
Department of Physics and Astronomy
University of Heidelberg, Ruperto Carola

Electronic Vision(s)

Master Thesis in Physics

submitted by

Agnes Korcsák-Gorzó

born in Hamburg, Germany

December 2017

Simulated Tempering in Spiking Neural
Networks

This Master Thesis has been carried out by

Agnes Korcsák-Gorzó

at the

Kircho�-Institute for Physics

University of Heidelberg, Ruperto Carola

under the supervision of

Prof. Dr. Karlheinz Meier

Abstract

In restricted Boltzmann machines, complex high-dimensional data is often rep-
resented by a probability distribution which has potentially deep local modes in its
energy landscape. These modes lead to problems with mixing when the network
performs generation tasks, since conventional sampling algorithms based on a
Markov chain may take a long time to escape from them. Speci�cally for networks
with leaky integrate-and-�re neurons, we show that an appropriate modulation of
the background Poisson noise poses a solution to these problems. Poisson rate
variation leads to a rescaling of the energy landscape analogous to simulated tem-
pering. We introduce a mapping between the temperature de�ned for networks
with abstract units and the Poisson noise rate in LIF networks. A rate variation
scheme based on this principle facilitates the network to jump out of local min-
ima and mix between di�erent modes. We thereby suggest a functional role of the
macroscopic neural oscillations observed in the cortex with potential applications
for arti�cial generative neural networks.

Zusammenfassung

In Restricted Boltzmann Maschinen werden komplexe hochdimensionale Daten
oft mit einer Wahrscheinlichkeitsverteilung dargestellt, die potenziell tiefe lokale
Moden in der Energielandschaft aufweist. Diese Moden verursachen Probleme
mit Mixing, wenn die Netzwerke die Daten wieder erzeugen. Weil konventionelle
auf Markov Ketten basierende Algorithmen eine lange Zeit brauchen, den Moden
zu entkommen. Speziell für Netzwerke aus Integrate-and-Fire Neuronen mit Leck-
strom (LIF Neuronen), zeigen wir, dass eine passende Modulation des Hintergrund-
Poisson-Rauschens eine Lösung für dieses Problem darstellt. Die Variation der
Poisson Rate führt zu einer Reskalierung der Energie-Landschaft analog zu Simu-
lated Tempering. Wir führen eine Abbildung zwischen der Temperatur de�niert in
Netzwerken mit abstrakten Einheiten und der Poisson Rate in LIF Netzwerken ein.
Ein Raten-Variations-Schema basierend auf diesem Prinzip erleichtert dem Netzw-
erk das Entkommen aus dem lokalen Minimum und den Wechsel zwischen ver-
schiedenen Moden. Wir schlagen hiermit eine funktionale Rolle der makroskopis-
chen neuronalen Oszillationen, die im Kortex beobachten wurden, für potenzielle
Anwendungen in künstlichen generativen neuronalen Netzen vor.

i

Contents

1 Introduction 1

2 Theoretical Background 5
2.1 Sampling Theory and Boltzmann Machines 5

2.1.1 Markov Chain Monte Carlo Methods 6
2.1.2 Metropolis-Hastings Algorithm 6
2.1.3 Gibbs sampling . 7
2.1.4 Boltzmann Machine . 7

2.2 Learning Algorithms . 9
2.2.1 Contrastive Divergence 10
2.2.2 Persistent Contrastive Divergence 11

2.3 Mixing Problem and Solution . 11
2.3.1 Adaptive Simulated Tempering 11
2.3.2 Coupled Adaptive Simulated Tempering 14

2.4 Spiking Neurons . 14
2.4.1 Leaky Integrate-and-Fire (LIF) Neurons 15
2.4.2 Current-, Conductance-Based Synapses 16

2.5 Sampling in Biologically Inspired Networks 18
2.5.1 Neural Sampling . 18
2.5.2 LIF Sampling . 19
2.5.3 LIF-based Boltzmann Machine 22

2.6 Mixing Problem and Solution in LIF Networks 23
2.6.1 Short-Term Plasticity . 23
2.6.2 Plastic Synapses versus Tempering 24

2.7 Neural Oscillations . 24
2.7.1 Electroencephalogram . 25
2.7.2 Frequency Bands . 25
2.7.3 Function during Sleep and Wakefulness 26

2.8 Evaluation . 27
2.8.1 Kullback-Leibler Divergence 27
2.8.2 Indirect Sampling Likelihood 28

iii

Contents

3 Experiments 29
3.1 From Temperatures to Poisson Noise Rates 30

3.1.1 Activation Functions of Di�erent Temperatures in AST . . 30
3.1.2 Membrane Potential Distribution of Di�erent Noise Rates 31
3.1.3 Activation Functions of Di�erent Noise Rates 32

3.2 Mapping Temperature to Poisson Noise Rate 35
3.2.1 Relationship between Temperature and Alpha 35
3.2.2 Relationship between Alpha and Rate 36

3.3 From Balanced to Shift-Compensated Noise 39
3.3.1 Shift Compensation Using Inhibitory Noise 40
3.3.2 Shift-Compensated Activation Functions 41

3.4 Rate Variation Schemes . 42
3.4.1 Poisson Rate Following a Sine Function 42
3.4.2 Rate Sine Waves with Parameters from Biology 43
3.4.3 Rate versus Temperature Variation 44

3.5 Sampling Accuracy Study . 46
3.5.1 Noise Rate Range . 48
3.5.2 Renewing Synapses under Sinusoidal Noise Input 49
3.5.3 Sine Wave Discretization 50

3.6 Mixing Performance in Generation Tasks 52
3.6.1 Reference: No Mixing Facilitation 53
3.6.2 Mixing Benchmark I: Plastic Synapses 54
3.6.3 Mixing Benchmark II: Abstract Units with AST 55
3.6.4 Renewing Synapses under Sinusoidal Noise Input 56

3.7 ISL Study . 57

4 So�ware 61
4.1 Neural Simulation Tool . 61
4.2 PyNN . 62
4.3 Inhomogeneous Poisson Noise Generator 63
4.4 Spike-Based Sampling . 63
4.5 Source Con�guration . 64

5 Discussion 67

6 Outlook 69

Appendix 71

Nomenclature 73

iv

1 Introduction
Every night, during sleep, our brains generate dreams. According to latest results,
the wake brain is considered to encode memories, which are consolidated during
sleep (Rasch and Born, 2013). Memory consolidation is realized by reactivating
the newly encoded neuronal memory representations as well as transforming and
stabilizing these for embedding into long-term memory (ibid.). For us, dreaming
seems to be the most natural phenomenon. But, this ordinary task for the brain
poses challenging problems to machine learning. For algorithms, already a set
of thousand 800-pixel gray shaded images of handwritten digits count as high-
dimensional data, far from being comparable to the dimensionality of neuronal
memories. After training algorithms on such images, during “reactivation”, prob-
lems occur which manifest in the generation of repetitive patterns with high simi-
larity. This thesis proposes a solution to the repetitive pattern generation problem
and is inspired by neurophysiological principles that are suggested to play a role
in information processing during sleep.
Neural networks with a speci�c architecture, called restricted Boltzmannmachine

(RBM), can be trained amongst others on the above mentioned handwritten dig-
its from the MNIST data set (LeCun et al., 1998). Samples from the multivariate
probability distribution over the training data, can be obtained by constructing a
Markov chain as done in Markov chain Monte Carlo (MCMC) methods.

RBMs can also be constructed with biologically plausible leaky integrate-and-
�re (LIF) neurons opposed to the abstract units of conventional neural networks
and realize sampling, as demonstrated in Petrovici et al. (2016). With both kinds
of RBMs, one property of the sampling algorithms becomes crucial: mixing de-
scribes the ability of the algorithm to explore di�erent regions of the data space
uniformly. However, with both also problems with mixing arise. The reason for
these di�culties is that training on high-dimensional data sets creates multi-modal
energy landscapes in RBMs. The sampler cannot escape from local minima which
are separated by high energy barriers.

In LIF networks, short-term plasticity (STP) with certain parameter ranges facil-
itates mixing, as presented in Leng et al. (2017). Developing a di�erent solution for
LIF networks is the goal of this thesis. For RBMs with abstract units, mixing can be
improved by an algorithm called adaptive simulated tempering (AST) (Salakhutdi-
nov, 2010) which is inspired from tempering methods as the name suggests. Within
the algorithm, the network adaptively visits higher temperatures that �atten the

1

1 Introduction

energy landscape, enabling the network to escape local modes. But, is simulated
tempering applicable to LIF networks? What is the analogy for temperature in
spiking neural networks?

The essential clue for a possible analogy arises from the fact that each change
in temperature a�ects the slope of the activation function of the abstract units
in AST. Similar mechanisms can be achieved in LIF sampling networks by chang-
ing the background noise either by varying the synaptic weights or the rates of the
noise input. Whilst periodic changes of the synaptic strength of the noise input are
rather uncommon in neural tissue, the occurrence of rate oscillations is an ubiqui-
tous phenomenon. This phenomenon carries the name neural oscillations and oc-
curs in a range of frequencies and amplitudes. These brain waves are widely stud-
ied, with the non-invasive observation method, electroencephalography, invented
almost a century ago (Berger, 1929). Neural oscillations are assumed to play a role
in information and memory processing especially during sleep. Interestingly, the
distinct frequencies, labeled by Greek letters (γ-, α-, β-, ... wave), apparently en-
code distinct functions, for instance, in the sleep phase more low-frequent waves
are present than in the wake-state (Buzsáki, 2006). Our driving question is, how
background noise modulations in an LIF-based RBM will in�uence its generative
properties.

As one of the prerequisites to answering the question, a mapping between tem-
peratures and noise rate is established.

On the technical side, a software framework is constructed that enables the gen-
eration of inhomogeneous Poisson processes. We embed the C++ based varying
Poisson noise generator introduced in Breitwieser (2015) in the spike based sam-
pling (sbs) (ibid.) framework. Then, we wrap the generator into a module to make
it usable with the group’s primary neural simulation software, NEST (Gewaltig and
Diesmann, 2007). The result of this coding work is a Poisson noise generator that
is maximally �exible in terms of customized Poisson noise variation patterns: it
takes any succession of times and rates and applies the rate changes at the chosen
points in time. Due to the limitations of the neural simulation software, the sched-
ule of the rate variation has to be entirely de�ned in advance to the simulation,
i.e., adaptive changes are currently not possible without pausing simulation.

Despite these limitations, we realize di�erent inhomogeneous Poisson noise pat-
terns, especially sinusoidally-shaped oscillations. Part of the study is dedicated to
�nding optimal sine waves for generating clear and diverse images. Eventually,
the mixing performance of spike-based tempering is compared with present mix-
ing facilitation mechanisms.

2

Outline
The main part of this thesis has three pillars: theory, experiments and software.
In Chap. 2, the background knowledge concerning machine learning and biolog-
ical principles is provided. Amongst others, we thoroughly introduce the previ-
ously mentioned concepts of sampling methods, Boltzmann machines (Sec. 2.1)
and learning (Sec. 2.2) in the abstract domain. Also, the mixing problem and its
solution for abstract networks is discussed (Sec. 2.3). An introduction to spiking
neurons (Sec. 2.4) is followed by biologically inspired RBMs and sampling (Sec.
2.5). Subsequently, the mixing problem for LIF networks and the current solution
via STP (Sec. 2.6) is presented as well as neural oscillations (Sec. 2.7) discussed in
view of our later established alternative solution.

In Chap. 3, the experiments, the mapping between abstract temperatures and
Poisson noise rates (Sec. 3.2) is established and the shift in the activation func-
tion compensated (Sec. 3.3), followed by rate variation schemes (Sec. 3.4). Even-
tually, utilizing all of the aforementioned techniques together with the modi�ed
software, an LIF-based RBM is stimulated with inhomogeneous noise and its gen-
erative properties evaluated (Sec. 3.7). In Chap. 4, the utilized software framework
is described as well as the implemented modi�cations and extensions (Sec. 4.5).

3

2 Theoretical Background
In this chapter, we introduce concepts and techniques used in the later chapters
and provide theoretical background to the experiments. In the �rst of two major
building bocks of the chapter, concepts from machine learning are introduced. In
the second building block, these concepts are expressed in a neurobiologically in-
spired framework. First, methods to sample from probability distributions based on
Markov chains are introduced, followed by a speci�c network architecture, called
Boltzmann machine, that has a Boltzmann distribution as stationary distribution
and assigns high probabilities to vectors it is trained on (Sec. 2.1). Training algo-
rithms for RBMs are presented in Sec. 2.2. In large abstract networks that process
high-dimensional and complex data, the mixing problem arises in sampling and
learning. This problem can be mitigated by tempering approaches (Sec. 2.3). The
second block starts with a short introduction to LIF neurons (Sec. 2.4), followed by
biologically inspired sampling approaches and LIF-based RBMs. The mixing prob-
lem in LIF networks and a present solution exploiting short-term plasticity (STP)
are described in Sec. 2.6. In later chapters, we develop an alternative approach,
which aims to �nd an analogy of tempering in LIF networks inspired by neural
oscillations in the brain (Sec. 2.7). Last but not least, the self-contained Sec. 2.8
comprises evaluation methods to quantify sampling accuracy of the networks and
diversity of the generated data.

2.1 Sampling Theory and Boltzmann Machines
In statistics, sampling denotes the action to choose examples from a set in such
a way that representative characteristics about the composition of the set can be
obtained. Especially, it is a mean to approximate distributions. We present Markov
chain Monte Carlo (MCMC) methods (Sec. 2.1.1) as certain type of sampling al-
gorithms as well as two variants thereof: the Metropolis Hastings algorithm (Sec.
2.1.2) and Gibbs sampling (Sec. 2.1.3). Eventually we introduce Boltzmann ma-
chines (Sec. 2.1.4) as a neural network that can sample from Boltzmann distribu-
tions, solely de�ned by weights and biases.

5

2 Theoretical Background

2.1.1 Markov Chain Monte Carlo Methods
Markov chain Monte Carlo (MCMC) methods construct a Markov chain that has
the target distribution as its equilibrium distribution. It was invented by Ulam
in the 1940s and implemented on ENIAC by von Neumann. A Markov chain is
a process that obeys the Markov property, i.e., it lacks memory of states further
back than a certain number of previous ones. In a �rst-order Markov chain the
probability at a time depends on the previous state

p
(
z(t)|z(0), ..., z(t−1)

)
= p

(
z(t)|z(t−1)

)
. (2.1)

With increasing number of sampling steps the desired probability distribution is
approached.

2.1.2 Metropolis-Hastings Algorithm
The Metropolis-Hastings algorithm is an MCMC method that iteratively obtains
random samples from a probability distribution from which direct sampling is dif-
�cult. It was �rst developed only for symmetric distributions by Metropolis et al.
(1953) and later generalized by Hastings (1970). The samples z(0), z(1), ..., z(t) cre-
ate a �rst order Markov chain. The more samples are produced, the better the
target distribution can be approximated. The algorithm is initialized by an arbi-
trary sample z(0) and a proposal distribution g

(
z′|z(t)

)
constructed similar to the

target distribution but easier to sample from. A new state z′ is proposed according
to the proposal distribution and accepted with the acceptance probability

A
(
z′, z(t)

)
= min

(
1,

p̃ (z′)

p̃ (z(t))

g
(
z(t)|z′

)
g (z′|z(t))

)
, (2.2)

where p̃
(
z(t)
)

is either the unnormalized target distribution or any function pro-
portional to the target distribution . If the candidate value is accepted, it is used in
the next iteration, otherwise the current value is reused.

Intuitively, attempts to move to more probable points in the state space than
the current position, i.e., to higher density regions of the target distribution, are
always accepted. Attempts to move to less probable points, are the more likely
rejected the larger the relative decrease in probability is. The chain hence tends to
explore high-density regions with occasional excursions to low-density regions,
but overall following the target distribution.

In contrast to simple rejection sampling methods, this algorithm does not su�er
from the curse of dimensionality since the partition function is canceled out in the
acceptance probability and hence not used to produce the samples. However, in
multivariate distributions, new sample points are multi-dimensional. High dimen-

6

2.1 Sampling Theory and Boltzmann Machines

sions form an obstacle in �nding the suitable proposal distribution since di�erent
individual dimensions behave di�erently. The jumping width needs to �t all di-
mensions at once, otherwise the mixing will be very slow. This problem is solved
in a variant of Metropolis Hastings, called Gibbs sampling.

