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Abstract— Spiking neural networks are the basis of versatile
and power-efficient information processing in the brain. Although
we currently lack a detailed understanding of how these networks
compute, recently developed optimization techniques allow us
to instantiate increasingly complex functional spiking neural
networks in-silico. These methods hold the promise to build more
efficient non-von-Neumann computing hardware and will offer
new vistas in the quest of unraveling brain circuit function. To
accelerate the development of such methods, objective ways to
compare their performance are indispensable. Presently, however,
there are no widely accepted means for comparing the com-
putational performance of spiking neural networks. To address
this issue, we introduce two spike-based classification data sets,
broadly applicable to benchmark both software and neuro-
morphic hardware implementations of spiking neural networks.
To accomplish this, we developed a general audio-to-spiking
conversion procedure inspired by neurophysiology. Furthermore,
we applied this conversion to an existing and a novel speech data
set. The latter is the free, high-fidelity, and word-level aligned
Heidelberg digit data set that we created specifically for this
study. By training a range of conventional and spiking classifiers,
we show that leveraging spike timing information within these
data sets is essential for good classification accuracy. These results
serve as the first reference for future performance comparisons
of spiking neural networks.

Index Terms— Audio, benchmark, classification, data set, neu-
romorphic computing, spiking neural networks, spoken digits,
surrogate gradients.

I. INTRODUCTION

SPIKING neural networks (SNNs) are biology’s solution
for fast and versatile information processing. From a

computational point of view, SNNs has several desirable
properties: They process information in parallel, are noise-
tolerant, and highly energy-efficient [1]. Precisely which com-
putations are carried out in a given biological SNN depends
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in large part on its connectivity structure. To instantiate such
functional connectivity in-silico, a growing number of SNNs
training algorithms have been developed [2]–[8] both for
conventional computers and neuromorphic hardware [9]–[14].
However, this diversity of learning algorithms urgently calls
for principled means to compare them. Unfortunately, widely
accepted benchmark data sets for SNNs that would permit
such comparisons are scarce [14], [15]. Hence, in this article,
we seek to fill this gap by introducing two new broadly
applicable classification data sets for SNNs.

In the following, we provide a brief motivation for why
benchmarks are crucial before reviewing existing tasks that
have been used to assess SNN performance in the past.
By analyzing the strengths and shortcomings of these tasks,
we motivate our specific choices for the data sets we introduce
in this article. Finally, we establish the first set of baselines by
testing a range of conventional and SNN classifiers on these
data sets.

A. Why Benchmarks?

The ultimate goal of a benchmark is to provide a quantitative
unbiased way of comparing different approaches and methods
to the same problem. While each modeler usually works with
a set of private benchmarks, tailored to their specific problem
of study, it is equally important to have shared benchmarks,
which ideally everybody agrees to use, to allow for unbiased
comparison and to foster constructive competition between
approaches [14], [15].

The last decades of machine learning research would be
hard to imagine without the ubiquitous MNIST data set [16],
for instance. To process MNIST using a SNNs, it has to
be transformed into spikes. This transformation step puts
comparability at risk by leaving fundamental design decisions
to the modeler. Presently, the SNN network community has a
shortage of established benchmarks that avoid the conversion
step by directly providing spike trains to the end-user. By
impeding the quantitative comparison between methods, the
lack of suitable benchmarks has the potential to slow down
the progress of the SNN research community as a whole.

Since community benchmarks are essential, then why is
there little agreement on which benchmark to use? There
are several possible reasons, but the most likely ones are the
following: First, an existing benchmark may be unobtainable.
For instance, it could be unpublished, behind a paywall, or too
difficult to use. Second, a published benchmark might be tai-
lored to a specific problem and, therefore, not general enough
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to be of interest to other researchers. Third, a benchmark
may be saturated, which means that it is already solved with
high precision by an existing method. Naturally, this precludes
the characterization of improvements over these approaches.
Finally, a benchmark could require extensive preprocessing.

The question, therefore, is: What would an ideal benchmark
data set for learning in SNNs be? While this question is
difficult, if not impossible, to answer, it is probably fair to
say that an ideal benchmark should be at least unsaturated,
require minimal preprocessing, be sufficiently general, easy to
obtain, and free to use.

B. Previous Work

There are no unified approaches to measuring performance
in SNNs which is partially due to the numerous different
learning approaches and architectures. SNN architectures can
coarsely be categorized into steady-state rate-coding and tem-
poral coding networks, although also hybrids between the two
exist. In steady-state rate-coding, SNNs approximate conven-
tional analog neural networks by using an effective firing
rate code in which both input and output firing rates remain
constant during the presentation of a single stimulus [3],
[17], [18]. Inputs to the network enter as Poisson distributed
spike trains with rates proportional to the current input level.
Similarly, network outputs are given as a firing rate or spike
count of designated output units. Because of these input-output
specifications, steady-state rate-coding networks can often be
trained using network translation [3] and they can be tested
on standard machine learning data sets (e.g. MNIST [16],
CIFAR10 [19], or SVHN [20]).

The capabilities of SNNs, however, go beyond such rate-
coding networks. In temporally coding networks, input and
output activity varies during the processing of a single input
example. Within this coding scheme, outputs can be either
individual spikes [21]–[24], spike trains with predefined firing
times [25], varying firing rates [26]–[28], or continuously
varying quantities derived from output spikes. The latter are
typically defined as linear combinations of low-pass filtered
spike trains [26], [27], [29]–[31].

One of the simplest temporal coding benchmarks is the
temporal exclusive-OR (XOR) task, which exists in different
variations [22], [31], [32]. A simple SNN without hidden
layers cannot solve this problem, similar to the Perceptron’s
inability to solve the regular XOR task. Hence, the temporal
XOR is commonly used to demonstrate that a specific method
supports hidden-layer learning. In the temporal XOR task,
a neural network has to solve a Boolean XOR problem in
which the logical off and on levels correspond to early and
late spike times respectively. While the temporal XOR does
require a hidden layer to be solved correctly, its intrinsic
low-dimensionality and the low number of input patterns
render this benchmark saturated. Therefore, its possibilities for
quantitative comparison between training methods are limited.

To assess learning in a more fine-grained way, several
studies have focused on SNNs’ abilities to generate pre-
cisely timed output spike trains in more general scenarios
[25], [33]–[37]. To that end, it is customary to use several

Poisson input spike trains to generate a specific target spike
train. Apart from regular (see [37]), also random output
spike trains with increasing length and Poisson statistics
have been considered [25]. Similarly, the Tempotron [38]
uses an interesting hybrid approach in which random tempo-
rally encoded spike input patterns are classified into binary
categories corresponding to spiking versus quiescence of a
designated output neuron. In the associated benchmark, task
performance is measured as the number of binary patterns
that can be classified correctly. Although mapping random
input spikes to output spikes allows a fine-grained comparison
between methods, the aforementioned tasks lack a nonrandom
structure.

