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Abstract
HICANN-X is the latest neuromorphic ASIC series, developed by the Heidelberg Elec-
tronic Vision(s) group. This thesis presents a fundamental characterization of some of the
chip’s analog circuits. The implemented analog parameter storage, the circuits describing
LIF neuron behavior and the neuron’s current based synaptic input were investigated. Of
particular interest on the second version of the chip, manufactured in 2020, were the re-
designed AdEx neuron extensions, which extended the LIF neuron towards a more biolog-
ically inspired behavior. For the fist time, AdEx circuits were measured on BrainScales-2
and they were shown to be mostly functional. This thesis concludes with the qualitative
reproduction of a diverse set of complex biologically inspired firing patterns.



Zusammenfassung
HICANN-X ist die aktuelle neuromorphe ASIC Serie der Heidelberger Electronic Vi-
sion(s) Gruppe. Diese Bachelorarbeit stellt eine grundlegende Charakterisierung einiger,
sich darauf befindlichen, analogen Schaltungen vor. Dabei wurden unter anderem der
kapaziative Speicher der analogen Parameter, Schaltungen des implementierten LIF Neu-
rons und dessen Strom basierter synaptischer Input untersucht. Eine Besonderheit der
2020 gefertigten zweiten Chipversion ist eine neuimplentierung des AdEx Modelles als Er-
weiterung des LIF Modelles. Zum ersten mal in der Geschichte von BrainScaleS-2 wurden
AdEx Schaltungen vermessen und es konnte gezeigt werden, dass diese fast vollständig
funktionieren. Diese Arbeit schließt mit der qualitativen Reproduktion von verschiedenen,
komplexen und biologisch inspirierten Spikemustern.
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1 INTRODUCTION

1 Introduction

When Hodgkin and Huxley (1952) investigated the nerves of european squids (Loligo vul-
garis), they developed a model that describes neuron cells as electrical circuits. Their
measurements on sodium and potassium channels as well as on cell membrane poten-
tials culminated in four coupled and partly non-linear differential equations. Due to their
non-linearity, this equations can be expensive to compute and hard to realize in electri-
cal circuits. To reduce this computational complexity, simplified neuron models such as
the decades older leaky integrate-and-fire model (LIF) (Lapicque, 1907) are used. The
FitzHugh-Nagumo model (FHN) (FitzHugh, 1961; Nagumo et al., 1962) is an example of
a neuron model, which is derived from the Hodgkin-Huxley-model. Of particular interest
is the adaptive exponential integrate-and-fire model (AdEx) developed by Brette and Ger-
stner (2005). In its core, it can be reduced to the simple LIF equation, but its adaptation
and exponential extensions allow to reproduce biologically realistic firing patterns.

However supercomputers need a lot of energy to simulate these models, especially in larger
networks. Implementing neuron models in silicon hardware can emulate such computa-
tions for multiple complex applications as well as for research on the complexity of brains
(Meier, 2017).

For nearly two decades, the Electronic Vision(s) group at the Kirchhoff-Institute for
Physics Heidelberg researched neuromorphic spiking networks and developed i.a. the
Spikey platform (Schemmel et al., 2006; Hartel, 2010) and the BrainScalesS-1 system
(Schemmel et al., 2008; Müller et al., 2020b). Their hardware is based on analog cir-
cuits for neurons and synapses and digital ones for spike routing and weight calculations.
HICANN-X is the latest ASIC generation of such hardware from Heidelberg. 512 neu-
rons with 256 synapses each already allow state-of-the-art experiments and applications
(Billaudelle et al., 2019a; Göltz et al., 2019; Cramer et al., 2020; Czischek et al., 2020).

Although the AdEx equations were already implemented in BrainScalesS-1 and have been
present in the first version of HICANN-X, the second version introduces a major rework
of the circuits. The new circuit’s designs attempt to improve linearity and parameter
ranges. This thesis will investigate the behavior of the implemented analog circuits and
propose calibration routines for spiking AdEx neurons. Since Stradmann (2016) investi-
gated HICANN-DLS’s analog parameter storage and neuron circuit, a comparison of his
results with these can illustrate the progress of the last years.
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2 Materials and Background

2.1 Biological models

The goal of neuromorphic hardware is to adapt biological neuron models and translates
them into electrical circuits. Different models describe different aspects of neuron be-
havior. Nearly all of them follow the concept that the brain communicates data by short
peaks of electrical potentials, called spikes. These action potentials (APs) are transmitted
via dendrites of post-synaptic neurons. The soma is then used to perform computations
on this incoming spikes. When within the soma a threshold is crossed, a spike is sent
via the axon to synapses that connect the neuron to dendrites of other neurons. The
following chapter shall give a brief overview of some models describing the soma, which
are implemented on the High Input Count Analog Neural Network X (HICANN-X).

Leaky integrate-and-fire model (LIF)

LIF describes the most fundamental aspects of neuron behavior. Mathematically, it is
established by a leaky integration of incoming currents on the neuron membrane Vm. A
fix threshold potential Vthresh causes the generation of a spike as well as it resets the
neuron’s membrane potential to a reset potential Vreset. The leaky integration can be
realized by a capacity with capacitance Cm and a resistor with conductance gl in parallel:

Cm · dVm

dt
= gl · (Vleak − Vm)

Vm = Vreset, if Vm > Vthresh

(2.1)

(Gerstner and Kistler, 2002).

Adaptive exponential integrate-and-fire model (AdEx)

AdEx is an extension to the LIF neuron model. It introduces a smooth threshold, a
sub-threshold adaptation and a spike-triggered adaption. Comparing the AdEx equations
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2 MATERIALS AND BACKGROUND

Cm · dVm

dt
= gl · (Vleak − Vm) + gl · ∆T · exp

(
Vm − VT

∆T

)
+ Iext − w

τw · dw
dt

= a · (Vm − Vleak) − w

Vm = Vreset and w = w + b, if Vm > Vthresh

(2.2)

to the LIF equations 2.1, the former equation was extended by a non-linear term and
was coupled to another non-linear first-order differential equation. As colored in red, the
exponential term consists of a smooth threshold VT and a slope factor ∆T. As soon as the
membrane passes VT, a "point-of-no-return" will be reached. The exponential term drives
the membrane potential towards the fixed threshold potential Vthresh. Colored in blue, the
adaptation term is described as another leaky integrator with time constant τw. In the
membrane’s sub-threshold domain, the adaptation state follows the difference between
membrane potential Vm and leak potential Vleak with strength a. When the neuron emits
a spike, the adaptation state will be shifted by the current b. AdEx can emulate neuron
behavior from the Hodgkin-Huxley model as e.g the firing pattern suggested by Naud
et al. (2008).

Current-based model (CUBA) for the synaptic input

Besides the integrating part of the neuron, models of the synaptic input are needed to
produce post-synaptic-potentials (PSPs) on the neuron’s membrane. Generally speak-
ing, a synaptic input can excite or inhibit the membrane potential. As opposed to
the conductance-based model (COBA) for the synaptic input, which modulates time-
depended conductances between the membrane and two reversal potentials, the current-
based model (CUBA) directly generate a current onto the membrane, shaped by an ex-
ponentially decaying kernel. The implemented version of the synaptic input is physically
divided into an excitatory and an inhibitory component. Both components are rather
similar, as they integrate incoming δ-shaped spikes as decays back to their baseline with
time constants τsyn. Further, an operational trans-conductance amplifier (OTA) is used
to generate a current proportional to the state of this integrator, which then affects the
membrane.
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(a) Block-level diagram of HICANN-X
taken from Grübl et al. (2020)

(b) Photo of a cube setup. Under the white
cap at the upper left corner, the HICANN-
X chip is mounted. Photo: Eric Müller.

Figure 1: Visual introduction of HICANN DLS X.

2.2 Neuromorphic substrate

The HICANN-X chip, based on 65 nm CMOS technology, conjoins nearly two decades of
research on neuromorphic hardware in Heidelberg. As part of BrainScaleS-2, it clearly
steps into the tradition of the High Input Count Analog Neural Network (HICANN)
(BrainScaleS-1), which ended up in a wafer-scaled system (Müller et al., 2020b). After-
wards HICANN-DLS was a prototype series of BrainScaleS-2, that provided 32 neurons
per chip. Since Stradmann (2016) characterized the neurons circuits and the analog pa-
rameter storage of HICANN-DLS v2, this thesis will often compare these previous results
with results from HICANN-X.

HICANN-X features 512 analog neurons on four blocks, controlled by a memory of 48 bits
and 8 voltages as well as 16 currents. Due to limited specific capacitances in CMOS tech-
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nologies, the time constants are thousand times smaller compared to biological models,
which results in a speed up factor of 1000. For a better dynamic range, biological voltages
are scaled and shifted to cover most of the usable supply range with Vhw = Vbio ·15+1.50 V.
Like previous chips, HICANN-X is divided into a digital and an analog part. The digital
part contains two plasticity processing units (PPUs), data busses and a hand-drawn as
well as generated digital logic controlling the neuron. Analog components are the synapse
array and the neurons. The neuron backend manages the digital part of the neuron, such
as the output spike management. Furthermore analog-to-digital converters (ADCs) and
digital-to-analog converters (DACs) were implemented on the application-specific inte-
grated circuit (ASIC)

The synapse array is a matrix of 512 times 256 connections. Each row of the synapse array
is connected to a synapse driver, processes input from either a host computer program, a
random spike generator or by the spike output of a neuron. At the crossing of a row and
a column a 6-bit synapse is placed, which’s weight can be updated using learning rules on
the host computer or on the PPU. For the neurons’ spike input each neuron is connected
to one column of this synapse array.

Internally the chip communicates via a bus system. The chip is connected to a field-
programmable gate array (FPGA) which is responsible for the host-chip communication.
Due to manufacturing uncertainties and the resulting transistor mismatch, all quantities
and parameters that corresponds to currents, voltages or biological parameters need to
be calibrated.