2.1.3 Gibbs sampling
Gibbs sampling (GS) is a special case of the Metropolis-Hastings invented by Ge-
man and Geman (1984) and hence also an MCMC method. In Gibbs sampling a
new sample is chosen for every dimension, i.e., for every component z(t)k of the
current state vector z(t) separately according to its conditional distribution

g
(
z′|z(t)

)
= p

(
z′k|z(t)\k

)
. (2.3)

Combined with

p (z) = p
(
zk|z\k

)
p
(
z\k
)
, (2.4)

the acceptance probability becomes

A
(
z′|z(t)

)
=

p (z′)

p (z(t))

g
(
z(t)|z′

)
g (z′|z(t)) = 1 . (2.5)

An acceptance probability equal to 1 means that the proposed state is always ac-
cepted. One Gibbs step is complete when all components of state z are updated.
The updating order is arbitrary, but usually a �xed periodic order is used. In each
Gibbs sampling step the value of one component is replaced by a value drawn
from the distribution of that component conditioned on the values of the most re-
cent values of the other components, e.g. for the case of a three-dimensional state
vector:

p
(
z1|z(t)2 , z

(t)
3

)
→ z

(t+1)
1 ,

p
(
z2|z(t+1)

1 , z
(t)
3

)
→ z

(t+1)
2 ,

p
(
z3|z(t+1)

2 , z
(t+1)
3

)
→ z

(t+1)
3 . (2.6)

2.1.4 Boltzmann Machine
A Boltzmann machine (BM) is a neural network of all-to-all connected stochastic
binary units developed in Hinton and Sejnowski (1983). The connections are sym-

7

2 Theoretical Background

metric, such that it forms an undirected graphical model. It shares properties with
Markov random �elds and Ising models with the di�erence that the interaction
weights of the Boltzmann machine are learned and not hand-designed or random.
The total input y to a unit i is given by

yi = bi +
∑
j

zjWij , (2.7)

where bi is the bias of unit i and Wij the weight entry in the weight matrix W
between units i and j. zj has value 1 if unit j is on and 0 otherwise. The probability
that unit i gets activated is given by a logistic function, a sigmoid curve,

p (zi = 1) =
1

1 + exp (−yi)
= σ(yi) . (2.8)

Sequential updates of the units lead to the equilibrium distribution of the network,
the Boltzmann distribution. The probability of a state vector is de�ned by its en-
ergy

p (z) =
1

Z
exp (−E(z)) , (2.9)

where the partition function Z ensures the correct normalization and is given by

Z =
∑
z

exp (−E(z)) , (2.10)

with the energy of a state vector de�ned like in Hop�eld networks as

E (z) =
∑
i<j

Wijzizj −
∑
i

bizi . (2.11)

Restricted Boltzmann Machine
The fully-connected Boltzmann machine turned out to be impractical in terms of
learning. But, with appropriate restrictions imposed on the connections, training
becomes easier, as shown in Smolensky (1986). The restricted Boltzmann machine
(RBM) consists of a layer of visible and a layer of hidden units, with no intralayer
connections, i.e., the weight matrix is still symmetric, but has a vanishing trace:

Wii = 0, Wij = Wji , (2.12)

8

2.2 Learning Algorithms

and hence forms a bipartite graph. The probability of a state vector can be ex-
pressed by the visible and hidden state vectors

p(v,h) =
1

Z
exp [−E (v,h)] , (2.13)

E(v,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i,j

viWijhj , (2.14)

where ai are the the biases of the visible units and bj of the hidden units. The
hidden unit activations are independent from each other given the visible unit
activations and vice versa. The conditional probabilities are given by

p (v|h) =
m∏
i=1

p (vi|h) , (2.15)

p (h|v) =
n∏
j=1

p (hj|v) , (2.16)

where m is the number of visible and n the number of hidden units. For single
units, the activation probabilities are given by

p(hj = 1|v) = σ

(
bj +

m∑
i=1

Wijvi

)
, (2.17)

p(vi = 1|h) = σ

(
ai +

n∑
j=1

Wijhj

)
. (2.18)

2.2 Learning Algorithms
In this work, trained networks are utilized, and the training itself is not performed.
A detailed discussion about the training process can be found in Leng (2014) . Also,
as mentioned earlier, since training for plain BMs is hardly feasible, here the one
for RBMs is discussed.

An untrained Boltzmann machine generates samples from the Boltzmann dis-
tribution. Training means to present the Boltzmann machine some training data,
here mainly the MNIST data set, i.e., clamp the visible layer to the data and update
its parameters according to a prede�ned rule after each presentation. The goal
of each update is to maximize the probability of the visible layer p(v) with re-
spect to the input, or more precisely the log-likelihood lnp (v)is evaluated. Taking

9

2 Theoretical Background

the average over the training set and exploiting the restrictions of the RBM, the
derivatives with respect to the model parameters, the weights Wij and the biases
of visible units ai and hidden units bj read

〈∂lnp(v)

∂Wij

〉 = η
(
〈vihj〉data − 〈vihj〉model

)
, (2.19)

〈∂lnp(v)

∂ai
〉 = η (〈vi〉data − 〈vi〉model) , (2.20)

〈∂lnp(v)

∂bj
〉 = η (〈vi〉data − 〈vi〉model) . (2.21)

These derivatives are used to update the model parameters via gradient ascent
with a constant learning rate. In the course of this learning phase, the energy
corresponding to the states of the training samples are lowered and their proba-
bility increased, enabling the generation of similar data. Unfortunately, the states
in the model terms imply the evaluation of the partition function - an unfeasible
operation in high-dimensional state spaces. Hence, in the following a method is
discussed that approximates the expectation.

2.2.1 Contrastive Divergence
Contrastive divergence (CD) proposed by Hinton (2002) o�ers a way to avoid the
intractable model average over zizj , which is computationally cheaper than ap-
proximating it via MCMC sampling and has a lower variance than computing

∂lnp (v)

∂Wij

. (2.22)

In k-step contrastive divergence, the di�erence between a term involving v(0)i the
visible layer clamped to the input and one involving v(k)i the visible layer after k
Gibbs sampling steps is evaluated for the

CD k

(
v(0),Wij

)
= p

(
hj = 1|v(0)

)
v
(0)
i − p

(
hj = 1|v(k)

)
v
(k)
i , (2.23)

CD k

(
v(0), ai

)
= v

(0)
i − v(k)i , (2.24)

10

2.3 Mixing Problem and Solution

CD k

(
v(0), bj

)
= p

(
hj = 1|v(0)

)
− p

(
hj = 1|v(k)

)
. (2.25)

CD-1 is often su�cient.

2.2.2 Persistent Contrastive Divergence
In persistent contrastive divergence (PCD) described in Tieleman and Hinton (2009),
as the name implies, a Markov chain is initialized only once in the beginning with
the �rst training data point and afterwards runs persistently. This approach im-
proves the approximation of the model distribution, provided the learning rate is
small enough to ensure slow changing of the model parameters.

2.3 Mixing Problem and Solution
During training, an RBM assigns high probabilities to the training data, which
correspond to low energy values. In the case of very inhomogeneous classes, in
between these energy modes, high energy barriers are created. As a result, the en-
ergy landscape becomes increasingly rough during training and the Gibbs sampler
is prevented from covering all of the relevant state space. This again, destabilizes
the learning dynamics and leads to poor parameter estimates. These di�culties
also become apparent in sampling-based generation tasks in the form of a high
similarity in consecutively generated patterns. E�ectively, it takes a longer time
until the BM converges to the target distribution. The ability of generative models
based on sampling to travel over energy barriers is termed mixing. In the following
a method by Salakhutdinov (2010) is described that utilizes tempering in sampling
(Sec. 2.3.1) and learning (Sec. 2.3.2) to facilitate mixing.

2.3.1 Adaptive Simulated Tempering
Adaptive Simulated Tempering (AST) is an algorithm that mixes better than Gibbs
sampling as demonstrated in Salakhutdinov (2010). It is a combination of the
Wang-Landau algorithm in Wang and Landau (2001) and Simulated Tempering
from Marinari and Parisi (1992), which are addressed in the following.

Wang-Landau Algorithm

Let us consider a probability distribution

p (x; θ) =
1

Z
exp (−E (x, θ)) , (2.26)

11

2 Theoretical Background

de�ned over a state space X that is segmented into K disjoint sets {Xk}Kk=1. The
states in each partition are updated via Gibbs sampling. In order to generate a
Markov chain that travels uniformly over the state space, the Wang-Landau (WL)
algorithm introduces for each segment a probability adjusting factor gk into the ac-
ceptance probability of the Metropolis-Hastings algorithm. Each time the network
remains in one partition, the corresponding adjusting factor increases. Thus, the
probability mass of the entire partition decreases and the chain is induced to leave
into other parts of the state space. As a result, the chain spends an equal amount
of time in each set Xk. In particular, the algorithm consists of three stages:

1. gt, aK-dimensional vector, holds all the adjusting factors for a certain point
in time. Initialize all its elements to 1 at t = 0 .

2. Generate the consecutive state xt+1 given model state xt via Gibbs sampling
using the constant probability distribution:

p
(
x; θ,gt

)
∼

K∑
k=1

p (x, θ)

gtk
I (x ∈ Xk) , I(x) =

{
1 if x is true
0 otherwise

. (2.27)

3. Calculate the adaptive adjusting factors from the new state

gt+1
k = gtk

[
1 + γtI

(
xt+1 ∈ Xk

)]
. (2.28)

Since γt > 0 is involved in the update of gk, it is called the weight adapting
factor.

In the limit of in�nite time and vanishing weight adapting factors for all partitions,
the probability converges

gtk∑
i g

t
i

→ p (x ∈ Xk) , (2.29)

signifying that the adaptive adjusting factors asymptotically converge to optimal
values, ensuring a uniform exploration of the state space. However, the problem
with this algorithm lies in the fact that it is di�cult to �nd a suitable partitioning.
Appropriate partitions can be established in a natural way via simulated temper-
ing.

Simulated Tempering (ST)

The principle of simulated tempering (ST) (Marinari and Parisi, 1992) or simulated
annealing is borrowed from metallurgy (Kirkpatrick et al., 2007). The power of sim-
ulated annealing can be clari�ed with an illustrative analogy: In a landscape with

12

2.3 Mixing Problem and Solution

various unequally deep modes, conventional algorithms correspond to a particle
that bounces over the area, loosing energy until it comes to rest in one of the min-
ima - not necessarily the global one. It is an MCMC algorithm which overcomes
a problem of many deterministic search and gradient-based methods, namely to
get trapped in local minima. Compared to simulated annealing, temperature in ST
becomes a dynamic variable. The energy loss is smaller and happens on longer
time scales, such that the particle reaches the deepest mode.

Let us turn to the formulation of simulated tempering in neural networks. There,
the goal is to sample from the target distribution, p(x), over the multi-dimensional
states x. On that account, a Markov chain is simulated from the joint distribution

p (x, k) ∼ ck exp (−βkE (x)) , (2.30)

where ck are constants and 0 < βK < βK−1 < ... < β1 = 1 are similar to the
inverse temperature 1/(kB T). In particular, this is the combined state space of
the states and the temperature. The states are only accepted if k reaches 1. In the
sampling process two transition operators are evaluated alternately in a row. First,
x is updated via Gibbs sampling from the conditional probability

p (x|k) =
1

Zk
exp (−βkE (x)) , (2.31)

where Zk is the partition function. Second, conditioned on x, k is sampled using
the Metropolis-Hastings algorithm with a proposal distribution

for 2 5 k 5 K − 1 q (k + 1|k) = q (k − 1|k) =
1

2
, (2.32)

where q (2|1) = q (K − 1|K) = 1 and 0 otherwise. The strength of this principle,
lies in the enhancement of mixing between local modes due to occasional visits to
high temperatures, resembling the increase of transition rates with higher temper-
atures in thermodynamics. However, a necessary requirement is that the Markov
chain uniformly travels over the temperature range ensured by setting ck propor-
tional to the inverse of the partition sum of that subspace. Since the partition is
computationally intractable, the WL algorithm comes into play at this point: it
enables the partition of the state space into K sets {Xk}Kk=1 covering the di�erent
temperature values and assign each with the appropriate adaptive adjusting factor.
As described above, a rejected move, results into a decrease of the probability mass
of that temperature, slowly favoring a leave to another temperature.

13

2 Theoretical Background

AST algorithm

The AST algorithm is initialized with a set of adaptive adjusting factors {gk}Kk=1

and an initial model state x1 at the �rst temperature k = 1. For n = 1, 2, ..., N
iterations alternatively, given xn a new new state xn+1 from p (x, kn) is Gibbs-
sampled and given kn, kn+1 is sampled from proposal distribution q (kn+1 ← kn)
by Metropolis-Hastings sampling, i.e., it is accepted with

A
(
kn+1, kn

)
= min

(
1,
p (xn+1, kn+1) q (kn ← kn+1) gkn

p (xn+1, kn) q (kn+1 ← kn) gkn+1

)
. (2.33)

Afterwards the adaptive adjusting factors are updated:

gn+1
i = gni

(
1 + γnI

(
kn+1 = i

))
, i = 1, 2, ..., K . (2.34)

Each time k reaches the value 1, the sample is kept. The resulting sequence ap-
proximates the target distribution. The convergence in Eqn. 2.29 and the resulting
bene�t are still valid.

2.3.2 Coupled Adaptive Simulated Tempering
Coupled AST (CAST) is a learning method introduced in Salakhutdinov (2010), in
which the mixing enhancement property of AST is exploited, when it comes to
learning complex data. This kind of data is represented by a multi-modal energy
landscape, so the part of the training that is performed by Gibbs sampling, is prone
to get stuck. In CAST a slow and a fast Markov chain are run in parallel. PCD up-
dates of the model parameters are performed in the slow chain after every Gibbs
step. In the fast chain, AST adaptively changes temperatures indexed by k to fa-
cilitate mixing. The fast chain triggers an exchange of the current states between
the two chains, as soon as it reaches the lowest temperature 1. When the chain
reaches the low-temperature region, the frequent visits of the k = 1 temperature
lead to frequent swaps between the two chains, which does not help mixing. To
avoid this case, in practice, a �xed number of Gibbs updates need to elapse before
the next swap can happen.

2.4 Spiking Neurons
In the subsequent analytical and experimental considerations of neurons, we use
one of the simplest spike-based neuron model called leaky integrate-and-�re (LIF)
neuron model. In contrast to multi-compartment models, the complex morphol-
ogy of nerve cells is entirely neglected here, modeling the neuron as point-like. By

14

2.4 Spiking Neurons

C
m

E
l

g
l

I
syn

+ I
ext

u

Figure 2.1: Electric circuit modeling the membrane of a nerve cell. Cm, the mem-
brane capacitance, is realized by a capacitor in parallel with a resistor modeling
the leak conductance and a voltage source modeling the resting potential El. Iext

and I syn are jointly represented by a parallel current source.

abstracting away a number of other physiological details, it provides a tractable
and yet realistic model. First, we introduce the di�erential equation governing the
membrane potential dynamics (Sec. 2.4.1) and extend them by describing mathe-
matical descriptions for corresponding synapse models (Sec. 2.4.2).