Finally, some data sets for n-way classification were born
out of practical engineering needs. The majority of these data
sets are based on the output of neuromorphic sensors like,
for instance, the dynamic vision sensor (DVS) [39] or the
silicon cochlea [40]. An early example of such a data set
is Neuromorphic MNIST [41], which was generated by a
DVS recording MNIST digits that were projected on a screen.
The digits were moved at certain intervals to elicit spiking
responses in the DVS. The task is to identify the corresponding
digits from the elicited spikes. This benchmark has been used
widely in the SNN community. However, being based on the
MNIST data set it is nearing saturation. The DASDIGITS
data set [40] was created by processing the TIDIGITS with a
64 channel silicon cochlea. Unfortunately, the license require-
ments for the derived data set are not entirely clear as the
TIDIGITS are released under a proprietary license. Moreover,
because the TIDIGITS contains sequences of spoken digits,
the task goes beyond a straightforward n-way classification
problem and therefore is beyond the scope for several current
SNN implementations. More recently, IBM has released the
DVS128 Gesture Data set [42] under a Creative Commons
license. The data set consists of numerous DVS recordings of
11 unique hand gestures performed by different persons under
varying lighting conditions. The spikes in this data set are
provided as a continuous data stream, which makes extensive
cutting and preprocessing necessary. Finally, the 128 × 128
pixel size renders this data set computationally expensive
unless additional preprocessing steps such as downsampling
are applied.

In this article, we sought to generate two widely applicable
SNN benchmarks with comparatively modest computational
requirements. Thus, we focused on audio signals of spoken
words due to their natural temporal dimension and lower
bandwidth compared to video data and developed a processing
framework to convert these audio data into spikes. Using this
framework, we generated two spike-based data sets for speech
classification and keyword spotting that are not saturated by
current methods. Moreover, solving these problems with high
accuracy requires taking into account spike timing.

II. METHODS

To improve the quantitative comparison between SNNs,
we have created two large spike-based classification data sets
from audio data. Specifically, we recorded the Heidelberg
digits (HD) data set for this purpose and used the published
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Fig. 1. The Heidelberg Digits HD have a balanced class count and variable
temporal duration. The HD consist of 10420 recordings of spoken digits
ranging from zero to nine in English and German language. (a) Histogram
of per-speaker digit counts. Variable numbers of digits are available for each
speaker and each language. (b) Histogram of per-class digit counts. The data
set is balanced in terms of digits within each language. (c) Histogram of audio
recording durations. The HD audio recordings were cut for minimal duration
to keep computation time at bay.

speech commands (SC) data set by the TensorFlow and
AIY teams [43]. In the following, we describe the data sets
(Section II-A), the audio-to-spike conversion (Section II-B),
and the data format used for publication (Section II-C). We
close with a depiction of the SNN model (Section II-D).
The nonspiking classifiers are outlined in Section B. All
reported error measures in this work correspond to the standard
deviation of ten experiments.

A. Audio Data Sets

In the following, we consider the HD (Section II-A1) and
the SC data set (Section II-A2). While the HD were optimized
for recording quality and precise audio alignment, the SC are
intended to closely mimic real-world conditions for key-word
spotting on mobile devices.

1) Heidelberg Digits: The HD data set1 consists of approx-
imately 10 k high-quality recordings of spoken digits ranging
from zero to nine in English and German language. In total
12 speakers were included, six of which were female and six
male. The speaker ages ranged from 21 yr to 56 yr with a
mean of 29(9)yr. We recorded around 40 digit sequences for
each language with a total digit count of 10 420 (see Fig. 1).

The digits were acquired in sequences of ten successive
digits. Recordings were performed in a sound-shielded room
at the Heidelberg University Hospital with three microphones;
two AudioTechnica Pro37 in different positions and a Beyer-
dynamic M201 TG (Fig. 2). Digitized by a Steinberg MR816
CSX audio interface, recordings were made in WAVE format
with a sample rate of 48 kHz and 24 bit precision.

To improve the yield of the following automated processing,
a manual pre-selection and cutting of the raw audio tracks were

1https://compneuro.net/posts/2019-spiking-heidelberg-digits/ and
https://ieee-dataport.org/open-access/heidelberg-spiking-datasets

performed accompanied by conversion to free lossless audio
codec (FLAC) format. The cleaned-up tracks were externally
mastered [44]. The cutting times of the digit sequences were
determined using a gate with speaker-dependent threshold
and release time which were optimized by the blackbox-
optimizer described in [45]. The loss function was designed
to produce ten single files with the lowest possible threshold
and shortest gate opening to prevent unnecessary computa-
tion during successive analysis and modeling. Additionally,
speaker-specific ramp-in and ramp-out times were determined
by visual inspection. The final digit files differ in duration due
to speaker differences (Fig. 1). 30 ms Hann windows were
applied to the start and end of the peak normalized audio
signals as further processing stages involve the computation
of fast Fourier transformations (FFTs).

To separate the data into training and test sets, we held out
two speakers exclusively for the test set. The remainder of
the test set was filled with samples (5% of the trials) from
speakers also present in the training set. This division allows
one to assess a trained network’s ability to generalize across
speakers.

2) Speech Commands: The SC data set2 is composed of 1 s
WAVE-files with 16 kHz sample rate containing a single Eng-
lish word each [43]. It is published under Creative Commons
BY 4.0 license and contains words spoken by 1864 speakers.
In this study, we considered version 0.02 with 105 829 audio
files, in which a total of 24 single word commands (Yes, No,
Up, Down, Left, Right, On, Off, Stop, Go, Backward, Forward,
Follow, Learn, Zero, One, Two, Three, Four, Five, Six, Seven,
Eight, Nine) were repeated about five times per speaker,
whereas ten auxiliary words (Bed, Bird, Cat, Dog, Happy,
House, Marvin, Sheila, Tree, and Wow) were only repeated
approximately once. Partitioning into training, testing, and
validation data set was done by a hashing function as described
in [43].

For all our purposes, we applied a 30 ms Hann window
to the start and end of each waveform. Most importantly,
throughout this article, we consider top one classification
performance on all 35 different classes which is more difficult
than the originally proposed key-word spotting task on only
a subset of 12 classes (ten key-words, unknown word, and
silence). However, the data can still be used in the originally
intended keyword spotting way.

