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Abstract
The neuromorphic hardware BrainScaleS-1 is a wafer-scale analogue system, that is de-
veloped at the Kirchhoff Institute for Physics in Heidelberg. Mimicking the brain struc-
ture, it is designed to emulate neural networks on an analogue computing substrate. As a
means of establishing a benchmark for the system, there currently is an ongoing imple-
mentation of the cortical microcircuit model that was proposed by Potjans and Diesmann
(2012). A scaled software simulation of this model has already been implemented prior
to this work, using the neural network simulator NEST (Gewaltig & Diesmann, 2007).
In the course of this thesis, this simulation is adapted to account for the restrictions that
are imposed on any model when running on the hardware. This includes a change of
the neuronmodel, variation between the individual neuron parameters and moving to net-
work parameters that are realistic with respect to the hardware. A special focus is put on
the effects of the synaptic delay, as it has proven to be strongly influential for the firing
behaviour of similarly structured networks (Brunel, 2000).

Zusammenfassung
Die Neuromorphe Hardware BrainScaleS-1 ist ein analoges Wafer-Scale System, welches
am Kirchhoff Institut für Physik in Heidelberg entwickelt wird. Das System orientiert
sich am Aufbau des menschlichen Gehirn und stellt somit eine analoge Platform zur Em-
ulation neuronaler Netzte dar. Gegenwärtig wird das Modell eines ”Cortical Microcir-
cuit” (Potjans & Diesmann, 2012) als mögliche Benchmark für die Hardware untersucht.
Dazu wurde mit Hilfe des speziell zur Simulation neuronaler Netzte ausgelegten Pro-
gramms NEST (Gewaltig & Diesmann, 2007) bereits eine skalierte software Version des
ursprünglichen Modells realisiert. Im Verlauf dieser Arbeit wird diese nun schrittweise an
die Einschränkungen, welche auf der Hardware gelten, angepasst. Dies beinhaltet unter
anderem die Anpassung an ein anderes Neuronmodell, das Hinzufügen von Variaton zwis-
chen den Parametern einzelner Nervenzellen sowie eine Anpassung der für die Simulation
wichtigen Parameter an für die Hardware realistische Werte. Dabei wird ein besonderer
Fokus auf die Verzögerung des Signals gelegt, da sich diese bereits in anderen Studien als
besonders einflussreich für ein ähnliches Netzwerk gezeigt hat. (Brunel, 2000).
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1 Introduction

The human brain can be considered a computing machine with unparalleled efficiency.
Due to the limited energy that is available within the human body, it has to be fully func-
tional at roughly 20 watts (Grübel & Baumbach, 2017). Even so, it is able to cope with
complex tasks, for example face and pattern recognition, that are considered difficult for
modern computers (Chellappa et al., 2010). This extreme adaptation serves as an inspira-
tion for research that is centered around understanding and eventually incorporating the
tools that nature has provided us with into modern technologies. As a consequence, mod-
eling and simulating the human brain has become increasingly popular within modern
neuroscience (Jordan et al., 2018). However, simulating neural networks on traditional
von-Neumann machines becomes very energy consuming, as soon as the scale of the net-
work reaches realistic values with regard to what is seen in nature. Furthermore, it also
has the drawback of a huge slow-down when compared to biology (Thakur et al., 2018).
This encourages the advancement of alternative systems that circumvent these problems,
which is nowadays known as neuromorphic computing.
One approach to this topic is the development of analogue neuromorphic hardware, such
as the BrainScaleS-1 (BSS-1) system that has been developed by the Electronic Visions
Group at the Kirchhoff Institute for Physics in Heidelberg. This mixed-signal architecture
is able to emulate neural networks with a speed-up factor of up to 10000 compared to
biological real time, while keeping the energy consumption orders of magnitude below
of what is needed for a classical computer to perform the same task (Müller et al., 2020;
Schemmel et al., 2010). There currently is an ongoing work of implementing a cortical
microcircuit model, proposed by Potjans and Diesmann (2012), on BrainScaleS-1. This
neural network, also referred to as cortical column, has recently seen a lot of attention
within the field of neuroscience and has established itself as a benchmark (Albada et al.,
2018; Cain et al., 2016; Rhodes et al., 2019).
In this thesis, a software simulation of the cortical microcircuit is used to predict the
behaviour of the network, when confronted with the restrictions and imperfections of an
analogue system, such as BSS-1. To that end, the software simulation is extended to
comprise hardware specific effects, including a change of the neuronmodel and variation
between the parameters of individual neurons. The simulations are run with the neural
network simulator NEST (Gewaltig & Diesmann, 2007), that was also used for the initial
publication of Potjans and Diesmann.
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Figure 1: Drawing after Ramón y Cajal. The structure of an individual neuron and the
typical shape of an action potential is shown. Figure taken from Gerstner et al. (2014).

2 Theory and Modeling

Neurons are highly specialized cells that act as a foundation for the human brain. As such,
they have to acquire information, process it and then forward it to their counterparts. This
is made possible by the special structure of these cells, that nature has developed. The
concepts that follow are described in depth in the work of Eilers (2019) and Fakler and
Eilers (2019), an exemplary look of the neuron structure is shown in Fig. 1.
At the heart of every neuron is its soma (cell body). In addition to providing room for
essential components of the cell, such as the cell nucleus or mitochondria, it is also the
place where the incoming signals of other cells are integrated. The surrounding membrane
gives a clear separation between inside and outside of the cell. This allows for a difference
in potential to build up between the inner neuron and the inter cellar medium. Together
with an extensive use of ion channels, this enables electricity as a means of data transfer.
The main tool for collecting information from other cells are dendrites. They carry the
signal to the cell body, where it is then integrated. Upon reaching a specific threshold
voltage, an action potential is generated. The action potential is a fast increase of the
membrane voltage that is caused through a temporal change of the membrane permeabil-
ity towards a specific ion type. It is sent through the axon, the single output of a neuron.
The axon splits up into an axonic tree that is connected to the dendrites of other neurons.
The connection between axon and dendrite is managed through synapses. Upon the ar-
rival of an action potential, neurotransmitters are emitted into the gap between post- and
presynaptic neuron, causing ion gates to open and thus transferring the signal chemically.
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Understanding the complex interplay that is the result of billions of neurons interacting
with each other within the human brain is a huge task and over the years, a lot of work
has gone into developing models to help attacking the problem. The models span a wide
range of complexity, from a detailed description including several different ion-channels
to a simplified integrate-and-fire model. The neuronmodel used throughout this work is
that of a leaky integrate-and-fire (LIF) neuron, that will be explained in depth within the
next section. A detailed explanation for a variety of different models is found in the work
of Gerstner et al. (2014).