2.4.1 Leaky Integrate-and-Fire (LIF) Neurons
The Hodgkin-Huxley model (Hodgkin and Huxley, 1952) introduces a di�erential
equation for the membrane potential, which further depends on a set of three dif-
ferential equations for ion channels, forming a system of coupled, nonlinear di�er-
ential equation. The leaky integrate-and-�re (LIF) model is a simpli�cation thereof
and models the dynamics of the membrane potential u with only one di�erential
equation

Cm
du

dt
= gl(El − u) + I syn + Iext , (2.35)

with Cm being the membrane capacitance. A passive leak term is proportional to
u, comprising the leak conductance gl and leak potential El . I syn represents the
synaptic current and Iext the external input, which make up the total current. The
equations of both models result from modeling the membrane of a neuron with an
electric circuit (Fig. 2.1). For spike emission two distinct values of the membrane
potential, the threshold and the reset potential, ϑ and %, are determined. Whenever

15

2 Theoretical Background

the membrane potential crosses ϑ the neuron spikes

neuron spikes at t = tspike ⇔ u(tspike) = ϑ , (2.36)

and is afterwards reset to % for a duration τref in which the neuron is refractory

u
(
tspike < t ≤ tspike + τref

)
= % . (2.37)

A spike train refers to the temporal sequence of spike events at times ts and is
expressed as

ρ(t) =
∑

spikes s

δ(t− ts) . (2.38)

In the case of zero synaptic input and a constant external current, Eqn. 2.35 can be
solved as

u(t) = El +
Iext

gl
+

(
u0 − El −

Iext

gl

)
e−

t
τm , (2.39)

where u0 = u(t = 0) is the initial value of the membrane potential and τm =
Cm /gl the membrane time constant. If the equilibrium value El + Iext/gl of u is
smaller than ϑ the time course of the membrane potential represents charging or
discharging the capacitor. In the supra-threshold case, the membrane potential
alternately describes an exponential rise up to the threshold and a jump disconti-
nuity when reset to %. By imposing u0 = % and u(T) = ϑ, where T is the time
between the end of the refractory period and the �rst crossing of the threshold, as
boundary conditions on Eqn. 2.39 the �ring steady-state �ring rate can be calcu-
lated by

ν = (τref + T)−1 =

[
τref + τm ln

(
%− El − Iext

gl

ϑ− El − Iext

gl

)]−1
. (2.40)

2.4.2 Current-, Conductance-Based Synapses
Likewise, the biological synaptic dynamics is reduced to its essentials. Common
synapse models introduce an interaction kernel ε(t) weighted withw at each spike
event. For each neuron these kernels sum up linearly over its pre-synaptic partners
k and their spike train, resulting into an overall synaptic e�ect

f syn (t) =
∑

synapses k

∑
spikes s

wkεk (t− ts) .

In the case of conductance-based (COBA) neurons, this changes the membrane po-
tential‘s conductance. As a consequence, the membrane potential drifts towards

16

2.4 Spiking Neurons

the respective reversal potential, Erev
e or Erev

i , depending on the excitatory or in-
hibitory nature of the synapse. The synaptic current hence reads

I syn = gsyn
e (Erev

e − u) + gsyn
i (Erev

i − u) , (2.41)

which yields the COBA LIF equation when inserted into Eqn. 2.35

Cm
du

dt
= gl (El − u) + gsyn

e (Erev
e − u) + gsyn

i (Erev
i − u) + Iext . (2.42)

A closed-form solution of this ODE is in opposition to the plain LIF equation
harder, in fact an exact solution cannot be given, but only an approximative, mainly
for two reasons. First, the conductances gsyn

e, i are temporally evolving which brings
about a time dependence of the total conductance gtot = gl + gsyn

e + gsyn
i . Since

the membrane potential is described by the e�ective time constant τe� = Cm/g
tot,

its responsiveness becomes time dependent as well. Second, I syn is proportional to
the di�erence between u and the reversal potential. This leads to saturating e�ects
especially for inhibitory post-synaptic potentials (PSPs), since the rest membrane
potential is usually closer to the inhibitory reversal potential. By choosing an ex-
ponential interaction kernel

ε(t) ∝ Θ(t) exp

(
− t

τ syn

)
, (2.43)

the synaptic conductances can be expressed by

gsyn
x∈{e, i}(t) =

∑
syn k

∑
spk s

wkΘ(t− ts) exp

(
−t− ts
τ syn

)
, (2.44)

yielding total synaptic current of

I syn(t, u) =
∑
x∈{e, i}

∑
syn k

∑
spk s

wkΘ (t− ts) (Erev
x − u) exp

(
−t− ts
τ syn

)
. (2.45)

Though COBA synapses are a biologically more plausible model for chemical synapses
there also exist current-based (CUBA) models. Both are equally justi�ed in the case
of the point neuron model: The membrane potential is in�uenced by conductance
changes whereas the soma is responsive to synaptic current changes. The di�er-
ential Eqn. 2.35 for u stays the same for the CUBA case, with a synaptic current
expressed by exponential interaction kernels:

17

2 Theoretical Background

I syn(t) =
∑
syn k

∑
spk s

wkΘ (t− ts) exp

(
−t− ts
τ syn

)
. (2.46)

Again, the overall synaptic current is formed by a linear summation of PSPs. With
that in the CUBA case an exact solution can be derived.

2.5 Sampling in Biologically Inspired Networks
The concepts from 2.1 are translated to networks with spiking neurons. For ab-
stract model neurons this was achieved with neural sampling in Buesing et al.
(2011) (Sec. 2.5.1) and for LIF neurons in Petrovici (2016) (Sec. 2.5.2). This lead to
the implementation of LIF-based BMs (Sec. 2.5.3) which are utilized later in the
experiments.

2.5.1 Neural Sampling
Neural Sampling is an MCMC sampling method in networks of abstract model
neurons (AMNs) developed by Buesing et al. (2011). It is the cornerstone to Boltz-
mann machines based on spiking neurons. In neural sampling, the binary vector
z represents the �ring activity of the network at time t

zk(t) = 1⇔ vk was active in (t− τ, t] , (2.47)

i.e., a spike of neuron vk sets the value of the associated binary value zk to 1 for
a duration of τ . Assuming that the membrane potential of the neuron with index
k corresponds to the log odds of zk being on, the neural computability condition
(NCC)

uk(t) = log

(
p
(
zk(t) = 1|z\k(t)

)
p
(
zk(t) = 0|z\k(t)

)) , (2.48)

is introduced. For the Boltzmann distribution the NCC implies the following mem-
brane potential for neuron k

uk(t) = bk +
K∑
i=1

Wkizi(t) , (2.49)

where bk is the bias, describing the excitability of the neuron, Wki is the synaptic
strength between neuron k and i, and together with zi(t) they form the time course
of the PSP induced in neuron k by the �ring of neuron i. A number of non-binary
internal variables ζ1, ..., ζK encode the exact �ring time of the neuron in the time

18

2.5 Sampling in Biologically Inspired Networks

interval (t − τ, t], which ensures the Markov property of sampling. These vari-
ables control the exit from the refractory state. The dynamics of ζk is determined
by updates in discrete time steps. For a neuron model with absolute refractory
mechanism, ζk is set to τ (refractory period) when neuron vk �res and decreases
with each update toward zero. The neuron is ready to spike again if ζk ≤ 1 . The
spike probability is de�ned via a logistic function

p [ζk(t+ 1) = τ |ζk(t) ∈ {0, 1}, uk(t)] = σ (uk − logτ) . (2.50)

2.5.2 LIF Sampling
The functioning of neural sampling relies on the intrinsic stochasticity of the net-
work‘s units. A combination with models implying a spiking condition like Eqn.
2.36 is desirable to account for �ndings of in vitro experiments that reveal the de-
terministic nature of neurons. As a side remark, neurophysiologically more plau-
sible are escape noise models, where the neurons spike stochastically in a range
of membrane potential values (see e.g. in Gerstner et al. (2014)). Petrovici et al.
(2016) achieves this goal of generating the required stochasticity in LIF neurons
by embedding them in a spiking noisy environment. It is demonstrated that the
network is able to approximate sampling from a well-de�ned target distribution.
Further, it enables the realization of an LIF-based Boltzmann machine.

Noisy spiking environment

In the following, some approximations in the case of a noisy spiking environment
according to Petrovici et al. (2016) are demonstrated. For the argument, Irec and
Iext are neglected for the moment and the focus lies on the noise part of the synap-
tic current in Eqn. 2.35. A COBA neuron responds to bombardment with high-
frequency Poisson noise with accelerated membrane dynamics, transitioning to
the so called high-conductance state (HCS). In this state, the following di�erential
equation holds

τe�
du

dt
= ue� − u . (2.51)

The introduced e�ective time constant τe� and e�ective membrane potential ue�
are related via the total conductance

gtot = gl +
∑
k

gsyn
k , (2.52)

which is dominated by the noise part of the conductance. For high input, the
quotient of the standard deviation and the mean of gtot converges to zero, thus it

19

2 Theoretical Background

can be replaced by its mean value in the equations

τe� ≈ 〈τe�〉 =
Cm

〈gtot〉
, (2.53)

ue� =
Iext + gl El +

∑
i g

noise
i Erev

i

〈gtot〉
. (2.54)

When τe� is small, the membrane potential is approximately equal to the e�ec-
tive membrane potential. With an approach from Ricciardi and Sacerdote (1979),
Petrovici et al. (2016) have shown that under high frequency input, the di�usion
approximation holds and the noise contribution of the current and the e�ective
membrane potential can be described by an Ornstein-Uhlenbeck process, i.e., a
mean-reverting random walk in continuous time

du(t) = θ (µ− u(t)) dt+ σdW (t) . (2.55)

dW (t) is a Wiener process and here the characterizing parameters are expressed
by neurophysiological parameters

θ =
1

τsyn
, (2.56)

µ =
Iext + gl El +

∑
i νiwiE

rev
i τsyn

〈gtot〉
, (2.57)

σ2 =

∑
i νiw

2
i (Erev

i − µ)2 τsyn

〈gtot〉2
. (2.58)

Free membrane potential statistics under noise input

Under high enough Poisson noise input the membrane potential distribution of the
CUBA (also COBA) neuron approximates a Gaussian distribution. The expectation
value of the CUBA membrane potential is given by

E[u] = El +
Iext

gl
+

∑n
k=1wkνkτ

syn
k

gl
, (2.59)

and its variance by

Var [u] =
n∑
k=1

[
τm τ

syn
k

Cm (τm − τ syn
k)

]2
w2
kνk

(
τm

2
+
τ syn
k

2
− 2

τm τ
syn
k

τm + τ syn
k

)
. (2.60)

20

2.5 Sampling in Biologically Inspired Networks

The expectation value of the COBA e�ective potential and e�ective time constant
are given by

E[ue�] =
gl El + Iext +

∑
k wkνkτ

syn
k Erev

k

gl +
∑

k wkνkτ
syn
k

= 〈ue�〉 , (2.61)

E [τe�] =
Cm

E [gtot]
=

Cm

gl +
∑

k wkνkτ
syn
k

= 〈τe�〉 . (2.62)

The expectation value of the COBA membrane potential is given by

E[u] =
gl El + Iext +

∑
k wkνkτ

syn
k Erev

k

gl +
∑

k wkνkτ
syn
k

, (2.63)

and its variance by

Var [u] =
n∑
k=1

[〈τe�〉 τ syn
k (Erev

k − 〈ue�〉)
Cm (〈τe�〉 − τ syn

k)

]2
w2
kνk

(〈τe�〉
2

+
τ syn
k

2
− 2

〈τe�〉 τ syn
k

〈τe�〉+ τ syn
k

)
.

(2.64)
For CUBA neurons, Var[u] is proportional to the noise input rate νk and the squared
input weight wk. Changing these two terms leads to a change of the width of the
Gaussian distribution. This results in a slope change in the cumulative function of
the Gaussian, which approximates the change of the activation function. This role
played by the noises serves as the foundation of the implementation of spike-based
tempering.

Analytical LIF-based Activation Function

The goal of the following mathematical considerations is the analytical derivation
of a sigmoid shaped activation function for LIF neurons like in neural sampling

p(z = 1) = σ(v) =
1

1 + exp(−v)
. (2.65)

LIF neurons in the HCS enter one of two modes after one spike: Either the bursting
mode, where the free membrane potential stays suprathreshold, eliciting in total
n spikes, or the freely evolving mode where the membrane potential is subthresh-
old again. The probability of an n-spike burst is denoted by Pn. The average time
the membrane potential spends in freely evolving mode following this burst is de-
noted by Tn. The membrane distribution at the end of the �rst refractory period
in a burst is approximately Gaussian distributed in the HCS. The probability that
the membrane potential will be suprathreshold can be obtained via the cumulative
density function. Together with the parameters in Eqns. 2.56, 2.57 and 2.58 char-

21

2 Theoretical Background

acterizing the OU process, the so called transfer function p (un|un−1) between the
membrane potentials at two consecutive spikes times in a burst can be retrieved.
This function enters in the form of recursive integrals into the calculation of Pn
and Tn. Finding the average time to reach the threshold from membrane potential
value un is regarded as a �rst passage time problem, solvable with common meth-
ods from statistical physics and necessary for the calculation of Tn. With these
expressions the activation function is evaluated as

p (z = 1) =

∑
n Pnnτref∑

n Pn (nτref + Tn)
. (2.66)

Detailed derivation of all mentioned variables and further considerations can be
found in Petrovici et al. (2013) and the corresponding supplementary material.

2.5.3 LIF-based Boltzmann Machine
Until now, it is not guaranteed that the activation function has the necessary sig-
moid shape. This is achieved by �tting a sigmoid to the obtained values, yielding
two �t parameters,α that rescales the membrane potentials and ū0k that shifts them,
yielding

p (zk = 1) = σ

(
ūk − ū0k

α

)
, (2.67)

with ū0k representing the membrane potential value, where the activation probabil-
ity equals 0.5. When the neuron is disconnected from other neurons, its excitability
can be varied by its rest membrane potential or external current. When Iext is zero,
for the correct conversion between the LIF and the abstract regime the biases read

bk =
ūk − ū0k

α
. (2.68)

Weightswkj between LIF neurons k and j are translated into abstract weightsWkj .
The reason for this lies in the fact, that instead of rectangular PSPs like in neural
sampling, here, exponential-shaped PSPs are present and the membrane potentials
are rescaled in Eqn. 2.67. The shape mismatch can be corrected for by matching
the integral value under both PSPs within the refractory period. Another reason
is that the units need to be adjusted.

Wkj =
wkj

(
Erev
kj − µ

)
αCm

(
1− τsyn

τe�

) [τsyn
(
e−1 − 1

)
− τe�

(
e
− τsyn
τe� − 1

)]
. (2.69)

22

2.6 Mixing Problem and Solution in LIF Networks

Again, detailed derivation of these formulas can be found in Petrovici et al. (2013)
plus the supplementary. With these conversions, LIF sampling becomes possible
and LIF-based Boltzmann machines can be created.

2.6 Mixing Problem and Solution in LIF Networks
Weight matrices and biases obtained from training an abstract network with CD,
PCD or CAST (Sec. 2.2) can be used for LIF networks. The mixing problem men-
tioned in Sec. 2.3 also occurs in these networks. One approach to facilitate mixing
exploits the STP mechanism (Sec. 2.6.1). The di�erences between this approach
and tempering, which is the base for our approach are discussed in Sec. 2.6.2.

2.6.1 Short-Term Plasticity
The synaptic strength of neurons is determined by the amplitude of the elicited
postsynaptic potential (PSP). Short-term plasticity (STP) (Zucker and Regehr, 2002)
is a change in the synaptic e�cacies on timescales of milliseconds to seconds, in
contrast to long-term plasticity (minutes to hours) and structural plasticity (days
to years). The e�cacy changes are caused by physiological processes, modify the
synaptic e�cacy only temporarily and are present in many cortical areas. STP
encodes the history of the presynaptic activity on time scales that corresponds to
many mental processes (motor control, speech recognition, etc.) and therefore it
is supposed to contribute to information transmission and processing. If STP leads
to the weakening of the synaptic strength it is called short-term depression (STD)
and if it leads to facilitating it is called short-term facilitation (STF). A phenomeno-
logical STP model in Tsodyks et al. (1998), is the Tsodyks-Makram-Model (TSO)
which is described in the following.

PSP ∝ w · U ·R , (2.70)
dR

dt
=

1−R
τrec

−
∑

spikes s

UR δ (t− ts) , (2.71)

dU

dt
= − U

τfac
+
∑

spikes s

U0 (1− U) δ (t− ts) , (2.72)

wherew is the synaptic weight,U ∈ [0, 1] the utilized fraction of available synaptic
resources R ∈ [0, 1]. Upon arrival of a presynaptic spike at time ts, the synaptic
resources are used by a fraction U from R, which recovers exponentially with
the time constant τrec . Facilitation is modeled by a simultaneous increase in U ,
followed by an exponential decay with time constant τfac.

23

2 Theoretical Background

Di�erent parameter combinations (U0, τrec, τfac) correspond to di�erent synap-
tic mechanisms. Static synapses correspond to (1, 0, 0) and are characterized by
a �rst increasing PSP amplitude which then converges to a constant value. This
is due to exponential shape of the PSPs, which add up in their e�ects. Renewing
synapses with (1, τsyn, 0) have a constant amplitude by weakening sequential PSPs
originating from the same neuron. This e�ectively models the saturation of the
post-synaptic receptor pools after an incoming spike. Plastic synapses weakly mod-
ulate the PSP amplitude and correspond to many parameter combinations found
in a systematic investigation of the parameter triplet (Leng et al., 2017). They were
shown to increase the mixing properties of spike-based LIF networks (ibid.).

