
Department of Physics and Astronomy

University of Heidelberg

Bachelor Thesis in Physics

submitted by

Alexander Nock

born in Tuttlingen (Germany)

2021

Migration and Enhancement of the Advanced

Lab Course on Neuromorphic Computing

This Bachelor Thesis has been carried out by

Alexander Nock

at the Kirchhoff Institute for Physics in Heidelberg

under the supervision of

Dr. Johannes Schemmel

Abstract

BrainScaleS-2 is an analog neuromorphic computing platform currently developed

by the Electronic Vision(s) group in Heidelberg. The research approach behind this

technology uses spiking neural networks for information processing in a similar way to

the human brain. An introduction to this topic is provided by a series of experiments

in the framework of the advanced lab course for physics. Since those are currently

performed on a considerably older neuromorphic chip, the thesis aimed to migrate the

existing experiments onto BrainScaleS-2. Given the modified specifications resulting

from a new hardware, it was necessary to adapt the experiment code accordingly. The

thesis evaluates the obtained results ensuring that the intended purpose of every task

could be sustained after the migration. Motivated by demonstrating a more practical

application, a new task introducing a sudoku solver was designed. The functionality

of the corresponding neural network is explained and evaluated.

Zusammenfassung

BrainScaleS-2 ist eine analoge Plattform für Neuromorphes Rechnen, die gegenwärtig

von der Electronic Vision(s) Gruppe in Heidelberg entwickelt wird. In ähnlicher Weise

wie das menschliche Gehirn verwendet der Forschungsansatz hinter dieser Technologie

gepulste neuronale Netze für die Informationsverarbeitung. Eine Einführung in dieses

Thema wird mit einer Versuchsreihe im Rahmen des Fortgeschrittenen-Praktikums

angeboten. Da diese gegenwärtig auf einem deutlich älterem neuromorphen Chip

ausgeführt wird, hat sich die Bachelorarbeit zum Ziel gesetzt, die bestehenden Auf-

gaben auf BrainScaleS-2 zu migrieren. Die mit einer neuen Hardware verbundenen

Änderungen der technischen Einzelheiten machen es notwendig, den Programmcode

der Experimente entsprechend anzupassen. Die Bachelorarbeit wertet die gewonnenen

Ergebnisse aus, um sicherzustellen, dass der Zweck jeder Aufgabe nach der Migra-

tion erhalten werden konnte. Mit der Motivation eine praxisnähere Anwendung zu

demonstrieren, wurde ein Sudoku-Löser erstellt und in Form einer neuen Aufgabe

eingführt. Die Funktionsweise des zugehörigen neuronalen Netzes wird erklärt und

ausgewertet.

Contents

1 Introduction 1

2 Theory & Methods 2

2.1 Biological Background . 2

2.2 Networks and Models . 3

2.3 Leaky Integrate-and-Fire (LIF) Model 4

2.4 The HICANN-X Chip . 5

2.5 Software . 6

2.6 Advanced Lab Course . 7

3 Results 9

3.1 Task 3: A Single Neuron with Synaptic Input 9

3.2 Task 5: Feed-Forward Networks (Synfire Chain) 13

3.3 Task 6: Recurrent Networks . 15

3.4 Task 7: A Simple Computation - XOR 18

3.5 New Task: Sudoku Solver . 19

4 Discussion 25

5 Outlook 27

6 Acknowledgment 28

7 Appendix 28

8 References 32

1 INTRODUCTION

1 Introduction

Inspired by the functionality of the human brain, Artifical Neural Networks (ANNs)

have been developed to process input with a network of neurons. The research on

ANNs has shown that they can be used in a broad range of applications [1] and are

outperforming conventional computers in specific tasks like image recognition [2] or

speech processing [3]. When trying to emulate the functionality of a brain more real-

istically, the firing nature of the neurons has to be considered. This leads to Spiking

Neural Networks (SNNs) for whose description it is necessary to solve a complex sys-

tem of differential equations. Therefore, neuromorphic hardware has been designed

which provides an alternative way of computing by directly emulating the biological

behavior in integrated circuits. This does not only yield a higher processing speed for

some systems [4] but also has the potential to be more energy efficient than conven-

tional computers [5].

In Heidelberg, the Electronic Vision(s) group has been developing neuromorphic ar-

chitecture for more than 15 years with BrainScaleS-2 being the latest generation

thereof. For physics students the work group offers a two-day introduction to how

neuromorphic hardware operates and what it is capable of. This is provided in form

of an experiment in the advanced lab course for which an older neuromorphic chip is

used at the moment. Given the newer and improved hardware, the migration of the

lab course seemed expedient and therefore was addressed by this thesis. For every

task, the main objective was to find a suitable operating point for the neurons after

the code had been rewritten. Moreover, it was necessary to check whether the purpose

of every task is still sustained on the new hardware. Thereby, the software scripts had

to be easy to comprehend for students unfamiliar with neuromorphic hardware and

potentially little programming experience. The first two tasks of the experiment on

neuromorphic computing deal with observing and calibrating analog parameters of a

single neuron circuit. They have already been migrated onto BrainScaleS-2 during

my internship and therefore can be found in the according report [6]. This thesis will

further follow the structure of the advanced lab course and migrate the remaining

tasks which use different networks of interconnected neurons to obtain an applica-

tion of neuromorphic computing. Thereby the different networks are defined by their

respective connections and also the weights thereof. Lastly, a new task that uses a

neural network to solve sudoku puzzles has been created and evaluated. It presents

a conceivable application of neuromorphic computing for a widely known task.

1

2 THEORY & METHODS

2 Theory & Methods

2.1 Biological Background

With over 104 units per cubic millimeter, neurons form the elementary components of

the human brain. The input from ca. 104 other neurons [7] arrives at their dendrites

(fig. 1) and travels to the soma which is the neuron body and functions as the pro-

cessing unit. Their output is then forwarded by the axon which is connected to the

dendrites of the subsequent neurons by synapses. In the neuron itself the information

is processed using the membrane potential which is given by the difference in the

potential inside the soma and the more positively charged outside. With no input,

the membrane potential is drawn towards a constant value which is called leakage

potential. With excitatory or inhibitory input, ion-pumps are activated causing a

rise or fall on the membrane, the postsynaptic potential (PSP), which then passively

returns back to its initial value by diffusion processes. Thereby, the soma integrates

all incoming signals to a superposition of exponential functions as shown in the right

part of figure 1. If a certain threshold potential is crossed, the membrane potential

increases significantly and sends the so-called action potential onto its axon. Then

inside the neuron temporarily a reset potential below its resting potential is taken

and after a refractory period of typically a few milliseconds the leakage potential is

aimed again.

Figure 1: Left: Schematic of a single neuron in a drawing by Ramón y Cajal.
Right: The superposition of the input spikes (postsynaptic potentials) in the soma
which eventually results in an output spike (figures taken from [8]).

2

2.2 Networks and Models 2 THEORY & METHODS

These processes in all of the roughly 1011 neurons of our brain yield a fast way of par-

allel computing with only a comparable low need of energy. Therefore, this essentially

different way of processing information (compared to the von Neumann architecture)

is subject of software and hardware modelling. Furthermore, the way of information

processing in the human brain is well understood on the level of neurons, but does

not explain all phenomena observed on network level [9]. Hence large-scale brain

paradigms are emerging and with modelling the interaction of numerous neurons,

further insights in this field are strove for.