Mounted in cube setups, each chip is bonded on a chip-carrier-board, that is plugged
into an XBoard. This XBord is responsible for power management, passes though data
from and to the FPGA and carries DACs (section 3.2). The XBoard is racked into
another connection board, which ends in one of four possible FPGA slots. To complete
the description of a cube setup, the opposite site of the FPGA is mounted on an I/O-Bord
that controls the ethernet ports.

HICANN-X v1

HICANN-X v1 (HXv1), developed in 2018 and produced in 2019, is the first usable version
of the HICANN-X chip series. Its analog core differs from the smaller prototyping series
mainly in a newly designed leak term and a larger system size.
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Figure 2: Photo of HICANN DLS X v1 with overlaying schematic. Photo: Eric Müller.

HICANN-X v2

In it’s analog neuron, HICANN-X v2 (HXv2) introduces multiple new designed circuits
as i.a. new adaptation and exponential terms and a new CUBA synaptic input. Also
multiple technical issues of HXv1 were fixed, such as i.a. the reference control of the
analog parameter storage is now on a block wise level. Since this chip version will be
present in research for the next years, thesis will mainly discuss the behavior of HXv2.
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3 Measurement methods

For characterizing the HICANN-X chip, several tools and measurement devices were used
and some were developed. They can be split up into software, on-chip-devices and external
devices. The former allows to control the chip to execute experiments, the second is used
for daily calibration and experiment purposes. Low-level characterization often requires
additional, external laboratory equipment for more detailed measurements.

3.1 Software

BrainScaleS-2 software stack

Heidelberg’s Electronic Vision(s) group is not only about designing hardware, but also
about making this hardware usable (Müller et al., 2020a). For communication between
chip and program commands, this includes especially the development of required soft-
ware. Different layers of hardware-abstraction reduce the complexity of the system to
a level of interest. In case of this thesis, mostly individual configuration bits were set.
Therefore mostly configuration containers, that concentrate and label multiple configu-
ration bits to a smallest meaningful writable package, were used. Per default, containers
are filled with best-guess configurations. The used software includes python-bindings to
execute programs via Python. A code-snipped of the typical structure that were used to
write containers during this thesis is shown below. As usual for software, this software
stack is under continuous development and just represent the state of the art during this
theses.

1 import pyhxcomm_vx as hxcomm
2 import pystadls_vx as stadls
3 import pyhaldls_vx as haldls
4 import pyhalco_hicann_dls_vx as halco
5

6 # Program for chip initialization
7 init = stadls.ExperimentInit ()
8 init_builder = init.generate ()
9 init_program = init_builder.done()

10

11 # Program for experiments

7



3 MEASUREMENT METHODS

12 experiment_builder = stadls.PlaybackProgramBuilder ()
13

14 # e.g. write a container responsible for
15 # controlling an analog -to -digital converter
16 config = haldls.MADCConfig ()
17 config.number_of_samples = 1000
18 experiment_builder.write(
19 halco.MADCConfigOnDLS (), config)
20

21 experiment_program = experiment_builder.done()
22

23 # Start connection and execute program
24 with hxcomm.ManagedConnection () as connection:
25 stadls.run(connection , init_program)
26 stadls.run(connection , experiment_program)
27

28 # Afterwards the ’experiment program ’ contains the experiment results

Cadence Spectre

The analog components of ASICs in the Electronic Vision(s) group are designed in the
Cadence Virtuoso Analog Design Environment, and hence a circuit verification with Ca-
dence Spectre suggests itself (Grübl et al., 2020). Cadence Spectre allows full-custom
simulations using Monte Carlo methods as well as corner variations. For setting up a
simulation, either the interface of the tool or the arbitrary data interface can be used.

Teststand

Teststand is a Python software package between Cadence Spectre and the programming
language Python (Schemmel et al., 2020). It allows to use the full power of Cadence
Spectre in a programmatic environment including parallelization of circuit simulations.
This makes it possible to even calibrate circuits virtually for verification. Furthermore,
teststand was used to benchmark the analog part of HXv2 with the firing pattern suggested
by Naud et al. (2008) (Dauer, 2019). Whenever this thesis references simulation data,
these were collected using teststand and mostly taken from Dauer (2019).
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HICANN-X characterization framework

For this thesis, a new developed framework was based on the framework used for the
verification of HXv2. While it separates either hardware or simulation specific backends
from measurement methods, it allows a comparison between chips and simulations. The
free functions sweep() and search() apply measurement methods to backends in order
to investigate parameters by a parameter sweep or a (binary) search.

3.2 References and analog readout

Keithley 2635B Sourcemeter

For characterizing the chips, elementary measurements were performed with a sourceme-
ter. Since the on-chip sourcemeter has not yet been put into operation, an external
device was used. The Keithley 2635B Sourcemeter is a remotely usable programmable
high-precision analyzer with a resolution of 0.10 pF.

For remote purpose, an C++ library which can be called via Python is provided (Strad-
mann, 2016). Before a current measurement can start, a reference voltage needs to be
applied by the sourcemeter. Due to leakage offset currents inside circuits, a measured
baseline of the background needs to be removed from the acquired data.

Keithley 2635B Sourcemeter does also support to measure voltages.

LeCroy Wavesurfer 44Xs

More for debug purpose than for automated measurements LeCroy Wavesurfer 44Xs to-
gether with LeCroy ZS1000 active probes were used to verify settings of the chip manually.
The 8-bit scope offers high sampling rates up to 2.50 GS/s and interfaces for C++ and
Python libraries.

Analog Devices AD5328 (DAC)

Each XBoard is equipped with a DAC, to provide reference voltages. According to the
manual from AnalogDevices (2011), the 12 bit Analog Devices AD5328 with an output
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voltage range between 0 V and 2.50 V has a relative accuracy of typically ±2 LSB and of
±16 LSB at its maximum. This thesis uses the DAC for calibrating the on-chip ADC.

Analog-to-digital converter

HICANN-X is equipped with two different kinds of ADCs: column-parallel ADCs (CADCs)
with in total 1024 8 bit channels and a 10 bit ADC with a higher sampling rate. The
latter is called MADC and was used frequently in this thesis.

Because of the mismatch within the ADCs, an individual characterization is essential.
Therefore the described reference voltage DAC sweeps through a range of voltages, which
are measured by the ADC afterwards. As also shown in figure 3, the linear range of the
ADC is sufficient from 0.10 V to 1.10 V. Whenever this thesis illustrates voltages in figure,
which are measured by the MADC, the regions outside this specification are colored in
red.

When neuron potentials such as the membrane, synaptic or adaptation potentials are
investigated with the MADC, the neuron readout amplifiers were involved. This buffer was
not characterized for this thesis and could distort measured potentials. Experimentally,
the MADC can be used to estimate currents. For this purpose the rising voltage on a
capacitor of known size, in this case on a neuron membrane, was used. In this thesis,
this method was used to calibrate the current’s offset in the analog parameter storage as
discussed in section 4.
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Figure 3: Measurement, fit and residual of the MADC’s characteristic curve for chip 22
and chip 23 using the reference DAC on the corresponding XBoard for the input voltages.
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4 Characterization of the analog parameter storage

Most analog circuits and especially the neurons of HICANN-X depend on digitally ad-
justable currents and voltages. The chip’s circuits require control voltages between 0.10 V

and 1.50 V as well as (bias-)currents between 20 nA and 1 µA with 0 nA output at 0 LSB

(Billaudelle, 2019). Furthermore, a linear for all neurons similar translation of digital
values into analog quantities is needed for practical usage.

Therefore, four 10 bit capacitive memories, one on each neuron block, are implemented
on the ASIC. Each capacitive memory block is divided into current and voltage cells
that are mapped in columns and rows. Since HICANN-X has 128 neurons per block,
each neuron corresponds to a column with eight voltage and 16 current cells. Two more
columns per block are used for block-wide or even global currents or voltages. In total,
each HICANN-X provides 4160 voltage and 8320 current cells. An investigation on these
analog parameter storages is a solid foundation for further measurements on the chip.

Circuit description

Eref Eout

(a) Voltage Cell

Iref Iout

(b) Current Cell

Figure 4: Simplified drawing of capacitive memory cells taken from Stradmann (2016).

The capacitive memory (Hock, 2015) generates voltages Eout as well as currents Iout

from potentials stored on capacitors. Voltage cells directly expose their stored potentials.
Current cells use the latter as gate-source voltages for a transistor biased as a current
source, very similar to a split up current mirror. The stored potentials are programmed
and periodically refreshed from a global reference voltage ramp Eref or respectively the
current Iref, which is derived from Eref. Each cell carries its value in a 10 bit static random-
access memory (SRAM) word, which determines the point in time, where its capacitor
is attached to the sweeping reference by temporarily closing a switch. It is important to
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4 CHARACTERIZATION OF THE ANALOG PARAMETER STORAGE

mention that the local voltage cells are not buffered and therefore can not be loaded.

HXv2 introduced a more fine granulated control over the reference current generator
by allowing to control these currents individually per capacitive memory block. The
configuration used in this thesis is shown in the appendix table 1.

Due to a oscillation of the reference voltages after closing the switches, corrupted out-
put voltages or currents can be observed when many cells store the same value. This
cross talk between cells is known (Hock, 2015) and still unsolved in the current chip
version. Nevertheless, setting the bias that stabilized the reference voltage to maximum
(capmem amplifier = 63 LSB) and a change in the timing of opening and closing the
switches to the reference voltage Eref or current Iref, reduces this unwished effect.

For a low-level characterization, the capacitive memory allows to read out the individual
cells directly. Local voltage cells are however buffered via a source follower so that the
absolute potential of these cells is not available.

Reference slope

The most fundamental observable of this capacitive memory is given by voltage ramp.
Demonstrated in figure 5, its slope controls the slope of the output voltages and currents.

Its bias current is adjustable in 6 bits and was calibrated to generate 1.80 V at 1000 LSB

in voltage cells. To be scalable in ASICs, an on-chip calibration was preferred. Even if
the MADC has an upper limit of 1.10 V, it was the predestined device. Hence the analog
parameter storage was calibrated to 0.90 V at 500 LSB. Since the reference voltage slope
intrinsically affects the MADC’s characteristic by changing its bias currents, for each slope
additionally the external DAC at 0.90 V were measured. By sweeping different reference
voltage slopes and comparing MADC measurements of the external DAC with the same
of multiple global voltage cells, the best reference voltage slope was chosen.