2.1 Leaky Integrate-and-Fire Neuron

The leaky integrate-and-fire neuronmodel is a rather simple model, that still succeeds at
retaining biological relevance (Petrovici, 2016). In the following, a brief overview of the
governing equations and the general functioning of the model will be given.
As the name suggests, the cell membrane is modeled as a leaky integrator. The dynamics
of the membrane voltage are hence described as

Cm
du

dt
= gl(El − u) + Isyn + Iext, (1)

where u denotes the membrane potential, Cm the membrane capacitance, gl the leak con-
ductance and El the leak potential. In addition, there is an input current which is divided
into a synaptic part Isyn, modeling synaptic events, and an arbitrary external part Iext,
allowing for additional tuning of the model. Equation 1 is simply the differential equation
of a classical RC element from electrodynamics, where we can identify the characteristic
leakage (u ∝ −u̇) and integration terms (u ∝ I). We can directly see the RC element
when taking a look at the analogue circuit of an artificial neuron, shown in Fig. 2.
This simple circuit already does quite well when it comes to modeling the membrane volt-
age of a neuron with synaptic stimulus, but it does not yet include a spiking mechanism
that models the action potential of the cell. Therefore, one has to be added to the model
manually. Upon reaching a specific threshold voltage ϑ, the membrane is clamped to a
reset potential Ereset and held there for the duration of the refractory time τref . Only then,
it is once again allowed to propagate according to equation 1.
There are two commonly used ways of describing the synaptic input in the LIF model, a
current based (CUBA) and a conductance based (COBA) approach. As both of them are
of relevance, a short summary will be given in the following paragraphs.
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Figure 2: Analogue circuit of a LIF neuron.

In the CUBA case, the main assumption is that most synapses are far away from the soma
and thus, what reaches the membrane is effectively a current pulse. The synaptic current
is then given through

Isyn =
∑
k

∑
s

ωkε(t, ts,k). (2)

The first sum is over all of the synapses connecting to the neuron and the second sum over
all the spikes with their respective spiketimes ts,k. The strenght of a single current pulse
is given by the synaptic weights ωk and the time course by the synaptic kernel ε(t, ts,k).
In this model, the synaptic currents of different synapses are independent of each other.
The mechanisms of the COBA model stay a bit closer to those of a biological neuron,
since the assumption of far away synapses is dropped. A synaptic event is described
through a change of the conductance ge/i towards an excitatory or inhibitory reversal
potential Erev,e/i. The corresponding circuit diagram can be seen in Fig. 3. In this case,
the current is given by

Isyn = ge(t)(Erev,e − u) + gi(t)(Erev,i − u), (3)

where the time development of the conductances is controlled through the synaptic weights
and the synaptic kernel:

ge/i(t) =
∑
k

∑
s

ωkεe/i(t, ts,k). (4)

The dynamics of this model are a lot more complex, since the membrane potential ap-
pears in the formula for the synaptic current. Because of this, postsynaptic potentials are
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Figure 3: LIF circuit with COBA synapses. Figure taken from Petrovici (2016).

affected by other synaptic events that arrived shortly before. Another important effect
that occurs only in the COBA case is the change of the membrane reaction speed. For the
total conductance g of a neuron, the time constant of the capacitor is given as τm = Cm/g.
Since COBA synapses change the overall conductance of the membrane, this naturally re-
sults in a change of the membrane time constant τm. In the case of a lot of synaptic input,
the neuron enters a high conductance state, where the membrane reacts almost instantly
to any input.
Finally, the synaptic kernel that is used to describe the time course of the synaptic input
in both the CUBA and the COBA model remains to be discussed. A prominent way to
describe this is as a difference of exponentials (DoE), with two time constants τrise and
τfall that correspond to the arrival and removal of neurotransmitters in the synaptic cleft:

ε(t) = θ(t)
A

τfall − τrise
(−e−

t
τrise + e

− t
τfall ). (5)

Under the assumption that the neurotransmitters arrive very fast (τrise → 0), this model
simplifies to an exponential decay:

ε(t) = θ(t)
A

τsyn
e
− t
τsyn . (6)

As of now, there is no theoretical derivation of this quantity, both of the shown models
are purely phenomenological and based on previously measured time constants within a
synapse.
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2.2 Cortical Microcircuit Model

A local cortical microcircuit, also referred to as cortical column, is a neuron structure that
can be found in the early sensoric cortex of mammals. It is thought to be a building block
of the brain that is supporting its functionality. Over the years, many different studies
concerning this network have been conducted (Beul & Hilgetag, 2015; Cain et al., 2016;
Wagatsuma et al., 2011) and thus, it is comparably well known. This thesis builds upon
the model that has been established by Potjans and Diesmann (2012). They combined
results of anatomical and physiological studies to achieve biological realistic firing rates
using the simulation software NEST.
The model, as it was initially proposed, consists of 4 layers that are labeled as L2/3, L4,
L5 and L6, with each layer representing a different cell-type of the cortical microcircuit.
These then split up into two neuron populations, one inhibitory (i) and one excitatory (e)
population. A schematic view of the network is seen in Fig. 4. The main achievement
of Potjans and Diesmann was the establishment of a connectivity map connecting the dif-
ferent layers. They extended a single layered balanced random network that was realised
with CUBA LIF neurons (Brunel, 2000) and integrated the two main connectivity maps
from anatomy and physiology that were obtained in previous studies. A more detailed
description of the methods used to derive the connectivity map can be found in the initial

Figure 4: Schematic illustration of the connectivity in a cortical column taken from Al-
bada et al. (2018).
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(a) (b)

Figure 5: (a) Overview over a BrainScaleS-1 wafer module. (b) Full system of 20 wafer-
modules. Figures taken from the “HBP Neuromorphic Computing Platform Guidebook”
(n.d.).

publication Potjans and Diesmann (2012).
Overall, the final model encompasses about 80000 neurons and roughly 3×108 synapses,
thereby covering 1mm2 of the cerebral cortex. It is a large model and since there are a lot
of studies concerning it, it is commonly used as a benchmark (Rhodes et al., 2019).