B. Spike Conversion

The audio files described above served as the basis for our
spiking data sets. Audio data were converted into spikes using
an artificial model3 of the inner ear and parts of the ascend-
ing auditory pathway (Fig. 2; Section A). This biologically
inspired model effectively performs similar signal processing
steps as customary spoken language processing applica-
tions [46]. First, a hydrodynamic basilar membrane (BM)
model (Appendix A-A) causes spatial frequency dispersion,
which is comparable to computing a spectrogram with Mel-
spaced filter banks. Second, these separated frequencies are

2https://www.tensorflow.org
3https://github.com/electronicvisions/lauscher
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Fig. 2. Processing pipeline for the HD and the SC data set. (a) HD are
recorded in a sound-shielded room. (b) Afterward, the resulting audio files are
cut and mastered. (c) HD as well as the SC are fed through a hydrodynamic
BM model. (d) BM decompositions are converted to phase-coded spikes by
use of a transmitter-pool based HC model. (e) Phase-locking is increased by
combining multiple spike trains of hair cells at the same position of the basilar
membrane in a single bushy cell.

converted to instantaneous firing rates through a biologi-
cally motivated transmitter pool based hair cell (HC) model
(Appendix A-B), which adds refractory effects, and a layer
of bushy cells (BCs) (Appendix A-C) that increase phase
locking (see Fig. 2). All model parameters were chosen to
mimic biological findings, thereby reducing the amount of free
parameters (see Appendix A).

Overall, the inner-ear model approximates the spiking
activity observed in the auditory system while retaining a
low computational cost. This biologically inspired conversion
allowed us to sidestep the issue of user-specific audio-to-spike
transformation, which can confound comparability, and served
as the basis for our benchmark data sets.

C. Event-Based Data Format

We used an event-based representation of spikes in the
Hierarchical Data Format 5 (HDF5) to facilitate the use of the
data sets and to simplify the access to a broader community.
This choice was to ensure short download times and ease
of access from most common programming environments.
For each partition and data set, we provide a single HDF5
file which holds spikes, digit labels, and additional meta
information. We made these files publicly available2 [47],
together with supplementary information on the general usage
as well as code snippets. A single file is organized as follows:

In more detail, each element i in keys describes the transfor-
mation between the digit ID i and the spoken words. Further-
more, the entry i of each array in meta_info corresponds to

the information for speaker i . The meta_info is only available
for Spiking Heidelberg digits (SHD).

D. Spiking Network Models

We trained networks of leaky integrate-and-fire (LIF) neu-
rons with surrogate gradients and backpropagation through
time (BPTT) using supervised loss functions to establish a
performance reference on the two spiking data sets. In the
following, we give a description of the network architectures
(Section II-D1), followed by the applied neuron and synapse
model (Section II-D2). We close with a depiction of the
weight initialization (Section II-D3), the supervised learning
algorithm (Section II-D4) and the loss function (Section II-D5)
as well as the regularization techniques (Section II-D6).

1) Network Model: The spiketrains emitted by the Nch =
700 BCs were used to stimulate the actual classification
network. In this article, we trained both feed-forward and
recurrent networks; each hidden layer contains N = 128
LIF neurons. For all network architectures, the last layer was
accompanied by a linear readout consisting of leaky integrators
which did not spike.

2) Neuron and Synapse Models: We considered LIF neu-
rons where the membrane potential u(l)

i of the i th neuron in
layer l obeys the differential equation

τmem
du(l)

i

dt
= −

�
u(l)

i (t)− uleak

�
+ RI (l)

i (t) (1)

with the membrane time constant τmem, the input resistance R,
the leak potential uleak, and the input current I (l)

i (t). Spikes
were described by their firing time. The kth firing time of
neuron i in layer l is denoted by kt (l)

i and defined by a threshold
criterion

kt (l)
i : u(l)

i

�
kt (l)

i

�
≥ uthres. (2)

Immediately after k t (l)
i , the membrane potential is set to the

leak potential u(l)
i (t) = uleak. The synaptic input current onto

the i th neuron in layer l was generated by the arrival of
presynaptic spikes from neuron j , S(l)

j (t) = �
k δ(t −k t (l)

j ).
A common first-order approximation to model the time course
of synaptic currents are exponentially decaying currents which
sum linearly [48]

d I (l)
i

dt
= − I (l)

i (t)

τsyn
+

�
j

W (l)
i j S(l−1)

j (t)+
�

j

V (l)
i j S(l)

j (t) (3)

where the sum runs over all presynaptic partners j and W (l)
i j

are the corresponding afferent weights from the layer below.
The V (l)

i j resemble the recurrent connections within each layer.
In this work, the reset was incorporated in (1) through an

extra term

du(l)
i

dt
= −u(l)

i + uleak − RI (l)
i

τmem
+ S(l)

i (t)(uleak − uthres). (4)

To formulate the above equations in discrete time for time
step n and stepsize δt over a duration T = n · δt , the output
spiketrain S(l)

i [n] of neuron i in layer l at time step n is
expressed as a nonlinear function of the membrane potential
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S(l)
i [n] = �(u(l)

i − uthres) with the Heavyside function �. For
small time steps δt , we can express the synaptic current in
discrete time as follows:
I (l)
i [n + 1] = κ I (l)

i [n]+
�

j

W (l)
i j S(l)

j [n]+
�

j

V (l)
i j S(l)

j [n]. (5)

Furthermore, by asserting uleak = 0 and uthres = 1, the
membrane potential can be written compactly as

u(l)
i [n + 1] = λu(l)

i [n]
�

1− S(l)
i [n]

�
+ (1− λ)I (l)

i [n] (6)

where we have set R = (1− λ) and introduced the constants
κ ≡ exp (−δt/τsyn) and λ ≡ exp (−δt/τmem).

