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Abstract Neuromorphic hardware has made great advances in recent years; consis-
tently implementing a larger number of neurons and synapses. With the increasing
complexity of such systems the demands on the accompanying software increase as well.
This thesis contributes to the operating system of the wafer-scale BrainScaleS-1 neu-
romorphic system with the aim to facilitate the implementation of large scale neural
networks.

We use a synchronous firing chain to demonstrate the challenges which arise during the
implementation of neural networks on neuromorphic devices and present the emulation
of a functional chain with 190 links and 19 000 neurons. More than 70 000 analog neuron
circuits and 1.4 million synapses are involved in modeling the dynamics of this chain.

A high number of repeaters is needed to ensure the accurate transmission of spikes
across the wafer. These repeaters recover a timing reference from incoming signals.
Not all repeaters derive the correct timing in a single try. By repeatedly putting these
repeaters in reset, the total number of repeaters which recover the correct timing can be
increased. By implementing such a routine in the operating system, we paved the way
for the successful emulation of large scale neural networks.

Zusammenfassung Eine immer größere Anzahl an Neuronen und Synapsen kann
durch neuromorpher Hardware implementiert werden. Um diese zunehmend komplexen
Systeme effektiv betreiben zu können, muss die dazugehörige Software stetig weiterent-
wickelt werden. Diese Arbeit widmet sich der Weiterentwicklung des Betreibssystems des
BrainScaleS-1 wafer-scale Systems mit dem Ziel, die Implementation großer neuronaler
Netzwerke zu ermöglichen.

Mithilfe einer Synfire Chain untersuchen wir, welche Herausforderungen die Imple-
mentation von neuronalen Netzwerken auf neuromorpher Hardware birgt. Weiterhin
präsentieren wir die Emulation einer Synfire Chain mit 190 Gliedern und 19 000 Neu-
ronen. Mehr als 70 000 analoge Neuronen-Schaltkreise und über 1,4 Millionen Synapsen
werden benötigt, um diese Kette erfolgreich zu emulieren.

Eine große Anzahl an Repeatern stellt sicher, dass Spikes zuverlässig auf dem Wafer
weitergeleitet werde. Die Repeater erhalten kein globales Taktsignal, sondern leiten eine
Periode aus den empfangenen Signalen ab. Nicht alle Repeater finden die richtige Periode
im ersten Versuch. Indem diese Repeater wiederholt zurückgesetzt werden, kann die
Anzahl an Repeatern mit einer korrekten Perioden erhöht werden. Dieses wiederholte
Zurücksetzen wurde in das Betriebssystem integriert und ebnet damit den Weg für die
erfolgreiche Emulation großer neuronaler Netzwerke.
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1 | Motivation

Playing music, drawing pictures, solving puzzles, building cars: the human brain is ca-
pable of performing a variety of tasks. But how does the brain work? How is information
represented, processed and stored? In an effort to answer these questions the anatomical
and electrical properties of the brain have been studied for decades. This lead to the
development of a broad range of different neuron, synapse and network models. These
models range from complex, biologically realistic models such as the Hodgkin-Huxley
model to more simplified models which are easier to analyze analytically.

Due to its size and complexity, he extent to which the brain is accessible by electro-
physiological methods is limited. It is difficult to study the interactions between a high
number of neurons directly in biological tissue. As a result, software simulations have
been becoming increasingly more important to study the dynamics of larger networks.
They allow to study almost arbitrary neuron and synapse models as well as network
topologies. This flexibility comes with the cost of a high energy consumption and long
simulation times.

Dedicated integrated circuits which mimic the dynamics of neurons and synapses, so
called neuromorphic hardware, can lead to a speed up of emulations while being more
energy efficient at the same time. Such neuromorphic circuits have been developed in
Heidelberg for almost two decades: starting from single chips which host hundreds of
neurons to the Brain ScaleS 1 (BSS-1) system which is able to implement more than a
hundred thousand neurons on a single wafer.

In order to emulate neural networks on neuromorphic systems, dedicated software
is needed which translates the biological description to a hardware representation and
configures the hardware accordingly. With an increasing size of networks the mapping
and setup becomes increasingly more difficult. Advances in neuromorphic hardware have
always go hand in hand with improvements of the accompanying software.

This thesis uses a benchmark network, a synchronous firing chain, to illustrate the
challenges which arise during the implementation of large scale neural networks on the
BSS-1 system. Changes to the BSS-1 operating system aim to make the hardware oper-
ation faster and more robust, facilitating the emulation of large scale neural networks.





2 | Introduction

This thesis contributes to the operating system and commissioning efforts of the BSS-1
system to enable the emulation of large scale neural networks. The improvements are
demonstrated on the example of a synchronous firing chain which is easily scalable to
form large networks.

Section 2.1 provides a general overview over the BSS-1 neuromorphic system and
describes for this thesis relevant parts in more detail.

The last section quickly introduces the used neuron model and the structure as well
as dynamics of our benchmark model.

2.1 The BrainScaleS-1 System

BSS-1 is a mixed signal neuromorphic system. While analog circuits are used to emulate
biological neurons and synapses, digital logic is responsible for spike transportation.

In the first two sections we give a broad overview of the system before covering the
for this thesis relevant components in the subsequent sections.

2.1.1 The HICANN Chip

The High-Input Count Analog Neuronal Network Chip (HICANN) chip is the funda-
mental building block of the system, Fig. 2.1. The two synapse arrays of the symmetric
chip occupy the largest area. A single array implements 220× 256 ≈ 100 000 synapses.

256 dendrite membrane (DenMem) circuits are located next to each array towards the
center of the chip. These circuits implement the AdEx neuron model, c.f. Section 2.2.1.
The intrinsic time constants of these circuits lead to a speed up factor of 10 000 compared
to biological real time [1, 2]. Parameters of each neuron are configurable and stored on
floating gate cells on the chip [1, 3].

Each DenMem receives inputs from one column of synapses of the corresponding
synapse array. 32 circuits on the top and 32 circuits on the bottom are combined to
form a neuron block. Multiple of two DenMems in a neuron block can be connected
to form a single neuron such that the total number of possible synapses increases to a
maximum of 14 080 per neuron [3, 2].
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Figure 2.1: HICANN Chip – As the chip is symmetric we only mark the repeater blocks,
synapse array and neurons on the top (right) part. (A) Repeaters are located at the edges of the
HICANN. They occupy every second on-waffer communication lane on a single chip such that
one repeater is on each line at the boundary of two HICANNs. Sending repeaters (blue) are used
to inject events from the neurons and external events in the L1 network. To assure that not all
sending repeater inject in the same horizontal lines, they are shifted by two at the edges of the
chip. In the right a part of one of the two sparse crossbars is visible which are used to connect
horizontal and vertical lines. (B) Sparse synapse switches allow to relay signals from vertical
lines to synapse drivers. (C) One synapse driver is responsible for two lines of synapses. The
synapse driver decodes the two most significant bits of the 6-bit address and determines which
of the four sets of synapses (mark by color) receive the incoming signal. Synapse rows which are
not connected to drivers in this picture are controlled by drivers on the other side of the synapse
array.
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Each HICANN contributes 256 vertical and 64 horizontal lines to the on wafer com-
munication network, visible as H in Fig. 2.1 [3]. Sparse connection matrices at the center
of the chip allow to connect specific vertical and horizontal lines, cf. Fig. 2.1 (A). At
both sides of each synapse array sparse synapse switches are used to connect vertical
lines to synapse drivers, sub figure (B).

Spikes from the DenMem circuits as well as external spikes are injected via eight
specialized sending repeaters on each chip, sub figure (A). This is done in form of a six
bit neuron address, compare Section 2.1.3.

To connect two neurons on the chip the switch matrices have to be set in the according
way. This allows to connect the output of one sending repeater to one synapse driver.
Using the two most significant bits of the address the driver decides which set of synapses
receives the input signal, compare Fig. 2.1 (C). Each synapse stores a 4-bit address as
well as a 4-bit weight. The 4-bit address is compared with the remaining 4 bits of the
signal and a pulse modulated by the weight is forwarded to the neuron which lies at the
bottom of the column. With this space/address coding scheme arbitrary neurons on the
wafer can be connected.

2.1.2 Wafer Scale

One of the distinguishing features of BSS-1 is the wafer scale integration: wafers are not
cut into single chips after production but stay intact. As a result chips can be directly
connected on the wafer. This allows for high connection densities and an energy efficient,
low latency communication of spike events [4, 5].

Due to the high resolution needed during lithography, only a restricted area of about
2 × 2 cm – a reticle – can be processed at once during wafer production [4]. While the
eight chips on a single reticle are therefore connected, the connections between different
reticles have to be established in a post-processing step [1]. A single wafer is made up
of 48 reticles and therefore of 384 chips [2].

The wafer is connected a printed circuit boards which provides connections to other
boards such as field programmable gate arrays (FPGAs) boards (for communication
between host and HICANN) or power boards.

2.1.3 Repeater

Several repeater ensure that signals stay accurate enough to travel long distances on the
wafer. Repeaters are placed on alternating lines at the top/bottom (left/right) of the
HICANN, Fig. 2.1 (A). Each repeater belongs to one of six repeater blocks. Repeaters
in a single block share some common settings/registers such as the delay-locked loop
(DLL)-reset or test ports.

Providing each repeater with a clock signal would be space and energy consuming [6].
Therefore, DLLs are used to recover a timing reference from received signals. A repeater
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Figure 2.2: Function Principal of Repeaters – The repeater receives a serialized six bit
address embedded in two framing bits. The entire frame is split into 16 equally sized bins. When
receiving the falling edge of the start bit (red) the repeater sends a signal along an internal
delay line; each element delaying its input by the same time ∆t. Depending on the position of
the signal in the delay line different actions are triggered. At the third delay the value of the
incoming signal is captured in parallel memory, every second next bit is used to capture another
value. Starting from delay five the output line is driven; starting with the start bit. Every second
delay one of the previously captured bits is forwarded followed by a stop bit after the 21st delay.
For a small region around the 16th delay (blue region) an edge detection mechanism is active
and tries to capture the rising edge of the stop bit (red). This edge is aligned with the delay line
signal after 16 delays to update the duration of a single delay ∆t.

is called “locked” if it deduced the correct timing from the incoming signals.

Hock [6] and Schemmel et al. [4] describe in detail how locking of repeaters work.
Each repeater deserializes the six bit address, stores it and serializes it again. Receiver,
parallel memory and driver each perform one of these tasks.

Each six bit neuron address is embedded in framing bits, cf. Fig. 2.2. The falling edge
of the start bit and the rising edge of the stop bit are used to determine the duration
of a 8-bit (start/stop bit and six address bits) which is then represented as a voltage
VCTRL stored on a capacitor.

Locking

The receiver detects the falling edge of the start bit and sends a signal along an internal
delay line; each element in the delay line delays its input by the same time ∆t which is
controlled by the voltage VCTRL. The aim is now to align the signal of the rising edge of
the start bit after the 16th delay with the fall falling edge of the stop bit; thus dividing
the input signal in 16 equally sized bins (Fig. 2.2). In order to prevent locking to rising
edges of address bits the input signal is masked. Only a small region (one timing bin)
around the 16th delay is visible to edge detecting mechanism.

To establish an initial lock zeros are sent to the repeater and the capacitor is pre-
charged with a voltage Vdllres. Vdllres has to be chosen such that the unmasked area lies
near the expected rising edge of the stop bit; this prevents locking to multiple of the
frame length. Zeros are sent such that no rising and falling edges except for the ones of
the stop and stop bit are present in the received signal.

After the initial lock was successful addresses can be relayed via the L1 network. The
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repeaters are now able to use these signals to adjust the voltage on the capacitor and
therefore compensate leak currents or temperature deviations.

Synapse drivers have receiving circuits which are identical to the ones in the repeaters
and therefore locking works in the same way.

Signal Forwarding

In order to store and forward an incoming signal the delay line is used to trigger the
capture of the input signal: after the 3rd delay address bit 0 is captured, after the 5th

address bit 1 and so on. All bits of the address are stored in a parallel memory. At the
5th delay the driver starts reading this memory and forwards the address in a serialized
form.

Repeating is expected to delay the signal by about 2.3 ns at each repeater [4].

Test Ports

Each repeater has a test data output on which it can send decoded parallel addresses
to the associated control logic. All repeaters in one repeater block are connected to two
data outputs in an alternating fashion such that the events of two repeaters can be read
put in parallel. After enabling the reading of test data in the control logic the addresses
as well as the arrival times (in number of clock cycles) of the first three received events
are stored in the memory of the control logic.

By sending a known sequence of addresses with a known delay between them this
allows to test whether the repeater locked correctly. Background generators on the
HICANN allow to send address zero events at fixed time intervals.

2.1.4 Synapse Controller

In hardware a controller is responsible for a specific part of the hardware; it provides
input and output registers for communication with other parts of the hardware. The
synapse controller is a finite state machine which is responsible for a single synapses
array on the HICANN chip: it takes care of weights, decoder addresses and locking of
synapse drivers.

The responsibility for weights also includes the evaluation of the correlation circuits
and automatic weight updates which can be used to implement spike time dependent
plasticity (STDP) [7]. Since this feature is currently not implemented in the software
stack of BSS-1, we will ignore all functionality related to correlation measurements.

Registers relevant for this thesis are the control register (CREG), configuration register
(CFGREG), status register (STATUS ) as well as the transfer registers SYNIN and
SYNOUT which are used as a temporary storage of weights/decoder addresses. While
the SYNIN and SYNOUT are made up of four 32-bit registers, which are each divided
in eight 4-bit words, the other registers are single 32-bit registers with special meaning
for each subgroup of bits.
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We display the control register as an example, Register 2.1. Information for the
other registers can be found in Neuromorphic Platform Specification [8] and the thesis
of Friedmann [7].

Register 2.2: Control Register of the Synapse Controller – encr, continuous, lastadr, without -
reset, scc and sca are used to control cross-correlation evaluation and STDP-functionality [7,
9]. cmd stores the command the controller is supposed to perform; the different commands can
be found in Neuromorphic Platform Specification [8]. The synapse controller only performs the
command specified in cmd if the newcmd bit is set to true. adr determines on which synapse
row the operation should be performed. The column set is selected with the field sel, see text
for more information. idle is set if the controller does not perform a command and idles.
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Reading of Weights

This section presents a common operation of the synapse controller: reading weights. A
more detailed version can be found in Friedmann [7]. It is used as an example to illustrate
the purpose of the different registers and the operations of the synapse controller.

Each synapse array is horizontally split into four blocks, i.e. synapse columns 0 to 63
belong to group 0, 128 to 191 to group 1 and so on. The blocks are further divided in
eight column sets each such that a single column set contains eight synapses per block
and 32 synapses in total, compare Fig. A.1. In order to save bit lines not all weights in
a single row are read at once. The read operation is performed for one column set after
another; the 4-bit weights of eight synapses in the first column set are stored in the first
32-bit of SYNOUT, the weights of the second column set in the second 32-bit register
and so on.

Algorithm 2.1 outlines a possible host side implementation for reading an entire row
of weights. Fig. 2.3 illustrates what happens internally in the synapse controller during
these operations. Operational parameters such as the different waiting times during
stages can be set in the configuration register.

For a read of the SRAM cells in the synapse array the bit lines have to be driven
with the value stored in the cells. This process is initiated by the START READ command,
Line 3. First the controller enters the state READ WEIGHTS PRE ; it pre-charges the
bit lines and waits for cpredel cycles. In the next state, READ WEIGHTS EN, pre-
charging is disabled and the wordline of the desired row (set in Line 2) is activated.
After waiting cendel cycles the state ROW SELECTED WEIGHT is entered: the bit
lines should now have reached a stable value such that the input to the multiplexer
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- enable output driver
- wait coedel cycles

- precharge bitlines
- wait cpredel cycles

READ_WEIGHTS_EN

- deactivate precharge
- enable wordline
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Figure 2.3: Reading Weights – States of the synapse controller which are related to reading
weights. Each state is represented by a box. The header gives the name of the state and the
body lists actions which are taken in the state. Black arrows indicate transition between states.
Orange arrows show which states are entered if a specific command is given to the controller.
For detailed explanation see text.
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which reduces the 4 · 256 = 1024 bits to the size of the SYNOUT register (128-bit)
is stable, compare Fig. A.1. The settings of the multiplexer are determined by the
column set stored in the field sel of the control register, compare Register 2.1. While
the controller performs the tasks initiated by START READ the host computer has to wait;
this is done by reading the status register and waiting till the busy bit is unset, Line 5.

Now the registers SYNOUT have to be set according to these values; this is done
with the command READ (Line 11). The synapse controller enters the state READ -
WEIGHT SAMPLE : the multiplexer is configured, the output driver is enabled and
control is remained for coedel cycles before transitioning back to ROW SELECTED -
WEIGHT. The read weights are now available in the SYNOUT register.

In order to read the weights of an entire synapse row these tasks are repeated for
each column set (Line 9) and the contents of SYNOUT are stored in an output data
structure (Line 17). After each command, which is sent to the synapse controller, the
host software has to wait until the controller finished the task.

Finally, we can close the row (Line 18): the synapse controller enters the state NO -
DRVIO TO IDLE where the wordline is disabled and then transitions back to IDLE.

2.1.5 Off Wafer Communication

Communication of configuration and spiking data between a computing host and the
chip is mediated by FPGAs. This results in two communication streams: host↔ FPGA
and HICANN ↔ FPGA. Each FPGAs is connected via a 1 Gbit s−1 link to the host
computer, each HICANN uses a 2 Gbit s−1 link to connect with the FPGA [10].

Spike data from the host is stored in the playback memory of the FPGA and re-
leased during the experiment; the timing is specified by a time stamp. Spikes from the
HICANN are stored in memory and can be read by the host after the experiment is
completed. During configuration of the HICANN configuration data sent from the host
are immediately forwarded to the chip.

The input rate of external spike events is limited by the speed of the FPGA and the
bandwidth between FPGA and HICANN. External spikes can be grouped in so called
“pulse groups”; each group can be made up of up to 184 pulses. To start the processing of
a pulse group the FPGA needs six clock cycles. Every additional pulse can be processed
in one cycle.

The FPGA organizes the pulses from the playback memory in FIFOs of size 16. From
there up to two spikes are combined in a packet and sent to the HICANN. The HICANN
immediately forwards the pulses in the on-wafer network. According to Klähn [11] the
link between FPGA and chip is limited to 17.8 MEv s−1. Dividing this rate by the speed
up factor of 104 yields about two events every millisecond. For higher input rates, spikes
are shifted or even lost if the FIFOs are full.

For the links between FPGA and host/HICANN automatic repeat request (ARQ)
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Algorithm 2.1: Possible host side implementation for reading weights of an
entire synapse row. For a detailed explanation see text.

Data: Hardware address of synapse row row, vector w to fill with weights from
hardware

Result: Updated vector w
1 ControlRegister creg;
// Open row

2 creg.adr ← row;
3 creg.cmd ← START READ;
4 creg.newcmd ← true;
5 write to hw(creg) // Write content to hardware

// Wait till row is opened

6 repeat
7 busy ← status register.slice busy
8 until busy == false;
// Read weights from different column sets

9 foreach sel in column sets do
10 creg.sel ← sel;
11 creg.cmd ← READ;
12 creg.newcmd ← true;
13 write to hw(creg)

// Wait until weights are read to SYNOUT

14 repeat
15 busy ← status register.slice busy
16 until busy == false;

// Store weights in output structure

17 save weights colset(w, synout register, sel);

// Close synapse row after reading

18 creg.cmd ← CLOSE ROW;
19 creg.newcmd ← true;
20 write to hw(creg) // Wait until the row is closed

21 repeat
22 busy ← status register.slice busy
23 until busy == false;
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(HostARQ and HicannARQ) mechanisms are used to ensure reliable communication1,
for details see Müeller [10]. The expected round-trip time on the HostARQ depends on
the traffic and is expected to be around 100 µs if the queue is empty and in the range
of 100 ms if the queue is full. For the HicannARQ the round-trip time is expected to be
around 1 µs in case of low traffic and several tenth of microseconds if the queue is full2.

2.1.6 Software

Dedicated software had to be developed in order to operate the BSS-1 system. In this
section we give a quick summary of some of the layers of the BSS-1 software stack. For
details see Müller et al. [12].

Halco

As seen in previous sections the BSS-1 system is made up of many components. In
order to configure each component it is important that the programmer can specify each
component uniquely. For this purpose a coordinate system, called halco, was introduced.

Halco provides a coordinate for each building block of the system, e.g. wafer, repeater
or synapse array. It further provides relations between these components such that
appropriate coordinates can be transformed in each other.

Halbe

The halbe is responsible for low level hardware access. It tries to provide dedicated data
structures, called container, for configuration data of each component of the system.
Reading and writing from/to the hardware is also handled by halbe.

Sthal

The sthal uses halbe containers to represent the current state of the hardware. Fur-
thermore, the read/write functions of halbe are used to configure the system. For this
purpose sthal implements different configuration routines called “configurators”. Con-
figurators take care that all relevant values are set in the correct order.