2.2 Networks and Models

The most elementary neural network is a simple perceptron [10] which consists of

an input layer connected to an output layer and for instance could be used to build

an AND gate. For slightly more advanced tasks like an XOR gate an extra layer

of (hidden) neurons in between is needed which makes the network a multilayer

perceptron. If there are connections to the same layer or the previous layers it is

called a recurrent neural network (RNN). Otherwise, the information flows only in

one direction which is captured by the name feedforward network. All these networks

are also used in machine learning, but there they are static and don’t emulate the

spiking behavior of biological neurons. This is different for spiking neural networks

(SNN) [8] which are used for the advanced lab course. There, the time component

plays an important role and the information is forwarded by the output given as a

series of spikes.

A quantitative description of the electric circuit that a spiking neuron can be seen as,

is delivered by the model from Hodgkin and Huxley (1952) [11]. In order to describe

the ion channels and their current flows, they use coupled differential equations which

are computationally expensive to solve due to their non-linearity. However, there

are also more basic models which are used to model SNNs on hardware. For the

BrainScaleS-2 hardware this is the adaptive exponential integrate-and-fire (AdEx)

[12] model which is based on the simpler leaky integrate-and-fire (LIF) model [8] and

sufficiently explains the hardware for the advanced lab course.

3

2.3 Leaky Integrate-and-Fire (LIF) Model 2 THEORY & METHODS

2.3 Leaky Integrate-and-Fire (LIF) Model

In order to electronically describe the basic dynamics of neurons, the leaky integrate-

and-fire model (LIF) with current based synapses [13] is used throughout the thesis.

Mathematically this is expressed by the following differential equation for the mem-

brane voltage Vm:

Cm
dVm(t)

dt
= gleak(Eleak − Vm(t)) + Iexc(t) + Iinh(t) (1)

In biology, the membrane separates the differently charged inside and outside of the

neuron and thereby acts as a capacitor. Considering that, it is crucial to have the

capacitance Cm which can be charged or discharged. This happens with excitatory or

inhibitory input given in form of the time-dependent synaptic currents Iexc and Iinh.

Subsequently, the voltage Vm over the membrane capacitance Cm is pulled towards

the leakage potential Eleak over time. This happens by current flowing through the

resistance with leak conductance gleak.

Figure 2: Circuit based on the leaky integrate-and-fire model with current based
synaptic input (figure taken from [14]).

If the potential on the membrane crosses the threshold voltage Vth, the comparator

outputs a voltage which potentially serves as a spike for the following circuits. Simul-

taneously, the membrane voltage switches to the reset voltage Vreset for the duration

of the refractory time constant τrefrac.

4

2.4 The HICANN-X Chip 2 THEORY & METHODS

2.4 The HICANN-X Chip

Currently the advanced lab course is performed on the Spikey chip which has 384

neurons in total. In contrast, the platform mainly used by the working group is

the new BrainScaleS-2 (BSS-2) architecture [15] which will be adopted for the lab

course. It contains the HICANN-X chip with its total of 512 AdEx neurons. Those

are distributed over four equally sized quadrants which have own analog parameter

storage circuitry memorizing the parameters of their 128 neurons (cf. figure 3). All

these parameters have a 10-bit precision when their digital values are produced in the

parameter memory.

The connections between the neurons are managed by the synapse arrays where each

of the 256 rows is connected to a synapse driver. Those are used to process input

coming not only from other on-chip neurons but also from external sources. Every

neuron is then connected to the end of a synapse array column, i.e. a total of 512 x

256 = 131 072 synapses are available where an individual weight can be chosen with

a 6-bit resolution.

Figure 3: Schematic setup of the BrainScaleS-2 chip (left, taken from [16]) with the
diagram of one quadrant and its communication to the host computer (right, taken
from [17]).

5

2.5 Software 2 THEORY & METHODS

The voltage on the membrane is measured by the on-chip membrane analog-to-digital

converter (MADC) which explains why the voltages are obtained in digital values.

This can be translated back to analog values with a reference voltage digital-to-analog

converter (DAC) which needs to be connected to the MADC and sweeps through the

measurable voltage range.

The main difference between the two chip generations are the Plasticity Process-

ing Units (PPUs) that are exclusively on the BSS-2 setup. They are microprocessors

working with SIMD (single instruction, multiple data) instructions which for example

can be used to calculate the weight updates for several neuron connections simultane-

ously. This is required when a learning rule for the weights is used to take past firing

behavior into account. The benefit compared to calculating the new weights on an

external computer is that the weights can be updated during a hardware run which

is necessary to prevent a high latency and results in a faster experiment execution.

Important to mention is that the synapses and neurons themselves show fixed-pattern

noise due to their manufacturing imperfections which mainly result from variations

in the size and doping of the transistors. That is why calibrations are applied which

yield a significant improvement, but never can compensate all the differences. There-

fore, the used network models are required to be robust against noise to a certain

extent.

2.5 Software

For novice users like the students in the advanced lab course it cannot be expected

to operate with an unknown system on a level close to the hardware. Therefore, it is

necessary to provide an application programming interface (API) with a higher level

of abstraction that also has numerous use cases for expert users. With this motiva-

tion, PyNN [18] has been implemented for BrainScaleS-2 [14] and will be used when

writing the tasks for the advanced lab course. It mounts on top of several other layers

of software that had to be developed beforehand to operate on the new hardware.

PyNN is a Python package that can be used to build neural networks at a high-level

of abstraction and works independently of the backend in place. Its user-friendliness

is reflected by the intuitive way a neural network can be set up. The experimenter can

select any neurons and group them together to populations. Those can be connected

to other populations with so-called projections using different types of synapses. It is

also possible to get more detailed access to the network’s properties and change pa-

6

2.6 Advanced Lab Course 2 THEORY & METHODS

rameters within the neurons or choose among different types of synapses. Currently,

the backend of PyNN on BrainScaleS-2 only allows to operate in units of the digital-

to-analog converter (DAC) that is used when reading the values in the parameter

memory. For the evaluation of the tasks these parameters will partly be transformed

to hardware values. In the long-term, the aim is to set all parameters in biological

values like it is realized in the PyNN version of Spikey.

The general control flow starts with the network that is set up in PyNN, including

the assigned duration of the hardware run and all observables that are selected for

recording. The backend of PyNN then creates the playback program which contains

all configurations and instructions. This program is subsequently send from the host

computer to a field-programmable gate array (FPGA) which handles the commu-

nication between the host and the chip. After the experiment is executed on the

hardware, the FPGA receives the experiment results and provides them for a readout

by the connected computer.

2.6 Advanced Lab Course

The advanced lab course is a mandatory module for all undergraduate physics stu-

dents in Heidelberg. It offers numerous series of experiments covering nearly all areas

of physics. The one migrated in this thesis is on the topic of neuromorphic comput-

ing (being based on [19]) and is designed for the typical duration of two days. It is

divided into seven tasks each being split in several subtasks. Some of the subtasks

are optional for faster students or those who choose to write a report on the exper-

iment. To each task, software scripts are provided which are meant to be modified

by the students in the course of the experiment and therefore should be understood

by people unfamiliar with the topic. For the Spikey chip, an oscilloscope is used to

directly observe the membrane voltage in the laboratory. On the prospective setup

(fig. 4) this could be done as well, but is no longer required because the previously

described MADC on BrainScaleS-2 provides the same functionality. In the picture,

the xBoard surrounding the HICANN-X chip manages the supply voltage and also

carries the analogue and digital periphery. It is connected to the cube setup which is

intended for the communication to the host computer via 1Gbit Ethernet per FPGA.

