
Department of Physics and Astronomy

University of Heidelberg

Master thesis

in Physics

submitted by

Simeon Kanya

born in Graz, Austria

2020





Deep Learning

on

Analog Neuromorphic Hardware

This Master thesis has been carried out by Simeon Kanya

at the

Kirchhoff Institute for Physics in Heidelberg, Germany

under the supervision of

Dr. Johannes Schemmel





Abstract

Neurons and synapses are the biological basis for information flow and pro-

cessing in the brain. By forming spiking neural networks, the brain is able to

learn and remember. These networks have not only provided an insight into the

brain’s mechanisms but offer an alternative to artificial neural networks in deep

learning. When implemented on analog neuromorphic hardware, they inherit a

variety of favorable properties from their biological counterpart, such as parallel

and event based information processing, noise robustness and a high energy effi-

ciency. These characteristics are of great interest, since using conventional deep

learning for real-world problems requires the resources of large supercomputer

clusters. However, modern learning algorithms for neuromorphic hardware still

have a hard time competing with the great success of deep learning. In this

thesis, the performance of two candidates for training spiking neural networks is

evaluated on the analog neuromorphic hardware platform BrainScales2. First,

a rate-based spiking neural network is trained using gradient descent as a stan-

dalone on-chip experiment. Second, a surrogate gradient algorithm, SuperSpike,

is implemented as an chip-in-the-loop experiment.

Zusammenfassung

Neuronen und Synapsen bilden die biologische Basis für den Austausch und

die Verarbeitung von Informationen im Gehirn. Mithilfe dieser spikenden neu-

ronalen Netzen kann das Gehirn lernen und sich erinnern. Diese Netze di-

enen nicht nur dazu die Vorgänge im Gehirn zu veranschaulichen, sondern sind

auch eine Alternative zu Deep Learning mit künstlichen neuronalen Netzen.

Im Einsatz auf analoger neuromorpher Hardware übernehmen spikende neu-

ronale Netze einige vorteilhafte Eigenschaften ihrer biologischen Vorbilder, wie

zum Beispiel paralleles und eventbasiertes Verarbeiten von Informationen, eine

erhöhte Fehlertoleranz sowie eine hohe Energieeffizienz. Unter dem Gesicht-

spunkt, dass die Ressourcen eines Höchstleistungsrechners benötigt werden, um

mit klassischem Deep Learning echte Probleme lösen zu können, sind die zuvor

genannten Leistungsmerkmale besonders interessant. Allerdings können sich

moderne Lern-Algorithmen für neurmorphe Hardware noch nicht mit dem Er-

folg von künstlichen Neuronalen Netzen auf konventioneller Hardware messen.

In dieser Arbeit wird die Funktion und Performance von zwei Algorithmen auf

der analogen neuromorphen Plattform BrainScales2 evaluiert. In einem ersten

Experiment wird ein raten-basiertes spikindes neuronales Netz mit einem Gra-

dientenverfahren in einer alleinstehenden “on-Chip” Implementierung trainiert.

Das zweite Verfahren beruht auf einem Surrogate-Modell des Gradientenver-

fahrens, SuperSpike, welches als Chip-in-the-Loop Experiment durchgefhrt wird.

i



ii



Contents

1 Introduction 3

2 Background 5

2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Biological Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Leaky Fire-and-Integrate Model . . . . . . . . . . . . . . . . . . . 12

2.4 Neural Coding with Spiking Neural Networks . . . . . . . . . . . . . . 15

2.5 Neuromorphic Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Classification of the Circles Data Set on BSS2 27

3.1 Circles Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Poisson Spike Train Generator . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Activation Function on Chip . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Experiment Setup on HICANN with Digital Learning System (HICANN-

DLSv2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 SuperSpike on BSS2 41

4.1 XOR-related Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Implementation on the BSS2 Platform . . . . . . . . . . . . . . . . . . 43

4.3 Training and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Discussion and Outlook 59

References i

A Appendix xi

A.1 Activation Function Parameters . . . . . . . . . . . . . . . . . . . . . . xi

1



A.2 Monitoring Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

2



1 Introduction

Humankind has been striving for a conceptual understanding of the physical world,

even long before Faust famously questioned his knowledge about what it is that holds

the world together. With the scientific progress and gained knowledge over within the

last decades, new innovation have emerged, that changed the earth into a new digitally

interconnected place. Yet, the understanding of our own human brain remains elusive.

From a biological point of view, neurons are responsible for processing and transmitting

information in the brain by forming spiking neural networks (SNNs) (Gerstner et al.,

2014). Studying these networks is promising approach to gaining better insight into

the brain’s mechanisms. Not only provide SNNs a guiding principle to study the brain,

but are of great interest for an efficient implementation of deep neural networks on

neuromorphic hardware (Pfeiffer and Pfeil , 2018). They inherit multiple favorable

characteristics from their biological inspiration such as parallelized and event-based

information processing, noise tolerance and a low power consumption.

The success of deep learning is followed by an ever growing demand of specialized

computational resources (Mayer and Jacobsen, 2020). Besides building larger super-

computers using conventional hardware, more efficient solutions such as neuromorphic

hardware have seen an increased interest. As of today, several well known tech com-

panies have launched their own neuromorphic platforms. IBM started to work on

TrueNorth in 2008 (Akopyan et al., 2015), Intel presented the Loihi chip in 2018

(Davies et al., 2018) and Google began selling the Coral dev-board in 2019 (Cass ,

2019). Even before neuromorphic hardware caught the attention of the big industry

names, academic projects had already been started. Among others, the EU’s Human

Brain Project (HBP) funds two promising approaches: SpiNNaker, a digital based

neuromorphic supercomputer located in Manchester (Furber et al., 2014) and Brain-

ScaleS (BSS), a mixed-signal accelerated emulation for spiking neural networks based

in Heidelberg (BrainScaleS , 2012).

In recent years, the field of neuromorphic computing has focused on novel training

algorithms for SNNs that can compete with the widely successful conventional deep

learning methods. The main problem arises from the non-differentiability of individuals

spikes making well proven optimization methods such as gradient descent inapplicable.

The ideas for workarounds range from imitating artificial neural networks (ANNs) with

rate coding to using surrogate gradients (Tavanaei et al., 2019).

3



In this research two candidates for supervised training are presented and then imple-

mented on different prototypes of the BrainScaleS2 (BSS2) platform. In a first ap-

proach, a SNN is emulated as a classical deep ANN on the prototype chip HICANN-

DLSv2 using rate coding. The network is then successfully trained by an on-chip

implementation of gradient descent, i.e. only on-chip resources are used to compute

and apply parameter changes. A second experiment is conducted on a revision of the

first full-size prototype of the BSS2 platform, the HICANN-Xv1. With an additional

built-in observation feature of the membrane potential, a spiking variant of gradient

descent called SuperSpike (Zenke and Ganguli (2018)) can be used to train a deep

SNN. On the current revision a complete and high-performance on-chip implementa-

tion has not yet been feasible, due to several hardware bugs. Instead, SuperSpike is

implemented by recording the analog neuron dynamics on-chip and processing them

with the support of a host. Lastly, the challenges of the different learning methods

and potential future improvements will be discussed.

4



2 Background

The required knowledge to work in the field of neuromorphic computing is broad and

manifold, ranging from the biological view of the human brain further to machine

learning algorithms. In the next sections, the main concepts and the physical back-

ground, upon which the presented research is based on is, are introduced. Starting

with deep learning and an overview of the biological neuron, the transition to neuron

models, neuronal coding schemes and their training approaches will be given before

introducing the neuromorphic BSS2 platform. Throughout the thesis, vectors are in-

dicated by an upright boldface v and matrices by capital letters M .

2.1 Deep Learning

The presented introduction to deep learning in this section is largely oriented on the

well-known eponymous book from Goodfellow et al. (2016) and indicated respectively

if otherwise.

Deep learning is among the most useful and powerful tools machine learning has pro-

vided to the scientific community. Image or pattern recognition are in general hard to

solve for traditional computation concepts. Deep learning abstracts such task in terms

of a hierarchy of concepts. Each concept is based upon a combination of simpler ones.

Going down on a hypothetical ladder towards the easiest concept available, creates a

deep structure with many layers. This is why it is called deep learning.

A popular example for deep learning is the multi layer perceptron (MLP), a deep

feedforward network. As the name suggests, the information is forwarded from one

layer to another (see fig. 2.1). At each layer l the input x(l) is mapped to an output

y(l) = Φ(x(l), θ(l)) with the activation function Φ and a set of parameters θ(l). The

output of the layer l then determines the input of the next layer, i.e. y(l) = x(l+1), and

so forth. The layer structure is inspired by biological neural networks and therefore

they are often referred to as artificial neural networks (ANNs).

An ANN is trained by adapting the parameters θ(l) for all layers l following a training

algorithm. In machine learning, one discriminates between supervised, and unsuper-

vised learning algorithms. Yet, drawing a consequent line to categorize machine learn-

ing methods is difficult, as the approaches are sometimes combined into hybrid forms

5



input output layerhidden layers 1, ..., n

x(1) y(o)

...

b(1) b(n) b(o)

W(1) W(o)

Figure 2.1: Deep artifical neural network. An artificial neural network (ANN) can n

hidden layers will always have an input x(1)) and one output layer y(o). The sizes of

the input and the individual layers can vary depending on a chosen problem.

too. Without a supervisor, an algorithm looks for structures and useful properties

within the input data. To this end, unsupervised learning algorithms try to observe

the underlying probability distribution of the input data. In supervised learning, on

the other hand, each input vector x is associated with a target vector y∗. In this case,

the algorithm is trained to predict a target for a given input.

2.1.1 Supervised Training

The supervised training of an ANN can be divided into a forward pass where the

output of all nodes is evaluated and a backward pass which computes the respective

parameter updates. In the forward pass, the input x(l) of a layer l sums to a net

input a(l) of

a(l) = W (l) x(l) + b(l) + (noise) ,

with the weight matrix W (l), the bias b(l) and an optional noise term. Depending

on the task, the bias as well as the optional noise term can be vital: the individual

biases for instance allow the network to adjust the dynamic range of each neuron and

the injection of artificial noise can significantly increase the training performance (An,

1996).

The output y(l) of the layer l is then given by the activation function φ, e.g. a sigmoid

y(l) = φ(a(l)) =
1

1 + e(−βa(l))
,

with the slope parameter β. Popular choices for the activation function besides a

sigmoid are a rectified linear unit (ReLu) or the hyperbolic tangent (tanh). In fig. 2.2a

6



(a)

−3 −2 −1 0 1 2 3
x

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Φ
(x

)

ReLu, Φ(x) = max(0, x)

sigmoid, Φ(x) =
1

1 + e(−βx)

tanh, Φ(x) =
ex − e−x

ex + e−x

(b)

−3 −2 −1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Φ
′ (
x

)
=
d
Φ

d
x

dReLu, Φ
′
(x) = Θ(x)

dsigmoid, Φ
′
(x) = Φ(1− Φ)

dtanh, Φ
′
(x) =

1

cosh2(x)

Figure 2.2: Popular shapes for activation functions in deep learning. (a): Some of

the most popular shapes for the activation function are a ReLu, tanh or sigmoid. (b):

The derivative of the different activation function gives an insight how the impact of

gradient descent changes for different functions. In the case of the sigmoid and the

hyperbolic tangent, either a very high or low input leads to a zero gradient and thus

to a vanishing parameter update.

the various activation functions are shown for comparison. However, more important

than the exact shape is that the chosen function is non-linear. A linear activation

function makes any layer structure redundant, as the composition of linear linear

functions yields again a linear function and therefore all layers of a deep network could

be merged into a single one.

The same principle is then applied to all other layers to complete the forward pass, i.e.

the result of the previous layer is the input for the current layer. The weight matrix

W (l) connecting layer l with l− 1 has the appropriate shape to fit the number of input

nodes n
(l-1)
nodes and output nodes n

(l)
nodes.

In deep learning, gradient descent is probably the most popular algorithm to perform

the backward pass on a network. A differentiable loss function L(x,y∗, θ) for a given

target y∗ is minimized. Here, a binary cross-entropy loss is chosen

L = − 1

N

N∑
i=1

y∗ log(yi + (1− y∗) log(1− yi),

with a minibatch of size N and the target y∗ scaled between 0 and 1. In combina-

tion with a sigmoid-shaped activation function, this choice becomes convenient when

computing the new set of parameters θ′. This is done by moving along the negative

7



gradient of the loss with respect to the network’s parameters θ

θ′ = θ − η∇θL(x,y∗, θ), (2.1)

with the learning rate η. To avoid extensive computational costs, the gradient is

estimated by a uniformly drawn subset of the full training data set, a minibatch. In

particular, if the size of the minibatch equals one, one speaks of stochastic gradient

descent (SGD). As an example, the updates of the weight matrices of a single hidden

layer network are computed in the next paragraphs using SGD.

First, the derivative of the cross entropy loss function in the output layer l ≡ o is

computed
∂L
∂y(o)

= − y∗

y(o)
+

1− y∗

1− y(o)
,

The gradient of the loss can then be rewritten in terms of the error e(o) = y∗−y(o) by

using the derivative of the activation function

∂y(o)

∂a(o)
=
∂Φ(a(o))

∂a(o)
= Φ(1− Φ),

⇒ ∂L
∂a(o)

=
∂L
∂y(o)

∂y(o)

∂a(o)
= y∗ − y(o) = e(o).

According to eq. (2.1), the final update of the weight matrix is given by

δW (o) = −η ∂L
∂W (o)

= −η ∂L
∂y(o)

∂a(o)

∂W (o)
= −η

(
e(o)x(o),T

)
, (2.2)

with the transpose of the input x(o),T .

The computation for the hidden layer (l ≡ h) can be done in a similar fashion. Again,

the gradient of the loss function is computed

∂L
∂a(h)

= e(h) ∂y(h)

∂a(h)
.

The error of the output layer e(o) is propagated backwards with the transpose of the

weight matrix W (o),T as e(h) = W (o),Te(o) yielding a total update of

δW (h) = −η
(
W (o)Te(o)

) ∂y(h)

∂a(h)
x(h),T .

The backward propagation of the error is eponymous for the method’s name backprop-

agation. Despite the great performance for many deep learning tasks, the biological

plausibility of propagating the error signal backward has been questioned ever since

8



(Grossberg , 1987). A simple but effective adjustment was suggested by Lillicrap et al.

(2016) which is also known as feedback alignment. Instead of the transpose of the

feedforward weight matrix, a fixed random matrix B is chosen to propagate the error

backwards. Compared to the backpropagation variant from eq. (2.2) the update in the

hidden layer changes to

δW (h) = −η (Be(o))
∂y(h)

∂a(h)
x(h),T .

The only constraint to B is that e(o)TW (o)Be(o) > 0 has to be fulfilled on average,

meaning that geometrically, the new feedback signal Be(o) for the hidden layer lies

within 90◦ of the one used by backpropagation, W (o)Te(o).

2.2 The Biological Neuron

Biological neural networks have been a great inspiration for deep learning algorithms

and ANNs. It is estimated that the human brain contains around 1011 neurons of

different shape, size and functions (Azevedo et al., 2009). By the use of synapses,

presynaptic neurons connect to postsynaptic ones and thereby create complex network

structures throughout the brain. A postsynaptic neuron has usually around 104 presy-

naptic partners (Drachman, 2005). The connections vary from dense clusters with

nearby neurons to linking distant brain regions with each other.