2.6.2 Plastic Synapses versus Tempering

tempering

STP

Figure 2.2: STP versus temper-
ing. Tempering modi�es the
landscape globally in contrast to
STP, which a�ects only the cur-
rent attractor. Adapted from
Leng et al. (2017), Fig. 1D.

Plastic synapses (Sec. 2.6.1) modify the energy
landscape locally, i.e., only with respect to the
current energy mode, whilst tempering (Sec.
2.3.1) induces a global change of the energy
landscape. The reason is that STP solely ef-
fects the e�erent connections of the active neu-
rons, but tempering changes the spike probabil-
ity distribution of all neurons by changing the
background noise (see Chap. 3) as depicted in
Fig. 2.6.2.

Our approach implements tempering in LIF
networks with a scheme inspired by neural
oscillations (Sec. 2.7). In contrast to plastic
synapses, where all samples are valid, in tem-
pering only those states corresponding to the
base temperature are considered and the others

neglected, which increases the simulation time.

2.7 Neural Oscillations
The spiking activity of individual cortical neurons is usually characterized by Pois-
son statistics. In contrast to that, neuron groups of di�erent sizes show oscillatory
behavior, so called neural oscillations or brain waves. The standard reading in
that topic is Buzsáki (2006). A comprehensive review of current research can be
found in Draguhn and Buzsáki (2004) on which the information in this section
is based if not cited di�erently. The oscillations are generated and shaped by in-
trinsic cellular and circuit properties, e.g. time constants. These properties create

24

2.7 Neural Oscillations

frequency bands from 0.05 to 500 Hz. These macroscopic oscillations of many fre-
quency bands are similar to the sinusoidal wave form originating from harmonic
oscillators, which inspired our rate varying scheme in Sec. 3.4.1. Combinations of
rhythms are supposed to evoke behavioral or cognitive states.

2.7.1 Electroencephalogram
The recording of brain wave patterns is possible since the invention of the elec-
troencephalogram (EEG) in Berger(1929). At the same time, Berger discovered an
oscillation of 8-12 Hz and named it alpha wave. This milestone marks the begin-
ning of intensive studies of brain waves. Today, a standard EEG consists of usually
20-256 electrodes with diameters of 0.4 to 1 cm, which are attached uniformly to
the scalp plus one or two reference electrodes, e.g. on the ear and a ground elec-
trode e.g. on the nose. Technical details are provided in Nunez and Srinivasan
(2007). These electrodes record neural oscillation activities in the brain by detect-
ing and amplifying the electric potential of neurons. The power density of the EEG
or the local �eld potential is inversely proportional to frequency. A majority of the
EEG signals have their origin in the cerebral cortex from about 10 million to one
billion neurons. Ongoing research is dedicated to the question where exactly in
the brain the individual oscillations occur and come from. Despite the occurrence
in various parts of the cortex or the hippocampus the oscillations are not limited
to these parts as described in Groppe et al. (2013). EEG provides a high enough
temporal resolution to reveal further oscillatory patterns mainly during rest and
sleep and other unconscious states like anesthesia and epilepsy. The wake state
shows rather desynchronized patterns. Today, the availability of other methods
than scalp recordings, like invasive techniques enables measurements on smaller
scales. These techniques show that the awake state though desynchronized is still
rich in rhythms.

2.7.2 Frequency Bands
Due to the locus of the majority of neuronal connections and the limited speed
of transmission, the frequency is constrained by the size of the involved neuron
subset. High/low frequency oscillations occur especially in smaller/larger subsets,
indicating a link between neural oscillations and anatomical structure. Synchrony
is crucial in the creation of oscillations and means that a group of neurons �res in
the same time window. Frequencies occur in certain bands, called slow 4 (0.025-
0.07 Hz), slow 3 (0.07-0.2 Hz), slow 2 (0.2-0.5 Hz), slow 1 (0.5-1.5 Hz), delta (1.5-
4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-80 Hz), fast
oscillations (80-200 Hz), ultrafast oscillations (200-600 Hz), depicted in Fig. 2.3.
These bands are the foundation of our frequency selection in Sec. 3.4.2.

25

2 Theoretical Background

Figure 2.3: Oscillation frequency bands adapted from Fig. 1B in Draguhn and
Buzsáki (2004).

2.7.3 Function during Sleep and Wakefulness
Brain waves seem to be functionally relevant in several aspects. Sometimes they
ful�ll tasks speci�c to a certain architecture of the underlying neural tissue. Be-
yond that, some general substrate-independent bene�ts could be shown. The most
interesting of them within the scope of this thesis are consolidation and combina-
tion of learned information. Sleep and wakefulness are conditions that humans
and animals take on alternately. Sleep is in contrast to wakefulness characterized
by unconsciousness, inactivity and limited responsiveness to outer stimuli and can
be seen as the default state of the brain since it is disentangled from body and ex-
ternal input. The following information are based on an overview in McCarley
and Sinton (2008).

EEG results indicate the succession of di�erent sleep phases, each characterized
by the dominance of a certain brain wave. Recordings of eye movements and mus-
cle tone con�rm the existence of sleep phases. Wakefulness is characterized mainly
by beta and gamma oscillations and closed-eye relaxation by alpha waves. During
sleep, higher voltages and smaller frequencies are prevalent. The waves gradually
slow down in the course of non-rapid eye movement (NREM) sleep in overall four
stages. In stage 1, light sleep immediately after falling sleep, theta waves occur
which stay until stage 2. In stage 2, short sleep spindles occur. In stage 3, the
transition to deep sleep, delta waves are in the foreground. In stage 4, deep sleep,
delta waves make up the majority of the waves. The rapid-eye movement (REM)
sleep is named after the occurrence of fast undirected movements of the eye. It is
similar to stage 1 in the sense that mostly theta waves are present. The stages 1-4

26

2.8 Evaluation

with �nal REM sleep are repeated �ve to seven times per night and the time spent
in REM phases increases. The total sleep cycle resembles a damped oscillation.
Dreaming mainly happens in the REM phase. There is evidence that during sleep
implicit knowledge is transformed to explicit knowledge (Wagner et al., 2004).

2.8 Evaluation
Two properties characterize the performance of the networks in this mixing study:
the sampling accuracy, i.e., the proximity of the sampled distribution to the tar-
get distribution and the diversity of the generated patterns. For small networks
the sampling accuracy can be measured by the Kullback-Leibler divergence (Sec.
2.8.1). A quantitative measure for the homogeneity of the patterns is the indirect
sampling likelihood without constraints on the network size (Sec. 2.8.2).

2.8.1 Kullback-Leibler Divergence
The Kullback-Leibler divergence (DKL) measures the discrepancy of two proba-
bility distributions. For the discrete probability distribution P with respect to an-
other, Q, the DKL from Q to P is given by:

DKL (P ||Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
. (2.73)

It is only de�ned if Q(i) = 0 ⇔ P (i) = 0 ∀i. If P (i) is zero, the contribution of
the ith term is considered to be zero as well, since limx→0 x log(x) = 0. In integral
form it reads

DKL(P ||Q) =

ˆ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx . (2.74)

One property of the DKL is that it is always positive, which can be shown. The DKL
is also called relative entropy since it is composed of the cross entropy H(P,Q)
and the entropy H(P):

DKL (P ||Q) = −
∑
x

p(x) log (q(x)) +
∑
x

p(x) log (p(x))

= H (P,Q)−H(P) . (2.75)

27

2 Theoretical Background

2.8.2 Indirect Sampling Likelihood
Indirect Sampling Likelihood (ISL) described in Breuleux et al. (2009) measures the
mixing quality of a set of generated samples. ISL estimates the coverage of some
test examples, by counting the number of these examples “far” from the generated
ones. The algorithm consists of three steps:

1. generation of samples S from a trained generative model

2. use S to train a density model P

3. compute and return the log-likelihood of the test set under P

In particular, P is a non-parametric kernel density estimator. Put di�erently, P
is a mixture model with one component per generated example xi and a hyper-
parameter β controlling the probability transfer from xi to some neighbors. In
experiments with d-dimensional binary vectors, each component of the mixture,
which corresponds to the kernel probability, can be expressed as a factorized Bernoulli

P (y) =
1

N

N∑
i=1

d∏
j=1

β1yj=xij (1− β)1yj 6=xij . (2.76)

β can have values from 0 to 1 and is chosen to optimize the likelihood of the gen-
erated samples. In the case of β = 1, P corresponds to the empirical distribution
associated with the samples {xi}, with decreasing β the distribution is smoothed
out until the uniform distribution over the binary vectors is obtained at β = 0.5. y
are test examples, that neither belong to the training nor to the generated set and
N , the number of generated samples. If the curve of log(P) versus the absolute
number of S has a faster increase in comparison to another such curve, it indicates
better mixing, since it covers the main modes of the test samples faster.

28

3 Experiments
The goal of the experimental and theoretical work of this chapter is the implemen-
tation of spike-based tempering.

First, the activation functions of an abstract unit under di�erent temperatures
adopted in AST are illustrated. Some initial experiments, conducted on the sin-
gle neuron level, aim to �nd a temperature analogy for LIF neurons. The logistic
activation function can be approximated with LIF neurons with a translation be-
tween the abstract and the LIF domain (Sec. 2.5.2). For LIF neurons, the activation
functions under Poisson noise of di�erent rates and synaptic weights are recorded
and their shape changes explained on the basis of the free membrane potential
distribution (Sec. 3.1.2). An analogy to temperature change is achieved by vary-
ing the Poisson noise rate and an approximative mathematical mapping between
the two quantities is derived (Sec. 3.2). Furthermore, the horizontal shift of the
activation function induced by the reset mechanism is compensated (Sec. 3.3). On
the network level, we discuss rate variation schemes following sinusoidal patterns
inspired from neural oscillations. For small RBMs (for RBM see Sec. 2.1.4 and Fig.
3.1) we select a range of noise rates with similar sampling accuracy which is used
for studying the sampling accuracy for di�erent sine waves (Sec. 3.5). Finally,
in large RBMs trained on MNIST, the mixing performance under inhomogeneous
Poisson noise of the discussed schemes is investigated and compared to networks
without mixing facilitation and networks with plastic synapses (for plastic synapse
see Sec. 2.6.1) as mixing facilitation (Sec. 3.6). Eventually, the diversity of the pat-
terns measured by ISL is recorded for systematically varied sine wave extrema and
period length (Sec. 3.7).

We present the simulation results at the example of current-based neurons. To
counteract the deviation between the LIF and the abstract model, induced by ad-
ditive e�ects of the PSPs in bursts, the experiments are conducted with renewing
synapses implemented by TSO (for TSO see Sec. 2.6.1) - if not mentioned di�er-
ently. The corresponding neuron parameters (Tab. 6.1) and TSO parameters (Tab.
6.2), follow those proposed for sampling neurons in Petrovici et al. (2016). Some
standard software settings for noise, the calibration and the simulations in the ex-
periments are listed in the Appendix (Tabs. 6.4, 6.5 and 6.6). Parameters di�erent
from those are explicitly mentioned.

29

3 Experiments

...

......

e i

1

ie e i

N

e i ie

M1

Poisson noise

Visible layer

Hidden layer

Weight matrix

Figure 3.1: Architecture of the LIF-based RBM used here with N visible (black cir-
cles) and M hidden neurons (gray circles), each receiving excitatory (“e”, red) and
inhibitory (“i”, blue) Poisson noise input. The weight matrix is symmetric and no
intralayer connection exist, leading to the layered structure.

3.1 From Temperatures to Poisson Noise Rates
Before tempering can be realized in LIF networks, a proper mapping between tem-
peratures and noise rates needs to be established. In this section, we show that
varying the temperature in abstract neural networks induces a change in the slope
of the activation function. In LIF networks, varying either the rate or the weight of
the Poisson noise input both a�ect the membrane potential distribution and thus
scale the activation function in a similar manner as in AST. The idea arises to map
the variation of one of these two parameters to the AST temperatures. However,
continuous changes of synapse strengths are biologically less plausible than back-
ground noise modulation. The latter is, for instance, observed in form of periodic
oscillations primarily in the cortex, called brain waves (Sec. 2.7).

3.1.1 Activation Functions of Di�erent Temperatures in AST
In AST the inverse temperature β directly enters the calculation of the sigmoid
activation function. Hence, β modi�es the slope of the abstract activation function:
a smaller β multiplicatively decreases the slope. This is demonstrated in Fig. 3.2
at the spiking probability curves evaluating

p(zi = 1) =
1

1 + exp (−βu)
, (3.1)

for di�erent β from 0.1 to 0.9 .

30

3.1 From Temperatures to Poisson Noise Rates

Figure 3.2: AST activation functions of an abstract neuron with di�erent inverse
temperature values β: 0.1 (blue), 0.3 (orange), 0.5 (green), 0.7 (red), 0.9 (purple). The
spiking probability is plotted over an abstract membrane potential with a range
from -40 to 40. With increasing β the slope increases (and vice versa).

3.1.2 Membrane Potential Distribution of Di�erent Noise
Rates

High enough Poisson noise input produces a Gaussian shaped free membrane po-
tential distribution. If the input rate is increased, for CUBA neurons the mean
of the free membrane potential distribution is unchanged but the variance will
increase (Fig. 3.3, left). If the neuron spikes, the reset mechanism distorts the dis-
tribution. A comparison of these two di�erent scenarios under varying Poisson
noise rate can be seen in Fig. 3.3 (right). The distortion is due to the fact that the
membrane potential gets reset once arrived at the threshold. So, the distribution
is cut o� at the threshold and the values of the missing tail of the Gaussian bell
are allocated at the reset potential, visible as the peak. The membrane potential
distributions with threshold under di�erent rates are an indication for the shape
changes of the activation function, discussed in the subsequent section.

31

3 Experiments

Figure 3.3: Left: Histogram of the free membrane potential of an LIF neuron in a
simulation for 10 s (transparent colored area) and �tted with a Gaussian (envelope
line). The simulation is performed for balanced Poisson noise of 2 (blue), 5 (or-
ange) and 10 kHz (green). The mean lies exactly at the resting potential -50 mV
(gray dashed line). With increasing rate the mean stays constant, but the variance
increases. Right: The free membrane potential distributions (solid line) opposed to
the respective distributions with a threshold potential (transparent colored areas)
for balanced input of 2 kHz (blue) and 10 kHz (green). The threshold potential is
set identical to the resting potential -50 mV (gray dashed line). The vertical line at
the reset membrane potential -50.01 mV (green overlays blue) corresponds to the
reset states after the spikes. At this reset even more states are accumulated, which
lie outside the upper limit of the y-axis for clarity. The cut-o� at the threshold plus
the accumulation distort the membrane distribution.

3.1.3 Activation Functions of Di�erent Noise Rates
When there is no external input except for the Poisson noise, the activation func-
tion of a neuron is the probability to spike dependent on a range of resting poten-
tials. It goes towards 0 if the resting potential is far below the threshold potential,
has a steep rise near the threshold and afterwards saturates to 1, following a sig-
moid shape. A special symmetry point, we will refer to often, is the potential where
the spike probability is exactly 0.5, which we denote as up0.5. The shape can be di-
rectly deduced from the membrane distribution for di�erent resting potentials. If
the resting potential of the neuron, thus the mean of the distribution, is further
below the threshold than one standard deviation, the probability to spike is close
to 0. If the resting potential approaches the threshold, the probability increases,
since the left tail of the distribution is pushed over the threshold. At the point of
identical threshold and resting potential, the spiking probability is 0.5. As soon as
it is more than one standard deviation above the threshold, the spiking probability

32

3.1 From Temperatures to Poisson Noise Rates

goes to 1.
In the previous section the broadening of the membrane distribution was re-

lated to higher noise input. So, how does a higher input rate in�uence the activa-
tion function? The larger width of the distribution has an e�ect with two aspects.
First, already for smaller resting potentials, the tail is pushed over the threshold,
leading to an elevated spiking probability. Second, the normalization of the prob-
ability leads to less probability mass in the tails, which decreases the change in
probability in dependence of the resting potential. In the activation function this
e�ect manifests in a decreasing slope with higher input. The activation function
for a single sampler under noise of di�erent rates as input are recorded and �t-
ted with a sigmoid in Fig. 3.5. The smaller slope corresponds to a higher α �t
parameter, see Fig. 3.4 (left). The choices of rate values are explained in Sec. 3.5.1.