Marocco

Marocco takes the high level description of PyNN and translates it to a valid hardware
configuration. It places the neurons on different neuron circuits on the wafer and realizes
connections between them by setting the synapse switches accordingly. In addition, it

1For the HICANN ↔ FPGA connection only configuration data are sent via the ARQ stream.
2Estimations by E. Müller.
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translates parameters such as reset potential or synaptic time constants to hardware
values.

PyNN

BSS-1 provides a PyNN API such that neural networks can be described in a high
level abstraction in the Python scripting language. Allowing for high level description
of neuronal experiments which can be executed on BSS-1 aims to enable non-expert
users to use the system without a profound knowledge of the underlying hardware and
software.

Besides BSS-1 PyNN is supported by a number of different simulation backends such
as NEST3, Brian4 and NEURON5 [13].

2.2 Neuroscience

The brain is made up of a high number of small processing units, neurons, which interact
in a complex manner. One aim of neuroscience is to find adequate models which are
able to describe the behavior of the neurons but are at the same time simple enough
to simulate and analyze. In the first section the popular leaky integrate and fire (LIF)
neuron model is introduced.

In the second part the network topology of a synfire chain is presented. This struc-
ture was first introduced by Abeles [14] to explain repeating spatiotemporal spiking
patterns. As synfire chains are easily scalable to form large neural networks and their
dynamics are robust against parameter variations, the render ideal benchmark models
for neuromorphic hardware.

2.2.1 Neuron and Synapse Model

BSS-1 implements the dynamics of the adaptive exponential integrate and fire (AdEx)
neuron model which is able to mimic the spiking behavior of a broad range of neuron
types [15, 16]. The AdEx model can be simplified to a simple LIF neuron which we will
use in this thesis.

It models the neuron as a membrane with a capacitance Cm which is connected to a
leak potential EL. Incoming spikes from other neurons cause a current flow Isyn on the
membrane. The evaluation of the membrane potential Vm is given by:

Cm
dVm

dt
= −gL (Vm − EL) + Isyn, (2.1)

3https://nest-simulator.readthedocs.io
4https://briansimulator.org/
5https://neuron.yale.edu/neuron/

https://nest-simulator.readthedocs.io
https://briansimulator.org/
https://neuron.yale.edu/neuron/
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where gL is the leak conductance [17].

Whenever the membrane potential crosses a threshold Vthres from below a spike is
emitted and the membrane potential is set to a reset value Vreset. Afterwards the tem-
poral evaluation of the membrane potential is again governed by Eq. (2.1).

We use conductance based synapses to describe the current Isyn which is caused by
incoming spikes of other neurons:

Isyn = −
∑

synapses i

gi (t) (Vm − Ei) , (2.2)

with synaptic conductance gi (t) and synaptic reversal potential Ei.

The dynamics of the synaptic conductance can be modeled as an exponential decay
with a synaptic time constant τi and a base conductance g0

i :

gi (t) =
∑
t0∈Ti

g0
i e
− t
τi Θ (t− t0) . (2.3)

Here Ti represents the times of all spikes which are transmitted by the synapse i. The
base conductance g0

i is used to encode the strength of the synaptic connection and is
also called synaptic weight.

2.2.2 Synchronous Firing Chain

Synchronous firing chains (short synfire chains) were introduced to explain spatiotempo-
ral firing patterns. In its original form a synfire chain consists of several chains/groups
of neurons which are connected in an converging-diverging manner, Fig. 2.4 (A). A
synchronous activity in a group causes a synchronous response in the following group;
allowing to transmit synchronous signals along the chain. Depending on the synchronic-
ity of the initial input the signal may be transmitted along the chain or die out after a
few links, Fig. 2.4.

As the signal is propagated by groups of neurons, the network is robust to the defect
of single neurons and synapse loss. This renders it a suitable network for hardware
emulations where parameters may vary from neuron to neuron and synapse loss may be
present due to the restricted number of connections between parts on the hardware.

In order to classify which input leads to a propagation, “pulse packets” can be used
to describe the temporal spread and strength of the input [19, 18]. A pulse packet of
strength a and temporal spread σ (short (a,σ)) is a group of a spikes with spike times
drawn from a Gaussian distribution with standard deviation σ, Fig. 2.5.
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Group 0 Group 1 Group 2

A B C

Figure 2.4: Connectivity and Pulse Propagation in a SynFire Chain – (A) In a synfire
chain neurons in different groups are connected in a converging-diverging scheme: each neuron
connects to a high number of neurons in the following group and receives inputs from a high
number of neurons in the preceding group. Here groups of five neurons with all to all connectivity
are shown. (B,C) The propagation of a pulse depends on its synchronicity and strength. The
spiking activity of ten groups which each consists of 100 neurons is shown. Each neuron in the
fist group receives a pulse packet input (a,σ). (B) For a sufficiently strong input (50,0) to each
neuron the pulse packet propagates along the chain. (C) If the input strength is lightly lower
(48,0) the packet may survive the first few groups but finally dies out before reaching the final
group. (B,C) Taken from Diesmann et al. [18] (Fig. 3).
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Figure 2.5: Gaussian Pulse Packets – Example for different pulse packets (a,σ) drawn from
a random distribution. The spikes are presented as vertical lines. In the background is the
Gaussian distribution from which the spike times are drawn (lines extend to 3σ).
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Figure 2.6: Phase Space of a SynFire Chain (without feed forward inhibition) – The
contour lines mark the probability of the initial pulse packet (a,σ) reaching the final group.
High propagation probabilities are colored light while the regions of unsuccessful propagation
are black. The success depends on both strength and synchronicity of the initial input. In the
region of successful propagation all trajectories converge in a common attractor. Some of these
trajectories are displayed in the upper left corner of the plot. Taken from Gewaltig et al. [20]
(Fig. 7).

Simple Feed Forward Structure

Diesmann et al. [18] started by investigating the response of a single LIF neuron to pulse
packet input. These studies were later extended by Gewaltig et al. [20] who investigated
the dynamics of an entire synfire chain.

The network structure is similar to the one illustrated in Fig. 2.7 but without inhibitory
populations in each group. Each neuron received independent background input from
inhibitory and excitatory Poisson spike sources which mimic the activity in a cortical
network. All neurons in the first group received a pulse packet (a,σ) as stimulus input.
The authors performed several trials to determine the networks response to the different
input stimuli.

Propagation success depends on both strength and temporal spread of the input,
Fig. 2.6. A higher strength can compensate a broader temporal distribution and vice
versa.

A critical strength of about 50 spikes are at least needed to transmit even the most
synchronous pulse packets, compare Fig. 2.4. The minimum amount of spikes depends
on the neuron parameters and the topology of the network [18].

In the region of successful propagation all trajectories converge in a single attractor.
Therefore, we will also call this region the “basin of attraction”. The attractor is char-
acterized by a high output strength and a low temporal spread of σ < 1 ms. We have to
note that the simulations did not include variations in neuron parameters and synaptic
delay. Therefore, the temporal spread is expected to be higher in real networks. Fur-
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Figure 2.7: Synfire Chain with Feed Forward Inhibition – A synfire chain consists of
a stimulus population (S) and several chain links (also called groups). Each group is made
up of an excitatory (E), inhibitory (I) and background (B) population. Each stimulus neuron
injects spikes in form of a Gaussian pulse packet, cf. Fig. 2.5. Neurons in the excitatory (Ei)
and inhibitory (Ii) population connect to a fixed number of neurons in the preceding excitatory
group (Ei−1) or in case of the first group to the stimulus. Inhibitory neurons only project in the
excitatory population within the same group. The background input is shared between inhibitory
and excitatory neurons in a group. Without inhibitory neurons this network reduces to a simple
synfire chain without FFI.

thermore, the attractor will no longer be represented by a sharp point in the phase space
but by a blurred out one.

After the pulse reached the attractor the dynamics of the network are quite robust.
Small perturbations may shift the system in a nearby state. As long as this state is in
the basin of attraction the network will move back towards the attractor.

The convergence speed towards the attractor depends on the initial starting point
in the phase space. While states starting near the separatrix need around 10 to 15
chain links to reach the attractor, states in the core of the basin of attraction reach the
attractor after about five chain links [20].

As mentioned above a lower synchronicity of the input can be compensated by a
higher input strength. This makes the simple synfire chain susceptible to asynchronous
activity: random background activity may initiate a pulse packet. In order to increase
the filtering for synchronous input feed forward inhibition (FFI) can be introduced.

Feed Forward Inhibition

A simple synfire chain transmits a large range of input stimuli and therefore may also
be activated by random background activity. In order to reduce the integration window
of the neurons inhibition can be incorporated into the network [21, 22]. The idea is
that inhibition follows shortly after excitation. This limits the integration time of the
neuron to the range of the delay between excitation and inhibition; making it harder for
asynchronous inputs to travel along the chain [22].
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A B C

Figure 2.8: Phase Diagram of a Synfire Chain with Feed Forward Inhibition – Output
strength versus input strength and standard deviation. Signals with aout < 0.1 are not displayed.
Note that the input is given as the spiking behavior of a single neuron in the stimulus population
and not as the input neurons in the first population receive. Each neuron in the first population
has 60 incoming stimulus connections. (A) Without inhibition propagation is possible over a
large range of the phase space. For strong and asynchronous inputs each neuron in the last
group spikes more than 10 times. (B) Introducing inhibition can effectively reduce the output
strength in the last group. The filtering properties of the network are not improved. (C) For
effective inhibition the network was less susceptible to asynchronous inputs. Picture taken from
Kremkow et al. [22] (Fig. 2).

Feed forward inhibition can be implemented by introducing an additional inhibitory
population in each group, Fig. 2.7. This population receives the excitatory input of the
previous population, such that it is activated at approximately the same time as the
excitatory population. It then connects to the excitatory population of the same group
via inhibitory synapses.

Figure 2.8 illustrates the effect of inhibition. For the simple feed forward structure
the network transmits a large range of input stimuli. Only the weakest packets are not
propagated if the temporal spread is too high. In all other cases the strength is sufficient
to allow for transportation of asynchronous packets. The activity in the final group is
made up of several pulse packets if the input pulse is sufficiently strong and not too
synchronous: neurons are reactivated several times after their refractory period.

In case of ineffective inhibition the filtering for synchronous input is not improved,
Fig. 2.8. Strong but asynchronous input stimuli are still propagated along the chain.
However, the output strength in the final group is reduced such that for a large part of
the phase space only a single packet is forwarded to the last group.

Increasing the synaptic strength between excitatory and inhibitory populations al-
lows for a more reliable activation of the neurons in the inhibitory population. As a
consequence of this increased activity they are able to effectively forward spikes to the
excitatory population in the same group. This increased inhibition leads to an improve-
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Figure 2.9: Influence of Weight Noise on a Synfire Chain – Each weight w was drawn
from a Gaussian distribution with mean w and standard deviation w ·p where p is the percentage
of noise. (A) Without compensating for the weight noise the phase diagram is patchy. The
separation between successful propagation and failure is not sharp anymore. (B) Fitting curves
to the separation line indicates that the region of successful propagation decreases with increasing
noise. For p = 80 % the functionality breaks down completely. (C) Compensating the weight
noise (see text) can almost restore the separation line. Only small differences for large input
strengths can be observed. Taken from Petrovici et al. [24] (Fig. 17).

ment of the filtering property of the network: the input has now to be much more
synchronous to elicit pulse packets in the final group.

Simulation with the Executable System Specification

Synfire chains have already been implemented on Spikey, a predecessor of the HICANN
chip, and simulated with a executable system specification (ESS) of the BSS-1 system
[23, 24]. The ESS takes the digital communication infrastructure as well as the analog
circuits into account and replicates their dynamics in software. Variations of neuron
parameters, synapse weights or the fixed on-wafer communication bandwidth can for
example be simulated with the help of the ESS. In addition, the ESS allows to monitor
state variables which are not accessible during the operation of the BSS-1 system This
makes it possible to analyze distortions induced by the hardware in more detail.

Petrovici et al. [24] simulated a synfire chain with the help of the ESS. They analyzed
the influence of weight noise, synapse loss and fixed synaptic delays on the network
dynamics.

Figure 2.9 shows the effect of synaptic weight noise on the network dynamics. The
region of successful propagation becomes more patchy and no sharp separatrix can be
distinguished, sub figure (A). Increasing the weight noise reduces the basin of attraction
(B). For a weight noise of 80 % successful propagation is no longer possible.

The authors provided background inputs via a single synapse to each neuron in the
network. All other connections consist of at least 25 synapses such that the weight
variations are not as significant as for the background input. While it is possible to
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use more synapses to provide random background activity, the authors chose to reduce
the weight of the single synapse and increase the resting potential of all neurons in the
network. As a result it was possible to maintain the mean membrane potential of the
original network and compensate weight noise of up to 80 %, Fig. 2.9 (C).

As the network is locally feed forward the synapse loss is low if the hardware resources
are not restricted by blacklisting and becomes only relevant for large networks. Synapse
loss of up to 50 % can be compensated by increasing the synaptic weight of the remaining
synapses.

Kremkow et al. [22] used the synaptic delay between the inhibitory and excitatory
population of the same group to adjust the position of the separatrix. On BSS-1 the
synaptic delay can not be adjusted and is in the order of 1 ms to 2 ms. Petrovici et
al. [24] showed that a delay of 1.5 ms is still sufficient to allow for pulse propagation.
Furthermore, they altered the synaptic strength gIi→Ei between inhibitory and excitatory
population to control the size of the basin of attraction.

They also observed that dense pulses are broadened due to the limited bandwidth
of the on-wafer communication network. This broadening had no visible effect of the
position of the separatrix.
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In order to operate the BSS-1 system not only have the hardware components to work
together but also dedicated software is needed which allows to easily configure the hard-
ware as desired. As part of this thesis some parts of the BSS-1 operating system were
improved in terms of stability, performance and speed.

At first the software representation of a specific hardware component was improved.
This helped to clarify the routine which is responsible for the locking of repeater and
synapse driver, also see Section 2.1.3. It also lays the basis for introducing a repeated
locking of repeaters.

Not all repeaters can be locked successfully within one try. By putting unlocked
repeaters in reset and retrying the locking can effectively increase the number of locked
repeater, Section 3.2.

Finally, the access speed for synaptic weights and decoder addresses was decreased,
Section 3.3.

3.1 Synapse Controller Class

Several changes to the software stack aim to improve the representation of the hardware
implementation in software while also providing additional convenience of high level
functions. The changes described in this section build up on the work by S. Schmitt and
concern the representation of the synapse controller, Section 2.1.4.

Apart from introducing specific data containers to represent hardware parts, some
code restructuring was done in order to clarify the locking of repeaters and synapse
drivers. Furthermore, a synchronization of command buffers after each configuration
stage was introduced.

Finally, tests which ensure the functionality of the software are presented.

3.1.1 Previous State of Software

The content of the control and other registers was put together manually, see Listing 3.1,
and afterwards written to hardware.
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Listing 3.1: Prior to the introduction of a specialized data structure for the control register of
the synapse controller the content of the register was put together manually. Example for a read
operation on column set 6 in row 14.

1 // h is a HICANN handle

2 SynapseControl& sc = reticle.HICANN[h.jtag_addr()]->getSC(HicannCtrl::SYNAPSE_TOP);

3 uint32_t read_command = facets::SynapseControl::sc_cmd_read |

4 (6 << facets::SynapseControl::sc_colset_p) |

5 (1 << facets::SynapseControl::sc_newcmd_p) |

6 (14 << facets::SynapseControl::sc_adr_p); // address in hw

coordinates↪→

7 c.write_data(facets::SynapseControl::sc_ctrlreg, read_command); //issue read command

Pulling and releasing of the DLL-reset was done within a single halbe function for
repeaters and synapse drivers respectively. lock repeater and synapse driver(), re-
gardless of the name, was only responsible for locking repeaters. A command to pull the
reset was immediately followed by the command to release the reset. Locking of synapse
drivers was performed in the same function which also writes the general configuration
of synapse drivers to hardware, namely set synapse driver().

Sthal provided the two stages LOCK REPEATER and LOCK SYNAPSEDRIVERS were these
functions were called.

3.1.2 Software Changes

This section displays some key features of the new software implementation and provides
some examples of their usage.

Specialized Data Structures

By implementing dedicated data structures for configuration data it can be ensured
that only valid values are written to hardware. In addition, it makes the adjustment of
settings more convenient and easier to read/understand.

The control register for example is a 32-bit register which stores several settings at
different bit positions, cf. Register 2.1. While the single bit values such sca, scc, without -
reset, newcmd, continuous and encr are stored as Boolean member variables of the
SynapseControlRegister class, the other bit values are represented by specialized data
structures.

The column set sel for example is now represented by a ranged integer SynapseSel.
This ensures that the member variable only holds values in the allowed range. Other
examples are the member variables representing lastadr and adr which make use of halco
coordinates such that software developers can use a single coordinate system in the entire
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Listing 3.2: Setting the contents of the synapse control register after introduction of a dedicated
data structure and a setter function. Compare with the old implementation Listing 3.1.

1 // syn_ctrl is of type SynapseControlRegister

2 syn_ctrl.cmd = SynapseControllerCmd::READ;

3 syn_ctrl.sel = SynapseSel(6);

4 syn_ctrl.newcmd = true;

5 syn_ctrl.row = SynapseRowOnArray(209);

6

7 // h is a HICANN handle

8 set_syn_ctrl(h, SynapseArrayOnHICANN(0), syn_ctrl);

software stack. The translation to hardware coordinates happens in the getter/setter
functions, cf. Section 3.1.2.

These changes allow for a more readable and less error-prone definition of the contents
of the control register. Another advantage is that members which are not actively set
conserve their previous state. In Listing 3.2 this for example ensures that settings such
as sca or continuous keep their intended values and are not zeroed out as in Listing 3.1.

Similar data structures were introduced for the others registers and settings related
to the synapse controller.

Optional Values

Some bits are read-/write-only on hardware, e.g. the idle bit in the control register (Reg-
ister 2.1) or the whole status register of the synapse controller. Variables representing
these bits are of type boost::optional<base type> in software. This has the advan-
tage that containers which are used to write data to hardware and containers which are
filled with values read from hardware are easily comparable.

In case of the idle bit the member variable in the SynapseController is of type
boost::optional<bool>. This member variable is unset when initializing a new object
of type SynapseControlRegister, lets call it creg write. After writing creg write

to hardware and saving the read contents of the register in creg read the idle member
variable is set. The comparison of SynapseControlRegister instances is implemented
such that the comparison of creg write and creg read evaluates to true. In case both
idle variables are set a standard comparison in performed.

Setters and Getters

For each register getter and setter functions are provided to facilitate communication
with the hardware. Inside these functions the custom data structures are transformed
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to bit patterns which the hardware can understand or vice versa. It is also the place
where the transformation between software and hardware addresses happens.

Furthermore, the programmer only has to provide a handle to a HICANN and the
synapse array on which the corresponding register/controller is located. Therefore, a
SynapseControl object does not have to be initialized manually and the user does not
have to know the hardware address of the corresponding register, cf. Listing 3.1 and
Listing 3.2.

Restructuring

As seen in Section 3.1.1 the locking of repeaters and synapse drivers was tightly inte-
grated in halbe functions. This not only contradicts the encapsulation of responsibilities
but also leads to a constant relocking of synapse drivers when set synapse driver()

is called.

Consequently, the locking functionality was removed from the halbe functions and
moved one layer up to sthal.

In order to have all repeaters and synapse drivers in reset at the beginning of the
hardware configuration the corresponding data structures initialize DLL-reset to be set.

The ParallelHICANNv4Configurator provides several configuration stages in which
the different reticles are configured in parallel. When writing the initial configuration
to hardware, in the configuration stage TIMING UNCRITICAL, all repeaters and drivers
are in reset. In a following stage, LOCKING REPEATER BLOCKS, reset of the repeaters is
released. After that we expect a reliable signal at the synapse drivers and they can leave
the DLL-reset; this is done in LOCKING SYNAPSE DRIVERS.

The ParallelHICANNv4SmartConfigurator was also altered. Users can now choose
actively how they want to handle repeater and synapse driver locking: locking can be
skipped, enforced or done smartly. In the smart configuration the configurator decides,
based on the previous hardware configuration, if locking is needed. The configurator
decides as follows: if the hardware was not configured beforehand locking is always
done; in case of changes to the L1 route relocking of repeaters is done. Synapse drivers
are relocked if repeaters are relocked or if there have been changes to the synapse drivers
themselves.

Synchronization of Command Buffers

While working on the restructuring of the locking scheme a synchronization of the com-
mand buffers after each configuration stage was introduced in the ParallelHICANNv4-

Configurator. This ensures that all HICANNs receive all commands before the next
stage is entered.

The communication path from the host to a single HICANN is split in two ARQ-
streams. One from the host to a FPGA and one from the FPGA to the HICANN,
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compare Section 2.1.5. If one wants to be certain that no commands are pending both
streams have to be emptied.