Most neurons can be divided into three functional parts: dendrites, soma and axon

(c.f. fig. 2.3). At the dendrites a postsynaptic neuron receives inputs from its presy-

naptic partners. These inputs are converted into postsynaptic potentials (PSPs) using

charged molecules corresponding to a variable graded potential in size and shape. The

PSPs are then relayed to the soma where they are integrated over. Depending on the

nature of synaptic connection, the stimulation has either an excitatory or inhibitory

effect on the neuron, resulting in an increased or decreased membrane potential. Over

time the unbalanced ion concentration in and outside the membrane is restored by

the membranes permeability and additional ion pumps. In an equilibrated state the

membrane potential is referred to as the resting potential. (Gerstner et al., 2014)

Given a continuous excitatory stimulation current, the neuron will trigger a fire mech-

anism once a certain threshold potential is reached. The neuron’s membrane becomes

hyperpolarized and decreases even below the resting potential as shown in fig. 2.3b

entering a refractory period. During this period it remains hard but not impossible

for the neuron to fire again due to the ongoing hyperpolarization of the membrane.

This mechanism releases an electrochemical pulse a so-called action potential or spike,

9



(a)

Axon
Soma

Dendrites

(b)

Figure 2.3: Schematics of a biological neuron and an action potential. (a) A bio-

logical neuron can be split into three main functional parts. The dendrites collect the

inputs from presynaptic partners and relay them in the form of postsynaptic potentials

(PSPs) to the soma. The soma integrates the PSPs and eventually triggers a fire re-

sponse. The axon relays this response to the connected neurons at the end of the axon.

Figure adapted from Jarosz , 2009. (b) The fire response of a neuron after exceeding

the threshold is called action potential or spike. After a phase of depolarization, the

membrane repolarizes and enters the refractory periode during which it is hard but

not impossible to fire again. Figure taken from Iberri , 2020.

which is then relayed by the axon to the connected partners at the end of the axon.

(Gerstner et al., 2014)

The action potential releases various neurotransmitters to overcome a small but phys-

ical gap at the synapses, the synaptic cleft. Once a transmitter has docked to a

corresponding receptor on the other side, activated ion channels convert the chemical

transmission back into an electrical signal resembling the PSP. Depending on the type

of neurotransmitters the excitation can be excitatory or inhibitory (Gerstner et al.,

2014). According to Dale’s principle a presynaptic neuron always releases the same

type of neurotransmitter (Dale, 1935). To that end, a neuron’s output is either ex-

citatory or inhibitory but not both. The input of a neuron, on the other side, is

not restricted to a single type of excitation, as various presynaptic partners can be

connected.

A wide-spread assumption in the field of neuroscience is that the exact shape of a spike

doesn’t carry any relevant information and therefore all spikes can be modeled by a

stereotypical shape. However, recent research has already suggested that the small

variations in the action potential contain vital information (Debanne et al., 2013). For

the prior assumption, the communication between neurons is reduced to a temporal

10



and spatial dimension. Temporal information is encoded either in the frequency (rate

coding) or the precise timing (time coding) of spikes whereas the spatial dimension is

filled with varying populations of neurons (Gerstner et al., 2014). A more detailed

description of neural coding schemes is presented in section 2.4.

The brain has the ability to continuously change the topology of its synaptic wiring,

to create new synapses, to alter the chemical properties of the synaptic receptors or to

simply strengthen and weaken the synaptic efficacy. With these plasticity mechanisms

the brain is able to learn and adapt as a reaction to stimulation or even damage.

(Gerstner et al., 2014)

One way of learning and forming memory is known as synaptic plasticity where the

synaptic strength is changed over time. According to Hebb’s theory “neurons that

fire together wire together” (Hebb, 1949). An experimental proof of such activity-

dependent plasticity was found by Bliss and Lømo (1973), where they discovered that

a short but high frequency stimulation leads to a long lasting change in the synapse’s

efficacy. This is also referred to as Long-Term Potentiation (LTP). Reducing the

stimulus to a low frequency, on the other hand, resulted in the opposite effect: Long-

Term Depression (LTD). In combination they can carve out a certain region in the

brain which is related to a specific stimulus and thereby create memory (Nabavi et al.,

2014). A better understanding of LTP and LTD was gained when Spike-Timing-

Dependent Plasticity (STDP) was first observed (Markram et al., 1997, Bi and Poo,

1998). STDP shows in principle that presynaptic activity just before a postsynaptic

response leads to an increased synaptic strength. If presynaptic activity occurs right

after a postsynaptic spike, the synapses are weakened.

Such plasticity mechanism are self-regulating and independent of any reward-giving

structure. In analogy to the learning concepts introduced by deep learning, they

are also referred to as unsupervised Hebbian learning. However, these methods fall

short of successfully training the brain to master complex action-required tasks, as

the outcome of a decision made by the brain is not part of the plasticity mechanism.

Hence, a behavioral learning strategy requires knowledge over the outcome of taken

decisions and needs to remember which decisions have lead to rewards, as the reward

in real life is often delayed. (Gerstner et al., 2014)

Developing biologically inspired and plausible supervised learning algorithms is a ded-

icated goal in the field of modern neuroscience. Before discussing two such candidates

in more detail, a practicable model of the biological neuron is presented first. This

model is implemented in the analog core of the neuromorphic platform BSS2 and

resembles the basis of all experimental work presented in this thesis.

11



2.3 The Leaky Fire-and-Integrate Model

An early but successful description of the biological neuron dynamics was accomplished

by the Leaky Fire-and-Integrate (LIF) neuron model, first described by Lapicque

(1907). Despite some strong simplifications, the main dynamics of the membrane

potential are well described by the model and it thus has been a popular and portable

choice for neuromorphic hardware implementations.

In biology, the observation of similar shaped individual action potentials lead to the

assumption that the shape of a spike does not transport any information. The Leaky

Fire-and-Integrate (LIF) model is based upon this theory and thus every spike can be

replaced by a stereotypical shape (Gerstner et al., 2014).

Another observation in biology is that neurons vary much in their shape and size

fulfilling different functions. The spatial component plays an important role for the

dynamics of a neuron. For instance, the strategic positioning of certain excitatory or

inhibitory inputs on the dendrites, either closer or farther away from the soma, give rise

to non-linear behavior in the course of the membrane potential. However, extensive

spatial dependencies are difficult and costly to implement in a model. Therefore, the

LIF neuron neglects the topology of the neuron and is approximated as a point-like

integrator. (Gerstner et al., 2014)

In the model, the incoming spike train Sj(t) from various presynaptic partners j is

described by a series of spikes s at times t
(s)
j

Sj(t) =
∑
s

δ(t− t(s)j ),

with the δ-function denoted as δ.

Each spike of the input spike train evokes a PSP. The impact of the PSPs depends on

the individual synaptic weights wj. For simplicity, the excitatory or inhibitory nature

of the synapses is encoded by a sign in the synaptic weight as well. Summing over

all input sources yields a total synaptic input current that is seen by the postsynaptic

neuron

Isyn(t) =
∑
j

wj
(
ε ∗ Sj(t)

)
, (2.3)

with the convolution of a double exponential kernel ε with the input spike train ε ∗ Sj

12



describing the shape of a single PSP. The kernel can be defined as

εdouble(t) =
1

N
(εrise ∗ εfall) (t)

=
1

N
exp

(
− t

τrise

)
∗ exp

(
− t

τfall

)
,

with a rising and falling time constant τrise and τfall respectively. A constant N norms

the kernel to unity. As the rising constant goes to zero τrise → 0 the double exponential

turns into a single exponential kernel εsingle = εfall.

The membrane potential Vm changes with the continuous synaptic input causing an

unbalanced ion concentration inside the membrane. Passive as well as active processes

are permanently restoring the membrane potential back to its equilibrium state which

is associated with the resting potential Vleak. In the LIF model, the temporal scale of

these restoring processes is defined by the membranes capacitance Cm and the leakage

conductance gleak yielding the membrane’s time constant τmem = Cm

gleak
. The dynamics

of the membrane are then given by a single differential equation

Cm
dVm

dt
= −gleak(Vm − Vleak) + Isyn. (2.4)

As for a biological neuron, a LIF neuron triggers a spike once a certain threshold ϑ is

crossed following the condition

Vm

(
t(s)
)

= ϑ⇔ neuron fires at time t(s).

Then the membrane is set to a reset potential Vreset where it remains unchanged for a

refractory period of τrefrac

Vm(t) = Vreset ∀t ∈
(
t(s), t(s) + τrefrac

]
.

Unlike its biological counterpart, the modeled neuron cannot spike during the refrac-

tory period.

A LIF neuron doesn’t keep track of any previous spikes once a spike is released, given

that the time constant of the synaptic input is shorter than the one of the membrane

potential, in particular if τmem > τfall. These limitations make it impossible for the

model to correctly describe neuronal behavior such as spike bursts (Gerstner et al.,

2014) and led to a demand of a more detailed modeling as the Adaptive-Exponential

Integrate-and-Fire (AdEx) model. The AdEx model resembles an extension to the LIF

model featuring an additional adaption state variable that provides post-spike memory

13



−60

−40

V
L

IF
m

[m
V

]

(a)

−60

−40
V

A
d
E

x
m

[m
V

]
(b)

0 100 200 300 400 500 600 700

Time [ms]

0

1

I s
ti

m
[n

A
]

(c)

Figure 2.4: Membrane dynamics of the LIF and Adaptive-Exponential Integrate-

and-Fire (AdEx) given a constant input. (a) Evolution of the membrane potential

V LIF
m according to the LIF model in response to a different stimulation currents. The

first current is not strong enough to trigger an action potential. A more intense

stimulation yields a repetitive and equidistant spiking pattern. (b) Given a small

box shaped current, the evolution of the AdEx neuron’s potential V AdEx
m is similar to

the LIF model. At higher inputs, a negative adaption suppresses a repetitive spiking

pattern after the first spike. The peak resembles the positive exponential voltage

feedback simulating an action potential. (c) A box-shaped stimulation current Istim

is used for both models to show the course of the membrane potential. Figure taken

from Stradmann, 2019

to the membrane. Depending on the sign of the adaption, the neuron is either inhibited

or engaged to fire again after having spiked at least once (see fig. 2.4).

For the scope of this thesis a more advanced model is not yet required. All experiments

are done using the simpler LIF model. However, the use of the AdEx model for a

spike-based learning rule such as SuperSpike is promising when targeting real-world

applications. A respective project has already been planned in the future and will be

explained in more detail in chapter 5.

A supervised learning algorithm based on a single LIF neuron will not be able to solve

any difficult task yet. In the human brain millions of such neurons are split up into

various areas which are each responsible to perform a certain type of work such as

smell, speak or motor control. In the next section different ways of how neurons can

communicate with each other in order to perform a certain task are discussed.

14



2.4 Neural Coding with Spiking Neural Networks

The communication among biological neurons can be modeled by spiking neural net-

works (SNNs) where individual neurons convey information by sending spikes to their

connected partners. As mentioned before, spikes can be approximated to have a stereo-

typical shape, leaving the temporal to encode information. In the context of large

multilayer networks, the spatial dimension of the network encodes information as well,

i.e. the types of synapses, the synaptic strength and the network’s topology.

In the following, the different coding schemes and supervised training approaches for

a feedforward multi-layer SNNs using LIF neurons are presented.

2.4.1 Rate Coding

In an attempt to explain computational processes in the brain, the activation of an

artificial neuron has been mapped onto the firing rate of a spiking neuron by Rieke

et al. (1999). The most apparent way to define a neuron’s spike rate ν is to count the

number of spikes nspikes fired within a period T

ν =
nspikes

T
.

From a practical point of view, this method is time consuming and can therefore not

be the basis upon which fast decisions are taken by the brain. The measurement time

can be reduced by shortening the period T to ∆T , but this will yield a more inaccurate

firing rate. By repeating the measurement multiple times, the average rate improves

the accuracy, but the total measurement duration is prolonged again. Moreover it is

not feasible that the exact same input occurs multiple times in a real world problem.

To solve both issues, a population average rate νpop can be used. The averaged firing

rate of a population with n neurons 〈ν〉pop yields an accurate rate despite the reduced

measurement time ∆T

〈ν〉pop =

∑
i nspikes,i

n∆T
,

with the number of spikes for a neuron i within the population nspikes,i.

In the terminology of the LIF model, a presynaptic spike train Sj from a source j can

be associated with a mean firing rate νj. This is based on the assumption that the

spikes of the input follow a Poisson process and therefore the firing rate of a neuron is

well described by a Poisson distribution in most cases (Averbeck , 2009), which in turn

legitimates the use of a mean firing rate and a certain accuracy. In this way the time

average of the synaptic input current for a LIF neuron can be expressed in terms of

15



the incoming firing rates νin,j and their respective synaptic weight wj〈
Isyn

〉
=
∑
j

wjνin,j.

Training with Rate Coding With a rate coding approach, a spiking feedforward

network obtains properties from an ANNs. In particular, the activation function of a

node in an SNN associates a given input rate νin with an output rate νout

Φ(νin) = νout.

Unlike for individual spikes, the gradient of the activation function can now be formu-

lated with the use of rates. This allows the use of typical deep learning methods such

as stochastic gradient descent (SGD) for rate-based SNNs.

The choice for a sigmoidal activation function in combination with a cross entropy

loss has already been motivated in section 2.1.1. In the following, the necessary ad-

justments to shape the response of the LIF neuron model into a sigmoidal activation

function are presented.

The stimulation of a LIF neuron can be expressed by the synaptic input current Isyn

or the corresponding input firing rate νin. In analogy to the activation of an ANN the

synaptic current is split up into an input and bias term Isyn = Iin + Ibias. The input

spike rate νin of the neuron scales linearly with the synaptic current and therefore

νin ∝ Iin. The activation function of the LIF neuron is then approximated by

1

Φ(νin)
=

1

νout

≈ τrefrac + τmem
ϑ− Vreset

Isyn

, (2.5)

given that the input rate is high and the time constants of the membrane τmem and the

synaptic input current τfall are smaller than the refractory period τrefrac (c.f. Brunel ,

2000). The output rate saturates at a maximum rate νmax ≈ 1/τrefrac for a high enough

input rate.

In the limit ϑ− Isyn � σ, i.e. for low input rates, the activation function yields

νout ≈
(ϑ− Isyn)

τmemσ
√
π

exp

(
−(ϑ− Isyn)2

σ2

)
, (2.6)

with the fluctuations of a single excitatory input source σ.

Without external noise, the fluctuations are small, reflecting only the variations of

the input spike train and thus the activation function shows a steep incline. One way

to smoothen the course of the function is to increase σ, e.g. by injecting additional

16



−1.0 −0.5 0.0 0.5 1.0

membrane potential Vm (V)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

d
e
n
si

ty

Vleak ϑ

Gaussian fit
free membrane

Figure 2.5: Simulation of the Gaussian free membrane potential distribution, i.e. the

distribution of the membrane potential in absence of any spiking mechanisms. The

distribution fVm centers around Vleak. The width of the distribution correlates to the

amount and synaptic weight of injected noise spikes. The part of the distribution

colored in black, exceeds the threshold potential ϑ indicated by a red vertical line and

would lead to spikes.

Poisson spikes. A continuous noise stimulation with these noise spikes leads to a

Gaussian free membrane potential distribution fVm which is centered around the resting

potential Vleak as depicted in fig. 2.5. The term free refers to the absence of any spiking

mechanisms of the membrane. In a naive approach, the part of the free distribution

that exceeds a certain threshold potential correlates to the number of fired spikes. This

neglects non-vanishing effects from the fire dynamics of the membrane which have been

investigated in more detail by Petrovici (2012). The impact of these dynamics can be

reduced by the use of short time constants for the synaptic input and the membrane.

