

Quantum Simulation of Dynamical Gauge Fields: **Experimental Approach**

INSTITUT FÜR PHYSIK

SynQS

Apoorva Hegde, Alexander Mil, Torsten Zache, Andy Xia, Markus K. Oberthaler, Philipp Hauke, Jürgen Berges, Fred Jendrzejewski Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany apoorva.hegde@kip.uni-heidelberg.de

Dynamical gauge fields	Initial state preparation		
• Gauge theories are fundamental to Standard Model of High-Energy Physics (HEP). They are built up of	 Condensing ²³Na and ⁷I 	Li to quantum degeneracy:	
fermionic and bosonic particles, which represent matter field and force carriers respectively.	Lithium	Sodium	
 Requirements to simulate a HEP process using atomic systems: 		$N_{\rm Nz} = 300$	$\times 10^{3}$
1. Work with finite dimensional Hilbert space, i.e. local implementation of gauge fields.	$ 0\rangle$	$ 0\rangle \qquad \qquad$	103
2. Inclusion of both fermions and bosons.		$N_{Li} = 50 \times$	105
3. Interactions preserving local gauge invariance, i.e. satisfy Gauss' law.	1 ⟩,,,,, ,,,,,	Offset magnetic	field ~ 2G
$\begin{array}{c} \text{gauge field} \\ \dots \\ n-1 \\ n \\ n \\ n+1 \\ n+2 \\ \end{array}$	Preparing coherent sup	perposition of internal states in ²³ Na:	

 \bullet

- Realize the dynamical gauge field using ultracold atoms in optical lattices.
- Fermionic (mass) species reside on the lattice sites, bosonic (gauge field) on the links.

Schwinger pair production

Vacuum becomes unstable at very high static electric fields leading to electron-positron pair creation. •

Critical field strength, $E_c = \frac{m_e^2 c^3}{\hbar e} \approx 10^{18} V m^{-1}$ $I_c \approx 10^{29} W m^{-2}$

Can we construct a quantum simulator?

QED in 1+1 D

- Quantum link model:
- Gauge fields are replaced by quantum mechanical spins \hat{L}_n .
- A discrete 'Electric field' is represented by $\hat{L}_{n,z}$.
- Formulation of U(1) gauge theories for cold atoms:

Spin changing collisions(SCC): Up to 6% of the total number of ⁷Li atoms are transferred from the "vacuum" state to the "particle" state after the quench.

- **A. Kogut -Susskind formulation**: A staggered lattice J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975). Kasper et al., NJP **19**, 023030 (2017)
- **B. Wilson formulation**: A tilted lattice T.V. Zache et al. Quantum Sci. Technol. 3 034010 (2018)

Experimental implementation with atomic mixtures: Alexander Mil et al. arXiv:1909.07641(2019) Gauge field Matter field

Sodium

Lithium

Spin changing collisions

²³Na

Tuning the gauge field: Resonant particle production

- Keeping the interaction time fixed, the entire range of initial L_z is scanned.
- Resonance condition for observing SCC:

$$2\chi L_z \sim \Delta$$

Changing the external magnetic field changes Δ .

 $\Delta(L_z, B) = \Delta_0 + \Delta_L L_z + \Delta_B (B - B_A) / B_A$

- Total magnetization is conserved.
- Particle production is not observed for fields smaller than B ~ 1.96 G as the matter and the gauge field become too far off-resonant.

The theoretical mean-field predicition of the Hamiltonian(red curve) is obtained by the model parameters χ , Δ , λ .

Outlook

₩-

PBS

Beamsplitte

Waveplate

Photodiode

Mirror

Fiber Couple

Lens

Beam dum

- Lattice confinement with a 532 nm laser, with the lattice depth being much deeper for Na than Li.
- Connecting the building blocks with laser-assisted tunneling.

Observe spin changing collisions between sodium and fermionic lithium.