7

2.6 Advanced Lab Course 2 THEORY & METHODS

Figure 4: The current test setup of the BrainScaleS-2 system which will be used for
the advanced lab course (modified from [20]). The HICANN-X chip with its carrier
board is supplied with voltage by the xBoard. The communication with the host
works via the four FPGAs which are contained in the cube setup. An oscilloscope
can be connected to the two analog readout channels (circled in red) to observe the
membrane or parameter voltage.

8

3 RESULTS

3 Results

The general steps for migrating a task onto the new BrainScaleS-2 hardware are firstly

to make sure that the chip is in theory able to perform the required operation. Then

the code needs to be adapted to run on the new hardware which for instance means

that parameters are translated to digital values and adjusted to a wider parameter

range. Since PyNN is work in progress, it might also be necessary to program a

certain functionality if it can be realized within the scope of this thesis. This is the

reason why task four is not yet migrated as it requires a new type of synapse that is

able to learn from previous input. The according implementation into PyNN for the

new hardware requires the handling of routing that would be too extensive for the

thesis.

After the initial results are checked for their usefulness, usually certain parameters

need to be swept to find a suitable working point. Certain tasks require the use of

a calibration to compensate for the fixed-pattern noise of the hardware. The values

for it are obtained by automated calibrations that run overnight on the setups. The

set of parameters for the respective chip is then load and applied using PyNN. Sub-

sequently, plots have to be adapted or newly created and comments for students are

added to understand how the software operates. The result of all these steps will be

presented in the following and will show to which extend it was possible to transport

the functionality onto the new hardware. Thereby, the structure is according to the

tasks of the advanced lab course and the respective code can be found in the review

tool Gerrit (change ID given in table 1). For the fifth task the PyNN script is also

exemplary printed in the appendix.

3.1 Task 3: A Single Neuron with Synaptic Input

This experiment is conducted with a single neuron which is connected to synaptic

input and should show the decay of the postsynaptic potential (PSP) without firing

as shown in the right part of figure 1 (upper plot). In order to prevent spiking, its

threshold is set to a high value. In figure 5 the observed shape for one excitatory

(left) and one inhibitory (right) input spike coming from one other neuron can be

seen. The average over eight spikes (red graph) shows a less noisy behavior. This

shape can be modified by parameters set in PyNN. For the version on Spikey these

are the two hardware parameters drvifall and drviout for whom most students

9

3.1 Task 3: A Single Neuron with Synaptic Input 3 RESULTS

Figure 5: The PSP responding to excitatory (left)/inhibitory (right) presynaptic
input recorded for one neuron. The blue curve shows a single event while the red one
shows an average over eight spikes.

have no intuition since they have no direct biological representation and are set in

digital values. To account for this circumstance, the synaptic input time constant

τsyn and the synaptic input conductance gsyn (or more precisely the bias currents

that control those quantities) of a calibrated neuron are changed for the experiment

on BrainScaleS-2. The left plot of figure 6 shows that a larger bias current for the

synaptic conductance increases the amplitude, but doesn’t modify the slope. Know-

ing that the bias current is directly proportional to gsyn, this can be explained by the

fact that a higher synaptic conductance means a higher postsynaptic current which

is directly proportional to the measured voltage. The right plot shows that a larger

Figure 6: The response of the membrane potential onto a presynaptic spike. The
different colors show the dependency of the PSP on the synaptic conductance gsyn
(left) and the synaptic time constant τsyn (right). The bias currents given in digital
values are proportional to gsyn and inversely proportional to τsyn.

10

3.1 Task 3: A Single Neuron with Synaptic Input 3 RESULTS

bias current for τsyn yields a smaller peak and a decreased slope. For the explana-

tion it is important to know that the time constant is inversely proportional to its

controlling bias current. To start with, the synaptic time constant determines how

fast the synaptic current is decaying after an excitatory presynaptic spike [13]. With

a larger τsyn the current decays slower and more current flows over the synapse, i.e.

the result is a higher rise of the PSP.

In order to examine the fixed-pattern noise across the different synapse drivers, we

modify the row of the stimulating synapse and measure the amplitude of the (exci-

tatory) PSPs for one neuron. Thereby, the used calibration accounts for the noise

of the neuron, but leaves the synapse drivers unmodified. For a sweep over all 256

synapses the histogram shows a symmetric distribution around a value of 59.3 mV

with a standard deviation of 1.4 mV which equals 2.4 % of the mean (fig. 7).

Figure 7: An excitatory PSP has been measured for 256 different synapse drivers.
The histogram with the resulting relative heights therefore shows the fixed-pattern
noise across synapses which has a value of 2.4 %.

The next subtask emulates the firing of a neuron after it receives multiple excita-

tory inputs which are stacked together. Therefore, a train of input spikes is sent over

the same synapse. To prevent that the membrane is completely drawn back to the

leak potential after each stimulation, either the neuron parameters or the temporal

distance of adjacent input spikes can be changed. In the experiment the latter should

be modified to produce an output spike. A clear visualization of how the decay is

11

3.1 Task 3: A Single Neuron with Synaptic Input 3 RESULTS

Figure 8: Visualization of the integrative behavior of the membrane. Four successive
input spikes (top) are send onto the postsynaptic membrane (bottom). The decay of
each PSP is interrupted by the next input which eventually rises the potential above
the threshold and therefore produces an output spike (middle).

interrupted and the eventual firing as a result of the aggregation has been realized in

figure 8. The optional task in the advanced lab course handles the comparison of the

fixed-pattern noise observed previously (cf. fig. 7) and the temporal noise occurring

in a single run. It doesn’t have an illustration so far and therefore figure 9 could be

used as a template in the future. The plot shows the different synapses on the x-axis

with their respective PSP amplitude (for better visibility only every fifth value is

plotted). These values have been obtained by calculating the difference between the

minimum and maximum value of a PSP for each of the eight input spikes in a single

run and then averaging over them. The mean temporal noise over all 256 synapses

(i.e. the average over the standard deviations) is 2.2 mV which equals a deviation of

3.7 %. This fits to the value of 2.3 mV which is obtained for a neuron in 256 single

runs with a single PSP using only one synapse driver. In contrary, the fixed-pattern

noise is the standard deviation resulting by calculating the mean of the red crosses

and represented by the orange tube. With 1.4 mV it makes up 2.7 % of the mean

value and therefore it is just two thirds of the temporal noise.

12

3.2 Task 5: Feed-Forward Networks (Synfire Chain) 3 RESULTS

Figure 9: The average PSP amplitude for every synapse is measured for a single run
with eight input spikes. The mean temporal noise is the average over all red errrorbars.
The fixed-pattern noise is the standard deviation obtained when calculating the mean
of all red crosses and represented by the orange tube.

3.2 Task 5: Feed-Forward Networks (Synfire Chain)

Figure 10: Setup of a synfire chain

where excitatory populations are

red and inhibitory populations are

blue (modified from [21]).