Figure 3.4: Sigmoid �t parameters to the activation functions of an LIF neuron,
dependent on the balanced noise rate: 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 kHz. The
neuron is calibrated on balanced Poisson noise of 2 kHz (gray dashed lines) with
input weight 0.002 nA. Left: The slope factor α increases with the rate. Right: The
shift up0.5 corresponding to the respective rate relative to the u0p0.5 of the reference
rate. The di�erence decreases as the rate increases.

33

3 Experiments

Figure 3.5: Recorded activation functions of an LIF neuron (crosses) and �tted with
sigmoid functions (lines). The neuron is calibrated on balanced Poisson noise with
rates of 2 kHz and synaptic weights of 0.002 nA. The slope parameter α and the
shift parameter up0.5 are given in the legend. The spike probability of 0.5 is marked
with gray dashed lines. Left: Activation functions under stimulation with balanced
noise of 0.5 (blue), 2 (orange), 9 (green) kHz and 0.002 nA synaptic weights. With
increasing rate, the slope decreases and the activation function is shifted to the
left. Right: Activation functions under constant noise rate of 2 kHz and di�erent
synaptic weights of 0.002 nA (blue), 0.01 (orange), 0.02 (green) nA. With increasing
weight, the slope decreases and the activation function is shifted to the left. Note
the di�erent x-axis range.

The reset mechanism introduces a shift of the activation function (Fig. 3.4, right):
For higher rates to the left, for smaller to the right, as can be seen in Fig. 3.5
(left). In order to investigate the in�uence of di�erent synaptic noise weights, we
performed the simulations also with weights of several orders of magnitude. This
also leads to a rescaling and shifting of the activation function as can be seen in
Fig. 3.5 (right). Likewise, the slope gets smaller with increasing weight.

Crossing Point of Activation Functions

We observed that activation functions cross in a particular point at a �ring proba-
bility of approximately 0.8. At this speci�c resting potential, the �ring probability
robustly takes on the same value, independent of the value of the balanced noise
rate pair. This phenomenon can be seen in Fig. 3.6. The position of the crossing
point will be of importance later, but further investigation is needed to understand
how it comes about.

34

3.2 Mapping Temperature to Poisson Noise Rate

Figure 3.6: Sigmoid functions �tted to activation functions of an LIF neuron, which
is calibrated on 2 kHz under di�erent balanced noise rates: 0.4, 0.5, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10 kHz. All lines cross at a �ring probability of approximately 0.8. A close-up
of the area between the gray lines in the left plot is drawn in the right plot.

3.2 Mapping Temperature to Poisson Noise Rate
In the following, we derive the mapping of the AST temperature to the Poisson
noise input on a theoretical level. First, the relationship between β and the slope
parameter α is demonstrated and then the approximative dependence of α on the
rate is derived.

3.2.1 Relationship between Temperature and Alpha
The sigmoid �t to the activation function is given by

p(z = 1) =
1

1 + exp [− (u− up.) /α]
. (3.2)

A method to eliminate the shift of up0.5 is described in Sec. 3.3.1. So, let us neglect
it in the sigmoid function

p(z = 1) =
1

1 + exp (−u/α)
. (3.3)

Comparison with Eqn. 3.1 reveals the equivalence between α and β. In order to
establish the ground temperature β0 = 1 , we relate all slope parameters indexed
by n to the one of the reference rate indexed by 0, which yields

βn =
1

Tn
≡ α0

αn
, (3.4)

35

3 Experiments

where T denotes the temperature. This relationship is supported by the obser-
vation that the activation function in Fig. 3.2 under higher βn behaves like an
activation function in Fig. 3.5 under smaller noise, i.e., smaller αn.

Figure 3.7: Inverse temperature values calculated via. Eqn. 3.4 from the slope factor
α of the respective noise rates and the reference rate. The reference rate and β = 1
are marked with gray dashed lines. Left: Display with linear scales on both axes.
Right: Display with logarithmic scales on both axes.

3.2.2 Relationship between Alpha and Rate
Finally, we derive an approximative formula for the relationship between the slope
of the activation function and the noise rate. LIF-based BM dynamics can be ap-
proached by two aspects. First, high noise input leads to a Gaussian membrane dis-
tribution which has an error function as cumulative distribution function. Second,
abstract BMs have a logistic activation function. Matching these two integrals, by
equating their derivatives at x=0 leads to the desired relationship between α and
the rate. In the following, we provide the detailed calculation.

The probability density function of a Gaussian is given by

PDF
(
x|µ, σ2

)
=

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (3.5)

where x is the random variable, µ the mean and σ2 the variance. The cumulative
distribution function is de�ned as the integral over the probability density function
from minus in�nity to x:

CDF (x|µ, σ) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
. (3.6)

36

3.2 Mapping Temperature to Poisson Noise Rate

With the denotation x̃ = (x− µ) /(σ
√

2) the error function is given by

erf(x̃) =
1√
π

ˆ x̃

−x̃
e−t

2

dt =
2√
π

ˆ x̃

0

e−t
2

dt . (3.7)

For the use case here, it is valid to consider a centered cumulative distribution
function, i.e., µ = 0. The shape of the cumulative density function and the sigmoid
activation function

σ(x) =
1

1 + e−
x
α

, (3.8)

are very similar and almost parallel in the middle. The slopes at this point can be
set approximately equal. They are given by

∂xCDF|x=0 =
1√
2πσ

e−
x2

2σ2 |x=0 =
1√
2πσ

, (3.9)

∂xσ(x)|x=0 =
1

α

e−
x
α(

1 + e−
x
α

)2 |x=0 =
1

α

1

(1 + 1)2
=

1

4α
. (3.10)

On the one hand, Eqn. 3.9 comprises the variance of the membrane distribution
which is dependent on the Poisson rate. On the other hand, Eqn. 3.10 involves the
slope of the activation function, i.e., the temperature. So, the 0-th order estimate
of the rising sigmoid is given by

1√
2πσ

=
1

4α
, (3.11)

which can be rearranged to yield the dependence of the slope parameter on the
variance

α =
1

4

√
2πσ . (3.12)

This relation is also used in the coding scheme of sbs as initial value in the calibra-
tion. The variance of the free membrane potential for a given rate can be calculated
via formulas 2.59 to 2.64. These equations reveal that the standard deviation σ of
the free membrane distribution is proportional to the rate r, which yields

α ∝ σ ∝ √r . (3.13)

Therefore, Eqn. 3.12 yields the conversion between α and the rate and we can
generate one from the other.

This relationship is also supported by our experiments. The simulated depen-
dence of β on the rate of the Poisson noise is plotted in Fig. 3.7 once with linear

37

3 Experiments

axes scale and once with double logarithmic. The latter line shows a linear depen-
dence which is why we can calculate the underlying power law. Let r denote the
rate and m the power in the approach:

α0

α
= β = const · rm . (3.14)

Taking the logarithm of both sides and solving for m, we can �nd m as the slope
in the double logarithmic plot:

m =
log
(
β1
β0

)
log
(
r1
r0

) , (3.15)

which yields a value of approximately -0.5, leading to

β ∼ 1

α
∼ 1√

r
⇒ α ∼ √r . (3.16)

This result recovers the theoretical approximation in Eqn. 3.12. The predicted
versus simulated results are plotted in Fig. 3.8. They are in good accordance. In
summary, this enables the mapping between the temperature and the noise rate.

38

3.3 From Balanced to Shift-Compensated Noise

Figure 3.8: Upper : Simulated α (blue circles) versus predicted α (red crosses) cal-
culated by the approximation established in Eqn. 3.12. Lower: Simulated β values
(blue circles) versus approximated predictions of the beta values calculated from
the rate range (red crosses) and vice versa (green dashes). They are generally in
good accordance. Minor mismatches are due to the approximation. Lower left: Dis-
play with linear scales on both axes. Lower right: Display with logarithmic scales
on both axes.

3.3 From Balanced to Shi�-Compensated Noise
When comparing the activation function of LIF neurons under increasing noise
input (Fig. 3.5) and the one of abstract units with AST (Fig 3.2), one di�erence is
noticeable: The activation functions of the abstract neurons all align with their
in�ection points at a spiking probability of 0.5. The LIF activation functions have
a crossing point (Fig. 3.6) that is at a spiking probability of 0.8 and which deviates
from the in�ection point. This is due to the shift caused by the reset mechanism.
So, in order to create activation functions that only encode the temperature change
and enable a proper mapping between temperatures and rates, we have to com-

39

3 Experiments

pensate for this shift. In the following section, we demonstrate how to achieve
such a compensation by increasing the rates of the inhibitory Poisson noise.

3.3.1 Shi� Compensation Using Inhibitory Noise
Eqn. 2.59 applied to our setup, yields

E[u] = El +
Iext + weνeτ

syn
e + wiνiτ

syn
i

gl
. (3.17)

From this, we can see that the mean membrane potential is determined by the ex-
ternal current input Iext and the noise input with rate ν, synaptic time constant τ syn

and weight w. Since, the inhibitory weight wi has a negative sign, the inhibitory
noise term cancels the excitatory in the balanced case. Here, we set Iext to zero
and select the inhibitory noise as the means of modulation. We feed an LIF neuron
with excitatory noise of the rates from a certain range determined in Sec. 3.5.1.
We start from the balanced case, at the benchmark noise rate of 2 kHz, where the
shift of up0.5 of other rates are measured from. For other noise rates, we sweep
a number of inhibitory rates, below and above the excitatory rate. The resulting
shift values for the pairs of excitatory and inhibitory rates are plotted in Fig. 3.9
encoded by color. The blue line corresponds to the balanced case, rexc = rinh. The
black circles mark the inhibitory rates that diminish the shift closest to zero. We
apply two linear �ts to approximate the shifts, one for the inhibitory rates above
the reference rate and one for below. As �t functions we obtain for the rates above
the reference rate of 2 kHz

rinh(rexc) = 1.04 · rexc − 68.72, r2 = 0.99998, (3.18)

and below
rinh(rexc) = 1.11 · rexc − 215.01, r2 = 0.99983. (3.19)

We suspect that the nature of the dependency is not linear, not at least since the
intercept of negative rates has no meaning, but for our purposes and regime these
approximations are close enough. This linear �ts are exploited later on, to deter-
mine the shift compensating inhibitory rate corresponding to the chosen excita-
tory rate. The points with a “red” shift correspond to activation functions that are
left from the reference activation function. The points with a ”blue” shift corre-
spond to activation functions that are right from the reference activation function.

40

3.3 From Balanced to Shift-Compensated Noise

Figure 3.9: Determination of the shift-compensating inhibitory rates. The x-axis
corresponds to the excitatory rate and the y-axis to the inhibitory rate. The ex-
citatory rate values are chosen in equal distances between 400 Hz and 10 kHz. A
neuron is stimulated by each each noise rate pair and the corresponding up0.5 value
of the activation function is plotted encoded by color. The blue line corresponds to
the balanced case of equal excitatory and inhibitory rate with shifts plotted in Fig.
3.4. Each black circle denotes the inhibitory rate that reduces the shift closest to
0. The inhibitory rates above the calibration rate are �tted with a linear function
and those below with another. The values for the respective �t function slope m,
intercept b and quality measure r2 are for the rates above 2 kHz: m=1.04, b=-68.7
Hz, r2=0.99998 and below 2 kHz: m=1.11, b=-215.01 Hz, r2=0.99983.

3.3.2 Shi�-Compensated Activation Functions
An example is demonstrated in Fig. 3.10 for three di�erent excitatory rates. The
activation function corresponding to the excitatory rate higher than the calibra-
tion rate is pushed from the right to the left until their in�ection points overlap by
applying the appropriate inhibitory and vice versa for the activation function cor-
responding to a smaller rate. In summary, we are now able to compensate the shift
and vary solely the slope of the activation function and hence the “temperature”
of the system only.

41

3 Experiments

Figure 3.10: Activation functions with shift-compensating inhibitory rates (solid
lines) compared to balanced noise input (dashed lines) for di�erent rates: 0.4 (blue),
2 (orange) and 9 kHz (green). The activation function corresponding to the ref-
erence rate at 2 kHz, stays unchanged. The other two functions are shifted by
adjusting the inhibitory noise rate, until the in�ection points overlap at a spike
probability of 0.5, marked with a dashed gray line. Thus, we are able to counteract
the shift in up05 resulting from an increase and also from a decrease of the Poisson
rate.

3.4 Rate Variation Schemes
In this section, the rate variation schemes for later experiments are discussed. The
primary usage of sine functions is justi�ed (Sec. 3.4.1) followed by the construction
of sine waves with biologically inspired frequencies (Sec. 3.4.2). Moreover, the
di�erences between temperature variation and rate variation are examined and
their use cases are (Sec. 3.4.3).

3.4.1 Poisson Rate Following a Sine Function
In AST, the temperature is updated adaptively based on the current state of the
network. Since the PyNN-NEST software does not allow for changes during sim-
ulation, we �x a variation scheme prior to the simulation. This scheme needs to
ensure that not only the reference rate but also higher and lower rates are visited.
As the easiest scheme to vary the rates, the reference rate can be alternated with
a higher rate forming a square wave. The risk here is that the rate changes are too
big and the network cannot adapt properly. To resolve this problem a smoother

42

3.4 Rate Variation Schemes

transition is needed. Inspired from the wave patterns in neural oscillations, we
adopt a sinusoidal rate variation.

A sinusoidal function is given by

y = a · sin [b (x+ c)] + d , (3.20)

where d is the shift along the y-axis. a is a scale factor and its absolute value, |a|,
denotes the amplitude of the sine function. The phase, c, changes the locations of
zero values and extreme values. b is the scale factor along the x-axis and encodes
the period length via

T =
2π

|b| , (3.21)

Now we assign to each of these parameters a quantity of the rate sine wave. a
corresponds to the amplitude, so we set it to half of the distance between the max-
imal and minimal rate. It is discussed in depth in later sections, since biological
�ndings require a very short period, but cannot be too short in sampling as the
equilibrium state needs to be ensured. d is set to the middle point value between
the minimal and maximal value, i.e., the point around which the wave oscillates.
Since we are running a long simulation and do not have to relate the sine wave
to another signal, we do not shift the curve along the x-axis and set c to zero. In
practice, we approximate the sine function with stepwise constant rates. Ideally,
the step size converges to zero and the rate is continuously changing. We study
in later chapters the e�ects of di�erent step sizes on the sampling accuracy of the
network.

3.4.2 Rate Sine Waves with Parameters from Biology
Synchronized network activity in the form of neural oscillations occurs, in con-
junction with di�erent cognitive tasks, in several frequency bands as described in
Sec. 2.7. In the following, neural oscillations applied to LIF networks are modeled
by sinusoidal rate variations. The inverse of the biological frequencies are re�ected
in the period of the respective sine wave (Fig. 3.11).

43

3 Experiments

Figure 3.11: Mean values of the neural oscillation ranges (Sec. 2.7.2) transformed
to oscillations of Poisson noise rates. The sine maximum is set to 10 kHz and the
minimum to 400 Hz. Left: Rounded values for low frequencies: slow 4 (0.05 Hz,
21053 ms), slow 3 (0.14 Hz, 7407 ms), slow 2 (0.35 Hz, 2857 ms), slow 1 (1 Hz, 1000
ms) and delta (2.75 Hz, 364 ms). The gray lines indicate the range of the high
frequencies. Right: Rounded values for high frequencies: theta (6 Hz, 167 ms),
alpha (10 Hz, 100 ms), beta (21 Hz, 48 ms), gamma (55 Hz, 18 ms), fast (140 Hz, 7
ms) and ultrafast (400 Hz, 3 ms).

3.4.3 Rate versus Temperature Variation
Until now, the rate was directly varied according to a sinusoidal function (Fig.
3.12). However, in AST, the inverse temperature is varied. Whilst temperature
modulation has a rather physical motivation, rate modulation corresponds to bio-
logical processes in the brain. With the aid of the established conversion between
β and the rate (Sec. 3.2), it is possible to vary directly the inverse temperature
according to a sine function and convert the resulting values to rates (Fig. 3.13).
Since the conversion follows a power law, the sine wave is distorted.

44

3.4 Rate Variation Schemes

Figure 3.12: Sinusoidal variation of excitatory (red) Poisson noise rate between 0.4
and 4 kHz with a period length of 1s. The corresponding inhibitory rate (blue)
compensates for the shift as described in Sec. 3.3.1. It is higher for rates above
the reference rate and lower for rates below. At the reference rate of 2 kHz (gray
dashed line) inhibitory and excitatory rates overlap. The length of the red and blue
dashes, the step size, indicates how long the respective rate is present. In general
the step size is 25 ms and for construction reasons sometimes smaller.