3) Weight Initialization: In all our spiking network simu-
lations we use Kaiming’s uniform initialization [49] for the
weights Wi j and Vi j . Specifically, the initial weights were
drawn independently from a uniform distribution U(−√k,

√
k)

with k = (# afferent connections)−1.
4) Supervised Learning: The goal of learning was to min-

imize a cost function L over the entire data set. To achieve
this, surrogate gradient descent was applied which modifies
the network parameters Wi j

Wi j ← Wi j − η
∂L

∂Wi j
(7)

with the learning rate η. In more detail, we used custom
PyTorch [50] code implementing the SNNs. Surrogate gra-
dients were computed using PyTorch’s automatic differentia-
tion capabilities by overloading the derivative of the spiking
nonlinearity with a differentiable function as described previ-
ously [8], [51]. An instructive example of such an implemen-
tation in PyTorch can be found online.4 Specifically, we chose
a fast sigmoid for the surrogate gradient

σ
�

u(l)
i

�
= u(l)

i

1+ β|u(l)
i |

(8)

with the steepness parameter β.
5) Loss Functions: We applied a cross entropy loss to the

activity of the readout layer l = L. On data with Nbatch

samples and Nclass classes, {(xs, ys)|s = 1, . . . , Nbatch; ys ∈
{1, . . . , Nclass}} it takes the form

L = − 1

Nbatch

Nbatch�
s=1

1(i = ys)

· log

⎧⎨
⎩

exp
�

u(L)
i [ñi ]

�
�Nclass

i=1 exp
�

u(L)
i [ñi ]

�
⎫⎬
⎭ (9)

with the indicator function 1. We tested the following two
choices for the time step ñ: For the max-over-time loss, the
time step with maximal membrane potential for each readout
unit was considered ñi = argmaxn u(L)

i [n]. In contrast, the
last time step T for all samples was chosen for each readout
neuron ñi = T in case of the last-time-step loss. We minimized
the cross entropy in (9) using the Adamax optimizer [52].

4https://github.com/fzenke/spytorch

6) Regularization: For our experiments, we added synaptic
regularization terms to the loss function to avoid pathologically
high or low firing rates. In more detail, we used two different
regularization terms: As a first term, we used a per neuron
lower threshold spike count regularization of the form

L1 = sl

Nbatch + N

Nbatch�
s=1

N�
i=1

�
max

�
0,

1

T

T�
n=1

S(l)
i [n]− θl

��2

(10)

with strength sl , and threshold θl . Second, we used an upper
threshold mean population spike count regularization

L2 = su

Nbatch

Nbatch�
s=1

�
max

�
0,

1

N

N�
i=1

T�
n=1

S(l)
i [n]− θu

��2

(11)

with strength su , and threshold θu .

III. RESULTS

To analyze the relevance of our newly created spiking data
sets we first sought to establish that the data sets were not
saturated and that spike timing information is essential to
solve the tasks with high accuracy. To test this, we first
generated a reduced version of the data sets in which we
removed all temporal information. To that end, we computed
spike count patterns from both data sets, which, by design,
do not contain temporal information about the stimuli. Using
these reduced spike count data sets, we then trained different
linear and nonlinear support vector machine (SVM) classifiers
(Section B-A) and measured their classification performance
on the respective test sets. We found that while a linear
SVM readily overfitted the data in the case of SHD, its
test performance only marginally exceeded the 55% accuracy
mark [Fig. 3(a)]. For the spiking speech commands (SSC),
overfitting was less pronounced, but also the overall test
accuracy dropped to 20% [Fig. 3(b)]. Thus linear classifiers
provided a low degree of generalization.

To assess whether this situation was different for nonlinear
classifiers, we trained SVMs with polynomial kernels up to a
degree of 3. For these kernels, overfitting was less pronounced.
Slightly better performance of about 60% on the SHD and 30%
on the spiking SC (SSC) was achieved when using a SVM
with a radial basis function (RBF) kernel. The performance
on the SHD test set, which includes speakers that are not
part of the training set, was noticeably lower compared to
the accuracy on the validation data. Especially, for polynomial
and RBF kernels the generalization across speakers was worse
than for the linear kernel [Fig. 3(a)]. In contrast, we found the
performance on the SSC test set to be on par with the accuracy
on the validation set [Fig. 3(b)], which is most likely an effect
of the uniform speaker distribution. These results illustrate that
both linear and nonlinear classifiers trained on spike count
patterns without temporal information were unable to surpass
the 60% accuracy mark for the SHD and the 30% mark for
the SSC data set. Therefore, spike counts are not sufficient to
achieve high classification accuracy on the studied data sets.
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Next, we wanted to assess whether decoding accuracy
could be improved when training classifiers that have explicit
access to temporal information of the spike times. Therefore,
we trained long short-term memorys (LSTMs) on temporal
histograms of spiking activity (Section B-B). In spite of the
small size of the SHD data set, LSTMs showed reduced over-
fitting and were able to solve the classification problem with
an accuracy of 85.7(14)% [Fig. 3(a)] which was substantially
higher than the best performing SVM. Similarly, for the SSC
data set the LSTM test accuracy 75.0(2)% was more than
twice as high as the best-performing classifier on the spike
count data. However, the degree of overfitting was slightly
higher than on SHD.

Since both, kernel machines and LSTMs, were affected
by overfitting, we tested whether the performance could be
increased with convolutional neural networkss (CNNs) due to
their inductive bias on translation invariance in both frequency
and time and their reduced number of parameters. To that end,
we binned spikes in spatio-temporal histograms and trained a
CNN classifier (Section B-C). CNNs showed the least amount
of overfitting among all tested classifiers; the accuracy dropped
by only 1.4% on SHD and by 1.5% on SSC (Fig. 3). In
particular, the performance on the SHD test data was on par
with the one on the validation set, demonstrating a high degree
of generalization.

These findings highlight that the temporal information con-
tained in both data sets can be exploited by suitable neural
network architectures. Moreover, these results provide a lower
bound on the performance ceiling for both data sets. It seems
likely that a more careful architecture search and hyperparame-
ter tuning will only improve upon these results. Thus, both the
SHD and the SSC will be useful for quantitative comparison
between SNNs up to at least these empirical accuracy values.

A. Training Spiking Neural Networks

Having established that both spiking data sets contain useful
temporal information that can be read out by a suitable
classifier, we sought to train SNNs of LIF neurons using
BPTT to establish the first set of baselines and to assess
their generalization properties. One problem with training
SNNs with gradient descent arises because the derivative of
the neural activation function appears in the evaluation of
the gradient. Since spiking is an intrinsically discontinuous
process, the resulting gradients are ill-defined. To nevertheless
train networks of LIF neurons using supervised loss functions,
we used a surrogate gradient approach [8]. Surrogate gradients
can be seen as a continuous relaxation of the real gradients of
a SNN which can be implemented as an in-place replacement
while performing BPTT. Importantly, we did not change the
neuron model and the associated forward-pass of the model,
but used a fast sigmoid as a surrogate activation function when
computing gradients (Methods Section II-D4).

