host-nodes could either be encoded in the so far unused FPGA-IDs, or with a 1 bit
flag e.g. at bit 15 of the NDID. The latter solution restricts the possible number of Wafer
Modules in the system from 1024 to only 512, which is still a huge number of Wafer
Modules. This layout of the NDID is depicted in Figure 9.7.
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Figure 9.7: Layout of the NDID-addressing.

Figure 9.8: Possible EXTOLL Multicast Groups between FPGAs on one wafer.

Figure 9.9: Possible EXTOLL non-overlapping Multicast Groups between different
wafers.

9.3.3 Multicast Group Communication

Using the EXTOLL multicast mechanism, some possible communication schemes shall
be mentioned. As multicast groups can be reused as long as they don’t overlap on
the EXTOLL Tourmalet inports, each concentrator-node grouping six FPGAs (see Sec-
tion 1.4), could have its own disjunct multicast group. Additional multicast groups can
be defined to combine neighbouring FPGAs and wafers as shown in Figure 9.8 and 9.9.
Based on this grouping scheme, different communication paradigms would be conceiv-
able. Of course, one FPGA can simply send messages to the groups, it belongs to. This
can either be a local group (MC Group 0 in Figure 9.8, see Figure 9.10) or some bigger
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group with more than one Tourmalet (see Figure 9.11). To use this routing paradigm, an
FPGA just has to send the desired packet out to the network with the correct MC-GID
set. The Tourmalet network cards will then take care of the routing automatically and
broadcast the message to the correct outports.

Figure 9.10: One FPGA broadcasts to its local FPGA neighbours.

Figure 9.11: One FPGA broadcasts to local and neighbouring Tourmalet FPGA neigh-
bours.

When introducing one FPGA routing-hop, it is also possible to broadcast a message to
a remote multicast-group. To do so, the packet must at first be sent to a remote FPGA,
contained in the desired multicast-group. This FPGA can then forward the message to a
local multicast group (see Figure 9.12). It should be mentioned, that for this paradigm, the
routing-table architecture described in Section 9.3.1 has to be adapted accordingly make
the detour-hop possible.

9.3.4 Pulse-Event Accumulation

As one EXTOLL-packet has a header overhead of at least two QWs (see Chapter 3),
sending one packet (29 bit payload) is quite inefficient. To improve this, [13] suggested
to accumulate pulse-events with the same destination-address. However, this can only be
done, if there is enough time left between the current systime and the arrival-timestamp
to do the accumulation and send the message over the network. Again this requires more
buffer-resources in the FPGAs.
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Figure 9.12: FPGA sends single message to remote FPGA - Remote FPGA broadcasts to
its wafer-local FPGA neighbours.

9.4 Global Interrupt

As described in Section 9.1 and 9.3.4 above, the pulse communication and routing strategy
strongly depend on a globally synchronised systime counter. Starting this counter at the
same time on all FPGAs is not trivial. Fortunately the EXTOLL network already imple-
ments global interrupt functionality in its hardware. The global interrupt units can be used
to reset and start the systime counters coincidentally on all FPGAs at the initialisation-
phase of the system.
The global interrupt unit works similarly as the “down phase” of an integrated hardware
barrier network (also implemented in EXTOLL). The nodes are virtually organised in a
tree-structure and the root-node can notify all its child-nodes by sending one message to
the network. For this interrupt-message, the EXTOLL network uses a special barrier-cell,
depicted in Figure 9.13 [30, p. 25].

Figure 9.13: Format of an EXTOLL Barrier cell

The EXTOLL hardware supports up to 16 barriers and up to four global interrupt IDs.
For the barrier, the UP- and DN-bits mark whether the message belongs to the up- or
the down-phase of the barrier. An interrupt is simply marked with the INT-bit. When
the interrupt message travels through the network-tree, it arrives at the network nodes at
different instances in time. To regardlessly ensure a synchronous global interrupt, a delay
mechanism is built into the EXTOLL hardware: In the initialisation phase, the network
connections are measured for their individual transmission delays. The measurement
results are stored in a local register in the hardware. When a global interrupt is issued
through the network, each hardware node waits for the stored delay-time until the interrupt
is triggered to the attached target logic. [30, p. 42]
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Besides synchronising the systime reset for initialisation, the EXTOLL global interrupt
can also be used to help evaluating the traced pulse timestamps from different Wafer
Modules. As mentioned in Section 4.6, the oscillator-sources on the Wafer Modules run
gradually apart. The global interrupt could trigger the FPGAs to send their current systime
when the experiment is finished. The returned results can then be used to calculate the
relative oscillator drift between the FPGAs.