This task is the first to use internal connections

and thereby setting up a network with neurons

receiving their input from other neurons (in con-

trast to the external spike sources from previous

tasks). The very network is a synfire chain with

feed-forward inhibition. The setup (fig. 10) is a

chain of excitatory populations supplemented by

inhibitory neurons where the last neuron popu-

lation is connected to the first one (cf. the cor-

responding PyNN script in the appendix). After the first excitatory and the first

inhibitory population are stimulated once, the populations are intended to spike one

after another. In order to prevent immediate successive spikes from a population,

each one is connected to its own inhibitory partner. To start with, relatively large

13

3.2 Task 5: Feed-Forward Networks (Synfire Chain) 3 RESULTS

populations with seven excitatory and seven inhibitory neurons are chosen to pro-

duce multiple output spikes for every population even if some neurons are not firing.

Otherwise, the neurons would need to be very sensitive to be triggered by only one

or two spikes. This results in accidental spikes and would destroy the controlled

propagation because the network wouldn’t be insensitive enough against noise on the

membrane. The chosen population size yields a maximum chain length of eight (i.e.

16 populations in total) because of the algorithm for the allocation of the synapse

drivers in PyNN when external and internal connections are used [14]. With the

unmodified default calibration only one cycle through the chain is observed. The

relative short time for the pulse propagating from the first to the last population (less

than 0.02 ms) causes that the neurons’ potentials are still considerably below the leak

potential when a new input spike arrives and therefore no output is produced. To

change this circumstance, at first the refractory time constant has been reduced and

a continuous firing pattern could be achieved (fig. 11). Likewise, other neuron pa-

Figure 11: Top: The network activity of a synfire chain with excitatory neurons in
red and inhibitory neurons in blue. Bottom: The membrane voltage over time for an
excitatory neuron in the first population.

rameters that have an influence on how fast the membrane is drawn back to its rest

potential have been changed with the same result. Exemplary, this is shown for the

membrane capacitance in figure 12. There the influence of the membrane capacitance

on the membrane time constant causes an increasing propagation time for the input

spike. Above a critical value, the membrane is reaching Vleak too slow and the synfire

chain eventually extinguishes after only a few cycles.

14

3.3 Task 6: Recurrent Networks 3 RESULTS

Lastly, the lab course requires to observe to which number of neurons the popu-

lations can be reduced until the synfire chain either stops propagating or is firing

uncontrolled. The result for the default calibration with the described modifications

is found to be a network with 11 inhibitory and 11 excitatory populations which have

five neurons each.

Figure 12: The time for the input pulse to cycle through the synfire chain once, is
plotted in dependency of the membrane capacitance. Below a certain value, the two
quantities have a positive correlation as it can be seen in the zoomed in plot (right).
At the upper end of the x-axis (left) this relation vanishes because the neurons’
membranes take too much time to be drawn back to Vleak.

3.3 Task 6: Recurrent Networks

In the following, the aim is to build a recurrent network which can be used as a

noise source for other experiments. To start with, the largest entity with a mostly

homogeneous spiking behavior is chosen. For the HICANN-X chip, this is one quarter

consisting of 128 calibrated leak-over-threshold neurons (fig. 13, left). The irregularity

is then caused by randomly choosing K other neurons as synaptic input for each

neuron and setting up those connections with an inhibitory weight w. The result

(fig. 13, right) is evaluated by measuring the time between two consecutive spikes for

every neuron. More precisely, the coefficient of variation CV = µ/σ indicates the

amount of randomness per neuron using the mean and the standard deviation of the

averaged ISI. For a homogeneous Poisson process, this dimensionless quantity has a

value of 1 while evenly spaced events yield a value of 0 [22].

The observed neurons show CVs that exponentially decrease with their respective

firing rate (fig. 14). In analogy to excitatory input [23] this relation could be expected.

15

3.3 Task 6: Recurrent Networks 3 RESULTS

Figure 13: The spiking behavior of all neurons of one block without any connections
(left) and with randomly drawn inhibitory connections (right).

It is due to the fact that a high firing rate means an ISI close to the refractory time

constant which can only occur for a weakly inhibited neuron. Consequently, such a

neuron is constantly firing directly after the refractory period is passed and therefore

shows no variance in the time between two spikes. In contrast, strongly inhibited

neurons show randomness as the refractory time constant has negligible influence on

their ISI and the random timing of the input spikes dominate. In order to measure

the influence of the number of presynaptic partners K and the connection weight w,

those two parameters are swept over their whole range and plotted in a 2D histogram

with the firing rate (fig. 15, left) and the CV (fig. 15, right) encoded in the color.

There, the firing rate strongly depends on the weight and number of inputs, i.e.

more and stronger inhibitory connections suppress the firing activity of almost all

neurons to the point that less than 3 % of the initial output spikes are recorded

(firing rate of ca. 10 kHz compared to 380 kHz with no inhibitory connections). More

precisely, a small number of neurons is firing with their maximum frequency and

suppressing the activity of all their postsynaptic partners. On the other hand, the

CVs don’t depend in the same way on the swept parameters. If the neurons are

not inhibited, they are firing with their maximum frequency and therefore show a

constant activity which is represented by a low coefficient of variance. With more and

stronger inhibitory connections, the randomness increases as the inter-spike intervals

are not dominated by the refractory time constant and therefore yield a CV close to

1. With maximum inhibition, the dominating neurons are constantly firing with their

maximum frequency while all other neurons are completely suppressed and therefore

they have no contribution to the CV.

16

3.3 Task 6: Recurrent Networks 3 RESULTS

Figure 14: The correlation of the firing rate and the coefficient of variation for the
created recurrent network. One data point is obtained by calculating the average ISI
of a single neuron and determining the CV and the firing rate with it. A high firing
rate leads to a low CV because weakly inhibited neurons constantly fire with their
highest possible frequency.

Figure 15: The 2D histograms show the dependency of the firing activities (left)
and CVs (right) on the connection weight (x-axis) and the number of inhibitory
presynaptic connections (y-axis). The average value of the measured quantities is
encoded in the color bar on the right side of the plots.

17

3.4 Task 7: A Simple Computation - XOR 3 RESULTS

3.4 Task 7: A Simple Computation - XOR

Figure 16: Setup of a spiking XOR gate

where excitatory populations are red and

inhibitory neurons are blue (modified from

[21]).

The seventh tasks uses a spiking neural

network (fig. 16) for the emulation of an

XOR gate. The input is given by regular

spiketrains labelled as i1 and i2 which

are echoed by the neuron populations y1

and y2. The spikes are forwarded to the

respective population i1 and i2 and si-

multaneously an inhibitory signal is send

to the opposite population i2 and i1.

The latter is done to ensure that the

propagation is suppressed if both inputs

receive an input (following the logic of an

XOR gate). As pictured in figure 17, the

output population correctly fires if only

one input population is active.

Figure 17: The network activity of neurons mimicking the functionality of an XOR
gate. Top: The populations are listed on the y-axis and their spikes over time are
drawn along the x-axis. With the connections between the populations, the output
o is suppressed if both inputs i1 and i2 are firing. Bottom: The membrane of the
population h2 is plotted and shows how it is inhibited during certain time intervals.

18

3.5 New Task: Sudoku Solver 3 RESULTS

Figure 18: The influence of jitter in the input signals onto the output of the XOR
network. The classification rate falls with an increasing amount of jitter (left). A
maximal classification rate of 100 % is reliably observed for a jitter up to 0.7 µs (right).