Although not a requirement [8], [53], we only considered
SNNs with fixed, finite time constants on the order of ms
inspired by biology. Because of this constraint, we investi-
gate two different loss functions for both LSTMs and SNNs
[Fig. 4(a)]. The results for LSTMs shown in Fig. 3 were

Fig. 3. Temporal information is essential to classify the SHD and the
SSC data sets with high accuracy. (a) Bar graph of classification accuracy
for different SVMs trained on spike count vectors and LSTM as well as
CNN classifiers trained on the binned spiketrains of the SHD data set.
Classification accuracy on SHD is substantially higher for LSTMs and CNNs
which also show a lower degree of overfitting. (b) Same as in (a), but
showing performance on the SSC. LSTMs and CNNs with access to temporal
information outperform the SVM classifiers by a large margin.

obtained by training with a last-time-step loss, where the
activation of the last time step of each example and readout
unit was used to calculate the cross entropy loss at the output.
In addition, we also considered a max-over-time loss, in which
the time step with maximum activation of each readout unit
was taken into account [Fig. 4(a)]. This loss function is
motivated by the Tempotron [38] in which the network signals
its decision about the class membership of the applied input
pattern by whether a neuron spiked or not.

We evaluated the performance of LSTMs and SNNs for
both aforementioned loss functions on the SHD. Training
LSTMs with a cross entropy loss based on the activity of
the last time step of every sample was associated with high
performance in contrast to SNNs [Fig. 4(b)]. The slightly
reduced performance of feed-forward SNNs trained with last-
time-step loss compared to recurrently connected spiking
neural networks (RSNNs) suggests that time constants were
too low to provide all necessary information at the last time
step. This was presumably due to active memory implemented
through reverberating activity through the recurrent connec-
tions. Overall, SNNs performed better in combination with the
max-over-time loss function [Fig. 4(c)]. Also LSTMs showed
increased performance in combination with a max-over-time
loss; the validation accuracy increased from 95.4(17)% for the
last-time-step loss to 97.2(09)% for the max-over-time loss.
Motivated by these results, we used a max-over-time loss for
SNNs as well as LSTMs throughout the remainder of this
article.

Surrogate gradient learning introduces a new hyperparame-
ter β associated with the steepness of the surrogate derivative
(Methods Equation (2)). Because changes in β may require a
different optimal learning rate η, we performed a grid search
over β and η based on a single-layer RSNN architecture
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Fig. 4. Setup and multiple choices of loss functions for SNNs. (a) Schematic of a single layer recurrent network with two readout units. We applied two
different loss functions for LSTMs and SNNs: First, a max-over-time loss was considered, where the time step with the maximal activity of each readout
was used to calculate the cross entropy (marked by colored arrows). Second, a last-time-step loss was utilized where only the last time step of the activation
was considered in the calculation of the cross entropy (marked by gray arrow). The inset illustrates the corresponding feed-forward topology. (b) Bar graph
of classification accuracy for different SNNs and a LSTM on the SHD. Only the LSTM generalized well when trained with a last-time-step loss. (c) Same
as in (b), but showing performance for a max-over-time loss. Overall, SNNs and LSTMs performed better when trained with the max-over-time loss.

Fig. 5. Accuracy, but not convergence time is only mildly affected by the
steepness β of the surrogate derivative. (a) Accuracy as a function of β on
a validation set of the SHD for different learning rates η. Performance is
highest for a wide range of β values (β ≥ 40) and depends only slightly
on η. (b) Number of epochs needed to reach an accuracy > 0.75, n0.75. In
contrast to the performance, n0.75 strongly depends on both β and η. (c) Loss
curves on the SHD for β = 40 and η = 10−3. (d) Same as in (c), but showing
the accuracy on the SHD.

trained on the SHD. We found that sensible combinations
for both parameters lead to stable performance plateaus over
a large range of values [Fig. 5(a)]. Only for small β the
accuracy dropped dramatically, whereas it decreased only
slowly for high values. Interestingly, the learning rate had
hardly any effect on peak performance for the tested parameter
values. As expected, convergence speed heavily depended on
both η and β. These results motivated us to use β = 40
and η = 1× 10−3 for all SNNs architectures presented in
this article unless mentioned otherwise. For this choice, the
performance of the RSNN on the validation set reached its
peak after about 150 epochs [Fig. 5(d)]. Additional training
only increased performance on the training data set [Fig. 5(c)],
but did not impact generalization [Fig. 5(d)].

With the parameter choices discussed above, we trained var-
ious SNN architectures on the SHD and the SSC. To that end,
we considered multilayer feed-forward SNNs with l layers and
a single-layer RSNN. Interestingly, increasing the number of
hidden layers l did not notably improve performance on the
SHD [Fig. 6(a)]. In addition, all choices of l caused high levels
of overfitting. Moreover, feed-forward SNNs reached slightly
lower accuracy levels than the SVMs on the SHD [Fig. 3(a)].
For the larger SSC data set, the degree of overfitting was much
smaller [Fig. 6(b)] and performance was markedly better than
the one reached by SVMs [Fig. 3(b)]. Here, increasing the
number of layers of feed-forward SNNs led to a monotonic
increase of performance on the test set from 32.5(5)% for
a single layer to 41.0(5)% in the three-layer case (l = 3).
However, when testing RSNNs, we found consistently higher
performance and improved generalization across speakers. In
comparison to the accuracy of LSTMs, RSNNs showed higher
overfitting and generalized less well across speakers. The
RSNN achieved the highest accuracy of 71.4(19)% on the
SHD and 50.9(11)% on the SSC which was still less than the
LSTM with 85.7(14)% on the SHD and 75.0(2)% on the SSC.

B. Generalization Across Speakers and Data Sets

For robust spoken word classification, the generalization
across speakers is a key feature. This generalization can be
assessed by evaluating the accuracy per speaker on SHD,
as the digits spoken by speakers four and five are only present
in the test set. We compared the performance on the digits
of the held-out speakers to all other speakers and found a
clear performance drop across all classification methods for the
speakers four and five [Fig. 7(a) and (c)]. For SVMs, the linear
kernel led to the smallest accuracy drop of about 18%, whereas
we found a decrease of 26% for the RBF kernel. CNNs
generalized best with a drop of only 8%, followed by the
LSTMs with 10%. Among SNNs, feed-forward architectures
were most strongly affected with a drop of about 24% to
27%. RSNNs, however, only underwent a decline of 21% in
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Fig. 6. Recurrent SNNs outperform feed-forward architectures on both data
sets. (a) Bar graph of classification accuracy for different SNN architectures on
the SHD. The accuracy reached by RSNN is comparable to the performance
of LSTMs with a max-over-time loss. Increasing the number of layers in
feed-forward architectures hardly affected performance. (b) Same as in (a),
but showing performance on the SSC. The performance of SNNs was lower
than the one reached by LSTMs. In contrast to (a), an increasing number of
layers leads to a monotonic increase in accuracy.

performance [Fig. 7(b)]. This illustrates that the composition
of the test set of SHD can provide meaningful information
with regard to generalization across speakers.