For HicannARQ the function flush HICANN() was already implemented in halbe. A
read command is sent from the FPGA to the HICANN and the execution of code is
stopped until the FPGA receives the result of the read command.

A similar function was implemented for the first half of the communication path:
flush(FPGA handle t& f) checks if the host has sent all packages. If there are still
remaining packages in the queue the functions waits 10 ms and then checks again for
unsent packages. This is done until the queue is empty or a timeout is reached.

sync command buffers(FPGA handle t const&, HICANN handles t const&) in the
HICANNConfigurator first calls the flush function of the stream from host to a FPGA and
afterwards the flush function for the communication path between FPGA and each HI-
CANN. This function is called after every configuration stage of the ParallelHICANNv4-
Configurator.

3.1.3 Tests

Digital Blacklisting Tests

Digital blacklisting tests are normally used to check the functionality of digital parts
of the hardware. A random but legal configuration is written to hardware. Afterwards
the values are read back and compared with the original values. If there is a mismatch
between the written and read value the hardware component is assumed to be defect
and is blacklisted such that it will not be used during operation of the system.

The digital blacklisting was extended for the synapse control register and the synapse
configuration register, see Table A.5 By using the blacklisting test on registers which are
expected to work correctly the implementation of setters and getters was tested.

The blacklisting test does not protect us from making a mistake in translating the
software configuration to hardware and then doing the reverse mistake in the back trans-
lation. However, the software has to pass at least this test to be functional.

Running the test on a few selected registers on wafer 33 was successful. Since the tests
did not throw any errors and the changed software was in usage for several month, we
are confident that the implementation is correct.

Locking Test

In order to confirm that the locking is still working after restructuring a random network
was created and tested with different versions of the software stack. For the creation of
the network a set of HICANNs was selected and the following scheme was executed:

1. select random seed,
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Figure 3.1: Locking Test - Used HICANNs on Wafer 33 – South west corner of wafer
33. HICANNs which were unused during the locking test on wafer 33 are blacked out. In total
39 HICANNs were selected for the test.

2. place a population of 120 neurons on a random HICANN (remove HICANN from
list),

3. place a population of 120 neurons on a random HICANN (remove HICANN from
list),

4. connect population to previous population, and

5. repeat Item 3 and Item 4 until all HICANNs are used.

Wafer 33 was used to run the test with five different seeds. Since the post processing of
wafer 33 connects L1 lines at the boarder of the wafer to unused reticles, the outermost
HICANNs were not selected. Taking blacklisting into account 39 HICANNs in the south-
east corner of the wafer were selected, cf. Fig. 3.1. This resulted in networks with 1089
to 1348 repeaters.

In order to test the influence of the different changes the test was run for several
versions of the software stack. The change set related to the synchronization of the
command buffer was merged on November 12, 2019. Changes concerning the Synapse-

Controller class and restructuring were submitted on November 26, 2019. The versions
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Table 3.1: Synapse Controller Class - Locking Test – Mean value and standard deviation
of locked repeaters for locking test on wafer 33. The version numbers of the software stack are
given in the header. In the last column the total number of repeaters in each network is displayed.

Seed
2019-11-11-1 2019-11-13-1 2019-11-25-1 2019-11-27-1 Number of

Repeaters
Unlocked Repeaters (%)

6 0.5(2) 0.5(1) 0.5(2) 0.4(3) 1348
35 0.8(2) 0.9(3) 0.8(3) 0.3(2) 1089
42 0.4(2) 0.4(1) 0.3(1) 0.5(2) 1249
94 0.3(2) 0.3(1) 0.3(1) 0.9(6) 1103
128 0.7(3) 0.6(2) 0.6(2) 1.3(5) 1203

of the software stack were chosen such that there is always a test with a version before
and after the changes were introduced.

After introducing synchronization of command buffers the mean locking rate remains
basically the same for all seeds, cf. Table 3.1. This is also evident in Fig. 3.2. The
median value as well as the 25 % and 75 % quantiles stay approximately the same.

In order to confirm that no changes to the software stack affected the locking success
after the synchronization was introduced a test with an additional software version was
done. The version from November 25, 2019 represents the software just before the merge
of the SynapseController class. Table 3.1 and Fig. 3.2 verify that the locking success
is the same for the two versions of the software.

After restructuring the SynapseController the distribution of unlocked repeaters
extends to higher percentages and no network was locked completely in any run, Fig. 3.2.
Table 3.1 reveals that this is mainly due to a drop in the locking success for the networks
with seed 94 and 128. The percentages of unlocked repeaters for these two seeds and the
last version of the software stack show a relatively high standard deviation to the other
values. Nevertheless, the mean values are still within 1 to 2 standard deviations across
the different versions of the stack. Since no systematic decrease for all seeds is observed
the locking scheme is assumed to work correctly.

3.2 Relocking of Repeaters

As described in Section 2.1.3 several repeaters on the wafer ensure that spike signals can
be transmitted from one HICANN to another. Just pulling and releasing the DLL-reset
of these repeaters at the same time does not lead to completely locked routes if the
network is complex. By allowing for a repeated reset of unlocked repeaters the total
number of locked repeaters can be increased. Once again the changes presented in this
section are based on work by S. Schmitt.
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Figure 3.2: Synapse Controller Restructuring - Confirm Functionality of Repeater
Locking – Locking success for different verisons of the BSS-1 software stack. The test was
performed 50 times for each of the different seeds, compare Table 3.1.
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3.2.1 Implementation

In an attempt to increase the total number of locked repeaters, the locking of repeaters
which are still unlocked after each try is redone. Repeaters can not be put in reset
individually since they are organized in blocks; DLL-reset can only be pulled/released
for an entire repeater block. Therefore, the routine was implemented such that whole
blocks get relocked if a single repeater failed the locking test:

1. lock of all repeaters,

2. test locking of all repeaters,

3. collect all repeater blocks with unlocked repeaters,

4. redo locking of collected repeater blocks,

5. repeat 2 to 4 a predefined number of times,

6. relock synapse drivers, and

7. return result of final locking test.

Marocco already provides a routine which checks whether all used repeaters are locked,
marocco::ReadRepeaterTestdata::check(). This function makes use of the test ports
to read out the received addresses and delays between them, see Section 2.1.3. We
integrated the relocking algorithm into this function.

Specialized Configurator

While the isolated relocking of synapse drivers can be realized with the Parallel-

HICANNv4SmartConfigurator a specialized configurator had to be introduced for the
relocking of specific repeater blocks. The ParallelOnlyRepeaterLockingNoResetNoFG-
Configurator takes a set of RepeaterBlockOnWafer coordinates and retries the locking
for all repeaters in them.

The configurator implements the following tasks in the sthal configuration stages:

TIMING UNCRITICAL Set selected repeater blocks into reset

LOCKING REPEATER BLOCKS Release reset of selected repeater blocks

LOCKING SYNAPSE DRIVERS Skip

NEURONS Skip

Functions concerning the configuration of FPGAs, e.g. config FPGA() and start -

systime counter(), are overwritten such that the FPGAs are not reconfigured.
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Figure 3.3: Relocking Test – Locking tests on wafer 33 for five different seeds with 50 runs
each. The percentage of unlocked repeaters drops after the first retry and stays basically the
same afterwards. Different waiting times seem to have no effect on the success rate of locking.

3.2.2 Test

The test introduced in Section 3.1.3 was used to investigate the effect of repeated locking.

Once more wafer 33 was used to perform the locking experiments. The list of HI-
CANNs stayed the same as in Section 3.1.3. We chose the same seeds as given in
Table 3.1 and run the tests for each seed 50 times. The waiting time after the stage
TIMING UNCRITICAL treset = 0 ms and 10 ms, which determines how long the repeaters
are in reset, and the waiting time after the locking of repeaters tlocking = 0 ms and 100 ms
were altered.

Figure 3.3 shows that the different waiting times had no effect on the locking success.
The number of unlocked repeaters drops after locking is done again and additional
relocking attempts do not increase the number of locked repeaters. A low percentage of
repeaters can not be locked.

In Chapter 4 we improve the locking test and our evaluation methods. We want to
find out if the limited locking success can be attributed to a small set of repeaters which
do not lock or forward the wrong addresses.
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3.3 NOP-Waits

The synapse controller is responsible for writing/reading weights and decoder addresses
of synapses, c.f. Section 2.1.4. During this process specific waiting times have to be
met such as pre-charge times or enable delays. The reading of weights is illustrated in
Algorithm 2.1. While performing reads and writes the controller sets a busy bit in the
status register. By reading this bit the software can check if the controller is ready to
receive a new instruction.

Reading this bit takes at least the round-trip time (in the order of 100 µs (empty
queue) 100 ms (full queue)) and is therefore quite time consuming compared to the
waiting times which are in the order of tens of nanoseconds. The aim of the changes
presented in this section is to introduce predefined waiting times for the different actions
of the synapse controller after which it is save to assume that the controller finished its
task. As these waiting times are significantly lower than the round-trip time a speed up
is expected. Since the waiting is realized by sending instructions to the HICANN which
do not change the state of the hardware, this waiting scheme was named “NOP-wait”1

This form of waiting can also be applied to the SRAM controller of the synapse drivers.

Changes presented in this section build up on the work by S. Schmitt and A. Grübl.

3.3.1 Previous Implementation

Before the implementation of the NOP-waits so called “busy waits” were used. Readiness
of the synapse controller was ensured by reading the status register continuously and
waiting while the busy bit is set, Algorithm 2.1. Since the controller performs it tasks
faster than the time it takes until the information of the status bit is available in software
the waiting time is in the order of the round-trip time.

3.3.2 Implementation

Pre-charge and delay times are not fixed but can be set for each synapse controller
individually. The times are stored in the configuration register in number of HICANN
clock cycles. Taking state transitions in the controller and these waiting times into
account one can determine how many clock cycles ncycles the synapse controller needs to
perform a given task.

An example for the different states and waiting times involved in reading weights is
given in Section 2.1.4. Figure 2.3 illustrates the states during this process.

Instructions for the synapse controller are sent in configuration packets to the FPGA
from where they are forwarded to the HICANN.

1NOP stays for stands for “no operation” and is a common operation in computer instruction sets
which does not change the state of the hardware.
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After sending a configuration packet with the read/write instruction to the HICANN,
we want to occupy the communication channel for the number of clock cycles it takes the
controller to finish the task. To do so we write data in the configuration register of the
synapse controller. In order to know how many such write instructions we need to send,
we have to determine the time between configuration packets in number of HICANN
clock cycles.

The clock frequency at which the core logic of the HICANN operates is derived from
a phase-locked loops (PLLs) which receives it input from an external clock signal. The
output frequency of this PLL can be tuned in a range of 100 MHz to 250 MHz. Since
the HICANN core logic operates at a quarter of this frequency the maximal cycle length
yields 1/25 MHz = 40 ns.

Due to a limited communication bandwidth and a fixed size of configuration packets at
most every 80 ns a packet can be sent to the HICANN. Therefore, at least two clock cycles
pass during the sending process of a single packet; we have to write the configuration
register a maximum of npackets = ncycles/2 times.

The timing information for the synapse controller is stored in the configuration regis-
ter, which contents are available in software. A. Grübl determined the constant numbers
of state transitions needed for each operation of the synapse controller. Therefore, all
information needed to determine the expected execution time are available in software.

NOP-waits are implemented as a simple for loop which runs over the specified number
of NOP instructions needed and sends a write instruction of the configuration register
in every iteration.

3.3.3 Speed Test

The digital blacklisting test, Section 3.1.3, was once more altered to test the functionality
of the changes as well the speed improvement. Each row of synaptic weight (decoder
addresses) was read (wrote) 100 times and an average access time was determined,
Table 3.2. The same procedure was used for the synapse driver tests: each driver was
accessed 100 times.

Synapse Array

For reading we have to open a row, issue eight read instructions (one per column set)
and close the row, see Section 2.1.4. After every instruction we have to wait; this sums
up to ten waits in total. In comparison reading of a row just takes eight instructions
and therefore two less waiting steps. If we divide the difference in access time of the
corresponding rows in Table 3.2 by the number of waits we get a speed up per wait of
about 130 µs. This is in the order of the expected round-trip time if the traffic on the
communication channel from host to FPGA is low, c.f. Section 2.1.5. For a busier link
between host and FPGA an even higher speed up is to be expected.
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Table 3.2: NOP-waits - Speed Tests – Measurements of synapse array as well as synapse
driver access for busy waits and NOP-waits. In case of the synapse array times are given for the
access of an entire row (weights) or two entire rows (decoder addresses). Each row/synapse driver
was accessed 100 times and the time was averaged over all rows. Synapse array measurements
were performed on HICANN 4 on wafer 30 for two different seeds; synapse driver measurements
on HICANN 2 on wafer 24.

Operation
Busy Waits

(µs)
NOP-Waits

(µs)

writing weights 1046± 101 15± 8
reading weights 3365± 173 2079± 149

writing decoder addresses 2090± 162 26± 9
reading decoder addresses 6724± 243 4176± 221

writing synapse driver 815± 3 10± 1
reading synapse driver 813± 3 850± 2

The waiting time was the dominating factor in the time it takes to perform a write.
As a consequence writing speeded up by a factor of about 70. The relative speed up in
reading was much lower.

Synapse Driver

In the routine which is responsible for writing synapse drivers seven busy waits were
replaced by the new waiting scheme. Table 3.2 shows that this operation increased by
about 715 µs. Dividing this time difference by the number of replaced waits puts us
again in the range of the expected round-trip time.

Reading of synapse drivers slowed down compared to the previous implementation.
This is due to the fact that no waits were previously performed. In contrast the hardware
specification states that waiting is needed after each read access [8]. As a consequence
we introduce a NOP-wait after every read; three waits were added in total. This resulted
in the increase execution time.
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In the Section 3.2 we saw that relocking of repeaters can increase the total number of
locked repeaters in the network. Nevertheless, it was rarely possible to lock our tested
networks with around 1200 repeaters completely; a low number of repeaters stayed
unlocked in each retry.

Our aim is to extend the previous developed test to analyze if the unsuccessful locking
can be attributed to a small set of repeaters. To do so we will extract the locked and
unlocked repeaters in each try and provide evaluation methods to determine repeaters
which are unlocked frequently. In addition, we provide a visualization of the routes which
contain unlocked repeaters in order to check dependencies between different repeaters.

We change the structure of the test such that it easily be executed on different wafers
in the BSS-1 system. Furthermore, we introduce the variation of the voltage which is
used to reset the DLL circuit in the repeaters as well as the clock frequency which is
used for the on-wafer communication.

4.1 Test Routine

The routine is oriented on the test described in Section 3.1.3. This time we do not place
the populations randomly but establish connections between random populations.

The user provides a number of populations Npop and their neuron size Nneurons. If
the user provides an optional list of HICANNs the populations are manually placed
on these chips, otherwise the standard placement algorithm of marocco is used. We
now create a randomly ordered list of these populations and create all-to-all connections
between adjacent list items. A seed provided by the user is set before performing the
randomization of the list.

Before executing the experiment on the wafer, low level parameters are set. These
parameter include: sleeps after configuration stages as in Section 3.1.3, reset voltage
Vdllres and PLL-frequency νpll.

A bash script is used to define a set of hardware settings which should be tested. It
runs over all possible combinations, tests the locking for this configuration several times
and saves the result in a folder with a unique id for the set of experiments (date and
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time). The logging output of the BSS-1 operating software is filtered for information
relevant for the determination of unlocked repeaters. Wafer statistics such as voltages
and temperatures are saved in a JSON file.

4.2 Experiment Results

An initial test in Section 3.2.2 already suggested that the sleeping times have no effect
on the number of locked repeaters. In the first section we want to confirm this for the
new test.

Afterwards, we test how the reset voltage of the DLL circuits and the operation
frequency νpll influence the number of locked repeater.

4.2.1 Varying Sleeps

Experiment Parameter – ID: 2020-06-27 09h52m

• Wafer: 24

• Npop: 50

• Nneurons: 40

• treset: 0 ms and 10 ms

• tlocking: 0 ms and 100 ms

• Vdll: 200

• νpll: 125 MHz

As a start we want to confirm with the new test that the waiting time after pulling/re-
leasing the reset has no clear effect of the number of locked repeaters. We use the same
sleeping times and seeds as in Section 3.2.2 but this time we run the tests on wafer 24
and allow for a maximum of ten locking retries.

We chose the same seeds as in the previous tests. This time our networks were made
up of about 600 to 900 repeaters. The tests confirmed the previous findings: the total
number of locked repeaters can be increased by repeatedly putting the repeaters in
reset and the varying sleeps had no clear effect on the locking success Fig. 4.1 (A).
Nevertheless, just two networks could be locked completely in all runs (and at least for
all but one combination of sleeping times).

The locking success of the different networks, subfigures (B) to (D), show some dif-
ferences for different combinations of sleeping times. However, no combination seems to
be systematically superior. This is also evident in subfigure (A).
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In case of seed 35 the network already shows a low percentage of unlocked repeaters
in the first try. After the third try the network was locked completely regardless of the
waiting times. This network included the lowest number of tested repeaters. For the
other network which could be locked completely in most of the runs, seed 94, considerably
more retries are needed until the number of unlocked repeaters drops to zero.

All other networks stayed unlocked in a high number of runs. The number of locked
repeaters increases at first but then stays roughly constant. No specific sub set of “bad”
repeaters could be determined and also no single repeater block seemed to be responsible
for the unsuccessful locking.

We observed that the locking gets occasionally stuck in loops: routes A, B, C, D are
unlocked in retry 2; E, F in retry 3; A, B, D in retry 4; E, F, G in retry 5 and so on. The
routes present in these loops were similar in each run (but different for different seeds)
and the algorithm was rarely able to escape these loops. One reason for the occurrence
of this periodic behavior is that entire repeater blocks have to be put in reset such that
a few initially locked repeaters may lose the correct timing.

Such loops did also occur in the network with seed 94 which could be locked after
many retries. Here the algorithm was able to escape the loop in a low number of retries.
A further increase of the maximum number of retries is only partly practical. While a
single retry takes only about half a second for the given network, the time can reach
several seconds if the networks are bigger.

4.2.2 Varying νpll and Vdllres

Experiment Parameter – ID: 2020-06-28 23h21m

• Wafer: 24

• Npop: 150

• Nneurons: 40

• treset: 0 ms

• tlocking: 0 ms

• Vdll: 0 to 1000 in steps of 100

• νpll: 100 MHz, 125 MHz and 200 MHz

We now want to vary the frequency at which the on-wafer communication network
is operated. A PLL is used to derive a frequency νpll which is then used during the
encoding of the injected signal. Repeaters and synapse drivers then derive the timing
from the frame length which is given by 1/νpll.
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Figure 4.1: Locking Test - Varying Sleeps – Locking test for five different seeds with ten
runs each. A maximum of ten retries were done in each run. The clock frequency was set to
νpll = 125 MHz and the reset to Vdllres = 200. (A) Violin plot of repeater locking success for all
seeds combined. (B-E) Locking results for a selected subset of seeds. Only two networks could
be locked in most of the runs. For the other networks relocking has a positive effect but a small
number of repeaters stay unlocked.
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The reset voltage Vdllres should be chosen such that the rising edge of the stop bit lies
in the detection region (blue region in Section 2.1.3) [6]. We therefore have to adjust the
reset voltage to the clock frequency. The voltage can be set via a 10-bit digital-to-analog
converter (DAC) and is stored in floating gates at the center of the chip. All values of
Vdllres given in this thesis describe the input value of this DAC.

As preliminary results showed that the networks in the previous test can be locked
easily when the clock frequency is increased, we expanded our networks to include 150
populations. This resulted in networks with 3600 to 3900 repeaters.

The mapping of one of these networks is illustrated in Fig. 4.2. About 50 HICANNs are
used to place the neuron populations and three times as many to establish connections
between the different populations. Marocco uses chips without neuron populations on
them to redirect routes if a more direct path is not available. This is visible in the figure
where a few routes go south at first, then to the left/right and finally back north. Since
blacklisted HICANNs can not be used for routing, these routes bypass the center part
of the chip were a lot of chips are unavailable.

Figure 4.3 summarizes the results for all three tested frequencies. At the minimum
frequency which can be chosen for the operation of the on-wafer communication circuits,
νpll = 100 MHz a large number of repeaters stay unlocked, subfigure (A). Even at the
optimal value of the reset voltage about a fifth of all repeaters deduced a wrong timing
from the incoming signals.

While relocking increases the number of locked repeaters around the optimal reset
voltage, relocking has a negative effect when the reset voltage is non-optimal. This
behavior can be observed for all tested frequencies.

At the frequency which is used as a default for the BSS-1 system, νpll = 125 MHz,
the percentage of unlocked repeaters falls under five percent. Nevertheless, no network
configuration was locked successfully in any run. The optimal reset voltage seems to lie
somewhere between the default of 200 and 300.

For the highest tested frequency of νpll = 200 MHz all but two networks could be
locked successfully in each run. Complete locking of the networks could be achieved
within one retry when the reset voltage was equal to 300 or above.