2.3 The BrainScaleS-1 Wafer-Scale System

Since the goal of this thesis is to end up with a cortical column model that is suitable
for the BrainScaleS-1 system, it is essential to understand the mechanisms underlying the
hardware and, in particular, to understand the restrictions that it imposes on the model.
BrainScaleS-1 refers to a wafer-scale sized system of neuromorphic hardware that has
been developed by the Electronic Vision(s) group at the Kirchhoff Institute for Physics
at Heidelberg University. It aims at emulating complex neural systems and has several
benefits over its numerical counterparts, mainly when it comes to simulation time and
energy consumption (Müller et al., 2020).
A basic building block of the system is the High Input Count Analogue Neural Network
(HICANN) chip (Fig. 5 (a)). The HICANN operates based on the exponential integrate
and fire (AdEX) model (Schemmel et al., 2010), an extension to the LIF model explained
in section 2.1. It is possible to run emulations with the basic LIF model as well, which is
going to be the case for the hardware implementation of the column. The chip is using a
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mixed signal strategy, where biological neurons are emulated through analogue circuits,
but communication between neurons and spike processing is handled digitally. These
circuits are built based on the COBA model, forcing a change of the neuronmodel when
the cortical column is adapted for the hardware.
Due to the time constants of the circuits being orders of magnitude smaller than those of
biological neurons, the emulation runs with a speedup factor of 103 up to 105 compared to
biological real time. A single HICANN already contains 512 neurons with 220 synapses
each and is able to emulate small neural networks (“HBP Neuromorphic Computing Plat-
form Guidebook”, n.d.).
As a result of the manufacturing process, not all neurons are perfectly identical. This
results in an error, that is seen throughout the emulation of any neural network. Since
these faults stay the same after the initial manufacturing, this effect is called fixed pattern
noise. Even though there is a calibration process that reduces the fixed pattern noise, its
existence implies that the neuron parameters on the hardware are not as well defined, as
it is the case within a software simulation.
The full BrainScaleS-1 system (Fig. 5 (b)) consists of 20 wafer modules, each one con-
taining 384 HICANNs that can be linked together. In total, this adds up to 196,608 neu-
rons per wafer, with approximately 44 million synapses. The combination of multiple
HICANNs allows for the simulation of larger and more complex structures. Even so, the
synapse density is not high enough to emulate the full model of section 2.2. This makes
the usage of a scaling process that reduces the amount of synapses connected to each
neuron in the cortical microcircuit model necessary.

2.4 NEST and PyNN

Moving the network of the cortical column directly to the hardware would prove difficult,
as there are quite a few changes to be made to the model. Therefore, a software imple-
mentation of the microcircuit is realised (Weidner, 2019), so that the necessary changes
can be implemented one after the other. This helps with identifying possible errors in
the adjusted column. In fact, since this thesis deals with adapting the model, most of the
results that will be described later on were obtained using the software simulation rather
than the neuromorphic hardware.
The simulation software used is the neural network simulator NEST (Gewaltig & Dies-
mann, 2007). This simulator is aimed specifically towards large scale neural networks
such as the column and was also used for the original model, making it a reasonable
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choice. On top of that, NEST and BrainScaleS-1 support PyNN as API. This guarantees
identical neural networks on both platforms and allows for an easier comparison between
hardware and software simulation. For running the simulations, NEST version 2.2.2 was
used. A more in depth description of the simulator is found within a performance paper
by Plesser et al. (2007).
PyNN (Davison et al., 2009) is a popular Python application that simplifies the usage of
different neural network simulation tools. It provides a common interface so that a single
network code can be run on different simulators or even on neuromorphic hardware.

2.5 Network Behaviour

The classification of the firing behaviour that is used throughout this thesis is motivated
through the work of Brunel (2000). However, the formulas used to obtain quantitative
values are taken from Potjans and Diesmann (2012).
The first quantity, describing the irregularity in the spiking behaviour of a single neuron,
is the coefficient of variation (CV) of its interspike interval (ISI). For any given neuron,
the ISI is defined as the time between two outgoing spikes. In general, this is not a fixed
value but a distribution PISI. The CV is then given as the standard deviation normalized
to its mean value:

CV (PISI) =
σ(PISI)

µ(PISI)
. (7)

This measure is easily expanded to describe the irregularity of a neuron population, simply
by averaging over the CVs of all the individual neurons. A perfect Poisson process has
a CV value of one, whereas for regularly firing neurons, the value converges to zero.
Throughout the following sections, irregularity always refers to the averaged CV of the
ISI.
The second quantity, used to describe the global behaviour of neurons within a population,
is the synchrony. The accounted time interval is split into bins and the number of neurons
that spiked per bin is counted. The synchrony is then given as the variance of the resulting
spike count histogram divided by its mean. This is not an exact quantity as it depends on
a the binwidth of the spike count histogramm, but the order of magnitude gives a general
idea of the neuron behaviour. Large synchrony values indicate that the neurons fire at
the same time, smaller values indicate that there is almost no corellation between the
spiketimes of the neurons.
With the help of these quantities, the firing behaviour categorizes a network into four
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different regimes, that were originally declared by Brunel (2000):

• A synchronous regular (SR) state is characterized through large synchrony and
small irregularity values. In this state, the neurons within a population are divided
into a few clusters, with the neurons that belong to the same cluster fring at the
same time. These clusters then behave as oscillators with a regular time interval
between the spikes.

• In the asynchronous regular (AR) case, synchrony and irregularity of the network
are small. Individual neurons fire at a constant rate but they do so independently
from other neurons in the population.

• The synchronous irregular (SR) state exhibits the same oscillatory global behaviour
that was observed for the SR state, however with varying time spans in between the
spiking. Synchrony and irregularity are large.

• Finally, in the asynchronous irregular (AI) state, individual neurons show strongly
irregular firing with no obvious correlation to other neurons. This is represented
through a small synchrony value with high irregularity. This state was observed for
the original model in the publication of Potjans and Diesmann (2012).
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3 Experiments and Results

Adapting the cortical microcircuit model to the BrainScaleS-1 hardware is a large project
and outside of this thesis, within the work of Weidner (2019) and Schwarzenböck (2019),
a lot of effort has already been put into it. Of the problems that were touched on, when
introducing the hardware in section 2.3, the transition towards COBA neurons and the
effects of parameter variation between individual neurons will be discussed in depth
throughout this work. A reimplementation of the column, using the PyNN interpreter,
as well as the scaling problem were already taken care of and built upon when investigat-
ing further througout this thesis. However, since the scaling process is not trivial, a short
summary of the problem and its solution follow.
Because of the limited number of synapses that are available on the BSS-1 wafer-scale
system, the model needs to be scaled down to about ten percent of its initial size. Un-
fortunately, even at ten percent, keeping the ratio of synapses per neuron the same as in
the original column is not feasible. The amount of synapses needed for this would ex-
ceed what is possible on the hardware. To bypass this problem, the indegree (the amount
of synapses connected to a neuron) is decreased, while simultaneously increasing the
weights of the remaining synapses. This is done to keep the same synaptic input to the
neuron with less synapses connecting into it. As a downside, the input variance of the
network grows, since a single neuron is much more influential. To balance some of this
effect, the external poisson input used in the model of Potjans and Diesmann (2012) is
substituted with a DC input. The scaling process was motivated through the work of Al-
bada et al. (2015), where the impact it has on mean firing rates and correlation within a
neural network is described in detail.
The downscaling leads to a slight deviation in the mean per population firing rates when
compared to the full column. To keep this effect as small as possible, the two multi-
plicative scaling parameters ”exc” and ”inh” were added. They scale the excitatory and
inhibitory weight of all the populations and provide an additional tuning point for the
model. Doing so, they allow to optimize for a minimal difference between the firing rates
of the full model compared to those of the scaled column. The results of this optimization
are shown in Fig. 6, where the mean firing rates of the self implemented model are plotted
together with the values that Potjans and Diesmann (2012) found in their study.
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Figure 6: Mean per population firing rates of the downscaled 10% CUBA model that
served as a starting point. The additional scaling parameters are set to exc 0.5 and inh 1.5
and the simulation was run up to 5000 ms with a time step of 0.1 ms. The first second
of the simulation was excluded, allowing the network to stabilize. The error bars give
an insight over the spread that the firing rate has between the different neurons within
a population. This is expected and not to be confused with the uncertainty of the mean
value that can be found for different seeds of the network.