Because English digits are part of both data sets, we were
able to test the generalization across data sets by training
SNNs, LSTM and CNNs on the full SHD data set while
testing on a restricted SSC data set and vice versa [Fig. 7(b)
and (d)]. For testing, the data sets were restricted to the
common English digits zero to nine. Perhaps not surprisingly,
networks generalized better, when trained on the larger SSC
data set as a reference and tested on SHD. Nevertheless,
all architectures trained on the SHD and tested on the SSC
reached performance levels above chance. Again, recurrent
architectures reached the highest performance among all tested
SNNs.

C. Improving Generalization Performance Through Data
Augmentation and Larger Networks

We first tested the effect of network size on the generaliza-
tion performance of the RSNN architecture using the smaller
SHD data set. As expected, we found that increasing the
network size up to 1024 neurons indeed resulted in improved
validation and test accuracy up to 76.5(10)% with 1024
neurons [Fig. 8(a)].

Next, we compressed the input in terms of channels, since
a similar modification led to good results for the CNNs (see
Fig. 6). To that end, we coarse-grained the inputs by condens-
ing the spike trains of neighboring input units. Merging ten
neighboring channels did improve validation accuracy with an
associated test accuracy of 72.2(16)% [Fig. 8(b)]. This choice
resulted in an overall channel count of 70. Despite the only
slight increase in test accuracy, the corresponding networks

Fig. 7. Networks generalize across speakers and data sets. By reserving
two speakers for the test set, the SHD data set allows to assess speaker
generalization performance. (a) Per-speaker classification accuracy on the test
set of the SHD for different classifiers. A clear decrease in performance
is observable for samples spoken by the held-out speakers four and five
(highlighted). (b) Bar graph of the performance of SNNs, LSTM and CNN
trained on the SHD and tested on the English digits of the SSC. The reference
is given by the performance on the SHD test set and the generalization by the
performance on the English digits of the SSC test set. Accuracy on the SSC
digits is substantially lower than on the digits in the SSC test set. (c) Same as
in (a), but showing the per-speaker accuracy of SNN. As for (a), a decrease
in performance for the held-out speakers is observed. (d) Same as in (b), but
showing the performance of networks when trained on SSC and tested on the
English digits of the SHD. As opposed to (b), networks trained on the SSC
digits generalize well across data sets.

Fig. 8. Generalization performance improves with network size and data
augmentation. (a) Bar graph of classification accuracy on the SHD for different
network sizes. Larger networks generalize best. (b) Same as before, but
showing the accuracy for different numbers of input channels. Networks
generalized best when the spikes of the 700 input units were compressed to 70
units. (c) Network performance for temporally scaled synaptic and membrane
time constants. The highest performance on the validation set was reached for
an expansive scaling factor of 4. (d) Classification accuracy for spatially noisy
(channel jitter) input spikes. An optimum occurs for a standard deviation of
σu = 20 channels.

with fewer channels benefited from a smaller computational
footprint.

We next studied whether compressing the time domain
would bear additional benefits. In more detail, we rescaled all
neuronal time constants in the network. For a scaling factor
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TABLE I

PERFORMANCE COMPARISON

of 4 corresponding to τmem = 80 ms and τsyn = 40 ms, the
manipulation led to a marked reduction of overfitting that also
resulted in a higher test accuracy of 79.9(28)% [Fig. 8(c)].

As an alternative means to reduce overfitting, we sought
to explored noise injection at the input layer. Specifically,
we implemented event-based spike jitter across channels by
adding a random number N (0, σu) to the unit index i of every
input spike, which was then rounded to the nearest integer.
We found that such input noise was effective in decreasing
overfitting. For instance, a value σu = 20 led to an increased
test accuracy of 78.7(22)% [Fig. 8(d)].

When combined, the aforementioned strategies resulted in
a further improved best effort test accuracy of 83.2(13)% on
the SHD test set (Table I). This is not only noticeably higher
than the previous result of 71.4(19)% obtained by the RSNN,
but also exceeds the effect of every contribution on its own.

Finally, to relate our LIF neurons to other work on RSNNs,
we also evaluated the performance of networks composed of
spiking neural units (SNUs) on the SHD. Although closely
related to our LIF neuron model, spiking neural units (SNUs)
feature delta synapses and rely on a different surrogate deriv-
ative. When trained under the same conditions as our best
effort network, the SNU network reached a test accuracy of
79.0(16)% (Table I) which is slightly lower than networks
using our LIF neuron model.

IV. DISCUSSION

In this article, we introduced two new public domain spike-
based classification data sets to facilitate the quantitative
comparison of SNNs. Furthermore, we provide the first set of
baselines for future comparisons by training a range of spiking
and nonspiking classifiers.

With these developments, we address a lack of comprehen-
sive benchmark data sets for SNNs. To advance the neuro-
morphic computing field, we need a set of benchmarks that
pose real-world challenges to quantify gains and standardize
evaluation across different platforms [15]. We view the data
sets in this article as our contribution toward this goal. But,
since it is difficult to foresee the pace of future developments,
we acknowledge that the present data sets may not prove final.
Thus, to facilitate their refinement, extension, and the creation
of novel data sets, we released in addition to the spiking data,

our conversion software3 and raw audio data sets2, both under
permissive public domain licenses.

Both spiking data sets are based on auditory classifica-
tion tasks but were derived from data that was acquired
in different recording settings. We chose audio data sets as
the basis for our benchmarks because audio has a temporal
dimension which makes it a natural choice for spike-based
processing. However, in contrast to movie data, audio requires
fewer input channels for a faithful representation, which
renders the derived spiking data sets computationally more
tractable.

We did not use one of the other existing audio data sets as a
basis for the spiking version for different reasons. For instance,
a large body of spoken digits is provided by the TIDIGITS
data set [54]. However, this data set is only available under
a commercial license and we were aiming for fully open
data sets. In contrast, the Free Spoken Digit Data set [55]
is available under Creative Commons BY 4.0 license. Since
this data set only contains 2k recordings with an overall lower
recording and alignment quality, we deemed recording the HD
as a necessary contribution. Other data sets, such as Mozilla’s
Common Voice [56], LibriSpeech [57], and TED-LIUM [58]
are also publicly available. However, these data sets pose more
challenging speech detection problems since they are only
aligned at the sentence level. Such more challenging tasks
are left for future research on functional SNNs. The Spoken
Wikipedia Corpora [59], for instance, also provides alignment
at the word level but requires further preprocessing such as
the dissection of audio files into separate words. Moreover,
the pure size and imbalance in samples per class render the
data set more challenging. We, therefore, left its conversion
for future work.