However, despite the strongly simplified picture, this view still offers a correct intuition

of how the threshold, the leak potential and the strength of the noise effect the free

membrane potential and in turn change the shape of the activation function: More

noise leads to a broader distribution and thus a more gentle incline of the output rate.

The synaptic input moves the distribution to either a lower or a higher mean value.

And changing the threshold corresponds to adding a bias term to the synaptic input.

The latter has been motivated by Petrovici et al. (2016). The bias term in the neuron’s

activation can be adequately replaced by adapting the relative distance δV between

17



the resting potential and the threshold

b ∝ δV = Vleak − ϑ. (2.7)

With the approximations made in eq. (2.5) and eq. (2.6) as well as a suitable choice

of neuron parameters, the activation function yields an sigmoidal shape (fig. 2.6).

The slope of the sigmoid can be easily adapted by changing the synaptic strength of

the input spike trains. And the alignment along the x-axis can be done by the bias.

Finding the appropriate neuron model parameters to create a well shaped sigmoid can

be tricky. The parameters in-use are listed in table A.1 in the appendix.

(a)

−1000 −500 0 500 1000

input frequency νin (kHz)

0

2

4

6

8

o
u
tp

u
t

fr
e
q
u
e
n
c
y
ν
o
u
t

(k
H

z
)

win = 2
win = 4
win = 8

(b)

−1000 −500 0 500 1000

input frequency νin (kHz)

0

2

4

6

8

o
u
tp

u
t

fr
e
q
u
e
n
c
y
ν
o
u
t

(k
H

z
)

δV = 5.75 V
δV = 0.75 V
δV = −4.25 V

Figure 2.6: Simulation of a sigmoidal activation function using Poisson noise. The

shape of the activation function Φ depends on several parameters of the LIF neuron

and the Poisson input spike trains. (a) The input current that is seen by the neuron is

directly proportional to the weight Isyn ∝ winνin. In this way, a lower weight causes a

lower input current which in turn leads to a smaller incline of the output rate (black)

than for a higher input weight (red or blue). (b) The red curve is centered at zero

input which requires a small threshold offset of 0.75 V. A positive potential difference

δV shifts the sigmoid (black) to the left. With a lower threshold the neuron starts to

fire earlier. The potential difference of the blue and black curve relative to the centered

sigmoid equals ±5 V.

18



2.4.2 Temporal Coding

SNNs can also model more complex processes which depend on the interspike interval

(ISI) or a specific spike time. In comparison to rate coding, using the exact spike time

to encode information is more exposed to noise. In turn, the response time of such

coding is highly increased, since there is no need to establish a certain firing rate first.

The use of temporal coding has been observed in biology multiple times and it has

been proven to be of high importance (Gerstner et al., 1996 and Rieke et al., 1999).

Another advantage over rate coding is the efficiency that comes with the use of single

spikes as each spike costs energy. Sparse temporal coding condenses the necessary

resources to solve a task to a minimum.

So far, training SNNs with hidden units has been proven to be a difficult task (Pfeiffer

and Pfeil , 2018). With the binary nature of spikes, the neuron’s activity is non-

differentiable on an individual spike level. Hence, well proven methods from conven-

tional deep learning cannot be simply transfered to temporal coding with SNN. A

promising workaround was suggested with SuperSpike, where a supervised learning

algorithm is implemented for SNNs by using a surrogate gradient (Zenke and Ganguli ,

2018).

Supervised Training with Temporal Coding As before, only feedforward net-

works on the basis of LIF neurons are considered. The training routine of SuperSpike

can again be split up into a forward and backward pass.

The forward pass changes only slightly compared to ANNs. Instead of a continuous

input and output, the formalism of the LIF is used. The presynaptic activity of neuron

j is given by the spike train Sj and the postsynaptic activity of neuron i by the spike

train Si. Again the activation function Φ is determined by the dynamics of the LIF

neuron.

As stated in section 2.1.1, most training approaches involve the optimization of a cer-

tain loss function L(θ) that depends on the network’s parameters θ. In the backward

pass of the SuperSpike formalism the loss is given by the van Rossum distance (van

Rossum, 2001) of a target spike train S∗i and the actual output spike train Si

L =
1

2

∫ t

−∞
dt′
[
(α ∗ S∗i − α ∗ Si) (t′)

]2
, (2.8)

with a smooth double exponential kernel α.

The computation of the gradient for 2.8 with respect to θ requires the derivative of

a spike train Si for a neuron i. In particular, ∂Si

∂wij
which is undefined for the time

19



of a spike and zero elsewhere. SuperSpike circumvents this issue by rendering the

spike train with a smooth auxiliary function σ(Vm,i) of the membrane potential Vm,i

for a neuron i and thus the ill-defined gradient of the spike train can be replaced by a

surrogate derivative σ′(Vm,i)

∂Si
∂wij

→ σ′(Vm,i)
∂Vm,i

∂wij
.

In SuperSpike σ(Vm,i) is chosen to be a fast sigmoid

σ(Vm,i) =
β(Vm,i − ϑ)

1 + β|Vm,i − ϑ|
, (2.9)

with a slope parameter β. The surrogate partial derivative yields σ′(Vm,i) = β
(1+β|Vm,i−ϑ|)2 .

Other auxiliary functions will work too. Common choices are for example piecewise

linear or exponential functions.

At a first glance, it appears that the problem has just been shifted to computing

the partial gradient of the membrane potential instead. When the potential Vm,i is

formulated as a spike response model for LIF neurons it again depends on the output

spike train Si (Gerstner et al., 2014). However, under the assumption of a low output

rate the gradient can be approximated by
∂Vm,i

∂wij
≈ (ε ∗ Sj) with ε another double-

exponential kernel corresponding to the shape of a PSP. Plugging in the approximation

and the formulation of the gradient as a surrogate gradient yields

∂wij
∂t

= η

∫ t

−∞
dt′
(
α ∗ (S∗i − Si)

)︸ ︷︷ ︸
=ei (Error)

α ∗
(
σ′(Vm,i)︸ ︷︷ ︸

Post

(
ε ∗ Sj

)︸ ︷︷ ︸
Pre

)
, (2.10)

with the learning rate η.

The formulation for a hidden layer is similar, except for the calculation of the hidden

error. For simplicity the network is reduced to only one hidden layer structure. The

error signal of the i-th unit ehidd
i in the hidden layer is given by backpropagation of

the error ek from the output layer

ehidd
i =

∑
k

wikek,

with the feedforward weights wik between the hidden and output layer. As for the

gradient descent, feedback alignment can also be used within the SuperSpike formalism

by using a random weight matrix. Despite the formal restriction to a single hidden

layer, the method can be easily adapted for multiple hidden layers.

20



2.5 Neuromorphic Hardware

The great success of deep learning in the recent years has also increased the demand

for new specialized hardware that handles the huge amount of parallel computing more

efficient than the conventional von Neumann architecture. Among various approaches,

neuromorphic hardware is arguably the closest form of computing to the human brain.

As its inspiration, it is designed to be robust to noise or malfunctioning sectors, it

is highly energy efficient and remains flexible throughout the learning process. These

properties are of high interest for any deep learning applications. As a consequence,

several platforms1 have been launched by big industry corporations and academia over

the last years.

(a)

Cube iBoard

xBoard

Chip
Carrier
Board

HICANN-X

(b)

Figure 2.7: The cube setup HICANN-Xv1. (a) The chip (red) is mounted on the

chip carrier board and is protected by a cover. The chip carrier board (gray) is then

mounted on the xBoard (yellow) which is connected to the FPGA over the cube

iBoard (blue). (b) Close-up of the newest BSS2 single chip. The analog core of the

neuromorphic chip is bonded before a protective cover is placed over it. Picture taken

by Müller, 2020.

In the context of this thesis, the presented learning strategies from section 2.4 are

implemented on an analog neuromorphic platform called BrainScaleS2 (BSS2). This

mixed-signal accelerated emulation for SNNs is based in Heidelberg and is the result of

a long term cooperation with the EU, namely the Human Brain Project (HBP). The

BSS2 platform is designed to perform various plasticity algorithms on-chip. The core

of the platform is based upon a complete redesign of its predecessor the High Input

Count Analog Neural Network (HICANN). By reducing the CMOS manufacturing

process from 180 nm to 65 nm several new features could be included on the new core.

One of the main renewals is a general purpose unit which can be used for any on-chip

1 Among others, SpiNNakker and BrainScaleS by EU’s Human Brain Project, Loihi by Intel and
Truenorth by IBM

21



Neuron Model Neurons Synapses

HICANN-DLSv2 LIF 32 32× 32

HICANN-Xv1 AdEx 512 512× 256

Table 2.1: Overview of relevant BSS2 prototypes. The HICANN-DLSv2 is produced

at a reduced size to avoid unnecessary costs. The HICANN-Xv1 is the first functioning

full-size chip of the BSS2 platform.

computation and a specialized vector unit that efficiently provides parallel access to

observables from the analog core. The features have been implemented step by step on

various prototype versions. The following paragraphs will focus on the specifications

of the prototypes used for the experimental implementations of the discussed deep

learning methods (c.f. table 2.1).

On the HICANN-DLSv2 the redesign of the LIF neuron model is implemented. More-

over, the chip features a general purpose unit and a vector unit which are summarized

as the plasticity processing unit (PPU). The HICANN-DLSv2 has been manufactured

at a reduced size of 32 neurons and 32× 32 synapses to avoid unnecessary costs. The

HICANN with Digital Learning System and Hagen eXtensions (HICANN-Xv1) is the

first full-size prototype of the BSS2 platform with 512 AdEx neuron circuits and 256

possible synaptic connections per neuron. In addition to the PPU, the chip features

on-chip event routing and HAGEN extension, an early realization of a neuromorphic

system which basically implements an on-chip analog matrix multiplication (Schemmel

et al., 2020). Another renewal are dedicated noise generators, which come in handy

when working with sigmoidal activation functions and rate coding (c.f. section 2.4.1).

2.5.1 Architecture of BSS2

The design of both prototypes can be divided into an analogue and a digital core

(c.f. figure 2.8a). The external communication is established by a field programmable

gate array (FPGA) accessing eight serial Low Voltage Differential Signaling (LVDS)

links. The interface not only manages read and write instructions but handles any

spike-event data in both directions.

Depending on the chip version, the analogue core contains the physical implementation

of either a LIF or an AdEx neuron model (Aamir et al., 2018b and Aamir et al., 2018a).

The analog neuron model parameters can be tuned by setting respective bias currents

with a 10 bit Digital to Analog Converter (DAC). Each neuron can be controlled and

adjusted individually (Hock et al., 2013).

22



(a)

SERDES
lb1

SERDES
lb1

SERDES
lb1

SERDES
lb1

SERDES
lb1

SERDES
lb1

SERDES
lb1

analog
network

core

top plasticity
processing unit

digital
core
logic

fast ADC

output
amplifier

main
PLL

analog outputs

HICL links 0to7

extclk

JTAG and reset
bottom plasticity
processing unit

HICL
SERDES

8 HICL SERDESblocks

(b)

General-purpose part

16 kiB memory

4 kiB instruction cache

Synapse array access unit

Vector
Control

Memories
Processor
Vector unit
IO unit

Vector
slice

VRF

Vector
slice

VRF

32 bit
128 bit

Figure 2.8: Overview of the BSS2 architecture. (a) The neuromorphic platform

is divided into a digital and analog core which is connected to an external host via

an FPGA. Two plasticity processing units provide computational power for on-chip

training. Figure taken from Schemmel , 2017 (b) The plasticity processing units are

divided into a general purpose part which is based on a 32 bit architecture and a

vector unit. The latter enables efficient parallel data processing of analog parameters

and observables. Figure taken from Friedmann et al. (2017)

The biological time constants of neurons and synapses are usually in the order of 1 to

100 milliseconds. The in-silico implementation of the neuron models causes a temporal

speed-up compared to their in-vivo counterpart, leading to chip-time constants of a

few microseconds. This acceleration is possible due to the supra-threshold dynamics

of CMOS transistors.

On the full-size chip, the neurons are connected by a grid of 512 × 256 synapses

(32× 32 on the smaller one). The activity of presynaptic neurons is injected row-wise

by dedicated synapse drivers as either excitatory or inhibitory spikes. Each synapse

has access to a 6 bit decoder address and compares it to a 6 bit label of the incoming

spikes (see fig. 2.9). If they match, the spike is relayed to the corresponding neuron at

the bottom of the synapse grid. The efficacy is thereby configured by a 6 bit weight.

The analog core features several observables which are relevant for the implementation

of plasticity rules. The firing rate of a neuron for instance is recorded by a 10 bit spike

counter on the HICANN-DLSv2. The counter has been replaced by a smaller 8 bit

version on the full-size chip to save some space. In addition, every synapse features

two correlation sensors (causal and anti-causal) which are designed to record STDP

traces. Other relevant observables are the traces of the synaptic input current or

the membrane potential. The latter is key for the implementation of temporal-based

plasticity rules such as SuperSpike.

When training a highly accelerated analog system such as BSS2 platform, a fast compu-

tation of any plasticity rule is indispensable. A Columnar Digital to Analog Converter

23



(a) (b)

parameter storage

synapse array

sy
n
ap
se

d
ri
ve
r

neurons

Figure 2.9: Synapse circuit overview on HICANN-DLSv2. (a) Synapse drivers inject

the presynaptic activity row-wise as either inhibitory or excitatory spikes. The 6 bit

addresses of the presynaptic neuron is compared at each synapse with a local 6 bit

address. If the addresses match, the spike is relayed to the corresponding neuron at

the bottom of the synapse grid. The synaptic strength can be configured by a 6 bit

weight. The two correlation sensors (causal and anti-causal) record STDP traces.

Figure taken from Friedmann et al. (2017). (b) Overview of the row-wise synapse

drivers and the synapse array. Figure adapted from Billaudelle et al. (2019).

(CADC) provides row-wise parallel access to the STDP traces with a total of 2 × 32

respectively 2 × 512 CADC channels (one channel per correlation sensor per synapse

row). The on-chip vector unit then guarantees an efficient access to the CADC read-

out by the use of Single Instruction Multiple Data (SIMD) operations. On the newer

HICANN-Xv1, the CADC routing possibilities have been extended such that the mem-

brane potential can be accessed as well. Before this renewal the membrane potential

was recorded by a fast Multiplying ADC (MADC) which accesses only one neuron at a

time. With the lack of parallelization a fast in-experiment use cannot be realized and

is therefore feasible for training purposes. This limitation is compensated by a better

accuracy and resolution making the MADC a useful debugging and observation tool.

Apart from dedicated spike counters, the digital neuron back end registers any spiking

event and transfers them to the digital core logic, where the events are merged with any

activity coming from the noise spike generators or PPUs as well as from an external

source. The events are then rerouted back into the synapse grid accordingly, enabling

recurrent connections and multilayer network structures.

These observation features for the analog neuronal dynamics are then combined by

the general purpose unit with which complex plasticity rules can be implemented

on-chip (see fig. 2.8b). The HICANN-Xv1 features even a second PPUs to provide

enough computational power for the increased chip size. The software capabilities of

24



the general purpose unit for the new chip are under continuous development. For

instance a fast access to an external memory will be released in near future. The

current hardware and software constraints of both prototypes will be discussed in a

final chapter, after the experimental implementations have been presented (chapter 3

and chapter 4).