The neuron parameters that are used for the simulation are taken over from the initial
model (Potjans & Diesmann, 2012) and are summarized in Table 1. Unless specified
otherwise, all the results presented from here on were obtained using a time step of 0.1
ms and simulating up to 5000 ms. Spikes within the first second are excluded from the
results, as the network needs time to stabilize.
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Table 1: Summary of the parameters used for the CUBA simulation.

Name Value Description
Cm 0.25 nF Membrane capacitance
Erest -65 mV Leakage potential
Ereset -65 mV Reset potential
ϑ -50 mV Firing threshold
τm 10 ms Membrane time constant
τref 2 ms Refractory period
τsyn,e/i 0.5 ms Synaptic time constants
De 1.5 ms 1 Delay for excitatory connections
Di 0.8 ms 1 Delay for inhibitory connections
ω 87.8 pA 2 Excitatory synaptic weights
g -4 Relative inhibitory weight

1 : Values differ for every connection and are drawn from a normal distribution
around the given value with a standard deviation of 50%

2 : Distributed in the same way as the delays with a standard deviation of 10%. The
weights are influenced by the scaling parameters exc and inh and the connection
from populations 4e to 23e is multiplied with an additional factor of 2

For further discussion later on in the thesis, synchrony and irregularity of this scaled
version of the CUBA column are depicted in Fig. 7. With irregularities slightly below
one and the synchrony being of the order of magnitude 1, the asynchronous irregular firing
behaviour of the initial column is not lost during the scaling process, despite an expected
increase in the correlation within the network (Albada et al., 2015).

3.1 Transition to COBA Neuronmodel

Seeing that the scaling problem has already been addressed, the next thing to investigate
is whether the cortical column withstands a transition to the COBA neuronmodel used on
the hardware. Even though large parts of the model are the same, the dynamics of the
CUBA LIF model are not equivalent to those of the COBA LIF model and there is no
such thing as a map that can be applied every time to switch between the models.
For a first attempt, we try to keep the synaptic current constant when changing the synapse
model. Comparing the corresponding equations from section 2.1 yields the following
connection between the weights in the CUBA case and those in the COBA case:

ge/i =
ωe/i

Erev,e/i − u
. (8)
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Figure 7: (a) Irregularities of the populations in a 10% CUBA column. Values close to 1
indicate a wide distribution of the interspike interval. (b) Synchrony for the same network.
The binwidth of the spike count histogram is 3 ms.

To distinguish between the synaptic weights of both cases, the COBA weights have been
relabeled to ge/i. On first glance, the upper equation seems quite simple. However, there
is an explicit occurrence of the membrane potential that needs further treatment.
For COBA LIF neurons in the high conductance state, it can be shown that replacing the
potential with its mean value is a reasonable approximation. A mathematical sound proof
of this can be found in the thesis of Petrovici (2016). Because the connection density
of the model is high, this can also be applied to our case, which simplifies the problem
considerably. The task at hand is now to find an estimate for the mean membrane potential
in the CUBA case.
To begin with, the known firing rates rmean together with the average amount of synapses
connected to a neuron K are used to estimate the rate at which synaptic events happen:

rsyn = K ∗ rmean. (9)

Furthermore, the charge transfer per synaptic event is given through integration of the
synaptic current as

Qe/i = τsyn ∗ ωe/i. (10)

Combining both of these quantities yields the mean synaptic current that goes into a neu-
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ron:
Imean,e/i = τsyn ∗ ωe/i ∗K ∗ rmean. (11)

As an estimate for the mean membrane potential without any synaptic input, we can
simply use the leakage potential El. Adding the mean inhibitory and excitatory currents
on top of it will thus give an estimate for the mean membrane potential with synaptic
input:

Emean = El +
τm

Cm
(Imean,e + Imean,i). (12)

The above equations provide a way to transition the synaptic weights. However, to com-
plete the transition of the neuronmodel, we still need to choose fitting reversal potentials
for the conductance based synapses. As the absolute value of these does not directly af-
fect the simulation and only the difference to the membrane potential is important, they
were set symmetrical around the threshold potential to -100 mV for the inhibitory and 0
mV for the excitatory reversal potential. With a range of 100 mV, it is also safe to be sup-
ported by the hardware, as for example in the “HBP Neuromorphic Computing Platform
Guidebook” (n.d.), a range of 160 mV is used.
With this, all the necessary parameters for the COBA model are set. The ensuing firing
rates, already combining the scaling process and the transition to the COBA neuronmodel,
are shown in Fig. 8. Comparing with the rates of the scaled CUBA simulation shows
only small differences, thereby justifying some of the approximations used to derive the
weights in hindsight. The main deviation from the target rates manifests within popula-
tions 4e and 5e, the former firing at a increased rate and the latter at a decreased rate. The
difference for both of them is roughly 2.5 Hz. To further improve the results, the thresh-
olds of the different populations could be adjusted manually, thereby fine tuning the rates
of single populations. However, the goal for the software simulation is only to produce a
model that shows rates within the correct order of magnitude, as many things will have
to be changed again when actually moving to the hardware emulation. Therefore, no
adjustments were undertaken as of yet.
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Figure 8: Mean per population firing rates after transitioning to the COBA neuronmodel.
The scaling parameters are set to exc=0.7 and inh=1.4. Compared to the rates of the 10%
CUBA column, we find an increased firing rate in the 4e population and a decrease for
the 5e population.