The only existing public domain data set with word-level
alignment, tractable size, and preprocessing requirements that
we were aware of at the time of writing this manuscript
was the SC data set. This is the reason why we chose to
base one spiking benchmark on the SC while simultaneously
providing the separate and the smaller HD data set with the
higher recording quality and alignment precision. Finally, the
high-fidelity recordings of the HD also make it suitable for
quantitative evaluation of the impact of noise on network
performance, because well-characterized levels of noise can
be added.

The spike conversion step consists of a published physical
inner-ear model [60] followed by an established hair-cell
model [61]. The processing chain is completed by a single
layer of BCs to increase phase-locking and to decrease the
overall number of spikes. This approach is similar to the
publicly available DASDIGIT data set [40]. DASDIGIT is
composed of recordings from the TIDIGIT data set [54] which
have been played to a dynamic audio sensor with 2 × 64
frequency selective channels. In contrast to the SHD and the
SSC, the raw audio files of the TIDIGIT data set are only
available under a commercial license. Also, the frequency
resolution, measured in frequency selective bands of the BM
model, is about a factor of 10 lower. As the software used
for processing the SHD and the SSC data sets are publicly
available, it is straightforward to extend the present data sets.
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This step is more difficult for DASDIGIT, because it requires
a dynamic audio sensor.

We standardize the conversion step from raw audio signals
to spikes by generating spikes from the HD and the SC audio
data sets. In doing so, we both improve the usability settings
and reduce a common source of performance variability due
to differences in the preprocessing pipelines of the end-user.

To establish the first set of baselines (Table I), we trained
a range of nonspiking and spiking classifiers on both the
SHD as well as the SSC. In comparing the performance
on the full data sets with performance obtained on reduced
spike count data sets, we found that the temporal information
available in the spike times can be leveraged for better clas-
sification by suitable classifiers. Moreover, architectures with
explicit recurrence, like LSTMs and RSNNs, were the best
performing models among all architectures we tested. Most
likely, the reverberating activity through recurrent connections
implements the required memory, thereby bridging the gap
between neural time constants and audio features. Therefore,
the inclusion of additional state variables evolving on a slower
time scale as in [5] will be an interesting extension to improve
the performance of SNNs.

In the present manuscript, we trained SNNs using surro-
gate gradients in combination with BPTT [5]–[8], [62], [63].
However, it is essential to realize that there exists a plethora
of alternative gradient-based approaches based on network
translation [3], [64]–[66], single spike timing [23], [67], mean
firing rate [68], [69], and stochastic approximations [37],
[70]–[72]. Furthermore, there are biologically inspired online
approximations of surrogate gradients [2], [73], [74] and,
finally, a body of work has used biologically motivated spike-
timing dependent plasticity (STDP)-like learning rules [75],
[76] (see [4] for a comprehensive review). An in-depth com-
parison of this plethora of approaches was beyond the scope
of this manuscript. However, the present data sets might prove
useful in facilitating a more detailed comparison of the work
mentioned above. As such, it is left as interesting future work
to study how STDP interacts with the present data sets.

Our analysis of the SHD and the SSC using LSTMs and
SNNs showed that the choice of loss functions can have a
marked effect on classification performance. While LSTMs
perform best with a last-time-step loss, in which only the
last time step is used to calculate the cross entropy loss,
SNNs achieved their highest accuracy for a max-over-time
loss, in which the maximum membrane potential of each
readout unit is considered. A detailed analysis of suitable
cost functions for training SNNs is an interesting direction
for future research.

In summary, we have introduced two versatile and open
spiking data sets and conducted a first set of performance mea-
surements using SNN classifiers. This constitutes an important
step forward toward the more quantitative comparison of
functional SNNs in-silico both on conventional computers and
neuromorphic hardware.

APPENDIX A
INNER EAR MODEL

Audio data were converted into spikes using a model of
the inner ear and the ascending auditory pathway (see Fig. 2)

Fig. 9. Schematic view of the BM model. The BM (blue) separates the
scala tympani (lower chamber) from the scala vestibuli (upper chamber).
At the helicotrema (green), the two scalae are connected. The scala tympani
ends in the round window (yellow). A sound wave vsig is penetrating the
eardrum, applying pressure at the oval window (red) by moving the ossicles,
leading to compression and slower traveling wave. We have neglected the
scala media [60] and consider a stretched form.

which combines a basilar membrane (bm) model with a
population of hair cells (HCs) followed by a population of
bushy cells (BCs) for spike generation. We now describe the
model components individually.

A. Basilar Membrane Model

As a complete consideration of hydrodynamic BM models
is beyond the scope of this manuscript, we closely follow the
steps of [60] and highlight the key steps of their derivation.
A fundamental aspect of a cochlea model is the interaction
between a fluid and a membrane causing spatial frequency
dispersion [60], [77], [78]. Key mechanical features of the
cochlea are covered by the simplified geometry of the BM
in Fig. 9. Here, we assumed the fluid to be inviscid and
incompressible. Furthermore, we expect the oscillations to be
small that the fluid can be described as linear. The BM was
expressed in terms of its mechanical impedance ξ(x, ω) which
depends on the position in the x-direction and the angular
frequency ω = 2πν

ξ(x, ω) = 1

iω

�
S(x)− ω2m + iωR(x)

�
(12)

with a transversal stiffness S(x) = C0e−αx − a, a resistance
R(x) = R0e−αx/2 and an effective mass m [77]. The damping
of the BM was described by γ = R0/(C0m)1/2. Variations
of the stiffness over several orders of magnitude allowed to
encompass the entire range of audible frequencies.