The unsuccessful locking of the two networks could be traced back to a small set of
repeaters. In both networks at most two routes were responsible for the failed locking.
The first unlocked repeaters in these routes were H179VR0801 (seed 35) and H179VR087

(seed 94). For a seed of 94 H179VR69 was also occasionally unlocked; interestingly
repeaters which followed later in the route were locked according to the test. All repeaters
belong to the same repeater block (H179RB12). Furthermore, both receive inputs from
repeaters which lay on the same repeater block on the preceding HICANN (H215RB1).

1The first number encodes the HICANN on which the repeater is located, 179. “VR” stands for vertical
repeater (“HR” for horizontal repeater). The last number encodes the number of the repeater on the
HICANN.

2“RB” stands for repeater block.
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Figure 4.2: Locking Test - Mapping Result Seed 6 – Mapping result for the network with
seed 6 and Npop = 150 and Nneurons = 40. Neurons are marked by a blue color. The higher
the opacity the more neurons are placed on the HICANN. Neurons are placed from left to right.
Each HICANN hosts a little more than 100 neurons. Fully blacklisted chips are colored red.
Colored lines represent the connections between sending repeaters and synapse drivers. A total
of 3939 repeaters were used in this network.
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Figure 4.3: Locking Test - Varying νpll and Vdllres – Locking test for five different seeds
with ten runs each. A maximum of ten retries were done in each run. (A) The number of
unlocked repeaters is high for the lowest frequency at which the on-wafer communication can be
operated. In case the reset voltage is optimal, relocking has a small positive effect on the number
of locked repeaters. Otherwise, the number of locked repeaters decreases when relocking is done.
(B) At the default frequency of on-wafer communication of the BSS-1 system the number of
unlocked repeaters decreases dramatically. The optimal reset voltage is in a small range around
200 to 400. (C) A even higher frequency decreases the number of unlocked repeaters even further
and the locking success is less dependent on the reset voltage.
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The repeater blocks in question were not used in any other networks and in no other
routes than the ones which could not be locked. Further tests with more seeds and
other population sizes revealed a few more repeaters on H179RB1 which can not be
locked. However, the test also revealed one repeater on this block which could be locked
successfully in all tries. The number of routes which were routed over H179RB1 was to
low to determine whether the repeater block might be defect. More tests with different
seeds are needed or our test should be extended such that specific repeater blocks can
be targeted.

A look at the blacklisting data reveals that the repeaters of HICANN 215 were not
tested during the digital test and that a relatively high number of synapse drivers are
blacklisted on HICANN 179. It is not clear whether there is a connection between the
bad locking performance and the results from the digital blacklisting.

We conclude that an increased operation frequency of the on-wafer communication
circuits has a positive effect on the locking success. Additional tests have to determine
if signal encoding and decoding are still reliable for higher frequencies. Tuning the reset
voltage of the DLL can be beneficial at low frequencies while the circuits are more robust
in variation of the reset voltage if the frequency is high.
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In this chapter we want to investigate what challenges arise during the emulation of
networks which span over multiple HICANNs on the BSS-1 wafer system and if the in
Section 3.2 introduced relocking facilitates the implementation of these networks. For
that purpose we use a synfire chain with FFI which is easily scalable from samll to large
network sizes.

At first, we want to confirm the functionality of our implementation and to get a
better understanding of the network dynamics. Therefore, we start by simulating a
synfire chain in NEST; this also allows us a comparison with hardware result later on.
For the initial transfer to hardware we want to look at a less complex network such that
we also run simulations for a synfire chain without FFI and background input.

We initially run simulations/emulations of chains with less than ten chain links. This
allows for an easier transfer to hardware since only a small part of the wafer is used. Using
this simplified, small network we want to investigate the influence of hardware induced
restrictions such as limited communication bandwidth, limited number of synapses and
parameter variations.

Finally, we increase the chain length and look at the implementation of larger scale
networks on the BSS-1 system.

5.1 Experiment Description

We use the PyNN implementations of NEST and BSS-1 to describe the biological prop-
erties of the network such as populations, projections and neuron parameters. This
description is handled in the dedicated class SynFireChain, Section 5.1.1.

Another python script run.py takes care of experiment control; for example it places
the populations on pre-selected chips or saves the experiment results. A third script
allows to define a set of biological values for which the network should be simulated. It
takes care of submitting the jobs to the compute cluster and the bookkeeping of results.
In the last subsection we quickly describe which evaluation routines we use and why,
Section 5.1.4.
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Table 5.1: Synfire Chain - Populations – An illustration of the network can be found in
Fig. 2.7. Neuron parameters of the excitatory and inhibitory populations are given in Table 5.2.
The rate of the background neurons rB will be determined during experiment. The structure of
the stimulus spike train is described in the text.

Population x Size Nx PyNN type

Stimulus (S) = NE SpikeSourceArray

Excitatory (E) 100 IF cond exp

Inhibitory (I) 25 IF cond exp

Background (B) 32 SpikeSourcePoisson

5.1.1 Biological Description - SynFireChain.py

The class SynFireChain takes care of the biological description of the network. Upon
construction it takes a instance of PyNN (either the NEST or BSS-1 implementation)
and a set of network parameters such as the number of groups or the sizes of the different
populations. We will use the topology and neuron parameters described in this section
as base parameters for our experiments.

Populations

Each group consists of an excitatory, inhibitory and background population, compare
Fig. 2.7. The properties of the network were passed to the class upon construction.
Calling the build member function results in creation of the network.

The sequence of creation influences the neuron placement on the wafer and therefore
might have an effect on the topology of the mapped network as well as on the dynamics of
the chain. We create one group after another and within each group excitatory neurons
before background neurons before inhibitory neurons.

Excitatory as well as inhibitory populations consist of LIF neurons (pynn.IF cond -

exp), see Eq. (2.1). In the base configuration they share the same parameters, Ta-
ble 5.2. Background neurons are simulated as Poisson spike sources (pynn.SpikeSource-
Poisson) with a rate rB.

The analog circuits on hardware are subject to fixed pattern variations caused by the
manufacturing process. Floating gates also contribute to neuron to neuron variations on
hardware. In order to account for these variations we allow to include these variations
in NEST simulations. If a simulation is run with distributed neuron parameters each
neuron parameter is drawn from a Gaussian distributions with a standard deviation of
5 % (with respect to the mean value). The mean values are, if not stated otherwise,
taken from Table 5.2.

After all groups have been created we deal with the stimulus input. The stimulus is
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Table 5.2: Synfire Chain - Neuron Parameters – In the default configuration neurons in
the excitatory and inhibitory populations share the same neuron parameters. For the meaning
of the variables see Section 2.2.1.

Parameter Default Value

Membrane Capacitance Cm 0.29 nF
Excitatory Reversal Potential Erev-exc 0.0 mV
Inhibitory Reversal Potential Erev-inhib −75.0 mV
Constant Current Offset Ioffset 0.0 nA
Membrane Time Constant τm 10.0 ms
Refractory Time Constant τref 2.0 ms
Excitatory Synaptic Time Constant τsyn-exc 1.5 ms
Inhibitory Synaptic Time Constant τsyn-inhib 10.0 ms
Reset Potential vreset −70.0 mV
Rest Potential vrest −70.0 mV
Spiking Threshold vthres −57.0 mV

provided by a group of NS = NE neurons; the spikes of each neuron resemble a Gaussian
pulse packet (ain, σin), compare Fig. 2.5. We want to test response of the synfire chain
to a large number of different input stimuli. To speed up the experiment we combine
all stimuli, which we want to test, in a single spike train. To do so we introduce inter
stimulus inhibition: each neuron receives a stimulus input followed by an inhibition
after tpost-stimulus ms and the next stimulus after waiting an additional tpre-stimulus ms.
The output spike train represents a single draw of the input stimuli, Fig. 5.1.

In order to account for statistical variations in the drawn spike times, we present
several draws to the network; each time we redraw the spike times of the stimulus from
the same Gaussian distributions. Numpy’s random module is used to draw the spike
times from normal distributions and the different draws are then “glued” together to
form a single spike train which represents one trial, Fig. 5.1.

Projections

Projections between inhibitory, excitatory and background population all have a fixed
number of pre synaptic connections. The number of connection, the weights and delays
are summarized in Table 5.3.

In our implementation we take the weight wEi→Ei+1 as a reference weight and scale the
other weights by the factors gEi→Ii+1 , gIi→Ei and gBi→E/Ii . The weight of the connections
between stimulus and the first population are the same as in between groups, i.e. the
connection from the stimulus to the excitatory population has a weight of wEi→Ei+1

while the weight to the inhibitory population is further scaled by gEi→Ii+1 .
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Stimulus 0 Stimulus 1 Stimulus 2 Stimulus N-1 Stimulus N

Inhibition Inhibition Inhibition Inhibition

Draw

Experiment
Trial 0

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Trial 1
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Trial 4
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

Figure 5.1: Structure of a Single Experiment – In each draw we test several different input
stimuli. In order to “reset” the neurons before a new stimulus input arrives, we send inhibitory
spikes between different stimuli. For every draw we redraw the spike times in the stimulus
packets. The total experiment is made up of several trials which consist of several draws each.
Before each trial we configure the hardware such that the neuron parameters and weights may
vary slightly from trial to trial (due to floating gate variations).
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Table 5.3: Synfire Chain - Projections – The capital letters denote the type of neuron
population: stimulus (S), excitatory (E), inhibitory (I) and background (B). The group to
which the population belongs is indicated by the subscript. All connections are realized with a
fixed number of pre-synaptic neurons (pynn.FixedNumberPreConnector). wEi→Ei+1

is used as
a reference weight and all other weights are scaled accordingly The weight between stimulus and
an excitatory neuron in the first group is the same as the weight between excitatory populations
in different groups (1 nS). For the connection to inhibitory neuron the same holds true, i.e. the
weight is 3.5-times higher than the reference weight. Compare Fig. 2.7.

Connection x
Number of

Connections Nx

Delay Dx

(ms)
Weight wx

(nS)
Scaling gx

S → E/I0 = NEi→Ei+1 20
same as

inter-group weight
Ei → Ei+1 60 20 1 -
Ei → Ii+1 60 20 - 3.5
Ii → Ei 25 5 - 2
Bi → E/Ii 8 2 - 1

The specified delays are only relevant for NEST simulations as delays can not be
adjusted on BSS-1. They are determined by the hardware components and yield around
1.2 ms to 2.2 ms (biological time) [24].

Again the order of projection definition matters for the mapping done by marocco. At
first the connections between the stimulus and the first group are established. After that
we once more iterate over the different groups where we first create Ei → Ei+1, followed
by Bi → Ei and finally the connection to the inter stimulus inhibition. For projections
involving inhibitory populations the order of creation is: Ei → Ii+1, Ii → Ei, Bi → Ii
and inter stimulus inhibition.

Again we allow for variations in the synaptic weight and delay to account for variations
on hardware. While the delay is set to a mean value of 1.5 ms and has a standard
deviation of 5 % for simulations which include parameter variations, the synaptic weight
is taken to have a standard deviation of 50 %.

Experiment Data

We use neo to store experiment results [25]. The class SynFireChain provides functions
to create a neo.Block with experiment relevant annotations such as the number of
groups or the list of input stimuli. Another function provides a neo.Segment with all
recorded spike trains. Each spike train is named by its neuron id and annotated with
its group and type (“exc” or “inhib”). Neurons in the stimulus population have a label
“stimulus” which is set to true.
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5.1.2 Experiment Control

Another python script run.py handles simulator specific settings and saves experiment
data to files.

Command line arguments are used to provide the script with all necessary information
such as the simulation backend, random seeds and parameters of the synfire chain.

Depending on the simulation backend different steps are taken. In case of NEST we
set the random seeds, the simulation time step as well as the maximum synaptic delay.
For BSS-1 we have adjust a larger number of parameters.

Settings for BSS-1

In case of a hardware emulation we set several low level settings. We choose the
ParallelHICANNv4Configurator to configure the chips1. Calibration and blacklisting
data is loaded if provided by command line arguments.

Manual placement of excitatory and inhibitory populations as well as of the stimulus
input is possible. The user can provide for each type of population a separate list of
HICANNs. In case of excitatory and inhibitory populations a single population is placed
on each HICANN in the list. For the stimulus input we loop over all neurons and place
one neuron at a time on a chip. If we reach the end of the list we restart at the beginning.
This is done until all neurons are placed.

A command line argument determines if mapping2 is performed or if the mapping
results should be loaded from file. In case mapping is done results such as synapse loss
and mapped weights are stored in text files.

Experiment Run

After all setup steps are completed the experiment is run. The user can provide the
number of trials via a command line argument. The scripts loops over the trials and
adds the spike trains of each trial to a different segment of a single neo.Block. At the
end of the experiment this block and some meta information such as trial start and end
times are saved in a folder provided by the user.

5.1.3 Scanning of Parameters – scan param range.sh

In order to allow scanning of a large range of neuron and network parameters we provide
a bash script. In the script sets of values for different parameters such as chain length
Ngroup, weights or number of neurons are defined.

1The smart configurator was not able to record spikes correctly after a pynn.reset() was performed.
Debugging is still ongoing.

2Mapping refers to the transformation of the biological network description to a hardware representa-
tion.
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The script creates a base folder with an unique id for the set of experiments (date and
time). It then loops over all possible parameter combinations and submits a job to the
computing cluster. While doing so it enumerates each combination3, creates dedicated
folders for each experiment’s results and creates an overview file over all configurations
as well as within each configuration an overview file for each weight combination. The
storage location of the results and some additional information can be found in Ap-
pendix A.1.

We use a custom build of the BSS-1 software stack to run the experiments, container
image 2020-06-07-4740-1, Table A.1. This image includes a new mapping routine of
synaptic weights which is developed by M. Wehrheim and S.Schmitt and is not yet part
of the production code [26].

In case the experiments are run on the wafer the script also saves wafer statistics such
as voltages and temperatures via the Graphite interface.

5.1.4 Evaluation

We use pulse packets to classify the response of the network. Therefore, we want to
extract these packets from the recorded spike trains and determine their strength and
temporal spread.

The spike trains are saved in such a way that we can easily extract all trains which
are related to a specific group and neuron type. Furthermore, we know the input time of
each stimulus and the time which was waited before and after this input. Therefore, we
can easily extract all spikes which fall in the time range of a single stimulus and belong
to the same population. The spike times of these spikes are then combined in a list from
which we want to extract the Gaussian pulse packets.

If the time of the first and last spike is less than 10 ms apart, we assume that the
neurons do not spike spontaneously and assign all spikes to the pulse packet. The
strength of this packet is determined by the total number of spikes; the temporal spread
is given by the standard deviation of spike times.

In case the spikes are distributed over a longer time range, we organize the spikes in
a histogram and fit (after some checks) a Gaussian to the histogram. For details see
Appendix A.4.

5.2 Short Chains

In this section we look at a relatively short chain with six links. This chain length is
comparable to the ones reported in Kremkow et al. [22] and Petrovici et al. [24].

3We combine parameter combination in so called “configurations” which share all parameters but the
weights. So if we loop over Ngroup = {6, 20} and wEi→Ei+1 = {1.0, 1.2} nS we get two configurations
C0/C1 and within each configuration two weight variations W0/W1.
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We started by simulating the network with inhibition and background in NEST. For
the transfer to hardware we chose a less complex network by excluding FFI and back-
ground input. This network was simulated in NEST, Section 5.2.2, before emulated on
hardware, Section 5.2.4. Finally, we emulate a version with FFI but without background
on BSS-1, Section 5.2.6.

5.2.1 NEST with Inhibition and Background

Experiment Parameter – ID: 2020-06-01 08h10m

• Chain Length: 6

• Structural Changes (compared to Table 5.3 & Table 5.1):

– wEi→Ei+1 : 1 nS and 2 nS

– gEi→Ii+1 : 2.0, 3.5

• Neuron Parameter Changes (compared to Table 5.2)

– rB: 200 Hz, 300 Hz and 400 Hz

• Other Changes: None

Parameters similar to the ones in Petrovici et al. [24] and Kremkow et al. [22] were cho-
sen to verify the correctness of the network description. They are the same as described
in Section 5.1.1.

In total three different configurations with different background rates were simulated.
Each configuration was simulated for two weights wEi→Ei+1 and two weight factors
gEi→Ii+1 . For each network and weight configuration a single trial was run. A single
trial consisted of ten draws and took 53 min on average4.

Spiking Behavior

While all runs show spiking activity, reliable pulse propagation is not possible for all
configuration and weight combinations, Table 5.4. “Reliable propagation” means that
synchronous activity in the last group is only initiated by a sufficiently synchronous
stimulus input; it is not caused by background fluctuations. For a weight of wEi→Ei+1 =
1 nS reliable propagation is possible for the two lowest background rates. In case of the
highest background rate the fluctuations are too strong such that synchronous firing in
the final group may be initiated by random spiking, Fig. A.2.

For a higher base weight propagation for the lowest background rate is not reliable
anymore. Pulse packets are introduced by random background noise and the behavior

4Single thread execution on Intel Xeon CPU E5-2643 v2.
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Table 5.4: NEST with Inhibition and Background - Reliable Propagation – Marks
indicate if propagation of input stimuli was reliable (3) or the activity in the last group was
affected by random background activity (7).

rB (Hz)
wEi→Ei+1 1 nS 2 nS

gEi→Ii+1 2 3.5 2 3.5

200 3 3 7 7

300 3 3 3 3

400 7 7 3 3

is comparable to Fig. A.2. When increasing the background rate the activity of the
inhibitory neurons increases, Fig. A.3. This leads to a lower mean of the membrane
potential. Therefore, background spikes are less likely to cause a threshold crossing and
propagation is reliable again.

Figure 5.2 displays a few example spike trains. In case of (1,1) a single excitatory
pulse packet is initiated in each group. The inhibitory group spikes slightly earlier due
to the higher weight of incoming excitatory synapses. Broad pulse packets may cause
several spike packets in the first group. Subsequent groups filter out multiple packets
such that after a few groups only one packet is left, subfigure (B).

If the strength is not sufficient or the temporal spread to high, the packet dies out.
This is illustrated for the packet (1,4). The inhibitory population in the first group
shows strong activity for a few milliseconds which leads to an inhibition in the excitatory
population and only a few excitatory neurons spike. Even though the response to (8,9)
has a high temporal spread in the first group, it still able to initiate synchronous spiking
in the second group. But the strength of this pulse is not strong enough and decreases
in the next groups even further such that the signal finally dies out in group 3.

To determine the group to group delay of pulse packets we only want to consider
responses which are made up of a single packet. Therefore, we filter for 0.1 < a < 1.5
and σ < 3. We then measured the delay between adjacent groups and averaged over all
values. This yields a group to group delay of about 11 ms and is therefore dominated by
the synaptic delay DEi→Ei+1 = 10 ms. A dependency on the weight between excitatory
populations could not be observed as the temporal spread of the pulse packets is below
the standard deviation of the determined delays.

Phase Diagram

Highly synchronous pulse packets (small σin) are transported along the chain while broad
packets die out if their strength (ain) is not sufficiently large, Fig. 5.3. This is similar
to the observations by Kremkow et al. [22] and Petrovici et al. [24], compare Fig. 2.8
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Figure 5.2: NEST with Inhibition and Background - Spike Trains – Simulation with
base parameters (Section 5.1.1) and rB = 200 Hz. Spikes of neurons in the inhibitory populations
are plotted on a gray background. (A) A highly synchronous input only initiates one excitatory
pulse packet in each group. (B) Broader inputs may cause multiple packets which die out in
the subsequent groups. (C,D) If a packet dies out depends on strength and temporal spread.
Simulations with base parameters (Section 5.1.1) and rB = 200 Hz.
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Figure 5.3: NEST with Inhibition and Background - Phase Diagram – Simulation with
base parameters (Section 5.1.1) and rB = 200 Hz. Responses in the final group averaged over all
ten draws. Average strengths smaller 0.1 are not printed. (A) When transmission is successful
the activity is homogeneous in the last group. Only near the separatrix the success depends on
the exact input spike times and transmission fails for a few draws. (B) The standard deviation
of the output packet is low and almost homogeneous in the region of successful transmission.

(C). A lower synchronicity can, to some extent, be compensated by a higher strength:
while (1,4) dies out before reaching the final group the less synchronous packet (10,7) is
propagated successfully.

In the region of the phase space where transmission is possible the strength of the
output is identical: the activity is independent of the initial input packet and consists
of a single packet with strength aout = 1. Only near the separatrix the output strength
in the final group is reduced. Here the pulse packet is successfully propagated along the
chain in a fraction of draws: success depends on the exact distribution of the incoming
spikes. In case a pulse packet reaches the final group the strength of the output is again
aout = 1.

The standard deviation also shows an almost binary response. In the basin of attrac-
tion the standard deviation assumes a low value of about 0.1 ms. This is expected since
the simulation does not include any variation in neuron parameters or transmission delay
such that the temporal spread is small and homogeneous. A different set of incoming
synapses for each neuron and the background are the only sources of variability.