Finally, the impact that the transition has on irregularity and synchrony of the model is
depicted in Fig. 9. The irregularity shows a strong influence for population 6e, where
the CV of the interspike interval drops to 0.6. Within the other populations, the change
is a lot less pronounced, but the trend is always towards smaller values than seen for the
10% CUBA simulation. Some of these changes might be within the range of statistical
variation, but it has already been shown that the mean rates in the CUBA case are very
stable (Weidner, 2019) and further testing with differently seeded random number gen-
erators also shows the stability of mean rates, irregularity and synchrony for the COBA
model. Unfortunately, there was not enough time to quantify this process. Together with
the fact that all of the deviations are towards smaller values, it is safe to assume that they
are caused by the change of the neuronmodel and do not just fall under statistical vari-
ation due to different weights being drawn. The same argumentation also holds for the
synchrony, where an increase is observed for the COBA model.
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Figure 9: (a) Irregularity for the 10% COBA model. The change of the neuronmodel
causes the irregularity values to decrease. This effect is strongest for the 6e population.
(b) Synchrony for the 10% COBA model. Synchrony values go up for COBA synapses.

3.2 Simulation with Distributed Parameters

The next change applied to the model is to account for the fixed pattern noise that is
unavoidable on any analogue system. Despite a calibration, that reduces the strength
of this effect, there will always be some variation of the neuron parameters as a result
of the manufacturing process. On top of that, there is a statistical component to this
variation due to thermal noise as well. To investigate the behaviour of the model under
these circumstances, we want to include parameter disparity between neurons within the
NEST simulation.
We assume that the neuron parameters are normal distributed around the initial values,
with a relative standard deviation of 10% for any voltage and 20% for the time constants.
These values were taken from Schwarzenböck (2019), as a first estimate of what is ex-
pected on the hardware.
In case of the reversal potentials, applying the relative standard deviation directly would
be incorrect, since the absolute value of the excitatory potential is close to 0 V. In the end,
only the difference between reversal and membrane potential is relevant for the system,
so this difference should be affected with the uncertainty. Because the mean membrane
potential is assumed to be close to the leakage potential, we can apply the relative de-
viation to the difference between reversal and leakage potential to obtain a value for the
width of the gaussian. This value is then taken as variation to the reversal potential, which
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Table 2: Parameters of the normal distributions used to account for the
fixed pattern noise.

parameter µ σ boundaries
Cm 0.25 nF 5% (0,∞)
El -65 mV 10% (−∞,∞)
ϑ -50 mV 10% (-65,∞)
Ereset -65 mV 10% (−∞,ϑ1)
Erev,e 0 mV 10% 2 (−∞,∞)
Erev,i -100 mV 10%2 (−∞,∞)
τm 10 ms 20% (0,∞)
τref 2 ms 20% (0,∞)
τsyn,e/i 0.5 ms 20% (0,∞)

1 : Boundaries for the reset potential are calculated after all the threshold values
have been drawn to avoid Ereset > ϑ.

2 : Applied to the difference between reversal and leakage potential.

translates directly to a variation of the difference. A summary of the distributions used
for the parameter variation is given in Table 2.
Additionally, we have to prevent unphysical values from being drawn out of the random
distributions. By setting according boundaries and redrawing the values that are on the
outside, this is easily taken care of for most of the parameters. However, threshold and
reset potential need a special treatment, as we also have to avoid a reset potential larger
than the threshold. This constellation would lead to neurons that fire at intervals of their
refractory period, which is not desired. It is circumvented by adapting the boundaries
for the reset potential after the threshold values have been set. This treatment shifts the
mean value of the reset potential by about 5V, when variation is applied to both reset and
threshold at the same time, but this does not largely affect the outputs of the simulation.
The results for individually affected parameters are shown in Fig. 10, where the difference
between the firing rate with and without variation is plotted. The final data point shows
the influence of the variation, when applied to all parameters at the same time. The
measurement is averaged over ten different seeds for the random number generator that
generates the respective distributions.
For most of the parameters that have been tested, the effects are negligible. Especially
the influence of variation on the time constants and reversal potentials seems to be almost
vanishing. On the other hand, a strong influence is observed for the threshold and leakage
potential, which is reasonable, considering that they are the main tuning points used when
adjusting the firing behaviour of LIF neurons.
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Figure 10: Parameter variation between individual neurons. The difference between the
mean firing rates of the 10% COBA column with and without noise on the neuron param-
eters is plotted. The variation is in turn applied to the different parameters. The ’allParam’
datapoint stands for a measurement where all the parameters are affected at once. To ac-
count for statistical effects, the measurements are repeated for ten different seeds of the
RNG that generates the variation and the averaged deviation is plotted.
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Figure 11: Exemplary plot for a 10% COBA simulation with variation on all parameters
according to Table 2. (a) Irregularity values. A trend towards smaller values is observed
compared to the simulation without variation. Overall, it is more balanced with the ir-
regularity of the 6e population being slightly larger and a lot closer to the others. (b)
Synchrony values. The difference to the case without variation is negligible.

In general, the effect causes an increase of the firing rates for almost all of the parameters.
A possible explanation for this trend might be the strong correlation between the neurons,
that is established within the scaling process. Within the downscaled model, individual
neurons have more influence, to a point where a single neuron that spikes at a high fre-
quency might be reflected in the total behaviour of the network. This assertion could be
validated through the simulation of a full scale COBA model with parameter variation,
that so far has not been realised.
Another interesting observation is that for some populations, for example 5e, the effects
of the variation of only the threshold is stronger than varying all of the parameters. This
implies that additional uncertainty on some parameters stabilizes some properties of the
model rather than destabilizing it. This seems reasonable when remembering the bio-
logical background, where no neuron is exactly the same and yet we have a stable firing
pattern.
The impact that the change has on synchrony and irregularity is plotted exemplary in Fig.
11, with all parameters affected by variation, as this is the expected state on the hard-
ware. Overall, we find a small decrease in the irregularity with most of the populations
showing a CV around 0.8. However, the behaviour is now more consistent throughout the
different populations, as the value of population 6e increased slightly and is therefore not
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so far from the others. The synchrony does not change notably, when compared to the
simulation outputs without noise.

3.3 Synaptic Delay Investigation

So far, mean firing rates as well as the second order statistics of the model, synchrony
and irregularity, are largely preserved throughout the different changes. However, up to
this point, the synaptic delay has not been considered. The delay describes the time that
passes between the emission of a spike and the arrival of the signal at the receiving neuron.
In principle, it could have been part of the section regarding the parameter variation.
However, since it is expected to have a strong influence on the firing pattern of the network
(Brunel, 2000), it was separated from the other changes for a more thorough investigation.
The previously implemented parameter variation is turned of for the investigations in this
section.