Since - even without calibration - the blocks showed very similar behavior and the slope
can only be controlled with a coarse granularity, in the end similar slope settings for all
blocks were received.
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Figure 5: Characteristic curves of row 5 (voltages) and row 8 (currents) on column 128
for all four blocks on chip 22. The capacitive memory slope was arranged for each step
from 0 to 20

Current offset

To be able to counteract manufacturing uncertainties, an offset compensation with 64
possible settings is placed in the reference current Iref. Such an offset can beware especially
problematic when for a cell programmed to 0 LSB a non-zero current is generated since this
would lead to a situation where some circuits cannot be disabled. A further calibration of
the offset compensation was required, to harmonize the blocks as well as to ensure about
20 nA at 20 LSB.

Assuming that a maximum compensation finally ensures zero output at 0 LSB, a current
estimation as illustrated in section 3.2 was used as baseline. Therefore the offset com-
pensation setting for cells programmed to 0 LSB was increased for each block starting at
zero, until the output current crossed the baseline.

It became apparent that this method for calibrating to the former requirement also ac-
ceptably caught the latter. Figure 6 illustrates the difference from a uncalibrated to a
calibrated offset at an already harmonized slope, measured with an external sourcemeter
at chip 22. As noticeable in table 1, the calibrated setting differed a lot between chips
and blocks.
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Figure 6: Uncalibrated and calibrated current offset in the capacitive memory blocks of
chip 22, measured from the current cells on column 128 and row 8 with an external source
meter.

Integrated non-linearity (INL)

Looking on figure 7, where the characteristic curves of voltage and current cells on chip
22 are shown, the saturation of voltage cells attracts attention. In the same time, also
the currents diverge at high digital values. Both are correlated as already observable in
figure 5. So far it seems to be a problem that could be solved by a less steep slope. Since
this would cause a lower maximal output current, it was decided not to do so.

In total, the dynamic range for voltages and currents is reliably given, but not always
linear. For the purpose of this thesis, this results in a non-trivial translation between dig-
ital value and output current or voltage and prohibits to characterize circuits in absolute
units for bias currents and reference voltages.

Differential non-linearity (DNL), integrated non-linearity (INL), gain error and offset error
are universal quantities to characterize the performance of an ADC or a DAC. Due to
the high resolution of the capacitive memories, the integrated non-linearity (INL) is of
more interest than the differential non-linearity (DNL). Since the offset of current cells is
already calibrated and voltage cells are designed such that they have a small offset error,
in following the INL and the gain error is discussed. The INL describes the difference
between a linear fit and the measured outputs for a sweep over all digital settings. The
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Figure 7: Characteristic curves of column 0 (first neuron on block) and column 128 (global
cells) for all four capacitive memories on chip 22 (HXv2) measured with an external
sourcemeter in steps of 10 LSB. For each investigated column all 8 voltage rows and all
16 current rows are measured. The ReferenceGeneratorConfig is calibrated as given in
appendix table 1.

gain error evaluate the difference from the determined slope by the linear fit to the ideal
slope.

As observable in voltage cells as well as in current cells, the slope is not precise enough
to harmonize the blocks among each other or to a reference voltage. In theory, a linear
voltage translation should be given by 1.80 mV/LSB, but the measured values of the
calibrated capacitive memory differ significantly from this (figure 9a). Similar, also the
current cells overshot their theoretical linear slope given by 1.00 nA/LSB (figure 9c). On
the other hand, this figure allows to suspect a similar slope for each neuron of a block.

With respect to the INL, which is drawn in figure 9ab, a linear usable region was found to
be between about 0 LSB and 700 LSB for voltages and 20 LSB and 800 LSB for currents.
It stands out that for current cells unlike for voltages cells, whose INL for different blocks
is quite similar, the INL differed significantly between different blocks.

Conclusion

Overall, there is much more to investigate for a capacitive memory, but for the purpose of
this thesis this would be beyond the scope. During this thesis, cross talk was prevented
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4 CHARACTERIZATION OF THE ANALOG PARAMETER STORAGE

Characteristic values of Chip 22
an capacitive memory Ideal Block 0 Block 1 Block 2 Block 3
Current cells
Slope (mean) nA/LSB 1 1.192 1.039 1.070 1.130
Slope (std) nA/LSB - 0.008 0.008 0.010 0.010
Lower linear limit LSB 20 20 20 10 10
Upper linear limit LSB 1021 800 800 800 800
INL (max, in limits) nA - ±5.5 ±5.8 ±13.5 ±7.9

Voltage cells
Slope (column 128, row 5) mV/LSB 1.800 1.985 1.839 1.980 2.027
Slope (fit error) mV/LSB - 0.003 0.002 0.002 0.003
Lower linear limit LSB 0 0 0 0 0
Upper linear limit LSB 1021 700 700 700 700
INL (max, in limits) mV - ±41 ±20 ±25 ±49

Figure 8: Table of some characteristic values of the capacitive memories on chip 22. For
currents, the cells shown in figure 9 were investigated.

by just setting cells of one investigated neuron unequal to zero at the same time. For
calibration purpose, which should be usable for neuronal spiking networks, this needs to
be considered. When absolute and precise voltages or currents are required to be known,
a block-wise characterization and translation is recommended.

17



4 CHARACTERIZATION OF THE ANALOG PARAMETER STORAGE

0 128

9
22

(c)

0 128

9
22

0 128

9
22

0 128

9
22

0 500 1000

Digital Value

−10

0

10

IN
L

cu
rr

en
t

ce
ll

s
[n

A
]

(b)

1.0 1.1 1.2

Spacial distribution of linear
slope of current cells [nA/LSB]

0 500 1000

Digital Value

−20

0

20

IN
L

v
o
lt

a
g
e

ce
ll

s
[m

V
] (a)

Block 0

Block 1

Block 2

Block 3

Figure 9: Integrated non-linearity (INL) and slope of the capacitive memories on chip 22.
(a): INL of voltage cells. Column 128; Row 5.
(b): INL of current cells. Columns 0, 4, 64, 124, 127; Rows 5, 9.
(c): Spatial distribution of the linear slope for the current cells investigated in (b).
Blocks are counted from left to right and upper to lower.
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5 NEURON CHARACTERIZATION

5 Neuron characterization

The circuits of the investigated neurons can be considered as an aggregation of components
that effect the membrane potential Vm. As illustrated in figure 10, the neuron membrane
is realized by a capacitor. Even it’s capacitance Cm is tunable in 6 bits, this thesis
operates with its maximum value membrane_capacitor_size = 63 which was expected
to result in about Cm = 2.40 pF. A comparator triggers a digital output spike and
pulls a reset when the membrane potential Vm crosses the threshold potential Vthresh.
Together with the leak term, these three parts provide a LIF neuron without any input.
The adaptation and the exponential term instantiate AdEx behavior in the neurons.
Symmetrically assembled CUBA synaptic inputs transform input current pulses from
synapses into exponentially shaped and amplified currents which then affect the membrane
potential. Some experiments, like the firing patterns from Naud et al. (2008), require the
membrane to be stimulated by an offset current, which is implemented by the offset current
term. In the latest version of HICANN-X, the offset current term can act as excitation or
inhibition by switching it’s sign. This thesis uses the neuron readout for calibration and
characterization of the neuron’s circuits, even though it has not been fully characterized
itself.

Neuron readout

Offset current

Synaptic Input (inh)

Synaptic Input (exc)

Adaptation

Exponential

Leak

−

+

Comp. Spike

Vm

Cm

Vthresh

reset

Figure 10: Schematic overview of the neuron terms in HXv2. Arrows marks the direction
of information.

5.1 Leak term and threshold comparator

The LIF behavior, as described in equation (2.1), results from the threshold comparator
as well as the membrane capacitance Cm and the leak conductance gl. The latter two
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5 NEURON CHARACTERIZATION

result in the membrane time constant

τm =
Cm

gl
. (5.1)

The following section will discuss these components in detail, which were designed by
Sebastian Billaudelle.

Circuit description

While the capacitance Cm and threshold comparator are already schematically shown in
figure 10, figure 11 presents a simplified circuit diagram of the leak term. In basic terms,
the leak term’s adjustable resistor is given by an OTA, which connection and resistance
can be switched between a leak and a reset mode. Predominately the former is used until
the comparator pulls a reset as described in the second line of equation (2.1). In this
case the pseudo resistor, which is controlled by the OTA’s bias current, switches to a
typically higher conductance to nearly instantaneously set the membrane potential Vm to
the reset voltage. During the time the reset is pulled, the neuron is in a refractory state
and not able to emit another spike. In order to realize membrane time constants in the
range of sub-micro seconds to, in the best case, hundreds of micro seconds, a conductance
multiplication and a division mode is implemented into the OTA and controlled by two
digital bits. Each scales the conductance by about one order of magnitude. Iter alia
for calibration purposes, on the one hand, the reset of the neuron’s membrane can also
be forced manually and, on the other hand, the comparator can be disabled to prevent
output spikes and resets.

−

+
SF

SF

Vm

digital mode

reset

Vleak

Vreset

bias
Ileak

Ireset

Figure 11: Schematic overview of the leak term circuit. In the centered leak-OTA, digital
shift bits enlarges the range of adjustable conductances. For the time, the reset is pulled,
the switches on the left hand side change the OTA’s input from leak to reset.
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5 NEURON CHARACTERIZATION

Figure 12: Measured and simulated membrane time constant on HXv2 and HXv1 with
respect to the leak bias current Ileak and with and without enabled multiplication and
division mode for chip 15, chip 22 and chip 23. The distribution of the measurements at
50 LSB and 1000 LSB (marked by blue vertical lines) are shown in the histograms with
respect to modes, neurons and blocks.