At low rates the spontaneous activity of the neurons was relatively low such that
evaluation method 2 was used to evaluate successful transmitted packets (aout > 0.1) in
the last group; all spikes are assigned to the pulse packet and the standard deviation
is determined from their time, compare Appendix A.4. For higher background rates
the activity in the network increased and evaluation method 5 was used more often to
extract the pulse packets in case of successful transmission or a Gaussian was fitted to
the spike time histogram. In case that the pulse died out there are no spikes in the
final group for a low background rate and evaluation method 1 was used. When the
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Figure 5.4: NEST with Inhibition and Background- Evolution Along the Chain –
Evolution of strength and standard deviation for all tested (100 different input pulses and ten
draws per stimuli leads to 1000 tested pulses) pulses which reached the final group (aout > 0.1).
(A) The spread in strength is the highest in the first group. A single pulse packet can initiate
more than 4 spikes per neuron. The strength of the packets approach 1 while traveling along the
chain. (B) The standard deviations of the pulse packets also converge towards a common value.
Parameters: rB = 200 Hz, base parameters as in Section 5.1.1.

spontaneous activity was higher methods 0, 4 and 3 were used to determine the strength
of weak pulses in the last group.

Evolution Along the Chain

Figure 5.3 already indicated that the activity in the final group tends to be homoge-
neous for successfully transmitted pulse packets. This convergence towards a fix value
is illustrated in Fig. 5.4. The spread in strength is relatively large in the first group and
depends on the initial strength and temporal spread, compare Fig. A.4. In the subse-
quent groups the strength of “too strong” pulse packets diminish while the strength of
weaker packets increases to 1. For our chosen set of input stimuli the output strength
is identical for all packets which reach the final group. In case of even stronger input
strengths this might not hold true and more chain links would be necessary to unify the
final response.

The same convergence can be observed for the standard deviation. In the first group
the temporal spread still depends on the input packet; in the last group all packets
share a common value (ignoring small deviations due to connectivity and background
noise). We observe that the change of temporal spread is not monotonic for all curves.
The temporal spread may increase at first but still converge in later groups towards a
common value. This is in accordance with observations for simple synfire chains without
FFI [18, 20].
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5.2.2 NEST without Inhibition and Background

Experiment Parameter – ID: 2020-06-01 22h51m

• Chain Length: 6

• Structural Changes (compared to Table 5.3 & Table 5.1):

– wEi→Ei+1 : 1 nS and 2 nS

– NI : 0

– NB: 0

• Neuron Parameter Changes (compared to Table 5.2):

– Vrest: −70 mV and −65 mV

• Other Changes: None

The shape of the basin of attraction depends on the delay between excitation and in-
hibition. Since the delay is not adjustable on hardware we chose to implement a network
without inhibition as an initial test. Furthermore, we exclude background activity to
simplify the dynamics of the network. At first, we run NEST simulations of this network
in order to have a comparison to the hardware results which follow in the next sections.

Excitatory background activity increases the mean value of the membrane potential.
To account for the missing background input, we tested two configurations with differ-
ent rest potentials Vrest. In addition, we scanned over three different weights between
excitatory groups.

For each combination of reset potential and weight we performed one trial with ten
draws each. The average runtime per trial increased to around 130 min5.

Spiking Activity

The network with the base configuration (without inhibition and background activity)
was already able to transport pulse packets along the chain, Fig. 5.5. Propagation for
the weakest and most synchronous pulse packet did not change, Fig. 5.2. It still results
in single pulse packets in all subsequent groups.

This holds not true for (9,3): as before more than one pulse packet is initiated in the
first group but this time two of these survive to the last group. Neurons are excited again
after their refractory period. Propagation looks stable from the third group onward.

A similar behavior can be observed for the broadest packet displayed in Fig. 5.5.
Several packets are present in the first group; three of them reach the final group. So
unlike the network with inhibition the broad input can cause a response in the last group.

5Again single thread on Intel Xeon CPU E5-2643 v2.
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Figure 5.5: NEST without Inhibition and Background - Spike Trains – (A) Highly
synchronous input pulses are still propagated along the chain and cause a single pulse packet in
each group. (B) As before four pulse packets are invoked in the first group. The network is again
able to reduce the number of pulse packets. Nevertheless, more then one packet is excited in the
last group. (C) A relatively asynchronous and weak pulse still dies out. (D) In the network
with inhibition the strong but asynchronous packet introduced only a weak and temporal broad
activity in the first group. This time a number of pulse packets are triggered in the first group.
Some of these packets survive to the last group. Simulation with base parameters, Section 5.1.1,
but without inhibition and background activity.

Packet (1,4) is still not sufficiently synchronous and does not even cause any activity
in the first group for this network configuration.

Phase Diagram

Figure 5.6 shows that the area for which propagation is possible increases compared
to Fig. 5.3: packets with a temporal spread of σin > 20 ms can now be propagated to
the last group. The filtering ability for synchronous input is highly reduced but is still
present for low input strengths.

The response in the final group is not binary anymore but depends on input strength
and standard deviation. For strong stimuli the output strength increases at first with
temporal spread as the neurons are reactivated more often after being refractory in-
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Figure 5.6: NEST without Inhibition and Background - Phase Diagram – (A) Re-
sponses in the last group averaged over all ten draws. Strengths smaller 0.1 are not printed.
Pulse propagation is possible for a large range of input values. The response in the final group
is not binary anymore but depends on the input. (B) The response strengths are near multiple
of one; indicating that each response is made up of several pulse packets with strength 1. Our
evaluation method seems to overestimate the output strength if the response consists of several
pulse packets. Base parameters (Section 5.1.1) without inhibition and background.

creases. At a critical spread the output response decreases again in strength. The input
spikes are now so far apart that the membrane potential has enough time to approach
the rest potential such that a threshold crossing becomes less likely. For your given set of
parameters the critical standard deviation is around 15 ms for inputs with ain > 7. Fur-
thermore, for fixed temporal spreads the output strength increases with input strength.

A strong and broad stimulus packet can cause several packets in the last group, see
Fig. 5.5 (D). This is evident in the histogram, Fig. 5.6 (B): the output strengths are near
multiple of 1. The deviations from exact multiple appear for values larger two and are
due to the fact that we change from evaluation method 2 (direct calculation of standard
deviation and strength) to a Gaussian fit (method 5), Appendix A.4. We overestimate
the strength of the pulse packets by about 10 %.

Since most responses are made up of several pulse packets, the calculated standard
deviation of the responses do no longer represent the temporal spread of a single packet.
Therefore, we will not analyze the standard deviations for the given network.

Near the separatrix the phase diagram shows regions with aout < 1. Here the prop-
agation of the pulse once again depends on the exact distribution of the input spike
times.

Networks with a higher synaptic strength between excitatory groups or a higher reset
potential showed the same overall behavior with an even stronger response in the final
group.
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5.2.3 NEST without Inhibition and Background, with Parameter Variations

Experiment Parameter – ID: 2020-07-10 12h21m

• Chain Length: 48

• Structural Changes (compared to Table 5.3 & Table 5.1):

– wEi→Ei+1 : 1.4 nS and 1.6 nS

– NI : 0

– NB: 0

– All delays are set to 1.5 ms with a deviation of 5 %, weights have a
variation of 50 %

• Neuron Parameter Changes (compared to Table 5.2):

– Parameter variations of 5 %

• Other Changes: None

The analog circuits on hardware can not be manufactured identically but only with
small variations. As an result neuron and synapse properties time-independent inhomo-
geneities across the wafer. Neuron parameters are stored on floating gates which is an
additional source of of variation which changes for every reconfiguration of the hardware.

The effects of these variations on a balanced network have been studied by Schwarzen-
böck [27]. Here we will assume that all neuron parameters as well as the synaptic delays
follow a Gaussian distribution with a standard deviation of 5 %, Section 5.1.1. The
synaptic weights are drawn from a Gaussian distribution with a standard deviation of
50 %. As discussed previously, the synaptic delay can not be adjusted on hardware.
Therefore, a value of 1.5 ms is taken as the mean delay for all synaptic connections.

We will now perform five trials; for each trail we redraw the neuron and synapse
parameters from Gaussian distributions.

Spiking Activity

The successful transmission of pulse packets is still possible, Fig. 5.7. Due to the mini-
mized synaptic delay, transmission along the chain is faster. Pulse packets are no longer
as sharp as before and show a clear temporal spread. Weak, asynchronous packets, such
as (1,4), cause a relatively broad response in the first group. This response is synchro-
nized along the chain until it is comparable to the response of (1,1) in the final group,
compare subfigures (A) and (C).

For strong, asynchronous packets the response in the first group is strong, subfigures
(B) and (D). There seems to be some kind of pulse packet structure similar to the
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Figure 5.7: NEST without Inhibition and Background, with Parameter Variations
- Spike Trains – Simulation with base parameters (Section 5.1.1) and wEi→Ei+1 = 1.6 nS but
without inhibition and background. Neuron and synapse parameters are drawn from Gaussian
distributions. (A) Highly synchronous input pulses are still propagated along the chain and
cause a single pulse packet in each group. The temporal spread is higher than before (B) An
asynchronous pulse packet initiates a strong response in the first group which seems to show
some kind of packet structure. This is similar to the simulation without variations, Fig. 5.5.
(C) A relatively asynchronous and weak pulse is synchronized along the chain. The response in
the final group looks similar to (A). (D) The response in the first group looks random. In later
groups some kind of pulse structure becomes visible.

simulation without variations, Fig. 5.5. Even though the structure appears to become
more pronounced in later groups, the single packets are hard to tell apart because of
their larger temporal spread. The temporal spread of the final response seems to be
comparable to the initial spread of the stimulus in case the input strength is strong.

The rest potential Vrest of one neuron in group 0 is higher than the spiking threshold
Vthres. As a consequence, the neuron spikes periodically; this is visible in the subfigures
(A) to (C).
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Figure 5.8: NEST without Inhibition and Background, with Parameter Variations
- Phase Diagram – (A) Responses in the last group averaged over all five trials with ten
draws each. Strengths smaller 0.1 are not printed. Pulse propagation is still possible for a large
range of input values. The response in the final group depends on the input stimuli. (B) The
output strength seems to peak near multiple of one but the peaks are not as sharp as for the
simulation without variations, Fig. 5.6. Base parameters (Section 5.1.1), wEi→Ei+1

= 1.6 nS,
without inhibition and background. Neuron and synapse parameters are drawn from Gaussian
distributions.

Phase Diagram

The response in the final group still depends on the input stimuli, Fig. 5.8 (A). As we
increased the weight in comparison to the previous plot, Fig. 5.6, the area of successful
transmission increases and the overall strength is higher.

Subfigure (B) shows that the response strength in the final group still peaks near
multiple of 1 and therefore still seem to consist of multiple pulse packets with a strength
of 1. However, the peaks are less sharp, compared to Fig. 5.6, and a whole range
of different output strengths are present in the histogram. This is in agreement with
the displayed spike trains in Fig. 5.7 which looked like a weak packet-like structure is
superimposed by random activity.

5.2.4 BSS without Inhibition and Background - Default Mapping

Experiment Parameter – ID: 2020-06-05 15h25m

• Wafer: 24

• Chain Length: 6

• Structural Changes (compared to Table 5.3 & Table 5.1):

– wEi→Ei+1 : 1 nS to 2 nS in 0.2 nS-steps
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– NI : 0

– NB: 0

• Neuron Parameter Changes (compared to Table 5.2):

– Vrest: −70 mV and −65 mV

• Other Changes: None

We start with a simplified network which does not include inhibition and background
activity. This allows us to analyze hardware induced distortions more easily.

Floating gates are used to store neuron parameters, Section 2.1.1. The exact value
stored in these gates varies slightly with each write. As a consequence the neuron
parameters change from trial to trial. To account for this variation we run five trials
with ten draws of each input stimuli. The runtime per trial was on average 16 s6. In this
time the configuration of the hardware is included. The bare emulation time should be
around 100 ms as the simulation spans over 700 000 ms in biological time. The emulation
on hardware was about 500 times faster than our non-optimized NEST simulation.

Mapping

The mapping result is illustrated in Fig. 5.9. Neurons are placed from left to right. As
each HICANN provides space for a little more than 1007 neurons five and a half chips
are needed to place all 600 excitatory neurons. As a consequence different populations
may share the same HICANN.

The external stimulus input is placed near the neurons of the first group since no
other population is connected to the stimulus. Placing all external input on a single
HICANN might not be optimal since the input rate of external events is limited, compare
Section 2.1.5.

In addition to the rate limitations from FPGA to HICANN, the input rate of external
events in the on-wafer network is limited by the input rate of the sending repeaters. The
frame of a six bit address is 8 ns8 long. After each sent address the repeater waits one
frame before sending the next address. Therefore, about every 0.16 ms (biological time)
a spike can be injected in the on-wafer network. All eight sending repeaters in total can
relay about 50 spikes each millisecond.

6This does not include mapping from the biological network to the hardware which needs to be done
for the first trial (and is loaded afterwards for the remaining trials) and takes about one minute.
We did also not perform a verification of the hardware configuration. This would take about 15 s in
addition, cf. Section 5.2.5.

7The exact number depends on the number of blacklisted DenMem circuits and the neuron size. We
use four DenMem circuits per neuron, such that a fully functional chip could implement 128 neurons.

8For a PLL frequency of 125 MHz.
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Figure 5.9: Result of the Default Mapping – Mapping result for the default marocco
placement. Neurons are marked by a blue color. The higher the opacity the more neurons are
placed on the HICANN. External inputs are resembled by the red triangle in the lower part of the
chip. The opacity once more encodes their amount. Neurons are placed from left to right. Each
HICANN hosts a little more than 100 neurons. On HICANN 12 all 100 stimulus neurons are
placed. Inter stimulus inhibition is injected on chip 15. Colored lines represent the connections
between sending repeaters and synapse drivers. Inset: eight buses are used to inject the stimulus
(one bus is used by the inter-stimulus inhibition).
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Figure 5.10: BSS-1 without Inhibition and Background - Default Mapping - Phase
Diagram of the First Group – Values are averaged over all five trials and ten draws. Strengths
smaller 0.1 are not displayed. Note that the z-axis is not aligned. (A) Only for small input
strengths and an intermediate temporal spread notable activity can be observed in the first
group. (B) For a slightly higher weight the activity in the first group is considerably higher all
inputs packets cause a response. All parameters are set as described in Section 5.1.1 but without
inhibition and background input. Due to a bug in the code, the spikes were not reset after each
trial such that the strength presented here is higher than the actual strength.

If we assume the spikes of an input packet (1,1) are evenly distributed over 2σ = 2 ms
this rate would be just sufficient to inject the spikes of 100 stimulus neurons. We test up
to ten times higher input strengths with not evenly but normal distributed spike times.
The high density of spikes can lead to a shift or even loss of spikes. This could already
be observed in the FPGA were spikes were shifted since pulse groups were full, compare
Section 2.1.5 and Fig. A.7.

Inter-stimulus inhibition is shared between all neurons and is therefore injected near
the center of all populations.

Due to the simple feed forward structure the synapse loss is below 0.5 % for each
projection.

Activity

Regardless of the reset potential there was no activity in the final group for the lowest
three weights: activity died out after the first group.

With decreasing weight the response in the first group changes abruptly, Fig. 5.10.
While we observed a strong activity in the first group for a weight of wEi→Ei+1 = 1.6 nS,
a slightly lower weight leads only to a weak response. We do not expect such a drastic
change for a small change in weight. Furthermore, the strength of the response in the
first group should not decrease with input strength.

During experiment execution a lot of spikes were shifted while filling the pulse groups,
compare Section 2.1.5 and Fig. A.7. This unexpected behavior might be connected to
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Figure 5.11: BSS-1 without Inhibition and Background - Default Mapping - Spike
Trains – Due to the high number of shifted spikes the spike trains have to be interpreted
with care. Vertical gaps in the spike response are caused by a limited readout, Footnote 9.
(A) The propagation of a weak but highly synchronous input dies out after the first group.
(B) A stronger and slightly more asynchronous packet introduces a high activity in the first
group which is mediated to the last group. (C) A more asynchronous pulse, compared to (A),
causes a response in the last group. This is not expected and is caused by hardware effects,
see text. (D) Similar to (B) an asynchronous but sufficiently strong input is propagated to the
last group. Emulation with base parameters (Section 5.1.1), no inhibition, no background and
wEi→Ei+1

= 1.6 nS.

these shifts and we will postpone an in-depth analysis of the network dynamics to the
next section where we will place the stimulus input manually. Here we will just have a
look at some example spike trains for the first weight for which successful propagation
is possible, Fig. 5.11.

While packet (1,1) dies after the first group, the broader pulse packet (1,4) leads to
a single packet in the final group. This is not expected for a synfire chain which shows
higher propagation probabilities for more synchronous inputs [18, 20, 22]. We assume
that several spikes are dropped due to high input rate such that the actual input strength
of (1,1) is considerably lower than ain = 1. Furthermore, measurements indicated that
the synaptic input current saturates for too strong/synchronous input, Appendix A.5.
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Later NEST simulations showed a similar effect, Fig. A.5, which could be attributed to
the extinction of pulse packets along the chain, Fig. A.6. Therefore, the observation in
Fig. 5.11 might indicate that the strength between excitatory groups is too low and all
packets would eventually die out; this effect might be enhanced by the characteristics of
the hardware.

For (1,4) the packet is synchronized along the chain and shows a low standard deviation
of about one millisecond in the last group. This synchronization is expected for a synfire
chain and was observed in NEST simulations, Section 5.2.2.

Similar to the NEST simulation broad, strong input stimuli cause a strong response
in the first group. While the simulation showed multiple, distinctive pulse packets the
emulation on BSS-1 shows an enhanced activity over a broad time frame. The readout
of spikes from the system is limited by the bandwidth of the link between the chip and
the FPGA. This may result that spike times are slightly shifted or lost during readout.
The loss of spikes is visible as horizontal stripes with no activity9, as in group 1 of packet
(9,3).

The bandwidth of the on-wafer network is considerably higher such that most of the
spikes, which are lost during readout, are forwarded on the wafer [11].

In later groups there seems to be a pulse packet response followed by no activity for
about 20 ms and some more pulse packets which fade out until the activity looks random.
The large pause after the first packet might be caused by the shifted input spikes.

5.2.5 BSS without Inhibition and Backkround

Experiment Parameter – ID: 2020-06-14 14h27m

• Wafer : 24

• Chain Length: 6

• Structural Changes (compared to Table 5.3 & Table 5.1):

– wEi→Ei+1 : 0.8 nS to 1.6 nS in 0.2 nS-steps

– NI : 0

– NB: 0

• Neuron Parameter Changes (compared to Table 5.2): None

9The readout prioritizes DenMem on the left side of the HICANN. As a consequence neurons which
are placed later on the HICANN have priority over neurons which were placed before. For mapped
network a neuron population may be spread over two chips. The first few neurons have priority on
the first HICANN. Then placement on a new chip is started and spikes of these low priority neurons
are dropped. As soon as the DenMem is far enough to the right, spikes are recorded again. This
results in horizontal patches of no activity within a single population.
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• Other Changes:

– External stimulus input distributed over 24 HICANNs on six FPGAs

The default placement algorithm of marocco placed all 100 stimulus neurons on a single
HICANN. This resulted in large shifts of input spike times, Fig. A.7, and probably a
significant spike loss for dense pulse packets. In this set of experiments we will place the
stimulus on several different chips to reduce spike loss and shifting of spike times.

We once again performed five trials with ten draws each. This time we included the
verification of the hardware configuration such that the average runtime increased to 31 s
per trial which is till about 260 times faster than the simulation of an identical network
in NEST.

Mapping

We distribute the stimulus neurons over 24 different chips which are located on six
different reticles, Fig. 5.12. At the maximum tested input strength of 10 each chip
has to forward about 40 spikes per stimulus input. Therefore, we still expect some of
the input spike to be dropped or slightly delayed due to the FIFOs in the FPGA, see
Section 2.1.5, if the inputs are densely packed. In our setup each FPGA handles four
HICANNs and therefore 160 spikes. The number of FPGAs was chosen such that all
spikes fit in a single pulse group and spikes are not shifted due to the limited group size.

Figure 5.12 displays the mapping result. The stimulus input was placed on the HI-
CANNs in the lower left corner. From here marocco routes the inputs horizontally to a
HICANN which is in the same column as the target HICANN. After that the input is
forwarded straight upwards to the target chip.

Since we only placed the external input manually, the remaining mapping stayed the
same as in Fig. 5.9.

Due to the increased number of entry points, more L1 buses and synapse drivers are
needed to rely the external input to the first group. This resulted in a synapse loss of
about 5 % for connections between stimulus and the first excitatory group. Because of
the local feed forward structure, other connections were not affected and the synapse
loss stayed the same as in case of the manual mapping.

The 255 repeater in the network could be locked in the first try.