3.3.1 Adapting the Model

As a first step, the delay specific parameters used by Potjans and Diesmann (2012) were
adjusted to be more realistic with regard to the hardware system. For now, this means
that the mean delay for inhibitory connections was increased to match excitatory connec-
tions at 1.5 ms. The underlying distribution was changed to being uniform, with a relative
broadness of 50% in both directions. This is a first guess of what we expect for the hard-
ware. Estimating realistic delay values proves to be a difficult task that will be addressed
later on, in section 3.3.3.
A raster plot of the spiketimes for the adjusted network, together with a reference plot of
the behaviour previous to the change, is seen in Fig. 12. For every spike that a neuron
emits, a dot is created at the respective time. To keep the amount of data manageable,
only ten percent of the neurons within every population are depicted. The reference plot
(Fig. 12 (a)) shows the unperturbed asynchronous irregular state that the cortical column
exhibits in section 3.1. For the second plot, the delay values are distributed between
0.75 ms and 2.25 ms for both connection types. With these settings, the system fully
synchronizes with almost all of the neurons firing at the same time. It can be seen that
these excitations are periodic, displaying a fixed time interval between two neighbouring
events.
The plots emphasize the transition of the firing pattern that the model has undergone. The
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Figure 12: Raster plot of the spiketimes for a time window of 250 ms. The simulation
is started at 0 ms. (a) Plot of the asynchronous irregular behaviour before the delays are
adjusted. (b) Plot after the adjustment. The underlying delay distribution is now uniform
between 0.75 ms and 2.25 ms. The system is fully within a synchronous regular state

asynchronous irregular firing that is usually expected within a cortical column is lost. This
is also reflected in the quantities used to describe the firing patter, where a strong increase
in the firing rates and synchrony is found. At the same time, the irregularity values drop
to almost zero. The system stabilizes within a synchronous regular state, where almost
all of the neurons fire at the same time. Testing for other parameters of the distribution
yields similar results for a wider spread of the delays, as well as for a larger mean value.
To determine where the problem is located, the simulation is run with the same parameters
for the CUBA neuronmodel. This shows a cortical column in the expected asynchronous
irregular state, indicating that the problem lies within the change of the neuronmodel.
Taking a look at the transition described in 3.1, the main adjustments were made to the
synaptic weights and the reversal potentials. Further measurements also show that, with
values close to -85 mV for multiple populations, the mean membrane potential of the
CUBA case is very close to the inhibitory reversal potential of -100 mV, that was chosen
in section 3.1. This effectively means a weakening of the inhibitory spikes, since they
are, in a way, weighted by the difference between membrane and reversal potential. To
solve this problem, the reversal potentials were set from -100 mV to -150 mV for the
inhibitory and from 0 mV to 50 mV for the excitatory potential, thereby reducing the
effect that was described above. With these new reversal potentials, the column is able
to stabilize in the asynchronous irregular regime. However, for different parameters of
the delay distribution and differently seeded random number generators, there are still
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combinations that lead to the synchronous firing behaviour that was observed earlier. A
more detailed investigation of this development follows in the next section.

3.3.2 Influence on Network Behaviour

The effects of delay variation on a balanced random network based on CUBA neurons
have already been documented in the work of Brunel (2000). Even though the layers
of the column are not identical to the network that was investigated in this publication,
they closely resemble it. Keeping this in mind, the findings of Brunel should give a good
indication of what to expect for the cortical microcircuit. In the paper, both the mean
value and the spread of the distribution are shown to influence the firing pattern. To see
how these effects carry over to the cortical column model, the behaviour it demonstrates
for different combinations of mean value and spread of the delay distribution is examined.
For this measurement, the mean delay values are varied between 1.5 ms and 3.5 ms in
steps of 0.25 ms and the relative width of the distribution from 20% to 80% in steps of
10%. To account for the statistical component of the delay values, the measurements were
repeated for 10 different seeds of the random number generator used for the distribution.
In the area where the transition between the firing patterns is observed, from 2.0 ms to
2.75 ms, the amount of seeds was increased to 40, to obtain a better statistic. For a
given seed, the network with delay adjustments is compared to the state of the network
at the end of section 3.1, with no other parameter variation applied. It is considered to
be in a synchronous state, when the sum over all populations of the difference between
the mean firing rates is larger than 20 Hz. Fig. 13 shows the resulting probability of
finding the network in a synchronized state, depending on the mean delay value and the
broadness of the distribution. There is a sharp border between delay values that show a
synchronization and values that do not, however, the exact point at which the firing pattern
transitions also depends on the width of the distribution. Together with the dependence
on the reversal potential found in the previous section, the results can be summarized to
three main observations:

• There is a critical delay, after which the network will always show synchronous
firing behaviour.

• This critical point also depends on the distribution width, for a larger distribution it
gets shifted to larger delay values.
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Figure 13: Probability distribution for the occurrence of a synchronization within the fir-
ing behaviour of the 10% column with adjusted delay values. The likelihood of a synchro-
nized state increases with higher mean values but decreases with the distribution width.
The data was obtained through the use of different seeds for the RNG that generates the
delay distributions.

• A larger dynamic range of the membrane realised through a larger distance between
the reversal potentials also decreases the probability of synchronized firing.

The influence of the distribution width was already observed for the CUBA model (Brunel,
2000), where a distributed delay prevented any synchronous activity of the balanced ran-
dom network. This also seems to be applicable in the COBA case, since an increase in
the distribution width caused the network to stay in the asynchronous regime.
The effects of the reversal potential can also be explained through the findings of Brunel.
With the membrane potential being close to the inhibitory reversal potential, inhibitory
spikes have less impact. This can be seen as a reduction of the effective inhibitory weights,
thereby shifting the ratio between inhibitory and excitatory weights. In the research of
Brunel, a smaller ratio was observed to produce a firing pattern in the synchronous regular
state.
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Figure 14: (a) Exemplary raster plot for an oscillating state. The network fully synchro-
nizes around 900 ms and then looses some of the synchronization at roughly 1400 ms.
(b) Illustration of the strength of the synchronization process. The mean deviation to the
firing rates of the undisturbed model is plotted depending on the distribution width and
mean value. It is averaged over all seeds that show a synchronization.
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There is one more interesting observation that does not become apparent from Fig. 13.
For many combinations of the parameters for the delay distribution, the network is able
to oscillate between the synchronous and the asynchronous state. This also causes an
increase of the mean rates, albeit only a small one when compared to the rates of a fully
synchronized network. Such a transition is seen in Fig. 14 (a), where the system syn-
chronizes roughly after 0.9 ms and then loses the synchronization, going back over to an
asynchronous state at 1.5 s. This results in a variety of different values for the mean rates
of the system, as the effect can happen with different intensity. To give a better overview
of the strength of the synchronization within the initial plot of the probabilities (Fig. 13),
a second plot is created, where the total deviation to the mean rates is shown instead of the
probability. Fig. 14 (b) emphasizes the strength of the synchronization process. It shows
that an increased distribution width does continually reduce the strength of the synchro-
nization, that is maximal for a relative broadness of 20%. It is also interesting to see that
the deviation in the mean firing rates is strongest for delay values between 2 ms and 3
ms, delay values that are even larger appear to have a weaker influence on the network.
However, this decrease is probably a direct consequence of the increased synaptic delay,
since it simply takes longer for the signal to propagate to the next neuron, resulting in
lower firing rates. It does not mean a lessening of the synchronization within the network.