9.5 Modifications in the FPGA Design

Figure 9.14: Blockdiagram of the communication-FPGA design as designed for
EXTOLL-communication with pulse-routing.

To enable pulse-routing and FPGA-to-FPGA communication in the design, the modules
and interfaces have to be slightly rearranged. Some necessary changes in the design-
structure are depicted in Figure 9.14. Pulses coming through the network from other
FPGAs have to be recognised at the NHTL-module. These pulses are forwarded directly
to the HICANN interfaces, where they compete with pulses coming from the playback-
memory. To solve this conflict, an arbiter has to be introduced in front of the HICANN-
interfaces. Also these pulses have to be sent to the right HICANN-interface, as there are
eight of them in one FPGA. In the other direction, a routing-decision has to be made
depending on the source neuron-ID. The router also has to decide, whether the pulse-
events shall be recorded in trace-memory or sent to another FPGA. In the latter case, the
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source neuron identifier together with the source HICANN number is taken to look up the
destination NDID for the EXTOLL network as described in Section 9.3.1. An alternative
behaviour would be to simply trace all events, whether they are sent to a remote node or
not.
To implement these changes in the design, also the interface of the NHTL module has to
be extended for being able to directly interact with the HICANN interfaces.
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10 Conclusion and Future Work

10.1 Conclusion

With this work, a new network interface has been developed and implemented for the
BrainScaleS system, enabling the use of the EXTOLL network. The FPGAs can now
communicate with a host computer over EXTOLL to send configurations, write the play-
back-memory or readout the experimental results from the trace-memory. For this pur-
pose, the EXTOLL RMA protocol has been used and modified for the needs of this appli-
cation. Furthermore, JTAG access to the HICANN chips has been optimized and imple-
mented using a registerfile-driven JTAG master-controller. The design has been verified
using a UVM testbench and successfully tested on the implemented FPGAs.
Last but not least, a theoretic evaluation of the pulse-routing design-space has been con-
ducted to facilitate a future extension of the design with a pulse-event routing module.
This will also enable the BrainScaleS system FPGAs to communicate not only with a
host, but also with each other. Thereby the Wafer Modules containing the neuronal net-
work models can be combined to form a larger neural network.
Generally, the EXTOLL network provides significant improvements compared with Gi-
gabit Ethernet. EXTOLL provides up to 100 Gbps bandwidth and hop-latencies under
60 ns. Also the conventional compute cluster, which is part of the BrainScaleS system,
will significantly benefit from the EXTOLL network.

10.2 Future Work

This work is not complete in the sense of using the full capabilities of the EXTOLL
interconnection network within the BrainScaleS system. Therefore, as Chapter 9 already
indicates, the future work for this project will comprise the following tasks:

• Implementation of a pulse router: A module has to be developed and imple-
mented in the FPGA design to provide the pulse-routing functionality, described in
Chapter 9. The requirements, analysed in this thesis, shall therefore be taken into
account.

• Include the global interrupt: The global interrupt functionality, described in Sec-
tion 9.4 is not yet implemented in the FPGA version of the EXTOLL LP.

• Implement the global interrupt software: The global interrupt has not been used
before yet. The EXTOLL software-stack has to be extended to support this func-
tionality, which is already contained in the EXTOLL Tourmalet network-cards.

• Finish the libHBP: Not all features of the NHTL interface are yet implemented
in software for the host-computer. Especially the ringbuffers for receiving answers
and trace-data from the FPGAs still have to be implemented.
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• Adapt the BrainScaleS software: The software controlling the BrainScaleS sys-
tem has to be adapted to use the libHBP to be able to cope with the newly developed
FPGA design.