Membrane time constant

A fundamental quantity of a neuron emulating circuit is given by the membrane time
constant τm. Defined in equation (5.1), it is as a link between the leak conductance
with the capacitance. When an external input shifts the membrane potential Vm to a
voltage unequal to the leak potential, τm describes the relaxation time. These can then
be determined by an exponential fit. Assuming a constant capacitance, it characterizes
in particular the leak conductance. In the same way, the reset time constant could also
be investigated. However, as far as the reset membrane time constant is typically not
calibrated but set to the shortest value possible and both time constants use the same
OTA, a second measurement is not of interest for this thesis.

As shown in figure 12 through a green background, a membrane time constant in the
range of 0.50 µs and 100 µs is specified. Measured on HXv2 for bias currents Ileak between
50 LSB and 1000 LSB, this aim were achieved for almost all neurons. Considering the
measurements on HXv1 with bias currents within the range from 20 LSB to 50 LSB, it
could be assumed that the leak term in HXv2 is monotonic until the lower border given
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Figure 13: Measured and simulated leak potential on HXv2 (upper) and on HXv1 (lower)
with respect to the leak voltage Vleak for chip 21, chip 22 and chip 23. The green colored
specifications are not satisfied for all neurons. The distribution of the measurements at
444 LSB and 888 LSB (marked by blue vertical lines) are shown in the histograms with
respect to neurons and blocks.

by the analog parameter storage. Figure 12 also shows the membrane time τm constants
extracted from a Monte Carlo simulation of the neuron circuit including 20 samples. The
mean as well as the standard deviation σ are plotted. Considering the smaller sample
size and the fact that the measured data includes a total of 1024 (HXv2) + 128 (HXv1)
neurons distributed over three chips from two different manufacturing runs, the measured
distribution did not deviate significantly from the simulation. The systematically shorted
time constants of the simulation most likely originated from parasitic capacitances not
included in the simulation. Throughout all blocks the distribution spreading was in the
same order of magnitude and larger than the shift between different blocks. Sporadically
an outlier time constant behavior could be observed. This became apparent when it was
not possible for the algorithm to find a good fit due to multiple imperfect initial guesses.

Leak voltage

The leak potential was measured by setting the corresponding parameter to a certain
value, then waiting for the membrane to settle and finally determining the mean of the
membrane potential during an interval of 5 µs by using the neuron readout in combination
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5 NEURON CHARACTERIZATION

with the MADC. So far not discussed, some voltages use a source follower between the
analog parameter storage and the consuming circuit, as for instance in the leak and reset
voltage. In schematic figure 15, noted by a box with label SF, the output voltage is reduced
by approximately 0.70 V. To realize leak potential in biological inspired scaled ranges and
utilize a wide dynamic ranges, the circuits were designed for a usable range between 0.30 V

and 0.80 V. This upper limit is only achieved by half of the neurons on HXv2 across both
chips and all blocks. As a one-block snapshot on HXv1, the lower plot in figure 13 seems
to exhibit a slightly better performance. The saturation at large digital values is given by
the saturation of the capacitive memory as mentioned in section 4 and can be improved
by using a different source follower bias or transistor scaling. Potentially strongly effected
by the different setting of the neuron readout and the limitations of the MADC, the first
version of HICANN-X allows leak potentials to be set for all neurons less then 0.10 V, but
HXv2 does not reach voltages lower then 0.10 V. Simulation data (Dauer, 2019) expect
a potentially higher leak potential because of a different source follower bias, deviations
in the manufacturing process, as well as an imperfect capacitive memory translation,
were used. Since the simulation did not simulate the analog parameter storage, the
leak saturation does not appear for this data. The simulation already forecasts input
offsets of the source follower and the OTA, but in measurements this distribution expands
significantly. The predestinated methodology is already in use for PPU-based calibration.
Within the dynamic range of the leak voltage for calibration a linear relation between
hardware parameter and observable seems to be a good assumption.

Reset voltage

The reset potential can be determined by forcing a reset and measuring the membrane
potential during the refractory time. In terms of the claimed dynamic range, which is
similar to the range of the leak potential and also noted in the green background of
figure 14, the upper target was not hit by the majority of neurons. Due to the fact
that leak potential and reset potential are designed symmetrically, the result of the reset
potential measurement in figure 14 did not differ from the leak potential results. For
this reason, figure 14 does not show results from HXv1. Unlike for the leak potential,
deviations between measurement and simulation results became significant. Saturation
and offset at the top and bottom areas of the measurement data were caused by the reasons
previously described for the leak potential. As already discussed for leak potential, inside
the dynamic range of each neuron a linear relation between hardware parameter and

23



5 NEURON CHARACTERIZATION

0.0 0.5 1.0 1.5
Simulation input voltage [V]

0 200 400 600 800 1000

Reset voltage Vreset [LSB]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H
X

v
2

R
es

et
p

o
te

n
ti

a
l

[V
]

100 101

Counts

at 444 LSB

at 888 LSB

Simulation

HXv2

Chip 22, Block 0

Chip 22, Block 1

Chip 22, Block 2

Chip 22, Block 3

Chip 23, Block 0

Chip 23, Block 1

Chip 23, Block 2

Chip 23, Block 3

Figure 14: Measured and simulated reset potential on HXv2 with respect to the corre-
sponding hardware parameter for chip 22 and chip 23. The green colored specifications
are not satisfied for all neurons. The distribution of the measurements at 444 LSB and
888 LSB (marked by blue vertical lines) are shown in the histograms with respect to
neurons and blocks.

observable is a good assumption for calibration.

Leak conductance

One fundamental measurement in this thesis was the measurement of the leak OTA’s
output current. An idealized OTA is given by

Iout = g(Ibias) · (V+, in − V−, in) , (5.2)

with the transconductance g(Ibias). Since the input voltage V−, in figure 24 is connected
to the OTA’s output, a pseudo resistor is created.

Using the external sourcemeter, Vm, Vleak and Ileak were investigated. To reduce the
measurement time to an acceptable level, only neurons 0, 4, 64, 124 and 127 on each block
were analyzed. Unfortunately, due to technical issues, the responses for two neurons were
lost.

Setting the leak potential per calibration on a certain voltage and clamping the membrane
potential using the sourcemeter to another voltage, the sourcemeter measured the OTA’s
output current as illustrated in figure 15. For each leak potential and bias current, the
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Figure 15: Characteristic curve of leak OTA’s output with respect to the membrane
potential Vm on chip 22, block 0 and neuron 0. The output current was measured for mul-
tiple leak bias currents Ileak (shown by brightness) and calibrated leak voltage potentials
(shown by color). For the green leak voltage, its current’s derivative with respect to the
membrane potential Vm is shown in the lower plot.

trans-conductance gl was given by the derivative of the output current with respect to
the membrane potential (c.f. figure 15 lower plot).

Looking on an ideal OTA, the current crosses the x-axis where the membrane potential
equals the leak potential and the output current slope is linear for all input voltages. The
former can be described as an offset and is illustrated in figure 16b with respect to the
leak bias current Ileak. Figure 16a shows the determined trans-conductance gl. Due to
offset currents, the uncertainty in measurement increased with decreasing bias current
and the spread of the conductance band expands. The expanding on the upper end was
probably caused by the diverging currents from the capacitive memory.

Even though biological models often describes the quantity of conductance, the membrane
time constant is usually calibrated instead. This is justifiable by the complexity of the
measurement method. A reverse calculation, when the capacitance is known, is given by
equation (5.1).
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Figure 16: Leak OTAs. (Chip 22, Block 0-3, Neurons 0, 4, 64, 124, 127).
(a) Leak OTA’s conductance with respect to the leak bias current.
(b) Lak OTA’s offset with respect to the leak bias current.
For each neuron, all three measured leak voltages are drawn.

Membrane capacitance

When time constant and conductance of a leaky integrator are known, equation (5.1) gives
the size of the corresponding capacitor. Designed for 2.40 pF, the manufacturing process
related deviations and potential parasitic effects need to be estimated. Since for small
bias currents leakage currents lead to high measurement uncertainties, gl and Cm were
investigated for a leak bias current of 1000 LSB. Averaging over three curves measured
for different leak potentials (figure 15) the conductance was estimated. The determined
values for chip 22 are illustrated spatially in figure 17. Two neurons are white due to
missing data. Finally the averaged capacitance could be established to

Cm = 2.39 ± 0.16 pF,

with the uncertainty calculated for 18 neurons. A minimum of 2.08 pF and a maximum
of 2.80 pF was measured. At some point, a further investigation of the capacitance’s 6 bit
adjustability could enable them to be calibrated.

Threshold voltage

The last component investigated in this section is the threshold comparator. The compara-
tor gives an output signal when the membrane potential crosses the threshold potential.
A reset signal is generated from this output. Unlike leak and reset potential the threshold
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Figure 17: Spatial distribution of the neurons’ capacitances on chip 22.

potential is not buffered by a source-follower.

In order to measure the threshold potential, multiple spikes were triggered and the maxi-
mum of the trace was extracted. Therefore strong excitatory synaptic input was enabled
to push the membrane potential towards the threshold. For accelerating this process, a
small leak conductance was adjusted. Assuming the leak term reliably and quickly pulls
the membrane back to the reset potential when a spike or rather a reset is emitted by
the comparator, this peak potential is a good estimate for the threshold. This method is
limited by the lower limit of the reset potential because the reset needs to be under the
threshold potential. Typically threshold potentials between 0.90 V and 1.10 V are used to
maximize the dynamic range of the membrane potential.

Figure 18 shows the characteristic curve of the threshold potential. With the comparator
implemented using thin oxide transistors, its range is limited to 1.2 V. Unfortunately,
voltages above 1.1 V are not reliable resolved by the readout chain and MADC. At its
lower end, the curves spread due to the limitations of the reset potential. For calibration
purposes the used method is recommended. Inside the dynamic range of the threshold
potential, a linear relation between hardware parameter and threshold potential seems to
be a good calibration sufficient description.