3.3.3 Estimated Hardware Delays

Within the previous section, a general study of the impact that different delays have on
the model was conducted, disregarding the actual values that are given on the hardware.
It is difficult to theoretically predict realistic values for the analogue system, since a lot
of different factors play into the signal propagation and have to be considered. Nonethe-
less, a good estimate might be useful to be able to evaluate the possibility of a hardware
implementation.
Within this section, an empirical approach is taken with the goal of obtaining an estimate
through the emulation of a very basic network and the measurement of the reaction time.
For this purpose, a network containing only two neurons is placed on different positions
of the wafer. The mapping process that handles the placement is automated, and a web
visualization displays the outcome. Fig. 15 shows an example of such a mapping, with
the two neurons being placed on different HICANNs of the wafer that are highlighted
blue. The route along which the signal is propagating is also visualized, but unfortunately
only barely visible on the plot, as it is a light yellow. It goes from the top left in a line
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Figure 15: Web visualization of the mapping for the two neuron network that is used to
estimate the delays. The rectangles present the available HICANNs on the wafer. The
two HICANNs in use are highlighted in blue.

to the right and when it reaches the same position on the x-axis as the second HICANN,
it goes straight down. The first neuron is setup with a leak over threshold potential,
causing it to fire periodically without the need of additional external stimulaton. The
second neuron is set up with typical parameters that were also used for the neurons within
the cortical column to create a scenario that is as close to the final network as possible.
This should however not affect the delays. The time between two spikes can easily be
adjusted through the refractory period of the presynaptic neuron, guaranteeing that the
postsynaptic neuron has returned to the leakage potential before a second spike arrives.
A projection between the neurons is created, using a PyNN AllToAllConnector. This
connector creates a connection between all neurons of the first population to all neurons
of the second population. In our case, this is exactly one connection. To make the signal
as strong as possible, the weights are set to the maximum value that is possible on the
BSS-1 hardware, setting the hardware specific parameters to a digital weight of 15, a
gmax factor of 1023 and a gmax div factor of 2. The spiketimes of the presynaptic and a
membrane trace of the postsynaptic neuron are recorded. The delays are then determined
as the difference between the spiketime of the first neuron and the peakstart within the
membrane of the second neuron.
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Figure 16: Results of the delay measurments on the hardware. (a) Delay depending on the
amount of repeaters needed for the connection. (b) Exemplary look of the delay measur-
ment for a single spike of the presynaptic neuron. The black line gives the spiketime of
the presynaptic neuron, the red line the extracted arrival of the signal at the postsynaptic
neuron

The peakstart is defined as the point, when the membrane potential of the postsynaptic
neuron first starts to rise. A brief overview of the algorithm used to determine it is given
in the following. Starting at the known spiketime of the presynaptic neuron, a window
with fixed size is shifted through the data points of the membrane potential. This is done
up to 10 ms after the initial spike has occurred, as the signal is certain to arrive within
this interval. The peakstart is then defined as the start of the interval that has the largest
standard deviation. This approach works because the synaptic kernel of the hardware
is an exponential kernel and thus the slope is strongest at the start of the signal. For
the measurements in Fig. 16, the window length is chosen to be 20 data points, which
translates to roughly 2 ms.
After loading the calibration process, that minimizes the fixed pattern noise explained in
section 3.2, the described network is run with a simulation time of 1200 ms bio time, and
the parameters of the first neuron are set so that it spikes roughly once every 100 ms for
a total of 12 spikes within the emulated time span. Fig. 16 (a) shows the ensuing delay
values depending on the amount of HICANNs that are between both neurons. They are
averaged over all of the spikes that happen within a single run. An exemplary look of
the calculation of a single delay value is given in Fig. 16 (b). For every HICANN that
is passed, there is a repeater to keep the signal strength the same. With regard to this,
an increased delay for a further connection is expected. Depending on the placement of
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the postsynaptic neuron, the measured delays are in between 0.2 ms for a measurement
on the same HICANN and 1.3 ms for a placement with 18 repeaters in between. These
values only represent a minimal estimate for the delays expected on the wafer, since it is
not guaranteed that the synapse is already at full strength when the first signal is observed
at the postsynaptic neuron. Additionally, it was not possible to realise a connection over
the maximal distance of the wafer, as the connection becomes increasingly susceptible to
hardware specific errors. Bearing this in mind, the delay is expected to be larger than what
is shown in Fig 16 (a). To be on the safe side and in accordance with previous studies
(Kaiser, 2020; Petrovici et al., 2014), the delay distribution is assumed to be centered
around 1.5 ms with a spread of 50%.

3.4 Results for Fully Adapted Model

This section presents a simulation that predicts the behaviour of the cortical column under
the restrictions that will eventually be forced upon the model when it is run on the BSS-1
hardware.
Effectively, this means combining the aspects that have been simulated independently
before, namely the parameter variation from section 3.2 with the realistic delay values
found in section 3.3.3. They are added to the scaled COBA LIF simulation, with the
results of this simulation being shown in Fig. 17.
The mean rates are within a range of at most 5 Hz to both, the rates from the scaled CUBA
model and the rates from the initial publication by Potjans and Diesmann. The increase
that is seen for most of the populations has already been observed and discussed in section
3.2. There also is an increased spread of the firing rates within each population. This effect
is already noticeable when applying the parameter variation, but has not been discussed as
of yet. A large part of this effect can be traced to the variation of the threshold potential.
Since the lower boundary of the distribution is directly at the reset potential, there are now
some neurons with a threshold that is only slightly above the reset potential. These will
fire with a rate close to the maximum firing rate that is given through the refractory period:
1/τref , widening the distribution considerably. The raster plot does not show any signs of
synchronous behaviour, a fact that is backed up by the irregularity and synchrony values
that have stabilized when compared to the delay investigation. Irregularities are centered
around 0.8 with almost no deviation between the different populations and synchrony
values only show the same increase for population 4e that has been seen in section 3.1
and section 3.2.
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Figure 17: Results for the final version of the COBA model, combining the parameter
variation with the delay estimate on the hardware. (a) Mean firing rates, compared to the
initial values from Potjans and Diesmann and the values of the 10% CUBA simulation that
was the starting point of this thesis. (b) Raster plot showcasing the asynchronous irregular
firing regime of the final model. (c) Irregularity values and (d) synchrony values.
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Even when taking a look at the worst case scenario for the synaptic delay, the observed
firing behaviour of the model still displays an asynchronous irregular pattern with a max-
imum of 5 Hz as deviation of the mean firing rates. The instabilities seen within section
3.3 do not appear. The parameter variation between individual neurons seems to shut
down any synchronous behaviour the system might exhibit. These results also hold for
differently seeded networks, confirming that it is not just a single convenient setup. Even
the adjustments to the reversal potentials, that were needed in section 3.3.1, are now re-
versible without the loss of the asynchronous irregular firing pattern. These observations
are considered sufficient to conclude that the model is able to withstand a hardware im-
plementation, without a drastic change of its behaviour.
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4 Discussion