• Implementation of trace memory bypass: It is envisioned to implement a direct
feedback algorithm on the current traced pulses. For this purpose, the pulses are not
kept in the trace-memory until the end of the experiment, but more or less directly
sent to the host. The NHTL design is already prepared for this scenario by sending
the traced pulses to a ringbuffer in host memory. The HMF core-logic will have to
be changed accordingly in the future to implement this behaviour.

• Implementation of playback memory bypass (SpiNNaker interface): In the cur-
rent Ethernet implementation a SpiNNaker interface provided direct access to the
HICANNs. This SpiNNaker interface is not contained in the Extoll-design because
it was directly connected to the Ethernet interface module. Including the SpiNNaker
interface would have been complicated, as either the NHTL would have to imitate
the Ethernet interface structure, or the SpiNNaker interface module would have to
be redesigned. Fortunately, the direct access to the HICANNs will already be possi-
ble when pulse routing is implemented. The host software will then have to imitate
an FPGA while communicating with the FPGAs.
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A Acronyms

AL Application-Layer. 9, 10, 17, 19, 23–27, 33, 34, 52–54, 61, 77

AnaRM Analog Readout Module. 4

API Application Programming Interface. 4, 58

ARM Acorn RISC Machines / Advanced RISC Machines. 2

ARQ Automatic Repeat reQuest. 9, 42

ASIC Application Specific Integrated Circuit. 2, 6, 17

ATU Address-Translation-Unit. 12

AVC Adaptive Virtual Channel. 12

BFM Bus Functional Model. 51

BRAM Block-RAM. 46, 49, 67

CLB Configurable Logic Block. 46

CMOS Complementary Metal-Oxide-Semiconductor. 2

CMT Clock Management Tile. 46

CRC Cyclic Redundancy Checksum. 12

DDR Double Data Rate. 9, 16, 17, 47, 48

DEMUX Demultiplexer. 25, 77

DMA Direct Memory Access. 13, 18

DR Data Register. 42, 43

DRC Design Rule Check. 46

Drv Sequence Driver. 51, 52

DSP Digital Signal Processor. 36–38, 46, 49, 78

DUV Design under Verification. 51–53

DVC Deterministic Virtual Channel. 12
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E Unit for table-Entries. 67

EOP End Of Packet. 12, 23, 26, 34

EOT End Of Trace. 19, 20

ERA Excellerate Read Access. 13, 33

EWA Excellerate Write Access. 12, 33

EXTOLL Extended Atomic Low Latency (ATOLL). v, vi, 1, 4–12, 17, 23, 24, 26, 29, 31,
35, 36, 39–41, 43, 45, 47, 48, 52, 55, 56, 58–60, 63, 65, 67–71, 73, 77–79

FCP FPGA Communication PCB. 2–6, 16, 17, 48, 55

FF Flip Flop. 46, 49

FIFO First In First Out. 15, 17, 23–28, 31–33, 35–38, 40, 77

FLOP Floating Point Operation. v, 1

FLOPs Floating Point Operations per second. v, 1

FPGA Field Programmable Gate Array. v, 1–3, 5–13, 15–21, 24, 26–29, 31–33, 36, 37,
40–42, 44–50, 53–74, 77–79

FSM Finite State Machine. 24–27, 32–34, 37, 39, 41–44, 59, 77, 78

GT Gigabit Transceiver. 49

GUI Graphical User Interface. 46

GUID Global Unique Identifier. 58, 67

HBP Human Brain Project. v, 1, 2, 9, 58

HDL Hardware Definition Language. 58

HICANN High-Input Count Analog Neuronal Network Chip. 2, 3, 8, 9, 16–20, 24, 30–
33, 40–42, 44, 45, 47, 48, 53–67, 71, 73, 74, 78

HMF Hybrid Multiscale Facility. 3, 9, 13, 15, 17, 18, 22–24, 27, 40, 42, 74

HPAC High Performance Analytics & Computing. 1

HPC High-Performance Computing. 4

HW Hardware. 9

I2C Inter Integrated Circuit. 4, 9, 48, 55, 57, 58

IBoard Interface Board to the HICANN-Modules in the Cube-Setup.. 55–57, 59, 78

INT Interrupt. 12, 33
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IO Input Output. 49

IP Intellectual Property. 40

IR Instruction Register. 42, 43
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