45

3 Experiments

Figure 3.13: Upper : Sinusoidal β variation with a sine period of 1s. Upper Left: The
sine minimum is at 0.9 and the maximum at 1.2. Upper Right: The sine minimum is
at 0.7 and the maximum at 1.2. Lower: Translation of the sinusoidal β variation into
excitatory rates (red) and the corresponding shift-compensating inhibitory rates
(blue). Lower Left: Rate variation corresponding to sinusoidal β variation between
0.9 and 1.2. Lower Right: Rate variation corresponding to sinusoidal β variation
between 0.7 and 1.2. Due to the non-linear relationship (see Fig. 3.8) between the
β and rate, the sine wave is distorted.

3.5 Sampling Accuracy Study
We study the sampling accuracy of small networks with weights and biases fol-
lowing a beta distribution with sinusoidally varied rates (Sec. 3.5.2). As a �rst pre-
requisite the Poisson noise rate range with considerations of sampling accuracy is
determined (Sec. 3.5.1). Second, the in�uence of the sine wave discretization on
the sampling accuracy is explored (Sec. 3.5.3). For calculating the distributions and
DKL in the case of sinusoidal rate variation, we use the conversion from rate to
beta described in Sec. 3.2. We use the mapping in the opposite direction in the case
of sinusoidal variation of the inverse temperature to obtain the rates correspond-
ing to the temperature values, which we set in the simulation. The conversion is
indicated with a right-arrow in Tab. 3.1. In order to measure the quality of the gen-
erated samples, the simulated joint distribution over the states is compared with

46

3.5 Sampling Accuracy Study

sinusoidal β sinusoidal ν
1. generate βtheo, βsim νtheo, νsim
2. convert βsim → νsim νtheo → βtheo
3. calculate numerically theoretical joint distribution (βtheo)
4. simulate to obtain simulation joint distribution (νsim)
5. DKL(simulation joint distribution || theoretical joint distribution)

Table 3.1: Calculating the DKL between theoretical and simulated joint distribution
follows distinct pathways in the beginning for sinusoidal rate and β variation. In
the �rst step, for both quantities, values that follow a speci�ed sine function are
created for theoretical calculations and simulation. For simulation, a sine curve
of the desired number of periods is generated. Since the simulation requires a
rate sine wave and the theoretical distribution requires the inverse temperatures,
in both cases the missing quantity is generated. Eventually, the theoretical and
simulated joint distributions are retrieved and the DKL evaluated.

the theoretical joint distribution. Since for the theoretical distribution the partition
function has to be calculated, this comparison is performed for small networks of
�ve samplers.

Beta Distributed Weights
The weights and biases of the small networks of this section are randomly drawn
from a beta distribution. The probability density function of the beta distribution
for a random variable x between 0 and 1 is given by

B (x;α, β) =
1

B (α, β)
xα−1 (1− x)β−1 ,

B (α, β) =

ˆ 1

0

tα−1 (1− t)β−1 dt , (3.22)

where α and β are the non-negative shape parameters. The normalizationB(α, β)
ensures that the integral over the total probability equals 1. The uniform distribu-
tion corresponds to an α and β of 1. By changing these parameters, the probability
mass of the distribution can either be shifted towards extreme values (at the edge)
or central values of the interval. We choose an α and β of 0.5 which pronounces
the tails, shift the distribution by d = 0.5 and scale it with a = 1.2, following
the setup in Petrovici et al. (2016) (see Fig. 3.14). These settings ensure dissimilar
distributions comprising several orders of magnitude and a linear projection on
values in [-0.6, 0.6]. The shifted and rescaled distribution from which we sample

47

3 Experiments

Figure 3.14: Histogram of the beta distribution 1.2 ·(B (0.5, 0.5)− 0.5) from which
the weights and biases for the 5- and 10-unit networks are sampled. The histogram
is retrieved from 105 samples and has 50 bins. With these small networks the
sampling accuracy is investigated.

the Boltzmann weights and biases reads

Wkj, bk ∼ a · (B (x;α, β)− d) = 1.2 · (B(x; 0.5, 0.5)− 0.5) . (3.23)

3.5.1 Noise Rate Range
In this subsection, we determine the Poisson noise rate range that covers a β range
similar to the one used in Salakhutdinov (2010). We would like to vary the rates
to 5 times smaller and 5 times higher values than the reference rate, 2 kHz, hence,
from 400 Hz to 10 kHz. We expect that the higher rates facilitate mixing and that
the smaller rates stabilize the generated pattern. In AST, the quality of the ac-
tivation function does not depend on the temperature. However, in spike-based
networks, the stochasticity is not intrinsic but rather provided by the amount of
noise, thus by the synaptic weight and the noise rate. The theoretical details for
this paragraph can be found in Sec. 2.5.2. If the rates become too small, the DKL
between the theoretical and the simulated joint distribution worsens. The reason
for this is that the neurons are not stochastic anymore and the quality of the dif-
fusion approximation decays. Presumably, the upper boundary is unproblematic,
since the high-conductance state and the di�usion approximation improves with
increasing noise rate input. However, with the intent to scan possible values for
the lower boundary and check the upper boundary, the DKL time course for 10
rates between 10 Hz and 10 kHz is recorded. This rate series also includes the ref-
erence rate of 2 kHz, the networks in later experiments are calibrated with. Since

48

3.5 Sampling Accuracy Study

the DKL value can be only retrieved for small networks due to the exploding com-
putation time with increasing network size, we only use network of size 10 here.
The statistics is retrieved over 10 di�erent random seed initializations. The result
can be seen in Fig. 3.15.

The DKL time course with intrinsically stochastic neurons updated by Gibbs
sampling is included for comparison. This theoretically optimal model converges
to the Boltzmann distribution for in�nite time. Opposed to that, the DKL time
course of LIF sampling converges to a higher value, since it only approximates
sampling. Rates between 400 Hz and 10 kHz converge to su�ciently close DKL
values. Even in light of a recent study where kHz noise is required for the di�usion
approximation (Jordan et al., 2017), the whole range is valid for our purposes. So,
the 400 Hz marks the lower boundary of the chosen rate range and 10 kHz the
upper.

102 103 104 105 106 107

tsim[ms]

10−4

10−3

10−2

10−1

100

D
K

L
(p

si
m
|p t

h
eo

)

Figure 3.15: DKL time course for a 10-unit LIF network stimulated with 10 rates
between 10 Hz and 10 kHz given in the legend. Gibbs sampling is included as a
theoretically optimal reference. The lines correspond to the mean. The almost
invisible shaded areas correspond to the standard deviation retrieved from 10 dif-
ferent random seed initializations. For rates from 400 Hz to 10 kHz, the converged
lines are su�ciently close, which establishes the range for the experiments.

3.5.2 Renewing Synapses under Sinusoidal Noise Input
In order to test the sampling accuracy under sinusoidal noise input, a small net-
work of 5 samplers is stimulated with sinusoidally varying rate. We compare the
theoretical with the simulated joint distribution, once averaged over all rates and
once speci�cally at the reference rate in a sequence of sinusoidally varied rates.

49

3 Experiments

The resulting joint distribution averaged over all temperatures and also speci�-
cally for β = 1 is depicted in Fig. 3.16. In both cases, simulated and theoretical
results are in good accordance.

Figure 3.16: Comparison between simulated (blue) and theoretical (red) joint dis-
tributions. The joint distributions show the probability of all possible state per-
mutations of the binary states of the 5 samplers. The states are retrieved from a
single simulation of a 5-unit LIF-based RBM with renewing synapses, stimulated
with sinusoidally varying Poisson noise. The minimal rate is 400 Hz, the maximal
rate 10 kHz and the reference rate 2 kHz. 100 sine periods are simulated with equal
step size of 10 ms. Left: Averaged over all rates in the simulated distribution and
all β‘s in the theoretical distribution. The simulated distribution approximates the
theoretical well. Right: Speci�cally for the reference rate corresponding to β = 1,
i.e., 2 kHz. The simulated distribution approximates the theoretical well.

3.5.3 Sine Wave Discretization
Ideally, one would construct a continuous sine wave. In simulation terms “continu-
ously” means changing the rate each simulation step, thus every 0.1 ms. However,
the long simulations in Sec. 3.7 with large networks, exceed the available work-
ing memory on the cluster nodes already with 58 rate changes for a sine period of
4s. Thus, discretization of the sine wave is necessary for which there exist several
possibilities. It is most straightforward to choose either the time or the rate to be
linearly spaced, which is illustrated in Fig. 3.17. As a di�erence between the two,
linear spacing of the time leads to an accurate scanning of the valleys, where the
rate changes are small, but not on the rising edge with large changes in the rate
values. In order to make the scanning accuracy depending on the rate change,
linearly spaced rates can be applied. The di�erence between these two options
becomes signi�cant when rate changes are rare.

50

3.5 Sampling Accuracy Study

For small networks, we investigate the in�uence of the step size on the DKL for
a �xed period length, i.e., the number of traversed rates varies between the data
points in Fig. 3.18. The variations between the DKL values lie within the standard
deviations of the single DKL values. As a conclusion, the step size is not critical
for the sampling quality.

These insights help to choose a discretization method in the mixing performance
experiments later on. For practical reasons, we linearly space the time. For that,
we set a step size at which the di�erence between the two methods is insigni�cant,
since all step sizes in the investigated range in Fig. 3.18 are equally valid.

Figure 3.17: The discretization of the exact sine wave can either involve linear
spacing of time or the rate. The gray dashed lines mark the reference rate at 2
kHz, which needs to be exactly captured by the method. The minimum rate, here
about 400 Hz, and the maximum rate, here about 10 kHz (black dashed lines), are
�exible. Linearly spacing the time (green crosses) has the risk that the maximums,
where the rate changes are small, the curve is scanned accurately, but the rising
edges, where the changes are large, are hardly scanned. This problem is avoided
with linearly spaced rates (blue circles), where the time steps are �exible.

51

3 Experiments

Figure 3.18: We stimulate an LIF RBM with noise of sinusoidally varying rate,
which is discretized linearly in time in a 1000 s long simulation. The sine period is
1s, the minimal rate is at 400 Hz and the maximal rate at 10 kHz. In order to study
the in�uence of the time interval between two rate changes on sampling accuracy,
the DKL between the �nal simulated and the theoretical joint distribution is plotted
over the step sizes 1, 2, 5, 10, 25, 50, 100 and 250 ms. The standard deviations
(bars) are gained from 10 di�erent random seed initializations. The DKL values
are distributed in a close range, leading to the conclusion that the step size is not
critical for sampling accuracy.

3.6 Mixing Performance in Generation Tasks
In this section, for large networks of 784 visible units, 400 hidden units and a
trained weight matrix, the MNIST digit generation task is performed. First, as
a reference, no mixing facilitation mechanism is applied (Sec. 3.6.1). Then, as a
�rst mixing benchmark, a network with plastic synapses as mixing facilitation is
simulated (Sec. 3.6.2). As a second mixing benchmark, the performance of a net-
work with abstract units and AST as mixing facilitation is presented (Sec. 3.6.3).
Finally, the mixing performance of an LIF network with spike-based tempering as
mixing facilitation is simulated and compared to the reference and the two bench-
mark simulations (Sec. 3.6.4). To inspect the quality and diversity of the generated
patterns, we plot the �ring probabilities of the visible units from the hidden unit
activation

p(v) =
1

1 + exp (−hW − b)
, (3.24)

where v and h denote the vectors of the visible and hidden states, W the weight
matrix and b the bias vector.

52

3.6 Mixing Performance in Generation Tasks

Trained Weight Matrix
The weight matrices of the large RBMs are created from CAST training on 1000
MNIST digits in a network of abstract units, performed by L. Leng 1 (see Sec. 2.3.2)
instead of randomly drawn from a beta distribution. Each unit of the visible layer
corresponds to one pixel of a 28× 28 grid, on which the training digit patterns are
clamped.

3.6.1 Reference: No Mixing Facilitation
In order to illustrate the mixing problem, we perform the handwritten digit gener-
ation task with a network of standard sampling neurons without a mixing facili-
tation mechanism, thus with renewing synapses and under homogeneous Poisson
noise input. We retrieve the �ring probability of the visible layer at evenly chosen
points of the simulation time. The �rst second of the 1000 s simulation is dis-
carded, such that the network dynamics can adapt. The generated patterns of this
network for the 100 times of the simulation can be seen in Fig. 3.19. They show
recognizable handwritten digits. The network does not mix well as it seems to be
stuck in the “0” mode.

1For the training, a subset of 1000 images from the MNIST training data set is used. For a total
of 200 000 steps, the network with binary units is trained in 100 mini-batch sizes for each
step according to the CAST algorithm. The fast chain contains 20 di�erent temperature values
between 0.9 and 1. The weight adapting factor, gamma, is chosen as 1 + 90/(100 + t + 5) ,
where t is the training step during learning. The learning rate is set to 20/ (2000 + t).

53

3 Experiments

Figure 3.19: Visible layer activation probabilities of an LIF network consisting of
1194 units at 100 times of the simulation of 1000 s in steps of 990 ms after a burn-
in of 1s. The RBM has a weight matrix trained on 1000 training samples of the
MNIST data set of handwritten digits. The neurons with renewing synapses are
stimulated with homogeneous Poisson noise input of 2 kHz. Since the network
uses no mechanism which facilitates mixing, it gets stuck in the “0” mode, i.e. it
mixes badly.

3.6.2 Mixing Benchmark I: Plastic Synapses
In this subsection, the network stimulated with homogeneous noise is equipped
with a mixing facilitating mechanism, namely plastic synapses. Plastic synapses
correspond to certain parameter settings of the TSO mechanism (Sec. 2.6.1). Here,
we choose U = 0.1, τrec = 70 ms and τfac = 0 ms. Furthermore, the weight matrix is
divided by a so called weight division factor of 0.11 to recover the �rst PSP height.
These settings speci�cally correspond to the RBM used here. They improve mixing
as reported in Leng et al. (2017). The generated patterns of this network for 100
evenly chosen times of the simulation can be seen in Fig. 3.20. The images are not
as clear as in the simulation with renewing synapses in Fig. 3.19, but a lot more
diverse. With plastic synapses, the network is able to escape the local modes and
mix well.

54

3.6 Mixing Performance in Generation Tasks

Figure 3.20: Visible layer activation probabilities of an LIF network consisting of
1194 units at 100 evenly chosen times of the simulation, every 990 ms after the
�rst 1s is burned in. The network parameters are trained on the MNIST data set of
handwritten digits. The use of plastic synapses allows the network to escape local
energy minima faster than with renewing synapses, thus leading to more diverse
patterns, i.e., the network mixes better.

3.6.3 Mixing Benchmark II: Abstract Units with AST
The handwritten digit generation task is repeated in an abstract RBM with AST
(Sec. 2.3.1) as mixing facilitation. This experiment is described in Salakhutdinov
(2010) and serves as a reference in terms of mixing quality in tempered networks.
Di�erent from the original publication, we choose 10 di�erent temperatures here,
instead of 20, which corresponds to the number of rate changes in later inhomo-
geneous noise experiments. A larger number of temperatures smooths the transi-
tions at the cost of simulation time, but does not signi�cantly improve the mixing
properties. 100 states corresponding to β = 1 are chosen from the simulation and
displayed in Fig. 3.21 (left). More precisely, from the adaptively developed temper-
ature evolution, all β unequal to 1 which facilitate mixing are discarded (Fig. 3.21,
right). Moreover, the �rst 100 β = 1 are likewise neglected, such that the network
dynamics can adapt.

The images are more diverse than those produced with the LIF network with
renewing synapses and homogeneous noise input (Fig. 3.19). Occasionally, the ab-
stract network gets stuck in one speci�c mode belonging to one digit, for instance
the six “2” in the �fth row show a large similarity (Fig. 3.21, left). In general, the
algorithm mixes well between modes corresponding to di�erent digits.

55

3 Experiments

Figure 3.21: Left: With AST generated patterns of an RBM with abstract units that
is trained on the MNIST training set. Right: 10 inverse temperatures 0.9, 0.91, ..., 1
(gray lines) are visited adaptively. Here, only a subset (step 1010-1130) is displayed
from in total 100100 steps. The �rst 100 occurrences of the base temperature are
considered as burn-in (green dashed line) and discarded - all further are considered
as valid (orange dots). The spiking probabilities plotted on the left, correspond to
every 100th occurrence of a valid base temperature.