The next subtask observes the effect of jitter on the input signals. It is modelled

by a normal distribution around the initial spike times of the input. For a systematic

evaluation, the standard distribution is increased stepwise. The limit is set where two

adjacent distribution are about to cross their 1σ interval. Since the input is spaced

with a distance of 10 µs, this means an upper limit of 5 µs. The result (fig. 18) shows

that the classification rate reaches 65 % whereas a random output would be equal to

a classification rate of 50 %. This is expected since the refractory time constant and

membrane time constant add up to around 5 µs. In this magnitude the membrane

potential is no longer significantly inhibited which means that an input spike triggers

an output spike and potentially causes a false output.

3.5 New Task: Sudoku Solver

The aim of the new task is to show a practical application of the neuromorphic hard-

ware beyond the binary computation example from the previous task. In conventional

computing, a simple sudoku solver would use a brute-force algorithm to iteratively

go over all empty cells and check for an allowed number [24]. This is different to

the neural network that is build for this task. It works on different cells in parallel

and therefore uses four neurons for every cell which represent the numbers from one

to four respectively (fig. 19). The reason that a 4 × 4 sudoku is used instead of the

classic 9 × 9 version is that BSS-2 has not enough neurons to represent the latter.

Because every cell would need nine neurons to represent each number between one

and nine, the network would require 9 × 9 × 9 = 729 neurons.

19

3.5 New Task: Sudoku Solver 3 RESULTS

Figure 19: Left: The terminology of a 4 × 4 Sudoku and how the cells are indexed.
Right: Each cell contains four neurons in order to represent every possible number.
The connections between the neurons of the 4×4 Sudoku are exemplary drawn for the
gray neuron. The inhibitory synapses are between neurons in the same cell (orange),
the same block (blue), the same row (purple) and the same column (green). This
is applied to all neurons and amended by a self-excitation for every neuron (figures
modified from [25]).

The neurons are configured in a way that an incoming spike directly triggers an

output if the potential is not inhibited. With these settings, a stimulated neuron can

directly send an inhibitory signal to the remaining numbers of the cell to suppress

that they are set as well. Following the same logic, the neurons are also connected

to the same numbers of the same row, the same column and the same block. In this

way, the neural network can simultaneously check the sudoku rules for all cells. To

preserve the firing behavior for neurons that have been stimulated, it is necessary to

add excitatory self-connections and a continuous external stimulation. Together they

cause a new spike as long as no suppressing input from other neurons is arriving.

To start the experiment, the given numbers (clues) are send as regular input spikes to

the respective neuron with a high frequency while all neurons receive a background

stimulation with half the frequency after a lag of 0.1 ms. In this way, the membrane

potential of the neurons representing forbidden numbers is already pulled down be-

fore the external spike source would evoke a spike and theoretically only the allowed

numbers are firing. This explains what can be see in figure 20 where only the neurons

representing the clues are firing before the vertical blue line. For comparing networks

with background noise from a Poisson process to those with regular input, it is helpful

20

3.5 New Task: Sudoku Solver 3 RESULTS

Figure 20: Recorded spike activity for all neurons of a sudoku solver network for a
regular (top) and a Poisson (bottom) background stimulation. The different cells of
a sudoku in matrix notation are on the y-axis while the time is on the x-axis. The
four neurons of every cell are distinguished by the different colors. The clues are
firing before the blue line and the empty cells are correctly solved over time. The
background stimulation for all neurons is either constantly spaced in time or produced
by a Poisson process.

21

3.5 New Task: Sudoku Solver 3 RESULTS

to take a closer look at the way the spiking pattern develops over time. As soon as the

neurons receive a regular input, they are mostly either firing or inhibited for the rest

of the runtime. In contrast, the Poisson background allows the cells to switch their

associated number over time. To conclude, the Poisson background seems preferable

as it allows to correct for imprecise timing in the beginning which makes it more

robust and illustrates the idea of a neural network that ideally develops towards the

right solution over time.

In order to quantitatively measure the outcome, each cell is associated with the num-

ber represented by the neuron having the most spikes. If no neuron of a certain cell

fires more than 10 times, the cell would be considered empty. The number for every

cell obtained by the neural network is then compared to the solution and the amount

of falsely labelled cells is stored. In this way the performance of the two networks is

measured for 60 different sudokus [26] and five times each per number of clues. In

the beginning, only four clues are given and after every round another clue is added

by revealing a random cell that was previously empty. Thereby should be mentioned

that less than four clues wouldn’t make sense since then the sudoku could always be

solved in various ways [27], i.e. the solution would be unambiguous. It has also been

tested that the given clues lead to an unique solution.

Although the results (fig. 22) show that the regular background stimulation on av-

erage has 0.36 less neurons that are falsely labelled, this difference is not significant

since the values are always within the standard deviation of the other network.

Increasing the number of clues until a maximum of 12, yields a clear improvement

of the performance for both cases (fig. 21). For four clues in the Poisson case, the

average cells that are wrongly solved, lies at 4.2 and shrinks to 0.1 ± 0.4 cells for 12

clues given. While an average of 4.2 false numbers for 12 empty cells means an error

rate of 35 %, this number decreases to 3.3 % for the case with four empty cells. For

the other network the decline is from 30 % to 1.5 %.

A further analysis can be conducted when looking at the detailed results for the 60

different sudokus for an exemplary number of eight clues (fig. 22). It shows that for

both cases the majority of sudokus can be solved correctly for all five runs. Although

the average rate is better for a regular background, it has up to six falsely labelled

cells compared to a maximum of four for the more random background. Interestingly,

there is no shared pattern that can be observed, i.e. it seems like there aren’t any

sudokus that are particularly hard to solve for both networks.

22

3.5 New Task: Sudoku Solver 3 RESULTS

Figure 21: The average number of falsely labelled cells for 60 different sudokus plot-
ted over the number of clues. The neural network with constant background (red)
performed slightly better compared to the one with Poisson stimulation (blue). For
both versions, the rate of falsely solved cells declines with more clues given to the
network.

Figure 22: The number of falsely solved cells by a network containing Poisson spaced
(top) and constantly spaced (bottom) background spikes for 60 different sudokus with
eight provided clues. For both versions the majority of the sudokus can be correctly
solved for five times in a row.

23

3.5 New Task: Sudoku Solver 3 RESULTS

To form a task out of the observations, it is important to consider the comparable

small amount of time for the advanced lab course. Therefore, my suggestion contains

the following three subtasks if the students have the choice between task 6, task 7

and this task:

1. Draw the inhibitory connections in such a way that neurons which represent the

same number suppress each other in the same block, row and column (start with

the weight of each synapse set to their maximum). The connections between

the neurons representing different numbers of the same cell are given as an

example. Test your network for the first set of 12 clues. Verify the error rate on

the plot. If the error rate is more than 0%, adapt the neuron parameters and

the connections weights.

2. Observe how the error rate changes if you reduce the number of clues. Less

than four clues lead to more than one possible solution and therefore don’t

make sense. Try to improve the error rate when only four clues are given. Redo

the sweep over all numbers of clues afterwards.

3. Test how well your network works if you change the sudoku. Therefore, the

data for 60 different set of clues is given in the script. Choose a number of clues

you want to give for each sudoku, create a loop which measures the error rate

for all 60 sudokus and then run the experiment overnight. The results should

than be plotted in a histogram with the given script.