Conclusion

Overall, nearly all specifications seems to be reached for a vast majority of neurons across
blocks and chips. Nevertheless, the leak and reset potentials do not reach the upper
specified limit. With the source follower in mind, a further investigation could reduce this
issue. If not, changes to the design should be made for the next chip version.
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5.2 Synaptic Input

In HXv2 new circuits for a current-based synaptic input synaptic input was introduced
by Sebastian Billaudelle. As illustrated in figure 10, inhibiting and exciting spikes have
separated synaptic inputs. For further chip versions, it has been planned to also implement
a conductance-based synaptic input.

Circuit description

Figure 19 shows an excitatory synaptic input because inhibitory and excitatory synaptic
inputs are mostly symmetric. However, the OTA’s inputs are inverted for an inhibitory
synaptic input. The synaptic line Isyn, which connects all excitatory synapses of a column
in the synapse array with the excitatory synaptic input of a corresponding neuron, drives
an RC-circuit with resting potential VDD. Each spike is a δ-shaped current pulse with a
height proportional to the synaptic weight, that pulls the synaptic potential to a lower
voltage. Considering the adjustability of the synaptic time constant, the resistor is realized
as a pseudo resistor, whose bias current controls its conductance. To reliably reach time
constants between 0.50 µs and 100 µs, this circuit has, similar to the OTA in the leak
term, a digital switch to extend the conductance range by an additional high-resistance
mode. Furthermore, another switch is implemented to further reduce the synaptic time
constant τw, since the synaptic line itself represents a capacitor of reasonable size. This
is not investigated in this thesis. An OTA is used to generate a current from the synaptic
integrator’s voltage. For an offset calibration this OTA, both OTA-inputs are buffered by
tunable source followers. A digital switch between the OTA’s output and the neuron’s
membrane allows to disable the synaptic input.

−

+

Vm
Isyn

S1

Idrop Ishift

biasIgm
Itau

Figure 19: Schematic overview of excitatory synaptic input circuit. In the inhibitory
synaptic input the OTA’s inputs are inverted.
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Figure 20: Post-calibrated membrane offset caused by the synaptic input. Igm = 700 LSB,
τm = 10 µs

Offset compensation

To not affect the membrane with an offset current, the OTA’s offset has to be calibrated
for the inhibitory as well as the excitatory synaptic input. This service as a foundation
for further measurements. Therefore the source follower bias currents Idrop and Ishift are
introduced. Ishift was designed to set one of the OTA’s inputs to a certain potential. For
calibration Ishift needs be varied until the OTA’s output is zero. The OTA’s output current
can be measured by disabling the spike comparator, setting the membrane time constant
to a maximum and observing the membrane potential with reference to a baseline with
disabled synaptic input. As for many neurons the dynamic ranges of Idrop did not satisfy
for offset compensation, Ishift was additionally calibrated to extend the offset compensation
range. In figure 20 the post-calibrated offsets are illustrated for enabling both inputs
individually and simultaneously. For calibration purposes the used nested binary-search
method on Idrop and Ishift is recommended.

Noise estimation

In HXv1, high levels of noise originating from the synaptic inputs were measured on
the membrane. To quantify these perturbations on HXv2, the leak was configured for
extremely long time constants by setting the bias current Ileak to 10 LSB and enabling
the leak OTA’s division mode. Due to the nearly disabled leak term it is expected to
see Braunian-noise. This expectation can be deduced from the fact that random currents
from the synaptic input cause a random walk on the membrane potential. The membrane
potential was then digitized for durations of 100 ms and the standard deviation of these
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Figure 21: Membrane noise caused by the synaptic input. Igm = 700 LSB, Ileak = 10 LSB,
τm division mode enabled.

traces were extracted (figure 21). This was repeated for disabled and individually enabled
synaptic inputs as well as for the case of both input circuits being enabled.

Synaptic time constant

The synaptic time constant is given by the digital mode and the bias current of the pseudo
resistor. Generally the synaptic time constant can be determined either by looking on the
exponential decay of an input spike on the synaptic integrator potential or by fitting the
resulting PSP on the neuron’s membrane. Since the latter is based on unstable fits, the
former was used for measuring the synaptic time constant. In further investigations it
would also be interesting to measure the membrane as well as the synaptic time constant
by fixating the fit parameters for the PSP as far as possible.

Figure 22 illustrates the results measured on the synaptic line for the inhibitory and exci-
tatory synaptic input with and without the high-resistance mode enabled and with respect
to the bias current. At the upper end of the bias currents, the time constant bands spread
due to the diverging currents of the capacitive memory. Furthermore the diverging on the
lower end of the bias currents is caused by unstable fits for long time constants and, more
importantly, by the diverging currents of the analog parameter storage as investigated
in section 4. For all neurons the specification to reach inhibitory and excitatory time
constants between 0.50 µs and 100 µs was achieved.
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Figure 22: Measured inhibitory and excitatory synaptic time constants on HXv2 for the
normal and high-resistance mode on chip 22 and chip 23. This corresponds to 2048 lines
per mode. The distribution of the measurements at 48 LSB and 1000 LSB (marked by
blue vertical lines) are shown in the histograms with respect to modes and neuron blocks.

Synaptic linearity

The OTA biased by Igm needs to be tested for its linearity. PSP amplitudes corresponding
to different weights of incoming spikes were determined for the synaptic line as well as
for the membrane. Therefore the synapses of 64 synapse array rows are configured to
enumerate the 64 possible synapse weights. To realize weights greater than 63, multiple
synapse drivers are used simultaneously, e.g. for weight 70 the synapse driver for the
synapse row configured to a weight of 63 fire together with the one configured to a weight
of 7. This method is similar to the super-synapses algorithm used for the insect navigation
experiment by Korbinian Schreiber (Billaudelle et al., 2019b).

In this analysis, the PSPs were characterized by their absolute amplitude and not by the
fit of the analytical solution of the differential equations to the membrane and synaptic line
traces. This was found to be a much more stable method, even if it does not investigate
the time constants of the synaptic input and of the membrane. Figure 23 illustrates the
amplification for a single neuron in the center of the first block on chip 22.

The synaptic line is specified until a maximum voltage drop of 0.20 V. Here a linear
increase with respect to the weight of the input is expected.
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Figure 23: Measured voltage drops caused by spikes on the synaptic line and on the
membrane for a single single neuron. The right plot represents the amplification factor of
the OTA with respect to its input voltage.

However, this measurement was highly influenced by the differences in the synapse drivers,
synapses and timing of the spikes. Due to this reason, a quantitative investigation of the
linearity was not constructive. Beside the named issues, the synaptic line seems to be
linear in terms of a qualitative observation.

All amplitudes of PSPs on the neuron membrane are limited by the dynamic range of
the membrane. To maximize this usable dynamic range, for the inhibitory input the leak
potentials were set to approximately 0.80 V, while for the excitatory input they were fixed
to circa 0.30 V. The saturation in the absolute values of the amplitudes fits well to the
expected dynamic range of the membrane.

A membrane time constant of to approximately 15 µs and a synaptic time constant of
approximately 5 µs was configured. Qualitatively, the absolute amplitude of the PSPs on
the membrane increases linearly with the synaptic weight (c.f. middle plot in figure 23),
and even more with respect to the amplitude on the synaptic line (c.f. right plot in
figure 23) demonstrating the linearity of the OTA. An overview on all synaptic inputs is
given in appendix figure 35.

Some neurons or even complete neuron blocks showed a non-linear behavior on the synap-
tic line. Probably, this was related to a different timing of input spikes, when multiple
synapses were used. Furthermore, in some neuron blocks neurons the membrane poten-
tial did not response to PSPs as expected. Due to time constrains, this issues were not
investigated further.
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Conclusion

Overall the synaptic input benefits from the redesigned circuits. Especially the offset
compensation exhibits reasonable results. Also the noise on the membrane caused by the
synaptic input is reduced in HXv2 compared to HXv1, where previously random jumps
in the membrane potential occurred. The time constants reaches their specification for
all tested 1024, neurons inhibitory as well as excitatory. A further investigation on the
synapse arrays and PSPs is needed as described.

34



5 NEURON CHARACTERIZATION

5.3 Adaptation term

One of the most significant changes between HXv1 and HXv2 are the new designed adap-
tation and exponential circuits. Developed by Sebastian Billaudelle, linearity and ranges
of the circuits are improved. A main benchmark was given by the reproduction of firing
pattern suggested by Naud et al. (2008) and simulation showed, that this benchmark is
hard but achievable (Dauer, 2019). However, the specification ranges in this section were
inspired by this pattern. The following section will investigated the parameters of this
new adaptation circuits.

Circuit description

−

+

τw

+

−
a

Vm

Vadapt, leak

Vm

reset
Ib

Cw

x 1
12

IτwIa

S1

Vadapt, ref

Figure 24: Schematic overview of the adaptation circuit. For realizing negative values for
the parameter a and b in equation (2.2), the a-OTA’s inputs as well as the current Ib the
can be inverted. The voltages Vadapt, leak and Vadapt, ref are buffered by source followers
dropping these voltages around about 0.70 V.

As given in equation (2.2), the adaptation term is based on an additional state variable
w, which in the circuit is stored as a voltage on a leaky integrator. Like the leak term,
this leaky integrator is represented by a RC-circuit realized by an OTA with negative
feedback and a capacitance Cw. In figure 24 this OTA is named τw and provides two
different output stages, one stimulating the neuron’s membrane Vm and another for the
feedback loop. This feedback loop is designed to be 12 times weaker then the Vm-output,
which allows long time constants τw. The resting potential Vadapt, ref of the adaptation
state w can be controlled independently from the membrane’s leak potential to maximize
the dynamic range available for the adaptation state w. The leaky integrator’s input
in sub-threshold regime is given by the difference of leak potential and the membrane
potential scaled by a factor a. This is implemented by the a-OTA, biased with Ia. Since
the OTA’s behavior can not inverted by e.g. simply inverting the bias current, a not drawn
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switch can invert the a-OTA’s inputs. Finally, an also invertible current Ib together with
an adaptation-pulse-switch realize the spike-triggered adaptation. The height and the
length of this pulse controls the charge that is added to the adaptation state. Since the
adaptation state variable w is not implemented as current but as voltage, the charge
manifests itself as an increment of ∆vb on w. All circuits can be disabled by a switch
disconnecting the adaptation term from the neuron’s membrane.