25



26



3 Classification of the Circles Data

Set on BSS2

In the first of two deep learning experiments which are implemented on the BSS2

platform, a spiking feedforward network is emulated as an ANN using rate coding. As

derived in section 2.4.1 the SNN can be then trained with conventional backpropaga-

tion. In addition the experiment focuses on a fully on-chip implementation. Only for

monitoring purposes of the training progress the PPU’s memory is continuously read

out through the FPGA interface.

Input A Input B Output A Y B

0 0 0

0 1 1

1 0 1

1 1 0

Table 3.1: The XOR classification follows the prediction given in the table: if the

binary inputs are not equal the XOR operator returns true and false otherwise.

In deep learning solving the XOR or “exclusive or” problem (c.f. table 3.1) has be-

come a very first benchmark to test the functionality of novel network designs and

algorithms, since it requires a multi-layer network structure with a non-linear activa-

tion function to be solved (Goodfellow et al., 2016). As part of a preliminary work,

an on-chip implementation of stochastic gradient descent (SGD) on the prototype

HICANN-DLSv2 has been successfully tested with the XOR problem.

In a next step, the difficulty of the task has been increased with the classification of the

Circles data set. The data set consists of two classes representing an inner and outer

circle as shown in fig. 3.1. A deep network then tries to place a decision boundary in

between the two circles. Before discussing the details of the training process, the rate

coding of the task and the implementation of the network’s training method SGD are

presented in the following sections.

27



3.1 Circles Task

−100 0 100

−100

0

100
class 0

class 1

DB

Figure 3.1: The Circles

data set has two classes (red

and black) which can be sep-

arated by a decision bound-

ary (blue).

The Circles data set describes a set of points p = p(x, y)

in a two-dimensional plane, which are in either of two

disjunct rings, each representing a class

class(p) =

0, r2
inner < x2 + y2 < r2

outer,

1, R2
inner < x2 + y2 < R2

outer,
(3.1)

with the confining inner and outer radii of the first and

second ring rinner, router and Rinner, Router respectively.

The goal of the task is to find a decision boundary that

successfully separates the both rings as shown in fig. 3.1.

The Circles task is slightly modified to reduce the im-

plementation effort on the PPU and to make it easier

to find a decision boundary. The class 0 is reduced to one confining circle by set-

ting the inner radius to zero. The outer radius of the second class is replaced by

the 8 bit limitations of the input. The remaining two boundaries are set far apart to

router =
√

8000 and Rinner =
√

13000. The area in between the classes is where the

network should place the decision boundary. The more space is available, the easier it

is for the network to succeed.

With a rate-based coding, the data points need to be translated into firing rates first. A

−100 −50 0 50 100
x

−100

−50

0

50

100

y

x input

0

100

200

300

400

500

ν
in
,x

(k
H

z
)

−100 −50 0 50 100
x

−100

−50

0

50

100

y

y input

0

100

200

300

400

500

ν
in
,y

(k
H

z
)

Figure 3.2: Input coding for the Circles experiment. Each point p(x, y) of a repre-

sentative data set with 100 points per class is mapped to two input frequencies each

depending on one of the coordinates. In the left figure, the x-dependency is shown

and to the right the y-dependency.

28



point p is represented by two signed 8 bit integers which correspond to the coordinates x

and y with x, y ∈ [−128, 127]. The corresponding firing rate of a coordinate c ∈ {x, y}
is then given by

νinput, c(c) = νmax ·
c+ 128

255
, (3.2)

with the maximum firing rate νmax set by a respective spike train source. A repre-

sentative data set of 100 samples per class illustrates in fig. 3.2 how the points of the

modified task are distributed. Moreover, the translation of a point into an input rate

is shown. For instance, a point from the lower right corner p(100,100) is associated

with two input rates: one depends on the x coordinate νin, x(100) ≈ 450 kHz and one

on the y coordinate νin, y(−100) ≈ 55 kHz.

As for a supervised learning method, the input data is labeled. To identify the class

of an input pattern in the output layer, a single readout neuron is trained to yield a

target rate ν∗

ν∗(p) =

ν
∗
0 = 32.6 kHz, class(p) = 0,

ν∗1 = 93.5 kHz, class(p) = 1.
(3.3)

The mismatch between the target rate and firing rate of the readout neuron νout then

determines the error of the output layer e(o)

e(o)(p) = νout(p)− ν∗(p).

The decision boundary, the rate separating both classes, is chosen to be the mean of

both target rates

νDB =
ν∗0 + ν∗1

2
= 63.05 kHz.

3.2 Poisson Spike Train Generator

The on-chip implementation of the experiment requires the generation of spikes for

the input data and noise spikes for sigmoidal activation function. The latter relies on

spike trains with an underlying Poisson distribution of the spikes. With the lack of

dedicated spike generators on-chip, the PPU has to fulfill the task.

One way to numerically generate a Poisson spike train is to repeatedly perform a

Bernoulli process on a short time interval ∆t over a period T . The Bernoulli process

is equivalent to an unfair coin flip with probability p, which is set depending on the

desired firing rate ν by p(ν) = ν · ∆t. Given that the probability equals one, i.e.

at every time interval a spike will be fired, the firing rate reaches its maximum at

29



νmax = 1/∆t. However, the spike train is no longer Poisson-based for high firing rates

but rather fires with a fixed interspike interval (ISI). Therefore, the spike generator

will only be used at low frequencies for the noise generation (νnoise � νmax). The input

spike trains on the other hand do not rely on pure Poisson spike trains and thus can

use the full frequency range of the spike train generator.

With respect to hardware limitations, the maximum fire rate of the spike train gen-

erator νmax, ppu is defined by the shortest possible ISI on the PPU which is in turn

limited by the time required to generate a single spike ∆tspike

νmax, ppu =
1

∆tspike

=
1

0.44µs
= 2.27 MHz.

The duration of the spike generation ∆tspike on the PPU is determined by recording

a constant spiking pattern with the highest possible frequency. The total number of

spikes is counted by on-chip spike counters and the duration is simply measured by

recording the membrane potential with an oscilloscope.

On the PPU the Bernoulli process is implemented by comparing the frequency de-

pendent probability p(ν) with a randomly drawn number. A popular method for

generating random numbers on a system with limited memory and computational re-

sources is the xorshift (Marsaglia et al., 2003). A random number is thereby generated

by repeatedly applying the XOR operator on a seed variable and a bit-shifted version

of itself.

3.3 Activation Function on Chip

The theoretical background of how the activation function of a LIF neuron becomes

sigmoidal has been motivated in section 2.4.1. The main tool to create such an acti-

vation function is the continuous stimulation of the neuron with Poisson noise spike

trains. Thereby a broad Gaussian distribution of the membrane potential is estab-

lished, which in turn yields a sigmoidal activation function. In fig. 3.3, the recorded

free membrane potential on the HICANN-DLSv2 is shown while being stimulated by

excitatory and inhibitory noise spike trains with a frequency of 70 kHz and a synaptic

strength of wnoise = 15.

The overall activation function depends on several parameters such as the neuron

potentials, the synaptic weights and frequencies of the spike sources as well as the

time constants τmem, τfall and τrefrac. Most of these parameters are not required to

be changed during the experiment. However, their choice has a great impact on the

shape of the activation function. A suitable setting for these parameters was found

30



400 420 440 460 480 500

membrane potential Vm (mV)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

d
e
n
si

ty

Vleak ϑ

Figure 3.3: Gaussian free membrane potential distribution on HICANN-DLSv2. A

broad distribution of the free membrane is achieved by sufficiently stimulating the

membrane with Poisson noise spikes. By changing the frequency and impact of the

noise spikes the width of the distribution can be changed. In a naive approach, the

part of the distribution that exceeds a certain threshold potential correlates to the

number of fired spikes (black).

by performing various parameter sweeps on the HICANN-DLSv2. In the appendix in

table A.1 the final choice of parameters for the activation function are compared to

the ones chosen for the simulation in section 2.4.1.

Calibration The manufacturing process of analog neuromorphic hardware causes

systematic stochastic deviations in the neuron and synapse parameters. The thereby

induced heterogeneity between neurons and synapses is referred to as fixed-pattern

noise and is constant in time. In an uncalibrated state, the neuron circuits exhibit

activation functions which do not align with regards to their maximum rate and align-

ment along the x-axis (see fig. 3.4a). Despite the detuned parameters, it has been

shown that plasticity rules can correct the intrinsic imperfections of the analog hard-

ware up to a certain degree (Wunderlich et al., 2019). However, the dynamic range

of the individual neurons on the chip is limited and to ensure properly overlapping

activation functions a calibration of the respective parameters is inevitable.

A collection of simple experiment-specific PPU-based calibration routines is imple-

mented to maintain a pure on-chip implementation. The calibration is based on a

binary search algorithm to find the suitable DAC-values for the analog neuron param-

eters. In general, the binary search algorithm compares a target value to the middle

31



(a)

−600 −400 −200 0 200 400 600

input frequency νin (kHz)

0

20

40

60

80

100

o
u
tp

u
t

fr
e
q
u
e
n
c
y
ν
o
u
t

(k
H

z
)

(b)

−600 −400 −200 0 200 400 600

input frequency νin (kHz)

0

20

40

60

80

100

o
u
tp

u
t

fr
e
q
u
e
n
c
y
ν
o
u
t

(k
H

z
)

Figure 3.4: Calibration of the sigmoidal activation function on HICANN-DLSv2.

(a): In the uncalibrated state the maxima of the activation function and the posi-

tion of the inflection point deviates due to fixed pattern noise of the hardware. (b):

The calibration of the refractory time and the resting potential aligns the activation

functions well.

value of a given sorted array. Depending on the outcome of the comparison the lower

or the upper half is eliminated from the search space and the search is repeated with

new boundaries which are set by the remaining half. In a worst case scenario, the

algorithm finds the target value after O(log(n)) repetitions, given that the searched

array has n entries (MacMahon, 1960).

For the calibration of the activation function the sorted array is replaced with the

10 bit range of the targeted analog parameter. Instead of the direct comparison with

a target value, a condition is chosen which resembles the desired calibration outcome.

For instance, the maximum output frequency of the neuron is calibrated by changing

the DAC value of the refractory period τrefrac, since in the limit of high frequencies the

output rate mainly depends on the refractory period, c.f. with eq. (2.5). As condition

for the binary search, the maximum output rate νout is measured at a high input rate

and compared to a target rate ν∗out. Depending on the outcome, either half of the

parameter range is eliminated from the search space. For the experiment, the target

rate is set to 111.3 kHz which corresponds to 256 recorded spikes over a measurement

period of T = 2.3 ms.

The calibration of the alignment along the x-axis is slightly more complicated. The

activation function is centered if its inflection point is positioned at zero. In theory,

the firing rate at the inflection point equals half the maximum rate. As shown in the

simulation of the activation function in section 2.4.1, the curve can be shifted along the

x-axis by changing the potential difference δV between the resting potential and the

32



(a)

−600 −400 −200 0 200 400 600

input frequency νin (kHz)

0

20

40

60

80

100

120
o
u
tp

u
t

fr
e
q
u
e
n
c
y
ν
o
u
t

(k
H

z
)

win = 5
win = 15
win = 30
win = 60

(b)

−600 −400 −200 0 200 400 600

input frequency νin (kHz)

0

20

40

60

80

100

120

o
u
tp

u
t

fr
e
q
u
e
n
c
y
ν
o
u
t

(k
H

z
)

δV = 52.5 mV
δV = 0.0 mV
δV = −52.4 mV

Figure 3.5: Changing the shape of the sigmoidal activation function on HICANN-

DLSv2. (a): The synaptic weight of the input is direct proportionality to the synaptic

input current Isyn ∝ wνin and effects the slope of the activation function. (b): The

activation function can be shifted along the x-axis by changing the threshold. The

dotted lines represent a higher threshold and thus a negative bias whereas the dashed

lines correlate to a lower threshold and a positive bias.

threshold. Since the threshold is already used as the bias parameter, the DAC-value

of the resting potential will be calibrated. As condition for the binary search, the rate

of the activation function is measured with no additional input except for the noise

sources and is compared to the half of the maximum rate.

During the calibration of the resting potential with respect to a centered inflection

point of the activation function, the positioning of the sigmoid only depends on the

relative potential difference δV . The choice of a work point for the absolute threshold

and resting potential should in theory be arbitrary, as the whole operating range can

be shifted. On analog hardware, this does not hold true, since some circuits exhibit

limited operating ranges. As a consequence the work point is fixed by a threshold

potential of 0.54 V.

In the context of analog circuits it is very unlikely to find the exact target DAC-value

due to a temporal variability during the measurements. However, the algorithm con-

tinuously approximates the searched value under the chosen condition and serves its

purpose well. Furthermore, the calibration of the refractory period and the resting po-

tential are repeated and interleaved several times. This is done to reduce the influence

of the other yet uncalibrated parameter. In the final calibration state, the activation

functions align well (see fig. 3.4b).

33



Synaptic Weights and Bias As shown in the simulation of the activation function

in section 2.4.1, the slope of the activation function and its alignment along the x-axis

can be easily modified. By lowering the synaptic weight of the input the slope declines,

since the total synaptic input exhibited by the membrane is reduced. A lower synaptic

weight can also be interpreted as a stretch of the x-axis in fig. 3.5a.

More importantly, the threshold can be used as the bias. Changing the potential

difference δV between the threshold and the resting potential is interchangeable with

adding a bias b to the synaptic input current of the neuron, c.f. eq. (2.7). In fig. 3.5b

the activation function has been shifted in both directions by changing the threshold.

Due to the fixed pattern noise, the shifted sigmoids do not align per neuron, but since

the threshold parameter is set and trained individually the plasticity rule will correct

the offset if necessary.

3.4 Experiment Setup on HICANN-DLSv2

For the classification of the Circles dataset a single hidden layer network is trained

on-chip with stochastic gradient descent (SGD). The PPU executes both the forward

and backward pass. This also includes generating the dataset and the input spikes.

After a proper initialization routine, the training loop is started: the corresponding

input rates of a randomly drawn data point p(x, y) are fed into the network and the

resulting output rates are evaluated by the SGD routine on the PPU. The computed

parameter updates are then applied before the next iteration can start.

Figure 3.6: Configuration of the

synapse array for the Circles data

set.

Forward Pass As for ANNs, the synapse must

be able to seamlessly evolve from an inhibitory

weight to an excitatory weight and vice versa.

By design a single synapse cannot alternate be-

tween the type of the weight without changing

the synapse driver’s configuration which is time-

consuming and can only be done row-wise. In-

stead of a single input row, two rows are used for

the same input - one in excitatory and one in-

hibitory mode. In each column only one of the

double-synapses is active and corresponds to the

current type of the synaptic weight. As the weight

changes from excitatory to inhibitory, the excitatory synapse is silenced by setting its

weight to zero while the other one is reactivated.

34



As shown in fig. 3.6 the first layer of the network, the input layer, is connected to

the hidden units by two rows per x and y input over eleven columns. A dedicated

spike router injects the generated spikes by the hidden neurons back into the network,

with each hidden neuron requiring another double-row. The feedforward connections

of the hidden layer are then relayed to a single column over the 11× 2 rows, where the

activity is combined for a single output unit. The synaptic weights of the excitatory

and inhibitory noise spike trains remain fixed throughout the experiment and require

each a single row with twelve columns.

A Poisson spike train generator on the PPU provides a stream of random spikes over a

certain measurement period. The provided spike resources are split into four branches,

two for the excitatory and inhibitory noise source and two for both input units. Each

noise branch has to supply twelve neurons with Poisson spike trains. In an attempt

to reduce correlated input between the individual neurons the branches are further

divided into eight channels and thus only four will share the noise with other ones.