3.6.4 Renewing Synapses under Sinusoidal Noise Input
The handwritten digit generation task is repeated with LIF networks under sinu-
soidal noise input. The wave is characterized by a period length of 4000 ms, a
minimum at 1.5 kHz and a maximum at 3 kHz and repeated for 100 periods. In
this sine wave the reference rate is not the minimal rate, i.e., it is crossed twice.
We read out at the �rst occurrence. The 100 images obtained at the reference rate
are depicted in Fig. 3.22. They are easily recognizable and diverse. Compared to
the network output without mixing facilitation (Fig. 3.19), the images are much
more diverse. Several modes belonging to one digit are explored as well as modes
belonging to di�erent digits. Moreover, the mixing quality is comparable to the
benchmark in LIF networks (Fig. 3.20) and the tempering benchmark (Fig. 3.21).

56

3.7 ISL Study

Figure 3.22: 100 consecutive visible layer outputs of an LIF RBM stimulated with
sinusoidal noise. The period length is 400 ms, the minimum of the sine wave is
at 1.5 kHz and the maximum at 3 kHz. The reference rate is at 2 kHz. Since the
minimum of the sine wave and the reference rate are not identical, the reference is
crossed twice. The images are read out at the �rst occurrence of the reference rate.
The handwritten digits are clear and the network is able to escape each mode.

3.7 ISL Study
Di�erent neural oscillations are primarily characterized by di�erent sine periods
(Sec. 3.4.2). This section aims to �nd an optimal combination of further constants
of the rate sine wave for each �xed period - optimal in the sense of pattern di-
versity. Alongside the biologically inspired aspect of this experiment, a sinusoidal
rate variation instead of a temperature variation is applied (see Sec. 3.4.3). In par-
ticular, the minimum, the maximum and implicitly the amplitude of the sine wave
are of interest. Thus, for the individual periods, 2D sweeps over di�erent values
for sine extrema are performed in the following. The step size is �xed to 10 ms,
which entails a varying number of rate changes dependent on the period. As a
measure of diversity, the ISL value (Sec. 2.8.2) is evaluated, which returns higher
values for higher diversity. The result is shown in Fig. 3.23, where the x-axis cor-
responds to the period length, the y-axis to the rate minimum and the z-axis to the
rate maximum. The ISL value of each triplet is encoded with color. The distinct 4D
surface plots correspond to distinct speci�c points of the sine wave. Since in the
underlying sine wave, the reference rate is not the minimum, it appears twice per
sine period. This leads to three interesting points in terms of diversity: the �rst
crossing of the reference rate (�rst 4D plot), the minimum (second 4D plot) and
the second crossing of the reference rate (third 4D plot). 1000 generated samples
are required for a fully converged ISL value with this network size, as suggested
in Leng et al. (2017). Consequently, a reliable ISL evaluation requires the simu-

57

3 Experiments

lation of 1000 periods. For computation time reasons, here only a single run is
performed for each parameter set. This method reveals those parameter combi-
nations that create the most diverse images. In the minimum, the ISL values are
lower, meaning that the networks mix worse than in the reference rates. Based on
this plot, the trend that small maximal rates corresponding to beta values around
0.9 produce better ISL values is visible, which would match with the setup in AST.
Nevertheless, more statistics is needed to reveal potential trends in this sweep.

58

3.7 ISL Study

Figure 3.23: 2D sweeps over the sine wave‘s minimal rate in Hz (y-axis) and max-
imal rate in Hz (z-axis) for several period lengths in ms (x-axis). The minimal rate
values are 400, 800, 1000, 1500 and 1800 Hz. The maximal rate values are 3000,
4000, 5000, 8000 and 10000 Hz. These values lie at the center of the squares. The
period length values are 400, 800, 1000, 2000 and 4000 ms. The ISL value, as a
measure of the diversity of the images, is represented by the color-coding. In the
underlying sine wave the minimal rate is not identical to the reference rate. Thus,
the ISL values are evaluated from states corresponding to three points of the sine
wave: �rst crossing of the reference rate (�rst plot), the minimum (second plot) and
the second crossing of the reference rate (third plot). For computation time reasons
for each square a single simulation is run, but not with several random seeds. The
ISL values in the minimum are in general lower than in the two reference rates.

59

4 So�ware
First, this chapter provides an overview over the software used within this thesis
to conduct the experiments in Chap. 3. Aspects relevant for the subsequently de-
scribed contributions are speci�cally highlighted. The utilized framework includes
the open-source softwares Neural Simulation Tool (NEST) (Sec. 4.1) developed by
the NEST-initiative and the interface PyNN (Sec. 4.2). Furthermore, a NEST mod-
ule allowing for time-varying Poisson noise input (Sec. 4.3) and the library spike-
based-sampling (sbs) (Sec. 4.4) are described, both developed in this group. In this
thesis, sbs is extended by a class that integrates the inhomogeneous Poisson noise
generator (Sec. 4.5).

4.1 Neural Simulation Tool
The Neural Simulation Tool (NEST) enables the user to simulate networks con-
sisting of point like neurons or neurons with few compartments introduced in
Gewaltig and Diesmann (2007). The simulator is specialized for large networks.
The �elds of application are dynamics and network structure studies. One main
building block of NEST are nodes that transmit events via connections and can be
connected to networks. These instances also form the main objects in the NEST
code.

Nodes are either neurons, devices or smaller networks. A variety of models
for neurons, devices, synapses or events are available. Neuron models range from
simple leaky integrate-and-�re to Hodgkin-Huxley type neurons. As synapses, for
instance, in the experiments current- and conductance-based synapse models are
utilized. Device examples are the Poisson spike train generator as stimulus device
as well instruments to record the membrane potential or to perform the simulation.

Connections can be set up in various high-level patterns. They take a sending
and a receiving node, a weight, i.e., the strength of the stimulus, and a delay, i.e., an
arti�cial travel time of the neurological signal. Connections forward an event to
the synaptic input of the neurons according to a selectable synaptic kernel. Events
are either spikes or counts marked by the time-stamp of their generation and the
weight of the connection. The arrival time at the target neuron is determined by
this time stamp plus the delay of the connection. Handle functions for the events
are implemented in the neuron models.

61

4 Software

The original simulation language of NEST is SLI, a high-level scripting language.
Underneath, the core code of the simulator is written in C++ . The interpreted
programming language Python has several advantages over SLI: it is easier to re-
alize simulations, stimuli and evaluate the results. Furthermore, SLI is stack-based.
PyNEST (Eppler et al., 2009) is the corresponding wrapping-layer to access NEST
from Python alongside PyNN (discussed below), which also uses PyNEST (also see
Fig. 4.1). This is the user interface, we use.

The modular structure of NEST enables the extension with own modules. In
the course of this work the parts of sbs that are needed for the experiments are
updated to NEST 2.12.0, a more recent version which came along with profound
technical changes in the synapse architecture, described in Kunkel et al. (2014).

4.2 PyNN
PyNN is a Python based programming interface to various simulators of spike-
based neural networks, described in Davison et al. (2009). The supported simu-
lators are NEURON (Hines and Carnevale, 1997), NEST, PCSIM (Pecevski et al.,
2009), Brian (Goodman and Brette, 2008), Neuroml (Crook et al., 2005) and the
Heidelberg neuromorphic hardware Schemmel et al. (2010) (Fig. 4.1). It allows to
mix PyNN and native simulator code and only supports features that are provided
by at least two simulators. It consists of a high-level object oriented interface plus
a low-level procedural interface. Neurons are organized in Populations which are
connected via Projections. Here, we use PyNN 0.8.3.

PyNN

Simulator-Specific
PyNN Module

Python Interpreter

Native Interpreter

Simulator Kernel

pyNN.nest pyNN.pcsim pyNN.brian pyNN.hardware.facets pyNN.neuron pyNN.neuroml

PyNEST

SLI

NEST

Python Control Layer

Mapping Process
Configuration

Low-Level API &
Communication

FACETS Neuromorphic
Hardware Systems

PyPCSIM

PCSIM

Brian nrmpy

HOC

NEURON

NeuroML

Figure 4.1: Simulators with PyNN support. Similar structures as demonstrated for
NEST exist also for the other simulators, which are not used here and thus not
closer described. Adapted from Fig. 7 in Brüderle et al (2011).

62

4.3 Inhomogeneous Poisson Noise Generator

4.3 Inhomogeneous Poisson Noise Generator
NEST provides a C++ based Poisson noise generator, poisson_generator. This is
a static noise source, i.e., the rates and weights are constant over the simulation
and cannot be changed without stopping the simulation. It functions by drawing a
sample from a Poisson distribution of the speci�c rate for each time step. There ex-
ists one other Poisson noise generator, called sinusoidal_poisson_generator, which
creates sinusoidally changing rates. It allows to set parameters of the sine func-
tion. However, this generator has amongst others the disadvantage that custom
rate variation schemes deviating from a sine function are not possible, which are
e.g. needed to create the rate changes calculated from sinusoidal beta variations
(Sec. 3.4.3).

Due to the need of time-varying Poisson noise sources in learning experiments,
several new NEST modules for this necessity are introduced in Breitwieser (2015).
For our use case, we focus on the poisson_generator_var_rate_multi. Here, for
each time step, the total number of spikes is drawn and distributed according to
a multinomial distribution. As input, it requires three arrays: rates, times and
indices. The k-th entry in the time array marks the onset of a Poisson noise stim-
ulation with the k-th rate, sent to the target corresponding to the k-th index. In
order to increase the e�ciency of the noise generator, the number of targets need
to be speci�ed via num_outputs, such that the generator can already allocate the
required sizes for the internal arrays.

This generator enables maximal �exibility in creating rate variation schemes.
To make it usable for this work, this model is wrapped into a NEST module and
made available in sbs via a source con�guration (for the details see 4.5).

4.4 Spike-Based Sampling
Spike-based sampling (sbs) is a library enabling fast spike-based inference simu-
lations. It is based on PyNN with several performance enhancing specializations
for NEST introduced in Breitwieser (2015). It provides two main classes. First, LIF-
sampler enables the setup of the LIF neurons with user de�ned speci�cations, like
neuron parameters, as well as the calibration. Second, BoltzmannMachine con-
nects the samplers to networks that sample from Boltzmann distributions. In the
course of this thesis an extension to the source con�guration is implemented and
described in the following.

63

4 Software

4.5 Source Configuration
The SourceConfiguration class takes care of the setup of sources in sbs and sepa-
rates the noise sources from the sampling network. One of the subclasses is Pois-
sonSourceConfiguration which sets up the standard Poisson noise generator pois-
son_generator (Sec. 4.3) or a more e�cient version thereof if speci�ed by the user.
We implement a further subclass that sets up the connections between the time-
varying Poisson noise generator poisson_generator_var_rate_multi (Sec. 4.3) and
the network. The purpose of this subclass, named MultiPoissonVarRateSource-
Configuration, is to pre-process the settings of the user for the generator.

For each Poisson source, potentially several per sampler, the framework cre-
ates a parrot neuron. A parrot neuron is a model that re-emits all the received
spikes. The Poisson noise generator is connected to the series of intermediate par-
rot neurons. In addition, the subclass derives the appropriate indices array for the
multi_poisson_generator_var_rate from the input matrix. It speci�es for each time
which target parrot receives which spike train from the unique spike train of the
generator. In a last step, the parrot neurons are connected to the samplers (Fig.
4.2).

The class takes a matrix of the source course with all the Poisson sources for
each individual sampler. In this, each sampler can have an individual number of
Poisson sources speci�ed by a three column matrix. The �rst column de�nes the
time points at which the rate changes occur, the second column the desired rates,
the third column takes the weight (see code snippet in Fig. 4.2). As a constraint,
per Poisson source only one weight is supported and with that one synapse type,
determined by the sign of the weight entries. But, it leaves the freedom of future
implementation of changing weights. Both synapse models, COBA and CUBA,
can be utilized within this framework. So, the supplied matrix has as dimensions:
number of samplers times number of Poisson sources which might vary from sam-
pler to sampler times the number of changes times the three entries time, rate and
weight.

64

4.5 Source Con�guration

S0

G

S1

P00

P01

P10

P11

import sbs.db as db
import numpy as np

poisson_source_1 = np.array([
[<time>,<rate>,<weight>],
[0., 1000., 0.002],
[2000., 100., 0.002],
[3000., 4000., 0.002]])

poisson_source_2 = np.array([
[<time>,<rate>,<weight>],
[0., 1000., -0.002],
[2000., 100., -0.002],
[5000., 300., -0.002]])

src_courses = np.array(
[poisson_source_1, poisson_source_2,])

sampler_config = db.SamplerConfiguration.load(
"calibration.json")

sampler_config.source_config = \
db.MultiPoissonVarRateSourceConfiguration(
src_courses=src_courses)

Figure 4.2: Left: Projection scheme from the Poisson noise spike train generator
(“G”) to parrots (“P”) and further to samplers (“S”). In this example, each sam-
pler receives input from two parrot neurons, for instance, from an excitatory and
an inhibitory one. Right: Example program code to set up a time varying Pois-
son source. For an excitatory and an inhibitory Poisson source (poisson_source_1,
poisson_source_2), matrices with a times, rates and a weights column are de�ned.
The two sources are pooled into one array (source_courses) and later passed to
the generator. As usual, the con�guration of the samplers (sampler_config) is
loaded back from calibration. In the last step, the source con�guration of the sam-
pler con�guration is replaced by the time varying Poisson source con�guration
(MultiPoissonSourceConfiguration).

65

5 Discussion
In this thesis, we constructed a spike-based tempering framework using inhomo-
geneous Poisson noise input. The study begins with investigations on the single
neuron level, in which for various balanced rates, i.e., excitatory equaling the in-
hibitory noise rate, the activation function is recorded. Two parameters are re-
trieved: the slope factor α and the in�ection point up0.5 which result from �tting
a sigmoid function. The same experiment is repeated for synaptic noise weights.
Compared to the activation function under the reference rate, the one the neuron
is calibrated on, an increase in the rates or the weights decreases the slope and
induces a negative shift. A decrease in the quantities has the opposite e�ects on
the parameters. These observations are explained by the in�uence of the noise
amount on the membrane distribution. We �nd the slope to encode temperature
in the system and introduce the mapping

β =
1

T
≡ α0

α
,

where β is the inverse of temperature T , α the slope factor of the considered acti-
vation function and α0 the slope factor of the reference activation function. After-
wards, an approximative mathematical relationship between α and the variance of
the membrane potential distribution is derived (Sec. 3.2.1). The variance depends
on the rate, so, the conversion between inverse temperature and the noise rate ν
is established which reveals the dependency

β ∝ 1√
ν
.

This relationship is supported by experimental �ndings (Sec. 3.2.2). Whilst the
slope is an indication for temperature, the shift is an artifact deriving from the reset
mechanism and hinders a clean temperature variation. Thus, we establish a tech-
nique to counteract this shift by applying an inhibitory rate that is smaller/higher
than the excitatory rate for the rates below/above the reference rate. We �nd the
shift-compensating inhibitory rates dependent on the excitatory rates. For this
study it is su�cient to approximate the dependency with two linear �ts.

Next, we create a sinusoidal variation scheme for the rates. On the technical
side, we embed an existing C++ based time-varying Poisson noise generator into

67

5 Discussion

the spike-based sampling (sbs) framework by implementing a Python based class
that takes care of the con�guration of these speci�c sources in advance. The user
provides a matrix with the desired time points of the rate changes, the rate values
and weights to characterize the Poisson sources for each sampler. In our case,
each sampler receives an excitatory and an inhibitory input with simultaneous rate
changes. This endeavor goes along with an update of those parts of sbs essential
for the experiments to a newer NEST version.