This thesis deals with the feasibility of implementing the model of a cortical column, a
structure that is found in the cerebral cortex of mammals, on the neuromorphic hardware
BrainScaleS-1 of the Electronic Vision(s) group in Heidelberg. To that end, a scaled
version of the initial model (Potjans & Diesmann, 2012), run with the neural network
simulator NEST (Gewaltig & Diesmann, 2007), is gradually adapted to account for most
of the limitations of the system. The established model serves as a first indication of what
is expected for a possible hardware implementation.
The first adjustment is to the underlying neuronmodel. It was changed from a CUBA LIF
model to the COBA LIF model that is employed on the hardware. The chosen approach
tries to keep the same synaptic input in both scenarios. In spite of the noticeable difference
between the dynamics of both models, even without further tuning, only a slight deviation
of the firing rates is observed. Considering irregularity and synchrony of the network, the
behaviour of the neurons can still be classified as aynchronous irregular. In comparison to
the other effects that are investigated, the change of the neuronmodel is the only one that
causes an explicit change in the equations describing the dynamics of the model, so being
able to reproduce the firing pattern of the initial column with COBA synapses is already
quite promising for the future hardware implementation.
The next step is taking into account the fixed pattern noise of the hardware. Due to the
manufacturing process of the chip, small deviations between the parameters of individ-
ual neurons are unavoidable. The effects are estimated through a normal distribution, a
choice motivated in Schwarzenböck (2019). Implementing these changes to the COBA
simulation leads to a slight increase of the firing rates and a wider spread within the rates
of each population. With a maximum increase of roughly 1 Hz for excitatory and 3 Hz
for inhibitory populations, it is not expected to cause major problems to the hardware
implementation.
As a last adaption to the model, the effects that are induced by a different synaptic de-
lay, the time it takes for the signal to propagate from sending to receiving neuron, are
examined. From two milliseconds onward, an increase of the mean delay value results
in a synchronization of the firing rates. The exact point at which this transition occurs
depends on the width of the distribution. Additionally, this effect can be compensated for
through the use of larger reversal potentials. To obtain an estimate over the firing regime
that is expected on BSS-1, the synaptic delay on the hardware is evaluated, using a simple
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network of only two neurons. This small experiment leads to the conclusion that a delay
distribution between 0.5 ms and 2 ms is realistic for the hardware. These values are far
below the critical point observed in the software analysis, proving that the delays on the
hardware are not a hindrance for the cortical column model.
In the end, all the adjustments are combined into one simulation that serves as a means
of predicting the behaviour of the column for the hardware implementation. Despite the
amount of adjustments that have been performed, the simulation still shows the asyn-
chronous irregular firing pattern of the original model, with only a small deviation of the
mean firing rates. It is to be noted, that the discussed results are not definitive. There are
still effects that have not yet been accounted for, such as for example the synapse loss on
the hardware. Furthermore, even though the variation used for the neurons was based on
previous experiments, there are no explicit measurements to confirm them. For the synap-
tic time constant in particular, the mean value is not well known and a standard deviation
of 20 % might not be enough to predict the whole influence it has on the network.
Despite these considerations, the results of this thesis take into account the main problems
that occur, when considering a hardware implementation of the cortical column. The es-
tablished software simulation includes the main changes, that are needed for the model to
be successfully run on the hardware. It demonstrates, that the model of a cortical column
is able to withstand the imperfection of an analogue computing substrate and provides
data that can be used to critically asses the results of a future hardware implementation.
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5 Outlook

In its current state, the software simulation developed in this work already includes most
of the aspects that play into the final hardware implementation of the cortical column.
Nevertheless, there are still some features that differ between the numerical simulation
and the expected emulation on BrainScaleS-1.
One such aspect is the loss of individual connections, called synapse loss, that is caused
by the limited amount of resources that are available on a chip. During the experiments
to determine the delay values on BSS-1, it proved to be a common occurrence when con-
necting HICANNs on far ends of the wafer. Even though a small amount of lost synapses
should not affect a network of this scale overly much, a software implementation might
still be helpful to confirm this assumption. It can then also help with a possible compen-
sation for lost synapses through the adjustments of other synaptic weights. Apart from
that, it is questionable how much more insight can be gained through further optimization
of the software simulation, since in the end, it is only a numerical simulation that cannot
predict all of the eventualities that might occur because of the analogue nature of BSS-1.
Furthermore, with hardware in the loop training that is available on the analogue system,
it might even be possible to minimize the predicted deviations between the CUBA and
COBA model.
Finally, a successful implementation would serve as a promotion for both the model and
the hardware. On the one hand, it would proof the viability of the model that is able
to function, even when faced with the imperfections found in analogue substrates like
BSS-1 and the human brain. On the other hand, it would serve as a benchmark for the
BrainScaleS-1 system and show that analogue neuromorphic hardware is very well suited
for future investigations of the human brain.
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Grübel, A., & Baumbach, A. (2017). F09/f10 neuromorphic computing. https : / /www.
physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F09.pdf

Hbp neuromorphic computing platform guidebook. (n.d.). https://electronicvisions.github.
io/hbp-sp9-guidebook/pm/pm hardware configuration.html#the-neuromorphic-
wafer-module (accessed: 14.11.2020)

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., Diesmann, M., &
Kunkel, S. (2018). Extremely scalable spiking neuronal network simulation code:
From laptops to exascale computers. Frontiers in Neuroinformatics, 12, 2. https:
//doi.org/10.3389/fninf.2018.00002

Kaiser, J. (2020). Implementation of large scale neural networks on the neuromorphic

brainscales-1 system (Masterarbeit). Universität Heidelberg.
Müller, E., Schmitt, S., Mauch, C., Billaudelle, S., Grübl, A., Güttler, M., Husmann, D.,
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