Backward Pass In the backward pass, the output rates which have been obtained

by the forward pass are used to compute the updates for weights and biases according

to stochastic gradient descent (SGD). A fully on-chip implementation of the required

computation comes with some compromises, such as a limited precision or not directly

accessible weights. In the following, the developed workarounds are presented.

The general-purpose unit of the PPU operates with a 32 bit architecture without

hardware-support for floating point types. To increase the precision of the param-

eter updates, the computation is bit-shifted to the left. The calculated results are

then stochastically rounded and shifted back right before being applied to the net-

work. Stochastic rounding has been proven to be a viable workaround for deep learn-

ing with parameters of limited precision (Gupta et al., 2015). Typical methods of

directed rounding to an integer x are rounding up dxe, down bxc or to the nearest

neighbor d b2xc
2
e. Stochastic rounding on the other hand rounds x with a probability p

corresponding to the proximity to the upper or lower neighbor

xstoch(x) =

bxc with p = 1− (x− bxc),

bxc+ 1 with p = 1− bxc.

Unfortunately a direct access to the analog weight parameters from the general-purpose

unit is time-consuming and computation intensive due to the lack of parallelizations.

With feedback alignment, the need of the current weight information becomes irrele-

vant to the plasticity rule, but the computed weight update still needs to be applied to

35



the network. This can be implemented by using the vector unit. The SIMD instruc-

tions allow parallel access to all weights and therefore it is not only used to efficiently

apply the weight updates but also to silence and reactivate the respective synapses

in the double-row structure of the synapse array. The assembly code-base for this

implementation has been co-written by Sebastian Billaudelle and Benjamin Cramer.

During training the weights can max out due to their limited 6 bit range. The im-

plementation of a simple weight regularization using the convenient parallel access of

the vector unit solves this issue. The regularization of both, excitatory and inhibitory

weights winh
ij , w

exc
ij ≡ wij ∈ [0, 26) is implemented using bit shifts to minimize the

implementation effort and is given by

Reg(wij) = wij −
⌊
b2 · wijc

26

⌋
.

The impact of the regularization is then fine tuned by applying it only with a certain

probability p.

The bias is set by lowering or raising the DAC-value of the threshold potential. The

resolution of the capacitive parameter memory equals roughly 1.7 mV, which in turn

translates to a change of the input frequency of about 9.9 kHz. As a comparison the

maximum input frequency of a neuron is around 1 MHz, but the magnitude of the

typical presynaptic activity will only be at a few 100 kHz. Hence, the bias has a rather

coarse resolution.

However, compared to the speed of the accelerated neuromorphic core, the Digital to

Analog Converter is slow. Instead of a rapid change, a continuous and slow implemen-

tation can reduce potential negative effects of the coarse bias resolution, especially in

combination with a low learning rate.

Initial Conditions and Hyperparameters The final experiment setup involves

the setting of initial conditions, neuron parameters and the tuning of hyper-parameters.

The latter describe a set of parameters, that is not changed during the training process

but their choice often determines whether or not the training succeeds (Goodfellow

et al., 2016). A subset of the most relevant parameters is listed in table 3.2.

At the beginning of the experiment all weights of both layers are randomly initialized

using a uniform distribution ranging from −25 to 25 LSB. A random initialization of

the weights is vital to the training performance (Goodfellow et al., 2016). In a worst

case scenario, the initialization of the weights can even prohibit the network from

learning at all.

Initially, the biases of both layers are set to zero, i.e. ϑ = Vleak. With this setting

36



Parameter hidden layer output layer

initial weights winit
ij ∈ [−25, 25] LSB ∈ [−25, 25] LSB

initial bias binit
i ∝ 1

2

∑
j wij 0

learning rate of bias ηw 165e4 5.5e4

learning rate of bias ηb 2.3e4 0.23e4

resting potential Vleak 0.54 V 0.54 V

reset potential Vreset 0.01 V 0.01 V

refractory period τrefrac 9 µs 0.01 V

range of threshold ϑ 0.45 V to 0.63 V 0.45 V to 0.63 V

max input frequency νin 2× 500 kHz 11× 111.3 kHz

Table 3.2: Initial, hyper and neuron parameters per layer. Some parameters require

a different setting for the hidden and the output layer.

it has been observed that some hidden units are “silent” at the start of the training.

Furthermore, these silent units remain inactive throughout the training process. As

a workaround, a weight dependent term is added to the zero bias, such that binit
i ∝∑

j wij. This ensures an initial firing rate of every neuron at the beginning of the

training and solves the issue of silently initialized hidden units.

During the tuning of the network’s hyperparameters, the slope of the activation func-

tion had to be raised by a fair amount to increase the contrast of the nodes. By a

steeper sigmoid, the network can create a more precise decision boundary than by a

flat slope. The slope is changed by reducing the frequency of the noise spike train

νnoise to 1.1 kHz.

A further increase of the slope of the activation function is achieved by increasing the

dynamic range of the input rates. With frequencies ranging from 0 kHz to 500 kHz

almost all available resources are exploited. The maximum input rate of a hidden unit

is then given by the combined rate of the x and y input. In turn, each hidden unit

produces an output rate of up to 111.3 kHz, generating a potential maximum input of

11× 111.3 kHz for the readout unit in the output layer.

The learning rates as chosen in table 3.2 may appear unusually high. This is mainly

due to a lack of normalization during the computation of the parameter updates. In

order to avoid the risk of eliminating small contributions of variables during the on-chip

computation of the parameter updates, the magnitude of the individual variables has

not been normalized in advance. An individual learning rate per layer and parameter

copes with the different magnitudes later on. Even without the necessity to norm

resulting parameter updates, it is not unusual to tune learning rates separately, since

37



0 500 1000 1500 2000 2500

iterations

0.2

0.4

0.6

0.8

1.0
a
cc

u
ra

cy
(a)

0 500 1000 1500 2000 2500

iterations

20

40

60

R
M

S
E

(k
H

z)

(b)

Figure 3.7: Training success of the Circles Classification. The performance is mon-

itored by the accuracy (a) and the root mean squared error (RMSE) (b) over 2500

iterations.

different network layouts will cause varying update velocities for the individual network

parameters (Goodfellow et al., 2016). The final choice of the learning rates is then

tuned such that a fair amount of learning activity is provided for both layers and

parameters. In the appendix in appendix A.2 a detailed time evolution of the weight

and bias updates per layer is shown.

3.5 Training

For a fully on-chip implementation of experiment the required input data for the train-

ing data set needs to be generated on the fly, since there is only limited memory on-chip

available. In this way, each forward pass is performed with a randomly generated data

point from either of the two rings from section 3.1. The backward pass is performed

directly after the first training sample, i.e. the minibatch size is one.

In the following the network is trained for 2500 iterations. For a better illustration

of the training process, a balanced validation dataset with 100 randomly drawn data

points per class is chosen to validate the current state of the network after every fifth

iteration. The limitation to every fifth step was chosen to reduce the measurement

time to a few hours and to cope with the increasing instability of the FPGA during

long measurements. To measure the performance of the training process the root mean

squared error (RMSE) and the accuracy are evaluated. The RMSE is given by

RMSE =

√∑
p e

(o)(p)2

npoints

, (3.4)

38



with the error e(o) from section 3.1 and the number of data points npoints in the vali-

dation dataset and the accuracy is

Accuracy =
ntrue

npoints

, (3.5)

with the number of correctly classified points ntrue. Whether or not a point is correctly

identified is determined by the decision boundary which was introduced in section 3.1.

At the beginning of the training process, each hidden unit is stimulated with a linear

combination of the inputs from fig. 3.2. The activation function then transforms the

linear input into a non-linear output. The new representations of the input layer are

again linearly combined into a net input for the output unit where another non-linear

transformation is applied. The initial state of the network is shown in fig. 3.8a. At

this stage of the training process the output unit cannot classify the task correctly.

The evolved network after 500 iterations is depicted in fig. 3.8b and shows first signs of

improvement. The RMSE has already been reduced to half of its initial error and the

accuracy has improved to roughly 80 % as shown in fig. 3.7. Less useful representations

in the hidden layer are further modified by changing their bias or the connected weights.

The beneficial ones are rewarded with a stronger connection to the output layer and

further refinement of their bias and input weights.

At 2500 iterations, see fig. 3.8c, the network has converged. The accuracy has also

stabilized at almost 100 % (see fig. 3.7). The average over the last 500 iterations

yields a mean accuracy of (98.2 ± 2.9) % and the average over the last 250 iterations

improves to (99.6± 0.8) %. The RMSE is also reduced to a minimum, i.e. the output

neuron resembles the target well. The average output error over the last 250 iterations

yields (9.6± 1.4) kHz. To provide a better understanding of how the network evolves

to improve these performance measures, the evolution and contribution of the first

hidden unit is discussed in more detail.

The random initialized weights of the first hidden unit create a less beneficial represen-

tation of the input where more than half of the data points return a high output rate

(fig. 3.8a). However, the initial contribution of the unit to the output unit is small.

Over the next hundred iterations, the weights are adjusted such that the contour lines

of the output rates are rotated clockwise by 45◦ (fig. 3.8b). More importantly, the bias

is reduced and removes any high output rates from the inner circle. The improved rep-

resentation is then rewarded with a stronger contribution to the readout unit. Until

the final iteration, the nature of the representation does not change much anymore but

the parameters are still fine-tuned (fig. 3.8c). The bias is slightly increased such that

a greater portion of the outer circles fires with at a high rate and the orientation of

the contour lines is slightly rotated back. Furthermore, the contribution of the hidden

39



(a)

(b)

(c)

Figure 3.8: Evolution of the network’s ability to separate the Circles data set. For

simplicity only the hidden and output layer are displayed. The connecting arrows

resemble the excitatory (red) and inhibitory (blue) synaptic connections and their

thickness corresponds to the synaptic strength. (a) The initial untrained state of the

network does not separate the inner and outer circle. (b) After 500 iterations the first

improvements can be seen. With a decision boundary of roughly 60 kHz, the output

unit starts to correctly identify the two classes. (c) After 2500 iterations the network

has succeeded to separate both classes with an accuracy of almost 100 %.

unit is further fostered by the network.

40



4 SuperSpike on BSS2

The second experiment in this thesis is done on the most recent chip version of the

BSS2 platform, the HICANN-Xv1. In contrast to the first experiment the neural

coding scheme is changed from rate based to temporal coding. The prerequisite for

learning on SNN with temporal coding is to find an appropriate plasticity rule, that

copes well with the non-differential nature of individual spikes. A possible candidate,

SuperSpike, was presented in section 2.4.2. The latest version of the BSS2 platform

has now access to the temporal evolution of the membrane potential. This is a key

element for a successful implementation of the surrogate gradient method.

To benchmark the implementation a constructed task is taken from the original pub-

lication by Zenke and Ganguli (2018) which is equivalent to solving the XOR problem

on a time scale.

4.1 XOR-related Task

A total of 96 input units, each firing once at a fixed random spike time, is split into

four overlapping collections of different size. In fig. 4.1, the various spike trains are

visualized. As in the exclusive-or, the four different input patterns are assigned to

two target classes which are represented by two distinct neurons in the output layer.

Despite the multiple input sources, the task is by construction only two-dimensional.

The first input pattern p1 overlaps with all other patterns. The units involved in p1

can therefore be interpreted as bias or reference units, since they will fire regardless of

the active pattern. The second and third pattern do not overlap except for their bias

units. In analogy to the XOR operator these patterns compare to 1 Y 0 = 0 Y 1 = 1.

Their combination then yields the fourth pattern resembling 1 Y 1 = 0. In this way,

p1 and p4 are associated with class 0 whereas the remaining two input spike trains

correspond to class 1.

A feedforward pass of a single pattern spans roughly 250 µs with the random input

spike times being drawn from a window of 40 µs. In a slight modification to the

derivation of SuperSpike, the error metric is changed from a single target spike train

S∗i for the output i to a target time window [t∗0, t
∗
1]. Depending on the input pattern

41



(a)

16 18 20 22 24

spike time (µs)

60

62

64

66

68

70

72

in
p
u
t

u
n
it

p1
p2
p3
p4

(b)

0 10 20 30 40 50

spike time (µs)

0

20

40

60

80

100

in
p
u
t

u
n
it

p1
p2
p3
p4

Figure 4.1: XOR-related task for SuperSpike. (a) A representative sector of the

input data from the XOR-related task shows how the input patterns overlap. The

first pattern (black) contains two spikes and overlaps with all other patterns. The

second (red) and third pattern (blue) are disjoint apart from the bias units with four

spikes each. Their combination yields the fourth input pattern (green) with a total of

six spikes. (b) The total number of spikes in an input pattern is then multiplied by

ten yielding 20, 40 or 60 input spikes respectively.

pj, the error of the output unit i corresponding to the target class i is given by

ei(t) =


(
α ∗
(
eoutside, i + einside, i

))
(t), if class(pj) == i,

−(α ∗ Si)(t), else.
(4.1)

In analogy to the van Rossum distance the error outside and inside the window can

be written as

eoutside(t) = −Si(t) ·
(
H(t∗0 − t) +H(t− t∗1)

)
,

einside(t) =

0, if ∃ t(s)i ∈ [t∗0, t
∗
1],

(ε ∗ t∗)(t), else.

with the Heaviside step function H and H(0) = 1 as well as the double-exponential

kernels α and ε from section 2.4.2. Despite extending the target spike to a target

time window, the error still follows the same principles as the von Rossum distance:

If the target neuron spikes within the designated time span, a constant error of zero

is returned. In case there occurs no spike inside the window, a target spike at time

42



t∗ will be added to the error instead. Any spikes outside the window sum with a

negative sign. Given there is spiking activity in the inactive output unit, the negative

convolution of the activity with the α kernel is returned as a penalty.

4.2 Implementation on the BSS2 Platform

Unlike the previous experiment, SuperSpike is not implemented in a fully on-chip

fashion. This is largely due to hardware bugs which have been discovered during the

commissioning of the new HICANN-Xv1. The two most relevant issues are a reordering

of the CADC channels and inaccessible spike counters from the vector unit. With the

symmetric design of the chip the CADC is split into four respective quadrants, but the

channels of the first and second as well as third and fourth quadrant are mingled with

each other. In a scripting programming language such as Python this can be unraveled

quite effortless. On the general purpose unit the programming capabilities are rather

limited making it hard to develop a functioning experiment environment under these

circumstances. More importantly, the software workarounds cannot be implemented

on the vector unit and therefore the computation will not scale.

Figure 4.2: Cube setup with HICANN-Xv1 in the laboratory.

However, the main obstacle remains the lack of on-chip knowledge over spike times.

In principle there are two available sources to record a spike event: the digital back

end which registers every spike event precisely and the on-chip spike counters. The

data transfer between the digital back end and the PPU operates at a limited speed

43



due to a known software bug that has not yet been fixed, making its use unfeasible.

The spike counters on the other hand, cannot be accessed by the vector unit since

they are not properly connected. With these constraints, an efficient implementation

on HICANN-Xv1 is beyond reach. Despite the handicaps, SuperSpike can still be set

up as a chip-in-the-loop experiment, i.e. the weight updates are computed on the host

and the forward pass is evaluated on-chip.

In the following, the details of the experiment implementation are presented. The de-

veloped software framework is based on the new software stack for the BSS2 platform,

which is still under continuous development. A detailed description of the software

stack’s architecture is provided by Müller et al. (2020). Furthermore, the use of the

chip is restricted to the upper half and only one PPU, to reduce the implementation

effort.

