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1 The Bayesian brain

The noisy behavior of cortical neurons might be a hall-

mark of an underlying stochastic computation scheme.

Such a scheme would enable the brain to cope with am-

biguous inputs and offers an explanation for behavioral

effects like bistable images (duck/rabbit) as sampling

from different modes of a posterior distribution. The

neural sampling hypothesis [1] proposes that some

cortical areas implement sampling-based Bayesian

inference.

These models are of particular interest for physical

model systems, which face similar challenges as the

brain. We review two works [2, 3], in which

we deployed stochastic spiking networks as ro-

bust and flexible models on analog neuromor-

phic hardware.

2 Sampling with spikes

For applications on spiking hardware, we require mod-

els that explicitly treat and use spiking neural networks.
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In the LIF sampling framework [4] a single neuron

describes a binary random variable based on its spik-

ing behavior (Fig-A-B). Immediately after a spike the

neuron is in the on-state and otherwise in the off-state.

The network approximately samples from a Boltzmann

distribution over binary random variables zi :
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This framework establishes an imporant connection to

Boltzmann machines. For practical applications we use

a hierarchical sampling network (Fig-C) inspired

by restricted Boltzmann machines [5].

3 Deterministic sampling

In most models of cortical networks, temporal vari-

ability is introduced using explicit white noise sources.

This is, however, problematic because i) the back-

ground activity of other brain areas is not nec-

essarily white noise and ii) a neuromorphic imple-

mentation would require dedicated, uncorrelated noise

sources for every neuron.

We found [2] that an ensemble of dynamically

fully deterministic, but functionally probabilis-

tic networks can learn a connectivity pattern that

enables probabilistic computation with a degree of pre-

cision that matches the one attainable with idealized,

perfectly stochastic components (Fig-left). The key

element of this construction is self-consistency, i.e., all

input activity seen by a neuron is the result of output

activity of other neurons that fulfill a functional role in

their respective subnetworks (Fig-right).

4 The BrainScaleS system

On a single module of the BrainScaleS [6] ana-

log neuromorphic hardware (Fig-A) the physical

model of 200k neurons and 40 million synapses

is implemented using CMOS technology. The system

follows the principle of physical modeling: it uses

the dynamics of the underlying substrate to implement

computation.
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As such it can emulate networks of spiking neurons

with 104-fold speed-up compared to biological real-

time, but suffers from considerable variability of neuron

parameters (Fig-B-C). Hence, we require robust net-

work dynamics and learning rules.

5 Use-case on neuromorphic hardware
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Using the LIF sampling framework we implemented a

restricted Boltzmann machine (RBM) [5] on the

BrainScaleS system [3]. We evaluate the model on a

reduced version of the MNIST dataset. The original

pictures were binarized, reduced to 12 × 12 pixels and

the digits 0,1,4 and 7 were selected (Fig-A).
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We map an RBM that was pretrained on a computer

to BrainScaleS and perform in-the-loop training to

compensate for the model and substrate imperfections.

The classification rate recovers software level per-

formance after O(10) training steps (Fig-B). The im-

plemented model is able to complete partially oc-

cluded images while predicting the label correctly

(Fig-C-F). Finally, it is able to generate recogniz-

able images if the respective label is clamped (Fig-

G).
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