Spiking Activity

The propagation of incoming pulse packets to the last group is possible for all weights.
Depending on the weight the network shows other filtering properties and synchroniza-
tion properties, Fig. 5.13.
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Figure 5.12: Short Chain - Manual Mapping – The number of neurons on each chip is
encoded by the opacity of the blue area on the synapse arrays. External inputs are marked with
a red triangle in the lower part of a chip. The higher the number of external input neurons,
the higher the opacity. Routes between sending repeaters and synapse driver are marked by
colored lines. Input stimuli were manually placed on HICANNs in the lower left part of the
figure (marked by a black rectangle). HICANN 124 threw errors during configuration such that
HICANN 160 was used as a replacement. Marocco uses a single sending repeater for all input
on a single chip. The inputs are at first forwarded horizontally and then routed downwards to
HICANN 0.
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Figure 5.13: BSS-1 without Inhibition and Background - Spike Trains – Emulation
without inhibition and background activity, base parameters (Section 5.1.1) and wEi→Ei+1

=
1.4 nS (A,B), wEi→Ei+1 = 1.6 nS (C,D). (A) A weak and relatively asynchronous packet can
propagate along the chain. The response in the first group is rather high and broad. It synchro-
nizes along the chain such that a single sharp packet arrives at the last link. (B) For a stronger
pulse packet the activity in the first group is stronger and broader. The response in the second
group consists of two pulse packets one of which survives till the last group. (C) For a higher
weight between excitatory populations the response in the first group is stronger and two packets
are able to travel along the chain. (D) A similar but stronger response is visible for a input with
more spikes. The activity shows vertical areas of missing spikes due to the limited readout rate,
compare Footnote 9.
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For wEi→Ei+1 < 1.6 nS asynchronous input causes a pulse packet followed by some
broad activity in the first group, subfigures (A) and (B). While the packet is able to
propagate along the chain, the temporal broad response dies out after a few groups.

For higher weights we see a similar response in the first group, (C) and (D). An initial
pulse packet is followed by some broader activity. Due to the higher weight the rather
asynchronous activity does not die out but initiates a pulse packet in the following group.

(1,4) causes two pulse packets with a distance of around 10 ms in the second group.
As in the NEST simulations multiple pulse packets reach the final group, Section 5.2.2.

For an even stronger input of (9,3) the activity in the first group is even stronger.
Two pulse packets with a small delay between them are distinguishable before we see
the effect of the limited readout rate and some spikes are lost (see Footnote 9 on Page 65).
The distribution of the spikes which could still be readout looks random and no pulse
packets can be distinguished. In the following groups the response seems to consist of
multiple pulse packets but they are hard to tell apart because of the missing spikes.
The response in the final group does not show any pulse packet structure but looks like
increased, random spiking activity for a fixed period of time.

This random looking activity combined with some pulse like structure is in agreement
with our NEST simulations, Fig. 5.7. However, the overall spiking activity seems to be
considerably higher in the NEST simulation.

In the first group all displayed spike trains show an initial pulse packet response
followed by some other activity. The delay between this first pulse packet and the
additional activity depends both on the input stimulus as well as on the weight. For
more dense packets (compare (9,3) and (1,4)) the delay between both responses is shorter
since a second threshold crossing is initiated more quickly. Similarly, the delay decreases
with a higher weight as the number of incoming spikes needed to cause an output spike
decreases. Furthermore, the delay was quite high in case of the default placement,
Fig. 5.11. We assume that this was caused by the shifted spike times.

A look at the delay between packets in adjacent groups revels that an increasing weight
leads to a faster propagation, Table 5.5. Such a dependency of the group to group delay
was not evident in the NEST simulations (without variations), Section 5.2.1 since the
temporal spread of the pulse packets was with around 0.1 ms considerably smaller.

The standard deviation of the delays measured for lower weights are higher since the
effect of parameter variations is enhanced. For variations in the distance of reset Vrest

and threshold potential Vthres for example, it is more likely that the number of spikes
needed to cause an outgoing spike stays the same for high weights while the number of
required spikes changes more easily for low weights (the post synaptic potential (PSP)
induced by a lower weight is lower and more spikes are needed to cross the threshold).
This can result in different group to group delays which depend on the exact neuron
parameters.

For the highest weight the increased standard deviation is caused by the low number
of samples. We only consider relatively synchronous spikes and try to avoid responses
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Table 5.5: BSS-1 without Inhibition and Background - Propagation Delay – Group
to group delay of a pulse packet which is transmitted along the chain. Only packets in adjacent
groups with 0.1 < a < 1.5 and σ < 3 ms were considered. The delay was then averaged over all
trials, draws and stimuli.

wEi→Ei+1

(nS)
Delay
(ms)

Samples

0.8 3.4(3) 19 203
1.0 3.2(2) 22 390
1.2 3.0(2) 21 565
1.4 3.0(1) 21 701
1.6 2.8(3) 3370

with multiple packets in them. For the highest weight we have many responses which
are strong and broad, cf. Fig. 5.13, resulting in the low number of samples.

Phase Diagram

The spike trains displayed in Fig. 5.13 already showed a synchronization of the pulse
packets along the chain for small weights wEi→Ei+i only a single pulse packet reached
the final group. This is also visible in Fig. 5.14: the activity in the final group is almost
binary for low weights. In the basin of attraction the strength is with 0.2 rather low
and could lead to an extinction of the pulse packet in later groups; emulations with
longer chains are needed to determine if the packets can survive, Section 5.3.1. The low
weight might be an effect of the parameter variations present on hardware. Emulations
of longer chains show that the output strength changes from group to group and can be
considerably higher than 0.2, Fig. 5.25.

With increasing weight the area for which the input pulses are successfully propagated
increases. The network with the lowest weight between excitatory neurons shows good
filtering properties and relays only packets which are rather synchronous. This changes
for higher weight where also asynchronous packets are transmitted along the chain.

For the highest tested weight all pulse packets reach the final group. The activity is no
longer binary but depends on the initial stimulus. Broad and strong input packets cause
a higher activity in the last group. This is in agreement with the NEST simulations.

Figure 5.15 shows the comparison of the BSS-1 emulation with the NEST simulation
which included parameter variations. We observed in the previous plot, Fig. 5.14, that
the output strength is only around 0.2 and therefore only about a fifth of the value which
one would expect from simulations. After scaling the z-axis by this factor, the phase
diagrams, subfigure (A) and (C), show the same overall behavior. While in simulation
weak, asynchronous packets are not transmitted along the chain, all packets reach the
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Figure 5.14: BSS-1 without Inhibition and Background - Phase Diagram – Phase
diagram of the strength in the final group. Values are averaged over all trials and draws. aout <
0.1 are not displayed. Emulation with base parameter (Section 5.1.1) without inhibition and
background activity. (A-C) For low weights the response in the final group is binary. The basin
of attraction increases with increasing weight. (D) All pulses are propagated to the last group.
The strength of the response depends on the properties of the input packet.
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Figure 5.15: BSS without Inhibition and Background - Strength Distribution in the
Final Group – Emulation of the simplified network (no inhibition and background activity)
with base parameters, Section 5.1.1, and a weight of wEi→Ei+1

= 1.6 nS. For the phase diagram
the values are averaged over all trials and draws. (A) The output strength depends on the
properties of the input stimulus. Several neurons are active more than once. (B) Distribution
of the output strength in the final group. The number of pulses peaks at strengths near multiple
of 0.2. The distance between spikes decreases with increasing strength. Furthermore, the peaks
are less sharp for higher strengths. (C,D) Results of NEST simulation with neuron parameter,
weight and delay variations, same as in Fig. 5.8; the axis/color bar is scaled by a factor of five
compared to the plots in (A,B).
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final group when emulated on BSS-1.

The distribution of the output strength, Fig. 5.15 (B) and (D), peaks at certain
strengths. These peaks are more pronounced in the hardware emulation than in simu-
lation. In both cases the peaks are not as sharp as for the NEST simulation without
variations, Fig. 5.6, and broaden for larger strengths.

For the hardware emulation, the distribution indicates that responses in the final
group are made up of several packets with a strength of around 0.2. In contrast, Fig. A.8
shows that the number of active neurons increases to the top right of the phase space
and exceeds 20 active neurons. So it might be a combination of packets stronger than
a = 0.2 and additional packets with a strength of 0.2 which are caused by the highly
active neurons which did also spike for lower weights.

For low weights evaluation methods 2 and 5 were used to determine the properties
of strong (aout > 0.1) pulses in the last group, see Appendix A.4. Broad and strong
activity was observed for the highest weight such that a fit to the histogram of the spike
times was performed in some cases (method 0). Weak pulses were in all cases detected
by methods 1 and 2.

Evolution Along the Chain

For small weights wEi→Ei+1 we observed a binary response in the final group. This is a
sign that the pulse packets synchronize along the chain.

In order to investigate this behavior we plot the output strength and temporal spread
averaged over all trials, draws and stimuli which resulted in a response in the last group
(aout > 0.1), Fig. 5.16.

In the first group the mean of the strength increases at first with the weight, before
it approaches a fixed value. In group 1 the difference of the mean values between the
weights is small and vanishes completely in group 2. The value range of the strength
(shaded areas) also shrinks from group to group but still not all responses share the
same strength in the final group.

Overall, the strength of the response decreases from the first to the second group.
Then it starts to increase slightly till group 4 and drops abruptly in the last group.
This gives the impression that the pulse packets do not gradually die out but that the
excitability of the neurons in the last group is reduced10. Longer chain length have to
be emulated to test whether this low strength is still able to ensure the propagation of
the pulse packets, Section 5.3.1.

The standard deviation shows a high variability in the first few groups. This is due
to the distribution of the spike times which is no longer Gaussian but may consist of
several pulse packets or a high rate over a fixed period of time, see Fig. 5.13. As a result

10In agreement with this assumption a similar drop was also evident in the evaluation of the strength
of the highest weight wEi→Ei+1 = 1.6 nS.
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Figure 5.16: BSS-1 without Inhibition and Background - Evolution Along the
Chain – The solid lines represent the mean of all trajectories which end in a strength aout > 0.1.
The shaded area around these lines represent the maximum/minimum response in each group
(with aout > 0.1). (A) All weights share the same mean output strength from the second group
onward. The mean strength stays almost constant after the second group but drops in the fi-
nal group. The deviation between the trajectories is the highest in the first few groups. (B)
The standard deviation of the responses in each group show a similar trend as the strength. It
converges towards a low value of about 1 ms.

a Gaussian does no longer describe the spike response appropriately and the determined
standard deviation has to be interpreted with care.

Nevertheless, we can observe the synchronization along the chain: the mean values
for the different weights approach each other from group to group and reach a low
value of about one millisecond from the third group onward. The temporal spread is,
as expected, higher than in the NEST simulations. This is caused by the variation in
neuron parameters, synaptic strength and synaptic delay which are present on hardware.
Another source of broadening can be the limited readout rate of spike events [24]. Other
effects of the limited readout rate were already visible in the spike trains (Fig. 5.13).

Activity in the First Group

The activity in the first group gives some insight in hardware effects, Fig. 5.17.

In the beginning the number of active neurons increases with temporal spread, sub-
figure (B). This is not expected and could be caused by spike loss. If we assume the
spikes of the input population are evenly distributed over 2σ, spikes for the most dense
input, (1,1), would be separated by 0.02 ms. A single HICANN would have to emit a
spike every 0.48 ms and a FPGA would have to forward a spike every 0.12 ms (as we
distribute the input over 24 HICANNs on six FPGAs). While a HICANN can handle
this rate, the FPGA is too slow (Section 2.1.5).

For σin < 5 ms the number of active neurons is almost independent of the weight.
This indicates that the synaptic input current behaves nonlinear. We assume that the
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Figure 5.17: BSS-1 without Inhibition and Background - First Group Activity –
Values are averaged over all trials and draws. Network with base configuration (Section 5.1.1)
but without inhibition and background. The curves show the response to an input strength of
ain = 1. (A) The strength of the packets in the first group is similar for small standard deviations
for the three lowest weights. The response is higher for the two highest weights. The strength
rises till a critical standard deviation and then drops. From this point onward it is lower than
the strength of a higher weight. (B) The number of active neurons (at least one spike) follows
a similar trend as the strength. (C) The temporal spread of the responses in the first group
increase at first with the standard deviation of the input. The standard deviation for the two
lowest weights starts to drop again as the number of spikes per packet becomes quite low for an
input with a high standard deviation. Note that the lines of the maximum weight have to be
interpret with caution as they are affected by the limited readout speed, compare Fig. 5.13 and
Footnote 9.
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synaptic conductance saturates if spikes are to dense or their weight is too strong; which
in turn leads to a saturation in the synaptic current. Appendix A.5 covers this nonlinear
behavior in some more detail.

At a critical standard deviation (dependent on the weight) of the input stimuli the
number of active neurons starts to drop. Since the input spikes are further apart for
large standard deviations the membrane potential has more time to relax towards the
rest potential Vrest and incoming spikes are less likely to induce a threshold crossing. For
the highest weight this critical value might just be reached at 15 ms and a slight decrease
can be observed for higher standard deviations.

For the three lowest weights the response is similar to the number of active neurons
and most active neurons only spike once, subfigure (A). The curve for the higher weights
has to be interpreted with care as some spikes are lost due to the limited readout rate,
compare Fig. 5.13 (D). In addition, the evaluation method is changed at about 3 ms
which results in a visible peak.

The determined output strength is up to 26 % smaller than the number of spikes
per neuron, compare Fig. A.9. This high difference between the number of spikes per
neuron and determined output strength can be attributed to evaluation method 5, Ap-
pendix A.4. If the responses consist of more than one packet and some packets are
affected by spike loss, method 5 only detects the strongest packet and disregards the
other packets. Since we are more interested in qualifying single packets and strong re-
sponses are often affected by spike loss, we do not change our evaluation method but keep
in mind that we have to interpret the results with care if the strength of the response is
strong.

Figure 5.13 showed that the response in the first group is made up of an initial pulse
packet response followed by some more activity. The activity can not be described by
a Gaussian and can only give an estimate of the temporal spread of the present spikes.
The standard deviation of the response in the first group increases with the standard
deviation, subfigure (C). It starts to drop when the output strength becomes small.

5.2.6 BSS with Inhibition, without Background

Experiment Parameter – ID: 2020-06-14 16h06m

• Wafer : 24

• Chain Length: 6

• Structural Changes (compared to Table 5.3 & Table 5.1):

– wEi→Ei+1 : 0.8 nS to 1.6 nS in 0.2 nS-steps

– gEi→Ii+1 : 3.5 and 5
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– gIi→Ei : 2 and 5

– NB: 0

• Neuron Parameter Changes (compared to Table 5.2):

– Erev-exc: −85 mV and −75 mV

• Other Changes:

– External stimulus input distributed over 24 HICANNs and six FPGAs

FFI can reduce the susceptibility of a synfire chain to asynchronous input, Sec-
tion 2.2.2. This allows to embedded synfire chains in biologically realistic, balanced
networks [21, 22].

For the BSS-1 system we already saw that the response in the last group consists of a
single pulse packet if the weights between excitatory connections are low. In case of the
lowest weight the network already showed good filtering properties. In this experiment
we want to use FFI to further improve the filtering for synchronous input.

Mapping

Compared to the previous experiment we now also have to place an inhibitory population
of 25 neurons in each group. Furthermore, these neurons connect to the excitatory
population in the previous group and to the excitatory neurons in the same group; this
results in 4000 additional synaptic connections in each group.

The synapse loss for connections which were present in the previous experiment stayed
basically the same. Only derivations in the sub percent range are induced since the exact
placement on hardware differs now slightly11. From the excitatory population outgoing
connections have a low synapse loss of less than 0.5 %.

The connection from the stimulus to the inhibitory population of the first group shows
the same loss as the connection to the excitatory population, about 5 %. Connections
within a single group show the highest synapse loss. Here the loss ranges from 4 %
to 12 % and is not homogeneously distributed between different groups. This can be
accounted to the fact that a single group is spaced over several HICANNs; which could
also result in a different amount of incoming inhibitory synapses for neurons within the
same excitatory population.

As the number of connections increased the number of used repeaters increased as
well: 427, excluding sending repeaters, repeaters are now active in the network. The
locking algorithm was still able to lock all repeaters in the first try.

11Inhibitory population are placed between excitatory populations.
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Figure 5.18: BSS-1 with Inhibition, without Background - Spike Trains – Spiking
behavior for a network with FFI but without background activity and parameters as in Sec-
tion 5.1.1. Inhibitory spikes are plotted on a gray background. (A) A weak, synchronous pulse
packet causes a single pulse packet in each group. Inhibitory and excitatory neurons seem to
spike at the same time. (B) A broader pulse input causes a higher activity in the first group.
Nevertheless, only a single pulse packet is present in the final group. (C) For an even broader
packet the earlier onset of the inhibitory neurons is visible. Even though the inhibitory neu-
rons are highly active, the asynchronous pulse packet is still propagated along the chain. (D)
The network is able to prevent the transmission of asynchronous packets if the strength is weak
enough.

Spiking Behavior

For all but the lowest weight between excitatory populations, some pulse packets were
able to reach the last group. As an example we display some spikes trains for the
configuration with the base weight (see Section 5.1.1) in Fig. 5.18.

The weakest and most synchronous pulse causes a single sharp pulse response in each
group. However, the activity of the excitatory neurons in the last group is low and it
seems like the pulse packet would die out. In each group we now also have inhibitory
neurons. They spike at approximately the same time as the excitatory neurons; an
earlier onset as in the NEST simulation, Fig. 5.2, is not distinguishable. Due to the
stronger connection to the preceding excitatory population, gEi→Ii+1 > 1, and no incom-
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ing inhibition the inhibitory neurons are more frequently activated. As a consequence
the response of the inhibitory neurons in the last group is considerably stronger.

For broader input stimuli the earlier onset of the inhibitory activity is visible. This
earlier onset is as well caused by the stronger synaptic weight and the absence of incoming
inhibition.

Even though the inhibitory neurons are highly active during a broad stimulus input
they fail to prevent the transmission of asynchronous pulse packets. The inhibitory
synaptic current on the excitatory neurons is too weak.

As for the network without inhibition, Fig. 5.13, weak, asynchronous inputs die out
after the first few groups. The transmission delay from group to group is also in the
same range as without inhibition and still depends on the weight of connections between
excitatory populations.

Phase Diagram

For the chain without inhibition we already observed a binary response in the last group
if the weights were low enough, Fig. 5.14. In case of the lowest weight the chain even
showed filtering for synchronous input.

Figure 5.19 shows the phase diagrams of networks with inhibition in comparison with
the previous tested networks. For the lower displayed weight the introduction of FFI
shrinks the basin of attraction and improves the filtering for synchronous input. Never-
theless, strong, asynchronous inputs are still propagated along the chain.

In case of the highest tested weight we saw that the output in the final group was
not binary. The response depended, in agreement with the NEST simulations, on the
properties of the input packet and several neurons in the last group contributed more
than one spike. As for Kremkow et al. [22] including FFI results in a more uniform
response in the final group. Once more, the basin of attraction only shrinks slightly.

That the network still propagates asynchronous input is a sign of ineffective inhibition,
compare Fig. 2.8 (B). In order to improve the filtering properties we try to increase the
weight of incoming synapses to the inhibitory population, (E) and (F). No improvement
can be observed.

Figure 5.18 shows that the inhibitory neurons are effectively activated for asyn-
chronous input but are still not able to prevent the spiking of the excitatory population.
We conclude that the weight of the incoming excitatory synapses, gEi→Ii+1 , is sufficient
but the induced inhibitory current on the excitatory population is too weak.

Increasing gIi→Ei did not show an effect on the filtering properties. We assume that
the synaptic conductance might saturate again, Appendix A.5. Therefore, we decrease
the reversal potential of inhibitory synapses Erev-inhib to increase the synaptic current,
(G) and (F).

A tiny decrease of the region of successful propagation can be observed for both
weights. Smaller reversal potentials lead to a more pronounced improvement of the
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Figure 5.19: BSS-1 with Inhibition, without Background - Phase Diagrams – Response
in the final group averaged over all trials and draws. Parameters are given in the figure. All other
values are the same as in the base network, Section 5.1.1. (A,B) Network without inhibition.
Same as in Fig. 5.14 (C,D) Network with base values. Inhibition is able to reduce the basin
of attraction and to make the response in the final group more uniform. (E,F) gEi→Ii+1 = 5:
the filtering properties are not improved. (G,H) Erev-inhib = −85 mV: the basin of attraction
shrinks slightly. For more detail see text.
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Figure 5.20: BSS-1 with Inhibition, without Background - Evolution Along the
Chain – Evolution of strength and standard deviation for a number of selected input stim-
uli. The values are averaged over all trials and draws. Base configuration, Section 5.1.1, with no
background activity and Erev-inhib = −85 mV for (B,D). (A,B) For both network configuration
the response strength converges towards zero or a common value. The strength drops in the final
group. (C,D) The standard deviation of the response decreases from group to group after the
third group most of the packets show the same low temporal spread of less than one millisecond.

filtering properties, Fig. A.10.