CADC Readout A key element for the SuperSpike algorithm is the access to the

membrane potential by the CADC. The general purpose unit instructs the vector unit

to trigger the CADC and to transfer the resulting conversions back into the main

memory of the PPU. At that time the software stack did not fully support the use of

the vector unit. A preliminary code base has therefore been developed for the CADC

readout by Aron Leibfried.

For the purpose of the experiment, the membrane traces of 128 neurons are recorded

at a high sampling rate of roughly 400 kHz to ensure a suitable time resolution of the

accelerated dynamics. At the same time, the available memory on the PPU restricts

the maximum number of samples. Each sample uses one byte of memory and thus

100 samples of 128 neurons occupy already 12.8 kB of the available 16 kB, leaving

enough space for the PPU instructions which share the same memory. In the final

configuration of the CADC 100 samples are recorded per neuron with a temporal

resolution of roughly 2.5 µs.

Before the CADC can be employed, its characteristic needs to be calibrated. This is

done by setting various reference voltages and recording it by the CADC. Since at the

minimum voltage (0.0 V) and maximum voltage (1.2 V) the CADC shows a non-linear

behavior, the sweep range of the reference voltage is limited from 0.2 V to 1.0 V. Per

quadrant, a slope and offset parameter of the characteristic is manually adjusted such

that the full range of the LSBs is used. In addition to the per-quadrant settings, each

channel has an individual offset parameter, that can be adjusted as well. Unlike the

offset correction per channel, the ramp and slope parameters are not trivial to tune,

since they show a sensitive cross-dependency in certain areas. A manual method was

thereby preferred over an automated fit-routine. In fig. 4.3 the pre and post calibration

44



(a)

0.2 0.4 0.6 0.8 1.0

reference voltage (V)

50

100

150

200
C

A
D

C
L

S
B

top left

0.2 0.4 0.6 0.8 1.0

reference voltage (V)

50

100

150

200

C
A

D
C

L
S
B

top right

(b)

0.2 0.4 0.6 0.8 1.0

reference voltage (V)

50

100

150

200

C
A

D
C

L
S
B

linear fit top left
linear fit top right

Figure 4.3: Pre and post calibration state of the CADC. (a) The pre calibration

CADC measurement of a reference voltage ranging from 0.2 V to 1.0 V are not aligned.

The slope and offset parameter differ per quadrant. Both quadrants from the upper

chip half are shown. (b) Both quadrants are calibrated such that they share the same

characteristic.

state of the characteristics are shown for both quadrants from the upper chip half. The

thereby implicated conversion from DAC LSB to V will be used for most of the data

shown throughout this chapter.

Calibration of LIF Neurons In chapter 3 it has already been mentioned that

analog neuromorphic hardware exhibits fixed-pattern noise, which in turn can be cor-

rected up to a certain degree by the plasticity rule in place (Wunderlich et al., 2019).

It is therefore a constant trade-off of between resources invested into the calibration

and a potential degradation of the learning performance by less tuned analog setups.

At the time of the experiment, the development of chip-specific software for the new

prototype was in an early stage. Among others, there was a lack of a calibration

database and more generally, a lack of available calibrated hardware resources. This

was largely due to an at the time impractical and slow calibration routine, that is

based around the MADC. The MADC offers a precise measurement of an observable

but does not provide any parallel readout.

The efficient parallelized readout of the CADC, on the other hand, presented itself to

be a viable basis to put a more practical calibration routine into action. The main

objective of the new routine is to provide a fast calibration that requires little to no

interaction in order to bring a setup into a usable state with respect to the specific

experiment requirements. However, the convenience of the CADC comes at the cost

of the precision.

45



As a trade-off, only a subset of the available neuron parameters is tuned, namely

the potentials of the LIF model Vleak, Vreset and ϑ. By design, the potentials of the

synaptic input Vsyn, inh and Vsyn, exc have an influence on the resting potential and thus

need to be considered as well. The time constants τmem and τfall are certainly important

parameters in the LIF model. Motivated by the results from Wunderlich et al. (2019)

the induced error by the misalignment of the time constants is knowingly accepted

and traded for less implementation effort.

(a)

0.4 0.5 0.6 0.7

Vleak (V)

0

10

20

30

40

50

d
e
n
si

ty

pre 0.5 V
post 0.5 V

(b)

0.35 0.40 0.45 0.50

Vreset (V)

0

25

50

75

100

125

150

175

d
e
n
si

ty

pre 0.4 V
post 0.4 V

(c)

0.7 0.8 0.9 1.0

ϑ (V)

0

20

40

60

80

100

d
e
n
si

ty

pre 0.75 V
post 0.75 V
pre 0.8 V
post 0.8 V

Figure 4.4: Pre and post calibration state of the analog LIF parameters. (a) Before

calibration to 0.5 V, the resting potential shows a spread over almost 0.3 V (gray). (b)

The reset potential Vreset is calibrated to 0.4 V (red). (c) The spread of the uncalibrated

thresholds ϑ is smaller than for the leak potential (gray and blue). The potential is

calibrated to 0.75 V (red) and 0.8 V (green).

Similar to the previous task, a binary search algorithm is adopted to find the proper

DAC values of the analog parameters. The cross talk between individual capacitive

parameter memory (capmem) cells, that arises if several cells are set to the same value,

requires a workaround. By the design of the binary search algorithm, this event occurs

repeatedly making the binary search a suboptimal choice for the calibration of the chip.

The development of a proper gradient based calibration has already been started, but

for the use case in this experiment the existing code base could be sufficiently stabilized

with two minor adaptations. First, a random variation is consequently applied to all

“unused” DAC-channels and second, the binary search algorithm is extended with a

fall back option to the best parameter setting so far. The results of the final calibration

for the LIF parameters are shown in fig. 4.4.

46



4.2.1 Experimental Setup

The HICANN-Xv1 is mainly controlled by a Python class called HXBlackbox which

implements a set of convenient tools that put the chip into operation. The code has

been co-written by Sebastian Billaudelle and Benjamin Cramer and is based on the

new software stack for the BSS2 platform (Müller et al., 2020).

In a preliminary step, a Python-based simulation frame has been developed which is

oriented on the original implementation of SuperSpike by Zenke and Ganguli (2018).

The chip-in-the-loop experiment is embedded in a new class HXSuperSpike combining

the SuperSpike simulation with an adapted version of HXBlackbox. The forward pass

of the simulation is then replaced by measuring the analog traces and spike times

on the HICANN-Xv1 before the respective updates of the network parameters are

computed in the backward pass on the host. In the following a network with a single

hidden layer is set up containing 96 input sources, 30 hidden units and two output

neurons which serve as target classes.

Chip-based Forward Pass The implementation of the experiment on the basis of

the HXSuperSpike class is straight forward. The setup of the multilayer network struc-

ture is implemented by the event router and the synapse array using corresponding

weights and addresses to discriminate between input and recurrent connections. The

issue that arises with alternating weights for a single synapse is solved by the same

double-row approach from the previous experiment implementation (section 3.4). How-

ever, in this case the workaround is already implemented within the HXBlackbox and

the user only needs to fill a logical weight matrix Wlogical accordingly.

Wlogical =

(
I → H

)
0 0

0
(
H → O

)
0

0 0 0




nh

nin

nh

nout

=
W (h) 0 0

0 W (o) 0

0 0 0




The nin input rows are connected to the nh units of the hidden layer (I → H) by the

weight matrix W (h). The feedforward connections of the hidden layer are mapped to

nout units of the output layer (H → O) by the matrix W (o).

The input pattern is formulated as an array containing tuples of target neuron and

spike time. The forward pass is then evaluated by a designated stimulate function,

which returns all recorded spikes at the end of the measurement. The membrane

47



potential traces are measured by triggering the on-chip CADC readout program on

the PPU as soon as the input pattern is injected by the host.

Host-based Backward Pass Within HXSuperSpike the analog membrane traces

and recorded spike events are gathered and processed to determine the updates of

the weight matrices as derived in chapter 4. In a practical approach, the integration

of eq. (2.10) is done in finite temporal intervals which correspond to the length of a

full CADC readout period T of roughly 252 µs. Moreover, the finite resolution of the

CADC turns the integral into a sum over the time steps dt′ ≈ δt = 2.5 µs.

∆wkij = η

∫ tk+1

tk

dt′e
(o)
k α ∗

(
σ′(V

(o)
m,i )

(
ε ∗ S(o)

j

))

≈ η
T∑
t′=0

δte
(o)
k (t′) α ∗

(
σ′
(
V

(o)
m,i

) (
ε ∗ S(o)

j

))
(t′) (4.2)

0 2 4

∆T (µs)

0.0

0.1

0.2

0.3

0.4

d
e
n
si

ty

mean
corr. mean
∆T
∆Tcorr

Figure 4.5: Offset measurement be-

tween CADC traces and digital spike

times. The time delta between peaks

in the CADC traces and the recorded

spike times by the digital back end

needs to be corrected.

Before the updates can be computed, it is

vital that both the measured CADC traces

and the recorded spike times by the digital

back end are synchronized. In a respective

offset measurement, the neurons are stimu-

lated with a continuous stream of input spikes

such that they fire repetitively but with a low

frequency. The located peaks in the resulting

membrane traces are then compared to the

digitally recorded spike times, yielding an off-

set ∆T of (2.7 ± 1.1) µs, see fig. 4.5. In the

CADC traces, the membrane potential peaks

always before or exactly at the actual spike

time, as the reset mechanism is triggered as

soon as the threshold potential is crossed. This causes a systematic error of the evalu-

ated peak time. A linear increase of the membrane potential would add a systematic

error of half a bin width, but since the membrane potential follows rather the shape

of a double exponential the systematic error is estimated to be only a quarter of a bin

width. The offset is thereby corrected to ∆Tcorr = (2.1± 1.1) µs.

In an attempt to optimize the performance of the Python-based simulation environ-

ment, Python bindings are used to speed up time consuming or repetitive code in

C++. In particular, the stored bits of the analog CADC traces are inverted due to a

hardware bug and need to be reverted before further use. Another task where C++

48



improves the performance is the construction of input spike trains during the forward

pass. In the final setup, the overall runtime has been improved by about 25 percent.

Initial Conditions and Neuron Parameters The chosen initial conditions and

neuron parameters for this experiment are inspired by the configuration used in Zenke

and Ganguli (2018). However, some adaptations and a respective time-scaling have to

be made, to cope with the analog hardware’s acceleration factor of 103.

Parameter HICANN-Xv1 SuperSpike1

membrane constant τmem 8 µs 10 ms

synaptic constant τfall 5 µs 5 ms

refractory period τrefrac 30 µs 5 ms

α kernel constant τα 12 µs 10 ms

ε kernel constant τε 12 µs 10 ms

Table 4.1: Time constants used for SuperSpike. Shown is a comparison between the

tuned hardware parameters used in this thesis and the original simulation.

A LIF neuron is fully described by a set of time constants and neuron potentials.

Their specific values have a significant impact on the training performance. If for

instance the time constants are chosen too short, the individual parts of the learning

rule in eq. (4.2) do not overlap anymore and will yield a vanishing weight update,

despite an incorrect spiking behavior of the network. On the other hand, longer time

constants will blur the network’s temporal perception. The time constants used in

the backward pass are shown in the table 4.1 and resemble an average estimate of the

detuned hardware time constants of the recorded membrane traces.

In the given task, the neurons are not required to fire multiple times. The refractory

period has therefore been increased to 30µs to suppresses repetitive firing patterns.

Another way of avoiding repetitive firing patterns is to set the reset potential far below

the equilibrium state.

The distance between the resting potential and the threshold defines the dynamic range

of a non-spiking membrane. The choice of the distance follows two main motivations.

A larger gap increases the dynamic range and therefore improves the signal-to-noise

ratio (SNR) of the CADC traces. At the same time, a greater potential difference

between threshold and resting potential requires a stronger synaptic input current to

trigger a fire response. A single input spike with a maximum excitatory weight and

time constants set as in table 4.1 increases the membrane potential by approximately

1 Simulation parameters for SuperSpike can be found in Zenke and Ganguli (2018)

49



0.3 V. The final setting is a compromise of both assuring that the 6 bit weights are not

maxing out during training and setting the potentials as far apart as possible. Since

the overall input activity of the output layer is reduced compared to the hidden layer,

the threshold of the output unit is further lowered by 0.05 V. The choice of the neuron

potentials for the hidden and output layer is listed in table 4.2.

Parameter hidden layer output layer

initial weights winit
ij ∈ N (0, 13) ∈ N (0, 18)

resting potential Vleak 0.5 V 0.5 V

reset potential Vreset 0.4 V 0.4 V

threshold ϑ 0.75 V 0.7 V

learning rate η 2000 30

slope of fast sigmoid βσ 20 V−1 20 V−1

Table 4.2: Initial, hyper and neuron parameters per layer.

In addition to a proper choice of the neuron parameters, the performance of the training

depends on the initialized weights and the chosen learning rate (Goodfellow et al.,

2016). In analogy to the simulation of SuperSpike, the weights are drawn from a

normal distribution which is centered around zero (Zenke and Ganguli , 2018). The

learning rates are set, such that weights in both layers are adapted during the learning

but at the same time do not cause rapid weight updates that would in turn require a

regularization to prevent the weights from maxing out.

Another tunable parameter in the SuperSpike plasticity rule is the slope of the auxiliary

function σ(V ), which is defined in eq. (2.9). The choice of the parameter depends on

the distance between the threshold and the resting potential. The slope is chosen such

that at rest the surrogate gradient σ′(V ) provides little to no contribution and reaches

its maximum when the membrane is about to cross the threshold.

Network Observables In fig. 4.6 the relevant traces of the forward and backward

pass are shown for the final parameter settings. The first column shows raster plots of

the incoming spike trains for the hidden (a) and output (d) layer, respectively. Their

contribution to the membrane potential depends on the type and strength of the

respective synapse. The second column depicts the recorded membrane traces of the

hidden (b) and output layer (e). Despite the calibration of the membrane potential,

the fixed-pattern noise of the chip is still clearly visible. The input of the output

layer (d) resembles the spikes generated in the hidden layer, visible from the threshold

crossings and subsequent membrane reset (c).

50



0 25 50 75 100

time (µs)

0

20

40

60

80

S
(
h
)

j

H
id

d
e
n

L
a
y
e
r

(a) Presynaptic Spikes

0 25 50 75 100

time (µs)

0.3

0.4

0.5

0.6

0.7

0.8

V
(
h
)

m
(V

)

(b) Membrane Potential

0 25 50 75 100

time (µs)

−2

0

2

e
(
h
)

(c) Error

0 25 50 75 100

time (µs)

0

10

20

30

S
(
o
)

j

O
u
tp

u
t

L
a
y
e
r

(d)

0 25 50 75 100

time (µs)

0.50

0.55

0.60

0.65

0.70

V
(
o
)

m
(V

)

(e)

unit 0
unit 1

0 25 50 75 100

time (µs)

0.00

0.02

0.04

0.06

e
(
o
)

(f)

unit 0
unit 1

Figure 4.6: Monitoring of the network on HICANN-Xv1. Each column represents

an important observable for the backward pass. The hidden and output layer are

discriminated row-wise. The first column, contains the information of the presynaptic

spike trains S
(l)
j , the second column shows the analog traces of the membrane potential

Vm with respect to the total synaptic input generated by the incoming spikes. The

third column displays the adapted van Rossum error e(l).