Alternatively, the last subtask could be made optional and instead the sixth task

could stay mandatory. It could also be a possibility to let the students compare the

differences of the regular and the Poisson background stimulation although tuning

both networks can be very time consuming.

24

4 DISCUSSION

4 Discussion

The thesis successively ported the the tasks of the advanced lab course to BrainScaleS-

2. For each one it was necessary to adapt the code to the PyNN functionality given

on the new hardware and implement new parameters or scale them to a wider range.

Executing the experiments and finding a suitable working point partly involved the

implementation of a calibration and the selection of an adequate number of neurons.

Given these steps, it was necessary to evaluate in which way the (sub)tasks could

sustain their aim of showing the respective aspect of neural networks.

To start with, the synaptic input given onto a single neuron could be observed through

its membrane potential and also be visibly modified. Switching from abstract hard-

ware parameters to more descriptive synaptic properties could be helpful for the intu-

ition of future students doing the lab course. The subtasks dealing with fixed-pattern

noise could be equally conducted on the new hardware and the optional comparison

with temporal noise put the results into relation. Thereby, a visualization was pro-

duced that could be integrated into the scripts given to the students. Stacking input

spikes together could be executed with PyNN as intended by the task.

The forth task required a different type of synapse that is able to learn from previous

input. Its implementation into PyNN for the new hardware required the handling

of routing that was out of scope for my thesis and couldn’t yet be taken care of by

another group member. Before finally porting the lab course, it is recommended to

have it in place since synaptic plasticity is an essential part of learning in the biolog-

ical sense.

For the realization of the synfire chain, it was necessary to increase the maximum

firing rate of the neurons under the given input strength. Two possible ways how

this can be done with tuning neuron parameters have been outlined. To obtain the

maximum length of the synfire chain, the initial size of the populations has been

reduced as far as it was possible with sweeping selected parameters.

The sixth task used the coefficient of variation of the inter-spike intervals for building

a network simulating a Poisson process. The expected relation of the firing rate and

the CV could be verified on the new hardware. However, it would make sense to

plot it in dependency of the ISI and not the firing rate since it is calculated using the

former. This could avoid confusion in the future and thereby following the convention

in the literature [22]. The already computationally expensive 2D histograms have a

more precise resolution on the BrainScaleS-2 hardware and shouldn’t be computed in

25

4 DISCUSSION

full resolution by the students to avoid time constrains for the following experiments.

Similiar to the previous tasks of the current version of the lab course, the XOR

network could be transferred by scaling up the former 4-bit synaptic weight to the

now 6-bit resolution. Thereby, making the network better tunable and facilitating a

working system, but it remains an interesting model case for the experimenters. As

intended, an increasing amount of jitter strongly influenced the classification rate of

the output.

Lastly, a new task could be constructed which introduces the students to a network

which is able to solve 4 × 4 sudokus. When working on the existing tasks, several

students expressed the wish to not only modify, but also create a network structure.

This is taken care of by assigning the students to set up the connections between

the neurons of the sudoku solver. It will also provide an alternative to the XOR

network for those who prefer a more functional task for a neural network. While

designing the task, the different responses of the network to constantly spiking and

Poisson distributed input have been observed. Although the error rate was slightly

in favor of the former, it has been argued that it is more important that random-

ness in the input allows the neural network to develop over time. To demonstrate

what students ideally obtain for the second subtask, the influence of more clues has

been measured not only for one sudoku, but for all 60 sudokus. It could be shown

that more clues mean a constant improvement in the performance of both networks.

As the parameters have been manually tuned, a further (automated) optimization

would lead to a more quantitative evaluation of the two networks. This has been

done by Ostrau et al. [28] for the BrainScaleS-1 architecture and showed a strong de-

pendency of the performance on single parameters like the self-excitation. Although

the parameters differ for the two hardware versions as for instance the synapses there

are conductance-based and not current-based as for BSS-2, a similar influence of the

parameters has to be assumed. To conclude, even if a further tuning of the parame-

ters will most likely lead to an improved error rate, the obtained one is sufficient for

all observations that are supposed to be made in the frame of the advanced lab course.

26

5 OUTLOOK

5 Outlook

Besides the previously explained aspects, the following ones have to be considered

before finally porting the advanced lab course onto BSS-2. First of all, the new

hardware necessitates a description and explanation in the lab manual [21]. This

could also be accompanied by an introduction of potential applications of neural

networks which is currently missing and has been desired by students. Moreover, the

new task has to be documented and with it other (sub)tasks have to become optional

to remain within the time frame of the lab course.

Pertaining to software, it has been started to automate the loading of a calibration

in PyNN and give the option to deactivate it for the examination of fixed-pattern

noise or similar tasks. Moreover, it is planned to give users the possibility to not

only operate in units of the Digital-to-Analog Converter or a mixture thereof with

hardware values. Following the example of PyNN on Spikey, the aim is to have

the possibility to also obtain results for the advanced lab course in biological values.

This improves the intuition for which result to expect and overall makes it easier to

calculate with the parameters during the experiments, but can only be realized when

having an elaborate implementation of the underlying calibrations with according

transformation models.

Lastly, all software scripts used for the advanced lab course will become part of the

continous integration (CI) in order to ensure a running setup for the students. This

means automated testing on a daily basis to verify the compability with new code

that is developed by the group. Therefore, software problems occurring in the tasks

can be located promptly and fixed accordingly.

27

7 APPENDIX

6 Acknowledgment

The work carried out in this bachelor thesis used systems, which received funding

from the European Union’s Horizon 2020 Framework Programme for Research and

Innovation under the Specific Grant Agreements Nos. 720270, 785907 and 945539

(Human Brain Project, HBP)

7 Appendix

Change ID Topic

12143/5 Task 1: Investigating a Single Neuron
12424/5 Task 2: Calibrating Neuron Parameters
13116/2 Task 3: A Single Neuron with Synaptic Input
12964/2 Task 5: Feed-Forward Networks (Synfire Chain)
13178/3 Task 6: Recurrent Networks
13649/1 Task 7: A Simple Computation - XOR
13216/2 Extra Task: Sudoku Solver

Table 1: Overview over the Gerrit changes submitted for the thesis.

28

7 APPENDIX

Code Example (Synfire Chain)

1 # import PyNN interface

2 import pynn_brainscales.brainscales2 as pynn

3 from pynn_brainscales.brainscales2.standardmodels.cells import \

4 SpikeSourceArray , HXNeuron

5 from pynn_brainscales.brainscales2.standardmodels.synapses import \

6 StaticSynapse

7

8 def main(no_pops , pop_sizes , weights , duration , neuron_params ,

9 closed , calib_path):

10

11 """

12 Create a synfire chain.

13 :param no_pops: chain length

14 :param pop_sizes: number of neurons in the excitatory (’exc ’)

15 and inhibitory (’inh ’) populations

16 :param weights: connections strengths between ’stim_exc ’,

17 ’exc_exc ’, ’exc_inh ’ and ’inh_exc ’

18 :param duration: emulation time in ms

19 :param neuron_params: parameters for all HXNeurons

20 :param closed: indicates if the chain is closed

21 :param calib_path: needed for calibration

22 :return: excitatory and inhibitory spiketrains

23 """

24 # load calibration

25 [...]