Evolution Along the Chain

Figure 5.20 compares the activity along the chain for some selected input stimuli. With-
out inhibition the output strength of all but (2,15) synchronize in the second group and
stays the same for all packets in the following groups, subfigure (A). The activity slightly
increases to the penultimate group and finally drops in group 5. This trend was already
visible in the network without inhibition, Fig. 5.16. The strength of (2,15) shows an
decrease from group to group and it seems that the pulse packet would finally die out.

With inhibition a similar trend can be observed for the evolution if the strength,
subfigure (B). A subset of the packets synchronize after a few groups and share a common
output strength and the strength of the others is zero or weakens from group to group.
(2,15) already fails to invoke a response in the first group this time. The network with



82 5 Synchronous Firing Chain

inhibition seems to suppress asynchronous input more effectively. While in case of no
inhibition (1,1) shows the same activity as the other packets which reach the last group,
the strength is lowered with inhibition. It looks like the packet would die out in longer
chains.

Overall the strength from group 1 to 4 is reduced and more flat for the network with
inhibition. As a consequence the drop in the last group is less pronounced.

For both networks the standard deviation of almost all packets is unified in the third
group and stays low at about one millisecond, subfigures (C) and (D). Due to the weaker
response in the first group, (1,1) shows a slightly lower standard deviation than the other
pulse packets in case inhibition is present. It seems like the pulse packets need longer to
synchronize but have a smaller standard deviation if inhibition is present.
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5.3 Long Chains on BSS-1

The previous section showed that the BSS-1 system is able to emulate the dynamics of
a synfire chain with FFI. Up to now we only used a small number of HICANNs in a
part of the wafer where few defects are present. How does the mapping and with it the
network dynamics change if we use larger parts of the wafer?

We also observed a drop in the output strength in the final group in our previous
emulations, compare Fig. 5.20. Will the signal strength still be sufficient to excite a
synchronous response in the next group? Can the synfire chain compensate neuron to
neuron variations which are inherent on hardware? By extending the chain to include
up to 40 links we try to answer these questions in this section.

5.3.1 Default Mapping

Experiment Parameter – ID: 2020-06-21 00h05m

• Wafer : 24

• Chain Length: 20 and 40

• Structural Changes (compared to Table 5.3 & Table 5.1):

– wEi→Ei+1 : 1.4 nS and 1.6 nS

– NI : 0 and 25

– NB: 0

• Neuron Parameter Changes (compared to Table 5.2): None

• Other Changes:

– External stimulus input distributed over 24 HICANNs and six FPGAs

In our first set of experiments we use marocco’s default placement algorithm to place
all populations but the stimulus. The tested changes are now so long that the mapped
neuron populations enter regions of the wafer where more blacklisted components are
present. How will marocco deal with more restricted resources?

As the verification of the hardware configuration does currently not exclude blacklisted
components, we will skip the verification step during the emulation of the synfire chains.
Consequently, the average runtime per trial dropped to around 16 s.
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Figure 5.21: 20 Groups - Default Mapping Result – Mapping result for the default marocco
placement for a chain with inhibition and a chain length of 20. Neurons are marked by a blue
color. The higher the opacity the more neurons are placed on the HICANN. External inputs
are resembled by the red triangle in the lower part of the chip. The opacity once more encodes
their amount. Neurons are placed from left to right. Each HICANN hosts a little more than 100
neurons. Fully blacklisted chips are colored red. Colored lines represent the connections between
sending repeaters and synapse drivers. Inter-stimulus inhibition is injected in the center of the
second row. As in Fig. 5.12 the stimulus input is placed in the lower left corner (not visible in
this figure).

Figure 5.22: 40 Groups - Default Mapping Result – Mapping result for the default marocco
placement for a chain with inhibition and a chain length of 40. Neurons are marked by a blue
color. The higher the opacity the more neurons are placed on the HICANN. External inputs
are resembled by the red triangle in the lower part of the chip. The opacity once more encodes
their amount. Neurons are placed from left to right. Each HICANN hosts a little more than 100
neurons. Fully blacklisted chips are colored red. Colored lines represent the connections between
sending repeaters and synapse drivers. Inter-stimulus inhibition is injected in the center of the
second row. As in Fig. 5.12 the stimulus input is placed in the lower left corner.
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Mapping

The mapping results are displayed in Figs. 5.21 and 5.22. In both cases stimulus and
inter-stimulus inhibition are placed as before. HICANN 33 is blacklisted such that no
neurons are placed on it. The neighboring chips do not host any neurons since buses
which are needed to rely events in the on-wafer communication network are blacklisted
due HICANN 33.

As the projections from inhibitory to excitatory neurons Ii → Ei were defined last,
the loss is most serious for these connections, Fig. 5.23. Until group 15 the loss is below
20 %; from group 15 to group 16 about half of the synapses are lost. This high loss is
due to an empty HICANN between the two parts of the group, Fig. 5.21: about half
of the excitatory neurons of group 15 are placed on the HICANN 16 and the other half
on HICANN 18. Due to this empty chip the horizontal lines on which the inhibitory
neurons want to inject their spikes are already occupied by excitatory inputs from group
13 and the inhibitory connections can not be realized12.

The synapse loss shows a weak periodic behavior with a period around 5 to 6. This
oscillation of the loss is caused by the splitting of the populations over several chips.
Each chip can implement about 100 logical neurons such that the ratio between the
parts of the groups which are placed on different chips changes from group to group.
The occurrence of the empty chip breaks this periodic behavior.

The neurons are again placed from left to right. When the boundary of the wafer is
reached placement continues on the left; at this point the routes have to cross the entire
width of the wafer. This leads to a high usage of horizontal lines.

A first effect of this congestion on horizontal lines can be observed for a chain with
20 links. One route from the inhibitory population on HICANN 20 to the excitatory
population on HICANN 19 uses buses of chips in the row below, blue route in Fig. 5.21.

More severe effects can be seen in Fig. 5.23 (B) where lots of synapses are lost for
connections involving group 35 or 36. Group 35 is placed on the right side of the wafer
while group 36 is split over HICANN 43 and 44, compare Fig. 5.22. Due to a blacklisted
chip13 in the third row a high number of horizontal buses in the fourth row is already
used and no connections from the right to the left can be realized for the mentioned
groups: the synfire chain is cut in two. In addition, a whole reticle is blacklisted in the
lower right corner in Fig. 5.22. Therefore, marocco is not able to establish a straight

12At each chip boundary the horizontal lines are shifted by two, Fig. 2.1, such that on every fifth
HICANN sending repeaters inject events on the same physical lines. As we have 125 neurons per
group and about 100 available neurons on each HICANN, a single group is almost always distributed
over two chips. HICANN 16 is shared between group 14 and 15. Group 14 receives excitatory input
from neurons in group 13 (on HICANN 14). The empty chip in between causes the clash of these
excitatory inputs and the inputs of the inhibitory population of group 15, Fig. A.11. Note that all
eight lines on which sending repeaters are placed are used up by the excitatory connections.

13No routes run through a blacklisted HICANNs such that we already use row four to redirect routes
which would normally run through HICANN 33.
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Figure 5.23: Long Chain - Synapse Loss with Default Mapping – Synapse loss between
different populations for a chain length of 20 (A) and 40 (B). (A) Only for connections within
a single group significant loss can be observed. The peak at i = 15 can be explained by a chip
which was left empty during placement, compare text. (B) The in-group loss is similar to the
one in the shorter chain. Between group 35 and 36 the neuron placement changes from the right
to the left side of the wafer which results in a high loss and the chain is cut in two parts at this
point.
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Figure 5.24: 40 Groups - Spike Trains – Spikes of neurons in the inhibitory populations are
plotted on a gray background. Trains for a chain with 40 links. Base parameters (Section 5.1.1)
with weight wEi→Ei+1 = 1.4 nS. Sub figures (A) and (B) are simulations without inhibition.
(A) A weak but synchronous input reaches the final group. (B) A broad stimulus also leads
to activity in the last group. The response looks similar to (A). (C) In case of inhibition the
pulse does not reach the final group. This is caused by the high synapse loss, Fig. 5.23. (D) The
broad stimulus now vanishes before the last group; inhibition improves the filtering properties of
the network.

route southwards, go to the left and then to the north to arrive on HICANN 44. We
conclude that the left-to-right placement is not optimal for a synfire chain, especially in
the presence of blacklisted components.

The number of repeaters increased to about 480 for the shorter chain without inhibi-
tion and up to 1355 for the longer chain with inhibition. Locking was rarely successful
in the first try and up to three retries were necessary to lock all repeaters.

Spiking Activity

The spike trains of the chain with a length of 40 and some selected input stimuli are
displayed in Fig. 5.24. Without inhibition we do not reach the bottleneck between HI-
CANN 43 and 44 – the chain stays intact. Propagation of input pulse packets to the last
group is possible, subfigure (A) and (B). The chain is also susceptible to asynchronous
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Figure 5.25: 40 Groups - Evolution Along the Chain – Base parameters (Section 5.1.1)
with weight given in the figure and without background stimulus. (A) The strength of the
packets varies from group to group as the neurons and synapses are not identical on hardware.
For all but the highest weight without inhibition the strength gets more unified in higher groups.
The periodic behavior in the orange trace can be attributed to the placement of the groups and
the spike loss induced by a limited readout rate, compare text. (B) A similar trend as for the
strength is visible. Strong responses with a high temporal spread have to be interpreted with
care as the response can no longer be described by a Gaussian.

stimuli and the trains responses look similar after a few groups. This unification along
the chain will be discussed in a later section.

Figure 5.23 showed that the chain is split in two if inhibitory populations are present.
The cut was between group 35 and 36. Consequently, the spike trains die out at this
point, Fig. 5.24 subfigure (C). In case of asynchronous input the signal may vanish before
this cut and the network shows some ability to filter for synchronous input. This was
already observed in chains with fewer links, Fig. 5.19.

Evolution Along the Chain

In case of shorter chains, Section 5.2.6 we already observed that the synfire chain can
unify the response in the final group. For weights lower wEi→Ei+1 = 1.4 nS the activity
in the final group is binary regardless of the inclusion of FFI: packets died out before
reaching the final group or initiated a response of about (0.2,1) in the last group. When
increasing the weight, the response in the final group depended on the input properties
of the initial packet. FFI could make the final response in the basin of attraction more
uniform but a slight dependency on the stimulus input was still observed, Fig. 5.19.

These trends are still present when emulating longer chains, Fig. 5.25. In case of the
lower weight the response are getting more uniform from group to group. The exact
strength and standard deviation changes slightly in each group due to the variation of
neuron and synapse parameters.

Strength and standard deviation are slightly lower in case inhibition is included. In
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addition, the propagation does, as expected, die out after 37th group due to cut in the
synfire chain, see Fig. 5.23 (B).

A periodic behavior of strength and standard deviation can be observed if the weight
is higher and no inhibition is included. The period of the oscillations seems to be around
eight but does not seem to be fixed. We assume that this oscillation can be attributed to
the missing spikes due to the limited readout rate, compare Fig. 5.13. As each HICANN
hosts a bit over 100 neurons, the populations are not always distributed in the same way
over multiple chips; which in turn leads to a periodic behavior.

Furthermore, the strength shows a higher mean and the deviation between the strength
of the packets is considerably higher than for all other configurations, shaded area in
Fig. 5.25. This behavior is also visible for the determined temporal spread of the packets.
As mentioned earlier the response is no longer given by a single packet and a Gaussian
does no longer adequately describe the data such that the determined temporal spread
should be interpreted with care.

Overall the means of strength and standard deviation also show for the highest weight
without inhibition a slight decrease as the packets reach later groups. In the last group
both values increase since it is less affected by the limited readout rate.

With a length of 40 the chain is now long enough to unify the signals which travel
along the chain if inhibition is present. The mean values of standard deviation and
strength drop from group to group. This also holds true for the variation in these two
values which becomes less and less at the same time and seems to be gone after group
31.

For the lower weight the propagation success shows a higher trial to trial variation.
The packets have to be transmitted successfully in between each group to be able to
reach the final link. Due to manufacturing the neuron and synapse properties vary from
group to group. If these properties are unfavorable in just one group the pulse may die
out. The lower weight of 1.4 nS seems to be near the minimum weight for which most
neuron populations on the wafer are still able to forward incoming packets.

5.3.2 Manual Mapping of a Wafer-Scale Chain

Experiment Parameter – ID: 2020-07-07 08h28m

• Wafer : 24

• Chain Length: 190

• Structural Changes (compared to Table 5.3 & Table 5.1):

– wEi→Ei+1 : 1.4 nS and 1.6 nS

– NE : 80
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– NI : 20

– NB: 0

• Neuron Parameter Changes (compared to Table 5.2): None

• Other Changes:

– External stimulus was, as before distributed over several FPGAs, and
each neuron population was placed manually as well

In the previous section, where we used the default mapping algorithm, the synfire
chain was cut in two parts due to a high synapse loss. We will now not only place the
stimulus but all populations manually. A similar approach was already taken by Jeltsch
[3] to place a so called “Hellfire chain” on the wafer. As before we perform five trials
with ten draws each and do not verify the hardware configuration, compare page 83.
The average runtime increased to 26 s since the locking of repeaters takes longer.

Mapping

In order to simplify the manual mapping we decreased the number of excitatory and
inhibitory neurons such that each group consists of 100 neurons. Most HICANNs offer
space for a little over 100 logical neurons and we can therefore place an entire group on
a single chip. If the number of available neurons was less than 100, we excluded the chip
from the manual mapping. HICANNs with fewer than 400 DenMem circuits, marked
orange in Fig. 5.26, were excluded from the beginning. For all other chips we tried to
place 100 neurons and, if it failed, excluded the chip.

The stimulus input is distributed over 24 chips on 7 FPGA. We use two HICANNs
on the same reticle as the first population to inject stimulus spikes since they could not
implement desired number of neurons and could therefore not be used to place a group
on it.

In the previous section the chain as cut in two since the mapping jumped form the
right to the left side of the wafer. To avoid this we will go to the south when reaching an
obstacle, wafer edge or blacklisted reticle/chip, and then continue in the other direction.
This results in a zig-zag pattern which starts in the north and goes to the south of the
wafer.

We place the first group on HICANN 30 and then continue to the left until we reach
the edge of the wafer. The chip in the south is then used for the next group. From there
we continue to the right until we come near a fully blacklisted reticle, HICANN 58. As
the chips next to blacklisted HICANNs have a minimized number of horizontal/vertical
buses, we leave a margin of one around blacklisted chips. Consequently, we continue to
the south and go left again.



5.3 Long Chains on BSS-1 91

Since the middle part of the wafer is blacklisted, we travel down on the left side of the
wafer. When we come near the bottom, we go to the right side of the wafer and place
the groups in a spiral path to the top. As a result we have a zig-zag path on the left
seide which goes from the north to the south and then continues on the right side back
to the north of the wafer.

All connections from the inter-stimulus inhibition were lost in our network configu-
ration. The synapse loss for from the excitatory population outgoing connections was
overall below 5 % while the projection from the inhibitory to the excitatory population
showed losses of about 10 %, only twice all synapses were lost.

The whole network consisted of 19 000 neurons and about 1.4× 106 synapses; 230
HICANNs were used for the implementation. Half of the time all 903 used repeaters
could be locked in the first try; for the other half one additional try was necessary.

Spiking Behavior

Figure 5.27 shows the propagation of one pulse packet which reached the final group
for each weight. In both cases the propagating pulse packet leads to an almost straight
diagonal in the figure; only small deviations are visible where the group-to-group delay
is slightly increased/decreased. Table 5.5 already revealed that a higher weight leads to
a faster propagation along the chain. This is also visible in Fig. 5.27 where the pulse
packet reaches the final group about 10 ms earlier if the weight is higher.

As before the transmission success shows a large trial-to-trial variability for the lower
weight such that successful transmission of a large number of input packets was only
possible in one trial.
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Figure 5.26: 190 Groups - Manual Mapping Result – Manual mapping of a synfire chain
with feed forward inhibition and 190 chain links. Neurons are marked by a blue color. The
higher the opacity the more neurons are placed on the HICANN. External inputs are resembled
by the red triangle in the lower part of the chip. The opacity once more encodes their amount.
Neurons are placed from left to right. Each HICANN hosts a little more than 100 neurons. Fully
blacklisted chips are colored red while HICANNs with less than 400 non-blacklisted DenMem
circuits are marked orange. Colored lines represent the connections between sending repeaters
and synapse drivers. Inter-stimulus inhibition is injected slightly left to the center of the chip.
Stimulus input was placed manually in the north of the wafer.
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Figure 5.27: 190 Groups - Spike Trains – Spikes of neurons in the inhibitory populations
are plotted on a gray background. Emulation with base parameters (Section 5.1.1) but without
background stimulus and wEi→Ei+1 = 1.4 nS (A) wEi→Ei+1 = 1.6 nS (B). Responses to an input
packet of (1,1). The packets reach the final group slightly earlier if the weight is higher.
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We showed the successful implementation of a large scale neural network: a synfire chain
with 190 chain links, Section 5.3.2. In total 230 HICANNs were involved in mimicking
the behavior of 19 000 neurons and over 1.4 million synapses.

The successful emulation of such a large network was enabled by a new locking scheme
of the repeaters which are part of the on-wafer communication network, Section 3.2.
Unlike before the locking of these repeaters was not only tried once but the reset was
pulled several times in case the repeater did not lock. Tests showed that the total number
of locked repeaters can be increased with this new routine; this allows to successfully
setup networks with a large number of repeaters.

We tested the locking behavior for different operation frequencies of the on-wafer com-
munication network, Chapter 4. It turned out that the locking success is not optimal for
the current default frequency of 125 MHz and that the percentage of locked repeaters is
increased with higher frequencies. It was not tested if the communication is still reliable,
i.e. if the repeaters still decode and encode the incoming signals correctly. Further tests
are needed to determine whether a higher frequency is beneficial.

In case of the highest tested frequency of 200 MHz the unsuccessful locking could
be traced back to a small set of repeaters. It could not be determined whether these
repeaters were defect and additional tests are needed. In future defect repeaters could
be blacklisting; this would allow to successfully lock even larger networks.

The time needed to configure the BSS-1 system before experiment start could be
reduced by shortening the waiting times during writing/reading of synapse weights and
decoder addresses: access of a single row in the synapse array was speeded up by about
1 ms, Section 3.3.

Before implementing the long chain with 190 links, we simulated shorter chains in
NEST and emulated them on hardware. We discovered that the input rate of external
events reaches it limits for the dense input stimuli tested in our simulations. Distributing
the stimulus neurons over several HICANNs on different FPGAs allowed to inject a
higher density of spikes. Nevertheless, we still expect a high number of spikes to get
lost when injecting the most dense packets (1000 spikes drawn from an Gaussian with
a standard deviation of 1 ms). The implementation of drop counters in the FPGA is on
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its way to determine the exact number of drops.
Some experiments indicated that asynchronous pulse packets are sometimes propa-

gated further along the chain than more synchronous ones. In NEST simulations a
similar effect was observed, Fig. A.5, and could be attributed to the gradual extinction
of the input pulses, Fig. A.6. On hardware this effect seems to be enhanced by spike
loss and a possible saturation of the synaptic input current, Appendix A.5.

In emulations on hardware the output strength in the different groups was relatively
low compared to the strength in NEST simulation. This is assumed to be caused by
parameter variations on hardware and a more systematic investigation is needed.

At the transition to longer chains, it turned out that the default mapping algorithm
of marocco is suboptimal for synfire chains. Jumping from the right side of the wafer to
the left side can cause a high synapse loss if blacklisted components are present. In our
case this lead to a cut of the chain and input signals could not be propagated to the end
of the chain. Furthermore, we observed for low weights that the propagation probability
showed a higher trial-to-trial variability due to parameter variations on hardware. Inho-
mogeneities of neuron and synapse parameters are more likely to lead to an extinction
of the pulse packet.

By placing the neurons manually on the wafer, a functional synfire chain with 190
links could be implemented which utilize a large fraction of a BSS-1 wafer.
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A.1 Additional Information to Used Software and Data Storage

If not stated otherwise we used a custom build version of the software stack including
a new weight calibration developed by M. Wehrheim and S. Schmitt for experiments
related to synfire chains: nmpm software/2020-06-07-4740-1. This software version
was build with the singularity image /containers/stable/2020-05-29 1.img and the
commit ids of the different repositories are given in Table A.1.

The extended locking test were performed with the most recent version of the software
stack. A log of the commit ids of the different repositories can be found in the experiment
folder.

For all runs on wafer 24 we used the /wang/data/commissioning/BSS-1/rackplace/-
24/calibration/2020-05-11-1 as calibration and /wang/data/commissioning/BSS-

1/rackplace/24/derived plus calib plus layer1 plus custom blacklisting/WIP-

2020-05-19 for blacklisting.
Experiment data are saved in /loh/users/jkaiser/DataMasterThesis. The sub

directories for each experiment are given in Table A.2. For the extended relocking tests,
Section 4.2, and the synfire chain, Chapter 5, these folders contain sub folders named
by the unique experiment id (data and time).
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Table A.1: Storage Locations of Experiment Results – Commit ids of the custom software
version nmpm software/2020-06-07-4740-1.