The third column shows the error as given in eq. (4.1). The dashed vertical lines in

the panes (e, f) indicate the time window within which the target output unit needs

to spike. The interval is set in accordance with the duration of the input pattern and

the neuron’s time constants from 0 µs to 80µs. As indicated by the color of the dashed

lines, unit 1 is required to fire, but the membrane potential falls short of doing so (e).

In this case, a target spike t∗ indicates where the silent output unit should have fired.

The time is chosen to be near the end of the input pattern at 33 µs. Depending on the

preferred propagation method, the error of the output unit (f) is then relayed to the

hidden unit (c) either by backpropagation or feedback alignment.

As already introduced in section 2.4.2, the final weight update depends on the error, a

postsynaptic and a presynaptic term. The post and presynaptic term can be combined

into eligibility traces λ
(o)
ij

λ
(o)
ij = α ∗

(
σ′(V

(o)
m,i )︸ ︷︷ ︸

Post

(
ε ∗ S(o)

j

)︸ ︷︷ ︸
Pre

)
,

which can be interpreted as a memory over presynaptic events and how close the

membrane is to spike . This memory then influences the update of the weight by how

51



0 50 100

time (µs)

0.00

0.02

0.04

0.06

e
(
o
)

(a)

unit 0
unit 1

0 50 100

time (µs)

0.000

0.002

0.004

0.006

0.008

0.010

λ
(
o
)

i
j

(b)

unit 0
unit 1

0 50 100

time (µs)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

δ
w

(
o
)

i
j

(c)

unit 0
unit 1

Figure 4.7: Weight update in the backward pass using SuperSpike. (a) The first

contribution to the weight update is given by the adapted von Rossum error e(o). (b)

The convolution of the surrogate gradient with the presynaptic spike activity yields the

eligibility traces λ
(o)
ij . (c) The final weight update ∆w

(o)
i,j is then given by the integral

over δw
(o)
i,j which is the product of (a) and (b).

“eligible” it is (c.f. Sutton and Barto, 2011). The composition of the weight update

for the given example in fig. 4.6 is shown in fig. 4.7

4.3 Training and Results

A hidden layer network is trained on the classification task with SuperSpike using

backpropagation or feedback alignment as propagation methods in the backward pass.

Each method is trained for ten trials with a balanced training data set consisting of

2000 minibatches.

A minibatch is created by randomly drawing eight patterns from a set of four fixed

input patterns with a uniform probability (c.f. fig. 4.8). The individual batches are not

necessarily balanced, but the overall training data set will be. A single input pattern

spans over 40 µs, but the evaluation of the pattern in the forward pass takes at least

250µs. After the CADC traces have been read out on the host, the next pattern can

be injected. As soon as all patterns of a minibatch have been processed, the gathered

information is evaluated in the backward pass yielding the respective weight updates

for the synaptic connections of the network. A trial is completed once all minibatches

have been processed. The next trial will then be started with a new seed for the

random initial parameters.

The performance of the different propagation methods is measured by using a valida-

tion data set. After every minibatch, the updated network is evaluated by testing each

pattern exactly one time. As in the previous experiment the accuracy is determined by

52



0 250

0

20

40

60

80

100

in
p
u
t

u
n
it

0 250 0 250 0 250 0 250

spike time (µs)

0 250 0 250 0 250

p1
p2
p3
p4

Figure 4.8: Example of a training minibatch. The chosen batch-size of the mini-

batches is eight. The break in the x-axis indicates the time needed to transfer the

recorded CADC data from the PPU memory and the spike times from the digital back

end to the host after an input pattern has been processed by the forward pass.

the fraction of correctly identified inputs ntrue over the total number of inputs ninputs

in the data set. In the following accuracy-figures, the overall accuracy is determined

by the 0.5-quantile over the various trials, i.e. the median. Moreover, the upper and

lower error bounds are set by the 0.2-quantile and 0.8-quantile, respectively, covering

60 % of the data. For better displaying the displayed data is further resampled from

2000 to 500 samples using a polyphase method (c.f. SciPy , 2020).

Backpropagation vs. Feedback Alignment First, the standard backpropagation

method is compared to feedback alignment, where instead of the transpose of the

connecting weight matrix a random matrix is taken to propagate the error from the

output to the hidden layer (c.f. chapter 4). The random matrix is drawn from either

a uniform distribution ranging from -25 to 25 or from a centered normal distribution

N (0, 20).

The performance of the training aligns well with the performance of the chosen valida-

tion data set (see fig. 4.9). As expected, backpropagation converges significantly faster

than feedback alignment. Interestingly the choice of the underlying distribution of the

random matrix does not have a great impact on the performance of the training, at

least on the setup in use. Both distributions converge at the same velocity, despite an

observed sensitivity on the range of the distributions during the parameter tuning.

53



(a)

0 500 1000 1500 2000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

BP

FA normel

FA uniform

(b)

0 500 1000 1500 2000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

BP

FA normel

FA uniform

Figure 4.9: Train and validation accuracy of SuperSpike using backpropagation (BP)

and feedback alignment (FA). (a) The training accuracy for backpropagation (black)

converges faster than for feedback alignment (red and blue). The underlying distri-

bution of the randomly drawn feedback weights, normal (red) versus uniform (blue),

does not effect the performance. (b) The accuracy for the chosen validation data set

does not differ much from the training accuracy.

The Necessity of Hidden Learning As a sanity check, the learning rate of the

hidden layer is set to zero. This validates, that the initial state of the hidden layer

is not solving the task through the random weight initialization and thus the setup

does not even require hidden learning. In a more drastic approach the whole hidden

layer is removed. According to the theory, the network should not be able to perform

under these circumstances as the XOR-related classification task specifically requires

a hidden layer structure with a non-linear activation function (c.f. Goodfellow et al.,

2016).

The performance of the setup with the applied limitations for the hidden layer is shown

in fig. 4.10. With the inability to train the hidden layer, the accuracy does not improve

by much. The initial conditions are set in a way that only little activity is generated

by the hidden layer. In the following, the output layer receives only few spikes and

fails to build a fire response upon them. The median accuracy settles around 25 %

which reflects the correct classification of one out four input patterns. In case of the

removed hidden layer, the median accuracy also settles around the same accuracy.

The upper error bound is limited to 50 % which reflects the nature of the XOR-related

task. In the best case only two out of four patterns are correctly identified without a

hidden layer. All in all this confirms the necessity of hidden learning for the chosen

classification task. Not only is a deep network structure required to solve the task,

but also training activity within the hidden layer.

54



0 250 500 750 1000 1250 1500 1750 2000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

a
cc

u
ra

cy

no hidden learning

no hidden layer

Figure 4.10: Performance of SuperSpike without hidden learning or hidden layer.

The accuracy without the possibility to train the hidden layer remains low, as the

initial state does not allow many spikes to pass the hidden layer. For a missing hidden

layer, the accuracy settles around 25 %. The upper bound is limited to 50 % due to

the nature of the XOR related task.

Transferability between Chips Throughout the development process of the ex-

perimental setup for SuperSpike several HICANN-Xv1 setups have been in use. During

this phase, the differences between the individual chips could be noticed to some ex-

tent, especially when hand tuned calibration routines had to be redone for a new setup.

In a direct comparison of the calibrated membrane traces, the second chip is less pre-

0 20 40 60 80

time (µs)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
m

(m
V

)

Membrane Dynamics of Hidden Layer

0 20 40 60 80

time (µs)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
m

(m
V

)

Membrane Dynamics of Hidden Layer

Figure 4.11: Membrane trace comparison between HICANN-Xv1 setups. The cali-

bration of the resting potential for the setup “63” (right) did not work as well as for

“73” (left).

55



HICANN-Xv1 average Accuracy (25 steps) average Accuracy (100 steps)

no. 73 100.0+0.0
−5.2 % 100.0+0.0

−5.8 %

no. 63 100.0+0.0
−11.2 % 100.0+0.0

−17.1 %

Table 4.3: Performance of SuperSpike using backpropagation. The average validation

accuracy is evaluated by averaging the median accuracy over the last 25 respectively

100 steps. The uncertainty bounds are given by the mean 0.1-quantile in the subscript

and by the mean 0.9-quantile in the superscript.

cise. Specifically the resting potential is not well aligned as the membrane potential

spans over almost 0.3 V at rest (fig. 4.11). As a consequence, the threshold level in

the hidden and output layer has been increased by 0.05 V. Overall, the performance

appeared to not suffer too much. To verify this, the presented data from above is

remeasured on a different setup. In fig. 4.12 the individual performance of each setup

is compared per propagation method.

Given the fair amount of spread in the resting potential, the second chip performs still

reasonably well. As shown in table 4.3, both setups achieve the same median accuracy

with backpropagation, but the lower error bound of the “73” setup is clearly smaller

than for the other setup. In addition, the uncertainty increases only marginally on

“73” if more steps are taken into account, whereas on “63” the average lower bound

over 100 steps is at 82.9 %. The lower precision of the worse calibrated setup coincides

with a visibly lower convergence speed as shown in fig. 4.12a.

(a)

0 1000 2000

iterations

0.0

0.5

1.0

a
cc

u
ra

cy

Backpropagation

63

73

(b)

0 1000 2000

iterations

0.0

0.5

1.0

a
cc

u
ra

cy

FA normal

63

73

(c)

0 1000 2000

iterations

0.0

0.5

1.0

a
cc

u
ra

cy

FA uniform

63

73

(d)

0 1000 2000

iterations

0.0

0.5

1.0

a
cc

u
ra

cy

No Hidden Learning

63

73

Figure 4.12: Setup transferability for SuperSpike. The HICANN-Xv1 setups “63”

and “73” are compared to each other. The performances of various propagation meth-

ods such as backpropagation (a), feedback alignment with a normal distribution (b)

and feedback alignment with a uniform distribution (c) are compared. In the last pane

(d) the performance of no hidden learning is shown for both setups.

The performance of a random propagation matrix based on a normal distribution

56



(fig. 4.12b) is almost identical for both chips. If feedback alignment is performed

with a uniformly drawn random matrix (fig. 4.12c) the detuned chip converges slower.

For this specific task, normally distributed random weights are more robust to fixed-

pattern noise than uniformly drawn ones.

All in all, the transferability between setups can not only be subjectively observed, but

actually works without causing too many issues. One should keep in mind, that the

calibration routine in use is heavily exposed to the cross-talk problematic, which can

differ from setup to setup. Furthermore, the reduction of the fixed-pattern noise is lim-

ited to the neuron potentials. With the use of a more extensive and robust calibration

routine, the performance and transferability will most certainly be increased.

57



58



5 Discussion and Outlook

Within this thesis, the implementation of supervised deep learning methods for SNNs

were demonstrated on analog neuromorphic hardware. A rate-based approach was

successfully executed as an on-chip experiment on the HICANN-DLSv2, classifying

the Circles data set with an accuracy of (99.6 ± 0.8)%. A second temporal-based

method, SuperSpike, was implemented on a full-size chip version of the BSS2 platform

and performed well at solving an XOR-related problem on two distinct HICANN-Xv1

setups.

Rate Coding with SGD An on-chip realization of gradient descent for a rate-

based SNN was developed for the HICANN-DLSv2 chip. Despite continuing stability

issues of the FPGA and imperfections of the analog hardware, the Circles dataset

could be classified with an accuracy of (99.6± 0.8)%. This experiment resembles the

first successful on-chip implementation of a deep learning task requiring a hidden layer

structure and a non-linear activation on the analog BSS2 platform. However, trans-

ferability of the results to other setups has not yet been achieved, since an extensive

fine-tuning of the new setup would have been required first.

A large improvement of the implementation could be achieved by transferring the

experiment to the most recent chip version. The HICANN-Xv1 features dedicated on-

chip noise-generators with which a sigmoidal activation function can easily be realized.

Additionally, the difficulty of the task can be increased: with the newly available

neuron resources, 512 instead of 32, the network can be scaled up with respect to the

number and size of the individual layers. With the promising prospects given by the

new chip no further improvements are planned for the current implementation on the

HICANN-DLSv2. Moreover with the arrival of the HICANN-Xv1 the research focus

within the group has shifted. To that end, the software development for the HICANN-

DLSv2 has been halted. The older chip is still capable of performing remarkably well,

but its successor outperforms it in several regards.

Temporal Coding with SuperSpike Unlike the previous experiment, SuperSpike

was not implemented in a fully on-chip fashion. This is largely due to hardware

bugs in the current chip revision which have been discovered only recently during

the commissioning of the manufactured chip. The two most relevant issues are an

incorrect wiring of the CADC channels and not directly accessible spike counters from

59



the vector unit. The mingled CADC channels cannot be unraveled using the vector

unit. A software workaround on the general purpose unit, on the other hand, will not

scale and thus greatly affect the processing speed of the backward pass.

However, the main obstacle remains the lack of spike times on the PPU. In principle

there are two possibilities to record spike events: the digital back end and the on-

chip spike counters. The access of the digital back end by the PPU operates at a

limited speed due to a known software bug and has not yet been fixed, making its

use unfeasible. On the contrary, the spike counters cannot be directly accessed by

the vector unit. As before a solution based around the general purpose unit does not

scale and simply will not provide the necessary time resolution of the spike times. The

aforementioned problems will be fixed in a future tape-out. With the new revision

a fully on-chip implementation of SuperSpike will be possible. In the meantime a

chip-in-the-loop approach is taken.

The host-supported implementation of SuperSpike on the HICANN-Xv1 successfully

solved an XOR-related benchmark with an average test accuracy of 100.0+0.0
−5.2 % using

backpropagation. Motivated by the results from Wunderlich et al. (2019) only the

neuron potentials have been calibrated. The performance was reproduced on another

setup with a similar test accuracy of 100.0+0.0
−11.2 % despite significantly detuned neuron

potentials. In addition, the convergence of SuperSpike using feedback alignment was

also shown for both setups. It can be concluded that the SuperSpike learning rule is a

robust supervised training method for deep SNNs on analog neuromorphic hardware.

In particular it has been shown that the algorithm does not require either calibrated

time constants nor perfectly aligned neuron potentials for the given task.

Future Projects In the meantime, the developed framework for the hardware imple-

mentation of SuperSpike has been embedded in a PyTorch environment by Sebastian

Billaudelle and Benjamin Cramer. Early results have shown a competitive test ac-

curacy of over 96 % for the MNIST dataset. A more profound investigation of these

preliminary results will be published in the next months.

Furthermore, the collaboration with Friedemann Zenke from the Friedrich Miescher

Institute for Biomedical Research in Basel, author of the SuperSpike learning rule,

will be continued. In a follow-up project the application of SuperSpike for real world

problems such as speech recognition will be investigated by training recurrent SNNs.

In an attempt to bridge the gap between biological time constants of a neuron (mil-

liseconds) and the time constants of sensory input data (seconds), the slow neuronal

adaption variable provided by the AdEx neuron model will be used.

60



References

Aamir, S. A., P. Müller, G. Kiene, L. Kriener, Y. Stradmann, A. Grübl, J. Schemmel,

and K. Meier, A mixed-signal structured AdEx neuron for accelerated neuromorphic

cores, IEEE Transactions on Biomedical Circuits and Systems, 12 (5), 1027–1037,

doi:10.1109/TBCAS.2018.2848203, 2018a.

Aamir, S. A., Y. Stradmann, P. Müller, C. Pehle, A. Hartel, A. Grübl, J. Schemmel,

and K. Meier, An accelerated LIF neuronal network array for a large-scale mixed-

signal neuromorphic architecture, IEEE Transactions on Circuits and Systems I:

Regular Papers, 65 (12), 4299–4312, doi:10.1109/TCSI.2018.2840718, 2018b.

