Deep Learning with Analog Neuromorphic Hardware

February 13, 2020 | Yannik Stradmann | Kirchhoff-Institute for Physics, Heidelberg University

|--|

Measurement by Mohanty, Scholl, and Priebe (2012).

Measure

AND ANALAMA INNOVATION Model $C_{\rm m} \frac{\mathrm{d}V_{\rm m}}{\mathrm{d}t} = -g_{\rm leak} \left(V_{\rm m} - V_{\rm leak}\right) + I_{\rm stim}$

Measurement by Mohanty, Scholl, and Priebe (2012).

Measurement by Mohanty, Scholl, and Priebe (2012).

BrainScales2 - Overview

- Hybrid neuromorphic system, 65 nm CMOS
- 1000× speedup
- 512 multi-compartment AdEx neurons
- 512 × 256 synapse circuits
- Two general purpose SIMD processors
- 1024 columnar ADC channels (8 bit)
- 16 Gbit s⁻¹ (full duplex) I/O

BrainScales2 - Overview

- Hybrid neuromorphic system, 65 nm CMOS
- 1000× speedup
- 512 multi-compartment AdEx neurons
- 512 × 256 synapse circuits
- Two general purpose SIMD processors
- 1024 columnar ADC channels (8 bit)
- 16 Gbit s⁻¹ (full duplex) I/O

Figure adapted from Billaudelle, Stradmann, et al. (2019)

Simulation vs. Emulation

Figure adapted from Aamir et al. (2018).

Accelerated Emulation of Spiking Neural Networks

Experiment by Korbinian Schreiber (Billaudelle, Stradmann, et al., 2019).

Single Spike Coding - Time to First Spike

Göltz et al. (2019)

Single Spike Coding – Time to First Spike

On-chip Learning

520.8 s

On-chip learning rule:

- STDP
- Homeostasis
- Pruning

Experiment by Billaudelle, Cramer, et al. (2019).

BrainScaleS-2 - Spikes and Activations

Inference on BSS2 – (Very) Early Results: Analog MAC

input resolution	5 bit
weight resolution	6 bit + sign
activation resolution	8 bit
analog precision	???

Unpublished, measurement designed and executed by Johannes Weis

Inference on BSS2 - (Very) Early Results: MNIST

- Simple Architecture
 - One convolutional layer (10×10)
 - Two dense layers (128 units, 10 units)
- Achieved accuracy
 - Software: 98.42%
 - Hardware: 91.54% (without re-training)

Unpublished, measurement designed and executed by Johannes Weis.

Model Creation - Hardware in the Loop

February 13, 2020

Model Application – Analog Inference

Slide 13

In the (near) future...

Software

- "Hardware in the Loop" ANN training
- TensorFlow/PyTorch integration
- SNN abstraction layer
- Compiler support for SIMD operations

Hardware

- Tape-Out in 02/2020
- Inference throughput: up to 131 GOPS
- Spike throughput: up to 250 MEvents s⁻¹
- Power consumption: ≈1 W

Summary

BrainScaleS-2 is an analog neural network accelerator

- ... manufactured in an affordable 65 nm CMOS process
- ... suitable for artificial neural networks
- ... suitable for spiking neural networks (1000× speedup)
- ... optimized for low-power applications
- ... embedding SIMD microprocessors for on-chip learning

References

- Aamir, Syed Ahmed et al. (2018). "An accelerated LIF neuronal network array for a large-scale mixed-signal neuromorphic architecture". In: IEEE Transactions on Circuits and Systems I: Regular Papers 65.12, pp. 4299–4312.
- Billaudelle, Sebastian, Benjamin Cramer, et al. (2019). "Structural plasticity on an accelerated analog neuromorphic hardware system". In: arXiv preprint arXiv:1912.12047.
- Billaudelle, Sebastian, Yannik Stradmann, et al. (2019). "Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate". In: arXiv preprint arXiv:1912.12980.
- Göltz, Julian et al. (2019). "Fast and deep neuromorphic learning with time-to-first-spike coding". In: arXiv preprint arXiv:1912.11443.
 Mohanty, Deepankar, Benjamin Scholl, and Nicholas J Priebe (2012). "The accuracy of membrane potential reconstruction based on spiking receptive fields". In: Journal of neurophysiology 107.8, pp. 2143–2153.