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1 The Bayesian brain

The noisy behavior of cortical neurons might be a hall-
mark of an underlying stochastic computation scheme.
Such a scheme would enable the brain to cope with am-
biguous inputs and offers an explanation for behavioral
effects like bistable images (duck/rabbit) as sampling
from different modes of a posterior distribution. The
neural sampling hypothesis [1] proposes that some
cortical areas implement sampling-based Bayesian
inference.
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These models are of particular interest for physical
model systems, which face similar challenges as the
brain. We review two works [2, 3], in which
we deployed stochastic spiking networks as ro-
bust and flexible models on analog neuromor-
phic hardware.

2 Sampling with spikes

For applications on spiking hardware, we require mod-
els that explicitly treat and use spiking neural networks.
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In the LIF sampling framework [4] a single neuron
describes a binary random variable based on its spik-
ing behavior (Fig-A-B). Immediately after a spike the
neuron is in the on-state and otherwise in the off-state.
The network approximately samples from a Boltzmann
distribution over binary random variables z;:
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This framework establishes an imporant connection to
Boltzmann machines. For practical applications we use

a hierarchical sampling network (Fig-C) inspired
by restricted Boltzmann machines [5].
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3 Deterministic sampling

In most models of cortical networks, temporal vari-
ability is introduced using explicit white noise sources.
This is, however, problematic because i) the back-
ground activity of other brain areas is not nec-
essarily white noise and ii) a neuromorphic imple-
mentation would require dedicated, uncorrelated noise
sources for every neuron.
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We found [2] that an ensemble of dynamically
fully deterministic, but functionally probabilis-
tic networks can learn a connectivity pattern that
enables probabilistic computation with a degree of pre-
cision that matches the one attainable with idealized,
perfectly stochastic components (Fig-left). The key
element of this construction is self-consistency, i.e., all
input activity seen by a neuron is the result of output
activity of other neurons that fulfill a functional role in

their respective subnetworks (Fig-right).

4 The BrainScale$S system

On a single module of the BrainScaleS [6] ana-
log neuromorphic hardware (Fig-A) the physical
model of 200k neurons and 40 million synapses
is implemented using CMOS technology. The system
follows the principle of physical modeling: it uses
the dynamics of the underlying substrate to implement
computation.
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As such it can emulate networks of spiking neurons
with 10%-fold speed-up compared to biological real-
time, but suffers from considerable variability of neuron
parameters (Fig-B-C). Hence, we require robust net-
work dynamics and learning rules.

b Use-case on neuromorphic hardware
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Using the LIF sampling framework we implemented a
restricted Boltzmann machine (RBM) [5] on the
BrainScaleS system [3]. We evaluate the model on a
reduced version of the MNIST dataset. The original
pictures were binarized, reduced to 12 x 12 pixels and
the digits 0,1,4 and 7 were selected (Fig-A).
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We map an RBM that was pretrained on a computer
to BrainScaleS and perform in-the-loop training to
compensate for the model and substrate imperfections.

he classification rate recovers software level per-
formance after O(10) training steps (Fig-B). The im-
plemented model is able to complete partially oc-
cluded images while predicting the label correctly
(Fig-C-F). Finally, it is able to generate recogniz-
able images if the respective label is clamped (Fig-

G).
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