Input offset compensation

As described, the a-OTA compares the membrane potential to the leak potential. Since
OTAs always have an input offset, the adaption leak potential Vadapt, leak is not equal
to the membrane leak potential Vleak, but allows to counteract that OTA-specific offset.
The adaptation state’s baseline is determined by the τw-OTA and can be controlled by
Vadapt, ref. Without calibration, the input offset of the τw-OTA leads to a spread of the
baseline potential by ±135 mV at Vleak = 500 LSB. Nevertheless, it needs to be mentioned,
that this target spreads between approximately 0.30 V and 0.80 V and causes very different
dynamic ranges for adaptation states.

The input offset of the a-OTA was calibrated by using a binary search algorithm for four
different leak voltages Vleak. Figure 25 shows the post-calibrated offset of the adaptation
state caused by the a-OTA. The histograms show a clear clustering of values around the
target value. However, a small number of neurons (5.86 ± 0.02 %) could not be successfully
calibrated for all four investigated Vleak values. This was probably caused by the fact that
the membrane leak potential Vleak was not calibrated before optimizing the a-offset, which
then had to account for both, the leak term’s as well as the a-OTA’s input offset. As the
leak voltage is usually calibrated, this measured offset show a worse-case scenario which
is expected not to occur for a fully calibrated system.

Further, it is interesting, whether the offset changes with respect to the membrane poten-
tial or, in the investigated case, with respect to the membrane leak voltage. In principle,
it would be necessary to calibrate the offset by a binary search for every single leak volt-
age setting. Nevertheless, to speed up calibration, the offset compensation was linear
extrapolated for arbitrary leak potentials. Taking into account that the outliers were not
removed before fitting and that only four data points were recorded in the first place, this
method yielded sufficient results for all further investigations of the adaptation term.
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Figure 25: Adaptation-a offset calibration and corresponding adaptation state potential
w with respect to four different leak potentials for chip 22 and chip 23. The leak po-
tential is limited by the ranges needed for offset compensation of the a-OTA. Due to
the uncalibrated adaptation reference voltage, the adaptation state potential is widely
spreaded.

However, for future use, it is recommended to improve the extrapolation or to determine
the corresponding.

When the a-OTA’s inputs are inverted to realize negative sub-threshold adaptation strength,
the offset compensation is invalid and needs to be done again. Even this state is used for
some firing pattern (Naud et al., 2008), it is not further investigated in this thesis since
its method an results are similar to the non-inverted calibration.

Adaptation time constant

The adaptation time constant τw is the third and last time constant, which is investigated
in this thesis. Like for the time constants of the other leaky integrators, an input stim-
ulus shifts the integrator’s state variable. Fitting the state variable exponentially, when
it relaxes back to the integrator’s baseline potential determine the time constant. For
the adaptation time constant τw this shifting is realized by using spike-triggered or more
precisely reset-triggered adaptation pulses. Therefore, the spike-triggered adaptation cur-
rent is set to its maximum. Unlike the other leaky integrators, the OTA representing
the conductance of this RC-circuit has no switches to enlarge the time constant’s range.
The adaptation time constant τw is typically larger as the membrane time constant τm to
introduce a different time scale for sub-threshold adaptation. Hence it was designed to
cover at least the range of 50 µs to 300 µs used to reproduce AdEx firing pattern (Naud
et al., 2008).

In figure 26 the measured an simulated time constants are illustrated. Due to the use
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Figure 26: Measured adaptation time constant τw with respect to the bias current Ib
on HXv2 on chip 22 and chip 23. The distribution of the measurements at 48 LSB and
1000 LSB (marked by blue vertical lines) are shown in the histograms with respect to
different neuron blocks.

of the spike-triggered adaptation, which, as discussed later, had shown unreliability, this
measurement was afflicted with uncertainties. The spread at small bias current is caused
by almost one block on chip 23, which analog parameter storage’s offset was overcom-
pensated even for a minimum value of the corresponding offset bias current. Hence this
block provides a nearly zero output at 20 LSB. For large bias currents, the measurements
spread as well, due to the mentioned diverging currents of the analog parameter storage
for digital values greater 800 LSB (c.f. section 4). However, the measured and simulated
values differ significantly and the simulation is always slower then the measured time
constants. This can be due to many reasons, e.g. a slightly different doping of the silicon
or a systematic mismatch of the capacitor models. Nevertheless, nearly all neurons reach
the specifications.

For automated calibration purpose, again a power function of the minus fourth degree
seems to be a good prediction. How to calibrate the adaptation time constant on the
PPU needs to be further investigated.
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Figure 27: Measured sub-threshold adaptation a with respect to the bias current Ia on
HXv2 on chip 22 and chip 23. The distribution of the measurements at 20 LSB and
1000 LSB (marked by blue vertical lines) are shown in the histograms with respect to
different neuron blocks.

Sub-threshold adaptation

Next, the non-inverted sub-threshold adaptation is measured. Measuring the voltage shift
on the membrane potential caused by a current-step-stimulus with (∆a) and without (∆)
sub-threshold adaptation enabled, the non-inverted sub-threshold adaptation a ≥ 0 is
given by

a = gl ·
(

∆

∆a
− 1

)
(5.3)

(Kriener, 2017). On HXv2, the offset currend generator was used to produce the required
current step function. It became apparent, that the choosing the time constants and leak
potentials has a huge impact on the measurement’s quality. The latter is probably caused
by a saturation of the adaptation state variable. As a good estimate, the membrane time
constant was calibrated to 5 µs, the leak potential to 0.50 V and Iτw was set to 200 LSB

which corresponds to an adaptation time constant τw of approximately 5 µs.

Figure 27 shows the measurement and simulation results with respect to the a-OTA’s
bias current. Neurons, that does not reach strong sub-threshold adaptation probably sat-
urated in their adaptation state variable w. Even it concerns only a few neurons, their
sub-threshold adaptation are widely spread. A divergence of the sub-threshold strength
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at 1000 LSB is caused by the divergence of the capacitive memories output currents. Nev-
ertheless, the measurements of the sub-threshold adaptation show a significant stronger
sub-threshold adaptation for bias greater than 500 LSB as simulated by Dauer (2019).
Since they meet at zero bias, this does not reduce the performance of the circuits, it
even increases the usable range. This systematic effect – as well as the large spread –
could be caused by the propagation of errors for quantities from equation (5.3), e.g. the
leak conductance gl, which is inferred from the time constant τm and hence influenced by
deviations of the membrane capacitance Cm.

As illustrated, the measurement method does not necessarily produce smooth lines, not
even monotonic ones. Since there is no reason for this, it can be assumed that the used
method is not optimal. For non-monotonic functions, it is not possible to use a binary
search for calibration. Due to this, the used routine needs to be improved.

As tested for simulation data, a fourth order polynomial seems to be a good representation
of the data.

Spike-triggered adaptation

A spike-triggered adaptation mechanism is implemented by a short reset-triggered current
pulse on the adaptation state variable w. This pulse charges the adaptation capacitance
Cw, which results in a voltage jump ∆vb. Further, the sub-threshold adaptation strength
is given by

b = gadapt · ∆vb. (5.4)

The adaptation conductance gadapt is given by the adaptation time constant and the
assumed adaptation capacitance Cw of approximately 2 pF. For negative spike-triggered
adaptation b < 0, a switch allows to invert its input current Ib. Since inverted and not in-
verted spike triggered adaptation is rather similar, the inverted spike-triggered adaptation
was not investigated in this thesis.

Since the absolute value of b was not of special interest, because it can be directly inferred
from the former, only ∆vb was measured. First, a reset was programmed to activate the
spike-triggered adaptation. Then, the rising edge of the was measured by the MADC to
extract the voltage w before and after the pulse appears. Unfortunately, it was observed
that the pulse length is not stable through different experiments and not even for multiple
resets in the same experiment (c.f. appendix figure 36). The measured pulse length was
significantly lower in 50 % of the spikes.
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Figure 28: Measured spike-triggered adaptation b with respect to the input current Ib on
HXv2 on chip 22 and chip 23. The distribution of the measurements at 918 LSB (marked
by blue vertical lines) are shown in the histograms with respect to different neuron blocks.

A certain timing uncertainty is expected, since here analog time-continues circuits are
driven by digital clock-driven digital logic. However, a short adaptation pulse results in a
smaller charge on the capacitance and a smaller related voltage drop. So far this problem
is not understood, but assumed to be localized within the neuron backend.

Further, to investigate the neuron’s analog circuits, not only ∆vb but also the pulse length
was measured. The latter was defined by the duration between the first and last ADC
sample, which an derivative greater than 0.05 V/µs.

Figure 28 still tries to visualize the dependency of ∆vb on the configured current. For this
purpose, outliers, defined as pulses with a width smaller then 0.50 µs were removed. In the
course of this method, unfortunately also small ∆vb-values corresponding to small input
currents were removed. Even this removing of invalid values did not catch all adaptation
pulses with a incorrect length, its result allowed to estimate the characteristic curves of
the spike triggered adaptation.

Ignoring the neuron backend related timing issue, the measured voltage jumps fit nicely
the simulation. Just the spread was much wider and, again the divergence at high input
currents was caused by the analog parameter storage.

For calibration purposes, a btarget-corresponded target ∆vb, target can be calculated by
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∆vbtarget =
btarget
gadapt

=
btarget

12 · gτw
=
btarget · τw

12 · Cw
, (5.5)

where the gadapt and gτw describe the two coupled outputs of the τw-OTA (Dauer, 2019).
Since the removing of invalid values, on the one hand, bases on a calculated derivative
and, on the other hand, is partly non-monotonic due its imperfection, it can not be used
on the PPU and even not combined with a binary search. However this method running
on a host computer could be a workaround for calibrating the spike triggered adaptation.
Furthermore, simulations had shown, that a polynomial of second order seems a good
representation of the data.