26 pynn.setup ()

27

28 # create neuron populations

29 pop_collector = {’exc’: [], ’inh’: []}

30 for syn_type in [’exc’, ’inh’]:

31 for _ in range(no_pops):

32 if calib_path:

33 pop = pynn.Population(pop_sizes[syn_type],

34 HXNeuron(hx_coco ,** neuron_params))

35 else:

36 pop = pynn.Population(pop_sizes[syn_type],

37 HXNeuron (** neuron_params))

38 pop.record (["spikes"])

39 pop_collector[syn_type]. append(pop)

40

41

29

7 APPENDIX

42 # record first neuron of first excitatory population of chain

43 pop1exc = pop_collector[’exc’][0]

44 pop1exc [[0]]. record(’v’)

45

46 # kick starter input pulse

47 stim_pop = pynn.Population(pop_sizes[’exc’],

48 SpikeSourceArray(spike_times =[0]))

49

50 # connect stimulus

51 pynn.Projection(stim_pop , pop_collector[’exc’][0],

52 pynn.AllToAllConnector (), synapse_type=

53 StaticSynapse(weight=weights["stim_exc"]),

54 receptor_type=’excitatory ’)

55 pynn.Projection(stim_pop , pop_collector[’inh’][0],

56 pynn.AllToAllConnector (), synapse_type=

57 StaticSynapse(weight=weights["stim_exc"]),

58 receptor_type=’excitatory ’)

59

60 # for closing the loop you need to change the for -loop range

61 # i.e. if pop_index < no_pops - 1: open chain

62 if closed:

63 lastiter = no_pops

64 else:

65 lastiter = no_pops - 1

66 for pop_index in range(lastiter):

67 pynn.Projection(pop_collector[’exc’][pop_index],

68 pop_collector[’exc’][(pop_index + 1) % no_pops],

69 pynn.AllToAllConnector (), synapse_type=

70 StaticSynapse(weight=weights["exc_exc"]),

71 receptor_type=’excitatory ’)

72 pynn.Projection(pop_collector[’exc’][pop_index],

73 pop_collector[’inh’][(pop_index + 1) % no_pops],

74 pynn.AllToAllConnector (), synapse_type=

75 StaticSynapse(weight=weights["exc_inh"]),

76 receptor_type=’excitatory ’)

77 pynn.Projection(pop_collector[’inh’][pop_index],

78 pop_collector[’exc’][pop_index],

79 pynn.AllToAllConnector (), synapse_type=

80 StaticSynapse(weight=weights["inh_exc"]),

81 receptor_type=’inhibitory ’)

82

83

30

7 APPENDIX

84 # emulate the network

85 pynn.run(duration)

86 # read back all recorded spikes

87 spike_collector = {’exc’: np.zeros(no_pops , dtype=object),

88 ’inh’: np.zeros(no_pops , dtype=object)}

89 for syn_type in [’exc’, ’inh’]:

90 for pop_index in range(no_pops):

91 spike_collector[syn_type][pop_index] =\

92 pop_collector[syn_type][pop_index].\

93 get_data("spikes").segments [0]. spiketrains

94

95 # read back the membrane potential

96 mem_v = pop1exc [[0]]. get_data("v").segments [-1].\

97 analogsignals [0]. base

98 pynn.end()

99

100 return spike_collector , mem_v

101

102 if __name__ == "__main__":

103

104 # configure the network

105 no_pops = 8 # chain length

106 pop_size = {’exc’: 7, ’inh’: 7} # size of each chain link

107 runtime = 0.2 # ms

108 close_chain = True

109 calib_path = pynn.helper.find_calib ()

110

111 # define weights in digital hardware values

112 synapse_weights = dict(

113 stim_exc =63,

114 exc_exc =60,

115 exc_inh =20,

116 inh_exc =15)

117

118 # default doesn ’t yield a small refractory period

119 neuron_params = {"refractory_period_refractory_time": 5}

120

121 # execute the experiment and retrieve all result spikes

122 results , mem_v = main(no_pops , pop_size , synapse_weights ,

123 runtime , neuron_params , close_chain , calib_path)

31

8 REFERENCES

8 References

[1] N. Karayiannis & A. N. Venetsanopoulos. Artificial neural networks: learning

algorithms, performance evaluation, and applications. Vol. 209. Springer Science

& Business Media, 2013. Chap. 9.

[2] D. Ciresan; U. Meier & J. Schmidhuber. “Multi-column deep neural networks

for image classification”. In: 2012 IEEE Conference on Computer Vision and

Pattern Recognition. 2012, pp. 3642–3649. doi: 10.1109/CVPR.2012.6248110.

[3] Y. Xu; J. Du; L.-R. Dai & C.-H. Lee. “An experimental study on speech en-

hancement based on deep neural networks”. In: IEEE Signal processing letters

21.1 (2013), pp. 65–68. doi: 10.1109/LSP.2013.2291240.

[4] S. Schmitt; J. Klähn; G. Bellec; A. Grübl; M. Güttler; A. Hartel; S. Hartmann;

D. Husmann; K. Husmann; S. Jeltsch; V. Karasenko; M. Kleider; C. Koke;

A. Kononov; C. Mauch; E. Müller; P. Müller; J. Partzsch; M. A. Petrovici;

S. Schiefer; S. Scholze; V. Thanasoulis; B. Vogginger; R. Legenstein; W. Maass;

C. Mayr; R. Schüffny; J. Schemmel & K. Meier. “Neuromorphic hardware in the

loop: Training a deep spiking network on the BrainScaleS wafer-scale system”.

In: 2017 International Joint Conference on Neural Networks (IJCNN). 2017,

pp. 2227–2234. doi: 10.1109/IJCNN.2017.7966125.

[5] S. K. Esser; P. A. Merolla; J. V. Arthur; A. S. Cassidy; R. Appuswamy; A. An-

dreopoulos; D. J. Berg; J. L. McKinstry; T. Melano; D. R. Barch; C. di Nolfo;

P. Datta; A. Amir; B. Taba; M. D. Flickner D. S. Modha. “Convolutional

networks for fast, energy-efficient neuromorphic computing”. In: PNAS 113.41

(2016), pp. 11441–11446. doi: 10.1073/pnas.1604850113.

[6] A. Nock. Internship Report. University of Heidelberg, 2020.

[7] W. Gerstner; W. M. Kistler; R. Naud & Paninski. Neuronal Dynamics: From

Single Neurons to Networks and Models of Cognition. Cambridge University

Press, 2014. Chap. 1. doi: 10.1017/CBO9781107447615.

[8] W. Gerstner & W. M. Kistler. Spiking Neuron Models: Single Neurons, Popu-

lations, Plasticity. Cambridge University Press, 2002. Chap. 4. doi: 10.1017/

CBO9780511815706.

[9] S. L. Bressler & V. Menon. “Large-scale brain networks in cognition: emerging

methods and principles”. In: Trends in Cognitive Sciences 14.6 (2010), pp. 277–

290. doi: https://doi.org/10.1016/j.tics.2010.04.004.

32

https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.1109/LSP.2013.2291240
https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1017/CBO9780511815706
https://doi.org/https://doi.org/10.1016/j.tics.2010.04.004

8 REFERENCES

[10] F. Rosenblatt. “The perceptron: a probabilistic model for information storage

and organization in the brain ”. In: Psychological Review 65.6 (1958), pp. 386–

408. doi: 10.1037/h0042519.