In order to examine the sampling accuracy, we employ this framework to stimu-
late an RBM of �ve units with sinusoidally varying rates or inverse temperatures.
From this, a comparison between the theoretical and the simulated joint distri-
bution is retrieved. The calculation of the theoretical distribution requires β’s,
whereby the simulation requires rates, so we make frequent use of the introduced
mapping. First, the simulated joint distribution of the whole simulation is con-
trasted to the theoretical distribution being an average over those corresponding
to the distinct betas. Second, the simulated joint distribution over the states when
the reference rate is present, is compared with the theoretical distribution calcu-
lated with the base temperature at a β of 1. In both cases, the distributions are
in good accordance, meaning that the chosen sine wave properties, most crucially
the period length and the step size between two rate updates, do not hinder the
network to sample from the correct target distribution. We �x the boundaries of
possible values of the sine wave to 400 Hz and 10 kHz. The corresponding con-
siderations are described in Sec. 3.5.1. We set up a series of sine waves by sys-
tematically varying its properties in this range, i.e., di�erent combinations of the
minimal and maximal values for distinct period lengths from 0.4 ms to 4 s which
is part of the neural oscillations regime. A larger RBM with 784 visible and 400
hidden units and a weight matrix trained on MNIST handwritten digits is suc-
cessively run under these constructed sinusoidal rate inputs. In each experiment,
the ISL value, a measure for the diversity of the generated images, is evaluated in
1000 states, where the reference rate is present (Fig. 3.23). With sine wave set-
tings which are amongst those that produced the best, i.e., the highest ISL values,
images are generated. We show that the generated patterns are as readable as un-
der homogeneous noise input, meaning that the network samples from the correct
target distribution. More importantly, the images show a diversity comparable to
those achieved with mixing facilitating mechanism like plastic synapses or AST
for abstract units. In conclusion, for a series of sine wave period lengths, pairs
of minimal and maximal rate are found that escape the repetitive pattern gener-
ation problem and perform similar to established mixing facilitating mechanisms
in terms of pattern diversity.

68

6 Outlook
As an immediate improvement of the search for sine wave properties generating
the most diverse images, the ISL sweep could be performed with more statistics,
the sweep values re�ned and lower sine frequencies visited, all at the cost of time.
The implementation of the high-frequency domain of neural oscillations is more
challenging, since the sine periods are of the same order as other time constants
of the neurons, which requires considerations about the sampling accuracy. But,
it promises the advantage to take less time for the collection of a certain number
of valid states, which would avoid long simulation time.

As one possibility to improve the visualization of the high-dimensional data set
of the generated images, t-Distributed Stochastic Neighbor embedding (t-SNE) de-
veloped by Van Der Maaten and Hinton (2008) can be used, which helps to reduce
the dimensionality. Besides that, ISL needs to be complemented with a quantity
measuring the quality of the images which is challenging in large networks due to
the exploding computation time to calculate the target distribution. Another goal
is the application of inhomogeneous Poisson noise in learning, for instance in the
form of coupled spike-based tempering for LIF networks, where the time-varying
Poisson noise plays the role of the fast, mixing facilitating chain as AST in CAST.

In this work, the amplitude and the period length of the sine wave were held
constant for the whole simulation. The �exibility of the software framework fea-
tures the potential to implement more advanced and biologically relevant patterns
in the future. It is imaginable to construct a wave pattern with a decreasing ampli-
tude, resembling a damped oscillator. This is established in simulated tempering
methods and would possibly help the exploration of the energy landscape. More-
over, in the brain, frequencies do not occur in an isolated fashion but rather in
superposition. Depending on the state of the brain, like wake or sleep, certain fre-
quencies become dominant in the frequency spectrum. Conceivably, a scheme can
be constructed that mimics this coexistence of several frequencies or forms a se-
ries of di�erent oscillations. The latter can be concretely inspired by the frequency
succession during sleep that also resembles a damped oscillation.

Another continuative research aspect is the combination of the two mixing fa-
cilitation methods for LIF networks, namely spike-based tempering and plastic
synapses. As a yet to implement third method, neural adaptation based on adaptive
exponential integrate-and-�re (AdEx) neurons might also enhance mixing. The in-
tegration of di�erent mixing facilitating mechanisms is the far goal of this study.

69

Appendix

Parameters

neuron
membrane capacitance cm 0.2 nF

excitatory reversal potential e_rev_E 0 mV
inhibitory reversal potential e_rev_I -100 mV

o�set current i_o�set 0.0 nA
membrane time constant tau_m 0.1 ms
refractory time constant tau_refrac 10 ms

excitatory synaptic time constant tau_syn_E 10 ms
inhibitory synaptic time constant tau_syn_I 10 ms

reset potential v_reset -50.01 mV
rest potential v_rest -50 mV

threshold potential v_thresh -50 mV

Table 6.1: Default neuron parameters for all experiments if not explicitly changed.

synapse
PyNN synapse model synapse_model IF_cond_exp, IF_curr_exp

TSO model proper_tso true
enable renewing synapses saturating_synapses true

Table 6.2: Default synapse parameters in sbs for all experiments if not explicitly
changed.

TSO renewing plastic
utilization U 1 0.1

recovery time constant tau_rec 10 ms 70 ms
facilitation time constant tau_fac 0 ms 0 ms

weight division factor wdf 1 0.11

Table 6.3: Default TSO parameters for all experiments if not explicitly changed.

71

6 Outlook

noise
weights -0.002, 0.002 nA/µS

rates variable, reference at 2000 Hz

Table 6.4: Default noise parameters for all experiments if not explicitly changed.

calibration
burn-in time at start burn_in_time 500 ms

time step dt 0.001 ms
calibration time duration 1e4 ms

number of samples num_samples 100
range of bias bias_range -6 to 6

grid-constrained time scheme spike_precision on_grid

Table 6.5: Default calibration parameters for all experiments if not explicitly
changed.

simulation
neuron simulator sim_name pyNN.nest

burn-in time at start burn_in_time 500 ms
time step dt 0.1 ms

simulation time duration 1e6 ms
grid-constrained time scheme spike_precision on_grid

Table 6.6: Default simulation parameters for all experiments if not explicitly
changed.

AST
min-batch size 1

inverse temperature β 0.9...1.
number of temperatures 3

valid samples 100000
adaptive weight factor γ 90

100+t+5
+ 1

learning rate 20
2000+t

Table 6.7: Default AST parameters for all experiments if not explicitly changed.

72

Nomenclature
AST adaptive simulated tempering

BM Boltzmann machine

CAST coupled adaptive simulated tempering

CD contrastive divergence

COBA conductance-based

CUBA current-based

DKL Kullback-Leibler divergence

EEG electroencephalogram

GS Gibbs sampling

ISL indirect sampling likelihood

LIF leaky integrate-and-�re

MCMC Markov chain Monte Carlo

NEST Neural Simulation Tool

PCD persistent contrastive divergence

PSP post-synaptic potential

RBM restricted Boltzmann machine

sbs spike-based sampling

ST simulated tempering

STP short-term plasticity

WL Wang-Landau

73

Bibliography

Hans Berger. Über das Elektrenkephalogramm des Menschen. Arch. Psychiatr.
Nervenkr., 1929.

Oliver Julien Breitwieser. Towards a Neuromorphic Implementation of Spike-
Based Expectation Maximization. Master thesis, 2015.

Olivier Breuleux, Yoshua Bengio, and Pascal Vincent. Unlearning for Better Mix-
ing. Technical Report, 2009.

Lars Buesing, Johannes Bill, Bernhard Nessler, and Wolfgang Maass. Neural dy-
namics as sampling: a model for stochastic computation in recurrent networks
of spiking neurons. PLoS Computantioal Biology, 2011.

György Buzsáki. Rhythms of the Brain. Oxford University Press, U.S.A., 2006.

Sharon Crook, David Beeman, Padraig Gleeson, and Fred Howell. XML for Model
Speci�cation in Neuroscience. brains, minds, media, 2005.

Andrew P. Davison, Daniel Brüderle, Jochen Martin Eppler, Jens Kremkow, Eilif
Muller, Dejan Pecevski, Laurent Perrinet, and Pierre Yger. PyNN: a common
interface for neuronal network simulators. Frontiers in Neuroinformatics, 2009.

Andreas Draguhn and György Buzsáki. Neuronal oscillations in cortical networks.
Science, 2004.

Jochen Martin Eppler, Moritz Helias, Eilif Muller, Markus Diesmann, and Marc-
Oliver Gewaltig. PyNEST: A convenient interface to the NEST simulator. Fron-
tiers In Neuroinformatics, 2009.

Stuart Geman and Donald Geman. Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1984.

Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Paninski. Neu-
ronal Dynamics: From Single Neruons to Networks and Models of Cognition.
Cambridge University Press New York, 2014.

75

Bibliography

Marc-Oliver Gewaltig and Markus Diesmann. NEST (NEural Simulation Tool).
Scholarpedia, 2007.

Dan Goodman and Romain Brette. Brian: a simulator for spiking neural networks
in Python. Frontiers in Neuroinformatics, 2008.

David M. Groppe, Stephan Bickel, Corey J. Keller, Sanjay K. Jain, Sean T. Hwang,
Cynthia Harden, and Ashesh D. Mehta. Dominant frequencies of resting human
brain activity as measured by the electrocorticogram. NeuroImage, 2013.

W. K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. Biometrika Trust, 1970.

Michael L. Hines and Nicolas Ted Carnevale. The NEURON Simulation Environ-
ment. Neural Computation, 1997.

Geo�rey E. Hinton. Training Products of Experts by Minimizing Contrastive Di-
vergence. Neural Computation, 2002.

Geo�rey E. Hinton and Terrence J. Sejnowski. Optimal perceptual inference. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1983.

A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. Bulletin of Mathemat-
ical Biology, 1952.

Jakob Jordan, Mihai Alexandru Petrovici, Oliver Julien Breitwieser, Johannes
Schemmel, Karlheinz Meier, Markus Diesmann, and Tom Tetzla�. Stochastic
neural computation without noise. Arxiv, 2017.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Anneal-
ing. Science, 2007.

Susanne Kunkel, Maximilian Schmidt, Jochen Martin Eppler, Hans E. Plesser, Ma-
sumoto, Jun Igarashi, Shin Ishii, Tomoki Fukai, Abigail Morrison, Markus Dies-
mann, and Moritz Helias. Spiking network simulation code for petascale com-
puters. Frontiers in Neuroinformatics, 2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha�ner. Gradient-Based
Learning Applied to Document Recognition. Proceedings of the IEEE, 1998.

Luziwei Leng. Deep Learning Architectures for Neuromorphic Hardware. Master
thesis, 2014.

76

Bibliography

Luziwei Leng, Roman Martel, Oliver Julien Breitwieser, Ilja Bytschok, Walter Senn,
Johannes Schemmel, Karlheinz Meier, and Mihai Alexandru Petrovici. Spiking
neurons with short-term synaptic plasticity form superior generative networks.
Arxiv, 2017.

E. Marinari and G. Parisi. Simulated Tempering: A New Monte Carlo Scheme.
Europhysics Letters (EPL), 1992.

Robert W. McCarley and Christopher M. Sinton. Neurobiology of sleep and wake-
fulness. Scholarpedia, 2008.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics, 1953.

Paul Nunez and Ramesh Srinivasan. Electroencephalogram. Scholarpedia, 2007.

Dejan Pecevski, Thomas Natschläger, and Klaus Schuch. PCSIM: a parallel simu-
lation environment for neural circuits fully integrated with Python. Frontiers in
Neuroinformatics, 2009.

Mihai Alexandru Petrovici. Form Versus Function: Theory and Models for Neu-
ronal Substrates. Springer, 2016.

Mihai Alexandru Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and
Karlheinz Meier. Stochastic inference with deterministic spiking neurons. Arxiv,
2013.

Mihai Alexandru Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel,
and Karlheinz Meier. Stochastic inference with spiking neurons in the high-
conductance state. Phys. Rev. E, 2016.

Björn Rasch and Jan Born. About Sleep’s Role in Memory. Physiological Review,
2013.

Luigi M. Ricciardi and Laura Sacerdote. The Ornstein-Uhlenbeck Process as a
Model for Neuronal Activity. Biological Cybernetics, 1979.

Ruslan R. Salakhutdinov. Learning Deep Boltzmann Machines using Adaptive
MCMC. Proceedings of the 27th International Conference on Machine Learning,
2010.

Johannes Schemmel, Daniel Brüderle, Andreas Grübl, Matthias Hock, Karlheinz
Meier, and Sebastian Millner. A Wafer-Scale Neuromorphic Hardware System
for Large-Scale Neural Modeling. Proceedings of the 2010 IEEE international sym-
posium on circuits and systems (ISCAS), 2010.

77

Bibliography

Paul Smolensky. Information Processing in Dynamical Systems: Foundations of Har-
mony Theory. 1986.

Tijmen Tieleman and Geo�rey E. Hinton. Using Fast Weights to Improve Persistent
Contrastive Divergence. Proceedings of the 26th Annual International Conference
on Machine Learning (ICML), 2009.

Misha V. Tsodyks, Klaus Pawelzik, and Henry Markram. Neural Networks with
Dynamic Synapses. Neural Computation, 1998.

Laurens J. P. Van Der Maaten and Geo�rey E. Hinton. Visualizing high-
dimensional data using t-sne. Journal of Machine Learning Research, 2008.

Ullrich Wagner, Ste�en Gais, Hilde Haider, Rolf Verleger, and Jan Born. Sleep
inspires insight. Nature, 2004.

Fugao Wang and D. P. Landau. E�cient, multiple-range random walk algorithm
to calculate the density of states. Physical Review Letters, 2001.

Robert S. Zucker and Wade G. Regehr. Short-Term Synaptic Plasticity. Annual
Review of Physiology, 2002.

78

Acknowledgments

I am using this opportunity to express my gratitude to everyone who helped me
overcome energy barriers in the course of this master thesis:

To Prof. Karlheinz Meier of giving me the chance of being part of the Brain-
ScaleS project. For conducting the examination, I would like to thank him and
Prof. Daniel Durstewitz.

To Wei for supervising this work and thoroughly reviewing the writing.

To further giants on whose shoulders I was allowed to stand:
Mihai for his crystal clear ideas and explanations. Oliver for his high coding stan-
dards and for tirelessly answering my software questions. To the other awesome
TMAs: Akos, Andreas, Dominik, Max and Nico. I highly appreciate all the proof-
reading and feedback.

I am thankful to past and present o�ce inhabitants and Electronic Vision(s) for
making tough workdays actually pleasant.

My warm thanks are due to my lovely and helping �at mates and friends, my
parents and siblings for their endless support and Gerd for being everything.

Statement of Originality
(Erklärung)

I certify that this thesis, and the research to which it refers, are the product of
my own work. Any ideas or quotations from the work of other people, published
or otherwise, are fully acknowledged in accordance with the standard referencing
practices of the discipline.

Ich versichere, dass ich diese Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, December 8, 2017
(signature)

	Introduction
	Theoretical Background
	Sampling Theory and Boltzmann Machines
	Markov Chain Monte Carlo Methods
	Metropolis-Hastings Algorithm
	Gibbs sampling
	Boltzmann Machine

	Learning Algorithms
	Contrastive Divergence
	Persistent Contrastive Divergence

	Mixing Problem and Solution
	Adaptive Simulated Tempering
	Coupled Adaptive Simulated Tempering

	Spiking Neurons
	Leaky Integrate-and-Fire (LIF) Neurons
	Current-, Conductance-Based Synapses

	Sampling in Biologically Inspired Networks
	Neural Sampling
	LIF Sampling
	LIF-based Boltzmann Machine

	Mixing Problem and Solution in LIF Networks
	Short-Term Plasticity
	Plastic Synapses versus Tempering

	Neural Oscillations
	Electroencephalogram
	Frequency Bands
	Function during Sleep and Wakefulness

	Evaluation
	Kullback-Leibler Divergence
	Indirect Sampling Likelihood

	Experiments
	From Temperatures to Poisson Noise Rates
	Activation Functions of Different Temperatures in AST
	Membrane Potential Distribution of Different Noise Rates
	Activation Functions of Different Noise Rates

	Mapping Temperature to Poisson Noise Rate
	Relationship between Temperature and Alpha
	Relationship between Alpha and Rate

	From Balanced to Shift-Compensated Noise
	Shift Compensation Using Inhibitory Noise
	Shift-Compensated Activation Functions

	Rate Variation Schemes
	Poisson Rate Following a Sine Function
	Rate Sine Waves with Parameters from Biology
	Rate versus Temperature Variation

	Sampling Accuracy Study
	Noise Rate Range
	Renewing Synapses under Sinusoidal Noise Input
	Sine Wave Discretization

	Mixing Performance in Generation Tasks
	Reference: No Mixing Facilitation
	Mixing Benchmark I: Plastic Synapses
	Mixing Benchmark II: Abstract Units with AST
	Renewing Synapses under Sinusoidal Noise Input

	ISL Study

	Software
	Neural Simulation Tool
	PyNN
	Inhomogeneous Poisson Noise Generator
	Spike-Based Sampling
	Source Configuration

	Discussion
	Outlook
	Appendix
	Nomenclature