Conclusion

In terms of the adaptation term, the a-OTA’s input offset, the adaptation time constant,
the sub-threshold and spike-triggered adaptation were investigated. The analog part of
each parameter was tested to majorly reach the given specifications. Nevertheless, the
inverted parameters were not characterized, since they are almost symmetrical. It needs
to be mentioned, that the spike-triggered adaptation shows the expected behavior in
50 % of the cases and therefore needs to be marked as highly unstable. At this point it a
configuration error can not be ruled out. Further investigations are required to pinpoint
the issues origin.
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5.4 Exponential term

The exponential term integrates a smooth threshold into the AdEx neuron. Unfortunately,
the former circuit design did not satisfy the parameter ranges required for AdEx firing
pattern, even in simulation (Kriener, 2017). Also the two parameters of the model, the
slope factor ∆T and the threshold VT, could not be controlled individually. For HXv2,
Sebastian Billaudelle developed a new exponential term circuit, that shall remove this
issues. The following section will investigate their behavior.

Circuit description

Figure 29 illustrates the exponential term circuit. Using a bulk-driven OTA combined
with an active load M2 as input stage of the NMOS-transistor M1, biased in it’s sub-
threshold regime, this transistor’s drain-source-current is proportional to the exponential
of the difference between the OTA’s inputs.

−

+
M2

M1 Vm
Vexp

Vm

S1

Vres

Iexp

Figure 29: Schematic overview of the exponential term circuit.

Transistor M2, controlled by Vres, is biased in its linear regime and further – as a pseudo-
resistor – transforms the OTA’s output current into a linear voltage, which is then is
applied to the gate of M1. In limits, it’s mismatch only affects the output current as an
additional factor in the output current’s exponent. For disabling the exponential term’s
circuit, the switch S1 allows to disable the output stage of the circuit.
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Figure 30: Extracted exponential term’s output current Iexp
out with respect to the reference

voltage Vexp (color) and the bias current Iexp (brightness) for neuron 4 on block 0 on chip
22. The continuous lines are calculated from a fit (equation (5.7)).

Measurement protocol

Since the exponential term’s output is given by the current Iexp
out , it’s direct measurement

would require a sourcemeter. Due to the fact that during the thesis the on-chip sourceme-
ter was not usable and the used measurement routine was preferred to operate without
external devices, a transient measurement of Iexp

out was chosen. Hence this current was
provoked by a constant current stimulus. Therefore the membrane potential increased
nearly linearly until the exponential term took effect and dominated the further increase
up to the threshold potential. To extract the exponential term’s output current Iexp

out from
membrane trace Vm, the capacitor equation

I = Cm · dVm

dt
(5.6)

with an assumed and constant capacitance Cm = 2.40 pF, was used. This measurement
was repeated for different configurations of the bias current Iexp and the reference voltage
Vexp.
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Figure 31: An exemplified exponential term measurement on HXv2, chip 22, block 0,
neuron 4. Illustrating the parameters ∆T and VT for the biological model with respect to
the OTA’s reference voltage and bias current.

The crosses in Figure 30 illustrates these extracted current that contains the exponential
currents but might also include leakage currents, which would have to be absorbed in
a suitable fitting function. Here, it was assumed that all other neuron’s components
affecting the membrane were fully disabled and hence the extracted currents were fitted
by the AdEx equation’s exponential term

Iexpout = gl · ∆T · exp
(
Vm − VT

∆T

)
= exp

(
Vm − ã(∆T, VT, gl)

b̃(∆T)

)
(5.7)

which is also shown by continuous lines in figure 30. The parameters ã and b̃ correspond
to a more direct but equivalent description of the circuit and are linked individually to the
bias current Iexp or the reference voltage Vexp (Dauer, 2019). Even the latter description
is useful for calibration purpose, the former was used during this thesis to illustrate
configurable parameter ranges in the model’s quantities.

For the same neuron, investigated in figure 30, all measured dependencies are shown in
figure 31 including more data points. The dotted red lines represent a calibration target
equivalent to a biological settings of VT = −50 mV (bio) and ∆T = 2 mV (bio) required
to reproduce AdEx firing patterns (Naud et al., 2008).
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With ∆T ∼ b̃ in mind, ∆T with respect to the bias current Iexp behaved as expected.
It’s remaining dependency on the the reference voltage Vexp are illustrated upper right
plot. It is expected to see constant, horizontal lines with distances that are scaled loga-
rithmically.Especially for an increasing reference voltage Iexp or a decreasing bias current
Iexp, the measurements differed from this expectation. This could be caused by a cross-
dependency of the OTA’s transconductance on the input common-mode, or more precisely
by the reference potential. However, since such a behavior was not observable in simula-
tion and the used routines so far assumed the absence of leakage currents, a more thorough
analysis is expected to yield better results.

Since VT is composed of Iexp, Vexp and gl, it is hard to extract evaluations from this
parameter using the naked eye. Further, VT with respect to the bias current Iexp is
shaped exponentially and with respect to the reference voltages Vexp almost linearly. This
linearity of VT with respect to Vexp is also shown in the lower right plot.

Exponential term slope factor ∆T

As mentioned in the circuit discussion, a transistor M1, biased in it’s sub-threshold regime,
is used to generate an exponential dependency. In this biasing regime, transistors are
especially prone to variations in the manufacturing process which manifest themselves
as fixed-pattern noise. To quantify such deviations between neurons the exponential
measurement’s routine were applied to all 1024 neurons on chip 22 and chip 23. On
the one hand, due to technical issues and time constraints and, on the other hand, due
to unstable initial guesses for the fit algorithm, only a subset of neurons are shown in
figure 32. For a clear arrangement, this ended up in two slices of data, such that the left
plot respects only a single reference voltage configuration and the right plot only a single
bias current configuration. Both slices were chosen by taking the red dotted target into
account.

As already mentioned in figure 31 with respect to a single neuron and multiple reference
voltage values, also in figure 32 but with respect to different neurons and only a single
reference voltage significant variations from the expectations were observed. All shown
neurons crosses the target and hence the exponential terms of all this neurons seems to
allow to configure their slope factor towards this supposed target.
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Figure 32: Exponential term’s slope factor ∆T for 455 neurons on chip 22 (block 0 almost
completely) and chip 23 (block 2 and 3; block 1 almost completely) with respect to the
bias current and the reference voltage.
(left): Reference voltage: 556 LSB.
(right): Bias current: 390 LSB.

Exponential term threshold VT

For the same reasons discussed for ∆T and furthermore because the exponential term
threshold VT depends on multiple hardware parameters, the fixed-pattern noise on VT

needed to be investigated. Figure 33 shows, very similar to figure 32, a subset of the
acquired data. As previously discussed, in both cases the not swept parameter was chosen,
by taking the target given by Naud et al. (2008) into account.

The linearity of Vexp with respect to the reference voltage Vexp is clearly visible. Nev-
ertheless, the wide distribution of the curves offsets’ is expected due to the discussed
fixed-pattern noise. Also for VT almost all shown neurons cross the red dotted target
value. Further, the very few outliers seems to hit the target by a small extrapolation of
reference voltages.

Conclusion

These measurements primarily have shown that it is possible to extract the exponential
term’s model parameter ∆T and VT from membrane traces using the MADC. Further, the
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Figure 33: Exponential reference voltage VT for 455 neurons on chip 22 (block 0 almost
completely) and chip 23 (block 2 and 3; block 1 almost completely) with respect to the
bias current and the reference voltage.
(left): Reference voltage: 556 LSB.
(right): Bias current: 390 LSB.

measured results led to the assumption, that the exponential term can be configured to
the target values required to reproduce various AdEx firing patterns. Nevertheless, the
fit routines and initial guesses can be improved to yield more reliable results.
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6 AdEx firing pattern
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Figure 34: Neuron membrane traces for AdEx firing pattern on chip 22, block 0, neuron
4 inspired by the firing pattern suggested by Naud et al. (2008).
(a) regular bursting, (b) delayed spiking and acceleration, (c) initial bursting, (d) transient
spiking, (e) inhibitory rebound, (f) delayed regular bursting.
Parameters given in appendix table 5.

The AdEx model allows to emulate biologically inspired firing patterns. Since they cover
a wide area of the model’s phase plane, the firing pattern suggested by Naud et al. (2008)
were chosen to benchmark the ASIC. Figure 34 shows exemplary membrane traces for
measurements on HXv2. Due to time constraints, the shown collection of firing patterns
only demonstrates measurements on a single neuron. A basic routine was used to calibrate
the leak term and Vadapt, leak automatically, but all other parameters were configured by
hand. Due to leakage currents from the adaptation term, a post-calibration of the leak
voltage was required.

For almost all tested pattern, a rather stable hardware parameter set was found. These
parameters showed a reasonable invariability regarding small changes and yielded a re-
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produce behavior. However, the discussed adaptation-pulse-length related bug can be
observed, when spike-triggered adaptation is enabled. When the adaptation pulse did
not reached its full length, the adaptation state was not fully incremented and proba-
bly sometimes causing unexpected spike bursts. With inverted sub-threshold adaptation
enabled, a positive feedback loop was established, which can already become an issue in
numerical simulations. Within this highly unstable situation, as e.g. given in the pattern
delayed regular bursting, often a continuous high frequently spiking neuron was observed.
To prevent this unwished continuous spiking behavior, a forced reset in combination with
an enabled leak multiplication at the beginning of each experiment was implemented to
inhibit the membrane potential Vm as well as the adaptation state w. With this forced
initialization, even such unstable firing pattern was reproduced

Overall, all tested firing pattern were reproducible with the HXv2 hardware.
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7 Discussion and Outlook

Within this thesis, the analog parameter storage and the analog neuron circuits of HICANN-
X v2 were investigated. For this purpose, new measurement protocols and calibration
routines were developed and resulted in contributions to an existing calibration frame-
work as well as the prototype of a neuron characterization tool. Furthermore, it could
be shown that a rich set of AdEx firing patterns can be reproduced by the new neuron
circuits. During this thesis, the author has contributed to putting HXv2 into operation
including the commissioning of multiple BrainScaleS-2 setups.