Akopyan, F., et al., Truenorth: Design and tool flow of a 65 mw 1 million neuron

programmable neurosynaptic chip, IEEE transactions on computer-aided design of

integrated circuits and systems, 34 (10), 1537–1557, 2015.

An, G., The effects of adding noise during backpropagation training on a generalization

performance, Neural computation, 8 (3), 643–674, 1996.

Averbeck, B. B., Poisson or not poisson: differences in spike train statistics between

parietal cortical areas, Neuron, 62 (3), 310–311, 2009.

Azevedo, F. A., L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E.

Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel, Equal numbers of neuronal

and nonneuronal cells make the human brain an isometrically scaled-up primate

brain, Journal of Comparative Neurology, 513 (5), 532–541, 2009.

Bi, G. Q., and M. M. Poo, Synaptic modifications in cultured hippocampal neurons:

dependence on spike timing, synaptic strength, and postsynaptic cell type., The

Journal of neuroscience : the official journal of the Society for Neuroscience, 18 (24),

10,464–10,472, 1998.

Billaudelle, S., et al., Versatile emulation of spiking neural networks on an accelerated

neuromorphic substrate, arXiv preprint arXiv:1912.12980, 2019.

Bliss, T. V., and T. Lømo, Long-lasting potentiation of synaptic transmission in the

dentate area of the anaesthetized rabbit following stimulation of the perforant path,

The Journal of physiology, 232 (2), 331–356, 1973.

i



BrainScaleS, Research project, http://brainscales.kip.uni-heidelberg.de/

public/index.html, 2012.

Brunel, N., Dynamics of sparsely connected networks of excitatory and inhibitory

spiking neurons, Journal of computational neuroscience, 8 (3), 183–208, 2000.

Cass, S., Taking ai to the edge: Google’s tpu now comes in a maker-friendly package,

IEEE Spectrum, 56 (5), 16–17, 2019.

Dale, H., Pharmacology and nerve-endings, 1935.

Davies, M., et al., Loihi: A neuromorphic manycore processor with on-chip learning,

IEEE Micro, 38 (1), 82–99, 2018.

Debanne, D., A. Bialowas, and S. Rama, What are the mechanisms for analogue and

digital signalling in the brain?, Nature Reviews Neuroscience, 14 (1), 63–69, 2013.

Drachman, D. A., Do we have brain to spare?, 2005.

Friedmann, S., J. Schemmel, A. Grübl, A. Hartel, M. Hock, and K. Meier, Demon-

strating hybrid learning in a flexible neuromorphic hardware system, IEEE Trans-

actions on Biomedical Circuits and Systems, 11 (1), 128–142, doi:10.1109/TBCAS.

2016.2579164, 2017.

Furber, S. B., F. Galluppi, S. Temple, and L. A. Plana, The spinnaker project, Pro-

ceedings of the IEEE, 102 (5), 652–665, 2014.

Gerstner, W., R. Kempter, J. L. Van Hemmen, and H. Wagner, A neuronal learning

rule for sub-millisecond temporal coding, Nature, 383 (6595), 76–78, 1996.

Gerstner, W., W. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics, Cambridge

University Press, 2014.

Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning, MIT Press, http://www.

deeplearningbook.org, 2016.

Grossberg, S., Competitive learning: From interactive activation to adaptive reso-

nance, Cognitive science, 11 (1), 23–63, 1987.

Gupta, S., A. Agrawal, K. Gopalakrishnan, and P. Narayanan, Deep learning with

limited numerical precision, in International Conference on Machine Learning, pp.

1737–1746, 2015.

Hebb, D. O., The organization of behavior: a neuropsychological theory, J. Wiley;

Chapman & Hall, 1949.

ii

http://brainscales.kip.uni-heidelberg.de/public/index.html
http://brainscales.kip.uni-heidelberg.de/public/index.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org


Hock, M., A. Hartel, J. Schemmel, and K. Meier, An analog dynamic memory array for

neuromorphic hardware, in Circuit Theory and Design (ECCTD), 2013 European

Conference on, pp. 1–4, doi:10.1109/ECCTD.2013.6662229, 2013.

Iberri, D., Schematic of an action potential, 2020.

Jarosz, Q., Schematic figure of a neuron, 2009.

Lapicque, L., Recherches quantitatives sur l’excitation electrique des nerfs traitee

comme une polarization, Journal de Physiologie et Pathologie General, 9, 620–635,

1907.

Lillicrap, T. P., D. Cownden, D. B. Tweed, and C. J. Akerman, Random synaptic

feedback weights support error backpropagation for deep learning, Nature commu-

nications, 7 (1), 1–10, 2016.

MacMahon, P. A., Combinatory analysis, repr. ed., Getr. Zählung pp., Chelsea Publ.,

New York, repr. d. Ausg. Cambridge Univ.-Pr., 1915 - 1916, 1960.

Markram, H., J. Lübke, M. Frotscher, and B. Sakmann, Regulation of synaptic efficacy

by coincidence of postsynaptic aps and epsps, Science, 275 (5297), 213–215, 1997.

Marsaglia, G., et al., Xorshift rngs, Journal of Statistical Software, 8 (14), 1–6, 2003.

Mayer, R., and H.-A. Jacobsen, Scalable deep learning on distributed infrastructures:

Challenges, techniques, and tools, ACM Computing Surveys (CSUR), 53 (1), 1–37,

2020.

Müller, E., C. Mauch, P. Spilger, O. J. Breitwieser, J. Klähn, D. Stöckel, T. Wunder-

lich, and J. Schemmel, Extending brainscales os for brainscales-2, arXiv preprint,

2020.

Nabavi, S., R. Fox, C. D. Proulx, J. Y. Lin, R. Y. Tsien, and R. Malinow, Engineering

a memory with ltd and ltp, Nature, 511 (7509), 348–352, 2014.

Petrovici, M. A., PhD thesis, University of Heidelberg, in preparation, 2012.

Petrovici, M. A., J. Bill, I. Bytschok, J. Schemmel, and K. Meier, Stochastic inference

with spiking neurons in the high-conductance state, Physical Review E, 94 (4), doi:

10.1103/PhysRevE.94.042312, 2016.

Pfeiffer, M., and T. Pfeil, Deep learning with spiking neurons: opportunities and

challenges, Frontiers in neuroscience, 12, 774, 2018.

Rieke, F., D. Warland, R. D. R. Van Steveninck, W. S. Bialek, et al., Spikes: exploring

the neural code, vol. 7, MIT press Cambridge, 1999.

iii



Schemmel, J., Brainscales 2: A novel architecture for analog accelerated neuromophic

computing including hybrid plasticity, internal document, 2017.

Schemmel, J., S. Billaudelle, P. Dauer, and J. Weis, Accelerated analog neuromorphic

computing, arXiv preprint arXiv:2003.11996, 2020.

SciPy, Website, https://docs.scipy.org/doc/scipy/reference/generated/

scipy.signal.resample_poly.html, 2020.

Smithson, M., Confidence Interval, pp. 283–284, Springer Berlin Heidelberg, Berlin,

Heidelberg, doi:10.1007/978-3-642-04898-2 183, 2011.

Stradmann, Y., Verification and commissioning of mixed-signal neuromorphic sub-

strates, Master’s thesis, Ruprecht-Karls-Universität Heidelberg, 2019.

Sutton, R. S., and A. G. Barto, Reinforcement learning: An introduction, 2011.

Tavanaei, A., M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, Deep

learning in spiking neural networks, Neural Networks, 111, 47–63, 2019.

van Rossum, M. C. W., A novel spike distance, Neural Computation, 13 (4), 751–763,

2001.

Wunderlich, T., et al., Demonstrating advantages of neuromorphic computation: A

pilot study, Frontiers in Neuroscience, 13, 260, doi:10.3389/fnins.2019.00260, 2019.

Zenke, F., and S. Ganguli, Superspike: Supervised learning in multilayer spiking neural

networks, Neural computation, 30 (6), 1514–1541, 2018.

iv

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html


List of Acronyms

ADC Analog to Digital Converter.

AdEx Adaptive-Exponential Integrate-and-Fire.

ANN artificial neural network.

BSS BrainScaleS.

BSS1 BrainScaleS1.

BSS2 BrainScaleS2.

CADC Columnar Digital to Analog Converter.

DAC Digital to Analog Converter.

HICANN-DLSv2 HICANN with Digital Learning System.

FPGA field programmable gate array.

HICANN High Input Count Analog Neural Network.

HICANN-Xv1 HICANN with Digital Learning System and Hagen eXtensions.

ISI interspike interval.

LIF Leaky Fire-and-Integrate.

LTD Long-Term Depression.

LTP Long-Term Potentiation.

MADC Multiplying ADC.

MLP multi layer perceptron.

PPU plasticity processing unit.

PSP postsynaptic potential.

v



ReLu rectified linear unit.

RMSE root mean squared error.

SGD stochastic gradient descent.

SIMD Single Instruction Multiple Data.

SNN spiking neural network.

SRAM Static Random Access Memory.

STDP Spike-Timing-Dependent Plasticity.

vi



List of Figures

2.1 Deep artifical neural network . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Popular shapes for activation functions in deep learning. . . . . . . . . 7

2.3 Schematics of a biological neuron and an action potential . . . . . . . . 10

2.4 Membrane dynamics of the LIF and AdEx given a constant input. . . . 14

2.5 Simulation of the Gaussian free membrane potential distribution. . . . 17

2.6 Simulation of a sigmoidal activation function using Poisson noise . . . . 18

2.7 The cube setup HICANN-Xv1. . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Overview of the BSS2 architecture. . . . . . . . . . . . . . . . . . . . . 23

2.9 Synapse circuit overview on HICANN-DLSv2 . . . . . . . . . . . . . . 24

3.1 Circles data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Input coding for the Circles experiment. . . . . . . . . . . . . . . . . . 28

3.3 Gaussian free membrane potential distribution on HICANN-DLSv2. . . 31

3.4 Calibration of the sigmoidal activation function on HICANN-DLSv2. . 32

3.5 Changing the shape of the sigmoidal activation function on HICANN-

DLSv2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Configuration of the synapse array for the Circles data set. . . . . . . . 34

3.7 Training success of the Circles Classification. . . . . . . . . . . . . . . . 38

3.8 Evolution of the network’s ability to separate the Circles data set. . . . 40

4.1 XOR-related task for SuperSpike. . . . . . . . . . . . . . . . . . . . . . 42

4.2 Cube setup with HICANN-Xv1. . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Pre and post calibration state of the CADC. . . . . . . . . . . . . . . . 45

4.4 Pre and post calibration state of the analog LIF parameters. . . . . . . 46

4.5 Offset measurement between CADC traces and digital spike times. . . . 48

4.6 Monitoring of the network on HICANN-Xv1. . . . . . . . . . . . . . . . 51

4.7 Weight update in the backward pass using SuperSpike. . . . . . . . . . 52

vii



4.8 Example of a training minibatch. . . . . . . . . . . . . . . . . . . . . . 53

4.9 Train and validation accuracy of SuperSpike using backpropagation and

feedback alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.10 Performance of SuperSpike without hidden learning or hidden layer. . . 55

4.11 Membrane trace comparison between HICANN-Xv1 setups. . . . . . . . 55

4.12 Setup transferability for SuperSpike. . . . . . . . . . . . . . . . . . . . 56

A.1 Monitoring of the training process. . . . . . . . . . . . . . . . . . . . . xii

viii



List of Tables

2.1 Overview of relevant BSS2 prototypes. . . . . . . . . . . . . . . . . . . 22

3.1 XOR classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Initial, hyper and neuron parameters per layer. . . . . . . . . . . . . . . 37

4.1 Time constants used for SuperSpike. . . . . . . . . . . . . . . . . . . . 49

4.2 Initial, hyper and neuron parameters per layer. . . . . . . . . . . . . . . 50

4.3 Performance of SuperSpike using backpropagation. . . . . . . . . . . . 56

A.1 Parameter setting for a sigmoidal activation function of the LIF neuron. xi

ix



x



A Appendix

A.1 Activation Function Parameters

Parameter Simulation Hardware

noise weight wnoise 8 15

input weight win 4 30

input rate νin −1000 kHz to 1000 kHz −560 kHz to 560 kHz

noise rate νnoise 240 kHz 70 kHz

resting potential Vleak 0 V 0.54 V

reset potential Vreset −200 V 0.01 V

threshold ϑ −4.25 V to 5.75 V 0.45 V to 0.63 V

refractory period τrefrac 100µs 9µs

synaptic time constant τfall 30µs 5 µs

membrane time constant τmem 3 µs 5 µs

Table A.1: Parameter setting for a sigmoidal activation function of the LIF neu-

ron. The different parameters for the simulated and on hardware recorded activation

function are shown. The choice of the unit for the simulated potentials is arbitrary.

xi



A.2 Monitoring Plots

−20

0

20

40

W
(
h
)

w00
w01
w02
w03
w04
w10
w11
w12
w13
w14

280

300

320

ϑ
∝
−
b
(
h
)

(m
V

)

b0
b1
b2
b3
b4

0 500 1000 1500 2000 2500

Iteration

−20

0

20

40

W
(
o
)

w00
w10
w20
w30
w40

0 500 1000 1500 2000 2500

Iteration

280

300

320

ϑ
∝
−
b
(
o
)

(m
V

)

b0

Figure A.1: Monitoring of the training process. The first and second row describes

the hidden and output layer respectively. The weights are depicted in the first column

and the biases in the second.

xii



Acknowledgments

And finally, after many lines of writing I would like to express my gratitude to all the

people who supported me over the last year to make this thesis possible. In particular,

Johannes for leading the Electronic Vision(s) through tough times and showing the

group a promising perspective.

Professor Hausmann for agreeing to be the second advisor of the thesis.

Benjamin and Sebastian for supervision, for the selfless patience to share your ex-

tensive knowledge about neuromorphic computing and for being reachable at almost

all hours of the day.

Benjamin, Christoph, Frederik, Laura, Laura, Sebastian, Sebi and Yannik for proof-

reading and the good feedback.

Friedemann for the insight to SuperSpike and the motivating video conference even

before Corona.

Christian, Eric, Oliver, Philipp and Yannik for selflessly fixing and explaining any

software related problem.

Benjamin, Sebastian, Tobias and Yannik for the entertaining time in the office.

Everybody from the Electronic Vision(s) Group for the awesome time during and

after work.

Christoph, David and Klaus for distracting me from work by taking me on awesome

mountain adventures.

My flatmates Johannes and Sophie for allowing me to skip the cleaning schedule in

the final phase of writing.

Laura and my Family.

xiii



Statement of Originality (Erklärung)

I certify that this thesis, and the research to which it refers, are the product of my own

work. Any ideas or quotations from the work of other people, pub- lished or otherwise,

are fully acknowledged in accordance with the standard referencing practices of the

discipline.

Ich versichere, dass ich diese Arbeit selbstständig verfasst habe und keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, May 13, 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xiv


	Introduction
	Background
	Deep Learning
	The Biological Neuron
	The lif Model
	Neural Coding with Spiking Neural Networks
	Neuromorphic Hardware

	Classification of the Circles Data Set on bss2
	Circles Task
	Poisson Spike Train Generator
	Activation Function on Chip
	Experiment Setup on dls
	Training

	SuperSpike on bss2
	XOR-related Task
	Implementation on the bss2 Platform
	Training and Results

	Discussion and Outlook
	References
	Appendix
	Activation Function Parameters
	Monitoring Plots