[11] A. L. Hodgkin & A. F. Huxley. A quantitative description of membrane current

and its application to conduction and excitation in nerve. 117. 1952, pp. 500–

544. doi: 10.1113/jphysiol.1952.sp004764.

[12] R. Brette & W. Gerstner. Adaptive Exponential Integrate-and-Fire Model as

an Effective Description of Neuronal Activity. 94. 2005, pp. 3637–3642. doi:

10.1152/jn.00686.2005.

[13] M. A. Petrovici. Form Versus Function: Theory and Models for Neuronal Sub-

strates. Springer Nature, 2016. Chap. 2. doi: 10.1007/978-3-319-39552-4.

[14] Milena Czierlinski. “PyNN for BrainScaleS-2”. Bachelorarbeit. Universität Hei-

delberg, 2020. Chap. 3. url: https : / / www . kip . uni - heidelberg . de /

Veroeffentlichungen/details.php?id=4114.

[15] J. Schemmel; S. Billaudelle; P. Dauer & Johannes Weis. Accelerated Analog

Neuromorphic Computing. 2020. arXiv: 2003.11996.

[16] E. Müller; C. Mauch; P. Spilger; O. Julien Breitwieser; J. Klähn; D. Stöckel;

T. Wunderlich & J. Schemmel. Extending BrainScaleS OS for BrainScaleS-2.

2020. url: https://arxiv.org/abs/2003.13750.

[17] A. Grübl; S. Billaudelle; B. Cramer; V. Karasenko & J. Schemmel. Adaptive

Exponential Integrate-and-Fire Model as an Effective Description of Neuronal

Activity. 92. 2020, pp. 1277–1292. doi: 10.1007/s11265-020-01558-7.

[18] A. Davison; D. Brüderle; J. Eppler; J. Kremkow; E. Muller; D. Pecevski; L. Per-

rinet; P. Yger. “PyNN: a common interface for neuronal network simulators”.

In: Frontiers in Neuroinformatics 2 (2009), p. 11. doi: 10.3389/neuro.11.

011.2008. url: https://www.frontiersin.org/article/10.3389/neuro.

11.011.2008.

[19] A. P. Davison; E. Müller; S. Schmitt; B. Vogginger; D. Lester & T. Pfeil.

HBP Neuromorphic Computing Platform Guidebook. url: https://flagship.

kip.uni-heidelberg.de/jss/FileExchange/HBPNeuromorphicComputing/

PlatformGuidebook.pdf?fID=1504&s=qqdXDg6HuX3&uID=65. (Chapter 5.2:

Spikey School. Accessed: 29.01.2021).

33

https://doi.org/10.1037/h0042519
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1007/978-3-319-39552-4
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=4114
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=4114
https://arxiv.org/abs/2003.11996
https://arxiv.org/abs/2003.13750
https://doi.org/10.1007/s11265-020-01558-7
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.3389/neuro.11.011.2008
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008
https://www.frontiersin.org/article/10.3389/neuro.11.011.2008
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/HBPNeuromorphicComputing/PlatformGuidebook.pdf?fID=1504&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/HBPNeuromorphicComputing/PlatformGuidebook.pdf?fID=1504&s=qqdXDg6HuX3&uID=65
https://flagship.kip.uni-heidelberg.de/jss/FileExchange/HBPNeuromorphicComputing/PlatformGuidebook.pdf?fID=1504&s=qqdXDg6HuX3&uID=65

8 REFERENCES

[20] SP9 Neuromorphic Computing Platform - Results from SGA2 year 1 (D9.6.1

-SGA2). url: https://sos-ch-dk-2.exo.io/public-website-production/

filer_public/c8/1a/c81a22a7-5d94-416e-8003-613f37280996/d961_

d621_d30_sga2_m13_accepted_190723.pdf. (accessed: 29.01.2021).

[21] A. Grübl & A. Baumbach. F09/F10 Neuromorphic Computing. 2006. url:

https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/

F09.pdf.

[22] F. Gabbiani & S. J. Cox. Mathematics for Neuroscientists. Elsevier, 2010.

Chap. 15. isbn: 978-0-12-374882-9.

[23] W. R. Softky and C. Koch. “The highly irregular firing of cortical cells is in-

consistent with temporal integration of random EPSPs”. In: Journal of Neu-

roscience 13.1 (1993), pp. 334–350. doi: 10.1523/jneurosci.13-01-00334.

1993.

[24] S. Chatterjee; S. Paladhi & R. Chakraborty. “A Comparative Study On The

Performance Characteristics Of Sudoku Solving Algorithms”. In: IOSR Journal

of Computer Engineering 16.5 (2014), pp. 69–77. url: https://www.jstor.

org/stable/25678701.

[25] A. Kugele. “Solving the Constraint Satisfaction Problem Sudoku on Neuromor-

phic Hardware”. Master’s thesis. Universität Heidelberg, 2018. url: https:

//www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=

3666.

[26] Sudoku Download 4x4. url: http://www.sudoku-download.de/sudoku_4x4.

php. (courtesy of Alexander Maack, accessed: 15.01.2021).

[27] L. Taalman. “Taking Sudoku Seriously”. In: Math Horizons 15.1 (2007), pp. 5–

9. url: https://www.jstor.org/stable/25678701.

[28] C. Ostrau; C. Klarhorst; M. Thies & U. Rückert. “Comparing Neuromorphic

Systems by Solving Sudoku Problems”. In: 2019 International Conference on

High Performance Computing & Simulation (HPCS). 2019, pp. 521–527. doi:

10.1109/HPCS48598.2019.9188207.

34

https://sos-ch-dk-2.exo.io/public-website-production/filer_public/c8/1a/c81a22a7-5d94-416e-8003-613f37280996/d961_d621_d30_sga2_m13_accepted_190723.pdf
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/c8/1a/c81a22a7-5d94-416e-8003-613f37280996/d961_d621_d30_sga2_m13_accepted_190723.pdf
https://sos-ch-dk-2.exo.io/public-website-production/filer_public/c8/1a/c81a22a7-5d94-416e-8003-613f37280996/d961_d621_d30_sga2_m13_accepted_190723.pdf
https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F09.pdf
https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F09.pdf
https://doi.org/10.1523/jneurosci.13-01-00334.1993
https://doi.org/10.1523/jneurosci.13-01-00334.1993
https://www.jstor.org/stable/25678701
https://www.jstor.org/stable/25678701
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3666
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3666
https://www.kip.uni-heidelberg.de/Veroeffentlichungen/details.php?id=3666
http://www.sudoku-download.de/sudoku_4x4.php
http://www.sudoku-download.de/sudoku_4x4.php
https://www.jstor.org/stable/25678701
https://doi.org/10.1109/HPCS48598.2019.9188207

Erklärung

Ich versichere, dass ich diese Arbeit selbstständig verfasst und keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 01.02.2021,

Alexander Nock

	Introduction
	Theory & Methods
	Biological Background
	Networks and Models
	Leaky Integrate-and-Fire (LIF) Model
	The HICANN-X Chip
	Software
	Advanced Lab Course

	Results
	Task 3: A Single Neuron with Synaptic Input
	Task 5: Feed-Forward Networks (Synfire Chain)
	Task 6: Recurrent Networks
	Task 7: A Simple Computation - XOR
	New Task: Sudoku Solver

	Discussion
	Outlook
	Acknowledgment
	Appendix
	References