Repository Commit ID

repo db 2729e2d58355c8fd48774dda735725961413b23e

adc-calib cae0e1eeb8d2d5f63bbc78acd78c3080325c30ac

bitter cd78f4ee9bdfc0ee785c76f43e677576ff089958

cake 0e75959129bef5e9d7fc97ac3597d466b2006c6d

calibtic b1ce7f7e608b51a76bf3aa19fb4504b46aeb5d6b

cd-denmem-teststand 49c208262d5f59425d005395d2cd03fa060ba674

chip-teststand 500f30a6f2b00678f71744c38d8c21060eaf1d0e

code-format 6b7ea4c595d7e0bb3655bacee9bf13c8fb8fd175

euter 838adf2e97735919a3ece946dd9e90ef57989d1e

halbe d4fb86ade32246cbb6cb32bef93c66513673c594

halco 23d6906b93805ffee8c80696d34404a3169a9dd4

hate 66e2f8321778b4379612ec2564a43aa0d015e2f9

hicann-system e19f953f9bf94b3fee380f30dde367c22ae06c46

hmf-fpga 708514c4e0d7584e69281689ff1b01bdc7592edb

hmf-fpga-test 80b8fc93498557722344d1f164d95e84168b9a88

hwdb 7d1d60978d9f773f7ce67b654725110078605b1e

lib-boost-patches 2d7e07d4e74827c42d9e1a51f8d180af9907f7cb

lib-rcf 1b681d745b071653b98ac8893ef7c123fe258662

lib-vhdl-utils 3f8f1f18e3b3d06f80bf2f07fed8991057ec403d

logger 24fa8fc38d7861ea57f6b91e478753c3108a1b0e

marocco b6efa3508aaf3e14438a486d340f3a78680cb9fe

odeint-v2 9473d7f067b9c4b56862de644898b0ac99676075

pygccxml acd80b8e816091d13807fba77c158f9971ed2db6

pyhmf 26fcf61775f46f4b48474f57f328577109ed9fcd

pyplusplus 8ca5344fdc39007f5b117fabf4fd9adecb9ad43d

pythonic e9628388d2eb0ce34db770c660ea37718d97dd3d

pyublas fb538e8c313a3f04d1a5b77200d192fece3ea901

pywrap 550051ab0faad678e58cb456079b1ba45ad2230a

rant 856963edcdaf43d86220309d5a84e80ffd1d077b

redman ba69cfbc95850cd2188be577f37acd11f364b6e6

sctrltp 1cf4d47a37c9466350be3a08d7606be3516424ab

sthal daf83160c104a4a7f4c944ff560d0ab1a6b8d8bf

systemsim-stage2 b2aca9af60203f58f9d5edb3d76ec3360374ac69

visions-slurm 06b298835f6fafd79455cbc98da44adcd5af3fea

vmodule 2eb1aeadd2338f61c7098273dff95fbc2eb1e5d7

ztl d900ab073f6aa8df4bf7f187bdbb65f1f6cac2f6
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Table A.2: Storage Locations of Experiment Results – Paths are given relative to
/loh/users/jkaiser/DataMasterThesis.

Experiment
Section/
Chapter

Folder

Locking Test 3.1.3 synapse controller confirm locking

Relocking Test 3.2.2 relocking test

NOP-waits 3.3.3 nop waits speed test

Extended Locking Tests 4 repeater locking test

Synfire Chain 5 synfire chain

Saturation Test A.5 saturation test

Table A.3: Extended Relocking - Experiments – Overview over the experiments performed
with the extended relocking test in Chapter 4. The start time of the experiment is used as a
unique ID. Patch sets (PS) are saved in CS 11290, compare Appendix A.2.

Experiment Name Section ID PS

Varying Sleeps 4.2.1 2020-06-27 09h52m 1
Varying νpll and Vdllres 4.2.2 2020-06-28 23h21m 1

Table A.4: Synfire Chain - Experiments – Overview over experiments done in Chapter 5.
The start time of the experiment is used as a unique ID. Patch sets (PS) are saved in CS 10338,
compare Appendix A.2.

Experiment Name Section ID PS

NEST with Inhibition and Background 5.2.1 2020-06-01 08h10m 32
NEST without Inhibition and Background 5.2.2 2020-06-01 22h51m 32
NEST without Inhibition and Background,

with Paramater Variations
5.2.3 2020-07-10 12h21m 48

BSS without Inhibition and Background -
Default Mapping

5.2.4 2020-06-05 15h25m 32

BSS without Inhibition and Background 5.2.5 2020-06-14 14h27m 36
BSS with Inhibition, without Background 5.2.6 2020-06-14 16h06m 36

BSS Long Chain - Default Mapping 5.3.1 2020-06-21 00h05m 37
BSS Long Chain - Manual Mapping 5.3.2 2020-07-07 08h28m 42

https://gerrit.bioai.eu/c/11290
https://gerrit.bioai.eu/c/10338
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A.2 Where to Find the Code?

The Electronic Vision(s) group uses the code review system gerrit1. Changes to the soft-
ware stack are collected in so called change sets (short CS), reviewed by other members
of the team and then integrated in the production code. When modifications to a change
set are required, a new patch set (PS) can be uploaded. A patch set can be thought of
as a commit to the change set. Most of the software changes presented in this thesis
were a change set before being merged in production code, Table A.5.

A dedicated repository was created in order to save all code which is related to the
synfire chain: model-hw-synfire.

In addition, Jenkins-jobs for the extended repeater locking test and the synfire chain
are currently under development.

Table A.5: Overview over Change Sets – Change sets which were created or used in/for
this thesis. Chapter 5.

Description
Section/
Chapter

Change Sets

Restructuring of Synapse Controller 3.1 2939, 2941
Synchronization of Command Buffers 3.1 7798, 8235
Digital Test of Synapse Controller 3.1.3 10507
Relocking of Repeaters 3.2 3948, 4048, 4046, 8634, 8635
NOP-Waits 3.3 7318, 9315, 9397, 9398, 9399, 9481,

9482, 9483, 10289, 10985
Extended Locking Test 4 11290
Synfire Chain 5 10338 (4047 weight calibration)
Saturation Test A.5 11369

1https://www.gerritcodereview.com/

https://gerrit.bioai.eu/c/2939
https://gerrit.bioai.eu/c/2941
https://gerrit.bioai.eu/c/7798
https://gerrit.bioai.eu/c/8235
https://gerrit.bioai.eu/c/10507
https://gerrit.bioai.eu/c/3948
https://gerrit.bioai.eu/c/4048
https://gerrit.bioai.eu/c/4046
https://gerrit.bioai.eu/c/8634
https://gerrit.bioai.eu/c/8635
https://gerrit.bioai.eu/c/7318
https://gerrit.bioai.eu/c/9315
https://gerrit.bioai.eu/c/9397
https://gerrit.bioai.eu/c/9398
https://gerrit.bioai.eu/c/9399
https://gerrit.bioai.eu/c/9481
https://gerrit.bioai.eu/c/9482
https://gerrit.bioai.eu/c/9483
https://gerrit.bioai.eu/c/10289
https://gerrit.bioai.eu/c/10985
https://gerrit.bioai.eu/c/11290
https://gerrit.bioai.eu/c/10338
https://gerrit.bioai.eu/c/4047
https://gerrit.bioai.eu/c/11369
https://www.gerritcodereview.com/
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A.3 Additional Figures

Figure A.1: Multiplexer Used for Synapse Array Access – In order to save bit lines
not all weights/decoder addresses are accessed in parallel. The synapse array is organized in
four slices and eight eight column sets. Eight synapses in each slice belong to one column set.
Therefore, each slice is also split in eight parts (visible as vertical buses which enter the four
multiplexers). Access is always performed one column set; accessing eight synapses in each slice.
Four multiplexers (highlighted by a red box) select the values of a column set with the help of
the enable signal en. Taken from Friedmann [7].
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Figure A.2: NEST with Inhibition and Background - Background Induced Pulse
Packets – For rB = 400 Hz and base parameters (Section 5.1.1) synchronous spikes may be
introduced by random background spikes. A synchronous response in a lower group caused by
background fluctuations can travel to the final group. This happens in this example in group
0 at around 580 ms. The synchronous activity in the last group is not anymore only caused by
synchronous stimuli input.
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Figure A.3: NEST with Inhibition and Background - Strong Weights Reduce Spon-
taneous Firing – Doubling the base weight of Fig. A.2 increases the activity of the inhibitory
neurons dramatically. This allows for reliable pulse propagation again. All other parameters as
described in Section 5.1.1 and with rB = 400 Hz.
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Figure A.4: NEST with Inhibition and Background - Response in the First Group –
Simulation with base parameters (Section 5.1.1) and rB = 200 Hz. Responses in the first group
averaged over all ten draws. Strengths smaller 0.1 are not printed. Both strength and standard
deviation in the first group depend on the initial pulse packet.
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Figure A.5: NEST without Inhibition and Background, with Variations - Phase
Diagram – Simulation with base parameters (Section 5.1.1) and weight as given in the figure
(Experiment ID: 2020-07-08 09h46m). Responses in the last group averaged over all draws.
Strengths smaller 0.1 are not printed. In case of low weights the propagation probability can
decrease with synchronicity. This effect is most prominent in subfigures (A) and (B) where the
most synchronous input never reaches the final group. This is an effect of the gradual extinction
of the incoming pulse packets, compare Fig. A.6.
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Figure A.6: NEST without Inhibition and Background, with Variations - Phase Dia-
gram in Different Groups – Simulation with base parameters from Section 5.1.1 (Experiment
ID: 2020-07-08 09h46m). Responses are averaged over all ten draws and strengths smaller 0.1
are not printed. A increasing number of pulse packets die out when traveling along the chain
and the region of successful transmission shrinks from group to group. It is assumed that the
weight between excitatory populations is to weak and that all packets would eventually die out
in longer chains.
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Figure A.7: Shifts due to Limited Group Size – The playback memory in the FPGA
organizes spike in groups of maximal 184 spikes. If a new group is started and the delay between
the first spike of the last group and the first spike of the new group is smaller than six FPGA clock
cycles, the input times of all spikes in the new group are shifted. Here we show the shifts for the
default mapping of a simplified network, Section 5.2.4. Data from experiment set 2020-06-05

15h25m (C0, T0)
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Figure A.8: BSS without Inhibition and Background - Active Neurons in Final
Group – Emulation of the simplified network (no inhibition and background activity) with base
parameters, Section 5.1.1, and a weight of wEi→Ei+1

= 1.6 nS. (A) The output strength depends
on the properties of the input stimulus. Several neurons are active more than once. (B) Similarly
to the output strength, the number of active neurons depends on the input stimuli. For a broad
and strong input almost all neurons in the final group can be activated.
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Figure A.9: BSS without Inhibition and Background - Spikes per Neuron in the First
Group – Emulation of the simplified network (no inhibition and background activity) with base
parameters, Section 5.1.1, and a weight of wEi→Ei+1 = 1.6 nS. The number of spikes per neuron
is considerably higher than the determined output strength for broad inputs, compare Fig. 5.17
and text in Section 5.2.5.
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Figure A.10: BSS-1 with Inhibition, without Background - Improved Filtering by
Decreased Synaptic Potential – In an attempt to improve the filtering properties of the
network we decreased the inhibitory reversal potential, Fig. A.10. Here we decreased the potential
even further to Erev-inhib = −95 mV. For both tested weight a decrease in the inhibitory synaptic
reversal potential leads to smaller basin of attraction.
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Figure A.11: Increased Synapse Loss due to Empty HICANN – Illustration why an
empty HICANN increases the synapse loss. Group 13 establishes excitatory connections (red line)
to group 14. Group 15 wants to connect the inhibitory population to the excitatory population
in the same group. Horizontal lines shift by two at the edge of each HICANN and a sending
repeater is placed on every eighth line, compare Fig. 2.1 (A). Due to the empty HICANN 17
which is not used for placement, the routes collide and the inhibitory projection can not be
realized.
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A.4 Evaluation

Our data are saved such that we can easily extract all spikes time of one neuron type
in a single group. Let T = {t0, . . . , tn} be the set of these spike times and Nneurons

the number of neurons. How do we now extract the pulse packet response to an input
stimulus?

First of all we organized our experiment in such a way that we know the input time
of the stimulus packet ts and therefore a time frame in which the spikes should be
investigated. We extract all spikes which are within this time frame:

T ′ = {t | t ∈ T and ts − tpre-stimulus < t < ts + tpost-stimulus} . (A.1)

A.4.1 Evaluation Methods

Now we run through several conditions and evaluate the data accordingly. For each
evaluation method we return the mean spike time µ within the pulse packet, the strength
a and standard deviation σ as well as the mean spiking frequency ν of all neurons
(excluding the pulse packet). To distinguish between the different evaluation methods
we also label each method.

Less Than Two Spikes – Label 1

If there are less than two spikes evaluating the spikes makes no sense. We return that
no pulse packet was found and that the mean rate is zero.

Narrow Time Frame – Label 2

We assume that the neurons are not spontaneously active if the first and last spike time
are less than 10 ms apart. Since we are mostly interested in synchronous packets and
do only need a rough estimate of the strength if the response is made up of more than
one packet, we chose the relatively low time period of 10 ms. A higher time frame would
lead to a better estimation of the output strength of responses which are made up of
several pulse packets, compare Fig. 5.6. But it would make the standard deviation less
accurate in case of synchronous pulse packets and a low number of spontaneous spikes.

With no spontaneous activity in the network we can assign all N spikes to the pulse
response, a = N

Nneurons
. The mean and standard deviation is determined by the spike

times:

µ =
1

N

∑
t∈T ′

t, σ =

√
1

N

∑
t∈T ′

(t− µ)2. (A.2)

The mean firing rate is assumed to be zero ν = 0 (excluding the pulse packet).
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Not Enough Spikes – Label 3

We now assume that the distribution is rather broad or that it is embedded in sponta-
neous activity. Therefore, we want to organize the data in a histogram and fit a Gaussian
to it.

In order to get a reliable fit we need a minimum number of samples. Here we took the
limit to be 20. If we have less than this number of spikes we again assume that there is
no pulse packet present.

We return zero strength and not determined standard deviation/mean spiking time.
The mean firing rate is given by the number of spikes N divided by the time frame of
the stimulus ∆t = tpre-stimulus + tpost-stimulus and the number of neurons Nneurons:

ν =
N

∆t ·Nneurons
. (A.3)

Maximum Activity to Near to the Edge – Label 4

The data is now organized in a histogram with bin size 1 ms.

For the following evaluation methods we need to evaluate a high number of samples
around the bin with the most samples in it. We have chosen out timings such that the
response packet should be well within the stimulus time frame. It is therefore justifiable
to disregard all sets T ′ where the highest bin is in the first or last 30 bins.

We return zero strength and a mean rate as in method 3.

Narrow Distribution – Label 5

Due to the bin size of 1 ms narrow distributions with a standard deviation in the low
millisecond range are hard to fit to the histogram. We use the number of spikes around
a small region of the histogram to determine if the distribution is narrow.

First we estimate a mean rate by excluding a region of 30 bins around the highest bin.
Then we determine the number of spikes N ′center in the highest bin and its two neighbors.
We also calculate the number of spikes N ′broad in the center bin and ±30 bins around
it. From both values we subtract the expected number of spikes due to the spontaneous
activity using the previous calculated mean firing rate; this gives us Ncenter and Nbroad.

For a standard deviation of 3 ms (2 ms) a fraction of around a = 0.38(0.55) spikes lies
in a region of ±1.5 ms around the center. If we assume the remaining spikes are in the
broad region defined by ±30 bins, we can use the ratio Ncenter

Nbroad
to determine if a pulse is

narrow.

We say a pulse is narrow if:
Ncenter

Nbroad
> 0.4. (A.4)

0.4 was chosen to be near the expected fraction of spikes for σref = 3 ms.
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If Eq. (A.4) evaluates to true, we take all spikes which are within a region of 2σref =
6 ms around the center of the highest bin minus the mean background as strength.
Mean firing time µ and standard deviation σ are also determined from this set of spikes,
compare Eq. (A.2).

Gaussian Fit – Method 0

In case none of the previous methods was used we use SciPy to fit a Gaussian distribution,
Eq. (A.5), to the histogram.

We divide the number of background spikes (which is given in Hz) by 1000 since we
fit the data to a histogram with bin size 1 ms:

f(x) =
a ·Nneurons√

2πσ2
· e
−(x−µ)2

2σ2 +
ν ·Nneurons

1000
. (A.5)

A.4.2 Check of Evaluation Routine

In order to confirm the validity of our evaluation routine we use NumPy to generate
Gaussian pulse packets of a given strength and temporal spread (ain, σin). We embed
these packets in spontaneous Poisson activity, rate rs, generated with the help of ele-
phant. Afterwards, we use the evaluation routine described in this section to evaluate
these pulse packets.

The results are shown in Fig. A.12. The routine is able to determine the correct
strength and temporal spread of spike packets even in the case of high spontaneous
activity. For large temporal spreads the determined values are less accurate.
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Figure A.12: Verification of Evaluation Routine – We generated forNneurons = 100 neurons
Gaussian pulse packets and embedded them in random spontaneous activity. The spontaneous
activity is Poissonian and the rate is given per neuron. (A,B) Determined strength of the
packets. For both activity rates the strength can be determined accurately. Slight variations
for broad packets are visible. (C,D) Overall the evaluation routine can determine the temporal
spread good. For large standard deviations the determined values are not as accurate as for lower
standard deviations (E,F) In case of no spontaneous activity method 2 for the most synchronous
packets, before method 5 was used and finally the fitting method 0 for broad packets. In case
of a high spontaneous activity narrow pulse packets are reliably detected (method 5) and a fit is
used for standard deviations larger 3 ms.
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A.5 Saturation of Synaptic Current

In our analysis of synfire chains we repeatedly observed that a group of spikes with a small
temporal spread causes less outgoing spikes than a group were the spikes are less densely
packed. This effect can in some extend be attributed to the limited communication
bandwidth and the spike loss which is caused by it. However, a constant number of
active neurons by increasing synaptic strength, Fig. 5.17, suggested that the synaptic
current might saturate.

To test this hypothesis we run a simple test in this section, CS 11369. A single neuron is
placed on a HICANN chip and connected to ten stimulus neurons. Each of this stimulus
neurons is placed on different reticles and only spikes once such that the input is not
affected by the limited bandwidth between FPGA and HICANN. The neurons inject
spikes with fixed delays in between them, e.g. for a delay of 0.5 ms the spike times would
be given by a fixed offset plus 0.5, 1, 1.5, 2, . . . ms.

We combine input packets with different delays in a single spike train and place inhi-
bition between the different packets, compare Section 5.1, and measure the membrane
potential of the target neuron. For each delay we determine the height of the PSP (max-
imum value of the membrane voltage, subtract the mean of the potential and divide it by
the maximum potential measured for any delay. We call this value the relative height.

Figure A.13 and indicates that the height of the PSP at first increases with the tem-
poral spread of the input. At a delay of 1 ms between incoming spikes the height of the
PSP starts to decrease again.

Assuming that all spikes reach the target neuron and that the delays induced by
different paths on the wafer2 do not influence the measurement significantly, this suggests
that the synaptic current saturates in case the synaptic input is too strong. From the
measurements it is not clear if this is a “hard” saturation or if the synaptic current scales
non-linear with the synaptic input. Further investigation is needed to determine where
this saturation happens.

2Each repeater leads to a delay of about 2.3 ns in real time which corresponds to about 0.02 ms in
biological time. At most 13 repeater were used; therefore, it is unlikely that the delays induced by
the hardware compensate the delays of the injected spikes.

https://gerrit.bioai.eu/c/11369
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[27] Quirinus Schwarzenböck. “Towards Balanced Random Networks on the Brain-
ScaleS I System”. Bachelor. Universität Heidelberg, 2019.

https://doi.org/10.1371/journal.pone.0108590
https://doi.org/10.1371/journal.pone.0108590
https://doi.org/10.3389/fninf.2014.00010
https://doi.org/10.3389/fninf.2014.00010




Acknowledgements

I want to thank:

• Sebastian for answering countless questions, helping me solving many problems and
providing ideas as well as guidance throughout this thesis. Even on the weekend
or in the evening you were there to help. Your efforts go way beyond what one
expects of a supervision. Thank you!

• Johannes for providing me with the opportunity to write the thesis in the Electronic
Vision(s) group.

• Eric for taking time to explain even the most simple programming principles to a
novice in software development.

• Andreas for providing me with detailed knowledge about the hardware.

• Hartmut and Jose for discussions about the BSS-1 system and providing blacklist-
ing/calibration data.

• Lukas for reading the thesis and correcting a large number of mistakes.

The work carried out in this Master’s Thesis used systems, which received funding from
the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under the Specific Grant Agreements Nos. 785907 and 945539 (Human Brain Project,
HBP).





Declaration

Erklärung:

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als
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