First, the analog parameter storage was calibrated to sufficiently provide currents and
voltages. It was found that, for the utilized parameterization, the capacitive memory’s
cells saturated for large currents and voltages, such that its linear range shrank to the
range between 0 LSB and 700 LSB for voltages as well as 20 LSB and 800 LSB for cur-
rents. A further investigation of the respective configuration as well as possible cross-talk
between cells is recommended.

The investigation of the analog neuron circuits included measurements of the leak and
threshold circuits, the synaptic input, the adaptation term and the exponential term. To
characterize basic LIF behavior, the membrane time constant τm, the leak voltage Vleak,
the reset voltage Vreset and the threshold voltage Vthresh were investigated systematically
for 1024 neurons on two chips. Using external laboratory equipment, the leak conduc-
tance gl were measured for multiple neurons and hence it was possible to estimate the
membranes capacitance Cm. Looking on the newly designed synaptic input, the gm-OTA’s
input offset was calibrated and the noise on the membrane, caused by the synaptic input,
was estimated systematically. Further the synaptic time constant τsyn was measured for
all available neurons. A fist look on the synaptic input’s linearity was enabled by measure-
ments of an exemplary neuron. Within the adaptation term, first, the a-OTA’s offset was
calibrated. Then the adaptation time constant τw, the sub-threshold adaptation param-
eter a and the spike-triggered adaptation parameter b were investigated systematically.
Furthermore the exponential term parameters ∆T and VT were measured for multiple
neurons and discussed.

Hence all analog circuits in the neuron of HXv2 were investigated.

In the analog neuron circuits, only three reasonably deviations from the ASIC’s specifi-
cation were found: On the on hand, the limitation of the leak voltage (and therefore also
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reset voltage) dynamic range. On the other hand, a timing issue in the adaptation-pulse
used for the spike-triggered adaptation. Last minute simulations by Sebastian Billaudelle
have shown, that this issue is caused by parasitic capacities, which were not taken into
account for the design. Finally, a suspected issue in the measurement protocol yielded
distorted results for the investigation of the synaptic input’s linearity. All other compo-
nents showed behavior as expected. Furthermore, after calibrating the analog parameter
storage, all the further measurement quantities deviated more within blocks as between
blocks or chips.

For larger neural network experiments, automated calibration are required. Leibfried
(2018) has shown, that the PPU is suitable for this on-chip calibration. Here, results
and methods presented in this thesis could be adopted for automated calibrations of the
adaptation term and the exponential term.

Such a calibration framework can then be used to more faithfully reproduce the AdEx
firing patterns. While this thesis has shown that the neuron circuit can be tuned to
exhibit the desired behavior, an automated parameter lookup will facilitate a large scale
invetigation of these patterns in the near future.
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Configuration of the analog parameter storage HXv2 HXv1
Parameter Chip 22 Chip 23 default
ReferenceGeneratorConfig
Enable internal reference current True True True
Enable reference current output False False False
Enable reference current input False False False
Reference control DAC value 2 2 10
Resistor control DAC value 60 60 40
Reset signal in current generator 0 0 0
CapMem block 0/1/2/3 amp. bias current 63/63/63/63 63/63/63/63 60
CapMem block 0/1/2/3 offset bias current 0/13/ 4/18 6/ 1/63/ 0 0
CapMem block 0/1/2/3 slope bias current 9/ 8/ 9/ 9 8/ 9/ 8/ 9 5

CapMemBlockConfig
Pulse a 110 11
Pulse b 120 15
Sub counter 128 16
Pause counter 20000 8096
Enable capmem True True
Boost a 0 0
Boost b 0 0
Boost factor 0 0
Current cell resistor 8 8
Enable autoboost False False
Enable boost False False
Prescale pause 3 3
Prescale ramp 3 3
V global bias 7 7

Table 1: Default configuration of the analog parameter storage as used in this thesis.
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Default configuration of the neuron backends HXv2 HXv1
Parameter default default
CommonNeuronBackendConfig
Enable event register True True
Force reset False False
Enable clocks True True
Clock scale slow 4 4
Clock scale fast 4 4
Set sample positive edge 0/1/2/3 True/True/ True/True/

True/True True/True
Clock scale adaptation pulse 7 0
Clock scale post pulse 0 0
Wait global post pulse 128 128
Wait spike counter reset 4 4
Wait spike counter read 112 112
Wait fire neuron 4 4

NeuronBackendConfig
Address out neuron specific neuron specific
Reset hold off config 15 15
Refractory time 40 80
Post overwrite False False
Select input clock 0 0
Enable adaptation pulse True False
Enable bayesian extension False False
Enable neuron slave False False
Connect fire bottom False False
Connect fire from right False False
Connect fire to right False False
Enable spike out True True
Enable neuron master True True
Enable 0 bayesian False False
Enable 1 bayesian False False

Table 2: Default configuration of the (common) neuron backend as used in this thesis.
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Default values of analog parameters HXv2 HXv1
Parameter default default
Local analog parameters
Leak voltage Vleak LSB 667 667
Adaptation leak voltage Vadapt, leak LSB 667 -
Reset voltage Vreset LSB 667 556
Threshold voltage Vthresh LSB 556 556
Adaptation reference voltage Vadapt, ref LSB 667 0
Exponential reference voltage Vexp LSB 556 -
Offset current bias Iext LSB 0 0
Synin exc tau bias Iexc, τsyn LSB 500 400
Synin exc drop bias Iexc, drop LSB 500 -
Synin exc shift bias Iexc, shift LSB 500 -
Synin exc gm bias Iexc, gm LSB 1000 1000
Synin inh tau bias Iinh, τsyn LSB 500 400
Synin inh drop bias Iinh, drop LSB 500 -
Synin inh shift bias Iinh, shift LSB 500 -
Synin inh gm bias Iinh, gm LSB 1000 100
Leak bias Ileak LSB 50 20
Reset bias Ireset LSB 1000 1000
Adaptation tau bias Iτw LSB 6 0
Adaptation a bias Ia LSB 10 -
Adaptation b bias Ib LSB 300 -
Exponential bias Iinh, gm LSB 500 -
Multicompartment bias LSB 0 0

Global analog parameters
Neuron v-cascade bias LSB 333 -
Neuron source follower bias LSB 100 500
Neuron readout amplifier bias LSB 100 150
Neuron spike comparator bias LSB 200 1001
Readout out amplifier bias 0 LSB 1000 1000
Readout out amplifier bias 1 LSB 1000 1000
Readout pseudo diff. buffer bias LSB 1000 1000
Readout AC mux bias LSB 500 500
Readout MADC input 500 nA LSB 500 500
Readout SC amplifier bias LSB 500 500
Readout SC amplifier reference voltage LSB 400 400
Readout pseudo diff. reference voltage LSB 400 400
Readout iconv test voltage LSB 400 400
Readout iconv SC amplifier reference voltage LSB 400 400

Table 3: Default analog parameters as used in this thesis. CADC related values not
listed, since the CADC was not used. For HXv1, only parameter also available in HXv2
are listed. IV
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Default configuration of the neurons HXv2 HXv1
Parameter default default
Connect bottom False False
Connect membrane right False False
Connect soma False False
Connect soma right False False
Enable adaptation False False
Enable read vw False False
Enable bypass exc False False
Enable bypass inh False False
Enable capacitor merge False False
Enable div. multicomp. cond. bias False False
Enable exponential False False
Enable fire False False
Enable leak degeneration False False
Enable leak division False False
Enable leak multiplication False False
Enable membrane offset False False
Enable mul. multicomp. cond. bias False False
Enable pause True -
Enable readout False False
Enable readout amplifier True True
Enable reset degeneration False False
Enable reset multiplication True True
Enable strong fire False False
Enable synin exc False False
Enable synin exc high resistance False False
Enable synin exc small capacitance False False
Enable synin inh False False
Enable synin inh high resistance False False
Enable synin inh small capacitance False False
Enable comparator True True
Enable unbuffered access False False
Invert a False False
Invert b False False
Invert current False False
Membrane capacitance select 63 63
Readout select vm vm

Table 4: Default neuron configuration as used in this thesis. For HXv1, only parameter
also available in HXv2 are listed.
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Biological parameters
C pF 200 200 130 100 - 100
gL nS 10 12 18 20 - 10
EL mV -58 -70 -58 -65 - -65
VT mV -50 -50 -50 -50 - -50
∆T mV 2 2 2 2 - 2
a mS 2 -10 4 15 - -8
τw ms 120 300 150 90 - 90
b pA 120 0 120 300 - 50
Vr mV -46 -58 -50 -47 - -47
Iext pA 210 300 400 350 - 110

Hardware parameters
Chip 22, Block 0, Neuron 4
τm bias current LSB 491 DIV 644 108 108 108 70
Leak voltage LSB 602 598 677 677 798 599
Reset voltage LSB 804 711 793 793 792 824
Threshold voltage LSB 556 556 556 556 556 556

a bias current LSB 5 INV 35 30 70 400 INV 15
b bias current LSB 300 0 700 500 100 900
τw bias current LSB 110 25 100 100 80 170
Adapt. leak voltage LSB 524 690 524 524 524 711

Exp. bias current LSB 400 400 400 400 400 400
Exp. ref. voltage LSB 762 762 762 762 762 762

Offset current LSB 220 150 350 300 INV 400 120

Table 5: Parameters for AdEx firing pattern suggested by Naud et al. (2008). Biological
parameters for delayed regular bursting and transient spiking are modified such such they
match with the figures in Naud et al. (2008) (Dauer, 2019). Hardware parameters are
inspired by there biologic example and calibrated using an educated guess.
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Figure 35: Measured voltage drops caused by spikes on the synaptic line and on the
membrane for all investigated neurons. The right plot represents the amplification factor
of the OTA with respect to its input voltage.
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Figure 36: Illustration of the adaptation-pulse-related bug in the neuron backend. It shows
100 times the exact similar experiment, that provoked an adaptation-pulse by forcing a
reset and recorded the adaptation state for Ib = 500 LSB on chip 22, block 0, neuron 0.
The starting point of the current ramp has been standardized for better clarity.
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