Let p(x, ω) be the difference between the pressure in the
upper and lower chambers. The following expression fulfills
the boundary conditions vy = 0 for y = h, and vz = 0 at
z = ±b [77]

p(x, ω)

=
�

n

� ∞
0

dk

2π
e−ikx p0(k)

�
cosh(m0(h − y))

cosh(m0h)

+ m0 tanh(m0h) cosh(m1(h − y))

m1 tanh(m1h) cosh(m1h)
· cos

�πzn

b

��
. (13)

The Laplace equation yields expressions for m0 = k and
m1 = (k2 + π2/b2)1/2. Only the principal mode of excitation
in the z-direction was considered by setting n = 1. With the
assumptions made above, the Euler equation reads for the y-
component of the velocity in the middle of the BM

∂y p(x, ω) = −iωρvy(x, ω) = 2iωρ

ξ(x, ω)
p(x, ω) (14)
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Fig. 10. Schematic view of the transmitter flow within the HC model. Figure
adapted from [79]. The model comprises four transmitter pools which allow
to describe the transmitter concentration in the synaptic cleft.

where we dropped the y and z argument for readability. In the
following, we consider the limiting case of long waves with
kh � 1. By combining (13) and (14), one gets

∂2
x p(x, ω) = iωρ

hξ(x, ω)
p(x, ω) (15)

where the replacement p̂(k)→ p(x), k → i∂x and k2 → ∂2
x

has been applied. Here, p̂(k) denotes the Fourier transform of
p(x, 0, 0). The solution of this equation was approximated by

p(x, ω) =
�

G(x, ω)

g(x, ω)
H (2)

0 (G(x, ω)) (16)

where H (2)
0 is the second Hankel function and g(x, ω) and

G(x, ω) are given by

g(x, ω) = ω

�
ρ

hξ(x, ω)
, (17)

G(x, ω) =
� x

0
dx 
g

�
x 
, ω

�+ 2

α
g(0, ω). (18)

An analytical expression for G(x, ω) can be found in [60].
The model was applied to a given stimulus by

vy(x, t) =
�

dω

2π
i Z in

vy(x, ω)

p(0, ω)
e−iωtvsig(ω) (19)

where vsig(ω) is the Fourier transformation of the stimulus.
The input impedance of the cochlea was modeled by

Z in(ω) = p(x = 0)

vx(x = 0)
≈

�
2C0

h

i J0(ζ )+ Y0(ζ )

J1(ζ )− iY1(ζ )
(20)

with the Bessel functions of first Jβ and second Yβ kind of
order β and ζ = 2ω/α(2/(hC0))

1/2.
To process the audio data, we evaluated vy(x, t) in the

range (0, 3.5 cm] in Nch steps of equal size. Specifically,
we chose Nch = 700 as a compromise between a faithful
representation of the underlying audio signal and manageable
computational cost when using the data set. Before applying
the BM model, each recording vsig(t) was normalized to a
root mean square (rms) value of 0.3 cm s−1. For all model
parameters see Table II.

B. Hair Cell Model

The transformation of the movement of the BM to spikes
was realized by the HC. The following description illustrates
the key steps of [79], to which we refer for further details.

TABLE II

MODEL PARAMETERS

In the HC model, one assumes that the cell contains a
specific amount of free transmitter molecules q(x, t) which
could be released by use of a permeable membrane to the
synaptic cleft (Fig. 10). The permeability is a function of the
velocity of the BM, vy(x, t)

k(x, t) =

⎧⎪⎨
⎪⎩

g · �c · vy(x, t)+ A
�

c · vy(x, t)+ A + B
for vy(x, t)+ A >0

0 else.
(21)

The amount c(x, t) of transmitter in the cleft is subject to
chemical destruction or loss through diffusion l · c(x, t) as
well as reuptake into the cell r · c(x, t)

dc

dt
= k(x, t)q(x, t)− l · c(x, t)− r · c(x, t). (22)

A fraction n · w(x, t) of the reuptaken transmitter w(x, t) is
continuously transferred to the free transmitter pool

dw

dt
= r · c(x, t)− n · w(x, t). (23)

The transmitter originates in a manufacturing base that replen-
ishes the free transmitter pool at a rate y[1− q(x, t)]

dq

dt
= y[1− q(x, t)]+ n ·w(x, t)− k(x, t)q(x, t). (24)
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While in the cleft, transmitter quanta have a finite probability
Pspike = h ·c(x, t) dt of influencing the postsynaptic excitatory
potential. A refractory period was imposed by denying any
event which occurs within 1 ms of a previous event. At each
position x of the BM, we simulated NHC = 40 independent
HCs.

C. Bushy Cell Model

The phase-locking of HC outputs was increased by feeding
their spike output to a population of Nch BCs. In contrast
to [80], we implemented the BCs as standard LIF neurons. In
more detail, we considered a single layer (l = 1) of BCs
without recurrent connections (V (l)

i j = 0 ∀i, j ). The feed-

forward weights were set to W (l)
i j = 0.54/NHC ∀i, j . A single

BC was used to integrate the spiketrains of the NHC = 40 HCs
for each channel of the BM.

APPENDIX B
NONSPIKING CLASSIFIERS

For validation purposes, we applied three standard non-
spiking methods for time-series classification to the data sets,
namely SVMs, LSTMs, and CNNs. We give details on each
of them in the following.

A. Support Vector Machines

We trained linear and nonlinear SVMs using scikit-
learn [81]. Specifically, we trained SVMs with polynomial
(up to third degree) and RBF kernels. The vectors in the
input space were constructed such that for each sample a Nch -
dimensional vector xi is generated by counting the number
of spikes emitted by each BC in each sample. Furthermore,
features were standardized by removing the mean and scaling
to the unit variance.

B. Long Short Term Memories

We used LSTMs for validation purposes of the tempo-
ral data [82]. The inputs to the LSTM consist of the Nch

spike trains emitted by the BCs, but binned in time bins
of size 10 ms. We trained LSTM networks using Tensor-
Flow 1.14.0 with the Keras 2.3.0 application programming
interface (API) [83], [84]. For all used layers, we stuck to
the default parameters and initialization unless mentioned
otherwise. Specifically, we considered a single LSTM layer
with 128 cells with a dropout probability of 0.2 for the
linear transformation of the input as well as for the linear
transformation of the recurrent states. Last, a readout with
softmax activation was applied. The model was trained with
the Adamax optimizer [52] and a categorical cross entropy
loss defined on the activation of the last time step and the
time step with maximal activation.

C. Convolutional Neural Networks

We applied CNNs to further test for separability of the
data sets. To that end, the spike trains were not only binned
in time, but also space. The temporal binwidth was set to

10 ms. Along the spatial dimension, the data were binned
to result in 64 distinct input units. As for LSTMs, CNN
networks were trained using Tensorflow with the Keras APIs
with default parameters and initialization unless mentioned
otherwise. First, a 2-D convolution layer with 32 filters of
size 11 × 11 and rectified linear unit (ReLU) activation
function was applied. Next, the output was processed by three
successive blocks, each composed of two 2-D convolutional
layers, each of them accompanied by batch normalization and
ReLU activation. Both convolutional layers contain 32 filters
of size 3× 3. We finalized the blocks by a 2-D max-pooling
layer with pool size 2×2 and a dropout layer with rate 0.2. The
output of the last of the three blocks was processed by a dense
layer with 128 nodes and ReLU activation function followed
by a readout with softmax activation. The whole model is
trained with the Adamax optimizer [52] and a categorical cross
entropy loss for optimization.
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